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We study a rotating Bose-Einstein condensate in a strongly anharmonic trap �flat
trap with a finite radius� in the framework of two-dimensional Gross-Pitaevskii
theory. We write the coupling constant for the interactions between the gas atoms as
1/�2 and we are interested in the limit �→0 �Thomas-Fermi limit� with the angular
velocity � depending on �. We derive rigorously the leading asymptotics of the
ground state energy and the density profile when � tends to infinity as a power of
1 /�. If ����=�0 /� a “hole” �i.e., a region where the density becomes exponen-
tially small as 1 /�→�� develops for �0 above a certain critical value. If ����
�1/� the hole essentially exhausts the container and a “giant vortex” develops
with the density concentrated in a thin layer at the boundary. While we do not
analyze the detailed vortex structure we prove that rotational symmetry is broken in
the ground state for const�log ��������const/�. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2712421�

I. INTRODUCTION

In recent years much effort, both experimental and theoretical, has been put into the study of
vortices in rotating Bose-Einstein condensates, see, e.g., Castin and Dum �1999�, the review
�Fetter and Svidzinsky �2001�� and the monograph �Aftalion �2006�� where extensive lists of
references can be found. Most of the theoretical research is carried out in the framework of the
Gross-Pitaevskii theory, whose status as an approximation of the quantum mechanical many-body
problem was established in Lieb et al. �2001� for the nonrotating case and in Lieb and Seiringer
�2006� for rotating systems. On the mathematical physics side an important topic has been the
vortex structure in the strong coupling �Thomas-Fermi �TF�� regime in harmonic traps when the
rotational velocity is scaled with the coupling in such a way that the number of vortices remains
finite �Aftalion and Du �2001�; Ignat and Millot �2006a; 2006b��. General results on symmetry
breaking for sufficiently large interactions or rotational velocities and in traps of arbitrary shape
were proved in the papers �Seiringer �2002�; Seiringer �2003�� that are not limited to the TF
regime.

Recently, attention has focused on rapidly rotating condensates where the number of vortices
is much larger than unity �see, e.g., Engels et al. �2003� and Schweikhardt et al. �2004� for
experimental results�. Much of this research has been for harmonic traps, e.g., Aftalion and Blanc
�2006�, Aftalion et al. �2005�, Aftalion et al. �2006a; 2006b�, Watanabe et al. �2004�, and Wa-
tanabe et al. �2006�, where “rapid rotation” means a velocity close to the limiting velocity beyond
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which the centrifugal forces destabilize the condensate, but anharmonic traps �mostly quartic plus
harmonic� have also been discussed �Aftalion et al. �2005�; Baym �2005�; Baym and Pethick
�2004�; Fetter �2001�; Fischer and Baym �2003�; Fu and Zaremba �2006�; Kavoulakis and Baym
�2003�; Kim and Fetter �2005�; Kasamatsu et al. �2002��. For harmonic traps the eigenstates of a
noninteracting rotating gas fall into Landau levels and rapid rotation implies, also for an interact-
ing gas, that essentially only the lowest Landau level �LLL� is occupied. Using this fact detailed
informations about the lattice of vortices have been obtained in Aftalion et al. �2005�, Aftalion et
al. �2006a; 2006b�, and Watanabe et al. �2004�. Some results for harmonic traps going beyond the
LLL approximation are discussed in Watanabe et al. �2004� and Watanabe et al. �2006�. In an
anharmonic trap a restriction to the LLL is not adequate. The reason is that the energy gap between
Landau levels is proportional to the angular velocity, while the centrifugal energy is proportional
to the angular velocity squared. In an anharmonic trap the latter can be much larger than the
former, while in a harmonic trap close to the limiting angular velocity the potential and centrifugal
energies almost cancel each other and the LLL energy is the dominating contribution.

In the present paper we study a rapidly rotating gas in a trap that is as far from being harmonic
as possible. The gas is confined within a finite radius R and the trap is “flat,” i.e., the confining
potential is constant �zero� inside the trap. Formally this trapping potential can be regarded as a
limit of a homogeneous potential V�r���r /R�s with s→�. Such a limit naturally leads to Dirichlet
conditions at the boundary, but it is mathematically somewhat simpler to consider the case of
Neumann �or free� boundary conditions and this is what we shall do. In this way the interplay
between rotational effects and the nonlinear interaction terms is brought out in a particularly clean
way. Dirichlet boundary conditions lead, in fact, to exactly the same results in the TF limit as we
shall also show. Generalizations to homogeneous potentials with s�� are in principle straight-
forward but the case s=� merits a special treatment because it brings out clearly the essential
differences between harmonic and anharmonic traps and also because of some special features
with respect to the breaking of rotational symmetry. This will be discussed in Sec. II A.

Our main results concern the density profile and the ground state energy in the asymptotic
limit when the coupling constant 1 /�2 �see below� tends to infinity �TF limit� and the rotational
velocity ���� is at the same time scaled with �. �The TF limit of the two-dimensional �2D�
Gross-Pitaevskii �GP� functional without rotation is discussed in Lieb et al. �2001�.� Our estimates
are not sharp enough to rigorously uncover the vortex structure of the condensate, but the varia-
tional functions that we use and which give the correct energy to leading order in � provide
important hints about this structure. In particular, the regimes �����1/� and �����1/� require
different variational functions, the former with a lattice of vortices distributed over the trap and the
latter with a “giant vortex” in the region where the density is exponentially small.

When considering the TF limit there is an important difference between traps that confine the
gas strictly to a bounded region and traps where the gas can spread out indefinitely. If one
considers for instance a trap given by a homogeneous potential V�r�=rs, for some 2�s�� and
performs the TF limit in a naive way, the result is trivial, namely, the minimizer goes to zero and
the energy to infinity. In order to obtain a nontrivial limit it is necessary to rescale all lengths by
�4/�2+s�. In the case of infinitely high walls considered here, the characteristic length of the problem
is fixed from the outset and therefore no rescaling is needed in the TF limit. Consequences of this
difference for the question of symmetry breaking in the rotating case will be discussed in Sec.
II A.

Rapidly rotating condensates in a flat trap have been previously studied by Fischer and Baym
�2003� and the paper of these authors triggered, in fact, the present investigation. Our analysis
underpins and extends their general picture by rigorous estimates. We do not, however, confirm
that the transition to the giant vortex state takes place for �����1/ ��2�log ��� as implied by Eq.
�20� in Fischer and Baym �2003�. Our conclusion is rather that such a state emerges asymptotically
at all rotational velocities �����1/�. The reasons for this difference are discussed in Sec. II D.

We now define the setting more precisely. The starting point is the 2D GP energy functional
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ER
GP��� � �

BR

dr	����2 − �����*L� +
���4

�2 
 , �1.1�

where BR denotes a ball �disk� of radius R centered at the origin, L the third component of the
angular momentum �i.e., L=−i� /�� in polar coordinates �r ,���, ���� the angular velocity, and �
is a non-negative, small parameter.

The functional is defined on the domain �by Sobolev immersion H1�BR� is contained in
L4�BR�, so the functional is well defined on DR

GP�

DR
GP = H1�BR� . �1.2�

We also define

E�
GP�R� � min

��DR
GP

���2=1

ER
GP��� , �1.3�

and denote by ��
GP a corresponding minimizer �any result for ��

GP stated in the following is meant
to be true for any minimizer, if it is not unique�. Indeed, for any ������, one can prove �see, for
instance, Seiringer �2002�� that the functional is bounded from below and there exists at least one
minimizer.

From the physics point of view a minimizer of Eq. �1.1� describes the macroscopic wave
function �the wave function of the condensate� of a Bose-Einstein condensate in the rotating
reference frame. The 2D description is a simplification that is justified either in the limit of thin
�“disk shaped”� three-dimensional �3D� traps or traps that are very elongated along the rotational
axis �“cigar shaped” traps�, so that the 3D wave function is essentially constant along this axis. In
both cases the coupling 1/�2 is proportional to Na /h, where a is the scattering length of the
two-body potential �for its definition see, e.g., the Appendix in Lieb and Yngvason �2001��, N the
particle number, and h the extension of the 3D trap along the rotational axis. In “thin” traps a
different formula applies at extreme dilution where the coupling becomes independent of a and
depends logarithmically on the average density �see Schnee and Yngvason �2007�.�

In the nonrotating case, ����=0, the minimizer is actually unique, by the strict convexity of
the functional, and it is given by the �normalized� constant function

���
GP��=0 =

1
�	R

.

The ground state energy is then

�E�
GP�R���=0 =

1

	R2�2 .

If the angular velocity is different from zero the minimizer may not be unique since a rotational
symmetry breaking occurs for ���� above a certain threshold value as will be shown in Sec. II A.

We point out that the dependence on the radius R of the trap can be scaled out,

E�
GP � E�

GP�1� = R2E�
GP�R� , �1.4�

so that, without loss of generality, we can choose R=1 and denote the functional by EGP���.
The GP functional can be rewritten in the following form that we are going to use:

EGP��� = �
B1

dr	���− iA����2 −
����2r2���2

4
+

���4

�2 
 , �1.5�

where A� is the vector potential associated with the rotation, i.e.,

042104-3 Rapidly rotating condensates J. Math. Phys. 48, 042104 �2007�

 10 N
ovem

ber 2023 15:01:34



A��r� �
����

2
ẑ 
 r , �1.6�

with ẑ the unit vector in the z direction. In Eq. �1.5� one can recognize an analogy with the
Ginzburg-Landau �GL� functional �see, e.g., Connectivity and Superconductivity �2001�� in the
theory of superconductivity. The vector potential �Eq. �1.6�� is in this context due to a uniform
magnetic field, while the wave function of the condensate is the GL order parameter �density of
Cooper pairs�. Using the L2 normalization of the minimizer, the analogy can be made even closer,
namely, the minimization problem in Eq. �1.3� is equivalent to the minimization of the functional

EGP���� = �
B1

dr	���− iA����2 −
����2r2���2

4
+

�1 − ���2�2

�2 

over L2-normalized functions. At this point, however, an important difference becomes evident,
namely, the presence of the centrifugal energy �the second term in the expression above�, which in
the GL context could be interpreted as an electric field. This contribution, usually not present in
the GL functional, is proportional to the square of the angular velocity and we are going to see
that, in the regimes we are considering, it is responsible for a rather different behavior of the
minimizer compared to the GL theory. Another important difference between the GP and the GL
minimization problems is the L2-normalization condition that prevents, for instance, the minimizer
from being identically zero, as it can be in the GL case. It also gives rise to an additional term
�chemical potential� in the variational equation associated with Eq. �1.3�.

In Sec. II we introduce some notations and state the main results of this paper. We first discuss
the problem of spontaneous symmetry breaking in the ground state, then we study the regimes
�����1/� �Sec. II B�, �����1/� �Sec. II C�, and �����1/� �Sec. II D�. Section III is devoted
to the proofs, while in Sec. IV we comment on the results and perspectives.

II. MAIN RESULTS

A. Spontaneous symmetry breaking in the ground state

The GP functional for a rotating 2D condensate in a general trap has already been studied in
Seiringer �2002�. A very interesting phenomenon generated by the rotation is the spontaneous
breaking of rotational symmetry in the ground state. If the trap potential is polynomially bounded
at infinity one can prove �see Theorem 4 in Seiringer �2002�� that for any fixed angular velocity �,
there exists �� such that, if ����, no ground state of the GP functional is an eigenfunction of the
angular momentum. The rotational symmetry of the functional is then spontaneously broken at the
level of the ground state. An important consequence is that the minimizer is no longer unique,
since a rotation by an arbitrary angle gives rise to a state with the same energy.

A crucial ingredient of the proof in Seiringer �2002� is that, in a polynomially bounded
potential trap, the density of the minimizer tends to zero as �→0. In fact, Theorem 4 in Seiringer
�2002� is not true in the case of a trap with infinitely high walls as we are considering and we
actually expect the opposite behavior. If � is kept fixed, then for � sufficiently small the ground
state is an eigenfunction of the angular momentum and, after an appropriate choice of a constant
phase factor, a unique, strictly positive radial function. This difference can be understood by
noting that in a trap of radius R the kinetic energy of a vortex is of the order R−2�log �� for small
�. Thus, if R is fixed, an angular velocity of order �log �� is needed in order to create vortices. In
a polynomially bounded trap, on the other hand, the effective radius of the condensate increases as
�→0 and the critical velocity for the creation of a vortex behaves as �4/�s+2��log �� for a trap
potential �rs, cf. the remark at the end of Sec. III in Seiringer �2002�. Any fixed � thus exceeds
the critical velocity as �→0 if s��.

Despite this difference, our proof of symmetry breaking is obtained partly by a modification of
the arguments of Theorem 2 in Seiringer �2002�. The following proposition states that for angular
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velocities smaller than 1/�	�, symmetric vortices of degree higher than 1 are unstable �in the
opposite regime of weak coupling and fixed �, vortices of degree 2 or higher may be energetically
favorable in anharmonic traps �Lundh �2002���.

Proposition 2.1 (instability for higher vorticity): Let �n�r�, n�2, be the unique minimizer
of EGP��� on the subspace of functions with angular momentum n, i.e., on 
��DGP �L�=n��.
For any ����
1/�	�, �n is unstable, i.e., it is not a local minimizer of EGP���.

Proof: From the variational equation satisfied by the radial part of �n��n�r�ein�,

− ��n +
n2�n

r2 − ����n�n +
2�n

3

�2 = �n����n,

where the chemical potential �n��� is fixed by the L2 normalization of �n, it is not hard to prove
by a rearrangement argument �see, e.g., Lemma 1 in Seiringer �2002�� that �n is a positive
nondecreasing function, �n�r�=O�rn� as r→0 and �n��1�=0, i.e., �n satisfies Neumann boundary
conditions. Moreover by a subharmonicity argument �for a similar proof see, e.g., Lemma 2.1 in
Lieb et al. �2001�� we can also prove the bound

��n�L��B1�
2



�2

2

�n��� + ����n − n2� . �2.1�

Indeed, suppose that n�1 and the opposite is true, then setting

B� � 
r � �0,1���n
2�r� � �2��n��� + ����n − n2�/2� ,

we can have two possibilities: either B�=�, and then the result easily follows, or it is an open
interval, B���R� ,1�, by monotonicity of �n, and ���n�B� �0. In this case, by integrating ��n

over B� and using Neuman boundary conditions, one has

�
B�

��nrdr = − R��n��R
�� � 0,

which is a contradiction because �n is nondecreasing.
The rest of the proof coincides with the proof of Theorem 2 in Seiringer �2002�. Using

estimate �2.1�, we can extract, as in Eq. �2.33� in Seiringer �2002�, a sufficient condition on the
chemical potential for instability of the corresponding vortex. The symmetric vortex of degree
n�d�N is unstable if

− �d − 1�2�� + �d2 − 1�����n − �d − 1�2n2 � 0

or, choosing d=2,

− �n��� + 3����n − n2 � 0.

�Note that the variational parameter d�N is involved in the definition of a suitable trial function
used in Theorem 2 in Seiringer �2002�; the requirement n�d is necessary, otherwise such a trial
function does not belong to H1�B1�.� From the definition of the chemical potential and Schwarz’s
inequality it also follows that

�n��� = �
B1

dr	���n�2 +
n2�n

2

r2 − ����n�n
2 +

2�n
4

�2 
 � n2 − ����n +
2

	�2 .

Inserting this bound in the condition above, we have instability if

n2 − 2����n +
1

	�2 � 0.

Hence any vortex of degree n�2 is unstable, provided that ����
1/�	�. �
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From Proposition 2.1 it follows that in order to prove the symmetry breaking in the ground
state for a given ����
1/�	�, it is sufficient to show that a rotationally symmetric vortex of
degree smaller or equal to 1 cannot be a minimizer of the GP functional at this angular velocity.
This in turn can be achieved by exploiting some energy estimates. Let us first define

En��� � min
���L2�B1�=1

�
B1

dr	����2 +
n2�2

r2 +
�2

�2

and

�n��� � En+1��� − En��� ,

so for ������n̄��� no symmetric vortex of degree n
 n̄ can be a global minimizer of the GP
functional. Since �n���
 �2n+1��0��� �see Lemma 3 in Seiringer �2002�� we can use an upper
bound on E1���−E0��� to prove the symmetry breaking.

Proposition 2.1 applies only for ����
1/�	�, but symmetry breaking can, in fact, be proved
for �����C /� with an arbitrary constant C by using Theorem 2.1 that is proved later in the paper.
Hence a part of the proof of the next proposition will be postponed to the end of Sec. II C.

Proposition 2.2 (symmetry breaking in the ground state): For � sufficiently small, no
minimizer of EGP��� is an eigenfunction of the angular momentum, if

6�log �� + 3 � ���� �
C

�

for any constant C�R+.
Proof: Using the normalized trial function

��r� � c�	r/� if 0 
 r 
 �

1 otherwise,



we can prove the upper bound

E1��� 

1

	�2 + log� 1

�2� + 1.

Since �n���
 �2n+1��0��� and E0���=1/	�2, we get

�1��� 
 3�log� 1

�2� + 1� .

Hence no symmetric vortex of degree 
1 can be a global minimizer of the GP functional if
�����6�log ��+3. On the other hand vortices of degree higher or equal to 2 are excluded by
Proposition 2.1 provided that �����1/�	�. The proof of symmetry breaking for general ����
�1/� will be given at the end of Sec. II C. �

B. Energy and density for �„�…™1/�

If �����1/�, the rotation has no leading order effect in the TF regime. More precisely the
energy asymptotics is the same as for a nonrotating condensate, and the density profile, ���

GP�2,
converges to the normalized constant function, namely, the minimizer of the GP functional without
rotation.

Proposition 2.3 (energy and density asymptotics): For any ���� such that lim�→0�����
=0 and for � sufficiently small,

�2E�
GP =

1

	
− O��2����2� , �2.2�
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����
GP�2 − 1/	�L1�B1� = O������� . �2.3�

Proof: Since ���
GP�L2�B1�=1 and R=1, we have

�
B1

drr2���
GP�2 
 1

and ���
GP�L4�B1�

4
�1/	 by Schwarz’s inequality. Hence Eq. �1.5� leads to the lower bound,

�2E�
GP �

1

	
−

�2����2

4
.

The upper bound is obtained by evaluating the functional on the trial function 1/�	, namely,

�2E�
GP 


1

	
.

Moreover, since ���
GP�L2�B1�=1, this estimate implies

����
GP�2 − 1/	�L2�B1�

2



�2����2

4
.

The L1 convergence of the density profile now follows by Schwarz’s inequality. �

We stress that the result above says nothing about the fine structure of the minimizer and also
nothing about its uniqueness. As far as the density profile is concerned, the first critical velocity at
which some new effect comes into play is �����1/� as it will be discussed in the next subsec-
tion. On the other hand, the fine structure of ��

GP depends on the angular velocity, even if ����
�1/�. If ���� is simply a constant and � is sufficiently small, it is not hard to see that the
minimizer is unique. More precisely, it is a radial function �and hence an eigenfunction of the
angular momentum� which can be chosen strictly positive. In this case the result in Eq. �2.3� can
be improved and the convergence can be extended to L��B1�.

According to the discussion in Aftalion and Du �2001� and the rigorous analysis in Ignat and
Millot �2006a; 2006b� of rotating Bose-Einstein condensates in harmonic traps, the first critical
velocity for the occurrence of vortices, i.e., isolated zeros of the minimizer, is in that case �the
overall factor � in the critical velocities �Eq. �2.4�� is due to the scaling mentioned in Secs. I and

II A� of the order �������log ��. More precisely, if �̃d����������̃d+1���, where

�̃d��� � c���log �� + �d − 1�log�log ��� , �2.4�

the minimizer has exactly d vortices of degree 1. A similar behavior was shown in Serfaty �2001�
for a slightly different model of superfluids.

Such results together with the considerations in Sec. II A suggest that in a flat trap, vortices
start to occur if ������log �� and the rotational symmetry can be broken. The spontaneous
symmetry breaking cannot be seen at the level of the density profile ���

GP�2, however, because the
average size of each vortex is very small �area of the core of order �� in the TF limit. The total
vorticity of the minimizer is proportional to the angular velocity, provided that ����� �log ��, and
therefore, as long as �����1/�, the region covered by the vortex cores has a Lebesgue measure
zero in the limit �→0, in accord with Eq. �2.3�.

C. The regime �„�…È1/�

In the regime �����1/� the rotation is so fast that it modifies the density profile itself. Since
the centrifugal energy in Eq. �1.5� is of the same order as the nonlinear term, it is no longer
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convenient for the condensate to be uniformly distributed over the trap, like in the nonrotating
case. Such an effect can be seen at a macroscopic level, namely, the density profile converges to
a nonconstant function, which minimizes a TF-like functional.

Before stating the main results we first need some new notations. Without loss of generality
we can assume that �0������ is a constant independent of �. Moreover, for any �0�0, we
introduce the TF functional,

ETF��� � �
B1

dr	�2 −
�0

2r2�

4

 , �2.5�

defined on the domain

DTF = 
� � L2�B1��� � 0� . �2.6�

The functional above has a unique minimizer, �TF, and we denote

ETF � min
��DTF

��=1

ETF��� = ETF��TF� . �2.7�

The minimizer �TF can be explicitly calculated,

�TF�r� =	 1/	 − ��0
2/16��1 − 2r2� if �0 
 4/�	

���0
2/8��r2 − 1� + �0/�2�	��+ if �0 � 4/�	 ,


 �2.8�

where �·�+ stands for the positive part, and the ground state energy is

ETF =	1/	 − �0
2/8 − 	�0

4/768 if �0 
 4/�	

��0/4��8/�3�	� − �0� if �0 � 4/�	 .

 �2.9�

We point out that, if �0�4/�	, �TF has a “hole,” i.e., a macroscopic region where it is
identically zero, centered at the origin. With

R0 ��1 −
4

�	�0

, �2.10�

we have �TF�r�=0, for any r
R0. We also define

D0 � supp��TF� = 
r � B1�r � R0� . �2.11�

The first result concerns the energy asymptotics.
Theorem 2.1 (energy asymptotics): For any �0�0 and for � sufficiently small

�2E�
GP = ETF + O���log ��� . �2.12�

The leading order term, proportional to 1/�2, in the asymptotic expansion of E�
GP is due to the

centrifugal bending of the profile, while the remainder �of the order �log �� /�� is the contribution
coming from the fine structure of the minimizer. Indeed, ��

GP is expected to carry a very large
number �of the same order as ����� of vortices of degree 1. As suggested by trial function �3.2�
used in the proof of Theorem 2.1 �see also Fisher and Baym �2003��, such vortices should be
distributed over a lattice with a spacing of order ��, so that the average vortex core covers an area
proportional to �. A simple argument �see, for instance, Bethuel et al. �1994�� shows that the
kinetic energy of each vortex is of the order �log ��. This explains why the total energy contribu-
tion of vortices produces a remainder of the order �log �� /�.
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As stated in the Introduction, the results proved in Theorem 2.1 and in the rest of this section
also hold in the case of Dirichlet boundary conditions �see the Remark 3.1 in Sec. III A�. The
crucial point is that the limiting functional �Eq. �2.5�� contains no kinetic energy and hence
boundary conditions become irrelevant in the TF limit, at least to the leading order.

The convergence of the profile ���
GP�2 to �TF is a straightforward consequence of Theorem 2.1.

Corollary 2.1 (density asymptotics): For any �0�0 and for � sufficiently small,

����
GP�2 − �TF�L1�B1� = O����log ��� . �2.13�

If �0�4/�	 the estimate above can be improved and we can prove that the profile ���
GP�2 is

exponentially small in � inside the “hole,” i.e., where �TF is zero.
Proposition 2.4 (exponential smallness of the density in the “hole”): Denote

T� � 
r � B1�r 
 R0 − �1/3� , �2.14�

where R0 is defined in Eq. (2.10). For any �0�4/�	 and � sufficiently small, there exist two
constants C�0

and C�0
� such that, for r�T�,

���
GP�r��2 
 C�0

�1/6��log �� exp�−
C�0

� dist�r,�T��2

�2/3 � . �2.15�

The results stated above allow us to complete the proof of Proposition 2.2.
Proof of Proposition 2.2: It remains to prove the statement for any ����=�0 /�. Suppose that

the opposite statement is true, namely, the ground state energy E�
GP is reached on a symmetric

vortex of the form �nein�. Then there must be some n̄��N such that

En̄�
��� − ����n̄� = E�

GP 

ETF

�2 +
C�log ��

�
, �2.16�

where we have used the upper bound for E�
GP proved in Theorem 2.1. Using the rough lower

bound En����n2, we immediately get the upper bound n̄�
C /� for some constant C independent
of �. The right hand side of Eq. �2.16� can be bounded below by

En − ����n � �
B1

dr�n

r
−

����r
2

�2

�n
2�r� +

ETF��n
2�

�2 � �
B1

dr�n −
����r2

2
�2

�n
2�r� +

ETF

�2 .

Therefore one has the estimate

�
B1

dr�n̄� −
����r2

2
�2

�n̄�

2 �r� 

C�log ��

�
.

Since �n̄�
ein̄�� is a ground state, it must satisfy estimate �2.13�, and then

C�log ��
�

� �
B1

dr�n̄� −
����r2

2
�2

�n̄�

2 �r� � �
B1

dr�n̄� −
����r2

2
�2

�TF�r� −
C��log ��

�3/2

or

�
B1

dr�n̄� −
����r2

2
�2

�TF�r� 

C�0

��log ��

�3/2 , �2.17�

where we have used the bound
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�
B1

dr�n̄� −
����r2

2
�2

��n̄�

2 �r� − �TF�r�� � − �n̄� −
����r2

2
�

L��B1�

2

��n̄�

2 − �TF�L1�B1� � −
C��log ��

�3/2 .

The left hand side of Eq. �2.17� can be explicitly calculated. If �0
4/�	, one has

�
B1

dr�n̄� −
����r2

2
�2

�TF�r� = n̄�
2 −

����n̄�

2
�1 +

	�0
2

48
� +

�2���
12

�1 +
	�0

2

32
� ,

while, if �0�4/�	,

�
B1

dr�n̄� −
����r2

2
�2

�TF�r� = n̄�
2 − ����n̄��1 −

4

3�	�0
� +

�2���
2 �1 −

8

3�	�0

+
8

3	�0
2� .

By minimizing over n̄�, i.e., taking

n̄� =
����

4
�1 +

	�0
2

48
�

in the first case and

n̄� =
����

2 �1 −
4

3�	�0
�

in the second, we get

�
B1

dr�n̄� −
����r2

2
�2

�TF�r� �
�2���

72
=

�0
2

72�2 �
C�0

�

�2 ,

if �0
4/�	, and

�
B1

dr�n̄� −
����r2

2
�2

�TF�r� �
�2���

4
�1

3
+

32

9	�0
2� �

C�0
�

�2 ,

if �0�4/�	. Therefore in both cases Eq. �2.17� implies that

0 � C�0
� 
 C�0

���log ��

for some strictly positive constant C�0
� . For � sufficiently small this is a contradiction and then no

symmetric vortex can be a ground state of the GP functional. �

D. The regime �„�…š1/�

In order to present the results in a transparent way we assume that the angular velocity is a
power of 1 /�, namely,

���� =
�1

�1+�

for some ��0 �our analysis applies, in fact, to arbitrary angular velocites �����1/�, one just has
to replace �1 /�� by ������. In this case the limiting functional is analogous to the one introduced
in Sec. II C, provided that �0 is replaced by �1 /�� and the energy scale by �2�, i.e.,

E�
TF��� � �2��

B1

dr	�2 −
�1

2r2�

4�2� 
 . �2.18�

The ground state energy of this functional, i.e.,
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E�
TF � min

��DTF

��=1

E�
TF��� = E�

TF���
TF� , �2.19�

is given by

E�
TF = −

�1
2

4 �1 −
8��

3�	�1
� , �2.20�

and the corresponding minimizer is

��
TF =

�1
2

8�2� �r2 − R�
2�+, �2.21�

where

R� ��1 −
4��

�	�1

. �2.22�

Hence the function ��
TF is supported in a very thin layer near the boundary and, as �→0, it

converges as a distribution to a radial delta function supported at r=1: If F�r� is a continuous
function, one has

�
B1

dr��
TF�r�F�r� =

	�1
2

8�2��
0

1−R�
2

dzzF��z + R�
2� = �

0

1

dzzF�� 2��z
�	�1

+ R�
2�→

�→0
F�1� .

We can now state the main results for this regime, starting with the energy asymptotics for �
→0.

Theorem 2.2 (energy asymptotics): For any �1�0, ��0, and for � sufficiently small

�2+2�E�
GP = E�

TF + O��2�� + O��2�log ��� . �2.23�

The two remainders in the asymptotic estimation of the GP energy E�
GP have different sources.

The second one, of the order �log �� /�2�, is due to the convergence of the density to a delta
function and the radial kinetic energy that is ignored in the TF functional. The other term, of order
1 /�2, is due to the approximation of the vortex structure in the region where the density is
exponentially small by a trial function with a single vortex located at the origin. It is clear that
estimate �2.12� is not the �→0 limit of Eq. �2.23�. We also note that for ��2 the last error term
in Eq. �2.23� is larger than the second term in Eq. �2.20�.

Since the function ��
TF does not converge in any Lp space, a result analogous to Corollary 2.1

does not hold. We are able to show, however, that the L2 norm of ��
GP converges to zero almost

everywhere, except for a thin region �with a size of order of a suitable power of �� near the
boundary.

Corollary 2.2 (density asymptotics): If �1�0 and � is sufficiently small,

���
GP�L2�BR�

�
2 = O���� + O��2−��log ��� �2.24�

for 0���2, while for ��2,

���
GP�L2�BR�,�

�
2 = O��2−��log ��� , �2.25�

with R�,�= �1−���1/2, for any 1
��2.
The above estimate is strengthened in the following proposition. The reason why we state

Corollary 2.2 separately is the analogy with the previous Corollary 2.1. It is also used in the proof
of the following.

Proposition 2.5 (exponential smallness of the density): Denote
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T �� = 
r � B1�r 
 1 − ���/4� �2.26�

and

T �� = 
r � B1�r 
 1 − ��2−��/4� , �2.27�

where ��=min�� ,2−�� and � is any number such that 1
��2.
For any �1�0 there exist constants C�1

and C�1
� , such that for � sufficiently small,

���
GP�r��2 
 C�1

���/3�log ��exp�−
C�1

� dist�r,�T ���
2

�1+��/2 � �2.28�

if 0���2 and r�T ��, and

���
GP�r��2 
 C�1

��2−��/3�log ��exp�−
C�1

� dist�r,�T ���
2

�1+�/2 � �2.29�

if ��2 and r�T ��.
A straightforward consequence of the above estimates together with the normalization of ��

GP

is that the density of any minimizer of the GP functional converges in a distributional sense to a
measure with support at r=1, in accord with the discussion in Fischer and Baym �2003�.

Another important difference compared to the regime �����1/� is the form of trial function
�3.36� used in the proof of Theorem 2.2. This function is an eigenfunction of the angular momen-
tum, i.e., the whole vorticity is concentrated at the origin. On the other hand, Proposition 2.2
implies that the true minimizer cannot be an eigenfunction of the angular momentum, at least as
long as �����1/�. Nevertheless we expect that the number of vortices contained in the region
where ��

GP is not exponentially small is negligible compared to the total vorticity of the function
�see, e.g., the numerical simulations contained in Kasamatsu et al. �2002��. A wave function of this
kind is often referred to in the physics literature as a ‘giant vortex’. Since the vortex contribution
to the energy depends essentially only on the winding number at the boundary of the thin region
where the wave function of the condensate is not exponentially small, a trial function with the
vorticity concentrated at the origin can lead to a good approximation to the energy.

This behavior is also suggested by the fact that the minimization of a modified GP functional
over the subspace of functions with fixed angular momentum with a subsequent minimization over
the value of the angular momentum gives a ground state energy with the same leading order
asymptotics as E�

TF and E�
GP. Indeed, if we define �cf. Fischer and Baym �2003��

E�,�
TF���� � �

B1

dr	�2�

r2 − �1�� + �2��2
 �2.30�

and

E�
TF� � min

��R+
min

��DTF�

��=1

E�,�
TF���� , �2.31�

where DTF� is the natural domain for functional �2.30�, then it is not hard to see that

lim
�→0

E�
TF� = lim

�→0
E�

TF = lim
�→0

�2+2�E�
GP = −

�1
2

4
, �2.32�

even though E�
TF��E�

TF for any ��0. Functional �2.30� is obtained from Eq. �1.5� by neglecting
the radial part of the kinetic energy and restricting it to eigenfunctions with fixed angular momen-
tum � /�1+� �more precisely, the correct value of the angular momentum should be the integer part
of � /�1+� but the difference between these two quantities produces a correction of smaller order in
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Eq. �2.31��. In other words the TF functional �2.30� describes the asymptotic behavior of the GP
functional almost as well as Eq. �2.18�.

However, while the heuristic discussion in Fischer and Baym �2003� suggests that a giant
vortex occurs only for angular velocities larger than 1/ ��2�log ���, we found no evidence in our
rigorous analysis that a change in the minimizer occurs above that threshold. In fact, such a critical
angular velocity for the transition to the giant vortex is estimated in Fischer and Baym �2003� by

imposing the condition that the ground state energy E�
TF� equals, to leading order, a certain upper

bound for �2+2�E�
GP. This upper bound, however, is calculated in Fischer and Baym �2003� with a

trial function of form �3.2� and is not optimal. In fact, the same comparison with a better upper
bound �for instance, the one calculated using trial function �3.36� in the proof of Theorem 2.2� for

�2+2�E�
GP gives the correct answer, namely, that �2+2�E�

GP is close to E�
TF�for any ��0 �see Eq.

�2.32��. Hence the transition to the giant vortex should occur for any angular velocity ���� of
order higher than 1/�.

III. PROOFS

A. The regime �„�…È1/�

The main result concerning the regime �����1/� is Theorem 2.1 and we start by proving it.
Some technical but crucial details of the proof are contained in the Technical estimates section
�Proposition 3.1 and Theorem 3.1�, where we present some estimates for the kinetic energy of the
trial function.

Proof of Theorem 2.1: We are going to prove the result by comparing an upper bound for the
ground state energy with a suitable lower bound.

Lower bound. The lower bound for E�
GP is actually trivial. By simply neglecting the positive

contribution of the magnetic kinetic energy in Eq. �1.5�, we immediately get

EGP��� �
ETF����2�

�2 �
ETF

�2 . �3.1�

Upper bound. We prove the upper bound by testing the functional on a trial function of the
following form:

�̃�r� = c�f��r����r�g��r� . �3.2�

The radial part is given by

f��r� =	��TF if �0 
 4/�	

j�
��TF if �0 � 4/�	 ,


 �3.3�

where j� is a suitable cutoff function to regularize ��TF at the boundary of the hole. Our choice is

j��r� = �
0 if r 
 R0

�r − R0�/� if R0 
 r 
 R0 + �

1 otherwise.
� �3.4�

The function g� is a phase factor that can be expressed in complex coordinates z=x+ iy as

g��z� = �
i�L

z − zi

�z − zi�
, �3.5�

where L is a square lattice of spacing �� defined in the following way:
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L = 
r = �m��,n���,m,n � Z�r 
 1 − 2�2��� . �3.6�

We assume that the spacing is of order ��, i.e., ��=���, for some ��0 independent of �, so that
the number of lattice points, denoted by N�, is proportional to 1/�.

We note that the phase g� carries vortices of degree 1 centered at the lattice points. Moreover,
each vortex core is contained inside the fundamental cell and its radius is of order ��. This choice
is suggested by previous works �see, e.g., Bethuel et al. �1994� and Ignat and Millot �2006;
2006b�� on rotating condensates, where it is shown that vortices of higher degree than 1 are
energetically unfavorable.

Since g� is not differentiable at the points of the lattice, we need to multiply it by a function,
��, that vanishes at these points and we take

���r� =	1 if �r − ri� � ��

�r − ri�/�� if �r − ri� 
 ��

 �3.7�

for some ��1/2.
Finally, the constant c� is fixed by the normalization condition and it can be easily checked

that, for � sufficiently small,

1 
 c�
2 
 1 + C� . �3.8�

Setting

� = B1 \ �
i�L

B�
i , �3.9�

where B�
i is a ball of radius �� centered at ri, the functional evaluated on trial function �3.2� is

given by

EGP��̃� = c�
2�

�

dr��f��2 + c�
2�

�

drf�
2���− iA��g��2 + �

�i�LB�
i

dr���− iA���̃�2 +
ETF���̃�2�

�2

= c�
2�

�

dr��f��2 + c�
2�

�

drf�
2���− iA��g��2 + c�

2�
�i�LB�

i
dr�����f���2

+ c�
2�

�i�LB�
i

dr��
2f�

2���− iA��g��2 +
ETF���̃�2�

�2


 c�
2�

B1

dr��f��2 + c�
2�

�

drf�
2���− iA��g��2 + c�

2�
�i�LB�

i
dr��

2f�
2���− iA��g��2

+
ETF���̃�2�

�2 +
C

�

 c�

2�
B1

dr��f��2 + C1�
�

dr���− iA��g��2 + C2�
�i�LB�

i
dr��

2��g��2

+ C3�
�i�LB�

i
dr�A��2 +

ETF���̃�2�
�2 +

C

�

 c�

2�
B1

dr��f��2 + C1�
�

dr���− iA��g��2

+ C2�
�i�LB�

i
dr��

2��g��2 +
ETF���̃�2�

�2 +
C4

�3−4� +
C

�
,

where we have used the uniform boundedness of f�, estimate �3.8�, and the fact that the number of
lattice points N� is bounded by C /�.

The gradient of the phase g� can be bounded from above inside any ball B�
i :
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��g�� 
 �
j�L

1

�r − r j�



1

�r − ri�
+

N�

infj�i�r − r j�



1

�r − ri�
+

N�

��

�3.10�

for any r�B�
i , so that

�
�i�LB�

i
dr��

2��g��2 

C��i�LB�

i �
�2� +

C���i�LB�
i �

�3 

C

�
+

C�

�4−2�

and hence

EGP��̃� 
 �
B1

dr��f��2 + C1�
�

dr���− iA��g��2 +
ETF���̃�2�

�2 +
C2

�

for any ��3/2.
Moreover, the radial part of the kinetic energy can be bounded by a constant if �0
4/�	,

and by

�
B1

dr��f��2 
 C1�
B1

dr��j��2 + C2�
R0

1

drr
j�
2

�TF 
 C3 + C4�
R0+�

1

dr
r

r2 − R0
2 
 C�log ��

if �0�4/�	. Then we get

EGP��̃� 
 C1�
�

dr���− iA��g��2 +
ETF���̃�2�

�2 +
C2

�

for a possibly different constant C2.
The upper bound �note that the constant C�0

actually depends linearly on � �see the proof of
Lemma 3.1, in particular Eq. �3.32��� now follows using Proposition 3.1 and Theorem 3.1 in the
next section, choosing �=�2	 /�0 and 5/2����:

EGP��̃� 

ETF

�2 +
C�0

�log ��

�
. �3.11�

�

Remark 3.1. (Dirichlet problem): The proof in the case of Dirichlet boundary conditions,
i.e., if Eq. �1.2� is replaced with H0

1�B1�, looks exactly the same. The trial function has simply to
be multiplied by a cutoff function, which is 1 everywhere except for a very thin region in the
neighborhood of the boundary where it goes to 0, in order to satisfy the required boundary
conditions. The error coming from such a cutoff function can then be included in the remainder in
Eq. �3.11�.

Proof of Corollary 2.1: Let us first consider the case �0�4/�	. Using the explicit form of
the TF minimizer �TF �see Eq. �2.8�� and estimate �3.11�, one can calculate

�
B1

dr����
GP�2 − �TF�2 = ETF����

GP�2� −
2

	
+

�0
2

8
+ �

B1

dr��TF�2


 ETF −
2

	
+

�0
2

8
+ �

B1

dr��TF�2 + C�0
��log �� = C�0

��log �� ,

and then the L1 bound follows from Schwarz’s inequality.
On the other hand, if �0�4/�	, one has
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�
D0

dr����
GP�2 − �TF�2 = ETF����

GP�2� − ETF − �
B1\D0

dr���
GP�4 +

�0
2

4
�

B1\D0

dr�r2 − R0
2����

GP�2


 ETF����
GP�2� − ETF 
 C�0

��log �� ,

where we have used again Eqs. �2.8� and �3.11�. From the same inequality one also has

�
D0

dr����
GP�2 − �TF�2 + �

B1\D0

dr���
GP�4 = ETF����

GP�2� − ETF +
�0

2

4
�

B1\D0

dr�r2 − R0
2����

GP�2


 ETF����
GP�2� − ETF 
 C�0

��log �� ,

so that

�
B1\D0

dr���
GP�4 
 C�0

��log �� . �3.12�

�

Proof of Proposition 2.4: The proof is similar to the one of Proposition 2.5 in Aftalion et al.
�2005�.

The variational equation satisfied by ��
GP is

− ���
GP −

�0

�
L��

GP +
2

�2 ���
GP�2��

GP = ����
GP, �3.13�

where the chemical potential �� is fixed by the L2 normalization of ��
GP,

�� = E�
GP +

���
GP�4

4

�2 . �3.14�

Setting U�����
GP�2 and using the simple estimate

�0

�
���

GP*L��
GP� 
 ����

GP�2 +
�0

2r2���
GP�2

4�2 ,

one can easily check that

−
1

2
�U� 
 ��0

2r2

4
+ �2�� − 2U��U�

�2 .

Moreover, thanks to Theorem 2.1 and Corollary 2.1,

�2�� 
 ETF + ��TF�2
2 + C�0

���log �� ,

so that

−
1

2
�U� 
 ��0

2�r2 − R0
2�

4
− 2U� + C�0

���log ���U�

�2 .

If we define

T̃� � 	r � B1�r 
 R0 −
�1/3

2

 ,

then, for � sufficiently small, the function U� is subharmonic in T̃� and therefore, for any point

r� T̃� with dist�r ,�T̃����,
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U��r� 

1

	�2�
B��r�

dxU��x� 

C�U��L2�B1\D0�

�
.

Hence, using estimate �3.12� and choosing, for instance, �=�1/3 /2, we can conclude that

U��r� 
 C�0
�1/6��log ��

for any r�T�.
Let us now define

U�� �
U�

C�0
�1/6��log ��

.

For any r�T�,

− �U�� +
CU��

�4/3 
 0

and

0 
 U�� 
 1,

i.e., U�� is a subsolution in T� of

�− �u +
Cu

�4/3 = 0,

u��T�� = 1.

On the other hand, it is not so hard to verify �see, e.g., Lemma 2 in Bethuel et al. �1993�� that the
function

exp	�C�r2 − �R0 − �1/3�2�
4�2/3�R0 − �1/3� 


is a supersolution for the same problem if

�2/3 

3�R0 − �1/3�

4

and hence for any � sufficiently small. The result now follows from the comparison principle. �

Technical estimates

In this section we want to present some estimates involving function �3.2�. We start by stating
a simple but important result.

Proposition 3.1. (upper bound on the TF energy): Let �̃ be the function defined in Eq.
(3.2), with ��1 and �0�0, then, for � sufficiently small,

ETF���̃�2� 
 ETF + C�0
� . �3.15�

Proof: A simple estimate using Eq. �3.8� shows that
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ETF���̃�2� − ETF��TF� 
 �
�

dr	�c�
4f�

4 − ��TF�2� −
�0

2r2�c�
2f�

2 − �TF�
4


 + C�2�−1


 C��c�
2f�

2 − �TF�L1�B1� + C�2�−1,

where � is the region defined in Eq. �3.9� and we have used the fact that �TF and �̃ are both
uniformly bounded and the area ��i�LB�

i � is bounded by C�2�−1.
Now

�c�
2f�

2 − �TF�L1�B1� 
 �
�

dr��TF − c�
2f�

2� + C�2�−1,

and, setting d�=c�
2−1
C�, the first term on the right hand side is bounded by

d��
B1

dr�TF 
 C�0
�

if �0
4/�	. On the other hand, if �0�4/�	,

�
�

dr��TF − c�
2f�

2� 
 d��
D0

dr�TF + C�0
� ,

where the last term is due to the cutoff function j� and D0 is defined in Eq. �2.11�. �

The main result contained in this section is the following.
Theorem 3.1 (upper bound on the vortex contribution): Let g� be the function defined in

Eq. (3.5), ��=��� and �0�0. There exists a constant C�0,�
independent of � such that for �

sufficiently small and 5/2����,

�
�

dr���− iA��g��2 

	

2�2��0

2
−

	

�2�2

+
C�0,��log ��

�
, �3.16�

where � �depending on ��� is defined in Eq. (3.9).
Remark 3.2 (vortex lattice): As far as the leading order of the GP energy is concerned, the

vortex structure of the minimizer ��
GP is not so important. The choice of a regular square lattice in

Eq. �3.6� is just the simplest for computational purposes but the result in Theorem 3.1 is expected
to hold for any trial function with vortices on a regular lattice, provided that �2 in Eq. �3.16� is
replaced with the volume of the rescaled fundamental cell, which is the relevant parameter in the
estimate.

Proof: Expanding the expression in Eq. �3.16�, we get

�
�

dr���− iA��g��2 = �
�

dr��g��2 +
i�0

�
�

�

drg�
*�r 
 �g�� +

�0
2

4�2�
�

drr2�g��2. �3.17�

The last term can be easily bounded from above by

�0
2

4�2�
B1

drr2 =
	�0

2

8�2 .

Using the fact that g�=ei�, where

��r� = �
i�L

arctan� y − yi

x − xi
� , �3.18�

the second term can be explicitly calculated. By applying Stokes’s theorem,
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i�0

�
�

�

drg�
*�r 
 �g�� = −

�0

�
�

�

drr 
 �� = −
�0

2�
�

�

dr � 
 �r2 � ��

= −
�0

2�
�

�B1

ds · �� +
�0

2�
�
i�L

�
�B�

i
ds · r2 � �

= −
	�0N�

�
+

	�0

�
�
i�L

ri
2 +

�0

2�
�
i�L

�
�B�

i
ds�r2 − ri

2� · �� . �3.19�

Since for any r��B�
i ,

�r2 − ri
2� 
 C��,

the last term in the expression above can easily be bounded by

��0

2�
�
i�L

�
�B�

i
ds�r2 − ri

2� · ��� 

C�0

N�

�1−� �
�B�

i
ds���� 


C�0
N�

2

�1−� ,

where we have used estimate �3.10�,

����r�� 
 �
i�L

1

�r − ri�



N�

infi�L�r − ri�



N�

�� . �3.20�

Since the lattice spacing �� is chosen to be equal to ���, the number of lattice points satisfies the
bound

N� 

	�1 − 3��/�2�2

��
2 


C�

�
�3.21�

and then

��0

2�
�
i�L

�
�B�

i
ds�r2 − ri

2� · ��� 

C�0,�

�3−� . �3.22�

Moreover the sum appearing in Eq. �3.19� can be replaced by the integral over B1: let Q� and Q�
i

be the fundamental cell centered at the origin and at ri, respectively,

ri
2 −

1

��
2�

Q�
i

drr2 =
1

��
2�

Q�

drr2 =
��

2

6
,

so that, setting A��B1 \ ��i�LQ�
i �,

�
i�L

ri
2 =

1

��
2�

�i�LQ�
i

drr2 +
N���

2

6



1

��
2�

B1

drr2 −
1

��
2�

A�

drr2 + C



	

2��
2 −

�1 − C����2�	 − N���
2�

��
2 + C 
 −

	

2��
2 + N� +

C��	 − N���
2�

��

+ C , �3.23�

because the lattice is chosen in such a way that, for any i�L, ri
1−2�2��.
From inequalities �3.22� and �3.23� we then get �for any ��5/2�
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i�0

�
�

�

drg�
*�r 
 �g�� 
 −

	2�0

2���
2 +

C�0,�� �	 − N���
2�

���

+
C�0

�
,

but the number of points in the lattice can be estimated below as

�N� −
	�1 − 2�2���2

��
2 � 


C

��
2/3 �3.24�

�see, for instance, Theorem 7.7.16 in Hörmander �2003�� so that

i�0

�
�

�

drg�
*�r 
 �g�� 
 −

	2�0

2���
2 +

C�0,�

�

 −

	2�0

2�2�2 +
C�0,�

�
. �3.25�

The first term in Eq. �3.17� is the most difficult to estimate and we deal with it in Lemma 3.1.
Altogether the three upper bounds then give the result for a possibly different constant

C�0,�. �

Lemma 3.1 (kinetic energy of vortices): Let g� be the function defined in Eq. �3.5�, ��

=��� and ��5/2. There exists a constant C� independent of � such that for � sufficiently small

�
�

dr��g��2 

	3

2�4�2 +
C��log ��

�
. �3.26�

Proof: We first notice the useful fact that

�
�

dr��g��2 = �
�

dr����2 = �
�

dr���̃�2,

where � is defined in Eq. �3.18� and �̃ is the function

�̃�r� = �
i�L

ln�r − ri� . �3.27�

Indeed, �̃ and � are conjugate harmonic functions �the real and imaginary parts of ln �i�z−zi�� so
that �x�̃=−�y�, �y�̃=�x�.

Since �̃ is harmonic, the last integral can be explicitly evaluated by means of partial integra-
tion:

�
�

dr���̃�2 = �
�B1

ds ·
��̃

�n
�̃ − �

i�L
�

�B�
i
ds ·

��̃

�n
�̃ ,

where n stands for the outer normal to integration path.
We are going to consider the two terms separately.
Outer boundary. The contribution at the outer boundary is given by

�
�B1

ds ·
��̃

�n
�̃ =

1

2 �
i,j�L

�
0

2	

d�
2 − zje

−i� − zj
*ei�

�ei� − zj�2
ln�ei� − zi� , �3.28�

where we have used the complex coordinate notation, z=x+ iy.
The first step in the proof is the replacement of the sum over i with an integral over B1−3��/�2,

�
i�L

ln �ei� − zi�2 −
1

��
2�

�i�LQ�
i

dz ln �ei� − z�2 = −
1

��
2 �

i�L
�

Q�

dz ln
�ei� − zi − z�2

�ei� − zi�2
.

Thanks to the choice of the lattice �Eq. �3.6��,
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�ei� − zi − z�
�ei� − zi�

�
1

2
,

because, for any �� �0,2	�, �ei�−zi��2�2�� and �z�
�� /�2. Using therefore the bound

ln�1 + t� � t − t2,

which holds true for any t�−1/2, we get

−
1

��
2 �

i�L
�

Q�

dz ln
1 − �ei� − zi − z�2

�ei� − zi�2

 −

1

��
2 �

i�L
�

Q�

dr	− 2r · ��cos �,sin �� − ri� + r2

��cos �,sin �� − ri�2

−
�− 2r · ��cos �,sin �� − ri� + r2�2

��cos �,sin �� − ri�4





1

��
2 �

i�L
�

Q�

dr
4�r · ��cos �,sin �� − ri��2 + r4

��cos �,sin �� − ri�4



1

��
2 �

i�L
�

Q�

dr	 4r2

��cos �,sin �� − ri�2

+
r4

��cos �,sin �� − ri�4




 �
i�L

	 C1��
2

��cos �,sin �� − ri�2
+

C2��
4

��cos �,sin �� − ri�4

 .

Since the functions 1/r2 and 1/r4 are positive and subharmonic, we can easily bound the expres-
sion above by

�
i�L

	 C1��
2

��cos �,sin �� − ri�2
+

C2��
4

��cos �,sin �� − ri�4




 �
�i�LQ�

i
dr	 C1��

2

��cos �,sin �� − r�2
+

C2��
4

��cos �,sin �� − r�4


 �

B1−
3��

�2

dr	 C1��
2

��cos �,sin �� − r�2
+

C2��
4

��cos �,sin �� − r�4
 
 C ,

so that

�
i�L

ln�ei� − zi� 

1

��
2�

�i�LQ�
i

dz ln�ei� − z� + C .

On the other hand,

1

��
2�

�i�LQ�
i

dz ln�ei� − z� =
1

��
2�

B1−3��/�2

dz ln�ei� − z� −
1

��
2�

B1−3��/�2\�i�LQ�
i

dz ln�ei� − z�

= −
1

��
2�

B1−3��/�2\�i�LQ�
i

dz ln�ei� − z� 

C�ln ����B1−3��/�2 \ �i�LQ�

i �

��
2



C�ln ����	�1 − 3��/�2�2 − N���

2�

��
2 


C�ln ���
��

,
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where we have used estimate �3.24� for the number of points and the fact that

�
BR

dz ln�ei� − z� = 0

for any 0�R�1.
Since the function

a�z� =
2 − ze−i� − z*ei�

�ei� − z�2

is positive for any �� �0,2	� and z�B1−3�/�2, the initial expression in Eq. �3.28� is bounded from
above by

�
�B1

ds ·
��̃

�n
�̃ 


1

2 �
j�L

�
0

2	

d�
2 − zje

−i� − zj
*ei�

�ei� − zj�2
R���� ,

where

R���� � −
1

��
2�

B1−3��/�2\�i�LQ�
i

dz ln�ei� − z� + C

is easily proved to satisfy the upper bound

�R����� 

C�ln ���B1−3��/�2 \ �i�LQ�

i �

��
2 


C�ln ���
��

.

We need now to replace the sum over j with an integral over B1−2�2��
. Since the function a�z� is

harmonic, we can apply the mean value theorem to get

a�zj� −
1

��
2�

Q�

dza�zj + z� =
1

��
2�

Q�\B��/2

dz�a�zj� − a�zj + z�� � b��zj� .

For any j�L, the right hand side can be easily estimated using Harnack’s inequality,

b��zj� 

�Q� \ B��/2�

��
2 �a�zj� −

1 − �2��/2

1 + �2��/2
a�zj�� 


C�Q� \ B��/2�a�zj�

��


 C��a�zj� .

In the same way it is possible to show that for � sufficiently small, there exists a possibly different
constant C such that

b��zj� � − C��a�zj� ,

so that

1

�1 + C�����
2�

Q�

dza�zj + z� 
 a�zj� 

1

�1 − C�����
2�

Q�

dza�zj + z�

and then

�a�zj� −
1

��
2�

Q�

dza�zj + z�� 
 C��.

Since
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�
j�L

�
Q�

dza�zj + z� = �
�jQ�

j
dza�z�

and

0 
 �
B1−2�2��

\�jQ�
j
dza�z� 
 �

1−2�2��

1−3��/�2

drr�
0

2	

d�a�rei�� 
 C��,

we conclude that

�R������ � ��
j�L

2 − zje
−i� − zj

*ei�

�ei� − zj�2
−

1

��
2�

B1−2�2��

dz
2 − ze−i� − z*ei�

�ei� − z�2 � 
 C��N�. �3.29�

On the other hand, using again the harmonicity of a, one has

1

��
2�

B1−2�2��

dz
2 − ze−i� − z*ei�

�ei� − z�2
=

2	�1 − 2�2���2

��
2 .

Since for the fundamental solution of the Laplace equation

1

2	
�

0

2	

d�ln�Rei� − x� = 	ln R if �x� 
 R

ln�x� if �x� � R ,

 �3.30�

we then get altogether

�
�B1

ds ·
��̃

�n
�̃ 
 −

2	�1 − 2�2���2

��
4 �

B1−3��/�2\�jQ�
j
dz�

0

2	

d� ln�ei� − z� + �
0

2	

d��R������R�����

+
C

��
2 
 2	 sup

���0,2	�
�R�������R����� +

C

��
2 


C�ln ���

��
2 +

C

��
2 


C��log ��
�

. �3.31�

Inner boundary. A straightforward calculation gives

− �
i�L

�
�B�

i
ds ·

��̃

�n
�̃ = 2	�N��ln ��− �

i,j�L
i�j

�
0

2	

d� ln���ei� + zi − zj�

−
��

2 �
i,j�L
i�j

�
0

2	

d��̃�zi + ��ei��
�� − �zi − zj�e−i� − �zi − zj�*ei�

���ei� + zi − zj�2


 2	�N��ln ��− 2	 �
i,j�L
i�j

ln�zi − zj� +
C��N�

��
2 �

i�L
�

0

2	

d���̃�zi + ��ei���


 2	�N��ln ��− 2	 �
i,j�L
i�j

ln�zi − zj� +
C��N�

2�log ��
��

2



C��log ��

�
− 2	 �

i,j�L
i�j

ln�zi − zj� , �3.32�

where we have used Eq. �3.20�.
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In order to get the desired estimate we need now to replace the sum over one of the two
indices in the expression above with the integration on a suitable domain. Therefore the quantity
which has to be estimated is the difference

�
i,j�L
i�j

	− ln�ri − r j� +
1

��
4�

Q�

dr�
Q�

dr�ln�ri − r j + r − r��
 . �3.33�

Using the estimate ln�t�

1
2 �t2−1�, which holds for any t�0, we can bound the expression under

the sum in the following way:

1

��
4 �

i,j�L
i�j

�
Q�

dr�
Q�

dr� ln
�ri − r j + r − r��

�ri − r j�



1

2��
4 �

i,j�L
i�j

�
Q�

dr�
Q�

dr�	 �ri − r j + r − r��2

�ri − r j�2
− 1


= �
i,j�L
i�j

1

2��
4�ri − r j�2

�
Q�

dr�
Q�

dr���r − r��2 + 2�r − r�� · �ri − r j��

= �
i,j�L
i�j

1

2��
4�ri − r j�2

�
Q�

dr�
Q�

dr��r2 + r�2� 
 �
i,j�L
i�j

C��
2

�ri − r j�2
,

where we have used the central symmetry of the fundamental cell Q� and the lattice L.
On the other hand, since the function 1/r2 is subharmonic and positive, one can easily prove

that

�
i,j�L
i�j

C��
2

�ri − r j�2



C

��
2 �

i,j�L
i�j

�
Q�

dr�
Q�

dr�
1

�ri − r j + r − r��2



C

��
2 �

i,j�L
i�j

1

�r − r��2



C

��
2�

��/2

2 dr

r



C��log ��

�
,

so that the difference in Eq. �3.33� is bounded by C� � log � � /�.
In order to extend the integration to the whole disk B1, we observe that

−
1

��
4 �

i,j�L
i�j

�
Q�

i
dr�

Q�
j
dr� ln�r − r�� 
 −

1

��
4�

�i�LQ�
i

dr�
�j�LQ�

j
dr� ln�r − r��

= −
1

��
4�

B1

dr�
�i�LQ�

i
dr� ln�r − r�� +

1

��
4�

A�

dr�
B1

dr� ln�r − r��

−
1

��
4�

A�

dr�
A�

dr� ln�r − r�� , �3.34�

where A� stands for the domain B1 \�i�LQ�
i .

The last term in the expression above is bounded by

−
1

��
4�

A�

dr�
A�

dr� ln�r − r�� 
 −
1

��
4�

Ã�

dr�
Ã�

dr� ln�r − r�� 
 −
C ln ��

��
2 


C��log ��
�

,

where Ã��B1 \B1−2�2��
.

For the second term in Eq. �3.34�, we can use Eq. �3.30� to get
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1

��
4�

A�

dr�
B1

dr� ln�r − r�� =
2	

��
4 �

A�

dr	�
0

r

dr�r� ln r + �
r

1

dr�r� ln r�
 
 0.

Therefore one has from Eq. �3.34�

−
1

��
4 �

i,j�L
i�j

�
Q�

i
dr�

Q�
j
dr� ln�r − r�� 
 −

1

��
4�

B1

dr�
�i�LQ�

i
dr� ln�r − r�� +

C��log ��
�



	

2��
4�

B1

dr��1 − r�2� +
C��log ��

�



	2

4��
4 +

C��log ��
�

,

so that

− 2	 �
i,j�L
i�j

ln�zi − zj� 

	3

2��
4 +

C��log ��
�

and finally

− �
i�L

�
�B�

i
ds ·

��̃

�n
�̃ 


	3

2��
4 +

C��log ��
�

. �3.35�

Combining this result with the estimate for the contribution at the outer boundary, we com-
plete the proof. �

B. The regime �„�…š1/�

Proof of Theorem 2.2: The lower bound can be proved in the same way as in the proof of
Theorem 2.1, so that one easily gets

E�
GP �

E�
TF

�2+2� .

For the upper bound we evaluate the functional on the following trial function:

�̃�r� = c̃�j��r����
TF�r�exp	i� �1

2�1+���
 , �3.36�

where we used polar coordinates, r= �r ,��, �·� stands for the integer part, j� is the cutoff function

j��r� =�
0 if r 
 R�

r2 − R�
2

�� if R�
2 
 r2 
 R�

2 + ��

1 otherwise,
� �3.37�

with some ���, and c̃� is a normalization constant satisfying the following bounds:

1 � c̃�
2 
 1 + C�2�−2�. �3.38�

A simple calculation shows that
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EGP��̃� = c̃�
2�

B1

dr��r�j�
���

TF��2 + c̃�
2�

B1

drj�
2��

TF	1

r
� �1

2�1+�� −
�1r

2�1+�
2

+
ETF�c̃�

2j�
2��

TF�
�2+2� .

�3.39�

The first term in Eq. �3.39� is bounded by �using Eq. �3.38��

c̃�
2�

B1

dr��r�j�
���

TF��2 
 2c̃�
2�

B1

dr��rj��2��
TF + c̃�

2�
B1

dr
j�
2

2��
TF� ���

TF

�r
�2



C1

�2��
R�

�R�
2+��

drr3��
TF�r� +

C2

��−2��
R�

�R�
2+��

drr�r2 − R�
2�� ���

TF

�r
�2

+ C3�2���R�
2+��

1

dr
r

r2 − R�
2� ���

TF

�r
�2



C1

�2� +
C2

�2� +
C3�log ��

�2� 

C�1

�log ��

�2� .

�The constants depend on the choice of � and C3→� if �→�.� Moreover, using Eq. �3.38� and
the fact that

� �1

2�1+�� =
�1

2�1+� − ��

for some 0
���1, we can estimate the second term in Eq. �3.39� as follows:

c̃�
2�

B1

drj�
2��

TF	1

r
� �1

2�1+�� −
�1r

2�1+�
2



c̃�

2	�1
2

2�2+2��
R�

1

drr��
TF�1

r
− r�2

+ c̃�
2��

22	�
R�

1

dr
��

TF

r



C1�1 − R�

2�2

�2+2� + C2 

C�1

�2 .

In a similar way one can prove that

E�
TF�c̃�

2j�
2��

TF� 
 E�
TF���

TF� + 2	�c̃�
4 − 1��

R�

1

drr��
TF2

�r� +
	�1

2

2
�

R�

�R�
2+��

drr3�1 − j�
2���

TF�r�


 E�
TF + C1�2�−4��

R�
2

1

dz�z − R�
2�2 +

C2

�2��
R�

2

R�
2+��

dzz�1 − � z − R�
2

�� �2��z − R�
2�


 E�
TF + C1�2�−� +

C2

�2��
0

��

dzz�1 −
z2

�2�� 
 E�
TF + C�1

�2�−2�

and then the result follows if we choose a finite ��2�.
Proof of Corollary 2.2: Let us start by considering the case 0���2. Defining D�

=B1 \BR�
we first notice that for any non-negative function ��L2�D��, normalized to 1 in L1�D��,

E�
TF��,D�� � E�

TF,

where E�
TF�� ,D�� denotes the functional

E�
TF��,D�� � �2��

D�

dr	�2 −
�1

2r2�

4�2� 
 .

Hence, setting ������
GP�2 and
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�̃� �
��

����L1�D��
,

we get

E�
TF���� = ����L1�D��E�

TF��̃�,D�� + E�
TF���,B1 \ D�� + �2�����L2�D��

2 �1 −
1

����L1�D��
�

� E�
TF����L1�D�� + E�

TF���,B1 \ D�� + �2�����L2�D��
2 �1 −

1

����L1�D��
�

� E�
TF����L1�D�� −

�1
2R�

2

4
�1 − ����L1�D��� + �2�����L2�D��

2 �1 −
1

����L1�D��
�

� E�
TF����L1�D�� −

�1
2R�

2

4
�1 − ����L1�D��� + �2������L1�D�� − 1�

����L1�D��

�D��
,

where in the last step we have used Schwarz’s inequality and the fact that ����L1�D��
1.
On the other hand, from the upper bound in the proof of Theorem 2.2, one has

E�
TF���� 
 �2+2�EGP���

GP� 
 E�
TF + C1�2� + C2�2�log ��

and then �omitting for simplicity the subscript L1�D���

E�
TF���� − ��1

2R�
2

4
+

�2�����
�D�� ��1 − ����� 
 E�

TF + C1�2� + C2�2�log ��

and therefore

�−
�1��

3�	
+

�1��

4�	
������1 − ����� + C1�2� + C2�2�log �� � 0

or

����2 −
7

3
���� +

4

3
− C1�� − C2�2−��log �� 
 0,

which implies that, for � sufficiently small,

����L1�D�� � 1 − C�1
�� − C�1

� �2−��log �� .

The result therefore follows from the normalization of �� in L1�B1�.
If ��2, the upper bound contained in the proof of Theorem 2.2 gives immediately the

following bound:

�
B1

drr2���
GP�2 � 1 − C�2�log ��

and then, using the normalization of ��
GP, the result is proved.

Proof of Proposition 2.5: Let us first consider the case 0���2: as in the proof of Eq.
�2.15�, we first need to prove a pointwise estimate for U�����

GP�2 and, in order to find such an
upper bound, we have to estimate the chemical potential, appearing in the variational equation
satisfied by ��

GP. From the definition of the chemical potential and the upper bound contained in
the proof of Theorem 2.2, we immediately get
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�2+2��� 
 E�
TF + C1�2� + C2�2�log �� + �2����

GP�L4�B1�
4 ,

but from the same upper bound we obtain

�2����
GP�L4�B1�

4



�1
2

4
�

B1

drr2���
GP�2 + ETF + C1�2� + C2�2�log �� 


�1
2

4
+ ETF + C1�2� + C2�2�log ��

and then

�2+2��� 
 2ETF +
�1

2

4
+ C1�2� + C2�2�log �� 
 −

�1
2

4
+

4�1��

3�	
+ C1�2� + C2�2�log �� .

�3.40�

By replacing the above bound in the variational equation, we get

−
1

2
�U� 


�1
2

4 �r2 − 1 +
16��

3�	�1

+ C1�2� + C2�2�log �� − C3�2�U�� U�

�2+2� ,

and we can conclude that there exists a constant c �depending on �1�, such that the function U��r�
is subharmonic for any r2
1−c��. Following again the proof of Eq. �2.15�, we can therefore
obtain the following estimate:

U��r� 

C�U��L1�B1\D��

�2

for any r�B1 such that

r 
 �1 − c�� − � .

Choosing, for instance, �=��� /3 and using Eq. �2.24�, we can conclude that there exists a constant
C�1

such that

U��r� 
 C�1
���/3�log ��

for any r�T ��. The result then follows from the application of the comparison principle to the
variational equation satisfied in T �� by

U�� �
U�

C�1
���/3�log ��

.

The case ��2 can be treated in a similar way. The only difference is in the upper bound for the
chemical potential Eq. �3.40�, which in this case becomes

�2+2��� 
 −
�1

2

4
+ C�2�log �� .

The subharmonicity of U� can now be proved in the region r
1−��, for any 1
��2. As a
straightforward consequence of Eq. �2.25�, we then get the pointwise estimate

U��r� 
 C�1
��2−��/3�log ��

for any r�T ��. The result is again obtained by means of the comparison principle.
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IV. CONCLUSIONS AND PERSPECTIVES

We have analyzed rigorously the leading order asymptotics for the ground state energy and the
density profile of a rapidly rotating Bose-Einstein condensate in a flat trap with a finite radius in
the limit where the coupling parameter is large. Depending on the scaling of the rotational velocity
with the coupling parameter, different asymptotic density functionals emerge.

Our estimates are based on trial functions that capture the essential features of the expected
vortex structure and show the possible formation of “holes” where the density is exponentially
small as a function of the inverse coupling parameter. The error terms in our estimates are of the
expected order but the bounds are not sharp enough to exhibit the details of the fine vortex
structure. Nevertheless, we can prove that rotational symmetry is broken in the ground state for
const�log ��������const/�.

An important open problem is to carry the analysis further to the next to leading order and
investigate the transition of the vortex lattice to a “giant vortex” at high rotational velocities.

ACKNOWLEDGMENTS

One of the authors �M.C.� is grateful to S. Fournais and B. Helffer for helpful comments and
suggestions. The authors thank R. Seiringer for pointing out a mistake in a previous version of
Sec. II A. This work is supported by the EU Post Doctoral Training Network HPRN-CT-2002-
00277 “Analysis and Quantum” and the Austrian Science Fund �FWF� Grant No. P17176-N02.

1 Aftalion, A., Vortices in Bose-Einstein Condensates �Birkhäuser, Vortices in Bose-Einstein Condensates, Progress in
Nonlinear Differential Equations and their Applications, Vol. 67, �Birkhäuser, Boston, 2006�.

2 Aftalion, A., Alama, S., and Bronsard, L., “Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein
condensate,” Arch. Ration. Mech. Anal. 178, 247–286 �2005�.

3 Aftalion, A. and Blanc, X., “Vortex lattices in rotating Bose-Einstein condensates,” SIAM J. Math. Anal. 38, 874–893
�2006�.

4 Aftalion, A., Blanc, X., and Dalibard, J., “Vortex patterns in fast rotating Bose-Einstein condensate,” Phys. Rev. A 71,
023611 �2005�.

5 Aftalion A., Blanc, X., and Nier, F., “Lowest Landau level functional and Bargmann spaces for Bose-Einstein conden-
sates,” J. Funct. Anal. 241, 661–702 �2006�.

6 Aftalion, A., Blanc, X., and Nier, F., “Vortex distribution in the lowest Landau level,” Phys. Rev. A 73, 011601 �2006�.
7 Aftalion, A. and Du, Q., “Vortices in a rotating Bose-Einstein condensate: Critical velocities and energy diagrams in the
Thomas-Fermi regime,” Phys. Rev. A 64, 063603 �2001�.

8 Baym, G., “Rapidly rotating Bose-Einstein condensates,” J. Low Temp. Phys. 138, 601–610 �2005�.
9 Bethuel, F., Brezis, H., and Helein, F., “Asymptotics for the minimization of a Ginzburg-Landau functional,” Calculus
Var. Partial Differ. Equ. 1, 123–148 �1993�.

10 Bethuel, F., Brezis, H., and Helein, F., Ginzburg-Landau Vortices, Progress in Nonlinear Differential Equations and their
Applications Vol. 13 �Birkhäuser, Boston, 1994�.

11 Baym, G. and Pethick, C. J., “Vortex core structure and global properties of rapidly rotating Bose-Einstein condensates,”
Phys. Rev. A 69, 043619 �2004�.

12 Castin, Y. and Dum, R., “Bose-Einstein condensates with vortices in rotating traps,” Eur. Phys. J. D 7, 399–412 �1999�.
13 Connectivity and Superconductivity, Lectures Notes in Physics Vol. 62, edited by J. Berger and J. Rubinstein �Springer,

New York, 2001�.
14 Engels, P., Coddington, I., Haljan, P. C., Schweikhardt, V., and Cornell, E. A., “Observation of long-lived vortex

aggregates in rapidly rotating Bose-Einstein condensates,” Phys. Rev. Lett. 90, 170405 �2003�.
15 Fetter, A. L., “Rotating vortex lattice in a Bose-Einstein condensate trapped in combined quadratic and quartic radial

potentials,” Phys. Rev. A 64, 063608 �2001�.
16 Fetter, A. L. and Svidzinsky, A. A., “Vortices in a trapped dilute Bose-Einstein condensate,” J. Phys.: Condens. Matter

13, R135–R194 �2001�.
17 Fischer, U. R. and Baym, G., “Vortex states of rapidly rotating dilute Bose-Einstein condensates,” Phys. Rev. Lett. 90,

140402 �2003�.
18 Fu, H. and Zaremba, E., “Transition to the giant vortex state in a harmonic-plus-quartic Trap,” Phys. Rev. A 73, 013614

�2006�.
19 Hörmander, L., The Analysis of Linear Partial Differential Operators I �Springer-Verlag, Berlin, 2003�.
20 Ignat, R. and Millot, V., “Energy expansion and vortex location for a two dimensional rotating Bose-Einstein conden-

sate,” Rev. Math. Phys. 18, 119–162 �2006�.
21 Ignat, R. and Millot, V., “The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein conden-

sate,” J. Funct. Anal. 233, 260–306 �2006�.
22 Kavoulakis, G. M. and Baym, G., “Rapidly rotating Bose-Einstein condensates in anharmonic potentials,” New J. Phys.

5, 51 �2003�.
23 Kasamatsu, K., Tsubota, M., and Ueda, M., “Giant hole and circular superflow in a fast rotating Bose-Einstein conden-

042104-29 Rapidly rotating condensates J. Math. Phys. 48, 042104 �2007�

 10 N
ovem

ber 2023 15:01:34



sate,” Phys. Rev. A 66, 053606 �2002�.
24 Kim, J. K. and Fetter, A. L., “Dynamics of rapidly rotating Bose-Einstein condensates in a harmonic plus quartic trap,”

Phys. Rev. A 72, 023619 �2005�.
25 Lieb, E. H. and Seiringer, R., “Derivation of the Gross-Pitaevskii equation for rotating Bose gases,” Commun. Math.

Phys. 264, 505–537 �2006�.
26 Lieb, E. H., Seiringer, R., and Yngvason, J., “A rigorous derivation of the Gross-Pitaevskii energy functional for a

two-dimensional Bose gas,” Commun. Math. Phys. 224, 17–31 �2001�.
27 Lieb, E. H. and Yngvason, J., “The ground state energy of a two-dimensional Bose gas,” J. Stat. Phys. 103, 509–526

�2001�.
28 Lundh, E., “Multiply quantized vortices in trapped Bose-Einstein condensates,” Phys. Rev. A 65, 043604 �2002�.
29 Seiringer, R., “Gross-Pitaevskii theory of the rotating Bose gas,” Commun. Math. Phys. 229, 491–509 �2002�.
30 Seiringer, R., “Ground state asymptotics of a dilute, rotating gas,” J. Phys. A 36, 9755–9778 �2003�.
31 Schweikhardt, V., Coddington, I., Engels, P., Mogendorff, V. P., and Cornell, E. A., “Rapidly rotating Bose-Einstein

condensates in and near the lowest Landau level,” Phys. Rev. Lett. 92, 040404 �2004�.
32 Serfaty, S., “On a model of rotating superfluids,” ESAIM Control Optim. Calc. Var. 6, 201–238 �2001�.
33 Schnee, K. and Yngvason, J., “Bosons in disc-shaped traps: From 3D to 2D,” Commun. Math. Phys. 269, 659–691

�2007�.
34 Watanabe, G., Baym, G., and Pethick, C. J., “Landau levels and the Thomas-Fermi structure of rapidly rotating Bose-

Einstein condensates,” Phys. Rev. Lett. 93, 190401 �2004�.
35 Watanabe, G., Baym, G., Gifford, S. A., and Pethick, C. J., “Global structure of vortices in rotating Bose-Einstein

condensates,” Phys. Rev. A 74, 063621 �2006�.

042104-30 Correggi, Rindler-Daller, and Yngvason J. Math. Phys. 48, 042104 �2007�

 10 N
ovem

ber 2023 15:01:34


