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On the cohomology and the Chow ring
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Abstract. We investigate the integral cohomology ring and the Chow ring of the
classifying space of the complex projective linear group PGLp, when p is an odd prime. In
particular, we determine their additive structures completely, and we reduce the problem of
determining their multiplicative structures to a problem in invariant theory.
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1. Introduction

Let G be a complex linear group. One of the main invariants associated with G is the
integral cohomology ring H�G of the classifying space BG. B. Totaro (see [19]) has also in-
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troduced an algebraic version of the cohomology of the classifying space of an algebraic
group G over a field k, the Chow ring A�G of the classifying space of G. When k ¼ C there
is a cycle ring homomorphism A�G ! H�G. Chow rings are normally infinitely harder to
study than cohomology; it is remarkable that, in contrast, A�G seems to be better behaved,
and easier to study, than H�G. For example, when G is a finite abelian group, A�G is the sym-
metric algebra over Z of the dual group ĜG; while the cohomology ring contains this sym-
metric algebra, but is much more complicated (for example, will contain elements of odd
degree), unless G is cyclic.

This ring A�G has also been computed for G ¼ GLn; SLn; Spn by Totaro ([19]), for
G ¼ On and G ¼ SO2nþ1 by Totaro and R. Pandharipande ([19] and [16]), for G ¼ SO2n

by R. Field ([4]), and for the semisimple simply connected group of type G2 by N. Yagita
([24]). Also, a lot of work has been done on the case of finite groups, by Totaro himself, by
Guillot ([10] and [11]) and by Yagita ([23]). However, not much was known for the PGLn

series. Even the cohomology of B PGLn was mysterious. Algebraic topologists tend to work
with cohomology with coe‰cients in a field, the case in which their extremely impressive
toolkits work the best. When p does not divide n, the cohomology ring H�ðB PGLn;Z=pZÞ
is a well understood polynomial ring. Also, since PGL2 ¼ SO3, the ring H�ðB PGL2;Z=2ZÞ
is also well understood. To my knowledge, the other results on H�ðB PGLn;Z=pZÞ that
were known before this article was posted are the following.

(1) In [14], the authors compute H�ðB PGL3;Z=3ZÞ as a ring, by presentations and
relations.

(2) The ring H�ðB PGLn;Z=2ZÞ is known when n1 2 ðmod 4Þ ([13] and [18]).

(3) In [20] the authors show that three conjectures on the mod p cohomology of
classifying spaces of compact Lie groups, due to Adams, Kono-Yagita, and Dwyer-Miller-
Wilkerson-Notbohm respectively, hold for B PGLp when p is a prime.

On the other hand, to my knowledge no one had studied the integral cohomology
ring H�PGLn

.

In the algebraic case, the only known results about A�PGLn
, apart from the case of

PGL2 ¼ SO3, concern PGL3 and were proved by Vezzosi in [21]. Here he determines al-
most completely the structure of A�PGL3

by generators and relations; the only ambiguity is
about one of the generators, denoted by w and living in A6

PGL3
, about which he knows that

it is 3-torsion, but is not able to determine whether it is 0. This w maps to 0 in the cohomo-
logy ring H�PGL3

; according to a conjecture of Totaro, the cycle map A�PGL3
! H�PGL3

should
be injective; so, if the conjecture is correct, w should be 0.

Despite this only partial success, the ideas in [21] are very important. The main one is
to make use of the stratification method to get generators. This is how it works. Recall that
Edidin and Graham ([3]) have extended Totaro’s ideas to give a full-fledged equivariant in-
tersection theory. Let V be a representation of a group G; then we have A�G ¼ A�GðVÞ. Sup-
pose that we have a stratification V0; . . . ;Vt of V by locally closed invariant subvarieties,
such that each Vei ¼def T

jei

Vj is open in V , each Vi is closed in Vei, and Vt ¼ Vnf0g. If we

can determine generators for A�GðViÞ for each i, then we can use the localization sequence
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A�GðViÞ ! A�GðVeiÞ ! A�GðVei�1Þ ! 0

and induction to get generators for A�GðVnf0gÞ; and since A�GðVnf0gÞ ¼ A�G=
�
crðVÞ

�
,

where crðVÞ A Ar
G is the r th Chern class of V , we obtain that A�G is generated by lifts to

A�G of the generators for A�GðVnf0gÞ, plus crðVÞ.

The stratification method gives a unified approach for all the known calculations of
A�G for classical groups (see [15]).

Vezzosi applies the method to the adjoint representation space V ¼ sl3 consisting of
matrices with trace 0. The open subscheme V0 is the subscheme of matrices with distinct
eigenvalues; its Chow ring is related with the Chow ring of the normalizer N3 of a maximal
torus TPGLp

in PGL3. In order to get relations, Vezzosi uses an unpublished result of To-
taro, implying that the restriction homomorphism A�PGL3

! A�N3
is injective. The reason

why he is not able to determine whether w is 0 or not is that he does not have a good de-
scription of the 3-torsion in A�N3

.

In this paper we refine Vezzosi’s approach, and extend it to the case of PGLp, where p

is an odd prime.

Let TPGLp
be the standard maximal torus in PGLp, consisting of classes of diagonal

matrices, Np its normalizer, Sp ¼ Np=TPGLp
its Weyl group. Here are our main results (see

Section 3 for details):

(1) The natural homomorphism A�TPGLp
! ðA�TPGLp

ÞSp is surjective, and has a natural
splitting ðA�TPGLp

ÞSp ! A�TPGLp
, which is a ring homomorphism.

(2) The ring A�PGLp
is generated as an algebra over ðA�TPGLp

ÞSp by a single p-torsion

element r A Apþ1
PGLp

; we also describe the relations.

(3) The ring H�PGLp
is generated as an algebra over ðA�TPGLp

ÞSp by two elements: the

image r A H2pþ2
PGLp

of the class above and the Brauer class b A H3
PGLp

; we also describe the
relations.

(4) Using (2) and (3) above, we describe completely the additive structures of A�PGLp

and H�PGLp
.

(5) For p ¼ 3 we give a presentation of ðA�TPGLp
ÞS3 by generators and relations (this is

already in [21]); and this, together with (2) and (3) above, gives presentations of A�PGL3
and

H�PGL3
, completing the work of [21].

(6) The cycle homomorphism A�PGLp
! Heven

PGLp
into the even-dimensional cohomo-

logy is an isomorphism.

The ring ðA�TPGLp
ÞSp is complicated when p > 3; see the discussion in Section 14.

The class r in (2) seems interesting, and gives a new invariant for sheaves of Azumaya
algebras of prime rank (Remark 11.3). In [17], Elisa Targa shows that r is not a polynomial
in Chern classes of representations of PGLp.
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Many of the ideas in this paper come from [21]. The main new contributions here are
the contents of Sections 6 and 7 (the heart of these results are Proposition 6.1, and the proof
of Lemma 6.6), which substantially improve our understanding of the cohomology and
Chow ring of the classifying space of Np, and Proposition 10.1, which gives a way of show-
ing that in the stratification method no new generators come from the strata correspond-
ing to non-zero matrices with multiple eigenvalues, thus avoiding the painful case-by-case
analysis that was necessary in [21].

Recently I received a preprint of M. Komeko and N. Yagita ([12]) who also calculate
the additive structure of A�PGLp

and H�PGLp
, with completely di¤erent methods.

Acknowledgments. I would like to thank Nitin Nitsure and Alejandro Adem for
pointing out references [13], [18] and [20] to me.

I am also in debt with Alberto Molina, who discovered a serious mistake in the proof
of Theorem 3.2 given in a preliminary version of the paper, and with Marta Morigi, who
helped me fix it.

Finally, I would like to acknowledge the very interesting discussions I have had with
Nobuaki Yagita and Andrzej Weber on the subject of this paper.

2. Notations and conventions

All algebraic groups and schemes will be of finite type over a fixed field k of charac-
teristic 0. Furthermore, we will fix an odd prime p, and assume that k contains a fixed p th

root of 1, denoted by o. When k ¼ C, we take o ¼ e2pi=p.

The hypothesis that the characteristic be 0 is only used in the proof of Theorem 9.3,
which should however hold over an arbitrary field. If so, it would be enough to assume here
that the characteristic of k be di¤erent from p.

Our main tool is Edidin and Graham’s equivariant intersection theory (see [3]), which
works over an arbitrary field; when we discuss cohomology, instead, we will always assume
that k ¼ C. All finite groups will be considered as algebraic groups over k, in the usual
fashion. We denote by Gm the multiplicative group of non-zero scalars over k, by mn the
algebraic group of n th roots of 1 over k.

Whenever V is a vector space over k, we also consider it as a scheme over k, as the
spectrum of the symmetric algebra of the dual vector space V4. If V is a representation of
an algebraic group G, then there is an action of G on V as a scheme over k.

We denote by TGLp
, TSLp

and TPGLp
the standard maximal tori in the respective

groups, those consisting of diagonal matrices. We identify the Weyl groups of these three
groups with the symmetric group Sp. We also denote the normalizer of TPGLp

in PGLp by
Sp yTPGLp

.

If a1; . . . ; ap are elements of k�, we will denote by ½a1; . . . ; ap� the diagonal matrix in
GLp with entries a1; . . . ; ap, and also its class in PGLp. In general, we will often use the
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same symbol for a matrix in GLp and its class in PGLp; this should not give rise to
confusion.

It is well known that the arrows

A�GLp
! ðA�TGLp

ÞSp ; H�GLp
! ðA�TGLp

ÞSp

and

A�SLp
! ðA�TSLp

ÞSp ; H�GLp
! ðA�TSLp

ÞSp

induced by the embeddings TGLp
,! GLp and TSLp

,! SLp are isomorphisms. If we denote
by xi A A�TGLp

¼ H�TGLp
the first Chern class of the i th projection TGLp

! Gm, or its restric-

tion to TSLp
, then A�TGLp

¼ H�TGLp
is the polynomial ring Z½x1; . . . ; xp�, while A�TSLp

¼ H�TSLp

equals Z½x1; . . . ; xp�=ðx1 þ � � � þ xpÞ. If we denote by s1; . . . ; sp the elementary symmetric
functions in the xi, then we conclude that

A�GLp
¼ H�GLp

¼ Z½s1; . . . ; sp�

while

A�SLp
¼ H�SLp

¼ Z½s1; . . . ; sp�=ðs1Þ ¼ Z½s2; . . . ; sp�:

The ring A�TPGLp
¼ H�TPGLp

is the subring of A�TGLp
generated by the di¤erences xi � xj.

In particular it contains the element d ¼
Q
i3j

ðxi � xjÞ, which we call the discriminant (up to

sign, it is the classical discriminant); it will play an important role in what follows.

We will use the following notation: if R is a ring, t1; . . . ; tn are elements of R,
f1; . . . ; fr are polynomials in Z½x1; . . . ; xn�, we write

R ¼ Z½t1; . . . ; tn�=
�

f1ðt1; . . . ; tnÞ; . . . ; frðt1; . . . ; tnÞ
�

to indicate that the ring R is generated by t1; . . . ; tn, and the kernel of the evaluation map
Z½x1; . . . ; xn� ! R sending xi to ti is generated by f1; . . . ; fr. When there are no fi this
means that R is a polynomial ring in the ti.

3. The main results

Consider the embedding mp ,! TPGLp
defined by z 7! ½z; z2; . . . ; zp�1; 1�. This induces

a restriction homomorphism

A�TPGLp
! A�mp

¼ Z½h�=ðphÞ;

where h is the first Chern class of the embedding mp LGm.

The restriction of the discriminant d A ðAp2�p
TPGLp
ÞSp to mp is the element
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Q
i3j

ðih� jhÞ ¼
�Q

i3j

ði � jÞ
�
hp2�p

of Z½h�=ðphÞ; this is non-zero multiple of hp2�p (in fact, it is easy to check that it equals
�hp2�p).

Proposition 3.1. The image of the restriction homomorphism

ðA�TPGLp
ÞSp ! Z½h�=ðphÞ

is the subring generated by hp2�p.

This is proved at the end of Section 7.

Theorem 3.2. There exists a canonical ring homomorphism

ðA�TPGLp
ÞSp ! A�PGLp

whose composite with the restriction homomorphism A�PGLp
! ðA�TPGLp

ÞSp is the identity.

This is proved in Section 12.

As a consequence, A�PGLp
and H�PGLp

can be regarded as ðA�TPGLp
ÞSp-algebras.

Theorem 3.3. The ðA�TPGLp
ÞSp -algebra A�PGLp

is generated by an element r A Apþ1
PGLp

,
and the ideal of relations is generated by the following:

(a) pr ¼ 0, and

(b) ru ¼ 0 for all u in the kernel of the homomorphism ðA�TPGLp
ÞSp ! A�mp

.

There is a similar description for the cohomology: besides the element r, now con-
sidered as living in H2pþ2

PGLp
, we need a single class b in degree 3. This class is essentially the

tautological Brauer class. That is, if we call C the sheaf of complex valued continuous func-
tions and C� the sheaf of complex valued nowhere vanishing continuous functions on the
classifying space B PGLp, the tautological PGLp principal bundle on B PGLp has a class in
the topological Brauer group H2ðB PGLp;C

�Þtors (see [8]). On the other hand, the exponen-
tial sequence

0! Z!2pi
C! C� ! 1

induces a boundary homomorphism

H2ðB PGLp;C
�Þ ! H3ðB PGLp;ZÞ ¼ H3

PGLp
;

which is an isomorphism, since B PGLp is paracompact, hence

H iðB PGLp;CÞ ¼ 0
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for all i > 0. Our class b is, up to sign, the image under this boundary homomorphism of
the Brauer class of the tautological bundle.

Theorem 3.4. The ring H�PGLp
is the commutative ðA�TPGLp

ÞSp -algebra generated by an

element b of degree 3 and the element r of degree 2pþ 2. The ideal of relations is generated

by the following:

(a) b2 ¼ 0,

(b) pr ¼ pb ¼ 0, and

(c) ru ¼ bu ¼ 0 for all u in the kernel of the homomorphism ðA�TPGLp
ÞSp ! A�mp

.

Corollary 3.5. The cycle homomorphism induces an isomorphism of A�PGLp
with

Heven
PGLp

.

From here it is not hard to get the additive structure of A�PGLp
and H�PGLp

. For each
integer m, denote by rðm; pÞ the number of partitions of m into numbers between 2 and
p. If we denote by pðm; pÞ the number of partitions of m with numbers at most equal
to p (a more usual notation for this is pðm; pÞ, which does not look very good), then
rðm; pÞ ¼ pðm; pÞ � pðm� 1; pÞ.

We will also denote by sðm; pÞ the number of ways of writing m as a linear com-
bination ðp2 � pÞi þ ðpþ 1Þ j, with if 0 and j > 0; and by s 0ðm; pÞ the number of ways
of writing m as the same linear combination, with if 0 and j f 0. Obviously we have
s 0ðm; pÞ ¼ sðm; pÞ, unless m is divisible by p2 � p, in which case s 0ðm; pÞ ¼ sðm; pÞ þ 1.

Theorem 3.6. (a) The group Am
PGLp

is isomorphic to

Zrðm;pÞl ðZ=pZÞsðm;pÞ:

(b) The group Hm
PGLp

is isomorphic to A
m=2
PGLp

when m is even, and is isomorphic to

ðZ=pZÞs
0 m�3

2
;pð Þ

when m is odd.

When p ¼ 3 we are able to get a description of A�PGL3
and H�PGL3

by generator and
relations, completing the work of [21].

Theorem 3.7. (a) A�PGL3
is the commutative Z-algebra generated by elements g2, g3, d,

r, of degrees 2, 3, 6 and 4 respectively, with relations

27d� ð4g3
2 þ g2

3Þ; 3r; g2r; g3r:

(b) H�PGL3
is the commutative Z-algebra generated by elements g2, g3, d, r and b of

degrees 4, 6, 12, 8 and 3 respectively, with relations

27d� ð4g3
2 þ g2

3Þ; 3r; 3b; b2; g2r; g3r; g2b; g3b:
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The rest of the paper is dedicated to the proofs of these results. We start by recalling
some basic facts on equivariant intersection theory.

4. Preliminaries on equivariant intersection theory

In this section the base field k will be arbitrary.

We refer to [19], [3] and [21] for the definitions and the basic properties of the Chow
ring A�G of the classifying space of an algebraic group G over a field k, and of the Chow
group A�GðXÞ when X is a scheme, or algebraic space, over k on which G acts, and their
main properties. Almost all X that appear in this paper will be smooth, in which case
A�GðXÞ is a commutative ring; the single exception will be in the proof of Lemma 6.6.

The connection between these two notions is that A�G ¼ A�GðSpec kÞ.

Recall that A�GðX Þ is contravariant for equivariant morphisms of smooth varieties;
that is, if f : X ! Y is a G-equivariant morphism of smooth G-schemes, there is an in-
duced ring homomorphism f � : A�GðX Þ ! A�GðYÞ.

If k ¼ C, and X is a smooth algebraic variety on which G acts, there is a cycle ring
homomorphism A�GðX Þ ! H�GðX Þ from the equivariant Chow ring to the equivariant co-
homology ring; this is compatible with pullbacks.

Furthermore, if f is proper there is a pushforward f� : A�GðYÞ ! A�GðXÞ; this is not a
ring homomorphism, but it satisfies the projection formula

f�ðx � f �hÞ ¼ f�x � h

for any x A A�GðXÞ and h A A�GðY Þ.

When Y is a closed G-invariant subscheme of X and we denote by i : Y ,! X the
embedding, then we have a localization sequence

A�GðYÞ !
i�

A�GðX Þ ! A�GðXnYÞ ! 0:

The analogous statement for cohomology is di¤erent: here the restriction homomorphism
H�GðXÞ ! H�GðXnYÞ is not necessarily surjective. However, when X and Y are smooth we
have a long exact sequence

� � � ���! H i�1
G ðXnYÞ

H i�2r
G ðYÞ ���!

i�
H i

GðXÞ ���! H i
GðXnYÞ

H i�2rþ1
G ðY Þ ���! � � �

 ������������
������q

 ������������
������q

where r is the codimension of Y in X .
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Furthermore, if H ! G is a homomorphism of algebraic groups, and G acts on a
smooth scheme X , we can define an action of H on X by composing with the given homo-
morphism H ! G. Then we have a restriction homomorphism

resG
H : A�GðXÞ ! A�HðX Þ:

Here is another property that will be used often. Suppose that H is an algebraic sub-
group of G. We can define a ring homomorphism A�GðG=HÞ ! A�H by composing the re-
striction homomorphism A�GðG=HÞ ! A�HðG=HÞ with the pullback

A�HðG=HÞ ! A�HðSpec kÞ ¼ A�H

obtained by the homomorphism Spec k ! G=H whose image is the image of the identity in
GðkÞ. Then this ring homomorphism is an isomorphism.

More generally, suppose that H acts on a scheme X . We define the induced space
G �H X as usual, as the quotient ðG � XÞ=H by the free right action given by the for-
mula ðg; xÞh ¼ ðgh; h�1xÞ. This carries a natural left action of G defined by the formula
g 0ðg; xÞ ¼ ðg 0g; xÞ. There is also an embedding X FH �H X ,! G �H X that is H-
equivariant: and the composite of the restriction homomorphism

A�GðG �H XÞ ! A�HðG �H XÞ

with the pullback A�HðG �H XÞ ! A�HðX Þ is an isomorphism.

Furthermore, if V is a representation of G, then there are Chern classes ciðVÞ A A i
G,

satisfying the usual properties. More generally, if X is a smooth scheme over k with an
action of G, every G-equivariant vector bundle E ! X has Chern classes ciðEÞ A A i

GðX Þ.

The following fact will often be used.

Lemma 4.1. Let E ! X be an equivariant vector bundle of constant rank r; s : X ! E

the 0-section, E0 LE the complement of the 0-section. Then the sequence

A�GðXÞ ��!crðEÞ
A�GðXÞ ��! A�GðE0Þ ��! 0;

where the second arrow is the pullback along E0 ! Spec k, is exact.

Furthermore, when k ¼ C we also have a long exact sequence

� � � ���! H i�1
G ðE0Þ

H i�2r
G ðX Þ ���!

crðEÞ
H i

GðX Þ ���! H i
GðE0Þ

H i�2rþ1
G ðXÞ ���! � � � :

 ������������
������q

 ������������
������q
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Proof. This follows from the following facts:

(1) the pullbacks A�GðXÞ ! A�GðEÞ and H�GðXÞ ! H�GðEÞ are isomorphisms,

(2) the self-intersection formula, that says that the homomorphisms

s�s� : A�GðXÞ ! A�GðXÞ and s�s� : H�GðX Þ ! H�GðXÞ

are multiplication by crðEÞ, and

(3) the localization sequences for Chow rings and cohomology. r

Let us recall the following results from [19].

(1) If T ¼ Gn
m is a torus, and we denote by xi A A1

T the first Chern class of the i th

projection T ! Gm, considered as a representation, then

A�T ¼ Z½x1; . . . ; xn�:

(2) If TGLn
is the standard maximal torus in GLn consisting of diagonal matrices,

then the restriction homomorphism A�GLn
! A�TGLn

induces an isomorphism

A�GLn
FZ½x1; . . . ; xn�Sn

¼ Z½s1; . . . ; sn�

where the si are the elementary symmetric functions of the xi.

(3) If TSLn
is the standard maximal torus in SLn consisting of diagonal matrices, and

we denote by xi the restriction to A�SLn
of xi A A�GLn

, then we have

A�TSLn
¼ Z½x1; . . . ; xn�=ðs1Þ;

furthermore the restriction homomorphism A�SLn
! A�TSLn

induces an isomorphism

A�SLn
F

�
Z½x1; . . . ; xn�=ðs1Þ

�Sn

¼ Z½s1; s2; . . . ; sn�=ðs1Þ:

(4) If t A A�mn
is the first Chern class of the embedding mn ,! Gm, considered as a

1-dimensional representation, then we have

A�mn
¼ Z½t�ðntÞ:

Furthemore, if G is any of the groups above and k ¼ C, then the cycle homomor-
phism A�G ! H�G is an isomorphism.

The following result is implicit in [19]. Let G be a finite algebraic group that is a
product of copies of mn, for various n. This is equivalent to saying that G is a finite diago-
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nalizable group scheme, or that G is the Cartier dual of a finite abelian group G, considered
as a group scheme over k. By Cartier duality, we have that G is the character group
ĜG ¼def

HomðG;GmÞ.

Proposition 4.2. Consider the group homomorphism ĜG ! A1
G that sends each char-

acter w : G ! Gm into c1ðwÞ. The induced ring homomorphism SymZ ĜG ! A�G is an isomor-

phism.

A more concrete way of stating this is the following. Set

G ¼ mn1
� � � � � mnr

:

For each i ¼ 1; . . . ; n call wi the character obtained by composing the i th projection G ! mni

with the embedding mni
,! Gm, and set xi ¼ c1ðwiÞ A A1

G. Then

A�G ¼ Z½x1; . . . ; xr�=ðn1x1; . . . ; nrxrÞ:

Proof. When G ¼ mn, this follows from Totaro’s calculation cited above. The gen-
eral case follows by induction on r from the following lemma.

Lemma 4.3. If H is a linear algebraic group over k, the ring homomorphism

A�H nZ A�mn
! A�H�mn

induced by the pullbacks A�H ! A�H�mn
and A�mn

! A�H�mn
along the two projections

H � mn ! H and H � mn ! mn is an isomorphism.

Proof. This follows easily, for example, from the Chow-Künneth formula in [19],
Section 6, because mn has a representation V ¼ kr on which it acts by multiplication, with
an open subscheme U ¼def

Vnf0g on which it acts trivally; and the quotient U=mn is the total
space of a Gm-torsor on Pr�1, and, as such, it is a union of open subschemes of a‰ne
spaces.

It is also not hard to prove directly, as in [15]. r

There is also a very important transfer operation (sometimes called induction). Sup-
pose that H is an algebraic subgroup of G of finite index. The transfer homomorphism

trH
G : A�H ! A�G

(see [21]) is the proper pushforward from A�H FA�GðG=HÞ to A�GðSpec kÞ ¼ A�G.

This is not a ring homomorphism; however, the projection formula holds, that is, if
x A A�GðXÞ and h A A�HðX Þ, we have

trH
G ðx � resG

H hÞ ¼ x � trH
G h

(in other words, trH
G is a homomorphism of A�GðXÞ-modules).
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We are going to need the analogue of Mackey’s formula in this context. Let H and K

be algebraic subgroups of G, and assume that H has finite index in G. We will also assume
that the quotient G=H is reduced, and a disjoint union of copies of Spec k (this is automat-
ically verified when k is algebraically closed of characteristic 0). Then it is easy to see that
the double quotient KnG=H is also the disjoint union of copies of Spec k. Furthermore, we
assume that every element of ðKnG=HÞðkÞ is in the image of some element of GðkÞ. Of
course this will always happen if k is algebraically closed; with some work, this hypothesis
can be removed, but it is going to be verified in all the cases to which we will apply the
formula).

Denote by C a set of representatives in GðkÞ for classes in ðKnG=HÞðkÞ. For each
s A C, set

Ks ¼def
K X sHs�1 LG:

Obviously Ks is a subgroup of finite index of K ; there is also an embedding Ks ,! H defined
by k 7! s�1ks.

Proposition 4.4 (Mackey’s formula).

resG
K trH

G ¼
P
s AC

trKs

K resH
Ks

: A�H ! A�K :

Proof. This is standard. We have that the equivariant cohomology rings A�GðG=HÞ
and A�GðG=KÞ are canonically isomorphic to A�H and A�K , respectively. The restriction ho-
momorphism A�G ! A�K corresponds to the pullback A�GðSpec kÞ ! A�GðG=KÞ, and the
transfer homomorphism corresponds to the proper pushforward A�GðG=HÞ ! A�GðSpec kÞ.

Since proper pushforwards and flat pullbacks commute, from the cartesian diagram

G=K � G=H ���!pr2
G=H???ypr1

???yp

G=K ���!r Spec k

we get the equality

resG
K trH

G ¼ r�p� ¼ pr1� pr�2 : A�H ! A�K :

Now we need to express G=K � G=H as a disjoint union of orbits by the diag-
onal action of G. There is a G-invariant morphism G � G ! G, defined by the rule
ða; bÞ 7! a�1b, that induces a morphism G=K � G=H ! KnG=H. For each s A C, call Ws

the inverse image of s A ðKnG=HÞðkÞ, so that G=K � G=H is a disjoint union
‘

s AC
Ws. It

is easy to verify that Ws is the orbit of the class ½1; s� A ðG=K � G=HÞðkÞ of the element
ð1; sÞ A ðG � GÞðkÞ, and that the stabilizer of ½1; s� is precisely Ks. From this we get an iso-
morphism

G=K � G=H F
‘

s AC
G=Ks

from which the statement follows easily. r
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Proposition 4.5. Assume that G is smooth. Let f : X ! Y a proper G-equivariant

morphism of G-schemes. Assume that for every G-invariant closed subvariety W LY there

exists a G-invariant closed subvariety of X mapping birationally onto W. Then the pushfor-

ward f� : A�GX ! A�GY is surjective.

Here by G-invariant closed subvariety of X we mean a closed subscheme V of X that
is reduced, and such that G permutes the irreducible components of V transitively (one
sometimes says that V is primitive).

This property can be expressed by saying that X is an equivariant Chow envelope of Y

(see [5], Definition 18.3).

Proof. In the non-equivariant setting the result follows from the definition of proper
pushforward.

In our setting, let us notice first of all that if Y 0 ! Y is a G-equivariant morphism
and X 0 ¼def

Y 0 �Y X , the projection X 0 ! Y 0 is also an equivariant Chow envelope (this is
easy, and left to the reader). Therefore, if U is an open subscheme of a representation of G

on which G acts freely, the morphism f � idU : X �U ! Y �U is an equivariant Chow
envelope. But since G is smooth, it is easily seen that pullback from ðX �UÞ=G to X �U

defines a bijective correspondence between closed subvarieties of ðX �UÞ=G and closed in-
variant subvarieties of X �U ; hence the ðX �UÞ=G is a Chow envelope of ðY �UÞ=G. So
the proper pushforward A�

�
ðX �UÞ=G

�
! A�

�
ðY �UÞ=G

�
is surjective, and this com-

pletes the proof. r

5. On Cp D mp

A key role in our proof is played by a finite subgroup Cp � mp LPGLp.

We denote by Cp L Sp the subgroup generated by the cycle s ¼def ð1 2 . . . pÞ. We embed
Sp into PGLp as usual by identifying a permutation a A Sp with the corresponding permu-
tation matrix, obtained by applying a to the indices of the canonical basis e1; . . . ; ep of V

(so that sei ¼ eiþ1, where addition is modulo p).

If we denote by t the generator

½o; . . . ;op�1; 1�

of mp LPGLp, we have that

ts ¼ ost in GLp;

so s and t commute in PGLp, and they generate a subgroup

Cp � mp LPGLp:

We denote by a and b the characters Cp � mp ! Gm defined as

aðsÞ ¼ o and aðtÞ ¼ 1
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and

bðsÞ ¼ 1 and bðtÞ ¼ o:

The following fact will be useful later.

Lemma 5.1. If i and j are integers between 1 and p, consider the matrix s it j in the

algebra glp of p� p matrices. Then if ði; jÞ3 ðp; pÞ, the matrix s it j has trace 0, and its ei-

genvalues are precisely the p-roots of 1.

Each s it j is a semi-invariant for the action of Cp � mp, with character a�jb i. Further-

more the s it j form a basis of glp, and those with ði; jÞ3 ðp; pÞ form a basis of slp.

Proof. The fact that Cp � mp acts on s it j via the character a�jb i is an elementary
calculation, using the relation ts ¼ ost. From this it follows that the s it j are linearly in-
dependent, and therefore form a basis of glp. The statement about the trace is also easy.

Let us check that the s it j with ði; jÞ3 ðp; pÞ have the elements of mp as eigenvalues.
When i ¼ p we get a diagonal matrix with eigenvalues o j; . . . ;opj, which are all the
elements of mp, because p is a prime and j is not divisible by p. Assume that i 3 p. The
numbers i; 2i; . . . ; pi, reduced modulo p, coincide with 1; . . . ; p. If l is a p th root of 1, and
e1; . . . ; ep is the canonical basis of kn, then the vector

Pp

t¼1

l�to ij t
2ð Þeti

is easily seen to be an eigenvector of s it j with eigenvalue l (using the fact that

t1

2

� �
1

t2

2

� �
ðmod pÞ

when t1 1 t2 ðmod pÞ, which holds because p is odd, and the relations sei ¼ eiþ1 and
tei ¼ o iei). This concludes the proof of the lemma. r

Corollary 5.2. Any two elements in Cp � mp di¤erent from the identity are conjugate

in PGLp.

Remark 5.3. It is interesting to observe that the proposition, and its corollary, are
false for p ¼ 2; then the matrix st has eigenvaluesG

ffiffiffiffiffiffiffi
�1
p

, which are not square roots of 1.

We will denote by x and h the first Chern classes in A1
Cp�mp

of the characters a and b.
Then we have

A�Cp�mp
¼ Z½x; h�=ðpx; phÞ:

We will identify Cp � mp with Fp � Fp, by sending s to ð1; 0Þ and t to ð0; 1Þ; this iden-
tifies the automorphism group of Cp � mp with GL2ðFpÞ.
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We are interested in the action of the normalizer NCp�mp
PGLp of Cp � mp in PGLp on

Cp � mp and on the Chow ring A�Cp�mp
.

Proposition 5.4. Consider the homomorphism

NCp�mp
PGLp ! GL2ðFpÞ

defined by the action of NCp�mp
PGLp on Cp � mp. Its kernel is Cp � mp, while its image is

SL2ðFpÞ.

Furthermore, the ring of invariants

ðA�Cp�mp
ÞSL2ðFpÞ

is the subring of A�Cp�mp
generated by the two homogeneous polynomials

q ¼def
hp2�p þ xp�1ðxp�1 � hp�1Þp�1

¼ xp2�p þ hp�1ðxp�1 � hp�1Þp�1

and

r ¼def
xhðxp�1 � hp�1Þ:

The equality of the two polynomials that appear in the definition of q is not immedi-
ately obvious, but is easy to prove, by subtracting them and using the identity

ðxp�1 � hp�1Þp ¼ xp2�p � hp2�p:

Much more is known: as I learnt from N. Yagita, the rings of invariants
Fp½x1; . . . ; xn�GLnðFpÞ and Fp½x1; . . . ; xn�SLnðFpÞ were computed by L. E. Dickson, in [1]; the
first is known as the Dickson algebra.

Proof. First of all, let us show that the image of the homomorphism above is con-
tained in SL2ðFpÞ. There is a canonical symplectic form

V2ðCp � mpÞ ! mp

defined as follows: if a and b are in Cp � mp LPGLp, lift them to matrices a and b in GLp.
Then the commutator aba�1b�1 is a scalar multiple of the identity matrix Ip; it is easy to see
that the scalar factor, which we denote by ha; bi, is in mp, and that it only depends on a and
b, that is, it is independent of the liftings. The resulting function

h�;�i : ðCp � mpÞ � ðCp � mpÞ ! mp

is the desired symplectic form.

Now, SL2ðFpÞ has pðp2 � 1Þ elements. According to Corollary 5.2, the action of
NCp�mp

PGLp is transitive on the non-zero vectors in F2
p ; so the order of the image of

NCp�mp
PGLp in SL2ðFpÞ has order divisible by p2 � 1. It is easy to check that the diagonal

matrix
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½1;o;o3; . . . ; o
i
2ð Þ|{z}

i th place

; . . . ;o; 1�

is also in NCp�mp
PGLp, acts non-trivially on Cp � mp, and has order p. So the order of the

image of NCp�mp
PGLp is divisible by p; it follows that it is equal to all of SL2ðFpÞ.

It is not hard to check that the centralizer of Cp � mp equals Cp � mp; and this com-
pletes the proof of the first part of the statement.

For the second part, see [1] or [22]. r

For later use, let us record the following fact. The image of the restriction homomor-
phism A�PGLp

! A�Cp�mp
is contained in ðA�Cp�mp

ÞSL2ðFpÞ. We are going to need formulas for

the restrictions of the Chern classes ciðslpÞ to A�Cp�mp
.

Lemma 5.5. Let i be a positive integer. Then the restriction of ciðslpÞ to A�Cp�mp
is �q

if i ¼ p2 � p, is rp�1 if i ¼ p2 � 1, and is 0 in all other cases.

Proof. The total Chern class of glp coincides with the total Chern class of slp, be-
cause glp is the direct sum of slp and a trivial representation. From Lemma 5.1 we see
that this total Chern class, when restricted to A�Cp�mp

, equals

Pp

i; j¼1

ð1þ ixþ jhÞ;

and then the result follows from Lemma 5.6 below. r

Lemma 5.6.

Q
0ei; jep�1

ð1þ ixþ jhÞ ¼ 1� qþ rp�1:

Proof. Using the formula

Q
i A Fp

ðaþ ibÞ ¼ ap � abp�1;

which holds for any two elements a and b of a commmutative Fp-algebra, we obtain

Q
i; j A Fp

ð1þ ixþ jhÞ ¼
Q

i AFp

�
ð1þ ixÞp � ð1þ ixÞhp�1

�

¼
Q

i AFp

�
ð1� hp�1Þ þ iðxp � xhp�1Þ

�

¼ ð1� hp�1Þp � ð1� hp�1Þðxp � xhp�1Þp�1

¼ 1�
�
hp2�p þ ðxp � xhp�1Þp�1�þ xp�1hp�1ðxp�1 � hp�1Þp�1

¼ 1� qþ rp�1: r
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We will also need to know about the cohomology ring H�Cp�mp
. For any cyclic group

Cn F mn, the homomorphism A�Cn
! H�Cn

is an isomorphism. This does not extend to
Cp � mp; however, from the universal coe‰cients theorem for cohomology, for each index
k we have a split exact sequence

0!
L

iþj¼k

H i
Cp

nH j
mp
! Hk

Cp�mp
!

L
iþj¼kþ1

TorZ1 ðH i
Cp
;H j

mp
Þ ! 0;

furthermore, since the exterior product homomorphism A�Cp
nA�mp

! A�Cp�mp
is an isomor-

phism, the image of the term
L

iþj¼k

H i
Cp

nH j
mp

into H�Cp�mp
is the image of the cycle homo-

morphism A�Cp�mp
! H�Cp�mp

. From this it is easy to deduce that the cycle homomorphism

induces an isomorphism of A�Cp�mp
with the even dimensional part Heven

Cp�mp
of the coho-

mology.

We have isomorphisms

H3
Cp�mp

FTorZ1 ðH2
Cp
;H2

mp
ÞFZ=pZ;

chose a generator s of H3
Cp�mp

(later we will make a canonical choice). We have that s2 ¼ 0,
because p is odd, and s has odd degree.

The odd-dimensional part Hodd
Cp�mp

of the cohomology is isomorphic to the direct sumL
i; j

TorZ1 ðH i
Cp
;H j

mp
Þ, with a shift by 1 in degree. Both Hodd

Cp�mp
and

L
i; j

TorZ1 ðH i
Cp
;H j

mp
Þ have

natural structures of modules over H�Cp
nH�mp

¼ Heven
Cp�mp

, and the isomorphism above

is an isomorphism of modules. But
L
i; j

TorZ1 ðH i
Cp
;H j

mp
Þ is easily seen to be a cyclic Heven

Cp�mp
-

module generated by s. From this we obtain the following result.

Proposition 5.7.

H�Cp�mp
¼ Z½x; h; s�=ðpx; ph; ps; s2Þ:

We are also interested in the action of SL2ðFpÞ on H�Cp�mp
. I claim that the class s is

invariant: this is equivalent to the following.

Lemma 5.8. The action of SL2ðFpÞ on H3
Cp�mp

is trivial.

This follows, for example, from the construction of Section 11, where we construct a
class b A H3

PGLp
that maps to a non-zero element of H3

Cp�mp
. It would be logically correct to

postpone the proof to Section 11, as this fact is not used before then; but this does not seem
very satisfactory, so we prove it now directly.

Proof. The automorphism group of H3
Cp�mp

FZ=pZ is abelian. On the other hand
the action of SL2ðFpÞ on H3

Cp�mp
is the restriction of an action of GL2ðFpÞ, and the commu-

tator subgroup of GL2ðFpÞ is well known to be SL2ðFpÞ. r

From this we deduce the following fact.
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Proposition 5.9. The ring of invariants ðH�Cp�mp
ÞSL2ðFpÞ is generated by q, r and s.

Remark 5.10. The group Cp � mp is important in the theory of division algebras.
Suppose that K is a field containing k, and E ! Spec K is a non-trivial PGLp principal
bundle. This corresponds to a central division algebra D over K of degree p. Recall that
D is cyclic when there are elements a and b of K �, such that D is generated by two elements
x and y, satisfying the relations xp ¼ a, yp ¼ b, yx ¼ oxy. It is not hard to show that D is
cyclic if and only if E has a reduction of structure group to Cp � mp.

One of the main open problems in the theory of division algebra is whether all divi-
sion algebras of prime degree are cyclic. Let V be a representation of PGLp over k with a
non-empty open invariant subset U on which PGLp acts freely. Let K be the fraction field
of U=PGLp, E the pullback to Spec K of the PGLp-torsor U ! U=G and D the corre-
sponding division algebra; it is well known that D is cyclic if and only if every division
algebra of degree p over a field containing k is cyclic.

The obvious way to show that D is not cyclic is to show that there is an invariant for
division algebras that is 0 for cyclic algebras, but not 0 for D. However, the result proved
here implies that there is no such invariant in the cohomology ring H�PGLp

. In fact, consider
a non-zero invariant x A H�PGLp

. Then either x has even degree, so it comes from A�PGLp
,

hence it restricts to 0 in V=PGLp for some open invariant subset V LU , or it has odd de-
gree, and then it maps to 0 in A�TPGLp

, and it does not map to 0 in A�Cp�mp
.

This is related with the fact that one can not find such an invariant in étale cohomo-
logy with Z=pZ coe‰cients (see [6], §22.10).

6. On CpyTGLp

Proposition 6.1. Assume that k ¼ C. Then the cycle homomorphism

A�CpyTGLp
! H�CpyTGLp

is an isomorphism.

Proof. This is the first illustration of the stratification method: we take a geometri-
cally meaningful representation of Cp yTGLp

and we stratify it.

Denote by V ¼def
Ap the standard representation of GLp, restricted to Cp yTGLp

. We
denote by Vei the Zariski open Cp yTGLp

-invariant subset consisting of p-tuples of com-
plex numbers such that at most i of them are 0, and by Vi ¼def

VeinVei�1 the smooth locally
closed subvariety of p-tuples consisting of vectors with exactly i coordinates that are 0.
Obviously Vep�1 ¼ Vnf0g and Vp ¼ 0.

Lemma 6.2. For each 0e ie p� 1, the cycle homomorphism

A�CpyTGLp
Vi ! H�CpyTGLp

Vi

is an isomorphism.
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Proof. First of all, assume that i ¼ 0. Then the action of Cp yTGLp
on V0 is transi-

tive, and the stabilizer of ð1; . . . ; 1Þ A V0ðkÞ is Cp; hence we have a commutative diagram

A�CpyTGLp
ðV0Þ ���! H�CpyTGLp

ðV0Þ???y
???y

A�Cp
���! H�Cp

where the rows are cycle homomorphisms and the columns are isomorphisms. Since the
bottom row is also an isomorphism, the thesis follows.

When i > 0 the argument is similar. The action of Cp yTGLp
on Vi expresses Vi as a

disjoint union of open orbits W1; . . . ;Wr, where r ¼def 1

p

p

i

� �
, and the stabilizer of a point of

each Wj is an i-dimensional torus Tj; hence we get a commutative diagram

A�CpyTGLp
ðViÞ ���! H�CpyTGLp

ðViÞ???y
???y

Lr

h¼1

A�Tj
���! Lr

h¼1

H�Tj

where the columns and the bottom row are isomorphisms. r

Lemma 6.3. For each 0e ie p� 1, the cycle homomorphism

A�CpyTGLp
Vei ! H�CpyTGLp

Vei

is an isomorphism.

Proof. We proceed by induction on i. When i ¼ 0 we have Ve0 ¼ V0, and the thesis
follows from the previous lemma. For the inductive step, we have a commutative diagram
with exact rows

A�CpyTGLp
ðViÞ ���! A�CpyTGLp

ðVeiÞ ���! A�CpyTGLp
ðVei�1Þ ���! 0???y

???y
???y1

H�CpyTGLp
ðViÞ ���!3 H�CpyTGLp

ðVeiÞ ���!2 H�CpyTGLp
ðVei�1Þ;

by inductive hypothesis, the arrow marked with 1 is an isomorphism, hence the arrow
marked with 2 is surjective. However, the bottom row of the diagram extends to a Gysin
exact sequence

H�CpyTGLp
ðViÞ ! H�CpyTGLp

ðVeiÞ ! H�CpyTGLp
ðVei�1Þ ! H�CpyTGLp

ðViÞ ! � � �

showing that the arrow marked with 3 is injective. From this, and the fact that the left-
hand column is an isomorphism, it follows that the middle column is also an isomorphism,
as desired. r
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Let us proceed with the proof of the theorem. For each i we have a commutative
diagram with exact rows

A�CpyTGLp
���!cpðVÞ

A�CpyTGLp
���! A�CpyTGLp

ðVnf0gÞ ���! 0???y
???y

???y
H�CpyTGLp

���!cpðVÞ
H�CpyTGLp

���! H�CpyTGLp
ðVnf0gÞ:

Now, by Lemma 6.3 the right-hand column is an isomorphism, hence, arguing as in the
proof of Lemma 6.3, we conclude that the bottom row of the diagram is a short exact
sequence.

If i is odd, we have H i
CpyTGLp

ðVnf0gÞ ¼ 0, hence the multiplication homomorphism

H
i�2p
CpyTGLp

���!cpðVÞ
H i

CpyTGLp

is an isomorphism. From this we deduce, by induction on i, that H i
CpyTGLp

¼ 0 for all odd i.

When i is even, one proceeds similarly by induction on i, with a straightforward dia-
gram chasing in the diagram above. r

Let us compute the Chow ring of the classifying space of Cp yTGLp
. The Weyl group

Sp acts on A�TGLp
¼ Z½x1; . . . ; xp� by permuting the xi’s. Consider the action of Cp on A�TGLp

:
the group permutes the monomials, and the only monomials that are left fixed are the ones
of the form sr

p ¼ xr
1 . . . xr

p, while on the others the action of Cp is free. We will call the
monomials that are not powers of sp free monomials. Then A�TGLp

splits as a direct sum
Z½sp�lM, where M is the free ZCp-module generated by the free monomials. Hence the
ring of invariants ðA�TGLp

ÞCp is a direct sum Z½sp�lM Cp , and M Cp is a free abelian group
on the generators

P
s ACp

sm, where m is a free monomial.

We will denote by x A A1
Cp

the first Chern class of the character Cp ! Gm obtained by

sending the generator ð1; . . . ; pÞ of Cp to the fixed generator o of mp, and also its pullback
to Cp yTGLp

through the projection Cp yTGLp
! Cp.

We will also use the subgroup mp LTGLp
of matrices of the form zIp, where z A mp.

The Chow ring A�mp
is of the form Z½h�=ðphÞ, where h is the first Chern class of the

1-dimensional representation given by the embedding mp ,! Gm. The action of Cp on mp is
trivial, so there is a copy of Cp � mp in Cp yTGLp

; the Chow ring A�Cp�mp
is Z½x; h�=ðpx; phÞ.

Here are the facts about A�CpyTGLp
that we are going to need.

Proposition 6.4. (a) The image of the restriction homomorphism

ðA�TGLp
ÞCp ! A�mp

¼ Z½h�=ðphÞ

is the subring generated by hp, which is the image of sp. The kernel is the subgroup of

ðA�TGLp
ÞCp generated by the

P
s ACp

sm, where m is a free monomial, and by psp.
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(b) The ring homomorphism A�CpyTGLp
! ðA�TGLp

ÞCp induced by the embedding

TGLp
,! Cp yTGLp

is surjective, and admits a canonical splitting f : ðA�TGLp
ÞCp ! A�CpyTGLp

,
which is a ring homomorphism.

(c) As an algebra over A�CpyTGLp
, the ring A�CpyTGLp

is generated by the element x, while

the ideal of relations is generated by the following: px ¼ 0, and fðuÞx ¼ 0 for all u in the ker-

nel of the ring homomorphism A�TGLp
! A�mp

induced by the embedding mp ,! TGLp
.

(d) The ring homomorphism A�CpyTGLp
! A�TGLp

�A�Cp�mp
induced by the embeddings

TGLp
,! Cp yTGLp

and Cp � mp ,! Cp yTGLp

is injective.

(e) The restriction homomorphism A�CpyTGLp
! ðA�TGLp

ÞCp sends the kernel of

A�CpyTGLp
! A�Cp�mp

bijectively onto the kernel of A�TGLp
! A�mp

.

Remark 6.5. The proofs of these statements could be made somewhat shorter by
making use of Totaro’s results on the Chow ring of the classifying space of a wreath prod-
uct ([19], Section 9). However I find the present approach more transparent; it also has the
merit of generalizing to other situations of interest.

Proof. Let us prove part (a). All the xi in A�TGLp
map to h in A�mp

, so sp maps to hp,
and all the

P
s ACp

sm map to phdeg m ¼ 0.

Let us prove (b). First of all let us construct the splitting f : ðA�TGLp
ÞCp ! A�CpyTGLp

as

a homomorphism of abelian groups. The group ðA�TGLp
ÞCp is free over the powers of sp and

the
P

s ACp

sm.

The restriction of the canonical representation V of Cp yTGLp
to the maximal torus

TGLp
splits a direct sum of 1-dimensional representations with first Chern characters

x1; . . . ; xp; hence the i th Chern class ciðVÞ A A i
CpyTGLp

restricts to si A ðA i
TGLp
Þ. We define

the splitting by the rules

(a) fðsr
pÞ ¼ cpðVÞr A A�CpyTGLp

for each r > 0, and

(b) f

� P
s ACp

sm

�
¼ tr

TGLp

CpyTGLp
m A A�CpyTGLp

for each free monomial m.

Notice that the transfer in the second part of the definition only depends on the orbit
of m; hence f is well defined.

We need to check that f is a ring homomorphism, by taking two basis elements u and
v and showing that fðuvÞ equals fðuÞfðvÞ. This is clear when both u and v are powers of sp.

Consider the product sr
p

P
s ACp

sm ¼
P

s ACp

sðsr
pmÞ; we have
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f

�
sr

p

P
s ACp

sm

�
¼ f

� P
s ACp

sðsr
pmÞ

�

¼ tr
TGLp

CpyTGLp
ðsr

pmÞ ðbecause sr
pm is still a free monomialÞ

¼ cpðVÞr tr
TGLp

CpyTGLp
ðmÞ ðby the projection formulaÞ

¼ fðsr
pÞf

� P
s ACp

sm

�
:

Now the hardest case. Notice that if m is any monomial, not necessarily free, we have
the equality

f

� P
s ACp

sm

�
¼ tr

TGLp

CpyTGLp
m:

When m is free this holds by definition, whereas when m ¼ sr
p we have

f

� P
s ACp

sr
p

�
¼ pfðsr

pÞ

¼ pcpðVÞr

¼ tr
TGLp

CpyTGLp
res

CpyTGLp

TGLp
cpðVÞr

¼ tr
TGLp

CpyTGLp
sr

p:

Take two free monomials m and n. We have

f

� P
s ACp

sm �
P

s ACp

sn

�
¼ f

� P
s; t ACp

sm � tn
�

¼ f

� P
s; t ACp

sm � stn

�

¼
P

t ACp

f

� P
s ACp

sðm � tnÞ
�

¼
P

t ACp

tr
TGLp

CpyTGLp
ðm � tnÞ

¼ tr
TGLp

CpyTGLp

�
m �

P
t ACp

tn

�

¼ tr
TGLp

CpyTGLp
ðm � res

CpyTGLp

TGLp
tr

TGLp

CpyTGLp
nÞ

¼ tr
TGLp

CpyTGLp
ðmÞ trTGLp

CpyTGLp
ðnÞ

¼ f

� P
s ACp

sm

�
f

� P
s ACp

sn

�

as claimed. This ends the proof of part (b).
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For parts (c) and (d), notice the following fact: since the restriction of x to A�TGLp

is 0, from the projection formula it follows that x tr
TGLp

CpyTGLp
ðmÞ ¼ 0 A A�CpyTGLp

for any

m A A�TGLp
; hence we get that f

� P
s ACp

m

�
x ¼ 0 A A�CpyTGLp

, as claimed. Thus, the relations

of the statement of the proposition hold true.

Denote by AþTGLp
the ideal of A�TGLp

generated by homogeneous elements of positive
degree. Then the image of ðAþTGLp

ÞCp in A�CpyTGLp
via f maps to 0 under the restriction

homomorphism res
CpyTGLp

Cp
: A�CpyTGLp

! A�Cp
. In fact, the image of AþTGLp

is generated by

elements of the form tr
TGLp

CpyTGLp
m, where m A A�TGLp

is a monomial of positive degree, and

by positive powers cpðVÞr of the top Chern class of V . The fact that the restriction of

tr
TGLp

CpyTGLp
m is 0 follows from Mackey’s formula. On the other hand, the restriction

of V to Cp is a direct sum of 1-dimensional representations with first Chern classes
0; x; 2x; . . . ; ðp� 1Þx, so the restriction of V has trivial top Chern class.

Lemma 6.6. The kernel of the restriction homomorphism

res
CpyTGLp

Cp
: A�CpyTGLp

! A�Cp

consists of the sum of the image of ðAþTGLp
ÞCp in A�CpyTGLp

via f, and of the ideal�
cpðVÞ

�
LA�CpyTGLp

.

Proof. Consider the hyperplane Hi in the canonical representation V ¼ Ap defined

by the vanishing of the i th coordinate. Denote by H ¼
Sp
i¼1

Hi LV the union. If V0 ¼ VnH
we have an exact sequence

A�CpyTGLp
ðHÞ ! A�CpyTGLp

ðVÞ ! A�CpyTGLp
ðV0Þ ! 0:

We identify A�CpyTGLp
ðVÞ with A�CpyTGLp

via the pullback A�CpyTGLp
! A�CpyTGLp

ðVÞ, which

is an isomorphism. The action of TGLp
on V0 is free and transitive, and the stabilizer of the

point ð1; 1; . . . ; 1Þ is Cp LCp yTGLp
. Hence we have an isomorphism of A�CpyTGLp

ðV0Þ
with A�Cp

, and the pullback A�CpyTGLp
ðVÞ ! A�CpyTGLp

ðV0Þ is identified with the restric-

tion homomorphism A�CpyTGLp
! A�Cp

. So the kernel of this restriction is the image of
A�CpyTGLp

ðHÞ.

Denote by ~HH the disjoint union
‘p
i¼1

Hi t f0g of the Hi with the origin f0gLV . I

claim that the proper pushforward A�CpyTGLp
ð ~HHÞ ! A�CpyTGLp

ðHÞ is surjective. This follows
from Proposition 4.5: we need to check that every Cp yTGLp

-invariant closed subvariety
of H is the birational image of a Cp yTGLp

-invariant subvariety of ~HH. Denote by W a
Cp yTGLp

-invariant closed subvariety of H. If W ¼ f0g we are done. Otherwise it is easy
to see that W will be the union of p TGLp

-invariant irreducible components W1; . . . ;Wp,

such that each Wi is contained in Hi. Then the disjoint union
‘p
i¼1

Wi L
‘p
i¼1

Hi L ~HH is

Cp yTGLp
-invariant and maps birationally onto W . Hence we conclude that the kernel of

the restriction homomorphism is the sum of the images of the proper pushforwards

A�CpyTGLp
ðf0gÞ ! A�CpyTGLp

ðVÞ
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and

A�CpyTGLp

�‘p
i¼1

Hi

�
! A�CpyTGLp

ðVÞ:

After identifying A�CpyTGLp
ðVÞ with A�CpyTGLp

, the first pushforward is just multiplica-

tion by cpðVÞ, so its image is the ideal
�
cpðVÞ

�
LA�CpyTGLp

.

Notice that the disjoint union
‘p
i¼1

Hi is canonically isomorphic, as a CpyTGLp
-scheme,

to ðCp yTGLp
Þ �TGLp H1; hence there is a canonical isomorphism

A�CpyTGLp

�‘p
i¼1

Hi

�
FA�TGLp

ðH1Þ:

The pushforward A�TGLp
ðH1Þ ! A�CpyTGLp

ðVÞ is the composite of the proper pushforward

A�TGLp
ðH1Þ ! A�TGLp

ðVÞ, followed by the transfer homomorphism

A�TGLp
ðVÞ ! A�CpyTGLp

ðVÞ:

After identifying A�TGLp
ðH1Þ and A�TGLp

ðVÞ with A�TGLp
, A�CpyTGLp

ðVÞ with A�CpyTGLp
, we see

that this implies that the image of A�CpyTGLp

�‘p
i¼1

Hi

�
in A�CpyTGLp

ðVÞ ¼ A�CpyTGLp
is the

image of the ideal ðx1ÞLA�TGLp
under the transfer map A�TGLp

! A�CpyTGLp
. So each element

of the image of A�CpyTGLp

�‘p
i¼1

Hi

�
can be written as a linear combination with integer

coe‰cients of transfers of monomials of positive degree: and this completes the proof of the
lemma. r

Now we show that A�CpyTGLp
is generated, as an algebra over ðA�TGLp

ÞCp , by the

single element x. Take an element a of A�CpyTGLp
of degree d, and write its image in

A�Cp
¼ Z½x�=ðpxÞ in the form mxd , where m is an integer. Then a�mxd A A�CpyTGLp

maps

to 0 in A�Cp
, so according to Lemma 6.6 it is of the form b þ spg, where b is in ðA�TGLp

ÞCp

and g A A
d�p
Cp

. The proof is concluded by induction on d.

Now we prove that the relations indicated generate the ideal of relations, and, simul-
taneously, part (d).

Take an element a A Ad
CpyTGLp

; using the given relations, we can write a in the form

a0 þ a1xþ a2x
2 þ � � � , where a0 A ðAd

TGLp
ÞCp , while for each i > 0 the element ai is of the

form dis
r
p, where 0e di e p� 1, and rp ¼ d � i, when p divides d � i, and 0 otherwise.

Assume that the image of a in A�TGLp
�A�Cp�mp

is 0. The image of a in A�TGLp
is a0,

hence a0 ¼ 0.

Lemma 6.7. The restriction of fðspÞ ¼ cpðVÞ to A�Cp�mp
¼ Z½x; h�ðpx; phÞ equals

hp � hxp�1.
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Proof. The restriction of V to Cp � mp decomposes as a direct sum of 1-dimensional
representations with first Chern classes h; h� x; h� 2x; . . . ; h� ðp� 1Þx, and

hðh� xÞðh� 2xÞ . . .
�
h� ðp� 1Þx

�
¼ hp � hxp�1: r

Since x and hp � hxp�1 are algebraically independent in the polynomial ring Fp½x; h�,
it follows that all the ai are 0. This finishes the proof of (c) and (d).

Finally, let us prove part (e).

Injectivity follows immediately from part (d). To show that the restriction homo-
morphism is surjective, it is su‰cient to show that if u is in the kernel of the homomor-
phism ðA�TGLp

ÞCp ! A�mp
, then fðuÞ is in the kernel of A�CpyTGLp

! A�Cp�mp
. Each element of

ðA�TGLp
ÞCp of the form

P
s ACp

sm goes to 0 in A�Cp
, while sp goes to hp; hence u is a linear com-

bination of elements of the form
P

s ACp

m and psr
p. So fðuÞ is a linear combination of elements

of A�CpyTGLp
of the form pcpðVÞr and tr

TGLp

CpyTGLp
m; from the following lemma we see that all

these elements of A�Cp�mp
are 0.

Lemma 6.8. If u is an element of positive degree in A�TGLp
, the restriction of tr

TGLp

CpyTGLp
u

to A�Cp�mp
is 0.

Proof. The double coset space ðCp � mpÞnðCp yTGLp
Þ=TGLp

consists of a single
point and ðCp � mpÞXTGLp

¼ mp, so we have

res
CpyTGLp

Cp�mp
tr

TGLp

CpyTGLp
u ¼ tr

mp

Cp�mp
res

TGLp
mp

u:

However, I claim that the transfer homomorphism

tr
mp

Cp�mp
: A�mp

! A�Cp�mp

is 0 in positive degree. In fact, the restriction homomorphism

res
Cp�mp
mp

: A�Cp�mp
! A�mp

is surjective, because the embedding mp ,! Cp � mp is split by the projection Cp � mp ! mp.

It follows immediately, again from Mackey’s formula, that the composition tr
mp

Cp�mp
res

Cp�mp
mp

is multiplication by p; and all classes in A�Cp�mp
in positive degree are p-torsion. r

This concludes the proof of Proposition 6.4. r

Remark 6.9. When k ¼ C, Propositions 6.1 and 6.4 give a description of the coho-
mology H�CpyTGLp

. This can be proved directly, by studying the Hochschild-Serre spectral
sequence

E
ij
2 ¼ H iðCp;H

j
TGLp
Þ ) H iþj

CpyTGLp
:
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7. On Cp yTPGLp

In this section we study the Chow ring of the classifying space of the group
Cp yTPGLp

. Here is our main result. Consider the subgroup mp LTPGLp
defined, as in the

Introduction, by the formula z 7! ½z; z2; . . . ; zp�1; 1�. This defines a homomorphism of rings
A�TPGLp

! A�mp
.

Proposition 7.1. (a) The image of the restriction homomorphism

ðA�TPGLp
ÞCp ! A�mp

¼ Z½h�=ðphÞ

is the subring generated by hp.

(b) The ring homomorphism A�CpyTPGLp
! ðA�TPGLp

ÞCp induced by the embedding

TPGLp
,! Cp yTPGLp

is surjective, and admits a canonical splitting

f : ðA�TPGLp
ÞCp ! A�CpyTPGLp

;

which is a ring homomorphism.

(c) As an algebra over ðA�TPGLp
ÞCp , the ring A�CpyTPGLp

is generated by the element x,

while the ideal of relations is generated by the following: px ¼ 0, and fðuÞx ¼ 0 for all u in

the kernel of the ring homomorphism A�TPGLp
! A�mp

induced by the embedding mp ,! TPGLp
.

(d) The ring homomorphisms

A�CpyTPGLp
! A�TPGLp

�A�Cp�mp

and

H�CpyTPGLp
! H�TPGLp

�H�Cp�mp

induced by the embeddings

TPGLp
,! Cp yTPGLp

and Cp � mp ,! Cp yTPGLp

are injective.

(e) The restriction homomorphism A�CpyTPGLp
! ðA�TPGLp

ÞCp sends the kernel of

A�CpyTPGLp
! A�Cp�mp

bijectively onto the kernel of A�TPGLp
! A�mp

.

Proof. One of the main ideas in the paper is to exploit the fact, already used in [21]
and rediscovered in [20], that there is an isomorphism of tori

F : TPGLp
FTSLp

defined by

Fðt1; . . . ; tpÞ ¼ ½t1=tp; t2=t1; t2=t2; . . . ; tp�1=tp�2; tp=tp�1�:
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This isomorphism is not Sp-equivariant, but it is Cp-equivariant; therefore it induces an
isomorphism

F : Cp yTPGLp
FCp yTSLp

:

The composite of the embedding mp ,! TPGLp
with the isomorphism F is the embed-

ding mp ,! TSLp
defined by z 7! ½z; z; . . . ; z�.

Now, take an open subset U of a representation of Cp yTGLp
on which Cp yTGLp

acts freely. The projection U=Cp yTSLp
! U=Cp yTGLp

is a Gm-torsor, coming from the
determinant det : Cp yTGLp

! Gm of the canonical representation V of TGLp
. Lemma 4.1

implies that there is an exact sequence

A�CpyTGLp
��!c1ðVÞ

A�CpyTGLp
��! A�CpyTSLp

��! 0

and a ring isomorphism A�CpyTSLp
FA�CpyTGLp

=
�
c1ðVÞ

�
.

Consider the splitting f : ðA�TGLp
ÞCp ! A�CpyTGLp

constructed in the previous section. I

claim that c1ðVÞ coincides with fðs1Þ ¼ tr
TGLp

CpyTGLp
x1. To prove this it is enough, according

to Proposition 6.4 (d), to show that these two classes coincide after restriction to A�TGLp
and

to A�Cp�mp
. The restrictions of both classes to A�TGLp

coincide with x1 þ � � � þ xp.

The action of Cp � mp on V splits as a direct sum of 1-dimensional representations
with characters hþ x; hþ 2x; . . . ; hþ ðp� 1Þx; h, so the restriction of c1ðVÞ to A�Cp�mp

is

hþ xþ hþ 2xþ � � � þ hþ ðp� 1Þxþ h ¼ phþ pðp� 1Þ
2

x ¼ 0:

So we need to show that the restriction of tr
TGLp

CpyTGLp
x1 to A�Cp�mp

is also 0. This is a partic-
ular case of Lemma 6.8.

There is also an exact sequence

0! A�TGLp
!s1

A�TGLp
! A�TSLp

! 0;

so A�TSLp
is the quotient A�TGLp

=ðs1Þ.

Lemma 7.2. If G is a subgroup of Sp, the projection ðA�TGLp
ÞG ! ðA�TSLp

ÞG induces an

isomorphism

ðA�TSLp
ÞG=ðs1ÞF ðA�TGLp

ÞG:

Proof. This is equivalent to saying that the exact sequence above stays exact after
taking G-invariants; but we have that H1ðG;A�TGLp

Þ ¼ 0, because A�TGLp
is a torsion-free

permutation module under G. r

Part (a) comes from the surjectivity of the restriction homomorphism

ðA�TGLp
ÞCp ! ðA�TSLp

ÞCp

and Proposition 6.4 (a).
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We construct the splitting ðA�TSLp
ÞCp ! A�CpyTSLp

by taking the splitting

ðA�TGLp
ÞCp ! A�CpyTGLp

constructed in the previous section, tensoring it with ðA�TGLp
ÞCp=ðs1Þ over ðA�TGLp

ÞCp , to get a
ring homomorphism

ðA�TGLp
ÞCp=ðs1Þ ! A�CpyTGLp

=ðs1Þ

and using the isomorphisms

ðA�TSLp
ÞCp F ðA�TGLp

ÞCp=ðs1Þ

and

A�CpyTGLp
=ðs1ÞFA�CpyTSLp

constructed above. This proves part (b). Part (c) follows from Proposition 6.4 (c).

To prove part (e) consider the diagram of restriction homomorphisms

A�CpyTGLp
���! A�CpyTSLp

���! A�Cp�mp???y
???y

???y
ðA�TGLp

ÞCp ���! ðA�TSLp
ÞCp ���! A�mp

:

The surjectivity of the map in the statement follows from Proposition 6.4 (e) and from the
fact that the first arrow in the bottom row is surjective.

To prove injectivity take an element u of A�CpyTSLp
that maps to 0 in A�Cp�mp

and in
ðA�TSLp

ÞCp . Let v be an element of A�CpyTGLp
mapping to u. Since the kernel of the homomor-

phism ðA�TGLp
ÞCp ! ðA�TSLp

ÞCp is generated by s1, we can write the image of v in ðA�TGLp
ÞCp

as s1w for some w A ðA�TGLp
ÞCp . Then the element v� fðs1wÞ maps to 0 in A�mp

and in

ðA�TGLp
ÞCp ; hence, by Proposition 6.4 (d), it is 0. So v ¼ fðs1ÞfðwÞ maps to 0 in ðA�TSLp

ÞCp , as
claimed.

Let us prove part (d). The statement on Chow rings is an immediate consequence of
part (e).

For the cohomology, we argue as follows. We have a long exact sequence

� � � ���! H i�1
CpyTSLp

H i�2
CpyTGLp

���!
c1ðVÞ

H i
CpyTGLp

���! H i
CpyTSLp

H i�1
CpyTGLp

���! � � � :

 ������������
��������q

 ������������
��������q
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By Proposition 6.1, the cycle homomorphism A�CpyTGLp
! H�CpyTGLp

is an isomor-

phism. Hence, for each i we have a commutative diagram with exact rows

A i�1
CpyTGLp

���! A i
CpyTGLp

���! A i
CpyTSLp

���! 0???y
???y

???y
H2i�2

CpyTGLp
���! H2i

CpyTGLp
���! H2i

CpyTSLp
���! H2i�1

CpyTGLp
¼ 0

in which the first two columns are isomorphisms. This implies that the third column is also
an isomorphism: so the cycle homomorphism A�CpyTSLp

! Heven
CpyTSLp

is an isomorphism.

Therefore the homomorphism Heven
CpyTSLp

! Heven
TSLp
�Heven

Cp�mp
is injective.

When i is odd, we have an exact sequence

0 ¼ H i
CpyTGLp

��! H i
CpyTSLp

��!q H i
CpyTGLp

��!c1ðVÞ
H iþ2

CpyTGLp
;

hence the boundary homomorphism q : Hodd
CpyTSLp

Heven
CpyTGLp

yields an isomorphism of

Hodd
CpyTSLp

with the annihilator of the element c1ðVÞ of Heven
CpyTGLp

¼ A�CpyTGLp
. From the

description of the ring A�CpyTSLp
in (c), it is easy to conclude that this annihilator is the ideal

generated by x.

Consider a free action of Cp yTGLp
on an open subscheme U of a representation.

The diagram of embeddings

Cp � mp ���! Cp �Gm???y
???y

Cp yTSLp ���! Cp yTGLp

induces a cartesian diagram

U=Cp � mp ���! U=Cp yGm???y
???y

U=Cp yTSLp ���! U=Cp yTGLp

in which the rows are principal Gm-bundles, and the columns are Gm-equivariants. This in
turn induces a commutative diagram

Hodd
CpyTSLp

���!q Heven
CpyTGLp???y
???y

Hodd
Cp�mp

���! Heven
Cp�Gm

in which the top row is injective, and has as its image the ideal ðxÞLHeven
CpyTGLp

as we have
just seen. Furthermore, every element of ðxÞLHeven

CpyTGLp
maps to 0 in H�TGLp

, because it
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is torsion: hence ðxÞ injects into Heven
Cp�mp

, by Proposition 6.4 (d). Since Cp � mp is con-

tained in Cp �Gm, it follows that ðxÞ also injects into Heven
Cp�Gm

. So the composite arrow

Hodd
CpyTSLp

! Heven
Cp�Gm

in the commutative diagram above is injective. It follows that the left-

hand column is injective.

This ends the proof of Proposition 7.1. r

Proof of Proposition 3.1. We need to analyze the action of the normalizer Np of Cp

in Sp on the Chow ring A�CpyTPGLp
. If we identify f1; . . . ; pg with the field Fp with p ele-

ments, by sending each i into its class modulo p, then Cp can be identified with the additive
group Fp itself, acting by translations. There is also the multiplicative subgroup F�p of Sp,
acting via multiplication. This is contained in the normalizer of Cp ¼ Fp, and, since p is a

prime, it is easy to show that the normalizer of Cp inside Sp is in fact the subgroup gener-
ated by Fp and F�p , which is the semi-direct product F�p y Fp.

The subgroup Cp ¼ Fp acts trivially, so in fact the action is through F�p . The action of

F�p leaves mp invariant, and the result of the action of a A F�p on z A mp is za: hence a acts on

A�mp
¼ Z½h�=ðphÞ by sending h to ah, and the ring of invariants is the subring generated by

hp�1. The image of A�TPGLp
into A�mp

is the subring generated by hp, by Proposition 7.1, and

its intersection with the ring of invariants in A�mp
is the subring generated by hpðp�1Þ. This

shows that the image of ðA�TPGLp
ÞSp into A�mp

is contained in the subring generated by hpðp�1Þ.

The opposite inclusion is ensured by the fact that the discriminant d A ðA�TPGLp
ÞSp maps to

�hpðp�1Þ. r

8. On Sp yTPGLp

The group Sp does not act on Cp yTPGLp
, only the normalizer F�p y Fp of Cp does.

Nevertheless, we define the subring ðA�CpyTPGLp
ÞSp of A�CpyTPGLp

consisting of all the ele-

ments that are invariant under F�p y Fp, and whose images in A�TPGLp
are Sp-invariant. The

restriction homomorphism A�SpyTPGLp
! A�CpyTPGLp

has its image in ðA�CpyTPGLp
ÞSp .

The result we need about Sp yTPGLp
is the following.

Proposition 8.1. The localized restriction homomorphism

A�SpyTPGLp
nZ½1=ðp� 1Þ!� ! ðA�CpyTPGLp

ÞSp nZ½1=ðp� 1Þ!�

is an isomorphism.

Of course the statement can not be correct without inverting ðp� 1Þ!, because the tor-
sion part of A�CpyTPGLp

is all p-torsion, while A�SpyTPGLp
contains a lot of ðp� 1Þ!-torsion

coming from A�Sp
. This is complicated, but fortunately we do not need to worry about it.

Proof. Injectivity is clear: because of the projection formula, the composite

tr
SpyTPGLp

CpyTPGLp
res

CpyTPGLp

SpyTPGLp
: A�SpyTPGLp

! A�CpyTPGLp

is multiplication by tr
SpyTPGLp

CpyTPGLp
¼ ðp� 1Þ!.
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To show surjectivity, take a class u A ðA�CpyTPGLp
ÞSp , and set

v ¼def
tr

CpyTPGLp

SpyTPGLp
u A A�SpyTPGLp

:

We apply Mackey’s formula (Proposition 4.4). The double quotient

Cp yTPGLp
nSp yTPGLp

=Cp yTPGLp
¼ CpnSp=Cp

consists of p� 1 elements coming from the normalizer F�p y Fp, and ðp� 1Þ ðp� 2Þ!� 1

p

elements with the property that, if we call s a representative in Sp yTPGLp
, we have

sðCp yTPGLp
Þs�1 XCp yTPGLp

¼ TPGLp
:

Therefore

res
SpyTPGLp

CpyTPGLp
v ¼ ðp� 1Þuþ ðp� 1Þ ðp� 2Þ!� 1

p
tr

TPGLp

CpyTPGLp
res

CpyTPGLp

TPGLp
u;

hence it is enough to show that an element in the image of the transfer map

tr
TPGLp

CpyTPGLp
: ðA�TPGLp

ÞSp ! ðA�CpyTPGLp
ÞSp

is in the image of A�SpyTPGLp
, up to a multiple of ðp� 1Þ!. But again an easy application of

Mackey’s formula reveals that

res
SpyTPGLp

CpyTPGLp
tr

SpyTPGLp

CpyTPGLp
tr

TPGLp

CpyTPGLp
w ¼ res

SpyTPGLp

CpyTPGLp
tr

TPGLp

SpyTPGLp
w

¼ ðp� 1Þ! trTPGLp

CpyTPGLp
w

for all w A ðA�TPGLp
ÞSp , and this finishes the proof. r

9. Some results on A*
PGLp

In this section we prove some auxilliary results, which play an important role in the
proof of the main theorems.

The following observation is in [21], Corollary 2.4.

Proposition 9.1. If x is a torsion element of A�PGLp
, or H�PGLp

, then px ¼ 0.

Proof. Suppose that x A Am
PGLp

. Take a representation V of PGLp with an open
subset U on which PGLp acts freely, such that the codimension of VnU has codimension
larger than m, so that Am

PGLp
¼ AmðBÞ, where we have set B ¼def

U=PGLp. Let p : E ! B be
the Brauer-Severi scheme associated with the PGLp-torsor U ! B: this is the projection
U=H ! U=PGLp, where H is the parabolic subgroup of PGLp consisting of classes of
matrices ðaijÞ with ai1 ¼ 0 when i > 1. The embedding H ,! PGLp lifts to an embedding
H ,! GLp, as the subgroup of matrices ðaijÞ with ai1 ¼ 0 when i > 1, and a11 ¼ 1; hence
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the pullback AmðBÞ ! AmðEÞ factors through Am
GLp

, which is torsion-free. It follows that x
maps to 0 in AmðEÞ.

Now consider the Chern class cp�1ðTE=BÞ A Ap�1ðEÞ of the relative tangent bundle.
This has the property that p�cp�1ðTE=BÞ ¼ p½B� A A0ðBÞ; hence, by the projection formula
we have

px ¼ x � p�
�
cp�1ðTE=BÞ

�
¼ p�

�
p�x � cp�1ðTE=BÞ

�
¼ 0:

The proof for cohomology is identical, except for notation. r

Proposition 9.2. The restriction homomorphisms

A�PGLp
! A�CpyTPGLp

and H�PGLp
! H�CpyTPGLp

are injective.

Proof. By a classical result of Gottlieb ([7]) the homomorphism H�PGLp
! H�SpyTPGLp

is injective; while the injectivity of A�PGLp
! A�SpyTPGLp

is a recent result of Totaro. This is

unpublished: a sketch of proof is presented in [21].

Theorem 9.3 (Totaro). If G is a connected linear algebraic group over a field k of

characteristic 0 acting on a scheme X of finite type over k, and N is the normalizer of maxi-

mal torus, then the restriction homomorphism A�GðXÞ ! A�NðX Þ is injective.

Now, the kernels of the homomorphisms in the statement are p-torsion, by Proposi-
tion 9.1, while the kernels of

A�SpyTPGLp
! A�CpyTPGLp

and H�SpyTPGLp
! H�CpyTPGLp

are ðp� 1Þ!-torsion, by the projection formula, so the statement follows. r

Here is the basic result that we are going to use in order to verify that a given relation
holds in A�PGLp

and H�PGLp
.

Proposition 9.4. The homomorphisms

A�PGLp
! A�TPGLp

�A�Cp�mp

and

H�PGLp
! H�TPGLp

�H�Cp�mp

obtained from the embeddings TPGLp
,! PGLp and Cp � mp ,! PGLp are injective.

Proof. This follows from Propositions 9.4 and 7.1 (d). r
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Here is another fundamental fact, which is one of the cornerstones of the treatment of
PGL3 in [21]. In the Lie algebra slp of matrices of trace 0 consider the Zariski open subset
sl0p consisting of matrices with distinct eigenvalues; this is invariant by the action of PGLp.
Furthermore, we will consider the subspace Dp L slp of diagonal matrices with trace equal
to zero, and D0

p ¼ Dp X sl0p . The subspaces Dp and D0
p are invariant under the action of

Sp yTPGLp
LPGLp.

Proposition 9.5 (see [21], Proposition 3.1). The composites of restriction homomor-

phisms

A�PGLp
ðsl0pÞ ! A�SpyTPGLp

ðsl0pÞ ! A�SpyTPGLp
ðD0

pÞ

and

H�PGLp
ðsl0pÞ ! H�SpyTPGLp

ðsl0pÞ ! H�SpyTPGLp
ðD0

pÞ

are isomorphisms.

Proof. The Sp yTPGLp
-equivariant embedding D0

p L sl0p induces a PGLp-equivariant

morphism PGLp �SpyTPGLp D0
p ! sl0p , which sends the class of a pair ðA;X Þ into AXA�1.

This morphism is easily seen to be an isomorphism, and the proof follows. r

Corollary 9.6. The restriction homomorphisms

A�PGLp
! A�TPGLp

and A�SpyTPGLp
! A�TPGLp

have the same image.

Proof. In the commutative diagram of restriction homomorphisms

A�PGLp
���! A�PGLp

ðsl0pÞ???y
???y

A�TPGLp
���! A�TPGLp

ðsl0pÞ

the top row is surjective. On the other hand, the action on TPGLp
on sl0p is trivial and sl0p

is an open subscheme of an a‰ne space, so the bottom row is an isomorphism. It follows
that the image of A�PGLp

in A�TPGLp
maps isomorphically onto the image of A�PGLp

ðsl0pÞ
in A�TPGLp

ðsl0pÞ. A similar argument shows that the image of A�SpyTPGLp
in A�TPGLp

maps iso-
morphically onto the image of A�SpyTPGLp

ðD0
pÞ in A�TPGLp

ðD0
pÞ. But we also have a commu-

tative diagram

A�PGLp
ðsl0pÞ ���! A�SpyTPGLp

ðD0
pÞ???y

???y
A�TPGLp

ðsl0pÞ ���! A�TPGLp
ðD0

pÞ

where the top row is an isomorphism, by Proposition 9.5, and this concludes the proof. r
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10. Localization

Consider the top Chern classes

cp2�1ðslpÞ A Ap2�1
PGLp

and cp�1ðDpÞ A Ap�1
SpyTPGLp

:

We have the following fact.

Proposition 10.1. The restriction homomorphism A�PGLp
! A�SpyTPGLp

carries cp2�1ðslpÞ
into the ideal

�
cp�1ðDpÞ

�
LA�SpyTPGLp

. The induced homomorphism

A�PGLp
=
�
cp2�1ðslpÞ

�
! A�SpyTPGLp

=
�
cp�1ðDpÞ

�
becomes an isomorphism when tensored with Z½1=ðp� 1Þ!�.

Proof. The representation Dp of Sp yTPGLp
is naturally embedded in slp, so we

have that

cp2�1ðslpÞ ¼ cp�1ðDpÞcpþ1ðslp=DpÞ A Ap2�1
SpyTPGLp

;

and this proves the first statement.

The pullbacks

A�PGLp
! A�PGLp

ðslpnf0gÞ and A�SpyTPGLp
! A�SpyTPGLp

ðDpnf0gÞ

are surjective, and their kernels are the ideals generated by cp2�1ðslpÞ and cp�1ðDpÞ respec-
tively: so it is enough to show that the homomorphism

A�PGLp
ðslpnf0gÞ ! A�SpyTPGLp

ðDpnf0gÞ

obtained by restricting the groups, and then pulling back along the embedding
Dpnf0g ,! slpnf0g becomes an isomorphism after inverting ðp� 1Þ!.

Now, consider the diagram

A�PGLp
ðslpnf0gÞ ���! A�PGLp

ðsl�pÞ???y
???y

A�SpyTPGLp
ðDpnf0gÞ ���! A�SpyTPGLp

ðD�pÞ

where all the arrows are the obvious ones. The rows are surjective, while the right-hand
column is an isomorphism, by Proposition 9.5: hence it is enough to show that the rows
are injective, after inverting ðp� 1Þ!.

The first step is to observe that the restriction homomorphism

A�PGLp
ðslpnf0gÞ ! A�SpyTPGLp

ðslpnf0gÞ
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is injective, by Totaro’s Theorem 9.3. Next, the restriction homomorphisms

A�SpyTPGLp
ðslpnf0gÞ ! A�CpyTPGLp

ðslpnf0gÞ and A�SpyTPGLp
ðD�pÞ ! A�CpyTPGLp

ðD�pÞ

become injective after inverting ðp� 1Þ!. So it is enough to show that the restriction homo-
morphisms

A�CpyTPGLp
ðslpnf0gÞ ! A�CpyTPGLp

ðsl�pÞ and A�CpyTPGLp
ðDpnf0gÞ ! A�CpyTPGLp

ðD�p Þ

are injective.

Lemma 10.2. Suppose that W is a representation of Cp yTPGLp
, and U an open sub-

set of Wnf0g. Assume that

(a) the restriction of W to Cp � mp splits as a direct sum of 1-dimensional representa-

tions W ¼ L1 l � � �lLr, in such a way that the characters Cp � mp ! Gm describing the

action of Cp � mp on the Li are all distinct, and each Linf0g is contained in U , and

(b) U contains a point that is fixed under TPGLp
.

Then the restriction homomorphism A�CpyTPGLp
ðWnf0gÞ ! A�CpyTPGLp

ðUÞ is an isomor-

phism.

Proof. First of all, let us show that A�Cp�mp
ðWnf0gÞ ! A�Cp�mp

ðUÞ is an isomor-

phism. Denote by D the complement of U in Wnf0g, with its reduced scheme structure.
Let P be the projectivization of W , and call U and D the (respectively open and closed)
subschemes of P corresponding to U and D. We have a commutative diagram

A�Cp�mp
ðDÞ ���! A�Cp�mp

ðPÞ ���! A�Cp�mp
ðUÞ ���! 0???y

???y
???y

A�Cp�mp
ðDÞ ���! A�Cp�mp

ðWnf0gÞ ���! A�Cp�mp
ðUÞ ���! 0

where the columns are surjective pullbacks, and the rows are exact. It follows that it is
enough to show that the composite

A�Cp�mp
ðDÞ ! A�Cp�mp

ðPÞ ! A�Cp�mp
ðWnf0gÞ

is 0, or, equivalently, that any element of the kernel of A�Cp�mp
ðPÞ ! A�Cp�mp

ðUÞ maps to 0
in A�Cp�mp

ðWnf0gÞ. Denote by qi A P the rational point corresponding to Li.

Denote by li A A1
Cp�mp

the first Chern class of the character Cp � mp ! Gm describing
the action of Cp � mp on Li, and h A A1

Cp�mp
the first Chern class of the sheaf Oð1Þ on P. We

have presentations

A�Cp�mp
ðPÞ ¼ Z½x; h; h�=

�
px; ph; ðh� l1Þ . . . ðh� lrÞ

�
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and

A�Cp�mp
ðWnf0gÞ ¼ Z½x; h�=ðpx; ph; l1 . . . lrÞ;

and a commutative diagram

Z½x; h; h�=
�

px; ph; ðh� l1Þ . . . ðh� lrÞ
� ���! Z½x; h�=ðpx; ph; l1 . . . lrÞ???y

???y
Fp½x; h; h�=

�
ðh� l1Þ . . . ðh� lrÞ

� ���! Fp½x; h�=ðl1 . . . lrÞ

in which the first row is the map that sends h to 0, and corresponds to the pullback.

The restriction homomorphism A�Cp�mp
ðPÞ ! A�Cp�mp

ðqiÞ ¼ A�Cp�mp
sends h into li. But

U contains all the qi, so the kernel K of the restriction A�Cp�mp
ðPÞ ! A�Cp�mp

ðUÞ is contained

in the intersection of the ideals ðh� liÞ. In the polynomial ring Fp½x; h; h�, however, the in-
tersection of the ideals ðh� liÞ is the ideal generated by the product of the h� li, because
Fp½x; h; h� is a unique factorization domain, and the h� li are pairwise non-associated
primes. Hence the image of an element of K is 0 in Fp½x; h�=ðl1 . . . lrÞ; but the homomor-
phism

A�Cp�mp
ðWnf0gÞ ! Fp½x; h�=ðl1 . . . lrÞ

is an isomorphism in positive degree, and from this the statement follows.

Now consider the restriction homomorphism

A�CpyTPGLp
ðWnf0gÞ ! A�CpyTPGLp

ðUÞ:

Denote by g the top Chern class of W in A�CpyTPGLp
; the kernel of the surjective pullback

A�CpyTPGLp
! A�CpyTPGLp

ðWnf0gÞ is the ideal generated by g, and we need to show that the

kernel of the pullback A�CpyTPGLp
! A�CpyTPGLp

ðUÞ is also the ideal generated by g.

Denote by R the image of A�CpyTPGLp
in A�Cp�mp

¼ Z½x; h�=ðpx; phÞ; this is the subring

generated by x and the image of sp, that is hp � xp�1h, by Lemma 6.7.

Take some u in the kernel of A�CpyTPGLp
! A�CpyTPGLp

ðUÞ. Since TPGLp
has a fixed

point in U , the pullback A�TPGLp
! A�TPGLp

ðUÞ is an isomorphism; hence u is contained in
the kernel of the restriction A�CpyTPGLp

! A�TPGLp
. This kernel is the ideal xA�CpyTPGLp

, which

is a vector space over the field Fp, with a basis consisting of the elements x is j
p, with i > 0

and j f 0. The homomorphism A�CpyTPGLp
! A�Cp�mp

sends x is j
p into x iðhp � xp�1hÞ j. The

two elements x and hp � xp�1h are algebraically independent in A�Cp�mp
, so the ideal

xA�CpyTPGLp
maps isomorphically onto the ideal xR. Hence it is enough to show that u maps

into the ideal gR. But u maps into the ideal gA�Cp�mp
, because by hypothesis it maps into 0

in A�Cp�mp
ðWnf0gÞ, so we will be done once we have shown that gR ¼ RX gA�Cp�mp

.

For this purpose, consider the diagram
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R f��! A�Cp�mp???y
???y

Fp½x; hp � xp�1h� f��! Fp½x; h�

where the horizontal arrows are inclusions and the vertical arrows are isomorphisms in
positive degree. It su‰ces to prove that

gFp½x; hp � xp�1h� ¼ Fp½x; hp � xp�1h�X gFp½x; h�;

but this follows from the fact that the extension Fp½x; hp � xp�1h�L Fp½x; h� is faithfully flat,
since it is a finite extension of regular rings.

This concludes the proof of the lemma. r

The lemma applies to the case W ¼ Dp and W ¼ slp. In the first case this is straight-
forward; in the second one it follows from Lemma 5.1. r

11. The classes r and b

In this section we construct the classes r A Apþ1
PGLp

and b A H3
PGLp

.

Proposition 11.1. There exists a unique torsion class r A Apþ1
PGLp

, whose image in Apþ1
Cp�mp

equals r ¼ xhðxp�1 � hp�1Þ.

Furthermore we have rp�1 ¼ cp2�1ðslpÞ A A�PGLp
.

Proof. Uniqueness is obvious from Proposition 9.4.

Let us construct a p-torsion element r A Apþ1
SpyTPGLp

that maps to r in A�Cp�mp
.

Consider the element �xfðspÞ ¼ xcpðVÞ A Apþ1
CpyTPGLp

; by Lemma 6.7, its restriction to

A�Cp�mp
is r. It is p-torsion, because x is p-torsion; hence it maps to 0 in A�TPGLp

. Since the
torsion part of A�CpyTPGLp

injects into A�Cp�mp
, and the image of xcpðVÞ in A�Cp�mp

is invariant

under F�p y Fp, it follows that xcpðVÞ is also invariant under F�p y Fp.

By Proposition 8.1, there exists a p-torsion class r A Apþ1
SpyTPGLp

whose image in A�Cp�mp

is r. By Proposition 10.1, there exists a p-torsion element r A Apþ1
PGLp

whose image in
Apþ1

SpyTPGLp
has the form rþ cp�1ðDpÞs for a certain class s A A2

SpyTPGLp
.

The image of r in ðA�Cp�mp
ÞSL2ðFpÞ ¼ Z½q; r� must be an integer multiple ar of r, for rea-

sons of degree. The image of cp�1ðDpÞ is �xp�1; hence by mapping into A�Cp�mp
we get an

equality

ar ¼ r� xp�1h A A�Cp�mp
;

where h A A2
Cp�mp

is the image of s. From this equality it follows easily that a is 1 and h is 0,
and therefore r maps to r.
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To check that rp�1 ¼ cp2�1ðslpÞ, observe that both members of the equality are 0
when restricted to TPGLp

; hence, by Proposition 9.4, it is enough to show that the restriction

of cp2�1ðslpÞ ¼ cp2�1ðglpÞ to A
p2�1
Cp�mp

equals rp�1; and this follows from Lemma 5.5. r

Corollary 11.2. The restriction homomorphism A�PGLp
! ðA�Cp�mp

ÞSL2ðFpÞ is surjec-

tive.

Proof. The ring ðA�Cp�mp
ÞSL2ðFpÞ is generated by q and r. The class �cp2�pðslpÞ re-

stricts to q, by Lemma 5.5, while r restricts to r. r

Remark 11.3. The class r gives a new invariant for sheaves of Azumaya algebras of
prime degree. Let X be a scheme of finite type over k, and let A be a sheaf of Azumaya
algebras of degree p. This corresponds to a PGLp-torsor E ! X ; and according to a result
of Totaro (see [19] and [2]), we can associate with the class r A Apþ1

PGLp
and the PGLp-torsor

E a class fðAÞ A Apþ1ðXÞ (where by A�ðXÞ we mean the bivariant ring of X , see [5]). Since
by definition A is the vector bundle associated with E and the representation glp of PGLp,
we have the relation

rðAÞp�1 ¼ cp2�1ðAÞ A Ap2�1ðXÞ:

Remark 11.4. The class r depends on the choice of the primitive p th root of 1 that
we have denoted by o. If we substitute o i for o, then the new class r is ir.

For the class b, one possibility is to obtain it as the Brauer class of the canonical
PGLp-principal bundle, as explained in the Introduction. Another possibility is to define it
via a transgression homomorphism, as follows. There is a well known Hochschild-Serre
spectral sequence

E
ij
2 ¼ H i

PGLp
nH j

Gm
) H iþj

GLp

from which we get an exact sequence

H2
GLp
! H2

Gm
! H3

PGLp
! H3

TPGLp
¼ 0;

and H2
Gm

is the infinite cyclic group generated by the first Chern class t of the identity char-
acter Gm ¼ Gm, while H2

GLp
is the cyclic group generated by the first Chern class of the de-

terminant GLp ¼ Gm, whose image in H2
Gm

is pt. Hence H3
PGLp

is the cyclic group of order

p generated by the image of t. We define b A H3
PGLp

to be this image.

The odd dimensional cohomology Hodd
PGLp

maps to 0 in H�TPGLp
; hence, according to

Proposition 9.4, maps injectively into H�Cp�mp
. By the results of Section 5, we have that

H3
Cp�mp

is isomorphic to Z=pZ, hence the restriction homomorphism H3
PGLp

! H3
Cp�mp

is an

isomorphism; and the image of b generated H3
Cp�mp

. From Proposition 5.9 we obtain the
following.

Corollary 11.5. The restriction homomorphism H�PGLp
! ðH�Cp�mp

ÞSL2ðFpÞ is surjective.
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12. The splitting

In this section we prove Theorem 3.2.

Consider the embeddings

mp
K��! TPGLp

 
�� L

 
�� L

Cp � mp
K��! Sp yTPGLp

which induce a diagram of restriction homomorphisms

A�SpyTPGLp
���! ðA�TPGLp

ÞSp???y
???y

A�Cp�mp
���! A�mp

:

Lemma 12.1. The induced homomorphism

kerðA�SpyTPGLp
! A�Cp�mp

Þ ! ker
�
ðA�TPGLp

ÞSp ! A�mp

�
is surjective.

Proof. We will prove surjectivity in two steps; first we will show that the map is sur-
jective when tensored with Z½1=p�, then that it is surjective when tensored with Z½1=ðp� 1Þ!�.

For the first case, notice that A�Cp�mp
nZ½1=p� is 0 in positive degree, while in

degree 0 there is nothing to prove; so what we are really trying to show is that
A�SpyTPGLp

nZ½1=p� ! ðA�TPGLp
ÞSp nZ½1=p� is surjective.

Consider the subgroup Sp�1 L Sp of the Weyl group of PGLp, consisting of permuta-
tions of f1; . . . ; pg leaving p fixed.

Lemma 12.2. The restriction homomorphism A�Sp�1yTPGLp
! ðA�TPGLp

ÞSp�1 is surjective.

Proof. There is an isomorphism TGLp�1
FTPGLp

, defined by

ðt1; . . . ; tp�1Þ 7! ðt1; . . . ; tp�1; 1Þ

that is Sp�1-equivariant, and therefore induces an isomorphism of the semi-direct product
Sp�1 yTPGLp

with the normalizer Sp�1 yTGLp�1
of the maximal torus in GLp�1. Hence it is

enough to show that A�Sp�1yTGLp�1
! ðA�TGLp�1

ÞSp�1 is surjective; but the composite

A�GLp�1
! A�Sp�1yTGLp�1

! ðA�TGLp�1
ÞSp�1

is an isomorphism, and this proves what we want. r
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Take an element u A ðA�TPGLp
ÞSp ; according to the lemma above, there is some

v A A�Sp�1yTPGLp
such that res

Sp�1yTPGLp

TPGLp
v ¼ u. Consider the element

w ¼def
tr

Sp�1yTPGLp

SpyTPGLp
v A A�SpyTPGLp

;

to compute its restriction to A�TPGLp
we use Mackey’s formula (Proposition 4.4). The double

quotient TPGLp
nSp yTPGLp

=Sp�1 yTPGLp
has p elements, and we may take Cp as a set of

representatives. Then the formula gives us that the restriction of w to A�TPGLp
is

P
s ACp

s res
Sp�1yTPGLp

TPGLp
v ¼ pu:

If we invert p, this shows that u is in the image of A�SpyTPGLp
, and completes the proof of the

first step.

For the second step, take some u A L. According to Proposition 7.1 (e) there exists
v in the kernel of the restriction homomorphism A�CpyTPGLp

! A�Cp�mp
whose restriction to

A�TPGLp
is u. Consider the element

w ¼def
tr

CpyTPGLp

SpyTPGLp
v:

I claim that w is in K . In fact the restriction of w to A�TPGLp
is ðp� 1Þ!v ¼ �v, and therefore

further restricting it to Cp yTPGLp
sends it to 0.

The double quotient TPGLp
nSp yTPGLp

=Sp�1 yTPGLp
has ðp� 1Þ! elements, and a set

of representatives is given by Sp�1. Hence according to Mackey’s formula we have that the
restriction of w to A�TPGLp

is

P
s A Sp�1

s res
CpyTPGLp

TPGLp
v ¼ ðp� 1Þ!u

and this completes the second step in the proof of Lemma 12.1. r

Similarly, there is a diagram of restriction homomorphisms

A�PGLp
���! ðA�TPGLp

ÞSp???y
???y

A�Cp�mp
���! A�mp

:

Lemma 12.3. The homomorphism

kerðA�PGLp
! A�Cp�mp

Þ ! ker
�
ðA�TPGLp

ÞSp ! A�mp

�
induced by restriction is an isomorphism.

Proof. Injectivity follows from Proposition 9.4.

As in the previous case, we show surjectivity first after inverting p, and then after
inverting ðp� 1Þ!.
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As before, we have A�Cp�mp
nZ½1=p� ¼ Z½1=p�, so we only need to check that

A�PGLp
nZ½1=p� ! ðA�TPGLp

ÞSp nZ½1=p� is surjective. This follows from Lemma 12.1 and
from Corollary 9.6.

Now we invert ðp� 1Þ!. Choose an element

u A ker
�
ðA�TPGLp

ÞSp ! A�mp

�
nZ½1=ðp� 1Þ!�;

by Lemma 12.1, we can choose

u 0 A kerðA�SpyTPGLp
! A�Cp�mp

ÞnZ½1=ðp� 1Þ!�

mapping to u in A�TPGLp
. By Proposition 10.1, we can write

u 0 ¼ vþ cp�1ðDpÞw;

where v is in A�PGLp
nZ½1=ðp� 1Þ!� and w is in A�SpyTPGLp

nZ½1=ðp� 1Þ!�. The image of

cpðDpÞ in A�TPGLp
is 0, because TPGLp

acts trivially on Dp; so the image of v in A�TPGLp
equals

u. But there is no reason why v should map to 0 in A�Cp�mp
.

Let us denote by v and w the images of v and w respectively in

A�Cp�mp
nZ½1=ðp� 1Þ!� ¼ Z½1=ðp� 1Þ!�½x; h�=ðpx; phÞ;

the restriction of cp�1ðDpÞ equals �xp�1, so we have v� xp�1w ¼ 0. On the other hand v is
contained in

ðA�Cp�mp
ÞSL2ðFpÞnZ½1=ðp� 1Þ!� ¼ Z½1=ðp� 1Þ!�½q; r�=ðpq; prÞ;

since v is contained in the ideal of Z½1=ðp� 1Þ!�½x; h�=ðpx; phÞ generated by x, and the im-
ages of q and r in

Z½1=ðp� 1Þ!�½x; h�=ðx; phÞ ¼ Z½1=ðp� 1Þ!�½h�=ðphÞ

are hp2�p and 0, we see that v is a multiple of r; hence we can write v ¼ rfðq; rÞ, where f is
a polynomial with coe‰cients in Z½1=ðp� 1Þ!�. Set

v 0 ¼ v� rfð�cp2�p; rÞ;

then v 0 restricts to 0 in A�Cp�mp
, and its image in A�TPGLp

equals the image of v, which is u,
because r maps to 0.

This concludes the proof of Lemma 12.3. r

Set K ¼ kerðA�PGLp
! A�Cp�mp

Þ and L ¼ ker
�
ðA�TPGLp

ÞSp ! A�mp

�
. The induced homo-

morphism K ! L is an isomorphism, according to Lemma 12.3.

Consider the subring ZlLL ðA�TPGLp
ÞSp ; Proposition 7.1 (e) gives us a copy ZlK

of it inside A�PGLp
. To finish the proof of Theorem 3.2 we need to extend this splitting to all
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of ðA�TPGLp
ÞSp . According to Proposition 3.1, we have that ðA�TPGLp

ÞSp is generated as an al-
gebra over ZlL by the single element d. We need to find a lifting for d; this is provided by
the following lemma.

Lemma 12.4. The restriction of cp2�pðslpÞ A A�PGLp
to Ap2�p

TPGLp
equals d.

Proof. We use the notation in the beginning of Section 3. The representations slp
and glp ¼ slp l k of PGLp have the same Chern classes. If V ¼ kn is the standard represen-
tation of GLp, then glp ¼ V nV4 has total Chern class

ctðglpÞ ¼
Q
i; j

�
1þ tðxi � xjÞ

�
¼

Q
i3j

�
1þ tðxi � xjÞ

�
in A�TGLp

; but A�TPGLp
LA�TGLp

, so the thesis follows. r

Set d1 ¼ cp2�pðslpÞ A A�PGLp
. We consider the subring ðZlKÞ½d1� of A�PGLp

; to
finish the proof of the theorem we have left to show that it maps injectively into
ðZlLÞ½d� ¼ ðA�TPGLp

ÞSp .

Let us take a homogeneous element x A ðZlKÞ½d1� that maps to 0 in ðA�TPGLp
ÞSp ;

according to Proposition 9.4, to check that it is 0 it is enough to prove that it restricts to 0
in A�Cp�mp

. Write

x ¼ a0 þ a1d1 þ a2d
2
1 þ a3d

3
1 þ � � � :

The ai of positive degree are in K , and therefore map to 0 in A�Cp�mp
by definition; so there

can be at most one term that does not map to zero, and that has to be of the form hdd
1 ,

where h is an integer. However, the restriction of x to A�mp
¼ Z½h�=ðphÞ is zero, and since

d1 restricts to a nonzero multiple of hp2�p we see that h must be divisible by p. This proves
that hdd

1 also restricts to 0 in A�Cp�mp
, and completes the proof of the theorem.

Remark 12.5. The splitting ðA�TPGLp
ÞSp ! A�PGLp

that we have constructed is not
compatible with the splitting ðA�TPGLp

ÞCp ! A�CpyTPGLp
constructed in Section 7, in the sense

that the diagram

ðA�TPGLp
ÞSp ���! A�PGLp???y

???y
ðA�TPGLp

ÞCp ���! A�CpyTPGLp

where the rows are the splittings and the columns are restrictions, does not commute.

13. The proofs of the main theorems

Let us prove Theorem 3.3.

First of all, let us check that r generates A�PGLp
as an algebra over ðA�TPGLp

ÞSp . Take a

homogeneous element a A A�PGLp
. The image of d A ðA�TPGLp

ÞSp in A�PGLp
is cp2�pðslpÞ, by con-
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struction; and this maps to �q in A�Cp�mp
, by Lemma 5.5. So there is a polynomial fðx; yÞ

with integer coe‰cients such that a� fðd; rÞ is in the kernel of the restriction homomor-
phism A�PGLp

! A�Cp�mp
; but this kernel is in the image of ðA�TPGLp

ÞSp , again by construction;

and this shows that A�PGLp
is generated by r as an algebra over ðA�TPGLp

ÞSp .

The relations given in the statement are satisfied. We have pr ¼ 0 by construc-
tion. Furthermore, by construction the splitting ðA�TPGLp

ÞSp ! A�PGLp
sends the kernel

of the homomorphism ðA�TPGLp
ÞSp ! A�mp

into the kernel of A�PGLp
! A�Cp�mp

; hence, if

u A ker
�
ðA�TPGLp

ÞSp ! A�PGLp

�
we have that ur A A�Cp�mp

goes to 0 in A�TPGLp
, because r is

torsion, and to A�Cp�mp
. Hence ur ¼ 0, because of Proposition 9.4.

Let x be an indeterminate, I the ideal in the polynomial algebra

ðA�TPGLp
ÞSp ½x�

generated by px and by the polynomials ux, where u is in the kernel of the restric-

tion homomorphism ðA�TPGLp
ÞSp ! A�mp

; we need to show that the homomorphism
ðA�TPGLp

ÞSp ½x�=I ! A�PGLp
that sends x to r is an isomorphism. Pick a polynomial

f A ðA�TPGLp
ÞSp ½x� such that fðdÞ ¼ 0 in A�PGLp

. After modifying it by an element of I , we
may assume that it is of the form aþ cðd; rÞ, where a is in the kernel of ðA�TPGLp

ÞSp ! A�mp
,

while c is a polynomial in two variables with coe‰cients in Fp. Since the images of d and
r in A�Cp�mp

, that are q and r, are linearly independent in FP½x; h�, we see that c must be 0.
Hence a ¼ 0 in A�PGLp

; but since ðA�TPGLp
ÞSp injects inside A�PGLp

, we have that fðxÞ ¼ 0, as
we want.

Next we prove Theorem 3.4. We start by proving Corollary 3.5, that says that the
cycle homomorphism A�PGLp

! Heven
PGLp

is an isomorphism.

Call K and L, respectively, the kernels of the restriction homomorphisms
A�PGLp

! ðA�Cp�mp
ÞSL2ðFpÞ and Heven

PGLp
! ðHeven

Cp�mp
ÞSL2ðFpÞ; we have a commutative diagram

0 ���! K ���! A�PGLp
���! ðA�Cp�mp

ÞSL2ðFpÞ ���! 0???y
???y

???y
0 ���! L ���! Heven

PGLp
���! ðHeven

Cp�mp
ÞSL2ðFpÞ ���! 0

with exact rows. The right-hand column is an isomorphism, because of Propositions 5.4
and 5.9. The group L injects into

ker
�
ðH�TPGLp

ÞSp ! H�mp

�
¼ ker

�
ðA�TPGLp

ÞSp ! A�mp

�
;

because of Proposition 9.4; on the other hand the restriction homomorphism

K ! ker
�
ðA�TPGLp

ÞSp ! A�mp

�
is an isomorphism, because of Lemma 12.3. This proves that K ! L is an isomorphism,
and this proves Corollary 3.5.
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To show that r and b generate H�PGLp
as an algebra over ðA�TPGLp

ÞSp , take a homoge-

neous element a A A�PGLp
. The element r generates Heven

PGLp
, because of Theorem 3.3 and

the fact above.

If a is a homogeneous element of odd degree in H�PGLp
, its image in Hodd

Cp�mp
can be

written in the form fðq; rÞs, where f is an integral polynomial, by Proposition 5.9. Then
a� fð�d; rÞb maps to 0 in Hodd

Cp�mp
. On the other hand Hodd

PGLp
injects into Hodd

Cp�mp
, by Pro-

position 9.4, and this completes the proof that r and b generate.

To prove that the given relations generated the ideal of relations is straightforward,
and left to the reader.

Finally, let us prove Theorem 3.6.

Since the homomorphisms A�PGLp
nQ! A�SLp

nQ and A�PGLp
nQ! A�SLp

nQ are

isomorphisms, the ranks of A i
PGLp

and H i
PGLp

equal the ranks of A i
SLp

and H i
SLp

. The ranks

of the H i
PGLp

are 0 when i is odd; while for any mf 0 the rank of Am
PGLp

FH2n
PGLp

equals the

number of monomials of degree m in s2; . . . ; sp. Such a monomial sd2

2 . . . pdp can be identi-
fied with a partition h2d2 . . . pdpi of m, so this rank is the number of partitions of m with
numbers between 2 and p.

On the other hand it follows from Theorem 3.3 that the torsion part of A�PGLp
is a

vector space over the field Fp, with a basis given by the elements d ir j, where if 0 and
j > 0. Similarly, from Corollary 3.5 we see that the same elements form a basis for
Heven

PGLp
, while Hodd

PGLp
is an Fp-vector space with a basis formed by the elements d ir jb, where

if 0 and j f 0.

The theorem follows easily from these facts.

14. On the ring (A*
TPGLp

)Sp

If T is a torus, we denote by T̂T the group of characters T ! Gm. We have a homo-
morphism of T̂T into the additive group A�T that sends each character into its first Chern
class: and this induced an isomorphism of the symmetric algebra SymZ T̂T with A�T .

In this section we study the ring of invariants ðA�TPGLp
ÞSp . It is convenient to view

ðA�TPGLp
ÞSp as a subring of ðA�TGLp

ÞSp ; this last ring is generated by the symmetric functions
s1; . . . ; sp of the first Chern characters x1; . . . ; xp of the projections TGLp

! Gm.

If we tensor ðA�TPGLp
ÞSp with Z½1=p�, then we get a polynomial ring; and it is easy to

exhibit generators. The homomorphism of groups of characters

T̂TPGLp
! T̂TSLp

induced by the projection TSLp
! TPGLp

is injective, with cokernel Z=pZ; hence it becomes
an isomorphism when tensored with Z½1=p�. Hence
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ðA�TPGLp
ÞSp nZ½1=p� ! ðA�TSLp

ÞSp nZ½1=p�

is an isomorphism.

According to Lemma 7.2, the ring ðA�TSLp
ÞSp is a quotient

ðA�TGLp
ÞSp=ðs1Þ ¼ Z½s1; . . . ; sp�=ðs1Þ ¼ Z½t2; . . . ; tp�;

where we have denoted by ti the image of si in A�TSLp
. One way to produce elements of

ðA�TPGLp
ÞSp is to write down explicitly the elements corresponding to the si in the isomor-

phism

ðA�TPGLp
ÞSp nZ½1=p�FZ½1=p�½s2; . . . ; sp�

and then clear the denominators.

The composite

A�TPGLp
nZ½1=p� K��! A�TGLp

nZ½1=p� ���! A�TSLp
nZ½1=p�����
����

Z½1=p�½x1; . . . ; xp� ���! Z½1=p�½x1; . . . ; xp�=ðs1Þ

is an isomorphism, and the inverse Z½1=p�½x1; . . . ; xp�=ðs1Þ ! A�TPGLp
nZ½1=p� is ob-

tained by sending xi to xi �
1

p
s1. We need to compute the image of the sk in

A�PGLp
nZ½1=p�LZ½1=p�½s1; . . . ; sp�, and this is given by the following formula (the one

giving the Chern classes of the tensor product of a vector bundle and a line bundle).

Lemma 14.1. If t is an indeterminate, we have

skðx1 þ t; . . . ; xp þ tÞ ¼
Pk

i¼0

p� k þ i
i

� �
tisk�i

¼ sk þ ðp� k þ 1Þtsk�1 þ p� k þ 2
2

� �
t2sk�2 þ � � � þ p� 1

k � 1

� �
tk�1s1 þ p

k

� �
tk

in Z½x1; . . . ; xp; t�, for k ¼ 0; . . . ; p.

Proof. This follows by comparing terms of degree k in the equality

Pp

i¼0

ð1þ tÞ isp�i ¼
Qp
i¼1

ð1þ tþ xiÞ

¼
Pp

i¼0

siðx1 þ t; . . . ; xp þ tÞ: r
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If we subtitute � 1

p
s1 for t we obtain the images of the tk in ðA�TPGLp

ÞSp nZ½1=p�; we

denote them by g 0k. In order to get elements of ðA�TPGLp
ÞSp , we clear the denominators in the

g 0i ; by a straightforward calculation we check that

gk ¼ pk�1g 0k

¼
Pk�2

i¼0

ð�1Þ ipk�i�1 p� k þ i

i

� �
sk�is

i
1 þ ð�1Þk�1 k � 1

k

p� 1

k � 1

� �
sk

1

for k ¼ 2; . . . ; p� 1, while

gp ¼ ppg 0p

¼
Pp�2

i¼1

ð�1Þ ipp�isp�is
i
1 þ ðp� 1Þsp

1 :

From the discussion above we get that ðA�TPGLp
ÞSp nZ½1=p� is a polynomial ring over

Z½1=p� over g2; . . . ; gp. However, the gi cannot generate ðA�TPGLp
ÞSp integrally, because all of

them are in the kernel of the homomorphism ðA�TPGLp
ÞSp ! A�mp

, while d A ðAp2�p
TPGLp
ÞSp is not.

When p ¼ 3 the situation is simple. The following result was proved by Vezzosi.

Theorem 14.2 ([21], Lemma 3.2).

ðA�TPGLp
ÞS3 ¼ Z½g2; g3; d�=ð27d� 4g3

2 � g2
3Þ:

From this, Theorem 3.7 follows easily.

As p grows, the calculations become very complicated very quickly. The obvious

generalization of the result above, that ðA�TPGLp
ÞSp is generated by the gi and d, fails badly.

When p is larger than 3, it is not hard to see that they fail to generate already in degree 4.
When p ¼ 5 the ring ðA�TPGL5

ÞS5 has 9 generators, in degrees 2, 3, 4, 5, 6, 7, 9, 12 and 20;
with some pain, it is possible to write them down explicitly. The generators in degree 2 and
3 are g2 and g3. With more work it should also be possible to find the relations among
them.

There are other approaches to calculations other than the one given here for p ¼ 3;
but none of them seem to give a lot of information in the general case.
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