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On the cohomology and the Chow ring
of the classifying space of PGL,

By Angelo Vistoli at Pisa

Abstract. We investigate the integral cohomology ring and the Chow ring of the
classifying space of the complex projective linear group PGL,, when p is an odd prime. In
particular, we determine their additive structures completely, and we reduce the problem of
determining their multiplicative structures to a problem in invariant theory.

Contents

Introduction

Notations and conventions

The main results

Preliminaries on equivariant intersection theory
OnC, x u,

On Cp X TGLp

On Cp X TPGLp

On Sp X TPGL,,

Some results on Apgp

10. Localization ’

11. The classes p and f§

12. The splitting

13. The proofs of the main theorems
14. On the ring (A;PGLP)S”
References

A i A o

1. Introduction

Let G be a complex linear group. One of the main invariants associated with G is the
integral cohomology ring H; of the classifying space BG. B. Totaro (see [19]) has also in-
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182 Vistoli, On the classifying space of PGL,

troduced an algebraic version of the cohomology of the classifying space of an algebraic
group G over a field k, the Chow ring A, of the classifying space of G. When k = C there
is a cycle ring homomorphism A — Hg,. Chow rings are normally infinitely harder to
study than cohomologys; it is remarkable that, in contrast, A seems to be better behaved,
and easier to study, than H;. For example, when G is a finite abelian group, A is the sym-
metric algebra over Z of the dual group G; while the cohomology ring contains this sym-
metric algebra, but is much more complicated (for example, will contain elements of odd
degree), unless G is cyclic.

This ring A, has also been computed for G = GL,, SL,, Sp, by Totaro ([19]), for
G =0, and G = SOy,;; by Totaro and R. Pandharipande ([19] and [16]), for G = SO,
by R. Field ([4]), and for the semisimple simply connected group of type G, by N. Yagita
([24]). Also, a lot of work has been done on the case of finite groups, by Totaro himself, by
Guillot ([10] and [11]) and by Yagita ([23]). However, not much was known for the PGL,
series. Even the cohomology of B PGL,, was mysterious. Algebraic topologists tend to work
with cohomology with coefficients in a field, the case in which their extremely impressive
toolkits work the best. When p does not divide n, the cohomology ring H*(BPGL,, Z/pZ)
is a well understood polynomial ring. Also, since PGL, = SOj3, the ring H*(BPGL,, Z/27)
is also well understood. To my knowledge, the other results on H*(BPGL,, Z/pZ) that
were known before this article was posted are the following.

(1) In [14], the authors compute H*(BPGL3,Z/37) as a ring, by presentations and
relations.

(2) The ring H*(BPGL,,Z/27Z) is known when n = 2 (mod4) ([13] and [18]).

(3) In [20] the authors show that three conjectures on the mod p cohomology of
classifying spaces of compact Lie groups, due to Adams, Kono-Yagita, and Dwyer-Miller-
Wilkerson-Notbohm respectively, hold for BPGL, when p is a prime.

On the other hand, to my knowledge no one had studied the integral cohomology
ring Hpgy

In the algebraic case, the only known results about APGL , apart from the case of
PGL, = SO3, concern PGL3; and were proved by Vezzosi in [21] Here he determines al-
most completely the structure of Apg;, by generators and relations; the only ambiguity is
about one of the generators, denoted by y and living in APGL , about which he knows that
it is 3-torsion, but is not able to determine whether it is 0. This y maps to 0 in the cohomo-
logy ring Hpg, ,; according to a conjecture of Totaro, the cycle map Apgy, — Hpgy, should
be injective; so, if the conjecture is correct, y should be 0.

Despite this only partial success, the ideas in [21] are very important. The main one is
to make use of the stratification method to get generators. This is how it works. Recall that
Edidin and Graham ([3]) have extended Totaro’s ideas to give a full-fledged equivariant in-
tersection theory. Let 7 be a representation of a group G; then we have A = A (V). Sup-

pose that we have a stratlﬁcatlon Vo,..., V: of V by locally closed invariant subvarletles
such that each V<l = ﬂ Vj is open in V each V; is closed in V<;, and V; = V\{0}. If we
Jsi

can determine generators for A;(¥;) for each 7, then we can use the localization sequence
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Vistoli, On the classifying space of PGL, 183
Ag(V) = Ag(V<i) = Ag(V<im1) = 0

and induction to get generators for A (¥\{0}); and since AG(V\{0}) =A%/ (c/(V)),
where ¢,(V) e A} is the r™ Chern class of V/, we obtain that A is generated by lifts to
A of the generators for A;(V\{0}), plus c,(V).

The stratification method gives a unified approach for all the known calculations of
A for classical groups (see [15]).

Vezzosi applies the method to the adjoint representation space V' = sl3 consisting of
matrices with trace 0. The open subscheme Vj is the subscheme of matrices with distinct
eigenvalues; its Chow ring is related with the Chow ring of the normalizer N3 of a maximal
torus Tpgr, in PGL3. In order to get relations, Vezzosi uses an unpublished result of To-
taro, implying that the restriction homomorphism Apg;, — Ay, is injective. The reason
why he is not able to determine whether y is 0 or not is that he does not have a good de-
scription of the 3-torsion in Ay,.

In this paper we refine Vezzosi’s approach, and extend it to the case of PGL,,, where p
is an odd prime.

Let Tpay, be the standard maximal torus in PGL,, consisting of classes of diagonal
matrices, N, its normalizer, S, = N, /TpgL, its Weyl group. Here are our main results (see
Section 3 for details):

(1) The natural homomorphism A;  — (A )% is surjective, and has a natural

- N S % . . PGLp PGLp 7,
splitting (Ag,,, )™ — A, , which is a ring homomorphism.
P P

2) The ring Ay, is generated as an algebra over (Af S by a single p-torsion
PGL, Tea,
-p

1 . .
element p € Aﬁng; we also describe the relations.

*

TPGL,,)SP by two elements: the

(3) The ring Hpg; is generated as an algebra over (A

image p € HZ:% of the class above and the Brauer class § € H3 ; we also describe the
8¢ P € Hpgr, PGL,

relations.

(4) Using (2) and (3) above, we describe completely the additive structures of A;GL,,
and Hpg .

(5) For p =3 we give a presentation of (A}PGLP)S3 by generators and relations (this is

already in [21]); and this, together with (2) and (3) above, gives presentations of Apg;, and
Hpg, ,, completing the work of [21].

(6) The cycle homomorphism Apg; — Hpgp, into the even-dimensional cohomo-
logy is an isomorphism.

The ring (A1, )Sf’ is complicated when p > 3; see the discussion in Section 14.
P

The class p in (2) seems interesting, and gives a new invariant for sheaves of Azumaya
algebras of prime rank (Remark 11.3). In [17], Elisa Targa shows that p is not a polynomial
in Chern classes of representations of PGL,,.
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184 Vistoli, On the classifying space of PGL,

Many of the ideas in this paper come from [21]. The main new contributions here are
the contents of Sections 6 and 7 (the heart of these results are Proposition 6.1, and the proof
of Lemma 6.6), which substantially improve our understanding of the cohomology and
Chow ring of the classifying space of N,, and Proposition 10.1, which gives a way of show-
ing that in the stratification method no new generators come from the strata correspond-
ing to non-zero matrices with multiple eigenvalues, thus avoiding the painful case-by-case
analysis that was necessary in [21].

Recently I received a preprint of M. Komeko and N. Yagita ([12]) who also calculate
the additive structure of Apg and Hpg, , with completely different methods.

Acknowledgments. 1 would like to thank Nitin Nitsure and Alejandro Adem for
pointing out references [13], [18] and [20] to me.

I am also in debt with Alberto Molina, who discovered a serious mistake in the proof
of Theorem 3.2 given in a preliminary version of the paper, and with Marta Morigi, who
helped me fix it.

Finally, I would like to acknowledge the very interesting discussions I have had with
Nobuaki Yagita and Andrzej Weber on the subject of this paper.

2. Notations and conventions

All algebraic groups and schemes will be of finite type over a fixed field k of charac-
teristic 0. Furthermore, we will fix an odd prime p, and assume that k contains a fixed pth
root of 1, denoted by . When k = C, we take w = e>™/7.

The hypothesis that the characteristic be 0 is only used in the proof of Theorem 9.3,
which should however hold over an arbitrary field. If so, it would be enough to assume here
that the characteristic of k& be different from p.

Our main tool is Edidin and Graham’s equivariant intersection theory (see [3]), which
works over an arbitrary field; when we discuss cohomology, instead, we will always assume
that £k = C. All finite groups will be considered as algebraic groups over k, in the usual
fashion. We denote by G, the multiplicative group of non-zero scalars over k, by u, the
algebraic group of n' roots of 1 over k.

Whenever V' is a vector space over k, we also consider it as a scheme over k, as the
spectrum of the symmetric algebra of the dual vector space V. If V' is a representation of
an algebraic group G, then there is an action of G on V' as a scheme over k.

We denote by Tgr,, Tst, and Tpgy, the standard maximal tori in the respective
groups, those consisting of diagonal matrices. We identify the Weyl groups of these three
groups with the symmetric group S,. We also denote the normalizer of Tpgr, in PGL, by
Sp X TPGL,,‘

If ay,...,a, are elements of k*, we will denote by [a1,...,q,] the diagonal matrix in
GL, with entries ay,...,a,, and also its class in PGL,. In general, we will often use the
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Vistoli, On the classifying space of PGL, 185

same symbol for a matrix in GL, and its class in PGL,; this should not give rise to
confusion.

It is well known that the arrows

Adr, = (Mg )%, Hiy — (Af, )Y

Ta,
and
AX (A* )Sp H _ (A* )S,,
SL[, TSLp ? GLp TSLp

induced by the embeddings TG, — GL, and Tsy, < SL,, are isomorphisms. If we denote
by x; € A1, = Hy_ the first Chern class of the i projection TGL, — Gm, or its restric-
P /4

tion to Tgp,, then A;GL” = H;GLP is the polynomial ring Z[x, ..., x,], while A}SLP = H;SLp
equals Z[xy,...,xp]/(x1 + -+ + x,). If we denote by ai,...,5, the elementary symmetric

functions in the x;, then we conclude that
AELP - HE}L,, — Z[O-l, oo 70-[7]
while
Ag, =Hg =Zlo,...,05]/(01) = Z]oa,...,0,].

The ring A;pGL,, = Hzy,,  is the subring of A%GLP generated by the differences x; — x;.

In particular it contains the element 6 = [[ (x; — x;), which we call the discriminant (up to
i)

sign, it is the classical discriminant); it will play an important role in what follows.

We will use the following notation: if R is a ring, #,...,t, are eclements of R,
fi,- .., fy are polynomials in Z[xy, ..., x,|, we write

R=1Z[t\,....t,)/(fi(tr,- - tn), .., [ilt1,- - 1n))

to indicate that the ring R is generated by 71, ..., ?,, and the kernel of the evaluation map
Z|x1,...,x,) — R sending x; to t; is generated by fi,...,f,. When there are no f; this
means that R is a polynomial ring in the ¢;.

3. The main results

Consider the embedding u#, — Tpg1, defined by { +— [, NGl 1]. This induces
a restriction homomorphism

A’?pGLp - A;p = Z[”]/(pn)a
where 7 is the first Chern class of the embedding u, = G

2
The restriction of the discriminant J € (Af, * ¥ to #, is the element
P
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186 Vistoli, On the classifying space of PGL,

LG — n) = <H<i _ j)>771’21’

i%j i*j

of Z[n]/(pn); this is non-zero multiple of 7]1’2‘1’ (in fact, it is easy to check that it equals
_np_ip)‘

Proposition 3.1.  The image of the restriction homomorphism
* S
(Atp, )" — Zlnl/ (1)
is the subring generated by 171’2‘1’.
This is proved at the end of Section 7.

Theorem 3.2. There exists a canonical ring homomorphism

* S, *
(ATpe, )™ = Ava,
whose composite with the restriction homomorphism Apg = — (ATPGLp) ” is the identity.
This is proved in Section 12.
As a consequence, APGL and Hpg; = can be regarded as (ATPGL )>-algebras.

Theorem 3.3. The (At Trar, ) -algebra Apg, is generated by an element p € Af,glL ,
and the ideal of relations is generated by the followmg

(@) pp=0, and
(b) pu =0 for all u in the kernel of the homomorphism (A%PGLp)S” — A;,,'

There is a 81mllar description for the cohomology: besides the element p, now con-
sidered as living in HPGL , we need a single class  in degree 3. This class is essentially the
tautological Brauer class. "That is, if we call % the sheaf of complex valued continuous func-
tions and " the sheaf of complex valued nowhere vanishing continuous functions on the
classifying space B PGL,, the tautological PGL,, principal bundle on BPGL,, has a class in
the topological Brauer group H*(BPGL,, "), (see [8]). On the other hand, the exponen-
tial sequence

072584 % -1
induces a boundary homomorphism
H*(BPGL,, ") — H*(BPGL,, Z) = Hpgy
which is an isomorphism, since BPGL,, is paracompact, hence
H'(BPGL,,%) =0
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Vistoli, On the classifying space of PGL, 187

for all i > 0. Our class f is, up to sign, the image under this boundary homomorphism of
the Brauer class of the tautological bundle.

Theorem 3.4.  The ring Hpgy  is the commutative (At o, )¥-algebra generated by an
element f§ of degree 3 and the element p of degree 2p + 2. The ideal of relations is generated
by the following:

(a) g2 =0,
(b) pp=pBp =0, and
(c) pu= pu =0 for all u in the kernel of the homomorphism (A%PGLP)S” — A;p.

Corollary 3.5. The cycle homomorphism induces an isomorphism of A;‘,GLP with
HESE
P

From here it is not hard to get the additive structure of Apg; and Hpg, . For each
integer m, denote by r(m, p) the number of partitions of m into numbers between 2 and
p. If we denote by 7(m, p) the number of partitions of m with numbers at most equal
to p (a more usual notation for this is p(m, p), which does not look very good), then

r(m, p) = n(m, p) —n(m— 1, p).

We will also denote by s(m, p) the number of ways of writing m as a linear com-
bination (p? — p)i+ (p+1)j, with i = 0 and j > 0; and by s’(m, p) the number of ways
of writing m as the same linear combination, with i = 0 and j = 0. Obviously we have
s'(m, p) = s(m, p), unless m is divisible by p?> — p, in which case s'(m, p) = s(m, p) + 1.

Theorem 3.6. (a) The group A{)”GLP is isomorphic to

Zr(m,p) @ (Z/pz)s(m,p).

(b) The group HQ’GLP is isomorphic to A%i when m is even, and is isomorphic to

(z/pz)" )
when m is odd.

When p =3 we are able to get a description of Apg; . and Hpg, , by generator and
relations, completing the work of [21].

Theorem 3.7.  (a) Apg, , is the commutative Z-algebra generated by elements y,, ys, 6,
p, of degrees 2, 3, 6 and 4 respectively, with relations

276 — (4y3 +93), 3p, 1p,  Vap-

(b) Hpgy, is the commutative Z-algebra generated by elements y,, ys, 6, p and B of
degrees 4, 6, 12, 8 and 3 respectively, with relations

276 — (493 +93), 3p. 3B, BE vaps 7o 7B viB
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188 Vistoli, On the classifying space of PGL,

The rest of the paper is dedicated to the proofs of these results. We start by recalling
some basic facts on equivariant intersection theory.

4. Preliminaries on equivariant intersection theory
In this section the base field k£ will be arbitrary.

We refer to [19], [3] and [21] for the definitions and the basic properties of the Chow
ring A, of the classifying space of an algebraic group G over a field k, and of the Chow
group A (X) when X is a scheme, or algebraic space, over k& on which G acts, and their
main properties. Almost all X that appear in this paper will be smooth, in which case
A;(X) is a commutative ring; the single exception will be in the proof of Lemma 6.6.

The connection between these two notions is that A = A;(Speck).

Recall that A/ (X) is contravariant for equivariant morphisms of smooth varieties;
that is, if f: X — Y is a G-equivariant morphism of smooth G-schemes, there is an in-

*

duced ring homomorphism f* : A;(X) — A5(Y).

If k = C, and X is a smooth algebraic variety on which G acts, there is a cycle ring
homomorphism A;(X) — H(X) from the equivariant Chow ring to the equivariant co-
homology ring; this is compatible with pullbacks.

Furthermore, if f is proper there is a pushforward f. : A;(Y) — A5 (X); thisis not a
ring homomorphism, but it satisfies the projection formula

S ) = filom
forany & e A (X) and n € A;(Y).

When Y is a closed G-invariant subscheme of X and we denote by 1: ¥ — X the
embedding, then we have a localization sequence

ALY) 5 ALX) — AL(X\Y) — 0.

The analogous statement for cohomology is different: here the restriction homomorphism
H(X) — Hi(X\Y) is not necessarily surjective. However, when X and Y are smooth we
have a long exact sequence

— Hg'(X\Y)

HG7(Y) —— Hg(X) —— Hg(X\Y)

Hé_ZH_l ( Y)

where r is the codimension of Y in X.
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Vistoli, On the classifying space of PGL, 189

Furthermore, if H — G is a homomorphism of algebraic groups, and G acts on a
smooth scheme X, we can define an action of H on X by composing with the given homo-
morphism H — G. Then we have a restriction homomorphism

resy : AL(X) — A (X).

Here is another property that will be used often. Suppose that H is an algebraic sub-
group of G. We can define a ring homomorphism A (G/H) — Aj, by composing the re-
striction homomorphism A;(G/H) — Ay (G/H) with the pullback

Ajy(G/H) — Aj(Speck) = Aj,

obtained by the homomorphism Speck — G/H whose image is the image of the identity in
G(k). Then this ring homomorphism is an isomorphism.

More generally, suppose that H acts on a scheme X. We define the induced space
G x X as usual, as the quotient (G x X)/H by the free right action given by the for-
mula (g, x)h = (gh,h~'x). This carries a natural left action of G defined by the formula
g'(9,x) = (¢9'g,x). There is also an embedding X ~ H x# X — G x X that is H-
equivariant: and the composite of the restriction homomorphism

ALGXxT X)— AL (GxTX)
with the pullback A}, (G x# X) — A}, (X) is an isomorphism.

Furthermore, if V' is a representation of G, then there are Chern classes c;(V) € AL,
satisfying the usual properties. More generally, if X is a smooth scheme over k with an
action of G, every G-equivariant vector bundle £ — X has Chern classes ¢;,(E) € A;(X).

The following fact will often be used.

Lemma 4.1. Let E — X be an equivariant vector bundle of constant rankr,s : X — E
the 0-section, Ey < E the complement of the 0-section. Then the sequence

¢ (E)

AG(X) — AG(X) — AG(E) — 0,

where the second arrow is the pullback along Ey — Speck, is exact.

Furthermore, when k = C we also have a long exact sequence

—— H§ ' (E)

HG?(X)  —— Hg(X) —— Hg(Eo)

Hé*ZV*H (X) N .
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190 Vistoli, On the classifying space of PGL,
Proof. This follows from the following facts:
(1) the pullbacks A;(X) — A;(E) and Hj;(X) — H((E) are isomorphisms,
(2) the self-intersection formula, that says that the homomorphisms
§' sy 1 AG(X) — AG(X) and  s7s,. : HG(X) — HG(X)
are multiplication by c,(E), and
(3) the localization sequences for Chow rings and cohomology. []
Let us recall the following results from [19].

(1) If T = G" is a torus, and we denote by x; € A} the first Chern class of the it
projection T'— Gy, considered as a representation, then

AL =7Z[xi,..., X

(2) If Tgy, is the standard maximal torus in GL, consisting of diagonal matrices,
then the restriction homomorphism Ag; — At ~induces an isomorphism

AéLn ~ 7Z[x1, .y Xy S

=Zloy,...,04]
where the g; are the elementary symmetric functions of the x;.

(3) If Ty, is the standard maximal torus in SL, consisting of diagonal matrices, and
we denote by x; the restriction to Ag; of x; € Ag, , then we have

Aty =Zx1, ..., x5/ (01);

furthermore the restriction homomorphism Ag; — Ag induces an isomorphism
n n

Ag, = (Zlas. o5 /(0) ™

=Zo1,02,...,04)/(01).

(4) If re A, is the first Chern class of the embedding p, — Gm, considered as a
1-dimensional representatlon then we have
A, = Z[{|(nt).

Furthemore, if G is any of the groups above and k = C, then the cycle homomor-
phism A — Hg is an isomorphism.

The following result is implicit in [19]. Let G be a finite algebraic group that is a
product of copies of u,, for various n. This is equivalent to saying that G is a finite diago-
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Vistoli, On the classifying space of PGL, 191

nalizable group scheme, or that G is the Cartier dual of a finite abelian group I', considered
as a group scheme over k. By Cartier duality, we have that I" is the character group
GY Hom(G Gm).

Proposition 4.2. Consider the group homomorphism G — A that sends each char-
acter y : G — Gy, into ¢i(y). The induced ring homomorphism Symz G — A is an isomor-
phism.

A more concrete way of stating this is the following. Set

G=pm, X - Xp,.

Foreachi=1,... ncall y; the character obtained by composing the i" projection G — u,
with the embedding g, — Gn, and set &; = ¢(y;) € Al. Then

AZ‘ = Z[él? SRR ér}/(nléla s 7ni‘ér)'

Proof. When G = g, this follows from Totaro’s calculation cited above. The gen-
eral case follows by induction on r from the following lemma.

Lemma 4.3. [If H is a linear algebraic group over k, the ring homomorphism

Ay ®,A; — A

Hxu,

induced by the pullbacks Aj, —>A;X” and A, — A}

Hxuwu, — Hand Hx u, — u, is an lsomorphlsm

Hxp, @long the two projections

Proof. This follows easily, for example, from the Chow-Kiinneth formula in [19],
Section 6, because u, has a representation V' = k" on which it acts by multiplication, with
an open subscheme vy V\{O} on which it acts trivally; and the quotient U /pu,, is the total
space of a Gp-torsor on P'~!, and, as such, it is a union of open subschemes of affine
spaces.

It is also not hard to prove directly, as in [15]. [

There is also a very important transfer operation (sometimes called induction). Sup-
pose that H is an algebraic subgroup of G of finite index. The transfer homomorphism

tri A — AL
(see [21]) is the proper pushforward from Aj;, ~ A (G/H) to Aj;(Speck) = Ag,.

This is not a ring homomorphism; however, the projection formula holds, that is, if
e A;(X) and 7 € Ay (X), we have

trg (& -resg) = &g

(in other words, trZ is a homomorphism of Aj(X)-modules).
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192 Vistoli, On the classifying space of PGL,

We are going to need the analogue of Mackey’s formula in this context. Let H and K
be algebraic subgroups of G, and assume that H has finite index in G. We will also assume
that the quotient G/ H is reduced, and a disjoint union of copies of Spec k (this is automat-
ically verified when k is algebraically closed of characteristic 0). Then it is easy to see that
the double quotient K\ G/H is also the disjoint union of copies of Spec k. Furthermore, we
assume that every element of (K\G/H)(k) is in the image of some element of G(k). Of
course this will always happen if k is algebraically closed; with some work, this hypothesis
can be removed, but it is going to be verified in all the cases to which we will apply the
formula).

Denote by % a set of representatives in G(k) for classes in (K\G/H)(k). For each
S € E, set

def
K, =

K nsHs ' < G.
Obviously Kj is a subgroup of finite index of K; there is also an embedding K, — H defined
by k — s ks.

Proposition 4.4 (Mackey’s formula).

resgtrd = " trg'resy 1 Aj — Ay
se )

Proof. This is standard. We have that the equivariant cohomology rings A;(G/H)
and Aj(G/K) are canonically isomorphic to Aj; and Ag, respectively. The restriction ho-
momorphism Aj — Ay corresponds to the pullback A (Speck) — A;(G/K), and the
transfer homomorphism corresponds to the proper pushforward A;(G/H) — A (Speck).

Since proper pushforwards and flat pullbacks commute, from the cartesian diagram

G/K x G/H 2, G/H

b
G/K —2  Speck
we get the equality

G H _ % _ * * *
resg trg = p'm, = pri, pr; : Ay — Ag.

Now we need to express G/K x G/H as a disjoint union of orbits by the diag-
onal action of G. There is a G-invariant morphism G x G — G, defined by the rule
(a,b) — a~'b, that induces a morphism G/K x G/H — K\G/H. For each s e €, call Q

the inverse image of s € (K\G/H)(k), so that G/K x G/H is a disjoint union ] Q. It
seC
is easy to verify that Q is the orbit of the class [1,5] € (G/K x G/H)(k) of the element

(1,s) € (G x G)(k), and that the stabilizer of [1, s] is precisely K;. From this we get an iso-
morphism

G/K x G/H ~ [] G/K;
SEC
from which the statement follows easily. []
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Vistoli, On the classifying space of PGL, 193

Proposition 4.5. Assume that G is smooth. Let f: X — Y a proper G-equivariant
morphism of G-schemes. Assume that for every G-invariant closed subvariety W = Y there
exists a G-invariant closed subvariety of X mapping birationally onto W. Then the pushfor-
ward f, : AGX — ALY is surjective.

Here by G-invariant closed subvariety of X we mean a closed subscheme V" of X that
is reduced, and such that G permutes the irreducible components of ¥ transitively (one
sometimes says that V' is primitive).

This property can be expressed by saying that X is an equivariant Chow envelope of Y
(see [5], Definition 18.3).

Proof. In the non-equivariant setting the result follows from the definition of proper
pushforward.

In our setting, let us notice first of all that if Y’ — Y is a G-equivariant morphism
and X' & vy’ x y X, the projection X' — Y’ is also an equivariant Chow envelope (this is
easy, and left to the reader). Therefore, if U is an open subscheme of a representation of G
on which G acts freely, the morphism f x idy : X x U — Y x U is an equivariant Chow
envelope. But since G is smooth, it is easily seen that pullback from (X x U)/G to X x U
defines a bijective correspondence between closed subvarieties of (X x U)/G and closed in-
variant subvarieties of X x U, hence the (X x U)/G is a Chow envelope of (Y x U)/G. So
the proper pushforward A*((X x U)/G) — A*((Y x U)/G) is surjective, and this com-
pletes the proof. []

5. On G, x p,
A key role in our proof is played by a finite subgroup C, x u, = PGL,.

We denote by C, = S, the subgroup generated by the cycle o & (1 2...p). We embed
S, into PGL, as usual by 1dent1fy1ng a permutation o € S, with the corresponding permu-
tation matrix, obtained by applying o to the indices of the canonical basis eq,...,e, of V'
(so that ge; = e;,1, where addition is modulo p).

If we denote by 7 the generator
[@,..., 0" 1]
of M, S PGL,, we have that
70 = wot  in GL,;
so ¢ and T commute in PGL,,, and they generate a subgroup
C, x m, = PGL,,.
We denote by « and f the characters C, x g, — G, defined as
a(0) =w and a(r)=1
Brought to you by | Ecole Normale Superieure (Ecole Normale Superieure)

Authenticated | 172.16.1.226
Download Date | 2/24/12 2:20 PM



194 Vistoli, On the classifying space of PGL,
and
ple)=1 and p(r)=o.
The following fact will be useful later.

Lemma 5.1. If i and j are integers between 1 and p, consider the matrix o't/ in the
algebra gl, of p x p matrices. Then if (i, j) + (p, p), the matrix o't/ has trace 0, and its ei-
genvalues are precisely the p-roots of 1.

Each o't/ is a semi-invariant for the action of C, x p,, with character o™/p'. Further-
more the o't/ form a basis of gl,, and those with (i, j) % (p, p) form a basis of s,

Proof. The fact that C, x u, acts on ¢'t/ via the character o~/ A’ is an elementary
calculation, using the relation 7o = waz. From this it follows that the o't/ are linearly in-
dependent, and therefore form a basis of gl,. The statement about the trace is also easy.

Let us check that the o't/ with (i, j) # (p, p) have the elements of u, as eigenvalues.
When i = p we get a diagonal matrix with eigenvalues «/,...,w?, which are all the
elements of u,, because p is a prime and j is not divisible by p. Assume that i # p. The
numbers i, 2i, . .., pi, reduced modulo p, coincide with 1,..., p. If Zis a p" root of 1, and
e1,...,¢, is the canonical basis of k", then the vector

P ..
Z /“L_twy(é)e”‘
=1

is easily seen to be an eigenvector of ¢’/ with eigenvalue A (using the fact that

hy _[(h
(5)=(5) tmoan
when 7, =, (mod p), which holds because p is odd, and the relations oe; = e;;; and
te; = w'e;). This concludes the proof of the lemma. []

Corollary 5.2.  Any two elements in C, x w, different from the identity are conjugate
in PGL,,.

Remark 5.3. It is interesting to observe that the proposition, and its corollary, are
false for p = 2; then the matrix ot has eigenvalues ++/—1, which are not square roots of 1.

1

We will denote by & and # the first Chern classes in AC,,>< ﬂp

Then we have

of the characters « and .

AC,xn, = ZIE M)/ (P, pr).

We will identify C, x u, with [, x [, by sending o to (1,0) and 7 to (0, 1); this iden-
tifies the automorphism group of C, x u, with GLy(F,).
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We are interested in the action of the normalizer Nc,x,, PGL, of C, x , in PGL, on

Cp x m, and on the Chow ring A¢ . '

Proposition 5.4.  Consider the homomorphism

N, <, PGL, — GLy(F))

defined by the action of Nc,xu, PGL, on C, x w,. Its kernel is C, x w,, while its image is
SL(Fp).

Furthermore, the ring of invariants

SL,(F,
(AL )52

is the subring of A(*ij ", generated by the two homogeneous polynomials

def 2_ _ _ _ _
= A (L Lo

2_ _ _ _ —
= EPP g l(ép l_np l)p 1

and
def

(et =),

The equality of the two polynomials that appear in the definition of ¢ is not immedi-
ately obvious, but is easy to prove, by subtracting them and using the identity

(R o VA o R o

Much more is known: as I learnt from N. Yagita, the rings of invariants
Folxt,..., Xy ]GL (%) and F PIX15 e, Xy ]SL( ") were computed by L. E. Dickson, in [1]; the
first is known as the chkson algebra.

Proof. First of all, let us show that the image of the homomorphism above is con-
tained in SL,([F,). There is a canonical symplectic form

/\Z(CP X :up) - :up

defined as follows: if @ and b are in C, x s, = PGL,, lift them to matrices @ and b in GL,,.
Then the commutator @ba—'b~" is a scalar multlple of the identity matrix I,; it is easy to see
that the scalar factor, which we denote by <{a, b}, is in g,, and that it only depends on @ and
b, that is, it is independent of the liftings. The resulting function

<_ _> (C X:up) (CP Xlup) _>:up

is the desired symplectic form.

Now, SLy(F,) has p(p? —1) elements. According to Corollary 5.2, the action of
N¢,xu, PGL,, 1s transitive on the non-zero Vectors in Fz so the order of the image of
N¢, xu, PGL, in SL;(F,) has order divisible by p* — 1. It i 1s easy to check that the diagonal
matrix
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196 Vistoli, On the classifying space of PGL,

1, w,0,..., w() yeos 1]

ith place

is also in N¢,«u, PGL,, acts non-trivially on C, x u,, and has order p. So the order of the
image of N¢,x,, PGL, is divisible by p; it follows that it is equal to all of SLy(F,).

It is not hard to check that the centralizer of C, x p, equals C, x p,; and this com-
pletes the proof of the first part of the statement.

For the second part, see [1] or [22]. [

For later use, let us record the following fact. The image of the restriction homomor-
phism Apg — Ac . u, 18 contained in (Ac, « ”p)SLZ(FP). We are going to need formulas for

the restrictions of the Chern classes ¢;(sl,) to Ac ., .
4 P

Lemma 5.5.  Let i be a positive integer. Then the restriction of ¢i(sl,) to Ac ., is —q
X Hp
ifi=p>—p,isr’ Vifi=p>—1, and is 0 in all other cases.

Proof.  The total Chern class of gl, coincides with the total Chern class of sl,, be-
cause gl, is the direct sum of sl, and a trivial representation. From Lemma 5.1 we see

that this total Chern class, when restricted to Aépx e equals
14

p

> (1+i&+ jn);

i,j=1
and then the result follows from Lemma 5.6 below. []
Lemma 5.6.

[I (+i+jn)=1—qg+r"
0<ij<p-1

Proof. Using the formula

1 (a+ib) =a’ —abP™!,

iel,
which holds for any two elements a and b of a commmutative [F,-algebra, we obtain

[T (1+i&+jn) = TT (1 +i)" = (1 +idy" )

i,jel, iel,

= [T (1 =n") +i(& = &)

iel,
= (1= ) = (L= (& =y
=1- (,7172*17 + (e — énpfl)Pfl) terlyr et ,]pfl)pfl

=l-g+r". [
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We will also need to know about the cohomology ring Hc Xty For any cyclic group
C, ~ p,, the homomorphism A& — H¢ is an isomorphism. This does not extend to
C, x m,; however, from the universal coefficients theorem for cohomology, for each index
k we have a split exact sequence

0— ¢ He, ®H, — HE ‘o, @ Tor{(H , Hj ) — 0;
i+j=k 1+j=k+1 ’

furthermore, since the exterior product homomorphism A¢ ® A* — Ac . u, 18 @0 isomor-

phism, the image of the term HC ® H ~into He | #, is the | 1mage of the cycle homo-
i+j=k
From this it is easy to deduce that the cycle homomorphism

with the even dimensional part HgV‘;“ﬂ of the coho-

morphism A¢, <ty He . '
induces an 1sornorph1sm of Al

mology.

Cpxp,

We have isomorphisms

3
HC X,

~ Tor? (H ) ~ 7/pZ;
chose a generator s of H. xBy (later we will make a canonical choice). We have that s> = 0,
because p is odd, and s has odd degree.

The odd-dimensional part Hgdi of the cohomology is isomorphic to the direct sum

@ Tor? (Hé ,Hf ), with a shift by T'in degree. Both Hgd‘i ", and EB Torlz(H p) have

natural structures of modules over Ho @ H,, = Hévexnﬂ, and the isomorphism above

f’
is an isomorphism of modules. But @ Tor? (HC ,H/ ) is easily seen to be a cyclic HYS

Cpxm, -

module generated by s. From this we obtaln the following result.

Proposition 5.7.
HCI,X[lp [é s ]/(vap’%l’sv sz)'

We are also interested in the action of SL,(F,) on He ., . I claim that the class s is
. . .. . . 14
invariant: this is equivalent to the following.

Lemma 5.8. The action of SLy(F,) on Hépxﬂp is trivial.

This follows, for example, from the construction of Section 11, where we construct a
class f e HgGLp that maps to a non-zero element of Hép Rl would be logically correct to
postpone the proof to Section 11, as this fact is not used before then; but this does not seem
very satisfactory, so we prove it now directly.

Proof.  The automorphlsm group of HC <y, = ~ 7/pZ is abelian. On the other hand
the action of SL,(F,) on HC wu 18 the restriction of an action of GL;(F,), and the commu-
tator subgroup of GLy(F,) is well known to be SL»(F,). [

From this we deduce the following fact.
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198 Vistoli, On the classifying space of PGL,

)SLz(F”) is generated by g, r and. s.

Proposition 5.9.  The ring of invariants (HC <ty

Remark 5.10. The group C, x g, is important in the theory of division algebras.
Suppose that K is a field containing k, and E — Spec K is a non-trivial PGL, principal
bundle. This corresponds to a central division algebra D over K of degree p. Recall that
D is cyclic when there are elements @ and b of K*, such that D is generated by two elements
x and y, satisfying the relations x’ = a, y¥ = b, yx = wxy. It is not hard to show that D is
cyclic if and only if £ has a reduction of structure group to C, x p,.

One of the main open problems in the theory of division algebra is whether all divi-
sion algebras of prime degree are cyclic. Let V" be a representation of PGL, over k with a
non-empty open invariant subset U on which PGL, acts freely. Let K be the fraction field
of U/PGL,, E the pullback to Spec K of the PGL,-torsor U — U/G and D the corre-
sponding division algebra; it is well known that D is cyclic if and only if every division
algebra of degree p over a field containing k is cyclic.

The obvious way to show that D is not cyclic is to show that there is an invariant for
division algebras that is 0 for cyclic algebras, but not 0 for D. However, the result proved
here implies that there is no such invariant in the cohomology ring HPGL In fact, consider
a non-zero invariant ¢ € Hpgy . Then either ¢ has even degree, so it comes from Apgy |
hence it restricts to 0 in V'/ PGL for some open invariant subset V' < U, or it has odd de-

gree, and then it maps to 0 in ATPGL , and it does not map to 0 in Ac, , .

This is related with the fact that one can not find such an invariant in étale cohomo-
logy with Z/pZ coefficients (see [6], §22.10).

6. On Cp X TGLI,
Proposition 6.1. Assume that k = C. Then the cycle homomorphism

A*

— H{
MTGL,; Cp MTGL,;

is an isomorphism.

Proof- This is the first illustration of the stratification method: we take a geometri-
cally meaningful representation of C, X Tgr, and we stratify it.

Denote by V' = &I AP the standard representation of GL,, restricted to C, X Tgr,. We
denote by V; the Zariski open C, X TgL,-invariant subset con51st1ng of p- tuples of com-
plex numbers such that at most i of them are 0, and by V = V<,\ V<i_1 the smooth locally
closed subvariety of p-tuples consisting of vectors with exactly i coordinates that are 0.
Obviously V<, = V\{0} and V, = 0.

Lemma 6.2. For each 0 <i < p — 1, the cycle homomorphism

*
ACp X TGLp

Vi — HE

p KTGLP V;

is an isomorphism.
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Proof.  First of all, assume that i = 0. Then the action of C, X Tgr, on Vj is transi-
tive, and the stabilizer of (1,...,1) € Vy(k) is Cp; hence we have a commutative diagram

Aé], X TGLp ( VO) — Hép X TGLp ( VO)
Aép — Hép

where the rows are cycle homomorphisms and the columns are isomorphisms. Since the
bottom row is also an isomorphism, the thesis follows.

When i > 0 the argument is similar. The action of C, X Tgy, on V; expresses V; as a
4

disjoint union of open orbits Q1, ..., Q,, where r def ; ( >, and the stabilizer of a point of

each €, is an i-dimensional torus 7;; hence we get a commutative diagram

Aép KTGL[) ( V;) - Hép KTGLp (V;)

| |

r r
A, — ©DHp
=1 =1
where the columns and the bottom row are isomorphisms. []

Lemma 6.3. For each 0 <i < p — 1, the cycle homomorphism

* *
C, < Tar, Véi - HCP < Tar, Véi

is an isomorphism.
Proof. We proceed by induction on i. When i = 0 we have V<o = V), and the thesis

follows from the previous lemma. For the inductive step, we have a commutative diagram
with exact rows

Ac,xta, (V) — A¢wrg, (Vsi) — Ac xrg, (Vsiit) —— 0
| | Jo
@ * @ *

He e, (V) —— He wrg, (V=i) —— He,wrg,, (V=in1);

by inductive hypothesis, the arrow marked with (D) is an isomorphism, hence the arrow
marked with (Q) is surjective. However, the bottom row of the diagram extends to a Gysin
exact sequence

Hé,,xTGLp(Vi) - Hép[xTGLp(Vgi) - HéprGLp(Vgifl) - Hé,,xTGLP(Vi) —

showing that the arrow marked with (3) is injective. From this, and the fact that the left-
hand column is an isomorphism, it follows that the middle column is also an isomorphism,
as desired. []
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200 Vistoli, On the classifying space of PGL,

Let us proceed with the proof of the theorem. For each i we have a commutative
diagram with exact rows

ACI, X TGLp A(*jp X TGLP - A(*:p X TGLp ( V\{O}) I 0

l | |

He wre, — Hexre, — Hepxrg, (V\{0}).

Now, by Lemma 6.3 the right-hand column is an isomorphism, hence, arguing as in the
proof of Lemma 6.3, we conclude that the bottom row of the diagram is a short exact
sequence.

If i is odd, we have Héprc,Lp (¥\{0}) = 0, hence the multiplication homomorphism

i—-2p (V) i
Cp I><TGL]) C,7 KTGLP

is an isomorphism. From this we deduce, by induction on i, that Hé} xTg, = 0 forallodd .
7 P

When i is even, one proceeds similarly by induction on i, with a straightforward dia-
gram chasing in the diagram above. []

Let us compute the Chow ring of the classifying space of C, X Tgr,. The Weyl group

Sy acts on Ap_ = Z[x1,...,x,] by permuting the x;’s. Consider the action of C, on A*G
the group perm’htes the monomlals and the only monomials that are left fixed are the ones
of the form o, = xy...x,, while on the others the action of C, is free. We will call the
monomials that are not powers of g, free monomials. Then Ar ot splits as a direct sum
Z[o,) @ M, where M is the free ZC,-module generated by the free monomials. Hence the
ring of invariants (A )C" isa dlrect sum Z[o,] ® M, and M is a free abelian group

on the generators ) sm where m is a free monomial.
seC,

We will denote by & € A(ljp the first Chern class of the character C, — G, obtained by
sending the generator (1,..., p) of C, to the fixed generator w of u,, and also its pullback
to C, X Tgr, through the projection C, X Tg, — C,.

We will also use the subgroup u, < T, of matrices of the form (I, where € u,.
The Chow ring A* is of the form Z[ 1/(p ) where # is the first Chern class of the
1-dimensional representatlon given by the embedding #, — Gn. The action of C, on g, is
trivial, so there is a copy of C, x u, in C, X Tgy,; the Chow ring AC Xty is Z[E, 7] / (pé, p;7)

Here are the facts about AépKTGLp that we are going to need.

Proposition 6.4. (a) The image of the restriction homomorphism

(At )" = A, = Z[n)/(pn)

is the subrmg generated by nP?, which is the image of o, The kernel is the subgroup of
(At Tar, ) " generated by the ) sm, where m is a free monomial, and by po,,.
seC,
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(b) The ring homomorphism AC ~Tar, — (Ag,, )C” induced by the embedding
ToL, — C, X Tqy, is surjective, and admits a canonlcal spllttmg ¢ (Ar To, )C” — Aép'XTGL ,
whzch is a ring homomorphzsm '

(c) As an algebra over A L , the ring AC T 1S generated by the element &, while
the ideal of relations is generated by the following: pé 0 and ¢(u)é = 0 for all u in the ker-
nel of the ring homomorphism A7 Tor, — Aﬂp induced by the embedding p, — Tg,.

X Al

(d) The ring homomorphism AépKTGL — A} induced by the embeddings

TCL C X[l
TGL,, — Cp X TGLP and Cp X p, — Cp X TGLp
is injective.

(€) The restriction homomorphism A¢, .1, — (At

ACP Xty bijectively onto the kernel of AL Tar, — A;p

)< sends the kernel of
A(*:p[XTGLp

Remark 6.5. The proofs of these statements could be made somewhat shorter by
making use of Totaro’s results on the Chow ring of the classifying space of a wreath prod-
uct ([19], Section 9). However I find the present approach more transparent; it also has the
merit of generalizing to other situations of interest.

Proof. Let us prove part (a). All the x; in At o, Map to 7 in A;p, 0 g, maps to y”,
and all the > sm map to py9e” = 0.

seC,
Let us prove (b). First of all let us construct the splitting ¢ : (A?GL ) P — A(*: ~Tar, 5
a homomorphism of abelian groups. The group (At )C” is free over the powers of g, and
the > sm. ’
seC,

The restriction of the canonical representation V' of C, X TgL, to the maximal torus
Ty, splits a direct sum of 1-dimensional representatlons with ﬁrst Chern characters
X1,...,Xp; hence the i'" Chern class c;(V) € AC ~Tar, restricts to o; € (A’TG ). We define
the sphttlng by the rules

(a) ¢(oy) =c,(V) € A(*Z,,MTGLP for each r > 0, and

(b) ¢( 3 sm) trCGL” m € A, w1, for each free monomial m.

X TgL
seC, ’

Notice that the transfer in the second part of the definition only depends on the orbit
of m; hence ¢ is well defined.

We need to check that ¢ is a ring homomorphism, by taking two basis elements « and
v and showing that ¢(uv) equals ¢(u)¢(v). This is clear when both u and v are powers of g,,.

Consider the product g, > sm= }_ s(a,m); we have
S‘EC seC,
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202 Vistoli, On the classifying space of PGL,

(o1 3 om) = o[ 2 o))

seC, seC,

Tor,
= tre

, b .
% T, (o,m) (because g,m is still a free monomial)

=c, (V)" trob (m) (by the projection formula)

e
— 4o (z(:: o).

Now the hardest case. Notice that if 2 is any monomial, not necessarily free, we have
the equality

Ta
¢< > sm) = tre,lp,, M.

74
seC,

When m is free this holds by definition, whereas when m = ¢’ we have

¢( > a;;) — ph(a) p

seC,
= (V)
= DpS
. Tau, C,xTaL, r
= ¢, g, 181y, »(V)

TGLp r
= tGC'XTGLp ap.

Take two free monomials m and n. We have

¢(Z sm - an):qﬁ( 3 sm-tn>

seC, seC, s,teC,

o e

s,teC,

= 5 4( 2 st )

teC, \seC,
= Yt (m-tn)

teC, CprTar,
—_ GLlp .
= e, rg, (m tez(;p tn>

ToL C,xTgr, , TaL

= tre 0y (m-resy. "7t )% Tor n)

=227

as claimed. This ends the proof of part (b).
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For parts (c) and (d), notice the following fact: since the restriction of & to Az

T
is 0, from the projection formula it follows that étr(T:GL” (m) =0¢ AC ~Tar, for a%Ly

me ATGL,,; hence we get that ¢< > m)é =0¢ AC,,IXTGL, , as claimed. Thus, the relations
seC, "
of the statement of the proposition hold true.

Denote by A+ o, the ideal of A generated by homogeneous elements of positive
degree. Then the 1mage of (AJr )C” in Aé ~Tar, via ¢ maps to 0 under the restriction
homomorphism resC TGL” : c ><TGL — AC In fact the image of AJr Tar, is generated by
elements of the form trC m, where m e ATG is a monomial of positive degree, and

by positive powers c,( )" of the top Chern class of V. The fact that the restriction of
trCGL”T m is 0 follows from Mackey’s formula. On the other hand, the restriction
of 'V 10 C, is a direct sum of 1-dimensional representations with first Chern classes

0,&,2¢&,. (p —1)¢&, so the restriction of V' has trivial top Chern class.

Lemma 6.6. The kernel of the restriction homomorphism

Cp X TGLp
C

res tAG

» X TGLp

— Aép

consists of the sum of the image of (AJT“C )C” in AC ~Tor, via ¢, and of the ideal
(CP(V)) AC KTGL[;

Proof. Consider the hyperplane H; in the canonical representation V' = A’ defined

by the vanishing of the i coordinate. Denote by H = U H; < V the union. If V), = V\H
we have an exact sequence i=

AL oy, (H) = AL ngy, (V) = AL gy (Vo) = 0.
We identify AE,,KTGL,, (V) with AéprGL,, via the pullback AE}1><TGL,, — AéprGLp (V'), which
is an isomorphism. The action of Tgr, on V} is free and transitive, and the stabilizer of the
point (1,1,...,1) is C, £ C, X Tgr,. Hence we have an isomorphism of Ac, ~Tar, (Vo)
with Ac . and the pullback A ~Tar, (V) = Ag, <Tar, (Vo) is identified with the réstric-
tion homomorphlsm A, T, AC So the kernel of this restriction is the image of

AC X TGL]) (H) °

- p
Denote by H the disjoint union [[ H; {0} of the H; with the origin {0} = V. 1

i=1 _
claim that the proper pushforward AC o, (H) — AC ~Ta, (H) is surjective. This follows

from Proposition 4.5: we need to check that every C, X TGL -invariant closed subvariety
of H is the birational image of a C, X Tgy,-invariant subvarlety of H. Denote by W a
C, X Tgy,-invariant closed subvarlety of H.1f W = {0} we are done. Otherwise it is easy
to see that W will be the union of p Tgy,-invariant irreducible components Wl, s W,

such that each W; is contained in H;. Then the disjoint union ]_[ W < ]_[ H, < H is
i=1 i=1
C, X TgL,-invariant and maps birationally onto /. Hence we conclude that the kernel of

the restriction homomorphism is the sum of the images of the proper pushforwards

* *
Al e, (10) = AL werg, (V)
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204 Vistoli, On the classifying space of PGL,

and
* ’ *
ACpKTGL,, <]_[1 Hi> - AC,,IXTGL,, ( V)
=
After identifying Aép ~Tar, (V') with Aép < Tar, the first pushforward is just multiplica-
tion by ¢,(V), so its image is the ideal (c,(V)) = AL xTar,-
P
Notice that the disjoint union [ [ H; is canonically isomorphic, as a C, X Tgr,-scheme,

i=1
o (C, X Tg,) xTet» Hi: hence there is a canonical isomorphism

et (11) = A7, ()

The pushforward At (H) — Aé} «Tg. (V) 1s the composite of the proper pushforward
P 4 P
AL (H)) — Af}GLp (V), followed by the transfer homomorphism

Ter,
AjliGLp ( V) - Aép KTGLI; ( V) :

After identifying A{GLP (Hy) and Ag_ (V) with ATGL , AépMTGLp(V) with AéprGLp, we see
that this implies that the image of AC,%TGL,, < ]_[1Hi> in A(*ipKToL,,(V) = Aéprch is the
=
image of the ideal (x;) < A?GLP under the transfer map A;GLP — A(*ZpKTGLp‘ So each element
p
of the image of A(*:prGL,, < 11 H,-) can be written as a linear combination with integer
-1

coeflicients of transfers of monomials of positive degree: and this completes the proof of the
lemma. []

Now we show that A¢ ..r, ~is generated, as an algebra over (ATq, )<, by the
single element &. Take an element o of AC ~Tar, of degree d, and write its image in
Aé = Z[&)/(pé) in the form mé?, where m is an 1nteger Then o — mé‘ e AC < Tgr, MAPS
to 0 in AC , so according to Lemma 6.6 it is of the form f + o,y, where f is in (A; o, )C”

and y € Acp P The proof is concluded by induction on d.

Now we prove that the relations indicated generate the ideal of relations, and, simul-
taneously, part (d).

Take an element o € AC < Tor, b using the given relations, we can write o in the form
oy + o &+ ol + -+, where o € (Ad )C” while for each i > 0 the element o; is of the

Ta,
form djo;, where 0 < d <p-1,and ;’p d — i, when p divides d — i, and 0 otherwise.

Assume that the image of « in ATG X A #, is 0. The image of o in ATG 1s a,
hence o9 = 0.

Lepllllma 6.7. The restriction of ¢(a,) =c,(V) to Aé,,x w = ZEn)(pE, pn) equals
n? —nsh
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Vistoli, On the classifying space of PGL, 205

Proof.  The restriction of V" to C, x u, decomposes as a direct sum of 1-dimensional
representations with first Chern classes 7,7 — &, n —2&,...,n — (p — 1)¢&, and

nin—&)n—28)...(n—(p—1)&) =9 —y&"'. O

Since & and #? — &P~ ! are algebraically independent in the polynomial ring F, 1 n),
it follows that all the o; are 0. This finishes the proof of (c) and (d).

Finally, let us prove part (e).

Injectivity follows immediately from part (d). To show that the restriction homo-
morphism is surjective it is sufficient to show that if « is in the kernel of the homomor-
phism (AT ) 7 — A* then ¢(u) is in the kernel of A, < Tar, A¢, u,- Each element of

(A;

Tor, ) r of the form Z sm goes to 0 in AC , while o, goes to n?; hence u is a linear com-

seC,
bination of elements of the form Z mand pa,. So ¢(u) is a linear combination of elements

of A, 1, of the form pe, (V)" and trCGL” _ m; from the following lemma we see that all
these eleménts of AC | are 0.

Ter,

Lemma 6.8. [f u is an element of positive degree in Ar_ the restriction of tre, < Tar,

x .
10 Ac u, 18°0.

Proof. The double coset space (C, x u,)\(C, ¥ Tgr,)/Tar, consists of a single
point and (C, x u,) " TgL, = p,,, so we have

CyxTa, , Ta,

resC <a, "t I, xTor, 4 trC <a, res,l u.

However, I claim that the transfer homomorphism

. * *
trC Xty A”p — ACpXﬂp

is 0 in positive degree. In fact, the restriction homomorphism
res,, " AC w = A*

is surjective, because the embedding u, — C, x u, is split by the projection C, x u, — u,.
Coxm,
It follows immediately, again from Mackey’s formula, that the composition trc < res,, !

is multiplication by p; and all classes in AC Xty in positive degree are p- -torsion. [
This concludes the proof of Proposition 6.4. []

Remark 6.9. When k = C, Propositions 6.1 and 6.4 give a description of the coho-
mology HEI,KTGLp' This can be proved directly, by studying the Hochschild-Serre spectral
sequence

=H/(C,,H}_ )= HY

C KTGLp
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206 Vistoli, On the classifying space of PGL,
7. On Cp X TPGL,.

In this section we study the Chow ring of the classifying space of the group

C, X TpgL,. Here is our main result. Consider the subgroup u, < TeaL, defined, as in the

Introductlon by the formula { — [(, e et ,1]. This deﬁnes a homomorphlsm of rings
A% — A"
Hy

TrL,

Proposition 7.1.  (a) The image of the restriction homomorphism

(At )" — A, = Zln)/ (pn)
is the subring generated by n*.

b) The ring homomorphism Ag . — (A7 S induced by the embedding
Cp, X TrgL, TraL,
TecL, — C, X TpgL, is surjective, and admits a canonical splitting

* C, *
¢ (ATPGL ) - AC], KTPGL‘,, )
which is a ring homomorphism.

(c) As an algebra over (A{PGL ) » the ring AépMTpGLp is generated by the element &,
while the ideal of relations is generated by the following: p& =0, and ¢(u)é =0 for all u in

the kernel of the ring homomorphism A — A;p induced by the embedding w, — TpgL,-

Tra,

(d) The ring homomorphisms

*
AC XTpgL,

— AT

*
TPGLP x AC[JX,“[;
and

*

* *
HCpKTPGLp - HTPGLp X HCp X,

induced by the embeddings
Ter, — C, X Tpg, and C, x m, — C, X Tpgy,
are injective.

(€) The restriction homomorphism AC < Trar,

— (AL ) sends the kernel of
Tror,
Aép[XTPGL A¢, “, bijectively onto the kernel of A

*
Aﬂp.

TraL,

Proof.  One of the main ideas in the paper is to exploit the fact, already used in [21]
and rediscovered in [20], that there is an isomorphism of tori

(O TPGL,, =~ TSL,,
defined by

d)(tla ) tp) = [Zl/tp) t2/t17 Z2/Z27 ce tp—l/[p—27 tp/tp—l]-
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Vistoli, On the classifying space of PGL, 207

This isomorphism is not S,-equivariant, but it is C,-equivariant; therefore it induces an
isomorphism

(O Cp X TPGL,, ~ Cp X TSLp-

The composite of the embedding #, — TeaL, with the isomorphism @ is the embed-
ding #, — Tsy, defined by { — ¢, ¢, ..., ¢

Now, take an open subset U of a representation of C, X Tgr, on which C, X Tg,
acts freely. The projection U/C, X Tsy, — U /C, X TgL, is a Gy-torsor, coming from the
determinant det : C, X TgL, — G of the canonical representation V" of Tgy,. Lemma 4.1
implies that there is an exact sequence

* C1 ( V) * *
Cp X TGL[, ACp X TGLp ACI, X TSLp 0

and a ring isomorphism AEPKTSL,, ~ Aé,leGL,, / (01 ( V))

Consider the splitting ¢ : (Af )C” — AéproL,, constructed in the previous section. I

Tor, T
claim that ¢; (V) coincides with ¢(a;) = trClGL" x1. To prove this it is enough, according

» X Tar,
to Proposition 6.4 (d), to show that these two classes coincide after restriction to At and
* . « .. . Lp
to Ac . ' The restrictions of both classes to ATGL,, coincide with x; + - - - + x,,.

The action of C, x u, on V splits as a direct sum of 1-dimensional representations
with characters # + &, +2&,...,n 4+ (p — 1), n, so the restriction of ¢; (V) to Aépxﬂp is

pr=1._

N+Etn+284 -yt (p—Di+n=pyp+=—7

GLp

- T . . . .
So we need to show that the restriction of tr X Tar, X1 1O Ac, « u, 18 also 0. This is a partic-

ular case of Lemma 6.8. !
There is also an exact sequence
0— A;GLP ﬂ) AjliGLp - A"?SL,, - 0’
SO A}SLP is the quotient A}GLP /(a1).

Lemma 7.2.  If G is a subgroup of Sy, the projection (A, — (At ) induces an
isomorphism ' '

(Asy, )%/ (01) = (Ao, ).

Proof. This is equivalent to saying that the exact sequence above stays exact after

taking G-invariants; but we have that HI(G,A§GL ) =0, because Ay is a torsion-free
. P P

permutation module under G. []

Part (a) comes from the surjectivity of the restriction homomorphism

(A* )Cp_)(A* )Cp

Ta, Tsi,

and Proposition 6.4 (a).
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208 Vistoli, On the classifying space of PGL,
. « C % . .
We construct the splitting (ATSLP) r— ACp'XTSLp by taking the splitting

(ATGL ) P = AEPKTGLP

. . . . . . . C " C
cpnstructed in thg previous section, tensoring it with (ATGL,,) ?[(a1) over (ATGL,,) 7 to geta
ring homomorphism

(Ao, )7/ (01) = AL ey, (@)

and using the isomorphisms

(At )% = (A )/ (o)
and
Al [(01) ~ Al r
constructed above. This proves part (b). Part (c) follows from Proposition 6.4 (c).

To prove part (e) consider the diagram of restriction homomorphisms

* * *
AC X TGLp AC[) X Ts]_p AC p XMy,

l L

* C * C *
(ATGLP) P (ATSLP) r— A/lp'
The surjectivity of the map in the statement follows from Proposition 6.4 (¢) and from the
fact that the first arrow in the bottom row is surjective.

To prove injectivity take an element u of AC «Tg, that maps to 0 in A¢ ., and in
(A - ). Let v be an element of A¢, w1, MApping to 1. Since the kernel of the homomor-
ph1srn (AT, p)c (AT, 7)C" is generated by a1, we can write the image of v in (AT, p)c”
as alw for some w e (A?G ). Then the element v — ¢(o;w) maps to 0 in A* and in

(A7 Tar, )<7: hence, by Propos1t10n 6.4 (d), itis 0. So v = ¢(a;)P(w) maps to 0 in (A} - )<, as
claimed.

Let us prove part (d). The statement on Chow rings is an immediate consequence of
part (e).

For the cohomology, we argue as follows. We have a long exact sequence

i—1

_
Cp X TSLp

i—2

i
Cp X TGL[, HCp X TSLp

i
—
a(V) T,

i—1
He,wte, —
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Vistoli, On the classifying space of PGL, 209

*
Cp X TGLp

phism. Hence, for each i we have a commutative diagram with exact rows

By Proposition 6.1, the cycle homomorphism AépMTGL,, —H is an isomor-

Cp X TGLI, ACI, X TGL ACP X TSL 0
2i—2 2i 2i 2i—1 _
C,XTgL HCp XTgr, HCp X Tsi, HCp XTgr, 0

in which the first two columns are isomorphisms. This implies that the third column is also

an isomorphism: so the cycle homomorphism A¢ .1, — HE %, is an isomorphism.
P p P p

even even even
x H

Therefore the homomorphism H is injective.

Cp X TSLp TSLp C[, X/lp
When i is odd, we have an exact sequence
. . Fil . C](V) .
_ i i i i+2 .
0 - C[’ s TGLp HCp X TSLp Cp KTGLp HCp X TGLp )
; . godd even : ; :
hence the boundary homomorphism 0 : HCp[XTSLp HC,,MTGLP yields an isomorphism of
odd : hi even _AK

HE g, with the annihilator of the element c; (V) of HE St = ACprGL,,' From the

description of the ring Aép T, in (c), it is easy to conclude that this annihilator is the ideal
generated by &.

Consider a free action of C, X Tgr, on an open subscheme U of a representation.
The diagram of embeddings

C,,x,up —_ CpXGm

l l

C, X TSLp — (C, X TGL,,
induces a cartesian diagram

U/Cyxp, —— UJCpX Gy

| l

U/Cp I><T5Lp R — U/Cp [><TGL,,

in which the rows are principal G,-bundles, and the columns are Gp,-equivariants. This in
turn induces a commutative diagram

Hodd 0 Heven
Cp KTSLp Cp [><TGLP
odd even

Cpxu, pXbGm
in which the top row is injective, and has as its image the ideal () € HE Ur, as we have
1 even . + O .
just seen. Furthermore, every element of (&) = HC11[><TGL], maps to 0 in HTGLP, because it
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210 Vistoli, On the classifying space of PGL,

is torsion: hence (¢) injects into HE'S, , by Proposition 6.4 (d). Since C, x u, is con-

tained in C, X Gp, it follows that (<) also injects into HE''g . So the composite arrow

HRM . — HE". in the commutative diagram above is injective. It follows that the left-
»71Skp L Im

hand column is injective.

This ends the proof of Proposition 7.1. []

Proof of Proposition 3.1.  We need to analyze the action of the normalizer N, of C,
in S, on the Chow ring AC < Tpar, " If we identify {1,..., p} with the field F, with p ele-
ments, by sending each i into its class modulo p, then C, can be identified with the additive
group [, itself, acting by translations. There is also the multiplicative subgroup F, of S,
acting via multiplication. This is contained in the normalizer of C, = [, and, since p is a
prime, it is easy to show that the normalizer of C, inside S, is in fact the subgroup gener-
ated by [, and [, which is the semi-direct product F, > F,.

The subgroup C, = [, acts trivially, so in fact the action is through F,. The action of
[F; leaves u, invariant, and the result of the action of a € [F; on(e H, is {“: hence a acts on
A* = Z[n]/(pn) by sending # to az, and the ring of invariants is the subring generated by
;7” 1 . The image of A - into A* is the subring generated by #”, by Propos1t10n 7.1, and
its intersection with the ring of 1nvar1ants in A; is the subring generated by #”(?~ . This
shows that the image of (A, ot ) ? into A* is contained in the subring generated by #?(P~1),
The opposite inclusion is ensured by the fact that the discriminant ¢ € (A )S” maps to

—pr=b g

TroL,

8. On Sp X TPGL,,

The group S, does not act on C, X Tpgl,, only the normalizer F; < [, of C, does.

Nevertheless, we deﬁne the subring (A(*: KTP(‘L‘U) 7 of AC < Tear, consisting of all the ele-

ments that are invariant under F, < [, and whose images in Ay~ are Sp-invariant. The

).

Tra,

has its image in (Aé

restriction homomorphism Ag <T
74 PGLp

S KTPGL - AC[,KTPGLP

The result we need about S, < Tpgy, is the following.

Proposition 8.1. The localized restriction homomorphism

A gy, ® Z[1/ (P = DY) = (AL wrye ) ®Z[1/(p — 1))
is an isomorphism.

Of course the statement can not be correct without inverting (p — 1)!, because the tor-
sion part of Aél < Tpq, 18 all p-torsion, while Ag{ < Tpq, CONtains a lot of (p — 1)!-torsion
. ¥ v . g » .

coming from Asp~ This is complicated, but fortunately we do not need to worry about it.

Proof. Injectivity is clear: because of the projection formula, the composite

Sp>Trg, Co=<Trgr, | 4 * LAY
C XTegr, = Sp™¥Tegr, * * Sy XTraL, C, X TrgL,

tr

xT
is multiplication by trC KTI;ZLL” =(p—1L
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Vistoli, On the classifying space of PGL, 211

To show surjectivity, take a class u € (AC = Trar, )S”, and set

def . Cp<TegL, %
v=trg Tecn, ue Asp = Tear,

We apply Mackey’s formula (Proposition 4.4). The double quotient

Cp X Trcr, \Sp X Tecr,/Cp X Tear, = Gp\S,/C,

-2 -1
consists of p — 1 elements coming from the normalizer [F; X F,, and (p — 1)&

elements with the property that, if we call s a representative in S, X Tpgy,, we have
S(Cp X TpGLp)Sil N Cp X TPGL,, = TPGLp~
Therefore

Trcr, C, X Tror,

Sy < Tpa, s
Cy¥XTeor, — Tegr, )

resC <Tyor, U= (p—Du+(p-1)

-1
(p—2) r
p

hence it is enough to show that an element in the image of the transfer map

Trar, . S Sp
tGCK%PGLp ° (A’;PGL[;) ’— (Aép KTPGLF) !
is in the image of AgprpGL , up to a multiple of (p — 1)!. But again an easy application of
p

Mackey’s formula reveals that

SpxTrcL,

S X TPGL,; TPGLp Sp X TPGLp TPGLp
resC < Tra, tr

t C [><TPGL C [><TPGL w= reSC KTPGL prTPGLp

forall we (AffPGLp)s”, and this finishes the proof. []

*
9. Some results on APGL,,

In this section we prove some auxilliary results, which play an important role in the
proof of the main theorems.

The following observation is in [21], Corollary 2.4.
Proposition 9.1. If  is a torsion element of Apg, , or Hpgy , then p¢ = 0.

Proof.  Suppose that & e APGLP Take a representation V' of PGL, with an open
subset U on which PGL,, acts freely, such that the codlmensmn of V\U has codimension
larger than m, so that APGL = A"(B), where we have set B U /PGL,. Letn: E — Bbe
the Brauer-Severi scheme associated with the PGL,-torsor U — B: thls is the projection
U/H — U/PGL,, where H is the parabolic subgroup of PGL, consisting of classes of
matrices (a;) with a;; = 0 when i > 1. The embedding H — PGL, lifts to an embedding
H — GL,, as the subgroup of matrices (a;;) with @;; = 0 when i > 1, and a;; = 1; hence
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212 Vistoli, On the classifying space of PGL,

the pullback A"™(B) — A™(E) factors through Ag; , which is torsion-free. It follows that ¢
maps to 0 in A"(E).

Now consider the Chern class c,_1(Tg/p) € A”"Y(E) of the relative tangent bundle.
This has the property that 7.c, 1(Tg/p) = p[B] € A’(B); hence, by the projection formula
we have

Pf = my (Cp—l(TE/B))
= Tlx (n*é ' Cpfl(TE/B))
=0.

The proof for cohomology is identical, except for notation. []
Proposition 9.2.  The restriction homomorphisms

* * * *
APGL,, - Ac,,xTPGLp and HPGL,, - HcprpGLl,

are injective.
Proof. By a classical result of Gottlieb ([7]) the homomorphism Hpg; — Hg .1,
p

is injective; while the injectivity of Apg — Ag wt,, I8 a recent result of Totaro. This is
. . . ?
unpublished: a sketch of proof is presented in [21].

Theorem 9.3 (Totaro). If G is a connected linear algebraic group over a field k of
characteristic 0 acting on a scheme X of finite type over k, and N is the normalizer of maxi-
mal torus, then the restriction homomorphism Aj5(X) — Ax(X) is injective.

Now, the kernels of the homomorphisms in the statement are p-torsion, by Proposi-
tion 9.1, while the kernels of

*

* * *
Asp = Tpg, - ACp = TrgL, and Hsp X TpgL, - HCp = TpgL,
are (p — 1)!-torsion, by the projection formula, so the statement follows. []

Here is the basic result that we are going to use in order to verify that a given relation
holds in Apg; and Hpgy .

Proposition 9.4.  The homomorphisms

* *
TPGLp X AC,, ><,le

A;GLP — A
and

* * *
por, — Hrpg X Hesp

obtained from the embeddings TrgL, — PGL, and C, x p, — PGL,, are injective.

Proof. This follows from Propositions 9.4 and 7.1 (d). [
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Here is another fundamental fact, which is one of the cornerstones of the treatment of
PGL3 in [21]. In the Lie algebra sl, of matrices of trace 0 consider the Zariski open subset
51 consisting of matrices with drstmct eigenvalues; this is invariant by the action of PGL,.
Furthermore we will consider the subspace D, < s, of diagonal matrices with trace equal
to zero, and D0 D,n sIO The subspaces D, and D0 are invariant under the action of
Sp X TPGLp c PGL

Proposition 9.5 (see [21], Proposition 3.1). The composites of restriction homomor-
phisms

PGL (51 ) — As X TraL, (SI ) — As X TpoL, (DO)

and

H;GL (51 ) — Hs % Trar, (51 ) — Hs MTch,,( ;(;))

are isomorphisms.

Proof. The S, X TpgL,-equivariant embedding DO c 510 induces a PGL,-equivariant
morphism PGL, ><S *Tro, D0 — 510 which sends the class of a pair (4,X) into AXA™".
This morphism is easily seen to be an isomorphism, and the proof follows. []

Corollary 9.6. The restriction homomorphisms

*

* * *
PGL, - ATPGL and ASpIXTPGLp - ATPGLp

P

have the same image.

Proof. In the commutative diagram of restriction homomorphisms

;GL - APGL (511(;))

l l

*

T At
PGL)

TeaL, (SII?)

the top row is surjective. On the other hand, the action on TpgL, on 511? is trivial and sI°
is an open subscheme of an affine space, so the bottom row is an isomorphism. It follows
that the image of ApGL in Ap,. o, Maps isomorphically onto the image of ApGL (510)
in A{PGL (sIO) A similar argument ‘shows that the image of Ag, *Trar, in ATP maps iso-
morphlcally onto the image of Ag < Trar, ( p) in Aj (DO) But wealso have a commu-

TraL,
tative diagram

A;;GL (51 ) AS[7D<TPGL (D](})

l l

(s])) —  Aj

*
ATPG Lp Tpg Lp

(Dp)

where the top row is an isomorphism, by Proposition 9.5, and this concludes the proof. []
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214 Vistoli, On the classifying space of PGL,
10. Localization
Consider the top Chern classes

2
p—1 p—1
Cp_y(sl,) € Apgr, and cp—1(Dp) € AS,,KTPGL,,'

We have the following fact.

. Pr(?position 10.1. The r*estriclion hom_omorphism Apgl, - Asg, < Tper, CATTIES Cpr_y (sl,)
into the ideal (c,—1(D,)) S AsprPGLp. The induced homomorphism

A;GLP/(Cle(f’Ip)) - AgprpGLp/(Cp—l(Dp))
becomes an isomorphism when tensored with Z[1/(p — 1)!].

Proof.  The representation D), of S, X TpgL, is naturally embedded in sl,, so we
have that

Cp2-1(sly) = Cpo1(Dy)Cp11 (sl /Dp) € AL

Sp 28 TPGLp )

and this proves the first statement.

The pullbacks
A;’GL,, - Af;GL,,(slp\{O}) and AgprpGLp - A;,,KTPGLP (Dp\{0})

are surjective, and their kernels are the ideals generated by c,2_;(sl,) and ¢, 1(D,) respec-
tively: so it is enough to show that the homomorphism

Apcr, (5L, \{0}) = Ag, ety (Dp\{0})

obtained by restricting the groups, and then pulling back along the embedding
D,\{0} — sl,\{0} becomes an isomorphism after inverting (p — 1)!.

Now, consider the diagram

A;GLF (shL\{0}) — A;GL,, (sl,)

| J

As, xToar, (Pr\{0}) —— A e, (D)

where all the arrows are the obvious ones. The rows are surjective, while the right-hand
column is an isomorphism, by Proposition 9.5: hence it is enough to show that the rows
are injective, after inverting (p — 1)!.

The first step is to observe that the restriction homomorphism

paL, (5 \{0}) = Ag wery,, (51, \{0})
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Vistoli, On the classifying space of PGL, 215
is injective, by Totaro’s Theorem 9.3. Next, the restriction homomorphisms

As, o, (S \{0}) = Ac wcrp,, (SL\{0})  and - Ag oq, (D)) = A, xty, (D))

become injective after inverting (p — 1)!. So it is enough to show that the restriction homo-
morphisms

Aé < Tpet, (sl,\{0}) — AC < Tpa, (51;5) and Aé % Ta, (D\{0}) — Ac < Tpa, (D;)

are injective.

Lemma 10.2.  Suppose that W is a representation of C, <X TpgL,, and U an open sub-
set of W\{0}. Assume that

(a) the restriction of W to C, x m, splits as a direct sum of 1-dimensional representa-
tions W =L, @ - @ L,, in such a way that the characters C, x p, — Gy, describing the
action of C, x p, on the L; are all distinct, and each L;\{0} is contained in U, and

(b) U contains a point that is fixed under Tpg,.

Then the restriction homomorphism Ac, *Trar, (W\{0}) — Ag, < Trar, (U) is an isomor-
phism.

Proof.  First of all, let us show that Ac , ”p(W\{O}) — Ac ﬂp(U ) is an isomor-
phism. Denote by D the complement of U in W\{0}, with its reduced scheme structure.
Let P be the projectivization of W, and call U and D the (respectively open and closed)
subschemes of P corresponding to U and D. We have a commutative diagram

Aépxyp(D) - AC ><;4,,( ) - Aépx,up((_]) — 0

l l l

Ac s, (D) — Ac, ., WN{0}) — A, (U) —— 0

where the columns are surjective pullbacks, and the rows are exact. It follows that it is
enough to show that the composite

Al (D) = Al (P) = AL, (W\{0})

is 0, or, equivalently, that any element of the kernel of A , ", (P) = A, “, (

in AC xB, (W\{0}). Denote by ¢; € P the rational point correspondmg to L;.

U) maps to 0

Denote by /; € A Xty the first Chern class of the character C, x u, — Gy, describing
the action of C, x u, on (L;, and h e AC < the first Chern class of the sheaf (1) on P. We
have presentations

Aépx,u ( ) Z[f,i’],h]/(pf,pﬂ, (h_fl)(h_/r))
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216 Vistoli, On the classifying space of PGL,

and

A& s, (WN0}) = Z[E )/ (S, p, 1 - 1)),

and a commutative diagram

Z(&n, B/ (pE, pn, (h—4)...(h— ;) —— Z[En)/(pE, pn,ti ... L)

J |

Fol&m b/ (h=0)...(h=10) —— Bl&nl/(h...0)

in which the first row is the map that sends / to 0, and corresponds to the pullback.

The restriction homomorphism A, ]( ) = A« " (qi) = A¢,« u, SENs /2 into /. But
U contains all the g;, so the kernel K of the restriction AC <, (P) — AC g, (U) is contained
in the intersection of the ideals (4 — /;). In the polynomlal ring F, [, #, h], however, the in-
tersection of the ideals (7 — /;) is the ideal generated by the product of the & — /;, because
F,[&,n,h] is a unique factorization domain, and the s —/; are pairwise non-associated
primes. Hence the image of an element of K is 0 in F,[&,#]/(/ .../); but the homomor-
phism

AC i, WN0}) = Fp[E ]/ (4. 4))
is an isomorphism in positive degree, and from this the statement follows.
Now consider the restriction homomorphism

A¢, xToa, (WO} = A¢ ety (U)-
Denote by y the top Chern class of W in AC < Tpor, > the kernel of the surjective pullback
Aép[XTPGLp — Aé,,prGL (W\{0}) is the ideal generated by y, and we need to show that the

kernel of the pullback AC,, ACpXTPGL,,( U) is also the ideal generated by j.

XTpgL,

Denote by R the image of A, = Tear, in Ac = = Z[&,n]/(p&, pn); this is the subring
generated by ¢ and the image of g, that is n” — &7~ 117, by Lemma 6.7.

Take some u in the kernel of Ac, X Togr, ACPlePGL (U). Since Tpgr, has a fixed

point in U, the pullback Ap, A;PGL (U ) s an 1somorph1sm hence u is contalned in
the kernel of the restriction Aé = Tror, A* . This kernel is the ideal éAC < Trar, which

is a vector space over the field [, with a ba51s consisting of the elements &' o‘f with 7 > 0
and j = 0. The homomorphlsm AC = Trar, AC <, sends &' a’ into &'(y? — ép 7). The
two elements ¢ and 5? — &7 1y are algebralcally 1ndependent in AC <y SO the ideal
EA Cp'XTPGL maps isomorphically onto the ideal £R. Hence it is enough to show that u maps
into the ideal yR. But u maps into the ideal yA
in AZ

Cpxp,

Cpxty? because by hypothesis it maps into 0
(W\{0}), so we will be done once we have shown that YR = RnyAs

pXHy”

For this purpose, consider the diagram
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Vistoli, On the classifying space of PGL, 217

*
R D— ACP X,

l l

Fpl&,n? — &7y —— F,[E,7]

where the horizontal arrows are inclusions and the vertical arrows are isomorphisms in
positive degree. It suffices to prove that

Y [E P — E7 ) = F &, 0P — &7 ] ey, €, );

but this follows from the fact that the extension [, [&, 7” — &~ 'y] < F,[¢, 7] is faithfully flat,
since it is a finite extension of regular rings.

This concludes the proof of the lemma. []

The lemma applies to the case W = D, and W = sl,. In the first case this is straight-
forward; in the second one it follows from Lemma 5.1. [

11. The classes p and S
. . p+1 3
In this section we construct the classes p € Apg; and ff € Hpgy, -

Proposition }1 A.  There exists a unique torsion class p € AgEIL , whose image in A"CHX1 “,
equals r = &n(E"" — ).

Furthermore we have pP~' = c,._(sl,) € Apgr,-
Proof. Uniqueness is obvious from Proposition 9.4.
Let us construct a p-torsion element p € AS pr ot that maps to r in Aé,,x e

Consider the element —¢¢(a,) = &, (V) € Aff; Tear,s 0Y Lemma 6.7, its restriction to
Aé xa, is r. It is p-torsion, because ¢ is p-torsion; hence'it maps to 0 in At Tror, Since the
torsion part of AC Ty, IDJECLS iNtO ACPX and the image of &c, (V) in Ac,,x Is invariant

GLp . Hy . Hy

under F; X [, it follows that ¢cp(V) is also invariant under Fj X< [,

By Proposition 8.1, there exists a p-torsion class p € AS KT oo, Whose image in AC xt,

P

is r. By Proposition 10 1, there exists a p-torsion element p € Af’,g}_ whose image 1n
ASQTPG has the form 5 + ¢, 1(D,)o for a certain class o € A3 < Thar,

The image of p in (AE‘j Xty )SLz([F "= = Z[q, r] must be an integer multiple ar of r, for rea-
sons of degree. The image of Cp—1(Dy) is —&P71: hence by mapping into Aép «u, WE get an

74
equality
1
ar=r— &P heACpX”,
where /1 € AC <ty is the image of . From this equality it follows easily that ¢ is 1 and % is 0,
and therefore p maps to r.
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218 Vistoli, On the classifying space of PGL,

To check that pP~! = Cy2_1(sl,), observe that both members of the equality are 0
when restricted to TecL, hence by Proposition 9.4, it is enough to show that the restriction

of ¢,o_(sl,) = c,o1(gl,) to Aé ‘,

equals ”~!; and this follows from Lemma 5.5. [J
Corollary 11.2.  The restriction homomorphism Apg — (Aépxﬂp)SL2([F”) is surjec-
tive.

Proof. The ring (A(*:pX ”p)SLZ([FI’) is generated by ¢ and r. The class —c,._,(sl,) re-
stricts to ¢, by Lemma 5.5, while p restricts to r. []

Remark 11.3. The class p gives a new invariant for sheaves of Azumaya algebras of
prime degree. Let X be a scheme of finite type over k, and let .7 be a sheaf of Azumaya
algebras of degree p. This corresponds to a PGL,-torsor E — X’; and according to a result
of Totaro (see [19] and [2]), we can associate w1th the class p € Aggi and the PGL-torsor
E aclass ¢(.«7) € A”"1(X) (where by A*(X) we mean the bivariant ring of X, see [5]). Since
by definition .7 is the vector bundle associated with E and the representation gl, of PGL,,

we have the relation
— 2_
p()P ! =cpo () e AP TH(X).

Remark 11.4. The class p depends on the choice of the primitive p'" root of 1 that
we have denoted by w. If we substitute o’ for w, then the new class p is ip.

For the class f, one possibility is to obtain it as the Brauer class of the canonical
PGL,-principal bundle, as explained in the Introduction. Another possibility is to define it
via a transgression homomorphism, as follows. There is a well known Hochschild-Serre
spectral sequence

i yyi J i+j
Ey = Hpg, ® Hg = Hgy,
from which we get an exact sequence

2 2 3 3
HGL,, —Hg — HPGLp - HTPGLF =0;

and H2 is the infinite cycllc group generated by the first Chern class ¢ of the identity char-

acter Gm = Gp, while HGL is the cyclic group generated by the first Chern class of the de-

terminant GL, = G, whose i image in H@ is pt Hence HPGL is the cyclic group of order

p generated by the image of z. We define f € HPGL to be this image.

The odd dimensional cohomology Hgg‘i maps to 0 in Hy, _ ; hence, according to
Proposmon 9.4, maps injectively into HC <ty By the results of Sect10n 5, we have that
HC ” is isomorphic to Z/pZ, hence the restriction homomorphism HPGL — HC <ty is an
1somorph1sm and the image of § generated H} From Proposition 5.9 we obtain the
following.

Coxp,”

Corollary 11.5.  The restriction homomorphism Hpg, — (H¢ ., VS22 ) s surjective.
P
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Vistoli, On the classifying space of PGL, 219
12. The splitting
In this section we prove Theorem 3.2.

Consider the embeddings

u, —— Tpa,

F f

Cp x m, =—— S, X Tpgy,
which induce a diagram of restriction homomorphisms

* * Sy
Sp X TPGL[) (ATPGLF )

l l

* *
N )
Coxmy A”p

Lemma 12.1.  The induced homomorphism

ker(Ag

Sp<TrcL,

— AL ) — ker((A-’fPGLp)S” — AL

*
Coxtty '

is surjective.

Proof. We will prove surjectivity in two steps; first we will show that the map is sur-
jective when tensored with Z[1/p], then that it is surjective when tensored with Z[1/(p — 1)!].
For the first case, notice that Aé,,x,lp ® Z[1/p] is 0 in positive degree, while in
degree 0 there is nothing to prove; so what we are really trying to show is that

* * S, . . .
ASpKTPGLp ®Z[1/p] — (ATPGLp) » ® Z[1/p] is surjective.

Consider the subgroup S,_; = S, of the Weyl group of PGL,,, consisting of permuta-
tions of {1,..., p} leaving p fixed.

*

Syt Lo
TPGL,,) is surjective.

Lemma 12.2.  The restriction homomorphism Ag < Tror, (A
Proof.  There is an isomorphism Tgr, , ~ TpgL,, defined by
(tiy oy tpe1) = (t, .oy tpoty 1)
that is S,_j-equivariant, and therefore induces an isomorphism of the semi-direct product

Sp—1 X TeaL, with the normalizer S,_; X Tay, of the maximal torus in GL,_;. Hence it is

enough to show that A — (A )S”*l is surjective; but the composite
T,

*
Sp-1=TaL,

* * * Sp-1
AGLp,l - ASP71><TGL1,71 - (ATGLIH)

is an isomorphism, and this proves what we want. []
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220 Vistoli, On the classifying space of PGL,

Take an element ue (Af, )% according to the lemma above, there is some
p

S,—1 X TpgL, .
ve Al such that res,” . "° p = u. Consider the element
S ]'><TPGL TPGL
def | S,- 1I><TPGL,, * .
w=tr S KTPGL ve ASPIXTPGLP’

to compute its restriction to A7 Tpar, WE USE Mackey’s formula (Proposition 4.4). The double
quotient TraL, \S, X TeaL, /Sp-1 < TeaL, has p elements, and we may take C, as a set of

representatives. Then the formula gives us that the restriction of w to ATPGL is

-1XTpgL,
AEZ(:; sresTpGL "v = pu.
If we invert p, this shows that u is in the image of Ag

first step.

and completes the proof of the

Sp < TegLy,?

For the second step, take some u € L. According to Proposition 7.1 (e) there exists
v in the kernel of the restriction homomorphism A¢, < Trar, — Ac, «,, Whose restriction to
* P
A is u. Consider the element

TecL,
def C,XxTpa,
=1t S [><TPGL[;
I claim that w is in K. In fact the restriction of w to At ol is (p — 1)!lv = —v, and therefore

further restricting it to C, X TrcL, sends it to 0.

The double quotient TPGLP\SI, > TpgL, /Sp—1 X Tpc, has (p — 1)! elements, and a set
of representatives is given by S,_;. Hence according to Mackey’s formula we have that the
restriction of w to Ay, is

P

c
3 sresTPGLTPGL” v=(p— Dl

seS, 1

and this completes the second step in the proof of Lemma 12.1. [

Similarly, there is a diagram of restriction homomorphisms

* * S,
PGLI, (ATPGLI; ) !
* *
Cpxm, Aﬂp )

Lemma 12.3. The homomorphism
ker(ApgL, — Ac,« ;4,,> ker((ATPGL ) — A;p)
induced by restriction is an isomorphism.
Proof. Injectivity follows from Proposition 9.4.
As in the previous case, we show surjectivity first after inverting p, and then after

inverting (p — 1)
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Vistoli, On the classifying space of PGL, 221

As before, we have Aé <ty ® Z[1/p] = Z[1/p], so we only need to check that

Apgr, ® Z[1/p] — (A{‘-PGL )Y ® Z[l /p] is surjective. This follows from Lemma 12.1 and
from Corollary 9.6.

Now we invert (p — 1)!. Choose an element

u € ker (A

Tror,

) — AL) ®Z[1/(p— 1)1
by Lemma 12.1, we can choose
i eker(AY e, — Ady) ® Z[1L/(p— D)

mapping to u in At By Proposition 10.1, we can write

Trcr,
u' =v+c,_1(Dy)w,

where v is in Apg ® Z[1/(p —1)!] and w is in Ag xTrar, ® Z[1/(p — 1)Y]. The image of
cp(Dy) in Ag, o, is 0 because TpgL, acts trivially on D ; so the image of v in A, - equals
u. But there 1s 10 reason why v should map to 0 in AC e

Let us denote by © and w the images of v and w respectively in

Al ® Z[1/(p = 1] = Z[1/(p — DNIIE,nl/ (pE, P1):

the restriction of c,_;(D,) equals —&P71 5o we have o — £P7'ip = 0. On the other hand 7 is
contained in

(Al @ Z[1/(p = 1)) = Z[1/(p — 1)!]lg. 1)/ (P4 pr);

since 7 is contained in the ideal of Z[1/(p — 1)!|[&, n]/(pé&, pn) generated by &, and the im-
ages of ¢ and r in

211/ (p = DYEn /(& pn) = 2[1/(p — D[]/ (pn)

are ;71”2‘1’ and 0, we see that 7 is a multiple of r; hence we can write o = r¢(q, r), where ¢ is
a polynomial with coefficients in Z[1/(p — 1)!]. Set

v _U_p¢( p pﬂp)

then v’ restricts to 0 in A¢ , e and its image in A7
because p maps to 0.

Trot, equals the image of v, which is u,

This concludes the proof of Lemma 12.3. []

Set K = ker(Apgr, — A(, ., ) and L = ker((Af,, ) — A ). The induced homo-
morphism K — L is an 1somorphlsm, according to Lemma 12.3.

Consider the subring Z ® L < (AT, - ) ; Proposition 7.1 (e) gives us a copy Z ® K
of it inside Apg . To finish the proof of Theorem 3.2 we need to extend this splitting to all
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222 Vistoli, On the classifying space of PGL,

of (A, - )% According to Proposition 3.1, we have that (AT, - )% is generated as an al-
gebra overZ@® L by the single element 0. We need to find a llftmg for 9; this is provided by
the following lemma.

Lemma 12.4.  The restriction of c,2_,(sl,) € Apgy to A%igf equals 0.
4 ?

Proof.  We use the notation in the beginning of Section 3. The representations sl,
and gl, = sl, @ k of PGL,, have the same Chern classes. If ' = k" is the standard represen-
tation of GL,, then gl, = V' ® V" has total Chern class

ci(gl,) = TT(1 +#(xi — x;)) = [T(1 + t(xi — x7))

i,j i+
in AT ;but A

TroL,

c A;GLF, so the thesis follows. []

Set 01 =c,2(sly) € Apgy,. We consider the subring (Z@ K)[01] of Apg ; to
finish the proof of the theorem we have left to show that it maps injectively into

(Z® L)) = (At,,,)>-

Let us take a homogeneous element x € (Z @K) [01] that maps to 0 in (A;PGL )
according to Proposition 9.4, to check that it is 0 it is enough to prove that it restricts "to 0
in Ac , u, Write

X =ay+ ad) + 02512 + a3(513 +

The a; of positive degree are in K, and therefore map to 0 in AC,,>< by definition; so there
can be at most one term that does not map to zero, and that has "to be of the form h5
where / is an integer. However, the restrlctlon of x to A, = Z[n|/(pn) is zero, and since
01 restrlcts to a nonzero multiple of ;71’ 7 we see that & mupst be divisible by p. This proves
that h5 also restricts to 0 in Ac,, <ty and completes the proof of the theorem.

Remark 12.5. The splitting (AT ) — Apg, that we have constructed is not
compatible with the splitting (AT, ) r— AC < Tror, constructed in Section 7, in the sense
that the diagram

S
(Apg, )" — Apat,

| l

* C, *
(ATPGL,, ) - ACp XTpaL,

where the rows are the splittings and the columns are restrictions, does not commute.

13. The proofs of the main theorems
Let us prove Theorem 3.3.

First of all, let us check that p generates APGL as an algebra over (A;PGL )% . Take a

homogeneous element o € Apg, . The image of 6 € (ATPGL )> in Apgl, i ¢p2 _p(gl ), by con-
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struction; and this maps to —¢ in AC Xty by Lemma 5.5. So there is a polynomial ¢(x, y)
with integer coefficients such that o — (5 p) is in the kernel of the restriction homomor-
phism Apg — Al but this kernel is in the image of (A*pGL,,) 7 again by construction;

C><,u’
)

and this shows that ApgL, Is generated by p as an algebra over (A}PGL

The relations given in the statement are satisfied. We have pp =0 by construc-

tion. Furthermore, by construction the splitting (A, )y — Apgy, sends the kernel
P

of the homomorphism (A}PGL R A* into the kernel of Apg — Ac «u,> hence, if
ue ker(( ) — Apgl, ) we have that up € A goes to 0 in Af, Ly , because pis

torsion, and bt A¢, e Hence up = 0, because of Propos1tion 9.4.

Let x be an indeterminate, / the ideal in the polynomial algebra

(Abyer)

generated by px and by the polynomials ux, where u is in the kernel of the restric-
tion homomorphism (ATpg o, )% = A* ; we need to show that the homomorphism
(ATPGL V¥ [x]/I — Apgr, that sends x to p 1is an isomorphism. Pick a polynomial
$e (A;PGLP)S” [x] such that #(0) =0 in APGL After modifying it by an element of I, we
may assume that it is of the form o + (9, p) where o is in the kernel of (A, ot )5 - A*
while i is a polynomial in two variables with coefficients in [,. Since the i images of and
pin AC Xty that are ¢ and r, are linearly independent in Fp[é, 17], we see that iy must be 0.
Hence o = 0 in Apg ; but since (Ag, - ) injects inside Apgr,» we have that ¢(x) =0, as
we want.

Next we prove Theorem 3.4. We start by proving Corollary 3.5, that says that the

cycle homomorphism A} — HES! is an isomorphism.
y P PGL, PGL, P

Call K and L, respectively, the kernels of the restriction homomorphisms

pGL, — (AC « “, )S2(2) and Hper, — (Hf’j"‘;“”p)SLZ([F »); we have a commutative diagram
* * SL,(F,)
0 — K —— Apg, — (Ag,) — 0
4 P
even even \SL(F,) 0

0 — L — HPGL,, - (Hc,,x,z,,

with exact rows. The right-hand column is an isomorphism, because of Propositions 5.4
and 5.9. The group L injects into
ker ((H;

)7 = H, ) =ker((Aq,, )" — A, ),

Tea, TraL,

because of Proposition 9.4; on the other hand the restriction homomorphism

K — ker((A}

*
TecL, ) " A/l,,)
is an isomorphism, because of Lemma 12.3. This proves that K — L is an isomorphism,
and this proves Corollary 3.5.
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To show that p and f3 generate Hpg; ~as an algebra over (A{PGLP)S", take a homoge-
neous element o EAPGL The element p generates Hpgy , because of Theorem 3.3 and
the fact above.

If o is a homogeneous element of odd degree in Hpg, , its image in ngﬂ u, €A1 be
written in the form ¢(q,r)s, where ¢ is an integral polynomial, by Proposition 5.9. Then

¢(—0, p)f maps to 0 in HOdG1 . On the other hand HSdeL injects into H | by Pro-

Coxu,>
pos1t10n 9.4, and this completes the proof that p and generate !

To prove that the given relations generated the ideal of relations is straightforward,
and left to the reader.

Finally, let us prove Theorem 3.6.

Since the homomorphisms Apg; @ @ — Agy @ Q and Apg, ® 0 — Ag ® Q are
isomorphisms, the ranks of APGL and HpGL equal the ranks of ASL and HSL The ranks
of the HPGL are 0 when 7 is odd; while for any m = 0 the rank of APGL ~ HPGL equals the
number of monomials of degree m in o5, ..., 0,. Such a monomial sz ... p% can be identi-
fied with a partition (2% ... p%> of m, so this rank is the number of partitions of m with

numbers between 2 and p.

On the other hand it follows from Theorem 3.3 that the torsion part of Apg is a
vector space over the field F,, with a basis given by the elements 0'p/, where i > 0 and
j > 0. Similarly, from Corollary 3.5 we see that the same elements form a basis for

pGL,» While Hl‘)’éde is an F,-vector space with a basis formed by the elements §’p/, where
i=0 ‘and j=0.

The theorem follows easily from these facts.

14. On the ring (A} et )Se

If T is a torus, we denote by T the group of characters T — G,,. We have a homo-
morphism of 7 into the additive group A} that sends each character into its first Chern
class: and this induced an isomorphism of the symmetric algebra Sym, 7" with A7.

In this section we study the ring of invariants (Ag, - Y5 It is convenient to view
(A{PGL )Sf’ as a subring of (Ap ) 7; this last ring is generated by the symmetric functions
P
ai, ..., 0, of the first Chern characters X1, ..., X, of the projections Tgr, — Gn.

If we tensor (Ag,, )S” with Z[1/p], then we get a polynomial ring; and it is easy to
exhibit generators. The Homomorphism of groups of characters

Tpor, — Tsi,

induced by the projection Tsp, — TpgL, is injective, with cokernel Z/pZ; hence it becomes
an isomorphism when tensored with Z[1/p]. Hence
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Vistoli, On the classifying space of PGL, 225
* « S
(At ) ® Z[1/p] — (Azy )Y © Z[1/p]
is an isomorphism.

According to Lemma 7.2, the ring (A;SLP)S" is a quotient

(A;GL,,)S"/(Jl) =Z[o1,...,05)/(01) = Z[rz,..., 7],

where we have denoted by 7; the image of o; in ATS One way to produce elements of

(A}PGL )Sf’ is to write down explicitly the elements correspondmg to the o; in the isomor-

phlsm

(At )Y ®Z[1/p] = Z[1/pllo, ... 0]

and then clear the denominators.
The composite

® Z[1/p] = Ag

Tor,

®Z[l/p] — A, ®Z[1/p]

|

ZIUpllx1s s 5] —— Z[pllxrs - %]/ (01)

TPGL

is an isomorphism, and the inverse Z[l/p]|[xi,...,x,|/(o1) — AL, ® Z[1/p] is ob-

: . 1 .
tained by sending x; to x; —;al. We need to compute the image of the o in

Trc,
AI’SGL ® Z[1/p] < Z[1/p][o1,...,0,], and this is given by the following formula (the one
giving the Chern classes of the tensor product of a vector bundle and a line bundle).

Lemma 14.1. If ¢t is an indeterminate, we have

k o . .
ak(x1+z,...,xp+z)—2<p i.c—H)t’ak_i
i=0

:O'k+(p—k+1)tdk_1+<p§+2)t20k_2+...+<£_i>tk—lal+<£>lk

in”Zxi,...,xp,t),fork=0,....p

Proof- This follows by comparing terms of degree k in the equality

p . P

> (1+0'api=T1(1+1+x;)
i=0 i=1

)4
Z (x1+t...,x,+1). 0O
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. 1 . . .
If we subtitute — ;al for ¢ we obtain the images of the 7, in (A, )S" ® Z[1/p]; we

denote them by y;. In order to get elements of (ATPGL )S”, we clear the denominators in the

y!; by a straightforward calculation we check that

e =Py

B i kil (P —kFi e k=1 (p—=1Y\ 4
e R R e A
fork=2,...,p—1, while

7 =P,

p=2 . . .
}%(—-l)ﬁﬂ””0¢—40i-%(17—-1)6f-

From the discussion above we get that (A} v, ) »® Z[1/ p] is a polynomial ring over
Z[1/p] over p,,...,y,. However, the y; cannot generate (AT, )¥ integrally, because all of
GLp
them are in the kernel of the homomorphism (A, )5 — A* , while 6 € (Ap 7 ) ” 1S not.
P

When p = 3 the situation is simple. The following result was proved by Vezzosi.

Theorem 14.2 ([21], Lemma 3.2).

(IA’;PGLF)S3 = Zb)27 y375]/(275 - 4V2 - y3)
From this, Theorem 3.7 follows easily.

As p grows, the calculations become Very complicated very quickly. The obvious
generalization of the result above, that (Af, oL, ) is generated by the y; and J, fails badly.
When p is larger than 3, it is not hard to see that they fail to generate already in degree 4.
When p = 5 the ring (A{iPGLS)S5 has 9 generators, in degrees 2, 3, 4, 5, 6, 7, 9, 12 and 20;
with some pain, it is possible to write them down explicitly. The generators in degree 2 and
3 are p, and y;. With more work it should also be possible to find the relations among
them.

There are other approaches to calculations other than the one given here for p = 3;
but none of them seem to give a lot of information in the general case.

References

[1] Leonard Eugene Dickson, A fundamental system of invariants of the general modular linear group with a
solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), no. 1, 75-98.

[2] Dan Edidin and William Graham, Characteristic classes in the Chow ring, J. Alg. Geom. 6 (1997), no. 3,
431-443.

[3] Dan Edidin and William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595-634.

[4] Rebecca E. Field, The Chow ring of the classifying space BSO(2n, C), arXiv: math.AG/0411424, 2004.

Brought to you by | Ecole Normale Superieure (Ecole Normale Superieure)
Authenticated | 172.16.1.226
Download Date | 2/24/12 2:20 PM



Vistoli, On the classifying space of PGL, 227

(5] William Fulton, Intersection theory, second ed., Ergebn. Math. Grenzgeb. (3) 2, Springer-Verlag, Berlin 1998.

(6] Skip Garibaldi, Alexander Merkurjev, and Jean-Pierre Serre, Cohomological invariants in Galois cohomo-
logy, Univ. Lect. Ser. 28, American Mathematical Society, 2003.

[7] Daniel Henry Gottlieb, Fibre bundles and the Euler characteristic, J. Diff. Geom. 10 (1975), 39-438.

(8] Alexander Grothendieck, Le groupe de Brauer. I. Algebres d’Azumaya et interprétations diverses, Dix Ex-
posés sur la Cohomologie des Schémas, North-Holland, Amsterdam; Masson, Paris (1968), 46-66.

(9] Alexander Grothendieck, Le groupe de Brauer. III. Exemples et compléments, Dix Exposés sur la Cohomo-
logie des Schémas, North-Holland, Amsterdam; Masson, Paris (1968), 88—188.

[10] Pierre Guillot, Chow rings and cobordism of some Chevalley groups, Math. Proc. Cambridge Philos. Soc.
136 (2004), no. 3, 625-642.

[11] Pierre Guillot, Steenrod operations on the Chow ring of a classifying space, Adv. Math. 196 (2005), 276-309.

[12] Masaki Kameko and Yagita Nobuaki, The Brown-Peterson cohomology of the classifying spaces of the
projective unitary groups PU(p) and exceptional Lie groups, preprint 2005.

[13] Akira Kono and Mamoru Mimura, On the cohomology of the classifying spaces of PSU(4n +2) and
PO(4n + 2), Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 3, 691-720.

[14] Akira Kono, Mamoru Mimura, and Nobuo Shimada, Cohomology of classifying spaces of certain associative
H-spaces, J. Math. Kyoto Univ. 15 (1975), no. 3, 607-617.

[15] Alberto Molina and Angelo Vistoli, On the Chow rings of classifying spaces for classical groups, arXiv:
math.AG/0505560, 2005.

[16] Rahul Pandharipande, Equivariant Chow rings of O(k), SO(2k + 1), and SO(4), J. reine angew. Math. 496
(1998), 131-148.

(17] Elisa Targa, Chern classes are not enough, J. reine angew. Math. 610 (2007), 229-233.

(18] Hiroshi Toda, Cohomology of classifying spaces, Homotopy theory and related topics (Kyoto 1984), Adv.
Stud. Pure Math. 9, North-Holland, Amsterdam (1987), 75-108.

[19] Burt Totaro, The Chow ring of a classifying space, Algebraic K-theory (Seattle, WA, 1997), Amer. Math.
Soc., Providence, RI (1999), 249-281.

[20] Ales Vavpeti¢ and Antonio Viruel, On the mod p cohomology of BPU(p), Trans. Amer. Math. Soc. 357
(2005), no. 11, 4517-4532.

(21] Gabriele Vezzosi, On the Chow ring of the classifying stack of PGL; ¢, J. reine angew. Math. 523 (2000),
1-54.

[22] Clarence Wilkerson, A primer on the Dickson invariants, Proceedings of the Northwestern Homotopy
Theory Conference (Evanston, Ill., 1982), Contemp. Math. 19 (1983), 421-434.

(23] Nobuaki Yagita, Chow rings of classifying spaces of extraspecial p-groups, Recent progress in homotopy
theory (Baltimore, MD, 2000), Contemp. Math. 293 (2002), 397-409.

[24] Nobuaki Yagita, Applications of Atiyah-Hirzebruch spectral sequences for motivic cobordism, Proc. London
Math. Soc. (3) 90 (2005), no. 3, 783-816.

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
e-mail: angelo.vistoli@sns.it

Eingegangen 5. Juli 2005, in revidierter Fassung 18. Juni 2006

Brought to you by | Ecole Normale Superieure (Ecole Normale Superieure)
Authenticated | 172.16.1.226
Download Date | 2/24/12 2:20 PM



