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Abstract

In its simpler form, the Heisenberg–Pauli–Weyl inequality says that

‖f ‖4
2 � C

( ∫
Rn

|x|2∣∣f (x)
∣∣2 dx

)( ∫
Rn

∣∣(−�)
1
2 f (x)

∣∣2 dx

)
.

In this paper, we extend this inequality to positive self-adjoint operators L on measure spaces with a “gauge
function” such that (a) measures of balls are controlled by powers of the radius (possibly different powers for
large and small balls); (b) the semigroup generated by L satisfies ultracontractive estimates with polynomial
bounds of the same type. We give examples of applications of this result to sub-Laplacians on groups of
polynomial volume growth and to certain higher-order left-invariant hypoelliptic operators on nilpotent
groups. We finally show that these estimates also imply generalized forms of local uncertainty inequalities.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

It is a well-known fact in classical Fourier analysis that a function f and its Fourier transform
f̂ cannot both be compactly supported, unless f = 0 a.e. This is the simplest qualitative form of
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uncertainty principle. The most common quantitative formulation of the uncertainty principle is
the Heisenberg–Pauli–Weyl inequality. It says that, if f ∈ L2(Rn) and α > 0,

‖f ‖4
2 � Cα

( ∫
Rn

|x|2α
∣∣f (x)

∣∣2
dx

)( ∫
Rn

|ξ |2α
∣∣f̂ (ξ)

∣∣2
dξ

)
. (1)

We refer to [8] for an overview of the history and the relevance of this inequality, as well as
to its generalizations allowing other Lp-norms and different powers of |x| and |ξ |.

An equivalent formulation of (1) is

‖f ‖4
2 � Cα

( ∫
Rn

|x|2α
∣∣f (x)

∣∣2
dx

)( ∫
Rn

∣∣(−�)
α
2 f (x)

∣∣2
dx

)
, (2)

where � denotes the Laplacian on Rn.
This form of the Heisenberg–Pauli–Weyl inequality is better suited for extensions to other

contexts, with the Laplacian replaced by a positive self-adjoint operator, and |x| by a distance
function. The interpretation of uncertainty inequalities as spectral properties of differential oper-
ators is widely present in the literature [6,7,15].

We are motivated in particular by extensions to the context of Lie groups and left-invariant
differential operators on them. The direction we have in mind is that explored in [20], where
the analogue of (2) is obtained on the Heisenberg group Hn, involving the U(n)-invariant sub-
Laplacian and the natural homogeneous norm (we mention that, by a refinement of the same
approach, an extension to general sub-Laplacians on step-two nilpotent groups is given in [2],
and that other forms of the uncertainty principle on the Heisenberg group are in [10,19]).

In this paper we prove a general form of the Heisenberg–Pauli–Weyl inequality that requires
very little structure, basically a measure space with a “gauge function” such that measures of
balls are controlled by powers of the radius (possibly different powers for large and small balls),
and a contraction semigroup on L2 satisfying ultracontractive estimates with polynomial bounds
of the same type.

Concerning Lie groups, the general setting that we are going to introduce includes at least two
cases, which are presented in this paper.

The first situation is that of a group G of polynomial growth, endowed with a sub-Laplacian
L = −∑k

j=1 X2
j , where the Xj are left-invariant vector fields generating the Lie algebra g. In

this case, the norm |x| in (1) is replaced by the distance of x from the identity in the control
metric induced from the Xj .

The second situation is that of a nilpotent group G and a left-invariant, self-adjoint, positive
differential operator P(X1, . . . ,Xk) admitting a homogeneous, hypoelliptic lifting to the free
nilpotent group G̃ generated by X1, . . . ,Xk and of sufficiently high step. This includes, for in-
stance, operators of the form

L =
k∑

j=1

(iXj )
2νj ,

where the νj are integers and the Xj generate the full Lie algebra of G. Here, |x| is replaced by
the distance of x from the identity element, in the quotient metric on G induced by a homoge-
neous norm on G̃.
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We remark that our results for higher-order operators give new inequalities also in Rn.
In the last part of the paper (Section 4), we comment on the “local uncertainty inequalities,”

which appear as crucial preliminary results in previous proofs of the Heisenberg–Pauli–Weyl
inequality [5,20].

In the classical context, the local uncertainty inequality says that, for a test function f on Rn

and a measurable set E with Lebesgue measure |E| < ∞,∫
E

∣∣f̂ (y)
∣∣2

dy � Cα|E| 2α
n

∫
Rn

∣∣f (x)
∣∣2|x|2α dx, (3)

if 0 � α < n
2 .

The left-hand side of (3) can be interpreted as the L2-norm squared of PEf , where PE is the
translation-invariant orthogonal projection on L2 whose Fourier multiplier is the characteristic
function χE of E. Denoting by wE the inverse Fourier transform of χE , so that PEf = f ∗ wE ,
(3) can be expressed as a weighted L2-estimate for PE ,

‖PEf ‖2 � Cα‖wE‖
2α
n

2

∥∥|x|αf
∥∥

2. (4)

We prove that analogues of (4) hold on general Lie groups.

2. The general theorem

We consider a locally compact space X endowed with a positive Borel measure m and:

(i) a non-negative “gauge” ρ(x, y) continuous on X × X, such that

ρ(x, y) = 0 ⇔ x = y, ρ(x, y) = ρ(y, x), (5)

and with the property that the “balls” B(x, r) = {y: ρ(x, y) < r} satisfy the volume growth
conditions

m
(
B(x, r)

)
�

{
rd0 for r → 0,

rd∞ for r → ∞,
(6)

for some d0, d∞ > 0 and uniformly in x;
(ii) a positive self-adjoint operator L on L2(X) generating an ultracontractive semigroup that

satisfies

∥∥e−tL
∥∥

1→∞ �
{

t−
d0
k for t → 0,

t−
d∞
k for t → ∞,

(7)

for some k > 0.

The main example of this kind of situation that we have in mind is a Lie group of polynomial
volume growth with a given sub-Laplacian on it.

A non-compact connected Lie group G of polynomial volume growth [12] has the property
that the (left and right) Haar measure of large balls, with respect to any left-invariant distance,
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grows like the d∞-power of the radius, for some positive integer d∞ not depending on the dis-
tance.

Let {X1, . . . ,Xm} be a family of left-invariant vector fields generating the full Lie algebra
of G. The left-invariant Carnot–Carathéodory distance on G induced by this family has the prop-
erty that the Haar measure of small balls is comparable to the d0-power of the radius, for some
positive integer d0.

By Hörmander’s theorem, the sub-Laplacian

L = −
m∑

j=1

X2
j

is hypoelliptic and generates a semigroup satisfying (7) with k = 2 [21].
Other examples in which conditions (6) and (7) are satisfied occur in the context of Rie-

mannian manifolds of non-negative Ricci curvature [4,11] and fractals [1].
We have the following extension of the Heisenberg–Pauli–Weyl inequality.

Theorem 2.1. Assume that X,m,ρ,L satisfy (6) and (7). Let α,β > 0 and x0 ∈ X. If f is in the
domain of Lβ/k ,

‖f ‖2 � Cα,β

∥∥ρα
0 f

∥∥ β
α+β

2

∥∥L
β
k f

∥∥ α
α+β

2 , (8)

with ρ0 denoting the function ρ0(x) = ρ(x0, x).

Proof. Assume that α < d
2 , where d = min{d0, d∞}. We claim that∥∥e−tLf

∥∥
2 � Cαt−

α
k

∥∥ρα
0 f

∥∥
2. (9)

For r > 0, let Br = B(x0, r). We set fr = f χBr , f r = f − fr . Then, since f r � r−αρα
0 f and

e−tL is a semigroup of contractions,∥∥e−tLf r
∥∥

2 �
∥∥f r

∥∥
2 � r−α

∥∥ρα
0 f

∥∥
2.

On the other hand, we have

∥∥e−tLfr

∥∥
2 �

∥∥e−tL
∥∥

1→2‖fr‖1 �
∥∥e−2tL

∥∥ 1
2
1→∞

( ∫
ρ(x,x0)<r

ρ0(x)−2α dx

)1/2∥∥ρα
0 f

∥∥
2.

It easily follows from (6) and the assumption that α < d
2 that∫

ρ(x,x0)<r

ρ0(x)−2α dx =
∑
j�0

∫
ρ(x,x0)∼r2−j

ρ0(x)−2α dx � Cr−2αϕ(r), (10)

with ϕ(r) = rd0 for r < 1 and ϕ(r) = rd∞ for r > 1, and with C depending on α. Therefore,∥∥e−tLfr

∥∥ � Cr−αϕ(t)−
1

2k ϕ(r)
1
2
∥∥ρα

0 f
∥∥ .
2 2
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Hence, ∥∥e−tLf
∥∥

2 �
∥∥e−tLfr

∥∥
2 + ∥∥e−tLf r

∥∥
2 � Cr−α

(
ϕ(t)−

1
2k ϕ(r)

1
2 + 1

)∥∥ρα
0 f

∥∥
2.

Choosing r = t1/k we obtain (9).
To prove the HPW inequality we initially assume that α < d

2 and β � k. By (9),

‖f ‖2 �
∥∥e−tLf

∥∥
2 + ∥∥(

1 − e−tL
)
f

∥∥
2

� Ct−
α
k

∥∥ρα
0 f

∥∥
2 + ∥∥(

1 − e−tL
)
(tL)−

β
k (tL)

β
k f

∥∥
2.

By the spectral theorem, the last term is controlled by tβ/k‖Lβ/kf ‖2, since (1 − e−λ)/λβ/k is
bounded for λ � 0 if β � k. Hence, we obtain

‖f ‖2 � C
(
t−

α
k

∥∥ρα
0 f

∥∥
2 + t

β
k

∥∥L
β
k f

∥∥
2

)
,

from which, optimizing in t , we obtain (8) for α < d
2 and β � k.

If α � d
2 , let α′ < d

2 . Then for all ε > 0,

ρα′
0

εα′ � 1 + ρα
0

εα
, (11)

from which it follows that ∥∥ρα′
0 f

∥∥
2 � εα′ ‖f ‖2 + εα′−α

∥∥ρα
0 f

∥∥
2.

Optimizing in ε, we obtain

∥∥ρα′
0 f

∥∥
2 � C

∥∥ρα
0 f

∥∥ α′
α

2 ‖f ‖1− α′
α

2 .

Similarly, if β > k, we start from (8) with β replaced by some β ′ � k. Then, using (11) and
the spectral theorem, we obtain the Landau–Kolmogorov inequality

∥∥L
β′
2 f

∥∥
2 � C‖f ‖

β−β′
β

2

∥∥L
β
2 f

∥∥ β′
β

2 .

Plugging this into (8) with α replaced by α′ and β by β ′, we get the result. �
3. Higher order operators on nilpotent groups

Let G be a simply connected nilpotent group. The differential operators that we consider
are assumed to be expressible as homogeneous “non-commutative polynomials” of some left-
invariant vector fields on G.

We follow the notation of [14], and call non-commutative polynomial in some indeterminates
x1, . . . , xn an element P(x1, . . . , xn) of the tensor algebra T generated by x1, . . . , xn. Given a
n-tuple a = (a1, . . . , an) of positive integers, we say that P is a-homogeneous of degree m if
every monomial xi1xi2 · · ·xip appearing in P satisfies ai1 + ai2 + · · · + aip = m.
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We say that a left-invariant differential operator L on G is admissible if there is a n-tuple
X = (X1, . . . ,Xn) of vector fields in the Lie algebra g, a n-tuple a and an a-homogeneous
non-commutative polynomial P in n indeterminates, homogeneous of some degree m, such that
L = P(X1, . . . ,Xn). We are not imposing that the Xj are linearly independent, not even that
they are all distinct. We require, however, that they generate g.

If � is the length of g, let also g̃ be the free nilpotent algebra with n generators X̃1, . . . , X̃n and
of length �. Then the map sending each X̃j into the corresponding Xj extends to a homomor-
phism π of the universal enveloping algebra U(g̃) onto U(g). If L̃ = P(X̃1, . . . , X̃n), then L̃ is
homogeneous of degree m with respect to the dilations {δa

r }r>0 of g̃ such that δa
r X̃j = raj X̃j for

every j , and π(L̃) = L. The corresponding dilations on the simply connected group G̃ with Lie
algebra g̃ will also be denoted by δa

r . We call d̃ the homogeneous dimension of G̃ with respect
to these dilations.

We say that P is symmetric if it is invariant under the conjugate-linear anti-automorphism
of T mapping each xi into −xi . By [16], L and L̃, initially defined on D(G) and D(G̃), respec-
tively, are essentially self-adjoint. We keep the same symbols L and L̃ for their closures. We shall
also require that L and L̃ are positive and hypoelliptic. It is proved in [14, Theorem 1], that the
hypoellipticity of L̃ implies that of L. Notable examples of symmetric polynomials P for which
all the conditions above are satisfied are

P(x) =
n∑

j=1

(ixj )
2νj ,

with the νj integers (and with aj = ∏
i 
=j νi , m = 2

∏n
i=1 νi ) [13].

The same symbol π introduced before at the Lie algebra level will be used to denote also the
quotient map from G̃ onto G. We set H = kerπ .

Lemma 3.1. Let P ∈ T be symmetric and a-homogeneous of order m, and assume that L̃ =
P(X̃1, . . . , X̃n) is hypoelliptic and positive on G̃. Then, for t > 0,

e−tL̃f (x) = f ∗ ht (x),

where ht ∈ S(G̃) and ht (x) = t− d̃
m h1(δ

a
t−1/mx).

The proof is in [9].

Lemma 3.2. Let P ∈ T be symmetric and a-homogeneous of degree m, and assume that L̃ is
hypoelliptic and positive on G̃. Then e−tLf = f ∗ h�(t), where

h
�
t (x) =

∫
H

ht (x̃y) dy =
∫
H

ht (yx̃) dy, (12)

x̃ being any element in π−1(x), and dy an appropriate Haar measure on H .

Proof. Define the functions h
�
t by (12). They obviously form a one-parameter semigroup un-

der convolution. Since convolution by ht is a contraction on L2(G̃), it follows by transference
(see [3]) that Ttf = f ∗ h

�
t is a contraction on L2(G).
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If f is a function on G, set f̃ = f ◦ π on G̃. Take now f ∈ D(G). Then f̃ ∗ ht and L̃f̃ are
constant on the cosets of H and

f̃ ∗ ht = ˜
f ∗ h

�
t , L̃f̃ = L̃f .

Therefore,

d

dt

∣∣∣∣
t=0

˜
f ∗ h

�
t = d

dt

∣∣∣∣
t=0

f̃ ∗ ht = −L̃f̃ = −L̃f ,

so that

d

dt

∣∣∣∣
t=0

f ∗ h
�
t = −Lf. (13)

This shows that the infinitesimal generator of the semigroup {Tt } contains L, hence it coin-
cides with its closure. �

We must recall at this point some results from [14].
Given g, X and a as above, one can define two graded Lie algebra structures, g0 = g0(X , a)

and g∞ = g∞(X , a), over the same underlying vector space as g, in terms of which one can
describe the behaviour of fundamental solutions of operators L = P(X1, . . . ,Xn), when P is
a-homogeneous and the corresponding L̃ is hypoelliptic on G̃.

As graded algebras, g0 and g∞ possess natural dilations, those mapping X to rjX if X is in
the j th step of the gradation. Denoting by d0 and d∞ the homogeneous dimensions of g0 and g∞,
respectively, one always has d0 � d∞.

Choose homogeneous norms ρ0(x) and ρ∞(x) on G0 and G∞, respectively (which we shall
look at as functions on G), and choose a homogeneous norm ρ̃(x̃) on G̃. This induces a (non-
homogeneous) quotient norm

ρ(x) = inf
{
ρ̃(x̃): π(x̃) = x

}
(14)

on G. It can be shown that

ρ(x) ≈
{

ρ0(x) for x near 0,

ρ∞(x) for x away from 0.
(15)

The part of Theorem 1 in [14] that we need is the following.

Lemma 3.3. Suppose that P is a-homogeneous of degree m < d0 and that L̃ is hypoelliptic on G̃.
If K(x̃) is the homogeneous fundamental solution of L̃, then

K�(x) =
∫
H

K(x̃y) dy (16)

is the unique fundamental solution of L vanishing at infinity. Moreover,

∣∣K�(x)
∣∣ �

{
ρ(x)−d0+m ≈ ρ0(x)−d0+m for x near 0,

−d∞+m −d∞+m
(17)
ρ(x) ≈ ρ∞(x) for x away from 0.
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Proposition 3.1. The heat kernel h
�
t satisfies the following bounds:

h
�
t (0) �

{
t−

d0
m for t small,

t−
d∞
m for t large.

Proof. We apply Lemma 3.3 to the heat operators L′ = ∂t + L and L̃′ = ∂t + L̃ on the
product groups G′ = R × G and G̃′ = R × G̃, respectively. If x0 is an indeterminate stand-
ing for X0 = X̃0 = ∂t , the corresponding non commutative polynomial is P ′(x0, . . . , xn) =
x0 + P(x1, . . . , xn). This is a′-homogeneous of degree m for a′ = (m,a1, . . . , an).

As shown in [9], L̃′ is hypoelliptic, and its homogeneous fundamental solution is

K(t, x̃) =
{

ht (x̃) if t > 0,

0 if t � 0.

The construction in [14] assigning to the Lie algebra g′ = R + g of G′ the two graded subal-
gebras g′

0 and g′∞ is such that g′
0 = R + g0 and g′∞ = R + g∞, with X0 in the mth step of the

gradation. In particular, the two homogeneous dimensions are d ′
0 = d0 + m and d ′∞ = d∞ + m,

and if ρ′
0, ρ′∞ are the corresponding homogeneous norms,

ρ0(t,0) ≈ ρ∞(t,0) ≈ |t | 1
m . (18)

Since m < d ′
0, we can apply (17) to obtain that

K�(t, x) =
∫
H

K(t, x̃y) dy =
{

h
�
t (x) if t > 0,

0 if t � 0,

is a fundamental solution of L′, and the conclusion follows from (17) and (18). �
Lemma 3.1 and (14) show that (6) and (7) are satisfied with k = m.
This application of Theorem 2.1 can be used to obtain estimates for the Fourier transform

in Rn involving non-homogeneous “norms” on both sides.

Corollary 3.1. Let v1, . . . , vN , N � n, a generating system of vectors in Rn, and let P(t1, . . . , tN )

be a polynomial in N variables, a-homogeneous of degree m with respect some N -tuple of ex-
ponents a = (a1, . . . , aN), and strictly positive away from the origin.

Set η(x) = min{P(t):
∑N

j=1 tj vj = x} and Q(ξ) = P(ξ · v1, . . . , ξ · vN) for x, ξ ∈ Rn. Then,

for f ∈ L2(Rn),

‖f ‖2 � Cα,β

∥∥ηαf
∥∥ β

α+β

2

∥∥Qβf̂
∥∥ α

α+β

2 .

Proof. In this case we take G = Rn, G̃ = RN , and π : RN → Rn given by π(t) = ∑N
j=1 tj vj .

If we choose P(t)1/m as the homogeneous norm on RN , the induced norm on Rn is η1/m. At
the same time, the operators L = Q(−i∂x) on Rn and L̃ = P(−i∂t ) on RN are hypoelliptic and
π(L̃) = L. The conclusion follows from Theorem 2.1 and the Plancherel formula. �
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4. On local uncertainty estimates

Our method of derivation of the Heisenberg–Pauli–Weyl inequality from polynomial esti-
mates for heat semigroups and volumes of balls is modeled on the rather classical proof based
on the local uncertainty estimate (3) on Rn.

In this section we intend to comment that a general version of (3) can be formulated, and that
its use is disguised in our previous arguments.

First of all, we rewrite (3) as

‖f ∗ wE‖2 � Cα‖wE‖
2α
n

2

∥∥|x|αf
∥∥

2,

where wE = F−1χE ∈ L2(Rn). Convolution by wE is an orthogonal projection on L2(X,m)

and the L2-norm of wE can also be interpreted as the (L2 → L∞)-norm of the projection.
The following can then be seen as a natural extension of (3).

Proposition 4.1. Suppose that X,m,ρ satisfy (6) and let P be an orthogonal projection on
L2(X,m) mapping L2 into L∞ continuously. If α < min{ d0

2 , d∞
2 } and ρ0 is as in Theorem 2.1,

then, for every f ∈ L2(X,m),

‖Pf ‖2 �

⎧⎨⎩Cα‖P ‖
2α
d∞
2→∞‖ρα

0 f ‖2 if ‖P ‖2→∞ < 1,

Cα‖P ‖
2α
d0
2→∞‖ρα

0 f ‖2 if ‖P ‖2→∞ � 1.

(19)

Proof. Decompose f as fs + f s , where fs = f χ{ρ0(x)<s}, and use the estimates

‖Pfs‖2 � ‖P ‖2→∞‖fs‖1,
∥∥Pf s

∥∥
2 � ‖f s‖2.

As in the proof of Theorem 2.1,

‖fs‖1 �
( ∫

ρ0(x)<s

ρ0(x)−2α dx

)1/2∥∥ρα
0 f

∥∥
2,

and the proof continues like the proof of (9). �
Taking L = ∫ ∞

0 λdP (λ) satisfying (7), then (19) for the spectral projections P[0,λ] turns out
to be equivalent to (9) [18].

The analogy between (3) and (19) for left-invariant projections on Lie groups can be seen as
follows.

Suppose that G is unimodular and type I, as in the cases considered in other parts of this
article. The condition that P maps L2 into L∞ continuously is equivalent to the fact that Pf =
f ∗ w with w ∈ L2, w = w∗ = w ∗ w, and ‖w‖2 = ‖P ‖2→∞.

In terms of the group Fourier transform of w, this implies that, for a.e. π ∈ Ĝ, π(w) is a
finite-dimensional orthogonal projection. If π(w) 
= 0, let {eπ

1 , . . . , eπ
nπ

} be an orthonormal basis
of the range of π(w). Then the factor ‖w‖2

2 in (19) equals σ(E), where E = {(π, j): π(w) 
= 0,

1 � j � nπ } ⊂ Ĝ × N and σ is the product of the Plancherel measure on Ĝ and the counting
measure on N. In particular, Proposition 4.1 contains the local uncertainty inequality in [20].
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