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Abstract

The aim of the present paper is to bridge the gap between the Bakry-Émery and
the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower
Ricci curvature bounds.

We start from a strongly local Dirichlet form E admitting a Carré du champ Γ in
a Polish measure space (X,m) and a canonical distance dE that induces the original
topology of X. We first characterize the distinguished class of Riemannian Energy

measure spaces, where E coincides with the Cheeger energy induced by dE and where
every function f with Γ(f) ≤ 1 admits a continuous representative.

In such a class we show that if E satisfies a suitable weak form of the Bakry-Émery

curvature dimension condition BE(K,∞) then the metric measure space (X, d,m)
satisfies the Riemannian Ricci curvature bound RCD(K,∞) according to [5], thus
showing the equivalence of the two notions.

Two applications are then proved: the tensorization property for Riemannian
Energy spaces satisfying the Bakry-Émery condition BE(K,N) (and thus the corre-
sponding one for RCD(K,∞) spaces without assuming nonbranching) and the sta-
bility of BE(K,N) with respect to Sturm-Gromov-Hausdorff convergence.
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1 Introduction

Besides its obvious geometric relevance, spaces with Ricci curvature bounded from below
play an important role in many probabilistic and analytic investigations, that reveal various
deep connections between different fields.

Starting from the celebrated paper by Bakry-Émery [12], the curvature-dimension
condition based on the Γ2-criterium in Dirichlet spaces provides crucial tools for proving
refined estimates on Markov semigroups and many functional inequalities, of Poincaré,
Log-Sobolev, Talagrand, and concentration type (see, e.g. [36, 37, 38, 11, 8, 13]).

This general functional-analytic approach is also well suited to deal with genuinely
infinite dimensional settings with applications to Wiener measure on the paths of Brownian
motion with values in a Riemannian manifold, as in e.g. [14]. In fact Ricci curvature also
arises in Bismut type formula [30] and its applications to gradient estimates [10, 9], and to
the construction of couplings between Brownian motions [32, 35].

The importance of curvature bounds in the framework of optimal transport has been
deeply analyzed in [45, 21, 56]. These and other important results led Sturm [54, 53]
and Lott-Villani [41] to introduce a new synthetic notion of the curvature-dimension
condition, in the general framework of metric-measure spaces.

The aim of the present paper is to bridge the gap between the Bakry-Émery and the
Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci
curvature bounds. In order to make this statement more precise, let us briefly review the
main points of both settings.
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The Bakry-Émery condition BE(K,N): Dirichlet forms and Γ-

calculus

The first approach is based on the functional Γ-calculus developed by Bakry-Émery since
[12], see [11, 15].

A possible starting point is a local and symmetric Dirichlet form E on the measure space
(X,B,m) with dense domain D(E) ⊂ L2(X,m), and the associated Markov semigroup
(Pt)t≥0 on L2(X,m) with generator ∆E (general references are [25, 42, 18]). In a suitable
algebra A of functions dense in the domain D(∆E) of ∆E one introduces the Carré du
champ

Γ
(

f, g
)

:=
1

2

(

∆E(fg)− f∆Eg − g∆Ef
)

, f, g ∈ A,

related to E by the local representation formula

E(f, g) =

∫

X

Γ
(

f, g
)

dm for every f, g ∈ A.

One also assumes that ∆E is a diffusion operator, i.e., with the notation Γ
(

f
)

:= Γ
(

f, f
)

,
it holds

∆Eφ(f) = φ′(f)∆Ef + φ′′(f)Γ
(

f
)

for every f ∈ A, φ ∈ C2(R) with bounded derivatives.

The model example is provided by a smooth Riemannian manifold (Md, g) endowed with
the measure m := e−VVolg for a given smooth potential V : Md → R. In this case one
typically chooses A = C∞

c (Md) and

E(f, g) =

∫

Md

〈∇f,∇g〉g dm, so that

Γ
(

f
)

= |∇f |2g and ∆E = ∆g − 〈∇V,∇·〉g,

where ∆g is the usual Laplace-Beltrami operator on M. This fundamental example shows
that Γ carries the metric information of Md, since one can recover the Riemannian distance
dg in Md by the formula

dg(x, y) = sup
{

ψ(y)− ψ(x) : ψ ∈ A, Γ
(

ψ
)

≤ 1
}

x, y ∈ Md. (1.1)

A further iteration yields the Γ2 operator, defined by

2Γ2(f) = ∆EΓ
(

f
)

− 2Γ
(

f,∆Ef
)

f ∈ A. (1.2)

In the above example Bochner’s formula yields

Γ2(f) = ‖Hessgf‖2g +
(

Ricg +HessgV
)

(∇f,∇f),
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and one obtains the fundamental inequality

Γ2(f) ≥ K Γ
(

f
)

+
1

N
(∆Ef)

2 for every f ∈ A, (1.3)

if the quadratic form associated to the tensor Ricg + HessgV is bounded from below by
Kg + 1

N−d
∇V ⊗∇V for some K ∈ R and N > d. When V ≡ 0 it is possible to show that

(Md, g) has Ricci curvature bounded from below by K iff (1.3) is satisfied for N ≥ d.
It is then natural to use (1.3) as a definition of curvature-dimension bounds even in the

abstract setting: it is the so-called Bakry-Émery curvature-dimension condition, that we
denote here by BE(K,N).

One of the most remarkable applications of (1.3) is provided by pointwise gradient
estimates for the Markov semigroup (see e.g. [11, 15] for relevant and deep applications).
Considering here only the case N = ∞, (1.3) yields

Γ
(

Ptf
)

≤ e−2Kt Pt
(

Γ
(

f
))

for every f ∈ A, (1.4)

a property that is essentially equivalent to BE(K,∞) (we refer to [57] for other formulations
of BE(K,N) for Riemannian manifolds, see also the next Section 2.2) and involves only
first order “differential” operators.

Up to the choice of an appropriate functional setting (in particular the algebra A and
the distance d associated to Γ as in (1.1) play a crucial role), Γ-calculus and curvature-
dimension inequalities provide a very powerful tool to establish many functional inequalities
and geometric properties, often in sharp form.

Lower Ricci curvature bounds by optimal transport: the CD(K,∞)
condition

A completely different approach to lower Ricci bounds has been recently proposed by
Sturm [54, 53] and Lott-Villani [41]: here the abstract setting is provided by metric
measure spaces (X, d,m), where (X, d) is a separable, complete and length metric space
and m is a nonnegative σ-finite Borel measure. Just for simplicity, in this Introduction
we also assume m(X) < ∞, but the theory covers the case of a measure satisfying the
exponential growth condition m(Br(x)) ≤M exp(c r2) for some constants M, c ≥ 0.

The Lott-Sturm-Villani theory (LSV in the following) is based on the notion of dis-
placement interpolation [43], a powerful tool of optimal transportation that allows one to
extend the notion of geodesic interpolation from the state space X to the space of Borel
probability measures P2(X) with finite quadratic moment. Considering here only the case
N = ∞, a metric measure space (X, d,m) satisfies the LSV lower Ricci curvature bound
CD(K,∞) if the relative entropy functional

Entm(µ) :=

∫

X

f log f dm, µ = fm, (1.5)
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is displacement K-convex in the Wasserstein space (P2(X),W2) (see [55, 3] and §3.1
below). This definition is consistent with the Riemannian case [56] and thus equivalent to
BE(K,∞) in such a smooth framework.

Differently from the Bakry-Émery’s approach, the LSV theory does not originally in-
volve energy functionals or Markov semigroups but it is intimately connected to the metric
d (through the notion of displacement interpolation) and to the measure m (through the
entropy functional (1.5)). Besides many useful geometric and functional applications of this
notion [40, 48, 26], one of its strongest features is its stability under measured Gromov-
Hausdorff convergence [24], also in the weaker transport-formulation proposed by Sturm

[54].
Starting from the CD(K,∞) assumption, one can then construct an evolution semi-

group (Ht)t≥0 on the convex subset of P2(X) given by probability measures with finite
entropy [26]: it is the metric gradient flow of the entropy functional in P2(X) [3]. Since
also Finsler geometries (as in the flat case of Rd endowed with a non-euclidean norm) can
satisfy the CD(K,∞) condition, one cannot hope in such a general setting that Ht are
linear operators. Still, (Ht)t≥0 can be extended to a continuous semigroup of contractions
in L2(X,m) (and in any Lp(X,m)-space), which can also be characterized as the L2(X,m)-
gradient flow (Pt)t≥0 of a convex and 2-homogeneous functional, the Cheeger energy [20],
[4, §4.1, Rem. 4.7]

Ch(f) := inf
{

lim inf
n→∞

1

2

∫

X

|Dfn|2 dm : fn ∈ Lipb(X), fn → f in L2(X,m)
}

(1.6)

(here Lipb(X) denotes the space of Lipschitz and bounded real functions defined in X and
|Df | is the local Lipschitz constant, or slope, of the Lipschitz function f , see §3.1).

The remarkable identification between (Ht)t≥0 and (Pt)t≥0 has been firstly proposed and
proved in Euclidean spaces by a seminal paper of Jordan-Kinderleher-Otto [31] and
then extended to Riemannian manifolds [23, 55], Hilbert spaces [7], Finsler spaces [44],
Alexandrov spaces [28] and eventually to CD(K,∞) metric measure spaces [4].

Spaces with Riemannian Ricci curvature bounded from below: the

RCD(K,∞) condition

Having the energy functional (1.6) and the contraction semigroup (Pt)t≥0 at our disposal,
it is then natural to investigate when LSV spaces satisfy BE(K,∞). In order to attack this
question, one has of course to clarify when the Cheeger energy (1.6) is a Dirichlet (thus
quadratic) form on L2(X,m) (or, equivalently, when (Pt)t≥0 is a semigroup of linear oper-
ators) and when this property is also stable under Sturm-Gromov-Hausdorff convergence.

One of the most important results of [5] (see also [2] for general σ-finite measures) is that
CD(K,∞) spaces with a quadratic Cheeger energy can be equivalently characterized as
those metric measure spaces where there exists the Wasserstein gradient flow (Ht)t≥0 of the
entropy functional (1.5) in the EVIK-sense. This condition means that for all initial data
µ ∈ P2(X) with supp µ ⊂ suppm there exists a locally Lipschitz curve t 7→ Htµ ∈ P2(X)
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satisfying the Evolution Variational Inequality

d

dt

W 2
2 (Htµ, ν)

2
+
K

2
W 2

2 (Htµ, ν) + Entm(Htµ) ≤ Entm(ν) for a.e. t ∈ (0,∞) (1.7)

for all ν ∈ P2(X) with Entm(ν) <∞.
Such a condition is denoted by RCD(K,∞) and it is stronger than CD(K,∞), since

the existence of an EVIK flow solving (1.7) yields both the geodesic K-convexity of the
entropy functional Entm [22] and the linearity of (Ht)t≥0 [5, Thm. 5.1], but it is still stable
under Sturm-Gromov-Hausdorff convergence. When it is satisfied, the metric measure
space (X, d,m) is called in [5] a space with Riemannian Ricci curvature bounded from
below by K.

In RCD(K,∞)-spaces the Cheeger energy is associated to a strongly local Dirichlet form
ECh(f, f) := 2Ch(f) admitting a Carré du champ Γ. With the calculus tools developed in
[5], it can be proved that Γ has a further equivalent representation Γ

(

f
)

= |Df |2w in terms
of the minimal weak gradient |Df |w of f . The latter is the element of minimal L2-norm
among all the possible weak limits of |Dfn| in the definition (1.6).

It follows that ECh can also be expressed by ECh(f, f) =
∫

X
|Df |2w dm and the set of

Lipschitz functions f with
∫

X
|Df |2 dm < ∞ is strongly dense in the domain of ECh. In

fact, the Dirichlet form ECh enjoys a further upper-regularity property, common to every
Cheeger energy [6, §8.3]:

(a) for every f ∈ D(E) there exist fn ∈ D(E)∩Cb(X) and upper semicontinuous bounded
functions gn : X → R such that

Γ
(

fn
)

≤ g2n, fn → f in L2(X,m), lim sup
n→∞

∫

X

g2n dm ≤ E(f, f).

Here and in the following, Cb(X) denotes the space of continuous and bounded real func-
tions defined on X .

From RCD(K,∞) to BE(K,∞)

The previous properties of the Cheeger energy show that the investigation of Bakry-Émery
curvature bounds makes perfectly sense in RCD(K,∞) spaces. One of the main results
of [5] connecting these two approaches shows in fact that RCD(K,∞) yields BE(K,∞) in
the gradient formulation (1.4) for every f ∈ D(ECh).

In fact, an even more refined result holds [5, Thm. 6.2], since it is possible to control
the slope of Ptf in terms of the minimal weak gradient of f

|DPtf |2 ≤ e−2KtPt
(

|Df |2w
)

whenever f ∈ D(ECh), |Df |w ∈ L∞(X,m),

an estimate that has two useful geometric-analytic consequences:
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(b) d coincides with the intrinsic distance associated to the Dirichlet form ECh (introduced
in Biroli-Mosco [16], see also [51, 52] and [50]), namely

d(x, y) = sup
{

ψ(y)− ψ(x) : ψ ∈ D(ECh) ∩ Cb(X), Γ
(

ψ
)

≤ 1
}

x, y ∈ X.

(c) Every function ψ ∈ D(ECh) with Γ
(

ψ
)

≤ 1 m-a.e. admits a continuous (in fact 1-

Lipschitz) representative ψ̃.

From BE(K,∞) to RCD(K,∞)

In the present paper we provide necessary and sufficient conditions for the validity of the
converse implication, i.e. BE(K,∞) ⇒ RCD(K,∞).

In order to state this result in a precise way, one has first to clarify how the metric
structure should be related to the Dirichlet one. Notice that this problem is much easier
from the point of view of the metric measure setting, since one has the canonical way (1.6)
to construct the Cheeger energy.

Since we tried to avoid any local compactness assumptions on X as well as doubling
or Poincaré conditions on m, we used the previous structural properties (a,b,c) as a guide
to find a reasonable set of assumptions for our theory; notice that they are in any case
necessary conditions to get a RCD(K,∞) space.

We thus start from a strongly local and symmetric Dirichlet form E on a Polish topo-
logical space (X, τ) endowed with its Borel σ-algebra and a finite (for the scope of this
introduction) Borel measure m. In the algebra V∞ := D(E) ∩ L∞(X,m) we consider the
subspace G∞ of functions f admitting a Carré du champ Γ(f) ∈ L1(X,m): they are
characterized by the identity

E(f, fϕ)− 1

2
E(f 2, ϕ) =

∫

X

Γ(f)ϕ dm for every ϕ ∈ V∞. (1.8)

We can therefore introduce the intrinsic distance dE as in (b)

dE(x, y) := sup
{

ψ(y)− ψ(x) : ψ ∈ G∞ ∩ C(X), Γ
(

ψ
)

≤ 1
}

x, y ∈ X, (1.9)

and, following the standard approach, we will assume that dE is a complete distance on X
and the topology induced by dE coincides with τ .

In this way we end up with Energy measure spaces (X, τ,m,E) and in this setting we
prove in Theorem 3.12 that E ≤ ECh, where ECh is the Cheeger energy associated to dE;
moreover, Theorem 3.14 shows that E = ECh if and only if (a) holds (see [33, §5] for a
similar result in the case of doubling spaces satisfying a local Poincaré condition and for
interesting examples where ECh is not quadratic and E 6= ECh). It is also worth mentioning
(Theorem 3.10) that for this class of spaces (X, dE) is always a length metric space, a result
previously known in a locally compact framework [52, 50].

The Bakry-Émery condition BE(K,∞) can then be stated in a weak integral form
(strongly inspired by [11, 15, 57]) just involving the Markov semigroup (Pt)t≥0 (see (2.33)
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of Corollary 2.3 and (2.23), (2.24) for relevant definitions) by asking that the differential
inequality

∂2

∂s2

∫

X

(Pt−sf)
2Psϕ dm ≥ 2K

∂

∂s

∫

X

(Pt−sf)
2Psϕ dm, 0 < s < t, (1.10)

is fulfilled for any f ∈ L2(X,m) and any nonnegative ϕ ∈ L2∩L∞(X,m). Notice that in the
case K = 0 (1.10) is equivalent to the convexity in (0, t) of the map s 7→

∫

X
(Pt−sf)

2Psϕ dm.
If we also assume that BE(K,∞) holds, it turns out that (c) is in fact equivalent

to a weak-Feller condition on the semigroup (Pt)t≥0, namely Pt maps Lipb(X) in Cb(X).
Moreover, (c) implies the upper-regularity (a) of E and the fact that every f ∈ D(E) ∩
L∞(X,m) admits a Carré du champ Γ satisfying (1.8).

Independently of BE(K,∞), when properties (a) and (c) are satisfied, we call (X, τ,m,E)
a Riemannian Energy measure space, since these space seem appropriate non-smooth ver-
sions of Riemannian manifolds. It is also worth mentioning that in this class of spaces
BE(K,∞) is equivalent to an (exponential) contraction property for the semigroup (Ht)t≥0

with respect to the Wasserstein distance W2 (see Corollary 3.18), in analogy with [34].
Our main equivalence result, Theorem 4.17, shows that a BE(K,∞) Riemannian En-

ergy measure space satisfies the RCD(K,∞) condition: thus, in view of the converse im-
plication proved in [5], BE(K,∞) is essentially equivalent to RCD(K,∞). A more precise
formulation of our result, in the simplified case when the measure m is finite, is:

Theorem 1.1 (Main result). Let (X, τ) be a Polish space and let m be a finite Borel
measure in X. Let E : L2(X,m) → [0,∞] be a strongly local, symmetric Dirichlet form
generating a mass preserving Markov semigroup (Pt)t≥0 in L2(X,m), let dE be the intrinsic
distance defined by (1.9) and assume that:

(i) dE is a complete distance on X inducing the topology τ and any function f ∈ G∞

with Γ(f) ≤ 1 admits a continuous representative;

(ii) the Bakry-Émery BE(K,∞) condition (1.10) is fulfilled by (Pt)t≥0.

Then (X, dE,m) is a RCD(K,∞) space.

We believe that this equivalence result, between the “Eulerian” formalism of the Bakry-
Émery BE(K,∞) theory and the “Lagrangian” formalism of the CD(K,∞) theory, is
conceptually important and that it could be a first step for a better understanding of
curvature conditions in metric measure spaces. Also, this equivalence is technically useful.
Indeed, in the last section of this paper we prove the tensorization of BE(K,N) spaces.
Then, in the case N = ∞, we can use the implication from BE(K,∞) to RCD(K,∞)
to read this property in terms of tensorization of RCD(K,∞) spaces: this was previously
known, see [5], only under an apriori nonbranching assumption on the base spaces (notice
that the CD(K,N) theory, even with N = ∞, suffers at this moment the same limitation).
On the other hand, we use the implication from RCD(K,∞) to BE(K,∞), (1.11) below and
the strong stability properties which follow by the EVIK formulation to provide stability
of the BE(K,N) condition under a very weak convergence, the Sturm-Gromov-Hausdorff
convergence.

8



Plan of the paper

Section 2 collects notation and preliminary results on Dirichlet forms, Markov semigroups
and functional Γ-calculus, following the presentation of [18], which avoids any topological
assumption. A particular attention is devoted to various formulations of the BE(K,N)
condition: they are discussed in §2.2, trying to present an intrinsic approach that does not
rely on the introduction of a distinguished algebra of functions A and extra assumptions on
the Dirichlet form E, besides locality. In its weak formulation (see (2.33) of Corollary 2.3
and (2.23), (2.24))

1

4

∂2

∂s2

∫

X

(Pt−sf)
2Psϕ dm ≥ K

2

∂

∂s

∫

X

(Pt−sf)
2Psϕ dm+

1

N

∫

X

(∆EPt−sf)
2Psϕ dm, (1.11)

which is well suited to study stability issues, BE(K,N) does not even need a densely
defined Carré du Champ Γ, because only the semigroup (Pt)t≥0 is involved.

Section 3 is devoted to study the interaction between energy and metric structures.
A few metric concepts are recalled in §3.1, whereas §3.2 shows how to construct a dual
semigroup (Ht)t≥0 in the space of probability measures P(X) under suitable Lipschitz es-
timates on (Pt)t≥0. By using refined properties of the Hopf-Lax semigroup, we also extend
some of the duality results proved by Kuwada [34] to general complete and separable
metric measure spaces, avoiding any doubling or Poincaré condition.
§3.3 presents a careful analysis of the intrinsic distance dE (1.9) associated to a Dirichlet
form and of Energy measure structures (X, τ,m,E). We will thoroughly discuss the rela-
tions between the Dirichlet form E and the Cheeger energy Ch induced by a distance d,
possibly different from the intrinsic distance dE and we will obtain a precise characteriza-
tion of the distinguished case when d = dE and E = 2Ch: here conditions (a), (b) play a
crucial role.
A further investigation when BE(K,∞) is also assumed is carried out in §3.4, leading to
the class of Riemannian Energy measure spaces.

Section 4 contains the proof of the main equivalence result, Theorem 1.1, between
BE(K,∞) and RCD(K,∞). Apart the basic estimates of §4.1, the argument is split
into two main steps: §4.2 proves a first L logL regularization estimate for the semigroup
(Ht)t≥0, starting from arbitrary measures in P2(X) (here we follow the approach of [57]).
§4.3 contains the crucial action estimates to prove the EVIK inequality (1.7). Even if the
strategy of the proof has been partly inspired by the geometric heuristics discussed in [22]
(where the Eulerian approach of [46] to contractivity of gradient flows has been extended
to cover also convexity and evolutions in the EVIK sense) this part is completely new and
it uses in a subtle way all the refined technical issues discussed in the previous sections of
the paper.

In the last Section 5 we discuss the above mentioned applications of the equivalence
between BE(K,∞) and RCD(K,∞).
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2 Dirichlet forms, Markov semigroups, Γ-calculus

2.1 Dirichlet forms and Γ-calculus

Let (X,B) be a measurable space, let m : B → [0,∞] σ-additive and let Lp(X,m) be
the Lebesgue spaces (for notational simplicity we omit the dependence on B). Possibly
enlarging B and extending m we assume that B is m-complete. In the next sections 3,
4 we will typically consider the case when B is the m-completion of the Borel σ-algebra
generated by a Polish topology τ on X .

In all this paper we will assume that

E : L2(X,m) → [0,∞] is a strongly local, symmetric Dirichlet form

generating a Markov semigroup (Pt)t≥0 in L2(X,m);
(2.1)

Let us briefly recall the precise meaning of this statement.
A symmetric Dirichlet form E is a L2(X,m)-lower semicontinuous quadratic form

satisfying the Markov property

E(η ◦ f) ≤ E(f) for every normal contraction η : R → R, (2.2)

i.e. a 1-Lipschitz map satisfying η(0) = 0. We refer to [18, 25] for equivalent formulations
of (2.2). We also define

V := D(E) = {f ∈ L2(X,m) : E(f) <∞}, V∞ := D(E) ∩ L∞(X,m).

We also assume that V is dense in L2(X,m).
We still denote by E(·, ·) : V → R the associated continuous and symmetric bilinear

form

E(f, g) :=
1

4

(

E(f + g)− E(f − g)
)

.

We will assume strong locality of E, namely

∀ f, g ∈ V : E(f, g) = 0 if (f + a)g = 0 m-a.e. in X for some a ∈ R.

It is possible to prove ( see for instance [18, Prop. 2.3.2]) that V∞ is an algebra with respect
to pointwise multiplication, so that for every f ∈ V∞ the linear form on V∞

Γ[f ;ϕ] := E(f, fϕ)− 1

2
E(f 2, ϕ), ϕ ∈ V∞, (2.3)
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is well defined and for every normal contraction η : R → R it satisfies [18, Prop. 2.3.3]

0 ≤ Γ[η ◦ f ;ϕ] ≤ Γ[f ;ϕ] ≤ ‖ϕ‖∞ E(f) for every f, ϕ ∈ V∞, ϕ ≥ 0. (2.4)

(2.4) shows that for every nonnegative ϕ ∈ V∞ f 7→ Γ[f ;ϕ] is a quadratic form in V∞

which satisfies the Markov property and can be extended by continuity to V. We call G
the set of functions f ∈ V such that the linear form ϕ 7→ Γ[f ;ϕ] can be represented by a
an absolutely continuous measure w.r.t. m with density Γ

(

f
)

∈ L1
+(X,m):

f ∈ G ⇔ Γ[f ;ϕ] =

∫

X

Γ
(

f
)

ϕ dm for every ϕ ∈ V∞. (2.5)

Since E is strongly local, [18, Thm. 6.1.1] yields the representation formula

E(f, f) =

∫

X

Γ
(

f
)

dm for every f ∈ G. (2.6)

It is not difficult to check that G is a closed vector subspace of V, the restriction of E to
G is still a strongly local Dirichlet form admitting the Carré du champ Γ defined by
(2.5) (see e.g. [18, Def. 4.1.2]): Γ is a quadratic continuous map defined in G with values
in L1

+(X,m). We will see in the next Section 2.2 that if E satisfies the BE(K,∞) condition
then G coincides with V and E admits a functional Γ-calculus on the whole space V.

Since we are going to use Γ-calculus techniques, we use the Γ notation also for the
symmetric, bilinear and continuous map

Γ
(

f, g
)

:=
1

4

(

Γ(f + g)− Γ(f − g)
)

∈ L1(X,m) f, g ∈ G,

which, thanks to (2.6), represents the bilinear form E by the formula

E(f, g) =

∫

X

Γ
(

f, g
)

dm for every f, g ∈ G.

Because of Markovianity and locality Γ
(

·, ·
)

satisfies the chain rule [18, Cor. 7.1.2]

Γ
(

η(f), g
)

= η′(f)Γ
(

f, g
)

for every f, g ∈ G, η ∈ Lip(R), η(0) = 0, (2.7)

and the Leibniz rule:

Γ
(

fg, h
)

= fΓ
(

g, h
)

+ gΓ
(

f, h
)

for every f, g, h ∈ G∞ := G ∩ L∞(X,m).

Notice that by [18, Theorem 7.1.1] (2.7) is well defined since for every Borel set N ⊂ R (as
the set where φ is not differentiable)

L
1(N) = 0 ⇒ Γ

(

f
)

= 0 m-a.e. on f−1(N). (2.8)

Among the most useful consequences of (2.8) and (2.7) that we will repeatedly use in the
sequel, we recall that for every f, g ∈ G

Γ
(

f − g
)

= 0 m-a.e. on {f = g},
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and the following identities hold m-a.e.:

Γ
(

f ∧ g
)

=

{

Γ
(

f
)

on {f ≤ g},
Γ
(

g
)

on {f ≥ g},
Γ
(

f ∨ g
)

=

{

Γ
(

f
)

on {f ≥ g},
Γ
(

g
)

on {f ≤ g}.
(2.9)

We conclude this section by stating the following lower semicontinuity result along a se-
quence (fn)n ⊂ G converging to f ∈ G:

fn ⇀ f,
√

Γ
(

fn
)

⇀ G in L2(X,m) ⇒ Γ
(

f
)

≤ G2 m-a.e. in X. (2.10)

It can be easily proved by using Mazur’s Lemma and the m-a.e. convexity of f 7→
√

Γ
(

f
)

,

namely

√

Γ
(

(1− t)f + tg
)

≤ (1− t)
√

Γ
(

f
)

+ t
√

Γ
(

g
)

m-a.e. in X , for all t ∈ [0, 1],

which follows since Γ is quadratic and nonnegative.

The Markov semigroup and its generator

The Dirichlet form E induces a densely defined selfadjoint operator ∆E : D(∆E) ⊂ V →
L2(X,m) defined by the integration by parts formula E(f, g) = −

∫

X
g∆Ef dm for all g ∈ V.

When G = V the operator ∆E is of “diffusion” type, since it satisfies the following
chain rule for every η ∈ C2(R) with η(0) = 0 and bounded first and second derivatives
(see [18, Corollary 6.1.4] and the next (2.16)): if f ∈ D(∆E) with Γ

(

f
)

∈ L2(X,m) then
η(f) ∈ D(∆E) with

∆Eη(f) = η′(f)∆Ef + η′′(f)Γ
(

f
)

. (2.11)

The heat flow Pt associated to E is well defined starting from any initial condition
f ∈ L2(X,m). Recall that in this framework the heat flow (Pt)t≥0 is an analytic Markov
semigroup and ft = Ptf can be characterized as the unique C1 map f : (0,∞) → L2(X,m),
with values in D(∆E), satisfying







d

dt
ft = ∆Eft for t ∈ (0,∞),

lim
t↓0

ft = f in L2(X,m).

Because of this, ∆E can equivalently be characterized in terms of the strong convergence
(Ptf − f)/t→ ∆Ef in L2(X,m) as t ↓ 0.

One useful consequence of the Markov property is the Lp contraction of (Pt)t≥0 from
Lp ∩L2 to Lp ∩L2. Because of the density of Lp ∩L2 in Lp when p ∈ [1,∞), this allows to
extend uniquely Pt to a strongly continuous semigroup of linear contractions in Lp(X,m),
p ∈ [1,∞), for which we retain the same notation. Furthermore, (Pt)t≥0 is sub-Markovian
(cf. [18, Prop. 3.2.1]), since it preserves one-sided essential bounds, namely f ≤ C (resp.
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f ≥ C) m-a.e. in X for some C ≥ 0 (resp. C ≤ 0) implies Ptf ≤ C (resp. Ptf ≥ C) m-a.e.
in X for all t ≥ 0.

We will mainly be concerned with the mass-preserving case i.e.
∫

X

Ptf dm =

∫

X

f dm for every f ∈ L1(X,m), (2.12)

a property which is equivalent to 1 ∈ D(E) when m(X) < ∞. In the next session (see
Theorem 3.14) we will discuss a metric framework, which will imply (2.12).

The semigroup (Pt)t≥0 can also be extended by duality to a weakly∗-continuous semi-
group of contractions in L∞(X,m), so that

∫

X

Ptf ϕ dm =

∫

X

f Ptϕ dm for every f ∈ L∞(X,m), ϕ ∈ L1(X,m).

It is easy to show that if fn ∈ L∞(X,m) weakly∗ converge to f in L∞(X,m) then Ptfn
⋆
⇀ Ptf

in L∞(X,m).

The generator of the semigroup in L1(X,m)

Sometimes it will also be useful to consider the generator ∆
(1)
E

: D(∆
(1)
E
) ⊂ L1(X,m) →

L1(X,m) of (Pt)t≥0 in L1(X,m) [47, §1.1]:

f ∈ D(∆
(1)
E
), ∆

(1)
E
f = g ⇔ lim

t↓0

1

t

(

Ptf − f
)

= g strongly in L1(X,m). (2.13)

Thanks to (2.13) and L1 contractivity it is easy to check that

f ∈ D(∆
(1)
E
) ⇒ Ptf ∈ D(∆

(1)
E
), ∆

(1)
E
Ptf = Pt∆

(1)
E
f for all t ≥ 0, (2.14)

and, when (2.12) holds,
∫

X

∆
(1)
E
f dm = 0 for every f ∈ D(∆

(1)
E
).

The operator ∆
(1)
E

is m-accretive and coincides with the smallest closed extension of ∆E to
L1(X,m): [18, Prop. 2.4.2]

g = ∆
(1)
E
f ⇔

{

∃fn ∈ D(∆E) ∩ L1(X,m) with gn = ∆Efn ∈ L1(X,m) :

fn → f, gn → g strongly in L1(X,m).
(2.15)

Whenever f ∈ D(∆
(1)
E
) ∩ L2(X,m) and ∆

(1)
E
f ∈ L2(X,m) one can recover f ∈ D(∆E) by

(2.14), the integral formula Ptf − f =
∫ t

0
Pr∆

(1)
E
f dr and the contraction property of (Pt)t≥0

in every Lp(X,m), thus obtaining

f ∈ D(∆
(1)
E
) ∩ L2(X,m), ∆

(1)
E
f ∈ L2(X,m) ⇒ f ∈ D(∆E), ∆Ef = ∆

(1)
E
f. (2.16)
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Semigroup mollification

A useful tool to prove the above formula is given by the mollified semigroup: we fix a

nonnegative kernel κ ∈ C∞
c (0,∞) with

∫ ∞

0

κ(r) dr = 1, (2.17)

and for every f ∈ Lp(X,m), p ∈ [1,∞], we set

hεf :=
1

ε

∫ ∞

0

Prf κ(r/ε) dr, ε > 0, (2.18)

where the integral should be intended in the Bochner sense whenever p <∞ and by taking
the duality with arbitrary ϕ ∈ L1(X,m) when p = ∞.

Since ∆E is the generator of (Pt)t≥0 in L2(X,m) it is not difficult to check [47, Proof of
Thm. 2.7] that if f ∈ L2 ∩ Lp(X,m) for some p ∈ [1,∞] then

−∆E(h
εf) =

1

ε2

∫ ∞

0

Prf κ
′(r/ε) dr ∈ L2 ∩ Lp(X,m).

Since ∆
(1)
E

is the generator of (Pt)t≥0 in L1(X,m), the same property holds for ∆
(1)
E

if
f ∈ L1(X,m):

−∆
(1)
E
(hεf) =

1

ε2

∫ ∞

0

Prf κ
′(r/ε) dr ∈ L1(X,m). (2.19)

2.2 On the functional Bakry-Émery condition

We will collect in this section various equivalent characterizations of the Bakry-Émery
condition BE(K,N) given in (1.3) for the Γ2 operator operator (1.2). We have been strongly
inspired by [11, 15, 57]: even if the essential estimates are well known, here we will take a
particular care in establishing all the results in a weak form, under the minimal regularity
assumptions on the functions involved. We consider here the case of finite dimension as
well, despite the fact that the next sections 3 and 4 will be essentially confined to the case
N = ∞. Applications of BE(K,N) with N <∞ will be considered in the last Section 5.

Let us denote by Γ : (V∞)3 → R the multilinear map

Γ[f, g;ϕ] :=
1

2

(

E(f, gϕ) + E(g, fϕ)− E(fg, ϕ)
)

, Γ[f ;ϕ] = Γ[f, f ;ϕ];

Recalling (2.4), one can easily prove the uniform continuity property

fn, ϕn ∈ V∞, fn → f, ϕn → ϕ in V, sup
n

‖ϕn‖∞ <∞ ⇒ ∃ lim
n→∞

Γ[fn;ϕn] ∈ R, (2.20)

which allows to extend Γ to a real multilinear map defined in V × V × V∞, for which we
retain the same notation. The extension Γ satisfies

Γ[f, g;ϕ] =

∫

X

Γ
(

f, g
)

ϕ dm if f, g ∈ G. (2.21)
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We also set

Γ2[f ;ϕ] :=
1

2
Γ[f ; ∆Eϕ]− Γ[f,∆Ef ;ϕ], (f, ϕ) ∈ D(Γ2) (2.22)

where

D(Γ2) :=
{

(f, ϕ) ∈ D(∆E)×D(∆E) : ∆Ef ∈ V, ϕ,∆Eϕ ∈ L∞(X,m)
}

.

As for (2.21), we have

Γ2[f ;ϕ] =

∫

X

(1

2
Γ
(

f
)

∆Eϕ− Γ
(

f,∆Ef
)

ϕ
)

dm if (f, ϕ) ∈ D(Γ2), f,∆Ef ∈ G.

Since (Pt)t≥0 is an analytic semigroup in L2(X,m), for a given f ∈ L2(X,m) and ϕ ∈
L2 ∩ L∞(X,m), we can consider the functions

At[f ;ϕ](s) :=
1

2

∫

X

(

Pt−sf
)2

Psϕ dm t > 0, s ∈ [0, t], (2.23)

A∆
t [f ;ϕ](s) :=

1

2

∫

X

(

∆EPt−sf
)2

Psϕ dm t > 0, s ∈ [0, t), (2.24)

Bt[f ;ϕ](s) := Γ[Pt−sf ;Psϕ] t > 0, s ∈ (0, t),

and, whenever ∆Eϕ ∈ L2 ∩ L∞(X,m),

Ct[f ;ϕ](s) := Γ2[Pt−sf ;Psϕ], t > 0, s ∈ [0, t).

Notice that whenever ∆Ef ∈ L2(X,m)

A∆
t [f ;ϕ](s) = At[∆Ef ;ϕ](s) t > 0, s ∈ [0, t).

Lemma 2.1. For every f ∈ L2(X,m), ϕ ∈ L2 ∩ L∞(X,m) and every t > 0, we have:

(i) the function s 7→ At[f ;ϕ](s) belongs to C0([0, t]) ∩ C1((0, t));

(ii) the function s 7→ A∆
t [f ;ϕ](s) belongs to C0([0, t));

(iii) the function s 7→ Bt[f ;ϕ](s) belongs to C0((0, t)) and

∂

∂s
At[f ;ϕ](s) = Bt[f ;ϕ](s) for every s ∈ (0, t). (2.25)

Equation (2.25) and the regularity of A and B extend to s = t if f ∈ V and to s = 0
if ϕ ∈ V∞.

(iv) If ϕ is nonnegative, s 7→ At[f ;ϕ](s) and s 7→ A∆
t [f ;ϕ](s) are nondecreasing.
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(v) If ∆Eϕ ∈ L2 ∩ L∞(X,m) then C belongs to C0([0, t)), B belongs to C1([0, t)), and

∂

∂s
Bt[f ;ϕ](s) = 2Ct[f ;ϕ](s) for every s ∈ [0, t). (2.26)

In particular A ∈ C2([0, t)).

Proof. The continuity of A is easy to check, since s 7→ (Pt−sf)
2 is strongly continuous with

values in L1(X,m) and s 7→ Psϕ is weakly∗ continuous in L∞(X,m). Analogously, the
continuity of B follows from the fact that s 7→ Pt−sf is a continuous curve in V whenever
s ∈ [0, t) thanks to the regularizing effect of the heat flow and (2.20). The continuity of C
follows by a similar argument, recalling the definition (2.22) and the fact that the curves
s 7→ ∆EPt−sf and s 7→ ∆EPsϕ are continuous with values in V in the interval [0, t).

In order to prove (2.25) and (2.26), let us first assume that ϕ ∈ D(∆E) with ∆Eϕ ∈
L∞(X,m) and f ∈ L2 ∩ L∞(X,m). Since

lim
h→0

Pt−(s+h)f − Pt−sf

h
= −∆EPt−sf strongly in V for s ∈ [0, t),

lim
h→0

Ps+hϕ− Psϕ

h
= ∆EPsϕ weakly∗ in L∞(X,m) for s ∈ [0, t),

we easily get

∂

∂s
At[f ;ϕ](s) =

∫

X

(

− Pt−sf ∆EPt−sf Psϕ+
1

2

(

Pt−sf
)2
∆EPsϕ

)

dm

= E(Pt−sf,Pt−sf Psϕ)−
1

2
E((Pt−sf)

2,Psϕ) = Bt[f ;ϕ](s),

by the very definition (2.3) of Γ, since Pt−sf is essentially bounded and therefore (Pt−sf)
2 ∈

V∞. A similar computation yields (2.26).
In order to extend the validity of (2.25) and (2.26) to general f ∈ L2(X,m) we approx-

imate f by truncation, setting fn := −n ∨ f ∧ n, n ∈ N, and we pass to the limit in the
integrated form

At[fn;ϕ](s2)− At[fn;ϕ](s1) =

∫ s2

s1

Bt[fn;ϕ](s) ds for every 0 ≤ s1 < s2 < t,

observing that Pt−sfn converge strongly to Pt−sf in V as n → ∞ for every s ∈ [0, t), so
that (2.20) yields the pointwise convergence of the integrands in the previous identity. A
similar argument holds for (2.26), since ∆EPtfn converges strongly to ∆EPtf in V.

Eventually we extend (2.25) to arbitrary ϕ ∈ L2 ∩ L∞(X,m) by approximating ϕ with
hεϕ given by (2.18), (2.17). It is not difficult to check that Ps(h

εϕ) → Psϕ in V as ε ↓ 0
with uniform L∞ bound if s > 0 (and also when s = 0 if ϕ ∈ V∞). �

Lemma 2.2. Let us consider functions a ∈ C1([0, t)), g ∈ C0([0, t)) and a parameter ν ≥ 0.
The following properties are equivalent:
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(i) a, g satisfy the differential inequality

a′′ ≥ 2K a′ + ν g in D
′(0, t),

and pointwise in [0, t), whenever a ∈ C2([0, t)).

(ii) a′, g satisfy the differential inequality

d

ds

(

e−2Ksa′(s)
)

≥ ν e−2Ksg(s) in D
′(0, t).

(iii) For every 0 ≤ s1 < s2 < t and every test function ζ ∈ C2([s1, s2]) we have
∫ s2

s1

a(ζ ′′ + 2Kζ ′) ds+
[

a′ ζ
]s2

s1
−

[

a (ζ ′ + 2Kζ)
]s2

s1
≥ ν

∫ s2

s1

g ζ ds. (2.27)

(iv) For every 0 ≤ s1 < s2 we have

e−2K(s2−s1)a′(s2) ≥ a′(s1) + ν

∫ s2

s1

e−2K(s−s1)g(s) ds. (2.28)

The proof is straightforward; we only notice that (2.27) holds also for s1 = 0 since a ∈
C1([0, t)).

The inequality (2.27) has two useful consequences, that we make explicit in terms of
the functions IK and IK,2 defined by

IK(t) =

∫ t

0

eKs ds =
eKt − 1

K
, IK,2(t) =

∫ t

0

IK(s) ds =
eKt −Kt− 1

K2
, (2.29)

with the obvious definition for K = 0: I0(t) = t, I0,2(t) = t2/2.
Choosing s1 = 0, s2 = τ and

ζ(s) := I2K(τ − s) =
e2K(τ−s) − 1

2K
, so that ζ ′ + 2Kζ = −1, ζ(τ) = 0,

we obtain

I2K(τ) a
′(0) + ν

∫ τ

0

I2K(τ − s) g(s) ds ≤ a(τ)− a(0) for every τ ∈ [0, t). (2.30)

Choosing

ζ(s) := I−2K(s) =
1− e−2Ks

2K
, so that ζ ′ + 2Kζ = 1, ζ(0) = 0,

we obtain

a(τ)− a(0) + ν

∫ τ

0

I−2K(s) g(s) ds ≤ a′(τ) I−2K(τ) for every τ ∈ [0, t). (2.31)
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Corollary 2.3. Let E be a Dirichlet form in L2(X,m) as in (2.1), and let K ∈ R and
ν ≥ 0. The following conditions are equivalent:

(i) For every (f, ϕ) ∈ D(Γ2), with ϕ ≥ 0, we have

Γ2[f ;ϕ] ≥ K Γ[f ;ϕ] + ν

∫

X

(∆Ef)
2 ϕ dm.

(ii) For every f ∈ L2(X,m) and every nonnegative ϕ ∈ D(∆E) ∩ L∞(X,m) with ∆Eϕ ∈
L∞(X,m) we have

Ct[f ;ϕ](s) ≥ KBt[f ;ϕ](s) + 2ν A∆
t [f ;ϕ](s) for every 0 ≤ s < t. (2.32)

(iii) For every f ∈ L2(X,m), every nonnegative ϕ ∈ L2 ∩ L∞(X,m), and t > 0

∂2

∂s2
At[f ;ϕ](s) ≥ 2K

∂

∂s
At[f ;ϕ](s) + 4ν A∆

t [f ;ϕ](s) (2.33)

in the sense of distribution of D ′(0, t) (or, equivalently, the inequality (2.33) holds
pointwise in [0, t) for every nonnegative ϕ ∈ L2 ∩ L∞(X,m) with ∆Eϕ ∈ L2 ∩
L∞(X,m).)

(iv) For every f ∈ L2(X,m) and t > 0 we have Ptf ∈ G and

I2K(t)Γ
(

Ptf
)

+ 2ν I2K,2(t)
(

∆EPtf
)2 ≤ 1

2
Pt
(

f 2
)

− 1

2
(Ptf)

2 m-a.e. in X. (2.34)

(v) G = V and for every f ∈ V

1

2
Pt
(

f 2
)

− 1

2
(Ptf)

2 + 2ν I−2K,2(t)
(

∆EPtf
)2 ≤ I−2K,2(t)PtΓ

(

f
)

m-a.e. in X.

(vi) G is dense in L2(X,m) and for every f ∈ G and t > 0 Ptf belongs to G with

Γ
(

Ptf
)

+ 2ν I−2K(t)
(

∆EPtf
)2 ≤ e−2KtPtΓ

(

f
)

m-a.e. in X. (2.35)

If one of these equivalent properties holds, then G = V (i.e. E admits the Carré du Champ
Γ in V).

Proof. The implication (i)⇒(ii) is obvious, choosing s = 0. The converse implication is
also true under the regularity assumption of (i): it is sufficient to pass to the limit in (2.32)
as s ↑ t and then as t ↓ 0.

(ii)⇒(iii) follows by (2.26) when ∆Eϕ ∈ L2 ∩ L∞(X,m); the general case follows by
approximation by the same argument we used in the proof of Lemma 2.1.
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(iii)⇒(iv): by applying (2.30) (with obvious notation) we get

I2K(t)Γ[Ptf ;ϕ] + 2ν I2K,2(t)

∫

X

(

∆EPtf
)2
ϕ dm ≤ 1

2

∫

X

(

Pt
(

f 2
)

− (Ptf)
2
)

ϕ dm

for every nonnegative ϕ ∈ V∞. Thus, setting h := Pt(f
2) − (Ptf)

2 ∈ L1
+(X,m), the linear

functional ℓ on V∞ defined by ℓ(ϕ) := I2K(t)Γ[Ptf ;ϕ] satisfies

0 ≤ ℓ(ϕ) ≤
∫

X

hϕ dm for every ϕ ∈ V∞, ϕ ≥ 0. (2.36)

Since V∞ is a lattice of functions generating B (because B is complete and V∞ is dense
in L2(X,m)) satisfying the Stone property ϕ ∈ V∞ ⇒ ϕ ∧ 1 ∈ V∞ and clearly (2.36)
yields ℓ(ϕn) → 0 whenever (ϕn)n≥0 ⊂ V∞ is a sequence of functions pointwise decreasing
to 0, Daniell construction [17, Thm. 7.8.7] and Radon-Nikodym Theorem yields Γ[Ptf ;ϕ] =
∫

X
gϕ dm for some g ∈ L1

+(X,m), so that Ptf ∈ G and (2.34) holds.
This argument also shows that G is invariant under the action of (Pt)t≥0 and dense in

L2(X,m). A standard approximation argument yields the density in V (see, e.g. [5, Lemma
4.9]) and therefore G = V (since G is closed in V; see also [18, Prop. 4.1.3]).

Analogously, (iii)⇒(v) follows by (2.31), while (iii)⇒(vi) follows by (2.28).
Let us now show that (vi)⇒(iii). Since G is dense in L2(X,m) and invariant with

respect to (Pt)t≥0, we already observed that G = V. Let us now write (2.35) with h > 0
instead of t and with f := Pt−sv for some 0 < h < s < t. Multiplying by Ps−hϕ and
integrating with respect to m, we obtain

Bt[v;ϕ](s− h) + 4ν I−2K(h)A
∆
t [v;ϕ](s− h) ≤ e−2KhBt[v;ϕ](s).

It is not restrictive to assume ∆Eϕ ∈ L2 ∩ L∞(X,m), so that B is of class C1 in (0, t). We
subtract Bt[v;ϕ](s) from both sides of the inequality, we divide by h > 0 and let h ↓ 0
obtaining

∂

∂s
Bt[v;ϕ](s)− 2KBt[v;ϕ](s) ≥ 4ν A∆

t [v;ϕ](s)

i.e. (2.33).
To show that (iv)⇒(iii) we first write (2.34) at t = h > 0 in the form

I2K,2(h)
(

K Γ
(

Phf
)

+ 2ν
(

∆EPhf
)2
)

≤ 1

2
Ph(f

2)− 1

2

(

Phf
)2 − hΓ

(

Phf
)

,

obtaining by subtracting hΓ
(

Phf
)

from both sides of the inequality. Then we choose
f = Pt−s−hv and we multiply the inequality by Psϕ, with ϕ ∈ L2 ∩ L∞(X,m) nonnegative
and ∆Eϕ ∈ L2 ∩ L∞(X,m). We obtain

I2K,2(h)
(

2K Bt[v;ϕ](s) + 4ν A∆
t [v;ϕ](s)

)

≤ At[v;ϕ](s+ h)− At[v;ϕ](s)− hBt[v;ϕ](s).
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Since A is of class C2 and A′ = B, dividing by h2 > 0 and passing to the limit as h ↓ 0 a
simple Taylor expansion yields

1

2

∂2

∂s2
At[v;ϕ](s) ≥

1

2

(

2K Bt[v;ϕ](s) + 4ν A∆
t [v;ϕ](s)

)

.

A similar argument shows the last implication (v)⇒(iii). �

Definition 2.4 (The condition BE(K,N)). Let K ∈ R and ν ≥ 0. We say that a
Dirichlet form E in L2(X,m) as in (2.1) satisfies a functional BE(K,N) condition if one of
the equivalent properties in Corollary 2.3 holds with N := 1/ν.

Notice that

BE(K,N) ⇒ BE(K ′, N ′) for every K ′ ≤ K, N ′ ≥ N,

in particular BE(K,N) ⇒ BE(K,∞).

Remark 2.5 (Carré du Champ in the case N = ∞). If a strongly local Dirichlet form E

satisfies BE(K,∞) for some K ∈ R, then it admits a Carré du Champ Γ on V, i.e. G = V,
by (v) of Corollary 2.3; moreover the spaces

V1
∞ :=

{

ϕ ∈ V∞ : Γ
(

ϕ
)

∈ L∞(X,m)
}

,

V2
∞ :=

{

ϕ ∈ V1
∞ : ∆Eϕ ∈ L∞(X,m)

}

,
(2.37)

are dense in V: in fact (2.35) shows that they are invariant under the action of (Pt)t≥0 and
combined with (2.34) (and possibly combined with a further mollification as in (2.18) in
the case of V2

∞) it also shows that any element of L2 ∩ L∞(X,m) belongs to their closure
w.r.t. the L2(X,m) norm. The invariance and the standard approximation argument of,
e.g., [5, Lemma 4.9], yield the density in V.

3 Energy metric measure structures

In this section, besides the standing assumptions we made on E, we shall study the relation
between the measure/energetic structure of X and an additional metric structure. Our
main object will be the canonical distance dE associated to the Dirichlet form E, that we
will introduce and study in the next Section 3.3. Before doing that, we will recall the
metric notions that will be useful in the following. Since many properties will just depend
of a few general compatibility conditions between the metric and the energetic structure,
we will try to enucleate such a conditions and state the related theorems in full generality.

Our first condition just refers to the measure m and a distance d and it does not involve
the Dirichlet form E:

Condition (MD: Measure-Distance interaction). d is a distance on X such that:
(MD.a) (X, d) is a complete and separable metric space, B coincides with the completion
of the Borel σ-algebra of (X, d) with respect to m, and supp(m) = X ;
(MD.b) m(Br(x)) <∞ for every x ∈ X , r > 0.
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Besides the finiteness condition (MD.b), we will often assume a further exponential
growth condition on the measures of the balls of (X, d), namely that there exist x0 ∈ X ,
M > 0 and c ≥ 0 such that

m(Br(x0)) ≤M exp(c r2) for every r ≥ 0. (MD.exp)

In this case we will collectively refer to the above conditions (MD) and (MD.exp) as
(MD+exp).

3.1 Metric notions

In this section we recall a few basic definitions and results which are related to a metric
measure space (X, d,m) satisfying (MD).

Absolutely continuous curves, Lipschitz functions and slopes

ACp([a, b];X), 1 ≤ p ≤ ∞, is the collection of all the absolutely continuous curves γ :
[a, b] → X with finite p-energy: γ ∈ ACp([a, b];X) if there exists v ∈ Lp(a, b) such that

d(γ(s), γ(t)) ≤
∫ t

s

v(r) dr for every a ≤ s ≤ t ≤ b. (3.1)

The metric velocity of γ, defined by

|γ̇|(r) := lim
h→0

d(γ(r + h), γ(r))

|h| ,

exists for L 1-a.e. r ∈ (a, b), belongs to Lp(a, b), and provides the minimal function v, up
to L 1-negligible sets, such that (3.1) holds. The length of an absolutely continuous curve

γ is then defined by
∫ b

a
|γ̇|(r) dr.

We say that (X, d) is a length space if for every x0, x1 ∈ X

d(x0, x1) = inf
{

∫ 1

0

|γ̇|(r) dr : γ ∈ AC([0, 1];X), γ(i) = xi

}

. (3.2)

We denote by Lip(X) the space of all Lipschitz functions ϕ : X → R, by Lipb(X) the
subspace of bounded functions and by Lip1(X) the subspace of functions with Lipschitz
constant less than 1.

Every Lipschitz function ϕ is absolutely continuous along any absolutely continuous
curve; we say that a bounded Borel function g : X → [0,∞) is an upper gradient of
ϕ ∈ Lip(X) if for any curve γ ∈ AC([a, b];X) the absolutely continuous map ϕ ◦ γ satisfies

∣

∣

∣

∣

d

dt
ϕ(γ(t))

∣

∣

∣

∣

≤ g(γ(t)) |γ̇|(t) for L
1-a.e. t ∈ (a, b). (3.3)
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Among the upper gradients of a function ϕ ∈ Lip(X) its slopes and its local Lipschitz
constant play a crucial role: they are defined by 0 at every isolated point and by

|D±ϕ|(x) := lim sup
y→x

(

ϕ(y)− ϕ(x)
)

±

d(y, x)
, |Dϕ|(x) := lim sup

y→x

|ϕ(y)− ϕ(x)|
d(y, x)

,

|D∗ϕ|(x) := lim sup
y,z→x

y 6=z

|ϕ(y)− ϕ(z)|
d(y, z)

,

at every accumulation point x ∈ X . Whenever (X, d) is a length space we have

|D∗ϕ|(x) = lim sup
y→x

|Dϕ|(y), Lip(ϕ) = sup
x∈X

|Dϕ(x)| = sup
x∈X

|D∗ϕ(x)|. (3.4)

In fact, (3.3) written for g := |Dϕ| and the length condition (3.2) easily yield

|ϕ(y)− ϕ(z)| ≤ d(y, z) sup
B2r(x)

|Dϕ| if y, z ∈ Br(x)

and provide the inequality |D∗ϕ| ≤ lim sup
y→x

|Dϕ|(y). The proof of the converse inequality

is trivial and a similar argument shows the last identity in (3.4).

The Hopf-Lax evolution formula

Let us suppose that (X, d) is a metric space; the Hopf-Lax evolution map Qt : Cb(X) →
Cb(X), t ≥ 0, is defined by

Qtf(x) := inf
y∈X

f(y) +
d2(y, x)

2t
, Q0f(x) = f(x). (3.5)

We introduce as in [4, §3] the maps

D+(x, t) := sup
(yn)

lim sup
n

d(x, yn), D−(x, t) := inf
(yn)

lim inf
n

d(x, yn),

where the supremum and the infimum run among minimizing sequences for (3.5). We recall
that D+ and D− are respectively upper and lower semicontinuous, nondecreasing w.r.t. s,
and that D+(x, r) ≤ D−(x, s) ≤ D+(x, s) whenever 0 < r < s. These properties imply
D−(x, s) = supr<sD

+(x, r). We shall need the inequality

Qs′f(x)−Qsf(x) ≤
(D+(x, s))2

2

( 1

s′
− 1

s

)

s′ > s, (3.6)

as well as the pointwise properties

− d±

ds
Qsf(x) =

(D±(x, s))2

2s2
, |DQsf |(x)≤

D+(x, s)

s
, (3.7)
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(these are proved in Proposition 3.3 and Proposition 3.4 of [4]). Since

d(y, x) > 2sLip(f) ⇒ f(y) +
d2(x, y)

2s
> f(x) ≥ Qsf(x),

we immediately find D+(x, s) ≤ 2sLip(f).
Since by (3.6) the map s 7→ Qsf(x) is locally Lipschitz in (0,∞), integrating the first

identity of (3.7) in the interval (ε, t), ε > 0, and then letting ε ↓ 0 we get

f(x)−Qtf(x) =

∫ t

0

(D+(x, s))2

2s2
ds =

t

2

∫ 1

0

(D+(x, tr)

tr

)2

dr.

Combining the above identity with the formula expressing the descending slope (see [3,
Lemma 3.1.5])

|D−f |2(x) = 2 lim sup
t↓0

f(x)−Qtf(x)

t
,

we end up with

|Df |2(x) ≥ |D−f |2(x) = lim sup
t↓0

∫ 1

0

(D+(x, tr)

tr

)2

dr. (3.8)

When (X, d) is a length space (Qt)t≥0 is a semigroup and we have the refined identity [4,
Thm. 3.6]

d+

ds
Qsf(x) = −1

2
|DQsf |2(x) = −(D+(x, s))2

2s2
. (3.9)

In addition, (3.7) and the length property of X yield the a priori bounds

Lip(Qsf) ≤ 2 Lip(f), Lip
(

Q·f(x)) ≤ 2
[

Lip(f)
]2
. (3.10)

The Cheeger energy

The Cheeger energy of a function f ∈ L2(X,m) is defined as

Ch(f) := inf
{

lim inf
n→∞

1

2

∫

X

|Dfn|2 dm : fn ∈ Lipb(X), fn → f in L2(X,m)
}

.

If f ∈ L2(X,m) with Ch(f) < ∞, then there exists a unique function |Df |w ∈ L2(X,m),
called minimal weak gradient of f , satisfying the two conditions

Lipb(X) ∩ L2(X,m) ∋ fn ⇀ f, |Dfn|⇀ G in L2(X,m) ⇒ |Df |w ≤ G

Ch(f) =
1

2

∫

X

|Df |2w dm.

In the next section 3.3 we will also use a more refined approximation result, replacing
|Dfn| with |D∗fn| in the approximation, proved in [6, §8.3] (see also [1] for a more detailed
proof): for every f ∈ L2(X,m) with Ch(f) <∞ there exist fn ∈ Lipb(X) ∩ L2(X,m) such
that

fn → f, |D∗fn| → |Df |w strongly in L2(X,m). (3.11)
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Wasserstein distances

The metric structure allows us to introduce the corresponding spaces P(X) of Borel prob-
ability measures and Pp(X) of Borel probability measures with finite p-th moment, namely
µ ∈ Pp(X) if

∫

X

dp(x, x0) dµ(x)<∞, for some, and then for all, x0 ∈ X .

The Lp-Wasserstein transport (extended) distance Wp on P(X) is defined by

W p
p (µ1, µ2) := inf

{

∫

X×X

dp(x1, x2) dµ(x1, x2) : µ ∈ P(X ×X), πi♯ µ = µi

}

, (3.12)

where πi : X × X ∋ (x1, x2) → xi is the coordinate map and for a Borel measure µ ∈
P(Y ) on a metric space Y and every Borel map r : Y → X , the push-forward measure
r♯µ ∈ P(X) is defined by

r♯µ(B) := µ(r−1(B)) for every Borel set B ⊂ X.

In particular, the competing measures µ ∈ P(X ×X) in (3.12) have marginals µ1 and µ2

respectively.
We also introduce a family of bounded distances on P(X) associated to a

continuous, concave and bounded modulus of continuity β : [0,∞) → [0,∞),

with 0 = β(0) < β(r) for every r > 0.

As in (3.12) we set

W(β)(µ1, µ2) := inf
{

∫

X2

β(d(x1, x2)) dµ(x1, x2) : µ ∈ P(X ×X), πi♯ µ = µi

}

.

W(β) is thus the L1-Wasserstein distance induced by the bounded distance dβ(x1, x2) :=
β(d(x1, x2)). (P(X),W(β)) is then a complete and separable metric space, whose topology
coincides with the topology of weak convergence of probability measures.

Entropy and RCD(K,∞) spaces

In the following we will fix x0 ∈ X, z > 0, c ≥ 0 such that

m̃ =
1

z
e−V

2

m ∈ P(X), with V (x) :=
√
c d(x, x0). (3.13)

Notice that in the case m(X) < ∞ we can always take V ≡ c = 0 with z = m(X). When
m(X) = ∞, the possibility to choose x0 ∈ X, z > 0, c ≥ 0 satisfying (3.13) follows from
(MD.exp) (possibly with a different constant c; it is in fact equivalent to (MD.exp)).
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If n : B → [0,∞] is σ-additive, the relative entropy Entn(ρ) of a probability measure
ρ : B → [0, 1] with respect to n is defined by

Entn(ρ) :=







∫

X

f log f dn if ρ = fn;

+∞ otherwise.

The expression makes sense if n is a probability measure, and thanks to Jensen’s inequality
defines a nonnegative functional. More generally we recall (see [4, Lemma 7.2] for the simple
proof) that, when n = m and (3.13) holds, the formula above makes sense on measures
ρ = fm ∈ P2(X) thanks to the fact that the negative part of f log f is m-integrable.
Precisely, defining m̃ ∈ P(X) as in (3.13) above, the following formula for the change of
reference measure will be useful to estimate the negative part of Entm(ρ):

Entm(ρ) = Entm̃(ρ)−
∫

X

V 2(x) dρ(x)− log z.

Definition 3.1 (RCD(K,∞) spaces). Let (X, d,m) be a metric measure space satisfy-
ing (MD+exp) and the length property (3.2). We say that (X, d,m) has Riemannian
curvature bounded from below by K ∈ R if for all ρ ∈ P2(X) there exists a solution
(Htρ)t≥0 ⊂ P2(X) of the EVIK-differential inequality starting from ρ, namely Htρ→ ρ as

t ↓ 0 and (denoting by d+

dt
the upper right derivative)

d+

dt

W 2
2 (Htρ, ν)

2
+
K

2
W 2

2 (Htρ, ν) + Entm(Htρ) ≤ Entm(ν) for every t ∈ (0,∞) (3.14)

for all ν ∈ P2(X) with Entm(ν) <∞.

As we already quoted in the Introduction, among the properties of RCD(K,∞) spaces
proved in [5] we recall that the Cheeger energy

Ch is quadratic, i.e. Ch(f) =
1

2
ECh(f) for a Dirichlet form ECh as in (2.1),

with |Df |2w = Γ
(

f
)

for every f ∈ D(Ch) = V,
(QCh)

(in particular G = V and ECh admits the Carré du Champ Γ in V) and ECh satisfies the
BE(K,∞) condition. A further crucial property will be recalled in Section 3.3 below, see
Condition (ED) and Remark 3.8.

3.2 The dual semigroup and its contractivity properties

In this section we study the contractivity property of the dual semigroup of (Pt)t≥0 in the
spaces of Borel probability measures.

Thus E is a strongly local Dirichlet form as in (2.1), (Pt)t≥0 satisfies the mass-preserving
property (2.12) and d is a distance onX satisfying condition (MD) (assumption (MD.exp)
is not needed here).
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We see how, under the mild contractivity property

Ptf ∈ Lipb(X) and Lip(Ptf) ≤ C(t)Lip(f) for all f ∈ Lipb(X) ∩ L2(X,m), (3.15)

with C bounded on all intervals [0, T ], T > 0, a dual semigroup Ht in P(X) can be defined,
satisfying the contractivity property (3.19) below w.r.t. W(β) and to W1. This yields also

the fact that Pt has a (unique) pointwise defined version P̃t, canonically defined also on
bounded Borel functions, and mapping Cb(X) to Cb(X) (we will always identify Ptf with
P̃tf whenever f ∈ Cb(X)). Then we shall prove, following the lines of [34], that in length
metric spaces the pointwise Bakry-Émery-like assumption

|DPtf |2(x) ≤ C2(t) P̃t|Df |2(x) for all x ∈ X , f ∈ Lipb(X) ∩ L2(X,m), (3.16)

with C bounded on all intervals [0, T ], T > 0, provides contractivity of Ht even w.r.t. W2.
Notice that formally (3.16) implies (3.15), but one has to take into account that (3.16)
involves a pointwise defined version of the semigroup, which might depend on (3.15).

A crucial point here is that we want to avoid doubling or local Poincaré assumptions on
the metric measure space. For the aim of this section we introduce the following notation:

Z is the collection of probability densities f ∈ L1
+(X,m),

K is the set of nonnegative bounded Borel functions

f : X → R with bounded support.

(3.17)

Proposition 3.2. Let E and (Pt)t≥0 be as in (2.1) and (2.12) and let d be a distance on
X satisfying the condition (MD). If (3.15) holds then

(i) The mapping Ht(fm) := (Ptf)m, f ∈ Z, uniquely extends to a W(β)-Lipschitz map
Ht : P(X) → P(X) satisfying for every µ, ν ∈ P(X)

W(β)(Htµ,Htν) ≤
(

C(t) ∨ 1
)

W(β)(µ, ν), (3.18)

W1(Htµ,Htν) ≤ C(t)W1(µ, ν), (3.19)

with C(t) given by (3.15).

(ii) Defining P̃tf(x) :=
∫

X
f dHtδx on bounded or nonnegative Borel functions, P̃t is ev-

erywhere defined and maps Cb(X) to Cb(X). Moreover P̃t is a version of Pt for all
Borel functions f with

∫

X
|f | dm <∞, namely P̃tf(x) is defined and Ptf(x) = P̃tf(x)

for m-a.e. x ∈ X. In particular P̃tf is m-a.e. defined for every Borel function semi-
integrable w.r.t. m.

(iii) Ht is dual to P̃t in the following sense:
∫

X

f dHtµ =

∫

X

P̃tf dµ

for all f : X → R bounded Borel, µ ∈ P(X).

(3.20)
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(iv) For every f ∈ Cb(X) and x ∈ X we have limt↓0 P̃tf(x) = f(x). In particular, for
every µ ∈ P(X) the map t 7→ Htµ is weakly continuous in P(X).

Proof. The concavity of β yields that β is subadditive, so that dβ is a distance. Let us first
prove that Pt maps dβ-Lipschitz functions in dβ-Lipschitz functions.

We use the envelope representation

β(r) = inf
(a,b)∈B

a + br, B =
{

(a, b) ∈ [0,∞)2 : β(s) ≤ a + bs for every s ≥ 0
}

,

and the fact that a function ϕ : X → R is ℓ-Lipschitz with respect to a distance d on X if
and only if

ϕ(x) ≤ Rℓϕ(x) := inf
y∈X

ϕ(y) + ℓ d(x, y) for every x ∈ X.

It is easy to check that if ϕ is bounded, then Rℓϕ is bounded and satisfies

inf
X
ϕ ≤ Rℓϕ(x) ≤ ϕ(x) for every x ∈ X, ℓ ≥ 0. (3.21)

Furthermore, if ϕ has also bounded support then Rℓϕ has bounded support as well, so that
Rℓ maps K in K. The contractivity property (3.15) then yields for every ϕ ∈ Lipb(X) ∩
L2(X,m) with Lip(ϕ) ≤ b

Ptϕ ≤ RC(t)b(Ptϕ).

Let us now suppose that ϕ ∈ K is dβ-Lipschitz, with Lipschitz constant less than 1, so that
for every (a, b) ∈ B

ϕ(x) ≤ inf
y∈X

ϕ(y) + β(d(x, y)) ≤ inf
y∈X

ϕ(y) + a+ b d(x, y) = a+Rbϕ(x).

Since (Pt)t≥0 is order preserving, we get for ϕ ∈ K

Ptϕ ≤ a+ Pt(Rbϕ) ≤ a +RC(t)b

(

Pt(Rbϕ)
)

≤ a +RC(t)b

(

Ptϕ
)

,

where we used the right inequality of (3.21) and the fact that Lip(Rbϕ) ≤ b. It follows
that for every x, y ∈ X and every (a, b) ∈ B

Ptϕ(x) ≤ Ptϕ(y) + a+ C(t)bd(x, y), i.e. Ptϕ(x)− Ptϕ(y) ≤ β(C(t)d(x, y)).

By Kantorovich duality, for f, g ∈ Z we get

W(β)(Ptf m,Ptgm) = sup

{
∫

X

ϕ
(

Ptf − Ptg
)

dm : ϕ ∈ K, Lipdβ(ϕ) ≤ 1

}

= sup

{
∫

X

Ptϕ
(

f − g
)

dm : ϕ ∈ K, Lipdβ
(ϕ) ≤ 1

}

≤ (C(t) ∨ 1)W(β)(fm, gm).

Hence, (3.18) holds when µ = fm, ν = gm. By the density of {fm : f ∈ Z} in P(X)
w.r.t. W(β) we get (3.18) for arbitrary µ, ν ∈ P(X). A similar argument yields (3.19).
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(ii) Continuity of x 7→ P̃tf(x) when f ∈ Cb(X) follows directly by the continuity of
x 7→ Htδx. The fact that P̃tf is a version of Pt when f is Borel and m-integrable is a simple
consequence of the fact that Pt is selfadjoint, see [5] for details.

(iii) When f, g ∈ Cb(X) ∩ L2(X,m) and µ = gm, the identity (3.20) reduces to the
fact that Pt is selfadjoint. The general case can be easily achieved using a monotone class
argument.

(iv) In the case of ϕ ∈ Lipb(X)∩L2(X,m) it is easy to prove that P̃tϕ(x) → ϕ(x) for all
x ∈ X as t ↓ 0, since P̃tϕ are equi-Lipschitz, converge in L2(X,m) to ϕ and suppm = X .
By (3.20) it follows that

lim
t↓0

∫

X

ϕ dHtµ = lim
t↓0

∫

X

P̃tϕ dµ =

∫

X

ϕ dµ for every ϕ ∈ Lipb(X) ∩ L2(X,m).

By a density argument we obtain that the same holds on Lipb(X), so that t 7→ Htµ
is weakly continuous. Since P̃tf(x) =

∫

X
f dHtδx, we conclude that P̃tf(x) → f(x) for

arbitrary f ∈ Cb(X). �

Writing µ =
∫

X
δx dµ(x) and recalling the definition of P̃t, we can also write (3.20) in

the form

Htµ =

∫

X

Htδx dµ(x) ∀µ ∈ P(X). (3.22)

In order to prove that (3.16) yields the contractivity property

W2(Htµ,Htν) ≤ C(t)W2(µ, ν) for every µ, ν ∈ P(X), t ≥ 0, (W2-cont)

we need the following auxiliary results.

Lemma 3.3. Assume that (µn) ⊂ P(X) weakly converges to µ ∈ P(X), and that fn are
equibounded Borel functions satisfying

lim sup
n→∞

fn(xn) ≤ f(x) whenever xn → x

for some Borel function f . Then lim supn
∫

X
fn dµn ≤

∫

X
f dµ.

Proof. Possibly adding a constant, we can assume that all functions fn are nonnegative.
For all integers k and t > 0 it holds

µ

( ∞
⋃

m=k

{fm > t}
)

≥ lim sup
n→∞

µn

( ∞
⋃

m=k

{fm > t}
)

≥ lim sup
n→∞

µn({fn > t}).

Taking the intersection of the sets in the left hand side and noticing that it is contained,
by assumption, in {f ≥ t}, we get lim supn µn({fn > t}) ≤ µ({f ≥ t}). By Cavalieri’s
formula and Fatou’s lemma we conclude. �
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Lemma 3.4. Assume (3.15), (3.16) and the length property (3.2). For all f ∈ Lipb(X)
nonnegative and with bounded support, Qtf is Lipschitz, nonnegative with bounded support
and it holds

|PtQ1f(x)− Ptf(y)| ≤
1

2
C2(t)d2(x, y) for every t ≥ 0, x, y ∈ X.

Proof. It is immediate to check that Qsf(x) = 0 if f(x) = 0, so that the support of all
functions Qsf , s ∈ [0, 1], are contained in a given ball and Qsf are also equi-bounded.

The stated inequality is trivial for t = 0, so assume t > 0. By (3.9) for every s > 0,
setting rk := s − 1/k ↑ s, the sequence r2k|DQrkf |2(x) monotonically converges to the
function D−(x, s); we can thus pass to the limit in the upper gradient inequality (which is
a consequence of (3.16))

|PtQrkf(γ1)− PtQrkf(γ0)| ≤ C(t)

∫ 1

0

√

P̃t|DQrkf |2(γs)|γ̇s| ds

to get that the function C(t)Gs, with Gs(x) := s−1
√

P̃t
(

D−(x, s)2
)

, is an upper gradient

for Pt(Qsf). Moreover, combining (3.6) and (3.5) we obtain

lim sup
h↓0

Qs+hf(xh)−Qsf(xh)

h
≤ 1

2s2
lim sup

h↓0
−(D+(xh, s))

2

≤ − 1

2s2
(D−(x, s))2

(3.23)

along an arbitrary sequence xh → x.
Let γ be a Lipschitz curve with γ1 = x and γ0 = y. We interpolate with a parameter

s ∈ [0, 1], setting g(s) := PtQsf(γs). Using (3.10) and (3.15) we obtain that g is absolutely
continuous in [0, 1], so that we need only to estimate g′(s). For h > 0, we write

g(s+ h)− g(s)

h
=

∫

X

Qs+hf −Qsf

h
dHtδγs+h

+
PtQsf(γs+h)− PtQsf(γs)

h

and estimate the two terms separately. The first term can be estimated as follows:

lim sup
h↓0

∫

X

Qs+hf −Qsf

h
dHtδγs+h

≤ − 1

2s2

∫

X

D−(·, s)2 dHtδγs = −1

2
G2
s(γs). (3.24)

Here we applied Lemma 3.3 with fh(x) = (Qs+hf(x) − Qsf(x))/h, µh = Htδγs+h
and

µ = Htδγs , taking (3.23) into account.
The second term can be estimated as follows. By the upper gradient property of C(t)Gs

for Pt(Qsf) we get

lim sup
h↓0

|PtQsf(γs+h)− PtQsf(γs)|
h

≤ Gs(γs)C(t)|γ̇s| (3.25)

for a.e. s ∈ (0, 1), more precisely at any Lebesgue point of |γ̇| and of s 7→ Gs(γs). Com-
bining (3.24) and (3.25) and using the Young inequality we get |PtQ1f(x) − Ptf(y)| ≤
C2(t)1

2

∫ 1

0
|γ̇s|2 ds. Minimizing with respect to γ gives the result. �

29



Theorem 3.5. Let E and (Pt)t≥0 be as in (2.1) and (2.12), and let d be a distance on X
under the assumptions (MD) and (3.2). Then (3.15) and (3.16) are satisfied by (Pt)t≥0 if
and only if (W2-cont) holds.

Proof. We only prove the W2 contraction assuming that (3.15) and (3.16) hold, since the
converse implication have been already proved in [34] (see also [5, Theorem 6.2]) and it
does not play any role in this paper.

We first notice that Kantorovich duality provides the identity

1

2
W 2

2 (Htδx,Htδy) = sup |PtQ1f(x)− Ptf(y)|

where the supremum runs in the class of bounded, nonnegative Lipschitz functions f with
bounded support. Therefore, Lemma 3.4 gives

W 2
2 (Htδx,Htδy) ≤ C2(t)d2(x, y). (3.26)

Now, given µ, ν ∈ P(X) with W2(µ, ν) < ∞ and a corresponding optimal plan γ, we
may use a measurable selection theorem (see for instance [17, Theorem 6.9.2]) to select in
a γ-measurable way optimal plans γxy from Htδx to Htδy. Then, we define

γ0 :=

∫

X×X

γxy dγ(x, y).

and notice that, because of (3.22), γ0 is an admissible plan from Htµ to Htν. Since (3.26)
provides the inequality

∫

d2 dγ0 ≤ C2(t)
∫

d2 dγ we conclude. �

3.3 Energy measure spaces

In this section we want to study more carefully the interaction between the energy and the
metric structures, particularly in the case when the initial structure is not provided by a
distance, but rather by a Dirichlet form E.

Given a Dirichlet form E in L2(X,m) as in (2.1), assume that B is the m-completion
of the Borel σ-algebra of (X, τ), where τ is a given topology in X . Then, under these
structural assumptions, we define a first set of “locally 1-Lipschitz” functions as follows:

L :=
{

ψ ∈ G : Γ
(

ψ
)

≤ 1 m-a.e. in X
}

, LC := L ∩ C(X).

With this notion at hand we can generate canonically the intrinsic (possibly infinite)
pseudo-distance [16]:

dE(x1, x2) := sup
ψ∈LC

|ψ(x2)− ψ(x1)| for every x1, x2 ∈ X.

We also introduce 1-Lipschitz truncation functions Sk ∈ C1(R), k > 0, defined by

Sk(r) := kS(r/k) with S(r) =

{

1 if |r| ≤ 1,

0 if |r| ≥ 3,
|S′(r)| ≤ 1. (3.27)

We have now all the ingredients to define the following structure.
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Definition 3.6 (Energy measure space). Let (X, τ) be a Polish space, let m be a Borel
measure with full support, let B be the m-completion of the Borel σ-algebra and let E be
a Dirichlet form in L2(X,m) satisfying (2.1) of Section 2.1. We say that (X, τ,m,E) is a
Energy measure space if

(a) There exists a function

θ ∈ C(X), θ ≥ 0, such that θk := Sk ◦ θ belongs to L for every k > 0. (3.28)

(b) dE is a finite distance in X which induces the topology τ and (X, dE) is complete.

Notice that if m(X) <∞ and 1 ∈ D(E) then (a) is always satisfied by choosing θ ≡ 0.
In the general case condition (a) is strictly related to the finiteness property of the measure
of balls (MD.b). In fact, we shall see in Theorem 3.9 that (X, dE,m) satisfies the measure
distance condition (MD).

Remark 3.7 (Completeness and length property). Whenever dE induces the topology τ
(and thus (X, dE) is a separable space), completeness is not a restrictive assumption, since
it can always be obtained by taking the abstract completion X̄ of X with respect to dE.
Since (X, τ) is a Polish space, X can be identified with a Borel subset of X̄ [17, Thm. 6.8.6]
and m can be easily extended to a Borel measure m̄ on X̄ by setting m̄(B) := m(B∩X); in
particular X̄ \X is m̄-negligible and E can be considered as a Dirichlet form on L2(X̄, m̄)
as well. Finally, once completeness is assumed, the length property is a consequence of the
definition of the intrinsic distance dE, see [52, 50] in the locally compact case and the next
Corollary 3.10 in the general case.

In many cases τ is already induced by a distance d satisfying the compatibility condition
(MD), so that we are actually dealing with a structure (X, d,m,E). In this situation it is
natural to investigate under which assumptions the identity d = dE holds: this in particular
guarantees that (X, τ,m,E) is an Energy measure space according to Definition 3.6. In the
following remark we examine the case when E is canonically generated starting from d and
m, and then we investigate possibly more general situations.

Remark 3.8 (The case of a quadratic Cheeger energy). Let (X, d,m) be a metric measure
space satisfying (MD) and let us assume that the Cheeger energy is quadratic (i.e. (X, d,m)
is infinitesimally Hilbertian according to [27]), ECh := 2Ch. Then it is clear that any 1-
Lipschitz function f ∈ L2(X,m) belongs to LC, hence dE ≥ d. It follows that d = dE if
and only if every continuous function f ∈ D(Ch) with |Df |w ≤ 1 m-a.e. in X is 1-Lipschitz
w.r.t. d. In particular this is the case of RCD(K,∞) spaces.
If X = [0, 1] endowed with the Lebesgue measure and the Euclidean distance, and if
m =

∑

n 2
−nδqn, where (qn) is an enumeration of Q ∩ [0, 1], then it is easy to check that

Ch ≡ 0 (see [4] for details), hence dE(x, y) = ∞ whenever x 6= y.

If d is a distance on X satisfying (MD), in order to provide links between the Dirichlet
form E and the distance d we introduce the following condition:
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Condition (ED: Energy-Distance interaction). d is a distance on X such that:
(ED.a) every function ψ ∈ LC is 1-Lipschitz with respect to d;
(ED.b) every function ψ ∈ Lip(X, d) with |Dψ| ≤ 1 and bounded support belongs to LC.

Theorem 3.9. If (X, τ,m,E) is an Energy measure space according to Definition 3.6 then
the canonical distance dE satisfies conditions (MD, ED).

Conversely, if E is a Dirichlet form as in (2.1) and d is a distance on X ×X inducing
the topology τ and satisfying conditions (MD, ED), then (X, τ,m,E) is an Energy measure
space and

d(x1, x2) = dE(x1, x2) for every x1, x2 ∈ X. (3.29)

Proof. Let us first assume that (X, τ,m,E) is an Energy measure space. (MD.a) is im-
mediate since dE is complete by assumption and τ is separable. (ED.a) is also a direct
consequence of the definition of E, since

|ψ(x2)− ψ(x1)| ≤ dE(x1, x2) for every ψ ∈ LC, x1, x2 ∈ X. (3.30)

Let us now prove (MD.b) and (ED.b).
We first observe that the function θ of (3.28) is bounded on each ball Br(y), y ∈ X

and r > 0, otherwise we could find a sequence of points yk ∈ Br(y), k ∈ N, such that
θ(yk) ≥ 3k and therefore θk(y)− θk(yk) ≥ k whenever θ(y) ≤ k. This contradicts the fact
that θk is 1-Lipschitz by (3.30). As a consequence, for every y ∈ X and r > 0 there exists
ky,r ∈ N such that

θk(x) ≡ k for every x ∈ Br(y), k ≥ kr,y.

In particular, since θk ∈ L2(X,m), we get that all the sets Br(y) with y ∈ X and r > 0
have finite measure, so that (MD.b) holds.

We observe that by the separability of X×X we can find a countable family (ψn) ⊂ LC

such that
dE(x1, x2) = sup

n

∣

∣ψn(x2)− ψn(x1)| for every x1, x2 ∈ X.

We set
dk,N(x1, x2) :=

(

sup
n≤N

∣

∣ψn(x2)− ψn(x1)|
)

∧ θk(x2),

observing that for every y ∈ X the map x 7→ dk,N(y, x) belongs to LC. Passing to the limit
as N → ∞, it is easy to check that dk,N(y, ·) → dk(y, ·) = dE(y, ·) ∧ θk pointwise in X and
therefore in L2(X,m), since θk ∈ L2(X,m). We deduce that dk(y, ·) ∈ L for every y ∈ X
and k ∈ N.

Let us now prove that every map f ∈ Lip(X, dE) with |Df | ≤ 1 and bounded support
belongs to L; it is not restrictive to assume f nonnegative. Since (X, dE) is a length metric
space (see Theorem 3.10 below), f is 1-Lipschitz and it is easy to check that, setting
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fk = f ∧ θk, it holds

fk(x) =
(

inf
z∈X

(

f(z) + dE(z, x)
)

)

∧ θk(x) = inf
z∈X

(

(

fk(z) + dE(z, x)
)

∧ θk(x)
)

=
(

inf
z∈X

(

fk(z) + dE(z, x) ∧ θk(x)
)

)

∧ θk(x)

=
(

inf
z∈X

(

fk(z) + dk(z, x)
)

)

∧ θk(x).

Let (zi) be a countable dense set of X . The functions

fk,n(x) :=
(

min
1≤i≤n

fk(zi) + dk(zi, x)
)

∧ θk(x)

belong to L, are nonincreasing with respect to n, and satisfy 0 ≤ fk,n ≤ θk. Since

{x ∈ X : θk(x) > 0} ⊂ {x ∈ X : θ3k(x) = 3k},

we easily see that m
(

supp(θk)
)

< ∞. Passing to the limit as n ↑ ∞, since z 7→ dk(z, x) is
continuous, they converge monotonically to

(

inf
z∈X

(

fk(z) + dk(z, x)
)

)

∧ θk(x) = fk(x),

and their energy is uniformly bounded by m
(

supp(θk)
)

. This shows that fk ∈ L. Even-
tually, letting k ↑ ∞ and recalling that supp(fk) ⊂ supp(f) and m(supp(f)) < ∞ by
(MD.a), we obtain f ∈ L.

The converse implication is easier: it is immediate to check that (ED.a) is equivalent
to

d(x1, x2) ≥ dE(x1, x2) for every x1, x2 ∈ X ; (3.31)

if (ED.b) holds and balls have finite measure according to (MD.b), we have x 7→
Tk(d(y, x)) ∈ L for every y ∈ X , where Tk(r) := r ∧ Sk(r). Since

d(x1, x2) = Tk(d(x2, x1))− Tk(d(x2, x2)) whenever k > d(x1, x2),

we easily get the converse inequality to (3.31), and therefore (3.29) and property (b) of
Definition (3.6). In order to get also (a) it is sufficient to take θ(x) := d(x, x0) for an
arbitrary x0 ∈ X . �

Theorem 3.10 (Length property of dE). If (X, τ,m,E) is an Energy measure space then
(X, dE) is a length metric space, i.e. it also satisfies (3.2).

Proof. We follow the same argument as in [52, 50]. Since (X, dE) is complete, it is well
known (see e.g. [19, Thm. 2.4.16]) that the length condition is equivalent to show that
for every couple of points x0, x1 ∈ X and ε ∈ (0, r) with r := dE(x0, x1) there exists an
ε-midpoint y ∈ X such that

dE(y, xi) <
r

2
+ ε, i = 0, 1.
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We argue by contradiction assuming that Br/2+ε(x0) ∩ Br/2+ε(x1) = ∅ for some ε ∈ (0, r)
and we introduce the function

ψ(x) :=
(1

2
(r + ε)− dE(x, x0)

)

+
−
(1

2
(r + ε)− dE(x, x1)

)

+
.

ψ is Lipschitz, has bounded support and it is easy to check that Γ(ψ) ≤ 1 m-a.e. in X ,
since Br/2+ε(x0) and Br/2+ε(x1) are disjoint. It turns out that it is 1-Lipschitz by (3.30).
On the other hand, ψ(x0)− ψ(x1) = r + ε > dE(x0, x1). �

We now examine some additional properties of Energy measure spaces.

Proposition 3.11. Let (X, τ,m,E) be an Energy measure space. Let f ∈ G ∩ Cb(X) and
let ζ : X → [0,∞) be a bounded upper semicontinuous function such that Γ

(

f
)

≤ ζ2 m-a.e.
in X. Then f is Lipschitz (with respect to the induced distance dE) and |D∗f | ≤ ζ. In
particular ζ is an upper gradient of f .

Proof. We know that (ED) holds with d = dE, by the previous theorem. Since ζ is bounded,
f is Lipschitz by (ED.a). We fix x ∈ X and for every ε > 0 we set Gε := supB3ε(x) ζ . The
Lipschitz function

ψε(y) :=
[

|f(y)− f(x)| ∨
(

Gεd(y, x)
)

]

∧
(

GεSε(d(x, y))
)

belongs to V∞ and
√

Γ
(

ψ
)

≤ max{ζ, Gε}, since |S′
ε| ≤ 1; moreover ψε(y) = 0 if d(y, x) ≥

3ε, so that
√

Γ
(

ψε
)

≤ Gε m-a.e. in X . It follows that ψε is Gε-Lipschitz and ψε(y) ≤
Gε d(y, x) for every y ∈ X since ψε(x) = 0, so that GεSε(d(x, y)) = Gεε for d(x, y) < ε
gives

|Df(x)| ≤ lim sup
y→x

|f(y)− f(x)|
d(y, x)

≤ lim sup
y→x

ψε(y)

d(y, x)
≤ Gε.

Since ε > 0 is arbitrary and limε↓0Gε = ζ(x) we obtain |Df(x)| ≤ ζ(x). Since ζ is upper
semicontinuous and X is a length space, we also get |D∗f | ≤ ζ . �

The following result provides a first inequality between E and Ch, in the case when a
priori the distances d and dE are different, and we assume only (ED.b).

Theorem 3.12. E be a Dirichlet form in L2(X,m) satisfying (2.1) of Section 2.1 and let d
be a distance on X satisfying condition (MD). Then condition (ED.b) is satisfied if and
only if for every function f ∈ Lip(X, d) with bounded support we have

f ∈ G, |Df |2 ≥ Γ
(

f
)

m-a.e. in X. (3.32)

In addition, if (MD) and (ED.b) hold, we have

2Ch(g) ≥ E(g) for every g ∈ L2(X,m), (3.33)

D(Ch) ⊂ G ⊂ V, |Dg|2w ≥ Γ
(

g
)

for every g ∈ D(Ch). (3.34)
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Proof. The implication (3.32)⇒(ED.b) is trivial; let us consider the converse one.
Since the statement is local, possibly replacing f with 0 ∨ (f + c) ∧ Sk(d(x0, ·)) with

c = 0∨ supB3k(x0)
(−f) (notice that f is bounded) and k large enough, we can assume that

f is nonnegative and f ≤ Sk(d(x0, ·)).
Recall the Hopf-Lax formula (3.5) for the map Qt; if (zi) is a countable dense subset of

X we define

Qn
t f(x) =

(

min
1≤i≤n

f(zi) +
1

2t
d2(zi, x)

)

, Qn,k
t f(x) = Qn

t f(x) ∧ 2Sk(d(x0, x)), (3.35)

and we set In(x) =
{

i ∈ {1, . . . , n} : zi minimizes (3.35)
}

. By the density of (zn), it is

clear that Qn,k
t f ↓ Qtf ∧ 2Sk(d(x0, ·)) = Qtf , because Qtf ≤ f ≤ Sk(d(x0, ·)). Therefore,

if zn(x) ∈ {zi : i ∈ In(x)}, it turns out that (zn(x)) is a minimizing sequence for Qtf(x),
namely

1

2t
d2(x, zn(x)) + f(zn(x)) → Qtf(x) as n→ ∞.

The very definition of D+(t, x) then gives

lim sup
n→∞

1

t
d(x, zn(x)) ≤ D+(t, x). (3.36)

The locality property, the fact that
(

f(zi)+ d2(zi, ·)/2t
)

∧Sk(d(x0, ·)) ∈ V and the obvious
bound

d2(zi, x) ≤ 4kt if i ∈ In(x), x ∈ {Qn
t f ≤ 2Sk(d(x0, ·)),

yield
√

Γ
(

Qn,k
t f

)

(x) ≤ 1

t
max
i∈In(x)

d(x, zi) ≤ 2

√

k

t

for m-a.e. x ∈ {Qn
t f ≤ 2Sk(d(x0, ·))}. If we define zn(x) as a value zj that realizes the

maximum for d(zi, x) as i ∈ In(x), the previous formula yields

√

Γ
(

Qn,k
t f

)

(x) ≤ 1

t
d(x, zn(x)) ≤ 2

√

k

t
for m-a.e. x ∈ {Qn

t f ≤ 2Sk(d(x0, ·))}, (3.37)

so that

Γ
(

Qn,k
t f

)

≤ 4
(

1 ∨ k

t

)

m-a.e. in X, Γ
(

Qn,k
t f

)

= 0 m-a.e. in X \B3k(x0).

Since Qn,k
t f and Γ

(

Qn,k
t f

)

are uniformly bounded and supported in a bounded set, and

Qn,k
t f pointwise converges to Qtf as n → ∞, considering any weak limit point G of

√

Γ
(

Qn,k
t f

)

in L2(X,m) we obtain by (2.10), (3.36) and (3.37)

Γ
(

Qtf
)

(x) ≤ G2(x) ≤
(

D+(x, t)
)2

t2
for m-a.e. x ∈ {Qtf < 2Sk(d(x0, ·))}. (3.38)
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Since, by the inequalities Qtf ≤ f ≤ Sk(d(x0, ·)), Qtf vanishes on {Qtf ≥ 2Sk(d(x0, ·))},
the inequality above holds m-a.e. in X .

Since f is Lipschitz, it follows that D+(x, t)/t is uniformly bounded. Integrating (3.8)
on an arbitrary bounded Borel set A and applying Fatou’s Lemma, from (3.38) we get

∫

A

|Df |2 dm ≥
∫

A

lim sup
t↓0

∫ 1

0

(D+(x, tr)

tr

)2

dr dm(x)

≥ lim sup
t↓0

∫ 1

0

∫

A

(D+(x, tr)

tr

)2

dm(x) dr

≥ lim sup
t↓0

∫ 1

0

∫

A

Γ
(

Qtrf
)

(x) dm(x) dr

≥
∫ 1

0

lim inf
t↓0

(

∫

A

Γ
(

Qtrf
)

dm
)

dr ≥
∫

A

Γ
(

f
)

dm,

where in the last inequality we applied (2.10) once more. Since A is arbitrary we conclude.
In order to prove (3.33) it is not restrictive to assume Ch(g) <∞. By the very definition

of the Cheeger energy, we can then find a sequence of functions fn ∈ Lipb(X) ∩ L2(X,m)
converging to g in L2(X,m) with limn→∞

∫

X
|Dfn|2 dm = 2Ch(g).

By replacing fn with gn(x) = fn(x)S1(d(x, x0)/n) we can even obtain a sequence of
Lipschitz functions with bounded support. (3.32) and the lower semicontinuity of E then
provide (3.33) and (3.34). �

In order to conclude our analysis of the relations between E and Ch for Energy measure
spaces (X, τ,m,E), we introduce a further property.

Definition 3.13 (Upper regularity). Let (X, τ,m,E) be an Energy measure space. We say
that the Dirichlet form E is upper-regular if for every f in a dense subset of V there exist
fn ∈ G∩Cb(X) converging strongly to f in L2(X,m) and gn : X → R bounded and upper
semicontinuous such that

√

Γ
(

fn
)

≤ gn m-a.e., lim sup
n→∞

∫

X

g2n dm ≤ E(f). (3.39)

Theorem 3.14. Let (X, τ,m,E) be an Energy measure space. Then the Cheeger energy
associated to (X, dE,m) coincides with E, i.e.

E(f) = 2Ch(f) for every f ∈ L2(X,m), (3.40)

if and only if E is upper-regular. In this case G = V, E admits a Carré du Champ Γ and

Γ
(

f
)

= |Df |2w m-a.e. in X for every f ∈ V. (3.41)

In particular, the space V∩ Lipb(X, dE) is dense in V. If moreover (MD.exp) holds, then
(Pt)t≥0 satisfies the mass preserving property (2.12).
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Proof. Since Ch is always upper-regular by (3.11), the condition is clearly necessary. In
order to prove its sufficiency, by (3.33) of Theorem 3.12 we have just to prove that every f ∈
V satisfies the inequality 2Ch(f) ≤ E(f). If fn, gn are sequences as in (3.39), Proposition
3.11 yields that fn are Lipschitz and

|Dfn| ≤ gn, Ch(fn) ≤
1

2

∫

X

|Dfn|2 dm ≤ 1

2

∫

X

g2n dm.

Passing to the limit as n → ∞ we obtain the desired inequality thanks to the lower-
semicontinuity of Ch in L2(X,m). The last statement of the Theorem follows by [4,
Thm. 4.20]. �

3.4 Riemannian Energy measure spaces and the BE(K,∞) con-

dition

In this section we will discuss various consequences of the Energy measure space axioma-
tization in combination with BE(K,∞).

Taking into account the previous section, the Bakry-Émery condition BE(K,N) as
stated in Definition 2.4 makes perfectly sense for a Energy measure space (X, τ,m,E). In
the next result we will show that under a weak-Feller property on the semigroup (Pt)t≥0

we gain upper-regularity of E, the identifications E = 2Ch of Theorem 3.14 and L = LC.

Theorem 3.15. Let (X, τ,m,E) be a Energy measure space satisfying the BE(K,∞) con-
dition. Then, its Markov semigroup (Pt)t≥0 satisfies the weak-Feller property

f ∈ Lipb(X, dE) with bounded support, |Df | ≤ 1 ⇒ Ptf ∈ Cb(X) ∀t ≥ 0 (w-Feller)

if and only if
L = LC, (3.42)

i.e. if every function f ∈ L admits a continuous representative. In this case E is upper-
regular and, as a consequence, (3.40), (3.41) hold.

Proof. The implication (3.42)⇒(w-Feller) is easy, since for any f ∈ Lipb(X, dE) with |Df | ≤
1 and bounded support, the Bakry-Émery condition BE(K,∞) (i.e. (2.35) with ν = 0)
and the bound Γ

(

f
)

≤ 1 given by (ED.b) yields eKtPtf ∈ L = LC.

Now we prove the converse implication, from (w-Feller) to (3.42). The Bakry-Émery
condition BE(K,∞) in conjunction with (ED.b) and (w-Feller) yield eKtPtf ∈ LC for
every f ∈ Lipb(X, dE) with |Df | ≤ 1 and bounded support and t > 0, thus in particular
eKtPtf is 1-Lipschitz by (ED.a). Let us now fix f ∈ L ∩ L∞(X,m) and let us consider a
sequence of uniformly bounded functions fn ∈ Lipb(X, dE)∩L2(X,m) with bounded support
converging to f in L2(X,m). By the previous step we know that Ptfn ∈ Lipb(X, dE) and the
estimate (2.34) shows that Γ

(

Ptfn
)

≤ C/t for a constant C independent of n. (ED) then
shows that Lip(Ptfn) ≤ C/t; passing to the limit as n → ∞, we can find a subsequence
nk → ∞ such that limk Ptfnk

(x) = Ptf(x) for every x ∈ X \ N, with m(N) = 0. Since
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Ptfn are uniformly Lipschitz functions, also Ptf is Lipschitz in X \ N so that it admits a
Lipschitz representative f̃t in X .

On the other hand, BE(K,∞) and (ED.a) show that Lip(ft) ≤ e−Kt. Passing to the
limit along a suitable sequence tn ↓ 0 and repeating the previous argument we obtain that
f admits a Lipschitz representative.

Let us prove now that E is upper regular, by checking (3.39) for every f in the space V1
∞

of (2.37), which is dense in V. Observe that the estimate (2.34), (3.42) and (ED.a) yield
that, for every t > 0 and every g ∈ L2 ∩ L∞(X,m), the function Ptg admits a Lipschitz,

thus continuous, and bounded representative gt. Choosing in particular g :=
√

Γ
(

f
)

we

obtain by (2.35)

Γ
(

Ptf
)

≤ e−2Ktg2t , Ptf → f in L2(X,m),

lim
t↓0

∫

X

e−2Ktg2t dm =

∫

X

g2 dm = E(f).
�

According to the previous Theorem we introduce the natural, and smaller, class of
Energy measure spaces (X, τ,m,E), still with no curvature bound, but well adapted to the
Bakry-Émery condition. In such a class, that we call Riemannian Energy measure spaces,
the Dirichlet form E coincides with the Cheeger energy Ch associated to the intrinsic
distance dE and every function in L admits a continuous (thus 1-Lipschitz, by the Energy
measure space axiomatization) representative.

Definition 3.16 (Riemannian Energy measure spaces). (X, τ,m,E) is a Riemannian En-
ergy measure space if the following properties hold:

(a) (X, τ,m,E) is a Energy measure space;

(b) E is upper regular according to Definition 3.13;

(c) every function in L admits a continuous representative.

The next Theorem presents various equivalent characterizations of Riemannian Energy
measure spaces in connection with BE(K,∞).

Theorem 3.17. The following conditions are equivalent:

(i) (X, τ,m,E) is a Riemannian Energy measure space satisfying BE(K,∞).

(ii) (X, τ,m,E) is a Energy measure space satisfying (w-Feller) and BE(K,∞).

(iii) (X, τ,m,E) is a Energy measure space satisfying L = LC and BE(K,∞).

(iv) (X, τ,m,E) is a Energy measure space with E upper regular, and for every function
f ∈ L2(X,m) ∩ Lipb(X, dE) with |Df | ∈ L2(X,m)

Ptf ∈ Lip(X, dE), |DPtf |2 ≤ e−2KtPt
(

|Df |2
)

m-a.e. in X. (3.43)
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(v) E is a Dirichlet form in L2(X,m) as in (2.1), there exists a length distance d on
X inducing the topology τ and satisfying conditions (MD), (ED.b), and for every
f ∈ LC ∩ L∞(X) and t > 0

Ptf ∈ Lipb(X, d), |DPtf |2 ≤ e−2KtPtΓ
(

f
)

m-a.e. in X. (3.44)

If one of the above equivalent conditions holds with (MD.exp), then (3.15) holds with
C(t) = e−Kt, the semigroups (P̃t)t≥0 and (Ht)t≥0 are well defined according to Proposi-
tion 3.2, Ht(µ) ≪ m for every t > 0 and µ ∈ P(X), and the strong Feller property

P̃t maps L2 ∩ L∞(X,m) into Lipb(X) (S-Feller)

holds with

|DP̃tf |2 = Γ
(

Ptf
)

m-a.e. in X for every t > 0, f ∈ L2 ∩ L∞(X,m). (3.45)

Eventually, defining I2K(t) as in (2.29), there holds

2I2K(t) |DP̃tf |2 ≤ P̃tf
2 for every t ∈ (0,∞), f ∈ L∞(X,m), (3.46)

and in particular

√

2I2K(t) Lip(Ptf) ≤ ‖f‖L∞(X,m) for every t ∈ (0,∞). (3.47)

Proof. The equivalence (i)⇔(ii)⇔(iii) is just the statement of Theorem 3.15.
(v) ⇒ (ii) and (v) ⇒ (iv). Thanks to (ED.b) we immediately get (w-Feller). (3.44)

also yields the density of V∞ in V and, thanks to (3.32), condition (2.35) for BE(K,∞).
Since (Pt)t≥0 is order preserving, (3.32) and (v) yield (ED.a): if f ∈ LC then (3.44)
and the length property yield Ptf Lipschitz with constant less then e−Kt. Since along a
suitable vanishing sequence tn ↓ 0 Ptnf → f m-a.e. as n → ∞, arguing as in the proof of
Theorem 3.15 it is easy to check that f is 1-Lipschitz. We can thus apply Theorem 3.17
to get that (X, τ,m,E) is an Energy measure space with d ≡ dE. Since (ii) in particular
shows that E is upper-regular, we proved that (v) ⇒ (iv) as well.

(iv) ⇒ (ii). By the density of V ∩ Lipb(X, dE) in D(Ch) = V stated in Theorem 3.14
and the upper bound (3.32) we get (2.35) which is one of the equivalent characterizations
of BE(K,∞). Moreover, (3.43) clearly yields (w-Feller).

(i)⇒ (v) with the choice d := dE and (3.46). Let us observe that the estimate (2.34) and
the property L ⊂ Lip(X) yield that for every t > 0 and every function f ∈ L2 ∩L∞(X,m)
Ptf admits a Lipschitz representative satisfying (3.47). Moreover, if f is also Lipschitz,
(2.35) yields the estimate (3.15) with C(t) := e−Kt. We can then apply proposition 3.2
and conclude that when f ∈ Cb(X)∩L2(X,m) the Lipschitz representative of Ptf coincides
with P̃tf . Since by definition

P̃tf(x) =

∫

X

f dHtδx for all Borel f bounded from below
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we can use a monotone class argument to prove the identification of P̃t with the continuous
version of Pt in the general case of bounded, Borel and square integrable functions. Notice
that we use (3.47) to convert monotone equibounded convergence of fn into pointwise
convergence on X of (the continuous representative of) Ptfn, t > 0.

Another immediate application of (3.47) is the absolute continuity of Htµ w.r.t. m

for all µ ∈ P(X) and t > 0. Indeed, if A is a Borel and m-negligible set, then P̃tχA
is identically null (being equal to PtχA, hence continuous, and null m-a.e. in X), hence
(3.20) gives Htµ(A) = 0. As a consequence, we can also compute P̃tf(x) for m-measurable
functions f , provided f is semi-integrable with respect to Htδx. If now f ∈ L, (2.35) then
yields

Γ
(

Ptf
)

≤ e−2KtP̃tΓ
(

f
)

m-a.e. in X,

and Proposition 3.11 yields (3.44) since P̃tΓ
(

f
)

is continuous and bounded. A similar
argument shows (3.46), starting from (2.34).

Let us eventually prove (3.45). Since the inequality ≥ is true by assumption, let us see
why (3.44) provides the converse one: we start from

|DP̃tf |2 ≤ e−2KεP̃ε
(

Γ
(

Pt−εf
))

for every ε ∈ (0, t).

Recalling that Γ
(

Pt−εf
)

converges strongly in L2(X,m) to Γ
(

Ptf
)

as ε ↓ 0, we get (3.45).
�

Recalling Theorem 3.17, Theorem 3.5, the characterization (3.43), and the notation
(3.17), we immediately have

Corollary 3.18. Let (X, τ,m,E) be a Energy measure space satisfying the upper-regularity
property (3.39) (in particular a Riemannian one) and (MD.exp).
Then BE(K,∞) holds if and only if the semigroup (Pt)t≥0 satisfies the contraction property

W2

(

(Ptf)m, (Ptg)m
)

≤ e−KtW2(fm, gm) (3.48)

for every probability densities f, g ∈ L1
+(X,m).

4 Proof of the equivalence result

In this section we assume that (X, τ,m,E) is a Riemannian Energy measure space satisfying
(MD.exp) (relative to dE) and the BE(K,∞) condition, as discussed in Section 3.4. In
particular all results of the previous sections on existence of the dual semigroup (Ht)t≥0,
its W2-contractivity and regularizing properties of (Pt)t≥0 are applicable. Furthermore,
by Theorem 3.14, the Dirichlet form setup described in Section 2 and the metric setup
described in Section 3.1 are completely equivalent. In particular, we can apply the results
of [4].
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4.1 Entropy, Fisher information, and moment estimates

Let us first recall that the Fisher information functional F : L1
+(X,m) → [0,∞] is defined

by
F(f) := 4E(

√

f)
√

f ∈ V,

set equal to +∞ if
√
f ∈ L2(X,m) \ V. Since fn → f in L1

+(X,m) implies
√
fn → √

f in
L2(X,m), F is L1-lower semicontinuous.

Proposition 4.1. Let f ∈ L1
+(X,m). Then

√
f ∈ V if and only if fN := min{f,N} ∈ V

for all N and
∫

{f>0}
Γ
(

f
)

/f dm <∞. If this is the case,

F(f) =

∫

{f>0}

Γ
(

f
)

f
dm.

In addition F is convex in L1
+(X,m).

We refer to [4, Lemma 4.10] for the proof, observing only that Γ
(

f
)

is well defined m-a.e.
in the class of functions satisfying fN := min{f,N} ∈ V for all N thanks to the locality
property (2.9). By applying the results of [4] we can prove that (Ht)t≥0 is a continuous
semigroup in P2(X) and we can calculate the dissipation rate of the entropy functional
along it. Some of the results below are very simple in the case m(X) < ∞, where the
function V in (3.13) reduces to a constant.

Lemma 4.2 (Estimates on moments, Fisher information, Entropy, metric derivative). If
f ∈ L2(X,m) is a probability density, for µt = Ptfm it holds

|µ̇t|2 ≤ F(Ptf) for L
1-a.e. t > 0. (4.1)

If f ∈ L1(X,m) is a probability density, for every T > 0 there exists CT > 0 such that

∫ T

0

F(Psf) ds+

∫ T

0

∫

X

V 2 Psf dm ds ≤ CT

(

Entm̃(fm) +

∫

X

V 2f dm
)

, (4.2)

Entm(Ptf) ≤ Entm(fm) ∀t ≥ 0. (4.3)

Finally, for every µ̄ ∈ P2(X) the map t 7→ µt := Htµ̄ is a continuous curve in P2(X) with
respect to W2.

Proof. The estimate (4.1) follows by [4, Lemma 6.1], which can be applied here since the
Dirichlet form E coincides with the Cheeger energy (Theorem 3.14). The estimate (4.2)
follows [4, Thm. 4.20], thanks to the integrability condition (3.13), when f ∈ L2(X,m).
In the general case it can be recovered by a truncation argument, using the lower semi-
continuity of F. The estimate (4.3) can be obtained by a similar approximation argument
from the detailed energy dissipation computation made in [4, Theorem 4.16(b)] (the more
general underlying fact is that, independently of curvature assumptions, L2 gradient flows
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are contained inW2 gradient flows of the Entropy in the sense (weaker than EVI) of energy
dissipation).

Concerning the continuity of the map t 7→ Htµ̄ with respect toW2 for every µ̄ ∈ P2(X),
it is a standard consequence of contractivity and existence of a dense set of initial conditions
(namely, thanks to (4.1) and (4.2), the set D(Entm) := {ν ∈ P2(X) : Entm(ν) < ∞}) for
which continuity holds up to t = 0. �

Integration by parts for probability densities

We shall see now that assuming the Bakry-Émery BE(K,∞) condition, integration by

parts formulae for the ∆
(1)
E

operator can be extended to probability densities with finite
Fisher information, provided that the set of test functions ϕ is restricted to the spaces
V1
∞, V

2
∞ defined in (2.37). Recall that V1

∞, V
2
∞ are dense in V w.r.t. the strong topology

and that
Γ
(

ϕε − ϕ
) ⋆
⇀ 0 in L∞(X,m) as ε ↓ 0 for every ϕ ∈ V1

∞,

where ϕε are defined as in (2.18), since Γ
(

ϕε − ϕ
)

is uniformly bounded and converges to
0 in L1(X,m) (by the strong convergence of ϕε to ϕ in V).

In the sequel we introduce an extension of the bilinear form Γ
(

f, g
)

, denoted Γ̃
(

f, g
)

,
which is particularly appropriate to deal with probability densities f with finite Fisher
information and test functions ϕ ∈ V1

∞.

Definition 4.3 (Extension of Γ
(

f, ϕ
)

). Let f = g2 ∈ L1
+(X,m) with F(f) = 4E(g) < ∞

and g ≥ 0. For all ϕ ∈ V1
∞ we define

Γ̃
(

f, ϕ
)

:= 2gΓ
(

g, ϕ
)

. (4.4)

The definition is well posed, consistent with the case when f ∈ V, and it holds

Γ̃
(

f, ϕ
)

= lim
N→∞

Γ
(

fN , ϕ
)

in L1(X,m). (4.5)

Indeed, thanks to (2.7) and to the fact that if F(f) < ∞ then fN = (gN)
2 ∈ V, where

gN := g∧
√
N ; it follows that Γ

(

fN , ϕ
)

= 2gχNΓ
(

g, ϕ
)

, χN being the characteristic function
of the set {f < N} and

∫

X

∣

∣Γ̃
(

f, ϕ
)

− Γ
(

fN , ϕ
)
∣

∣ dm = 2

∫

X

|1− χN |gΓ
(

g, ϕ
)

dm

≤
(

‖Γ
(

ϕ
)

‖∞ F(f)

∫

{f≥N}

f dm
)

1

2

thus proving the limit in (4.5). The same argument provides the estimate

∫

X

ψ
∣

∣Γ̃
(

f, ϕ
)
∣

∣ dm ≤
√

F(f)

(
∫

X

ψ2Γ
(

ϕ
)

f dm

)1/2

ϕ ∈ V1
∞, ψ ≥ 0. (4.6)
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Theorem 4.4 (Integration by parts of ∆
(1)
E
). If BE(K,∞) holds, then for every f ∈

L1
+(X,m) with F(f) <∞ we have

∫

X

Γ̃
(

f, ϕ
)

dm = −
∫

X

f∆Eϕ dm for every ϕ ∈ V2
∞. (4.7)

In addition, if f ∈ D(∆
(1)
E
) it holds

∫

X

Γ̃
(

f, ϕ
)

dm = −
∫

X

ϕ∆
(1)
E
f dm ∀ϕ ∈ V1

∞. (4.8)

Proof. Formula (4.7) follows by the limit formula in (4.5) simply integrating by parts before

passing to the limit as N → ∞. Assuming now f ∈ D(∆
(1)
E
) we have

−
∫

X

∆
(1)
E
f ϕ dm = lim

t↓0

1

t

∫

X

(f − Ptf)ϕ dm = lim
t↓0

1

t

∫

X

f(ϕ− Ptϕ) dm

= lim
t↓0

1

t

∫ t

0

∫

X

f ∆E(Psϕ) dm ds

= lim
t↓0

1

t

∫ t

0

∫

X

Γ̃
(

f,Psϕ
)

dm ds =

∫

X

Γ̃
(

f, ϕ
)

,

where the last limit follows by (4.6) and the fact that

Γ
(1

t

∫ t

0

Psϕ ds− ϕ
)

≤ 1

t

∫ t

0

Γ
(

Psϕ− ϕ
)

ds
⋆
⇀ 0 in L∞(X,m) as t ↓ 0. �

4.2 Log-Harnack and LlogL estimates

Lemma 4.5. Let ω : [0,∞) → R be a function of class C2, let f ∈ Lipb(X) ∩ V and let
µ ∈ P(X). The function

G(s) :=

∫

X

ω
(

Pt−sf
)

dHsµ s ∈ [0, t],

belongs to C0([0, t]) ∩ C1(0, t) and for every s ∈ (0, t) it holds

G′(s) =

∫

X

ω′′(Pt−sf)Γ
(

Pt−sf
)

dHsµ. (4.9)

Proof. Since Hsµ are all probability measures is not restrictive to assume ω(0) = 0. Con-
tinuity of G is obvious, since Pt−sf are equi-Lipschitz, equi-bounded and the semigroup Ht
is weakly-continuous. Let us first consider the case µ = ζm with ζ ∈ L1 ∩ L∞(X,m) (in
particular ζ ∈ L2(X,m)). Setting ft−s := Pt−sf and ζs := Psζ , we observe that a.e. in the
open interval (0, t) the following properties hold:
- s 7→ ζs is differentiable in L2(X,m);
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- s 7→ ω(ft−s) is differentiable in L2(X,m), with derivative −ω′(ft−s)∆Eft−s.
Therefore the chain rule (2.11) gives

G′(s) = −
∫

X

ω′(ft−s)ζs∆Eft−s dm+

∫

X

ω(ft−s)∆Eζs dm

=

∫

X

(

Γ
(

ω′(ft−s)ζs, ft−s
)

− Γ
(

ω(ft−s), ζs
)

)

dm

=

∫

X

ω′′(ft−s)Γ
(

ft−s
)

ζs dm

for L 1-a.e. s ∈ (0, t). But, since the right hand side is continuous, the formula holds
pointwise in (0, t). The formula for arbitrary measures µ = ζm ∈ P(X) then follows
by monotone approximation (i.e. considering ζn = min{ζ, n}/cn with cn ↑ 1 normalizing
constants), by using the uniform L∞ bound on ω′′(ft−s) and on Γ

(

ft−s
)

; the formula (4.9)
for G′ still provides a continuous function since Hsµ = ζsm and ζs = Psζ is strongly
continuous in L1(X,m). Finally, if µ ∈ P(X), for every ε > 0 and s ∈ (ε, t − ε), setting
µε = Hεµ we have

G(s) = G̃ε(s− ε), where G̃ε(s) :=

∫

X

ω
(

P(t−ε)−sf
)

dHsµε.

Since G̃ε is a C
1 function in (ε, t−ε) by the previous considerations and ε > 0 is arbitrary,

we conclude that G ∈ C1(0, t) and for every s ∈ (ε, t− ε) its derivative coincides with

G̃′
ε(s− ε) =

∫

X

ω′′(Pt−ε−(s−ε)f)Γ
(

Pt−ε−(s−ε)f
)

dHs−εµε

=

∫

X

ω′′(Pt−sf)Γ
(

Pt−sf
)

dHsµ. �

In order to prove the LlogL regularization we use the next lemma, which follows by a
careful adaptation to our more abstract context of a result by Wang [57, Theorem 1.1(6)].

Lemma 4.6 (Log-Harnack inequality). For every nonnegative f ∈ L1(X,m) + L∞(X,m),
t > 0, ε ∈ [0, 1], and x, y ∈ X we have log(1 + f) ∈ L1(X,Htδy) with

P̃t(log(f + ε))(y) ≤ log
(

P̃tf(x) + ε
)

+
d2(x, y)

4I2K(t)
. (4.10)

Proof. In the following we set ωε(r) := log(r + ε), for r ≥ 0 and ε ∈ (0, 1]. Let us first
assume in addition that f ∈ Lipb(X)∩L1(X,m)∩V, let γ : [0, 1] → X be a Lipschitz curve
connecting x to y in X , and, recalling the definition (2.29) of IK , let

γ̃r = γθ(r), with θ(r) =
I2K(r)

I2K(t)
, r ∈ [0, t].
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We set ft−s := Pt−sf and, for r ∈ [0, t] and s ∈ (0, t), we consider the functions

G(r, s) :=

∫

X

ωε(ft−s) dHsδγ̃r = Fs(γ̃r) with Fs(x) := P̃s

(

ωε(ft−s)
)

(x).

Notice that Lemma 4.5 with µ = δγ̃r ensures that for every r ∈ [0, t] the function s 7→ G(r, s)
is Lipschitz in [0, t], with

∂

∂s
G(r, s) =

∫

X

ω′′
ε (ft−s)Γ

(

ft−s
)

dHsδγ̃r for every s ∈ (0, t). (4.11)

This gives immediately that G(r, ·) are uniformly Lipschitz in [0, t] for r ∈ [0, t]. On the
other hand, since γ̃ is Lipschitz, the map r 7→ Psδγ̃r is Lipschitz in [0, t] with respect to
the L1-Wasserstein distance W1 uniformly w.r.t s ∈ [0, t]. Hence, taking also the fact that
ω(ft−s) are equi-Lipschitz into account, it follows that also the maps G(·, s) are Lipschitz
in [0, t], with Lipschitz constant uniform w.r.t. s ∈ [0, t]. These properties imply that the
map s 7→ G(s, s) is Lipschitz in [0, t].

Since the chain rule and (3.44) (which can be applied since we can subtract the constant
ωε(0) from Fs without affecting the calculation of its slope) give

|DFs|2 ≤ e−2Ks Ps

(

(ω′
ε(ft−s))

2Γ(ft−s)
)

,

we can use θ′(r) = e2Kr/I2K(t) to get the pointwise estimate

eK(s−r) lim sup
h↓0

|G(r + h, s)−G(r, s)|
h

≤
√

θ′(r)
|γ̇θ(r)|

√

I2K(t)
eKs |DFs|(γ̃r)

≤ θ′(r)
|γ̇θ(r)|2
4I2K(t)

+

∫

X

(ω′
ε(ft−s))

2Γ(ft−s) dPsδγ̃r .

Applying the calculus lemma [3, Lemma 4.3.4] and using the identity ω′′
ε = −(ω′

ε)
2, the

previous inequality with r = s in combination with (4.11) gives

d

ds
G(s, s) ≤ lim

h↓0

G(s, s− h)−G(s, s)

h
+ lim sup

h↓0

|G(s+ h, s)−G(s, s)|
h

≤ θ′(s)
|γ̇θ(s)|2
4I2K(t)

for L
1-a.e. s ∈ (0, t).

An integration in (0, t) and a minimization w.r.t. γ yield

∫

X

ωε(f) dHtδy ≤ ωε(ft)(x) +
d2(x, y)

4I2K(t)
. (4.12)

If f ∈ L∞(X,m) we consider a uniformly bounded sequence (fn) contained in Lipb(X,m)∩
L1(X,m)∩V converging to f pointwise m-a.e. Since ωε ≥ log(ε) and P̃tfn converges to P̃tf
pointwise, Fatou’s Lemma yields (4.12) also in this case. Finally, a truncation argument
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extends the validity of (4.12) and (4.10) to arbitrary nonnegative f ∈ L1(X,m)+L∞(X,m).
Passing to the limit as ε ↓ 0 we get (4.10) also in the case ε = 0.

Finally, notice that (4.12) for ε = 1 and the fact that P̃tf(x) is finite for m-a.e. x yield
the integrability of log(1 + f) w.r.t. Htδy. �

In the sequel we set

Htδy = ut[y]m, so that P̃tf(y) =

∫

X

fut[y] dm

for every m-measurable and m-semi-integrable function f .

Corollary 4.7. For every t > 0 and y ∈ X we have

∫

X

ut[y] log(ut[y]) dm ≤ log
(

u2t[y](x)
)

+
d2(x, y)

4I2K(t)
for m-a.e. x ∈ X. (4.13)

In particular, when m is a probability measure,

u2t[y](x) ≥ exp
(

− d2(x, y)

4I2K(t)

)

for m-a.e. x ∈ X.

Proof. Simply take f = ut[y] in (4.10) and notice that P̃tf(x) = u2t[y](x) for m-a.e. x ∈ X
by the semigroup property. �

In the next crucial result, we will show that (4.13) yields Entm(Htµ) < ∞ for every
measure µ ∈ P2(X).

Theorem 4.8 (L logL regularization). Let µ ∈ P2(X) and let ft ∈ L1(X,m), t > 0, be
the densities of Htµ ∈ P2(X). Then

∫

X

ft log ft dm ≤ 1

2I2K(t)

(

r2 +

∫

X

d2(x, x0) dµ(x)
)

− log
(

m(Br(x0))
)

(4.14)

for every x0 ∈ X and r, t > 0.

Proof. By approximation, it suffices to consider the case when µ = fm with f ∈ L2(X,m).
Let us fix x0 ∈ X and r > 0, set z = m(Br(x0)) and ν = z−1m Br(x0). Notice first that
we have the pointwise inequality

P̃tf(z) log(P̃tf(z)) =
(

∫

X

ut[z] dµ
)

log
(

∫

X

ut[z] dµ
)

≤
∫

X

ut[z](y) log
(

ut[z](y)
)

dµ(y).
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Since P̃tf = ft m-a.e. in X , integrating with respect to m and using the symmetry property
of ut, (4.13), and Jensen’s inequality, we get

∫

X

ft log ft dm ≤
∫

X

(

∫

X

ut[y](z) log ut[y](z) dm(z)
)

dµ(y)

=

∫

X×X

(

∫

X

ut[y](z) log ut[y](z) dm(z)
)

dν(x)dµ(y)

≤
∫

X×X

(

log
(

u2t[y](x)
)

+
d2(x, y)

4I2K(t)

)

dν(x)dµ(y)

≤ log
(

∫

X

∫

X

u2t[y](x) dν(x) dµ(y)
)

+
1

2I2K(t)

(

r2 +

∫

X

d2(x, x0) dµ(x)
)

≤ log
1

z
+

1

2I2K(t)

(

r2 +

∫

X

d2(x, x0) dµ(x)
)

,

where we used the inequality
∫

X

u2t[y](x) dν(x) =
1

z

∫

Br(x0)

u2t[y](x) dm(x) ≤ 1

z
for every y ∈ X. �

We conclude with a further regularization and an integration by parts formula for ∆
(1)
E

in a special case. Notice that thanks to the regularizing effect of Ht we can extend the
mollification hε of the semigroup in (2.18) to measures µ ∈ P2(X), i.e. we set

hεµ :=
1

ε

∫ ∞

0

fr κ(r/ε) dr, frm = Hrµ for r > 0, (4.15)

with κ as in (2.17), obtaining a map hε : P2(X) → D(∆
(1)
E
) still satisfying (2.19) (via an

elementary approximation based on the characterization (2.15) of D(∆
(1)
E
)).

Lemma 4.9. Let µ̃ ∈ P2(X) and let f = hεµ̃ as in (4.15). Then for every ε, T > 0 there
exists a constant C(ε, T ) such that

F(Ptf) ≤ C(ε, T )
(

1 +

∫

X

V 2 dµ
)

(4.16)

and, writing µt = Ptfm,

|µ̇t|2 ≤ C(ε, T )
(

1 +

∫

X

V 2 dµ
)

for L
1-a.e. t ∈ [0, T ]. (4.17)

Moreover, for every bounded and nondecreasing Lipschitz function ω : [0,∞) → R such
that supr rω

′(r) <∞, we have

∫

X

ω(f)∆
(1)
E
f dm+ 4

∫

X

fω′(f) Γ
(
√

f
)

dm ≤ 0. (4.18)
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Proof. Combining (4.2), (4.14), the commutation identity Pth
ε = hεPt, and the convexity of

F we get (4.16). We obtain immediately the Lipschitz estimate (4.17) from (4.16) and (4.1)
when f ∈ L2(X,m). The general case follows by a truncation argument. Concerning (4.18),

if µ̃ = f̃m with f̃ ∈ L2(X,m), then f ∈ L2(X,m), ∆
(1)
E
f = ∆Ef ∈ L2(X,m) and the stated

inequality is an equality, by the chain rule Γ
(

f, ω(f)
)

= ω′(f)Γ
(

f
)

= 4fω′(f) Γ
(√

f
)

. In

the general case we approximate µ̃ in P2(X) by a sequence of measures µ̃n = f̃nm with

f̃n ∈ L2(X,m) and we consider fn = hεµn. By (2.19) we obtain that ∆
(1)
E
fn → ∆

(1)
E
f in

L1(X,m) while, setting φ(s) =
∫ s

0

√

r2ω′(r2) dr, the lower semicontinuity of g 7→
∫

Γ
(

g
)

dm
and the strong convergence of

√
fn to

√
f in L2(X,m) give

4

∫

X

fω′(f) Γ
(
√

f
)

dm =

∫

X

Γ
(

φ(
√

f)
)

dm ≤ lim inf
n→∞

∫

X

Γ
(

φ(
√

fn)
)

dm

= lim inf
n→∞

∫

X

fnω
′(fn) Γ

(
√

fn
)

dm. �

Motivated by the regularity assumptions needed in the next section, we give the fol-
lowing definition.

Definition 4.10 (Regular curve). Let ρs = fsm ∈ P(X), s ∈ [0, 1]. We say that ρ is
regular if:

(a) ρ ∈ AC2([0, 1]; (P2(X),W2));

(b) Entm(ρs) is bounded;

(c) f ∈ C1([0, 1];L1(X,m));

(d) There exists η > 0 such that for all s ∈ [0, 1] the function fs is representable in the

form hηf̃s for some f̃s ∈ L1(X,m); in addition ∆
(1)
E
f ∈ C([0, 1];L1(X,m)) and

sup {F(Ptfs) : s ∈ [0, 1], t ∈ [0, T ]} <∞ ∀T > 0. (4.19)

In particular, if ρs = fsm is a regular curve, for every T > 0 there exist positive
constants MT , ET , FT such that

∫

X

V 2 dHtρs ≤MT , Entm(Ptρs) ≤ ET , F(Ptfs) ≤ FT s ∈ [0, 1], t ∈ [0, T ].

Proposition 4.11 (Approximation by regular curves). For all ρ ∈ AC2([0, 1]; (P2(X),W2))
there exist regular curves ρn such that ρns → ρs in P2(X) for all s ∈ [0, 1] and

lim sup
n

∫ 1

0

|ρ̇ns |2 ds ≤
∫ 1

0

|ρ̇s|2 ds. (4.20)

Furthermore, we can build ρn in such a way that Entm(ρ
n
0 ) ≤ Entm(ρ0).
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Proof. First we extend ρ by continuity and with constant values in (−∞, 0)∪(1,∞). Then,
we define ρn,1s := Hτnρs, with τ

−1
n ∈ [n, 2n]. By the continuity and contractivity properties

of Ht, we see that ρn,1 fulfils (a) and (b) of the definition of regularity, the convergence
requirement of the Lemma and (4.20). Indeed, obviously condition (a) is fulfilled, while
we gain ρn,1s ≪ m and sups Entm(ρ

n,1
s ) <∞ by Theorem 4.8. In addition, (4.3) shows that

Entm(ρ
n,1
0 ) ≤ Entm(ρ0).

In order to achieve condition (c) we do a second regularization, by averaging w.r.t. the
s variable: precisely, denoting by fn,1s the densities of ρn,1s , we set ρn,2s := fn,2s m, where

fn,2s :=

∫

R

fn,1s−s′χn(s
′) ds′

and χn ∈ C∞
c (R) are standard convolution kernels with support in (0,∞) convergent to

the identity. By the convexity properties of squared Wasserstein distance and entropy
we see that the properties (a), (b) are retained and that the action in (4.20) does not
increase. In addition, we clearly gain property (c) and, since ρn,1 is constant in (−∞, 0],
this regularization does not increase the entropy at time 0.

In the last step we mollify using the heat semigroup, setting ρns := fns m, where fns =
hεnfn,2s and εn ↓ 0. By the same reasons used for ρn,2, property (a) is retained by ρn and
the action in (4.20), as well as the Entropy at any time s, do not increase (because the
support of the kernel κ is contained in (0,∞)). In addition, (c) is retained as well since
hε is a continuous linear map from L1(X,m) to L1(X,m). With this mollification we gain
property (d) from (2.19) and from (4.16), which provides the sup bound (4.19) on Fisher
information. �

4.3 Action estimates

This section contains the core of the arguments leading to the equivalence Theorem 4.17.
We refer to [22] for the underlying geometric ideas in a smooth Riemannian context and
the role of the Bochner identity. Here we had to circumvent many technical difficulties
related to regularity issues, to the lack of ultracontractivity properties of the semigroup
(Pt)t≥0 (i.e. regularization from L1 to L∞), and to the weak formulation of the Bakry-Émery
condition.

Since we shall often consider regular curves ρ ∈ AC2([0, 1]; (P2(X),W2)) of measures
representable in the form ρ = fm with f ∈ C1([0, 1];L1(X,m)), we shall denote by
ḟ ∈ C([0, 1];L1(X,m)) the functional derivative in L1(X,m), retaining the notation |ρ̇t| for
the metric derivative w.r.t. W2.

We begin with a simple estimate of the oscillation of s 7→
∫

X
ϕ dρs along absolutely

continuous or C1 curves.

Lemma 4.12. For all ρ ∈ AC2([0, 1]; (P2(X),W2)) it holds

∣

∣

∣

∣

∫

X

ϕ dρ1 −
∫

X

ϕ dρ0

∣

∣

∣

∣

≤
∫ 1

0

|ρ̇s|
(
∫

X

|Dϕ|2 dρs
)1/2

ds for every ϕ ∈ V1
∞. (4.21)
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If moreover ρ = fm with f ∈ C1
(

[0, 1];L1(X,m)
)

, for all ϕ ∈ V1
∞ it holds

∣

∣

∣

∣

∫

X

ḟsϕ dm

∣

∣

∣

∣

≤ |ρ̇s|
(
∫

X

|Dϕ|2 dρs
)1/2

for L
1-a.e. s ∈ (0, 1). (4.22)

Proof. It is easy to check that (4.21) can be obtained using the representation of ρs given
by Lisini’s theorem [39] (see [4, Lemma 5.15]).

Choosing now a Lebesgue point s̄ both for s 7→ |ρ̇s|2 and
∫

X
|Dϕ|2 dρs, for all a > 0 we

can pass to the limit as h ↓ 0 in the inequality

1

h

∣

∣

∣

∣

∫

X

ϕ dρs̄+h −
∫

X

ϕ dρs̄

∣

∣

∣

∣

≤ 1

2h

∫ s̄+h

s̄

(

a|ρ̇s|2 +
1

a

∫

X

|Dϕ|2 dρs
)

ds

and then minimize w.r.t. a, obtaining (4.22). �

Lemma 4.13. Let ρ = fm ∈ AC2([0, 1]; (P2(X),W2)) be a regular curve according to
Definition 4.10, and let ϑ : [0, 1] → [0, 1] be a C1 function with ϑ(i) = i, i = 0, 1. Define

ρs,t := Hstρϑ(s) = fs,tm, s ∈ [0, t], t ≥ 0.

Then, for every t ≥ 0 the curve s 7→ ρs,t belongs to AC2([0, 1]; (P2(X),W2)) and F(fs,t)
is uniformly bounded. Moreover, for any ϕ ∈ Lipb(X) with bounded support, setting ϕs :=
Qsϕ, the map s 7→

∫

X
ϕs dρs,t is absolutely continuous in [0, 1] and

d

ds

∫

X

ϕs dρs,t = ϑ̇(s)

∫

X

ḟϑ(s)Pstϕs dm− 1

2

∫

X

|Dϕs|2 dρs,t − t

∫

X

Γ̃
(

fs,t, ϕs
)

dm (4.23)

for L 1-a.e. s ∈ (0, 1).

Proof. We only consider the case t > 0 and we set ρ̃s := ρϑ(s) = f̃sm. Notice that fs,t = Pstf̃s
and ρ̃s satisfies the same assumptions than ρs. Since Ht is a Wasserstein K-contraction

W2(ρs0,t, ρs1,t) ≤ e−Ks0tW2(ρ̃s0,H(s1−s0)tρ̃s1)

≤ e−Ks0t
(

W2(ρ̃s0 , ρ̃s1) +W2(ρ̃s1,H(s1−s0)tρ̃s1)
)

,

and (4.17) and the regularity of ρ give

W2(ρ̃s1 ,H(s1−s0)tρ̃s1) ≤ C(ρ, T )(s1 − s0)t whenever (s1 − s0)t ≤ T .

We conclude that s 7→ ρs,t belongs to AC2([0, 1]; (P2(X),W2)). Moreover, using the split-
ting

∫

X

ϕs1 dρs1,t −
∫

X

ϕs0 dρs0,t

=

∫

X

ϕs1 dρs1,t −
∫

X

ϕs0 dρs1,t +

∫

X

ϕs0 dρs1,t −
∫

X

ϕs0 dρs0,t

≤ ‖ϕs1 − ϕs0‖∞ + Lip(ϕs0)W2(ρ̃s1 , ρ̃s0)
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we immediately see that also s 7→
∫

X
ϕs dρs,t is absolutely continuous. In order to compute

its derivative we write
∫

ϕs+h dρs+h,t −
∫

X

ϕs dρs,t =

∫

ϕs+h dρs+h,t −
∫

X

ϕs dρs+h,t

+

∫

P(s+h)tϕs d(ρ̃s+h − ρ̃s)

+

∫

(Phtϕs − ϕs) dHstρ̃s.

Now, the Hopf-Lax formula (3.9) and the strong convergence of fs+h,t to fs,t in L
1(X,m)

yield

lim
h↓0

1

h

(

∫

ϕs+h dρs+h,t −
∫

X

ϕs dρs+h,t

)

= −1

2

∫

X

|Dϕs|2 dρs,t.

The differentiability of ρs in L
1(X,m) yields

h−1

∫

P(s+h)tϕ d(ρ̃s+h − ρ̃s) → ϑ̇(s)

∫

X

Pstϕ ḟϑ(s) dm.

Finally, the next lemma yields

h−1

∫

(Phtϕs − ϕs) dPstρs → −t
∫

X

Γ̃
(

fs,t, ϕs
)

dm. �

Lemma 4.14. For all ϕ ∈ V1
∞ and all ρ = fm ∈ P(X) with F(f) <∞ it holds

lim
h↓0

∫

X

Phϕ− ϕ

h
f dm = −

∫

X

Γ̃
(

f, ϕ
)

dm.

Proof. We argue as in [5, Lemma 4.2], proving first that
∫

X

Phϕ− ϕ

h
f dm = −

∫ 1

0

∫

X

Γ̃
(

f,Prhϕ
)

dm dr. (4.24)

Notice first that, possibly approximating ϕ with the functions ϕε := hεϕ whose laplacian
is in L∞(X,m), in the proof of (4.24) we can assume with no loss of generality that ∆Eϕ ∈
L∞(X,m). Indeed, (4.6) and the strong convergence in Γ norm of Prhϕ

ε to Prhϕ ensure the
dominated convergence of the integrals in the right hand sides, while the convergence of
the left hand sides is obvious.

Assuming ∆Eϕ ∈ L∞(X,m), since
∫

X

Phϕ− ϕ

h
g dm =

∫ 1

0

∫

X

g∆EPrhϕ dm dr

for all g ∈ L2(X,m) we can consider the truncated functions gN = min{f,N} and pass to
the limit as N → ∞ to get that f satisfies the same identity. Since ∆EPrhϕ = Prh∆Eϕ ∈
L∞(X,m) we can use (4.7) to obtain (4.24).

Having established (4.24), the statement follows using once more (4.6) and the strong
convergence of Prhϕ to ϕ in V. �
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Under the same assumptions of Lemma 4.13, the same computation leading to (4.23)
(actually with a simplification, due to the fact that ϕ is independent on s) and (4.8) give

d

ds

∫

X

ϕ dρs,t =

∫

X

(ϑ̇(s)Pstḟϑ(s) + tPst∆
(1)
E
fϑ(s))ϕ dm.

for L 1-a.e. s ∈ (0, 1) and all ϕ ∈ V1
∞. Here we used the fact that ∆

(1)
E
(Prg) = Pr∆

(1)
E
g

whenever g ∈ D(∆
(1)
E
). Since ∆

(1)
E
f ∈ C([0, 1];L1(X,m)), the right hand side is a continu-

ous function of s, hence

d

ds

∫

X

ϕ dρs,t =

∫

X

(ϑ̇s Pstḟϑ(s) + tPst∆
(1)
E
fϑ(s))ϕ dm for every s ∈ (0, 1). (4.25)

For ε > 0, let us now consider the regularized entropy functionals

Eε(ρ) :=

∫

X

eε(f) dm, where e′ε(r) := log(ε+ r ∧ ε−1) ∈ Lip([0,∞)), eε(0) = 0.

Since we will mainly consider functions f with finite Fisher information, we will also
introduce the function

pε(r) := e′ε(r
2)− log ε = log(ε+ r2 ∧ ε−1)− log ε.

Since pε is also Lipschitz and pε(0) = 0, we have

f ∈ L1
+(X,m), F(f) <∞ ⇒ e′ε(f)− log ε = pε(

√

f) ∈ V.

Lemma 4.15 (Derivative of Eε). With the same notation of Lemma 4.13, if ρ is regular
and t > 0 we have for gεs,t := pε(

√

fs,t)

Eε(ρ1,t)− Eε(ρ0,t) ≤
∫ 1

0

(

− t

∫

X

fs,tΓ
(

gεs,t
)

dm+ ϑ̇s

∫

X

Pst
(

gεs,t
)

ḟϑ(s) dm

)

ds. (4.26)

Proof. The weak differentiability of s 7→ fs,t (namely, in duality with functions in V1
∞)

given in (4.25) can, thanks to the continuity assumption made on ∆
(1)
E
fs, turned into

strong L1(X,m) differentiability, so that

d

ds
fs,t = ϑ̇s Pstḟϑ(s) + tPst(∆

(1)
E
fϑ(s)) in L1(X,m), for all s ∈ (0, 1). (4.27)

Since eε is of class C1,1, it is easy to check that this implies the absolute continuity of
s 7→ Eε(ρs,t). In addition, the mean value theorem gives

d

ds
Eε(ρs,t) = lim

h→0

∫

X

e′ε(fs,t)
fs+h,t − fs,t

h
dm ∀s ∈ (0, 1).
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Notice also that Lemma 4.9 with f = fs,t and ω = e′ε − log ε gives (since e′ε(fs,t)− log ε =

pε(
√

fs,t) is nonnegative and integrable and Pst(∆
(1)
E
fϑ(s)) = ∆

(1)
E
(Pstfϑ(s)) has null mean)

∫

X

Pst(∆
(1)
E
fϑ(s))e

′
ε(fs,t) dm ≤ −4

∫

X

fs,te
′′
ε(fs,t) Γ

(
√

fs,t
)

dm. (4.28)

Now we use (4.27), (4.28) and conclude

d

ds
Eε(ρs,t) ≤ −t

∫

X

4fs,te
′′
ε(fs,t)Γ

(
√

fs,t
)

dm+ ϑ̇s

∫

X

(e′ε(fs,t)− log ε)Ps,tḟϑ(s) dm.

On the other hand, since 4re′′ε(r) ≥ 4r2
(

e′′ε(r)
)2

= r
(

p′ε(
√
r)
)2
, we get

−4fs,te
′′
ε(fs,t)Γ

(
√

fs,t
)

≤ −fs,t
(

p′ε(
√

fs,t)
)2
Γ
(
√

fs,t
)

= −fs,tΓ
(

pε(
√

fs,t)
)

and an integration with respect to s and the definition of gεs,t yield (4.26). �

Theorem 4.16 (Action and entropy estimate on regular curves). Let ρs = fsm be a regular
curve. Then, setting ρ1,t = Htρ1, it holds

W 2
2 (ρ0, ρ1,t) + 2tEntm(ρ1,t) ≤ R2

K(t)

∫ 1

0

|ρ̇s|2 ds + 2tEntm(ρ0). (4.29)

where

RK(t) :=
t

IK(t)
=

Kt

eKt − 1
if K 6= 0; R0(t) ≡ 1.

Proof. Set ρs,t, fs,t as in Lemma 4.13, pε(r) = e′ε(r
2) − log ε, gεs,t = pε(

√

fs,t) as in
Lemma 4.15, qε(r) :=

√
r(2 − √

rp′ε(
√
r)), and ϕs := Qsϕ for a Lipschitz function ϕ

with bounded support.
Notice that by (4.4)

Γ̃
(

fs,t, ϕs
)

= 2
√

fs,tΓ
(
√

fs,t, ϕs
)

= fs,tΓ
(

gεs,t, ϕs
)

+ qε(fs,t)Γ
(
√

fs,t, ϕs
)

.

Applying (4.23), (4.26) in the weaker form

tEε(ρ1,t)− tEε(ρ0,t) ≤
∫ 1

0

(

tϑ̇s

∫

X

Pst
(

gεs,t
)

ḟϑ(s) dm− t2

2

∫

X

fs,tΓ
(

gεs,t
)

dm

)

ds

and eventually the Young inequality 2xy ≤ ax2 + y2/a in (4.22) with a := ϑ̇se
−2Kst, we
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obtain
∫

X

ϕ1 dρ1,t −
∫

X

ϕ0 dρ0,t + t
(

Eε(ρ1,t)− Eε(ρ0,t)
)

≤
∫ 1

0

(

ϑ̇s

∫

X

ḟϑ(s)Pst

(

ϕs + tgεs,t

)

dm− 1

2

∫

X

(

|Dϕs|2 + t2Γ
(

gεs,t
)

)

dρs,t

− t

∫

X

Γ
(

gεs,t, ϕs
)

dρs,t − t

∫

X

qε(fs,t)Γ
(
√

fs,t, ϕs
)

dm

)

ds

≤
∫ 1

0

(

ϑ̇s

∫

X

ḟϑ(s)Pst

(

ϕs + tgεs,t

)

dm− 1

2

∫

X

Γ
(

ϕs + tgεs,t
)

dρs,t

− t

∫

X

qε(fs,t)Γ
(
√

fs,t, ϕs
)

dm

)

ds

≤
∫ 1

0

(

ϑ̇s

∫

X

ḟϑ(s)Pst

(

ϕs + tgεs,t

)

dm− 1

2
e2Kst

∫

X

Γ
(

Pst
(

ϕs + tgεs,t
))

dρϑ(s)

+ t

∫

X

|qε(fs,t)|
∣

∣Γ
(
√

fs,t, ϕs
)
∣

∣ dm

)

ds

≤
∫ 1

0

(

1

2
(ϑ̇s)

2e−2Kst|ρ̇s|2 +
t

8
δF(ρs,t) +

t

2δ

∫

X

q2ε(fs,t)|Dϕs|2 dm
)

ds.

Now we pass first to the limit as ε ↓ 0, observing that p′ε(r) = 2r(ε+ r2)−1χr2<ε−1 gives

q2ε(r) = 4r
(

1− r

ε+ r

)2
χr<ε−1 ≤ 4r, lim

ε↓0
q2ε (r) = 0,

and then as δ ↓ 0; choosing

ϑ(s) :=
IK(st)

IK(t)
, so that ϑ̇(s) = RK(t)e

Kst,

we obtain
∫

X

ϕ1 dρ1,t −
∫

X

ϕ0 dρ0,t + t
(

Entm(ρ1,t)− Entm(ρ0,t)
)

≤ 1

2
R2
K(t)

∫ 1

0

|ρ̇s|2 ds.

Eventually we take the supremum with respect to ϕ, obtaining

1

2
W 2

2 (ρ1,t, ρ0) + t
(

Entm(ρ1,t)− Entm(ρ0,t)
)

≤ 1

2
R2
K(t)

∫ 1

0

|ρ̇s|2 ds. �

Theorem 4.17 (BE(K,∞) is equivalent to RCD(K,∞)). If (X, τ,m,E) is a Riemannian
Energy measure space satisfying (MD.exp) relative to dE and BE(K,∞), then (X, dE,m)
is a RCD(K,∞) space.
Conversely, if (X, d,m) is a RCD(K,∞) space then, denoting by τ the topology induced by
d and by E = 2Ch the Cheeger energy, (X, τ,m,E) is a Riemannian Energy measure space
satisfying dE = d, (MD.exp), and BE(K,∞).
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Proof. We have to show that (3.14) holds with Htρ precisely given by the dual semi-
group. By a standard density argument (see [5, Proposition 2.21]) suffices to show this
property for all ρ ∈ P2(X) with finite entropy. By the semigroup property and (4.3),
it is sufficient to prove (3.14) at t = 0 for all ν ∈ P2(X) with finite entropy. For any
ρ ∈ AC2([0, 1]; (P2(X),W2)) joining ρ0 := ν to ρ1 := ρ we find regular curves ρn as in
Proposition 4.11 with Entm(ρ

n
0 ) ≤ Entm(ρ0) and apply the action estimate (4.29) to the

curves ρns,t = Hstρ
n
s to obtain

W 2
2 (Htρ

n
1 , ρ

n
0 ) + 2tEntm(Htρ

n
1 ) ≤ R2

K(t)

∫ 1

0

|ρ̇ns |2 ds+ 2tEntm(ρ0).

We pass to the limit as n→ ∞ and use the lower semicontinuity of W2 and of the entropy,
to get

W 2
2 (Htρ, ν) + 2tEntm(Ptρ) ≤ R2

K(t)

∫ 1

0

|ρ̇s|2 ds + 2tEntm(ν).

We can now minimize w.r.t. ρ and use the fact that (P2(X),W2) is a length space because
(X, dE) is (this can be obtained starting from an optimal Kantorovich plan π, choosing in a
π-measurable way a ε-optimal geodesic with constant speed as in the proof of Theorem 3.5),
getting

W 2
2 (Htρ, ν) + 2tEntm(Ptρ) ≤ R2

K(t)W
2
2 (ρ, ν) + 2tEntm(ν).

After dividing by t > 0, letting t ↓ 0 and using RK(t) = 1− K
2
t + o(t) we obtain (3.14).

The converse implication, from RCD(K,∞) to BE(K,∞) has been proved in [5, Sec-
tion 6]. �

We conclude with an immediate application of the previous result to metric measure
spaces: it follows by Theorem 3.17 and Corollary 3.18. Notice that for the Cheeger energy
condition (ED.b) and upper-regularity are always true.

Corollary 4.18. Let (X, d,m) be a metric measure space satisfying (MD+exp) with a
quadratic Cheeger energy Ch defining the Dirichlet form E = 2Ch as in (QCh). (X, d,m)
is a RCD(K,∞)-space if (and only if) at least one of the following properties hold:

(i) (X, d) is a length space and (Pt)t≥0 satisfies property (3.44), i.e. for every function
f ∈ D(Ch) with |Df |w ≤ 1 and every t > 0,

Ptf ∈ Lipb(X), |DPtf |2 ≤ e−2Kt Pt
(

|Df |2w
)

m-a.e. in X. (4.30)

(ii) Conditions (ED.a), (w-Feller) (or L = LC), and BE(K,∞) hold.

(iii) Condition (ED.a) holds and (Ht)t≥0 satisfies the contraction property (3.48) (or
(Pt)t≥0 satisfies the Lipschitz bound (3.43)).
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5 Applications of the equivalence result

In this section we present two applications of our equivalence result: in one direction we
can use it to prove that the RCD(K,∞) condition is stable under tensorization, a property
proved in [5] only under a non branching assumption on the base spaces. We will also
prove the same property for Riemannian Energy measure spaces satisfying the BE(K,N)
condition, obtaining in particular the natural bound on the dimension of the product.

In the other direction, we shall prove a stability result for Riemannian Energy measure
spaces satisfying a uniform BE(K,N) condition under Sturm-Gromov-Hausdorff conver-
gence.

5.1 Tensorization

Let (X, dX ,mX), (Y, dY ,mY ) be RCD(K,∞) metric measure spaces.
We may define a product space (Z, d,m) by

Z := X × Y, d
(

(x, y), (x′, y′)
)

:=
√

d2X(x, x
′) + d2Y (y, y

′), m := mX ×mY . (5.1)

Notice that also (Z, d,m) satisfies the quantitative σ-finiteness condition (MD.exp).
Denoting by E

X ,EY the Dirichlet forms associated to the respective (quadratic) Cheeger
energies with domains VX ,VY , we consider the cartesian Dirichlet form

E(f) :=

∫

Y

E
X(f y) dmY (y) +

∫

X

E
X(fx) dmX(x) f ∈ L2(Z,m), (5.2)

where for every f ∈ L2(Z,m) and z = (x, y) ∈ Z we set fx = f(x, ·), f y(·) = f(·, y). By
[5, Thm. 6.18] the proper domain V of E in L2(Z,m) is the Hilbert space

V :=
{

f ∈ L2(Z,m) : fx ∈ VY for mX -a.e. x ∈ X,

f y ∈ VX for mY -a.e. y ∈ Y , |Dfx|w(y), |Df y|w(x) ∈ L2(Z,m)
}

.

Furthermore, 1
2
E coincides with the Cheeger energy Ch in (Z, d,m), and

|Df |2w(x, y) = Γ(f)(x, y) = |Dfx|2w(y) + |Df y|2w(x) for m-a.e. (x, y) ∈ Z. (5.3)

Even though the result in [5] is stated for metric measure spaces with finite measure, the
proof extends with no difficulty to the σ-finite case. Also, it is worthwhile to mention that
the curvature assumption on the base spaces plays almost no role in the proof, it is only
used to build, via the product semigroup, an operator with good regularization properties
(specifically from L∞ to Cb), see [5, Lemma 6.13].

It will be convenient, as in [5] and in the previous sections, to work with a pointwise
defined version of the semigroups in the base spaces, namely

PXt u(x) :=

∫

u(x′) dHXt δx(x
′), PYt v(y) :=

∫

v(y′) dHYt δy(y
′)
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for u : X → R and v : Y → R bounded Borel, where (HXt )t≥0 and (HYt )t≥0 denote
the Wasserstein semigroups on the base spaces. These pointwise defined semigroups also
provide the continuous versions of (S-Feller) for the base spaces, see [5, Theorem 6.1(iii)].

Since the heat flows are linear, the tensorization (5.3) implies a corresponding tensoriza-
tion of the heat flows, namely for all g : Z → R bounded and Borel, for m-a.e. (x, y) ∈ Z
the following identities hold:

Ptg(z) =

∫

X

PYt g(x
′, ·)(y) dHXt δx(x′), Ptg(z) =

∫

Y

PXt g(·, y′)(x) dHYt δy(y′). (5.4)

With these ingredients at hand, we can now prove the main tensorization properties.

Theorem 5.1. With the above notation, if (X, dX ,mX) and (Y, dY ,mY ) are RCD(K,∞)
spaces then the space (Z, d,m) is RCD(K,∞) as well.

Proof. According to the characterization of RCD(K,∞) given in point (i) of Corollary 4.18,
since the Cheeger energy in Z satisfies (QCh) by the above mentioned result of [5], it suffices
to show that the length space property and (4.30) are stable under tensorization.
Stability of the length space property. This is simple to check, one obtains an almost
minimizing geodesic γ : [0, 1] → Z combining almost minimizing geodesics on the base
spaces with constant speed and parameterized on [0, 1].
Stability of (4.30). Let us first notice that Pt maps bounded and Borel functions into
continuous ones, thanks of any of the two identities in (5.4) and (S-Feller).

Let f ∈ Lipb(Z) ∩ L2(Z,m). Keeping y initially fixed, the second identity in (5.4)
tells us that x 7→ Ptf(x, y) = (Ptf)

y(x) is the mean w.r.t. y′, weighted with HYt δy, of the
functions PXt f

y′(x). Hence, the convexity of the slope gives

|D(Ptf)
y|(x) ≤

∫

Y

|DPXt f
y′ |(x) dHYt δy(y′),

where gradients are understood with respect to the first variable. We can thus use the
Hölder inequality to get

|D(Ptf)
y|2(x) ≤

∫

Y

|DPXt f
y′ |2(x) dHYt δy(y′). (5.5)

Now, for mY -a.e. y′ ∈ Y we apply (4.30) in the space X to the functions f y
′

and use
Fubini’s theorem to get

|DPXt f
y′ |2(x) ≤ e−2KtPX

t |Df y′|2w(x) for mY -a.e. y
′ ∈ Y . (5.6)

Combining (5.5) and (5.6) and using once more (5.4) with g(x, y) = |Df y|2w (x) we get

|D(Ptf)
y|2(x) ≤ e−2Kt

∫

Y

PXt |Df y′|2w(x) dHtδy(y′) = e−2KtPt |Df y|2w (x).
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Repeating a similar argument with the first identity in (5.4) and adding the two inequalities
we obtain

|D(Ptf)
y|2(x) + |D(Ptf)

x|2(y) ≤ e−2KtPt |Df |2w (x, y).

We conclude that (4.30) holds in (Z, d,m) using the calculus lemma [5, Lemma 6.2], which
provides the information that the square root of |D(Ptf)

y|2(x) + |D(Ptf)
x|2(y) is an up-

per gradient of Ptf . It follows that e−Kt
√

Pt |Df |2w is an upper gradient as well; being

continuous, it provides a pointwise upper bound for the slope. �

Let us now consider the corresponding version of the tensorization theorem for Rie-
mannian Energy measure spaces with a finite upper bound on the dimension.

Theorem 5.2. Let (X, τX ,E
X,mX), (Y, τY ,E

Y ,mY ) be Riemannian Energy measure spaces
satisfying the Bakry-Émery conditions BE(K,NX) and BE(K,NY ) respectively, and let us
consider the cartesian Dirichlet form E defined by (5.2) on Z = X × Y endowed with the
product topology τ = τX ⊗ τY and the product measure m as in (5.1).

Then (Z, τ,m,E) is a Riemannian Energy measure space, it satisfies the Bakry-Émery
condition BE(K,NX + NY ) and the induced distance dE on Z coincides with the product
distance defined in (5.1).

Proof. It is not restrictive to assume that NX , NY < ∞; by the previous Theorem we
already know that (Z, τ,m,E) is a Riemannian energy measure space satisfying BE(K,∞),
whose induced distance dE is given by (5.1); we want to prove that (2.35) holds with
νZ := νXνY /(νX + νY ) where νX := N−1

X and νY := N−1
Y . We argue as in (5.6), observing

that for mY -a.e. y
′ ∈ Y (2.35) and (3.45) yield

|DPXt f
y′ |2w + 2νXI2K,2(t)

(

∆XP
X
t f

y′
)2 ≤ e−2KtPXt |Df y′|2w for mX -a.e. x ∈ X .

Integrating w.r.t. the measure HYt δy in y′ and recalling (5.4) and (5.5), we get

|D(Ptf)
y|2w(x) + 2νXI2K,2(t)(∆X(Ptf)

y)2(x) ≤ e−2KtPt
(

|Df y|2w
)

(x) (5.7)

m-a.e. in Z, where we also used the Hölder inequality
∫

Y

(

∆XP
X
t f

y′
)2
(x) dHtδy(y

′) ≥
(

∫

Y

∆XP
X
t f

y′(x) dHtδy(y
′)
)2

= (∆XPtf
y)2(x).

By repeating a similar argument inverting the role of X and Y we get

|D(Ptf)
x|2w(y) + 2νY I2K,2(t)(∆Y (Ptf)

x)2(y) ≤ e−2KtPt
(

|Dfx|2w
)

(y) (5.8)

m-a.e. in Z. Adding (5.7) and (5.8), and recalling the elementary inequality

νXa
2 + νY b

2 ≥ νXνY
νX + νY

(a + b)2 for every a, b ≥ 0,

we conclude thanks to the next simple Lemma. �
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Lemma 5.3. Assume that f ∈ V satisfies

(f y, fx) ∈ D(∆X)×D(∆Y ) for m-a.e. (x, y) ∈ Z,

∆Xf
y, ∆Y f

x ∈ L2(Z,m).
(5.9)

Then f ∈ D(∆Z) and ∆Zf(x, y) = ∆Xf
y(x) + ∆Y f

x(y) for m-a.e. (x, y) ∈ Z.

Proof. If (5.9) holds, Fubini’s theorem and the very definition of ∆X ,∆Y yield for every
ϕ ∈ V

E(f, ϕ) =

∫

Y

E
X(f y, ϕy) dmY (y) +

∫

X

E
Y (fx, ϕx) dmX(x)

= −
∫

Y

(

∫

X

∆Xf
yϕy dmX

)

dmY −
∫

X

(

∫

Y

∆Y f
xϕx dmY

)

dmX

= −
∫

Z

(

∆Xf
y +∆Y f

x
)

ϕ dm. �

5.2 Sturm-Gromov-Hausdorff convergence and stability of the

BE(K,N) condition

Preliminaries

Here and in the following we adopt the notation N̄ := N ∪ {∞}.
Let us first recall an equivalent characterization of Sturm-Gromov-Hausdorff (SGH)

convergence of a sequence (Xn, dn,mn), n ∈ N̄, of metric measure spaces that is very well
adapted to our aims; for the sake of simplicity, we restrict here to the case when mn ∈
P2(Xn). The general case of σ-finite measures satisfying (MD.exp) could be attacked
by the techniques developed in [29], assuming that (MD.exp) holds uniformly along the
sequence. We refer to [54, § 3.1], [5, §2.3] for other definitions and important properties of
SGH convergence.

Definition 5.4 (SGH-convergence). Let (Xn, dn,mn), n ∈ N̄, be complete and separable
metric measure spaces with mn ∈ P2(Xn) for every n ∈ N̄. We say that (Xn, dn,mn)
SGH-converge to (X∞, d∞,m∞) as n → ∞ if there exist a complete and separable metric
space (X, d) and isometries ιn : Xn → X , n ∈ N̄, such that W2((ιn)♯mn, (ι∞)♯m∞) → 0 as
n→ ∞.

A more intrinsic approach would state SGH-convergence for the equivalence classes of
metric-measure spaces induced by measure-preserving isometries: according to this point
of view, two metric-measure spaces (X1, d1,m1) and (X2, d2,m2) are isomorphic if there
exists an isometry ι : supp(m1) → X2 such that m2 = ι♯m1.

Here we do not insist on this aspect, since owing to the Definition 5.4 we will always
consider an effective realization of such a convergence provided by the space (X, d) and
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the system of isometries (ιn), n ∈ N̄. Moreover, by identifying Xn with ιn(Xn) in X , and
mn with (ιn)♯mn in P2(X), it will not restrictive to assume that

mn ∈ P2(X), Xn ⊂ X , dn ≡ d for every n ∈ N̄,

mn are converging to m∞ in P2(X) as n→ ∞;
(5.10)

one has just to take care that in general mn,m could be not fully supported.

Remark 5.5. It is important to notice that, by construction, the Cheeger energy is invariant
by isometries: considering, e.g., the situation of Definition 5.4, if ι∞ : X∞ → X is an
isometric imbedding of (X∞, d∞) in a complete and separable metric space (X, d), with
m̃∞ := (ι∞)♯m∞, the Cheeger energy 1

2
Ẽ∞ associated to (X, d, m̃∞) in L2(X, m̃∞) satisfies

Ẽ∞(f) = E∞(f ◦ ι∞) for every f ∈ L2(X, m̃∞).

Since the composition with ι∞ provides an order preserving isomorphism between L2(X, m̃∞)
and L2(X∞,m∞), it is immediate to check that (X∞, τ∞,m∞,E∞) satisfies BE(K,N) if and
only if (X, τ, m̃∞, Ẽ∞) satisfies BE(K,N) as well (here τ is the topology induced by d in
X).

We will also need a few results, strongly related to the theory of Young measures, con-
cerning convergence for sequences of functions defined in L2-spaces associated to different
measures (see e.g. [3, §5.4]). We first make precise this notion of convergence.

Definition 5.6. Let (X, d) be a complete and separable metric space, let (mn) ⊂ P2(X),
n ∈ N̄, be converging in P2(X), and consider a sequence of vector valued functions fn ∈
L2(X,mn;R

k), n ∈ N̄, k ∈ N. We say that (fn) converges to f∞ as n→ ∞ if

(i× fn)♯mn → (i× f∞)♯m∞ in P2(X × Rk). (5.11)

We will use three properties, stated in the next Lemma:

Lemma 5.7. Let (X, d), (fn) and (mn) ⊂ P2(X), n ∈ N̄, as in Definition 5.6 above.

(i) (5.11) is equivalent to the convergence of each component f jn, j = 1, . . . , k, to f j.

(ii) In the scalar case k = 1, if fn satisfy

lim
n→∞

∫

X

fnϕ dmn =

∫

X

fϕ dm for every ϕ ∈ Cb(X),

lim
n→∞

∫

X

f 2
n dmn =

∫

X

f 2 dm,

then fn converges to f according to (5.11). The same conclusion holds if fn ∈
L1
+(X,mn) ∩ L∞(X,mn) are uniformly bounded probability densities satisfying

fnmn ⇀ fm in P(X), lim
n→∞

∫

X

fn log fn dmn =

∫

X

f log f dm.
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(iii) Finally, if r : Rk → Rh is a continuous map with linear growth, and fn converge to
f according to (5.11) then r ◦ fn converge to r ◦ f .

Proof. (i) follows by disintegration and the fact that a probability measure in Rk is a Dirac
mass if and only if its coordinate projections are Dirac masses, see e.g. [3, Lemma 5.3.2].

Property (ii) is a consequence of the fact that, for strictly convex functions, equality
holds in Jensen’s inequality only when the measure is a Dirac mass. A detailed argument
is presented in [3, Thm. 5.4.4] (the fact that the base space X is a general metric space
instead of an Hilbert space is not relevant here).

The proof of (iii) is straightforward. �

Stability of BE(K,N) under SGH-convergence

Theorem 5.8. Let (Xn, τn,En,mn), n ∈ N, be Riemannian energy measure spaces satisfy-
ing BE(K,N) with mn ∈ P2(Xn) and let us suppose that, denoting by dn the correspond-
ing distances dEn

, (Xn, dn,mn) converge to (X∞, d∞,m∞) in the Sturm-Gromov-Hausdorff
sense of Definition 5.4. If 1

2
E∞ is the Cheeger energy in the limit space and τ∞ the topology

induced by d∞, then (X∞, τ∞,m∞,E∞) is a Riemannian Energy measure space satisfying
BE(K,N).

Proof. According to the Definition 5.4 of SGH-convergence and taking Remark 5.5 into
account, it is not restrictive to assume that (5.10) holds, so that all the spaces Xn are
subsets of a fixed complete and separable metric space (X, d), dn are the restrictions of d
on Xn, the isometries ιn are just the inclusions maps, mn can be identified with (ιn)♯mn

and can be considered as measures in P2(X) converging to m∞, and the Cheeger energies
En are Dirichlet forms on L2(X,mn) satisfying the BE(K,N) condition.

The case N = ∞ follows by the identification Theorem 4.17 and [5, Thm. 6.10]. In
particular, the limit Cheeger energy associated to (X, d,m∞) is a Dirichlet form that we
call 1

2
E∞ and the limit space endowed with the Cheeger energy and the topology τ induced

by d is a Riemannian Energy measure space.
We can thus consider the case N < ∞. In order to show that (X, τ,m∞,E∞) satisfies

BE(K,N) we will prove that the distributional characterization (2.33) of BE(K,N) holds
for every f ∈ L2(X,m∞) and nonnegative ϕ ∈ L∞(X,m∞). By standard approximation,
it is also not restrictive to assume f ∈ L∞(X,m∞). Our argument consists in passing to
the limit in the corresponding distributional inequality written for suitable approximating
sequences in the spaces (X, τ,mn,En).

Let us thus denote by (Pnt )t≥0 the Markov semigroups in L2(X,mn) with generators
∆n := ∆En , n ∈ N̄. By [5, Lemma 6.12] and Lemma 5.7(ii), for every f, ϕ ∈ L∞(X,m),
ϕ nonnegative, we can find sequences fn, ϕn ∈ L∞(X,mn), ϕn nonnegative, converging to
f, ϕ according to Definition 5.6. We can also suppose that fn, ϕn are uniformly bounded
by some constant C > 0.

Applying Lemma 5.9 below, we get that for every t ≥ 0 and s ∈ [0, t] Pnt−sfn converge
to P∞

t−sf and Pns ϕn converge to P∞
s ϕ as n→ ∞ according to Definition 5.6.
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Applying Lemma 5.7(i) to the function fn := (Pnt−sfn,P
n
s ϕn) and choosing the bounded

and continuous test function ψ(x, r1, r2) = r21r2SC(r2), (x, r1, r2) ∈ X×R2 (with SC defined
as in (3.27)), we obtain

lim
n→∞

∫

X

(Pnt−sfn)
2Pns ϕn dmn = lim

n→∞

∫

ψ d(i× fn)♯mn =

∫

ψ d(i× f )♯m

=

∫

X

(P∞
t−sf)

2P∞
s ϕ dm.

A similar argument yields

lim
n→∞

∫

X

(∆n
EP

n
t−sfn)

2P n
s ϕn dmn =

∫

X

(∆EP
∞
t−sf)

2P∞
s ϕ dm

for every t > 0, s ∈ [0, t). We can thus pass to the limit in the distributional inequality
(2.33) written for fn, ϕn. �

Lemma 5.9. Let (X, d) be a complete and separable metric space, mn ∈ P2(X), n ∈ N̄,
be a converging sequence such that (X, d,mn) is a RCD(K,∞) space with Cheeger energy
1
2
En, and let us denote by (Pnt )t≥0 the Markov semigroups in L2(X,mn) with generators

∆n := ∆En, n ∈ N̄.
If fn ∈ L∞(X,mn) converge to f∞ ∈ L∞(X,m∞) according to Definition 5.6, with

uniformly bounded L∞ norm, then Pnt fn converge to P∞
t f∞ for every t ≥ 0 and ∆nP

n
t fn

converge to ∆∞P∞
t f∞ as n→ ∞ for every t > 0.

Proof. When fn are probability densities the convergence of Pnt fn follows by applying
Lemma 5.7(ii) and the convergence results of [5, Theorem 6.11] (which shows that Pnt fnmn

converges to P∞
t f∞m∞ in P2(X)) and [29] (which yields the convergence of the entropies

Entmn
(fnmn) → Entm(f∞m∞)).

The case fn ∈ L1
+(X,mn) can be easily reduced to the previous one by a rescaling, since

∫

X
fn dmn →

∫

X
f dm by (5.11) and (Pnt )t≥0 is mass preserving.

The general case can be proved by decomposing each fn into the difference f+
n − f−

n

of its positive and negative part, observing that f±
n converge to f±

∞ thanks to Lemma
5.7(iii). Thus, by (i) it follows that (Pnt f

+
n ,P

n
t f

−
n ) converge to (P∞

t f+
∞,P

∞
t f−

∞) and a further
application of (iii) yields the convergence result by the linearity of the semigroups.

In order to prove the convergence of ∆nP
n
t fn we still apply (ii) of Lemma 5.7: recall that

Pnt are analytic semigroups in L2(X,mn), ∆nP
n
t fn = d

dt
Pnt fn, and the uniform estimates

(see e.g. [49, Page 75, step 2])

tj
∥

∥

∥

∥

dj

dtj
Pnt fn

∥

∥

∥

∥

L2(X,mn)

≤ Aj‖fn‖L2(X,mn) for every t > 0, n ∈ N (5.12)

hold with universal constants Aj for every t > 0. Since we just proved that for every
ϕ ∈ Cb(X) the sequence of functions ζn(t) :=

∫

X
Pnt fn ϕ dmn converge pointwise to the

corresponding ζ as n→ ∞, (5.12) yields that

lim
n→∞

ζ ′n(t) = lim
n→∞

∫

X

∆nP
n
t fn ϕ dmn = ζ ′(t) =

∫

X

∆∞P∞
t f∞ ϕ dm
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for every t > 0. The same argument holds for

t 7→
∫

X

(∆nP
n
t fn)

2 dmn =
1

4

d2

dt2

∫

X

(Pnt fn)
2 dmn. �
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[3] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in
the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser
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