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LOCALLY CONFORMALLY FLAT ANCIENT RICCI FLOWS

GIOVANNI CATINO, CARLO MANTEGAZZA, AND LORENZO MAZZIERI

ABSTRACT. We show that any locally conformally flat ancient solution to the Ricci flow must
be rotationally symmetric. As a by–product, we prove that any locally conformally flat Ricci
soliton is a gradient soliton in the shrinking and steady cases as well as in the expanding case,
provided the soliton has nonnegative curvature.
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1. INTRODUCTION

In this paper, we study ancient solutions to the Ricci flow. We recall that a time–dependent
metric g(t) on a Riemannian manifold M is a solution to the Ricci flow if it evolves by the
equation

∂

∂t
g(t) = −2Ricg(t) .

A solution is called ancient if it is defined for every negative time. Ancient solutions typi-
cally arise as the limit of a sequence of suitable blow–ups as the time approaches a singular
time for the Ricci flow. In dimension two there exists a compact, rotationally symmetric,
ancient solution due to King [22], Rosenau [32] and Fateev, Onofri and Zamolodchikov [18].
In dimension three Perelman [30] constructed a compact, rotationally symmetric, ancient
solution on the three sphere. In the non–rotationally symmetric case, the first construction
is due to Fateev [17] in dimension three. Motivated by this construction, Bakas, Kong and
Ni [4] produced high dimensional compact ancient solutions to the Ricci flow which are not
rotationally symmetric.

In dimension two, Daskalopoulos, Hamilton and Sesum [15] have obtained a complete
classification of all compact ancient solutions to the Ricci flow. Ni [27] showed that any com-
pact ancient solution to the Ricci flow which is of type I, is k–noncollapsed, and has positive
curvature operator has constant sectional curvature. In [7] Brendle, Huisken and Sinestrari
proved that any compact ancient solution which satisfies a suitable pinching condition must
have constant sectional curvature.

In this article, we show that any complete ancient solution to the Ricci flow in dimension
n ≥ 4 which is locally conformally flat along the flow must be rotationally symmetric.

Theorem 1.1. Let (Mn, g(t)), n ≥ 4, be a complete ancient solution to the Ricci flow which is locally
conformally flat at every time. Then (Mn, g(t)) is rotationally symmetric.

The non–rotationally symmetric examples of Bakas, Kong and Ni show that the locally
conformally flatness assumption cannot be removed. The proof of Theorem 1.1 relies on a
previous work of the first two authors [12] about the behavior of the Weyl tensor under the
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Ricci flow, combined with a more recent result [13] concerning the classification of Riemann-
ian manifolds admitting a Codazzi tensor with exactly two distinct eigenvalues.

As a consequence of Theorem 1.1, we classify locally conformally flat Ricci solitons. We
recall that a complete Riemannian manifold (Mn, g) is a Ricci soliton if there exists a vector
field X on Mn such that

Ric +
1

2
LXg = λ g

for some constant λ. The Ricci soliton is called shrinking if λ > 0, steady if λ = 0 and ex-
panding if λ < 0. If X = ∇f for some smooth function f , then the soliton is called a gradient
Ricci soliton. It follows from the work of Perelman [29] (see [16], for instance, for a direct
proof) that any compact Ricci soliton is actually a gradient soliton. Moreover, Naber [26]
has showed that any shrinking Ricci soliton with bounded curvature has a gradient soliton
structure. On the other hand, steady and expanding Ricci solitons which do not support a
gradient structure were found by Lauret [24], Baird and Danielo [3], Lott [25] and Baird [2].

In this article we prove the following result.

Theorem 1.2. Let (Mn, g,X), n ≥ 4, be a complete, locally conformally flat, shrinking or steady
Ricci soliton. Then, it is a gradient Ricci soliton. The conclusion still holds in the expanding case,
provided the soliton has nonnegative curvature operator.

In particular, from the classification results of locally conformally flat gradient Ricci soli-
tons in the shrinking case [11, 16, 28, 31, 33], in the steady case [10, 12], as well as in the
expanding case [12], we obtain the following corollaries.

Corollary 1.3. Let (Mn, g,X), n ≥ 4, be a complete, locally conformally flat, shrinking Ricci soliton.
Then, it is isometric to a quotient of Sn, R× S

n−1 or Rn.

Corollary 1.4. Let (Mn, g,X), n ≥ 4, be a complete, locally conformally flat, steady Ricci soliton.
Then, it is isometric to a quotient of Rn or the Bryant soliton.

Corollary 1.5. Let (Mn, g,X), n ≥ 4, be a complete, locally conformally flat, expanding Ricci
soliton with nonnegative curvature operator. Then, it is a rotationally symmetric gradient expanding
Ricci soliton.

We notice that, rotationally symmetric gradient expanding Ricci solitons were constructed
in [8, 9, 19].

2. NOTATIONS AND PRELIMINARIES

The Riemann curvature operator of a Riemannian manifold (Mn, g) is defined as in [20]
by

Riem(X,Y )Z = ∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z .

In a local coordinate system the components of the (3, 1)–Riemann curvature tensor are given

by Rl
ijk

∂
∂xl = Riem

(
∂
∂xi ,

∂
∂xj

)
∂

∂xk and we denote by Rijkl = glmRm
ijk its (4, 0)–version.

With this choice, we have that the round sphere S
n has positive curvature, meaning that

Riem(v,w, v, w) = Rijklv
iwjvkwl > 0, for every couple u and v of non parallel vector fields.

The Ricci tensor is obtained by the contraction Rik = gjlRijkl and R = gikRik will denote the
scalar curvature. The so called Weyl tensor is then defined by the following decomposition
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formula (see [20, Chapter 3, Section K]) in dimension n ≥ 3,

Wijkl = Rijkl +
R

(n− 1)(n − 2)
(gikgjl − gilgjk)

−
1

n− 2
(Rikgjl − Rilgjk +Rjlgik − Rjkgil) . (2.1)

The Weyl tensor shares the symmetries of the curvature tensor. Moreover, as it can be easily
seen by the formula above, all of its contractions with the metric are zero.

In dimension three, W is identically zero on every Riemannian manifold, whereas, when
n ≥ 4, the vanishing of the Weyl tensor is a relevant condition, since it is equivalent to the
locally conformally flatness of (Mn, g). We recall that this latter condition means that around
every point p ∈ Mn there exists a smooth function f defined in a open neighborhood Up of p,
such that the conformal deformation g̃ of the original metric g defined by g̃ij = efgij is flat.
In particular, the Riemann tensor associated to g̃ is zero in Up.

We also recall that in dimension n = 3, locally conformally flatness is equivalent to the
vanishing of the Cotton tensor

Cijk = ∇kRij −∇jRik −
1

2(n− 1)

(
∇kR gij −∇jR gik

)
.

By direct computation, we can see that the tensor Cijk satisfies the following symmetries

Cijk = −Cikj, Cijk +Cjki +Ckij = 0 , (2.2)

moreover it is trace–free in any two indices,

gijCijk = gikCijk = gjkCijk = 0 , (2.3)

by its skew–symmetry and Schur lemma. We notice that, for n ≥ 4, there holds

∇lWijkl = −
n− 3

n− 2
Cijk , (2.4)

and we refer the reader to [6] for the detailed computation. It follows from this formula that,
in every dimension n ≥ 3, the vanishing of the Cotton tensor is a necessary condition for a
Riemannian manifold (Mn, g) to be locally conformally flat. We also notice that the vanishing
of the Cotton tensor can be rephrased in terms of the so called Schouten tensor

Sij = Rij −
1

2(n − 1)
R gij ,

by saying that S must satisfy the Codazzi equation

(∇XS)Y = (∇Y S)X, X, Y ∈ TM .

Any symmetric two tensor satisfying this condition is called a Codazzi tensor (see [6, Chap-
ter 16] for a general overview on Codazzi tensors). Hence, if (Mn, g), n ≥ 3, is a locally
conformally flat manifold, then the Schouten tensor is a Codazzi tensor.

3. PROOF OF THEOREM 1.1

Let (Mn, g(t)), n ≥ 4, be a complete ancient solution to the Ricci flow. We assume that
along the flow, the Weyl tensor remains identically zero. As it was observed in [12], this
condition implies a strong rigidity on the eigenvalues of the Ricci tensor. More precisely, one
has the following result.



 D
ra

ft
4 GIOVANNI CATINO, CARLO MANTEGAZZA, AND LORENZO MAZZIERI

Lemma 3.1 ([12, Corollary 1.2]). Let (Mn, g), n ≥ 4, be a solution to the Ricci flow such that the
Weyl tensor remains identically zero at every time. Then, at every point, either the Ricci tensor is
proportional to the metric or it has an eigenvalue of multiplicity (n − 1) and another of multiplicity
1.

By the results in [14] and [33], which generalize the well–known Hamilton–Ivey curvature
estimate, we know that every complete ancient solution g(t) to the Ricci flow whose Weyl
tensor is identically zero for all times, is forced to have nonnegative curvature operator for
every time t. Moreover, by Hamilton’s strong maximum principle for systems in [21], we
have that either the metric has strictly positive curvature operator or it splits a line. By The-
orem 1.167 in [6] a Riemannian product (R ×Nn−1, ds × h) is locally conformally flat if and
only if the manifold (Nn−1, h) has constant curvature, hence, either one of the following pos-
sibilities holds: (Mn, g(t)) is flat or it is a quotient of a rescaling of R× S

n−1 or it has positive
curvature operator. Since the first two cases satisfy the conclusion of the theorem, from now
on we assume that (Mn, g(t)) is a complete, locally conformally flat, ancient solution to the
Ricci flow with positive curvature operator.

As we have seen in the previous section, the relation (2.4) implies that the Cotton tensor
is identically zero, hence the Schouten tensor

Sij = Rij −
1

2(n − 1)
R gij

is a Codazzi tensor. Moreover, from Lemma 3.1, we know that, at every point, either the
metric is Einstein or the Ricci tensor (and so the Schouten tensor) has two distinct eigenval-
ues of multiplicity 1 and (n− 1), respectively.
Now, it was proved by Bando [5] that solutions to the Ricci flow are real analytic. To be
precise, Bando showed that any Ricci flow solutions is real analytic if Mn is compact or if
it is complete with uniformly bounded curvature. This result was recently improved by
Kotschwar [23], who showed a local version of Bando’s result. It follows that if the metric
is Einstein in some open subset of Mn, then it is Einstein everywhere, and by conformally
flatness and positivity of the curvature the manifold (Mn, g) must be isometric to a quotient
of Sn. Thus, either (Mn, g(t)) has constant positive sectional curvature or the Schouten ten-
sor has an eigenvalue of multiplicity 1 and a different one of multiplicity (n − 1) at every
point of some open dense subset U of Mn. In the latter case, we apply to such open set U
the following classification result of Riemannian manifolds admitting a Codazzi tensor with
two distinct eigenvalues.

Lemma 3.2 ([13, Theorem 2.1]). Let T be a Codazzi tensor on the Riemannian manifold (U, g),
with n ≥ 3. Suppose that at every point of U , the tensor T has exactly two distinct eigenvalues ρ and
σ of multiplicity 1 and n− 1, respectively. Finally, we let W = {p ∈ U

∣∣ dσ(p) 6= 0}. Then, we have
that

(1) The closed set W = W ∪ ∂W with the metric g|W is locally isometric to the warped product
of some (n − 1)–dimensional Riemannian manifold on an interval of R and σ is constant
along the ”leaves” of the warped product.

(2) The boundary of W , if present, is given by the disjoint union of connected totally geodesic
hypersurfaces where σ is constant.

(3) Each connected component of the complement of W in U , if present, has σ constant and it is
foliated by totally geodesic hypersurfaces.
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We are going to to show that, under our assumptions, case (3) cannot occurs and W = U .
In fact, if a connected component of the complement of W in U is present, actually, the proof
of this lemma (see also [6, Proposition 16.11]) shows that the totally geodesic foliation of
(U, g(t)) is integrable. Then, since the manifold (U, g(t)) has nonnegative sectional curvature,
it follows from [1, Corollary 2], that such component must split a flat factor. This is clearly in
contradiction with the positivity of the curvature, hence it must be U = W in this lemma and
(U, g(t)) is locally a warped product of some (n− 1)–dimensional manifold on an interval of
R.
Since (U, g(t)) is locally conformally flat with positive curvature operator, we have that the
(n − 1)–dimensional fibers of the warped product are isometric to S

n−1 and the metric is
rotationally symmetric. By the density of U in Mn, this conclusion clearly holds for the
whole (Mn, g). This concludes the proof of Theorem 1.1.

Remark 3.3. We would like to notice that, the same argument shows that the conclusion of
Theorem 1.1 still holds if one consider a Ricci flow solution (Mn, g(t)), n ≥ 4, defined on
some time interval I ⊆ R, which is locally conformally flat with nonnegative curvature
operator for every t ∈ I .

4. PROOF OF THEOREM 1.2

Now we turn our attention to the classification of locally conformally flat Ricci solitons.
Let (Mn, g,X) be a complete, locally conformally flat shrinking or steady Ricci soliton. In
particular, it generates a self–similar ancient solution g(t) to Ricci flow (see [34]) which is
locally conformally flat at every time t. Hence, Theorem 1.1 implies that the manifold is ro-
tationally symmetric with nonnegative curvature operator. As we observed in Remark 3.3,
the conclusion still holds if we consider an expanding Ricci soliton with nonnegative curva-
ture operator. To prove Theorem 1.2 we then apply the following result.

Lemma 4.1 ([12, Proposition 2.6]). Let (Mn, g,X) be a complete, locally warped, locally con-
formally flat Ricci soliton with nonnegative Ricci tensor, then it is a gradient Ricci soliton with a
potential function f : Mn → R (hence, X = ∇f ) depending only on the r variable of the warping
interval.
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