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Abstract
We consider the standard family of area-preserving twist maps of the annulus
and the corresponding KAM curves. Addressing a question raised by
Kolmogorov, we show that, instead of viewing these invariant curves as sep-
arate objects, each of which having its own Diophantine frequency, one can
encode them in a single function of the frequency which is naturally de-
fined in a complex domain containing the real Diophantine frequencies and
which is monogenic in the sense of Borel; this implies a remarkable prop-
erty of quasianalyticity, a form of uniqueness of the monogenic continuation,
although real frequencies constitute a natural boundary for the analytic con-
tinuation from the Weierstraß point of view because of the density of the
resonances.
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Introduction

AQ1

In this paper, we address what is, to our best knowledge, the oldest open problem in KAM
theory. Indeed, in 1954, in his ICM conference [Kol54], Kolmogorov asked whether the
regularity of the solutions of small divisor problems with respect to the frequency could
be investigated using appropriate analytical tools, suggesting a connection with the theory
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of ‘monogenic functions’ in the sense of Émile Borel [Bo17]4. We provide evidence that
Kolmogorov’s intuition was correct by establishing a monogenic regularity result upon a
complexified rotation number for the KAM curves of a family of analytic twist maps of the
annulus; as a consequence of our result, these curves enjoy a property of ‘H 1-quasianalyticity’
with respect to the rotation number.

We recall that small divisor problems are at the heart of the study of quasiperiodic
dynamics: resonances are responsible for the possible divergence of the perturbative series
expansions of quasi-periodic motions and their accumulation must be controlled in order to
prove convergence. The Kolmogorov–Arnold–Moser (KAM) theory deals with perturbations
of completely integrable Hamiltonian systems for which, when frequencies verify a suitable
Diophantine condition, the small divisor difficulty can be overcome and one can establish
the persistence of quasi-periodic solutions of Hamilton’s equations; in the analytic case their
parametric expressions depend analytically on angular variables as well as on the perturbation
parameter, however they are only defined on closed sets in frequency space, corresponding to
the Diophantine condition.

Borel’s monogenic functions may be considered as a substitute to holomorphic functions
when the natural domain of definition is not open but can be written as an increasing
union of closed subsets of the complex plane (monogenicity essentially amounts to Whitney
differentiability in the complex sense on these larger and larger closed sets). According
to what these closed sets are, monogenic functions may enjoy some of the properties of
holomorphic functions (e.g. one may be able to use the Cauchy integral). As pointed out by
Herman [He85], Borel’s motivation was probably to ensure quasianalytic properties (unique
monogenic continuation) by an appropriate choice of the sequence of closed sets, which turns
out to be difficult in a general framework.

Kolmogorov’s question about the link between small divisor problems and Borel’s
monogenic functions has already been considered in small divisor problems other than
KAM theory, particularly in the context of circle maps [Ar61, He85, Ri99] where the role of
frequency is played by the so-called rotation number (see also [BMS00,MS03,CM08,MS11]).
In his work on the local linearization problem of analytic diffeomorphisms of the circle,
Arnold [Ar61] defined a complexified rotation number, with respect to which he showed
the monogenicity of the solution of the linearized problem, but his method did not allow
him to prove that the solution of the nonlinear conjugacy problem was monogenic, because
it would have required to iterate infinitely many times a process in which the analyticity
strip was reduced by a finite amount equal to the imaginary part of the rotation number.
This point was dealt with by Herman [He85], who used quite a different method and also
reformulated Borel’s ideas using the modern terminology, and by Risler [Ri99], who used
Yoccoz’s renormalization method [Yo88,Yo95] to enlarge the set of complex rotation numbers
covered by the regularity result, passing from Siegel’s Diophantine condition to Bruno’s
condition.

In this paper, we consider the Lagrangian formulation of KAM theory for symplectic
twist maps of the annulus [SZ89, LM01] and prove that the parametrization of the invariant
KAM curves can be extended to complex values of the rotation number, that their
dependence on real and complex rotation numbers is an example of Borel’s monogenic

4 Towards the end of [Kol54], he considers the example of a real analytic vector field on the two-dimensional torus
which depends analytically on a real parameter θ : he claims that, if the ratio of mean frequencies is not constant, then
there is a full measure set R of parameters for which the vector field is analytically conjugate to a constant normal
form, giving rise to a discrete set of eigenfuctions ϕmn which are analytic functions on the torus; he then writes: It is
possible that the dependence of ϕmn on the parameter θ on the set R is related to the class of functions of the type of
monogenic Borel functions and, despite its everywhere-discontinuous nature, will admit investigation by appropriate
analytical tools.
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function and furthermore that it enjoys the property introduced in [MS11] under the name
‘H 1-quasianalyticity’. This is sufficient to get an interesting uniqueness property for
the monogenic continuation of the KAM curve because such functions are determined
by their restriction to any subset of their domain of definition which has positive linear
measure.

With a view to avoid too many technicalities, we do not try to work in the most
general context. We restrict ourselves to the standard family of area-preserving twist maps
of the annulus because we find it suggestive enough and this allows us to contrast our
monogenicity result, which entails holomorphy with respect to complex non-real frequencies,
with another result that we prove, according to which real frequencies do constitute a natural
boundary.

We do not try either to reach optimal results for the arithmetical condition; we content
ourselves with imposing a Siegel-type Diophantine condition on the rotation number (instead
of a Bruno-type condition).

Notice that Whitney smooth dependence on real Diophantine frequencies has been
established long ago by Lazutkin [Laz73] and Pöschel [Pö82] in this kind of small divisor
problem (see also [BT07]), but the question we address in this paper is quite different in
its spirit: what is at stake here is the complex extension, its regularity and the uniqueness
property this regularity implies (see section 1.4 for a comment). Indeed, we show that from
the point of view of classical analytic continuation, the real axis in frequency space appears as
a natural boundary, because of the density of the resonances, but our quasianalyticity result is
sufficient to prove that some sort of ‘generalized analytic continuation’5 through it is indeed
possible: the knowledge of the parametrizations on a set of positive linear measure of rotation
numbers (real or complex) is sufficient to determine all the parametrized KAM curves: in this
sense there is only one KAM curve, parametrized by one monogenic function of the rotation
number.

Plan of the paper. In section 1 we formulate the KAM problem which is investigated in this
paper: the existence of analytic invariant curves for the standard family of area-preserving
twist maps of the cylinder and the dependence of the parametrization of the invariant curves
on the rotation number ω when ω is allowed to take real and complex values. We state our
main result, theorem 1, about the C 1-holomorphy of this parametrization, and connect it with
Borel’s monogenic functions and their quasianalytic properties. We also give a theorem 2
about the impossibility of having an analytic continuation in the Weierstraß sense through the
real frequencies.

In section 2, we introduce an algebra norm on the space of C 1-holomorphic functions,
which is useful to deal with nonlinear analysis (in particular composition of functions). In
section 3, we provide the small divisor estimates for the linearized conjugacy equation:
these estimates must be uniform with respect to both real Diophantine and complex rotation
numbers.

In section 4, inspired by Levi–Moser’s ‘Lagrangian’ proof of the KAM theorem for
twist mappings [LM01], we adapt their algorithm to construct a sequence of approximations
which converges to the parametrization of the invariant curve in our Banach algebra of C 1-
holomorphic functions, so as to prove our complexified KAM theorem (theorem 1).

Section 5 is devoted to proving that the real line in the complex frequency space is a
natural boundary, in the classical sense, for the analytic continuation of the parametrization of
the invariant curve (theorem 2).

5 We borrow this expression from [RS02].
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1. Statement of the results

1.1. Invariant graphs for the standard family

Let f be a 1-periodic real analytic function with zero mean value. We consider the standard
family, i.e. the discrete dynamical system defined by

Tε: (x, y) �→ (x1, y1),

{
x1 = x + y + εf (x)

y1 = y + εf (x)
(1)

in the phase space T × R, where T = R/Z and ε is a real parameter (when f (x) = cos(2πx),
Tε is the so-called standard map). For ε close to 0, this is an exact symplectic map that we can
view as a perturbation of the integrable twist map (x, y) �→ (x + y, y).

We are interested in the KAM curves associated with Diophantine frequencies. For ω ∈
R−Q, we call invariant graph of frequency ω for Tε the graph G = {(

x, ϕ(x)
)} ⊂ T×R of a

continuous map ϕ: T → R such that Tε leaves G invariant and the map �: x �→ x+ϕ(x)+εf (x)

on R is conjugate to the translation x �→ x + ω by a homeomorphism of R of the form id + u,
where u is a 1-periodic function (observe that � is a lift of the circle map induced by the
restriction of Tε to G).

There is a natural way of viewing an invariant graph of frequency ω as a parametrized
curve G = γ (T): finding G is equivalent to finding continuous functions u, ϕ: T → R such
that θ �→ U(θ) := θ + u(θ) defines a homeomorphism of R and the curve γ : T → T × R

defined by γ (θ) = (
U(θ), ϕ(U(θ))

)
satisfies

γ (θ + ω) = Tε

(
γ (θ)

)
, θ ∈ T. (2)

Setting v = −ω + ϕ ◦ U , i.e. writing the curve γ as

γ (θ) = (
θ + u(θ), ω + v(θ)

)
(3)

we see that equation (2) is equivalent to the system

v(θ) = u(θ) − u(θ − ω), (4)

u(θ + ω) − 2u(θ) + u(θ − ω) = εf
(
θ + u(θ)

)
(5)

(using the fact that x1 = x + y1 in (1) and writing (3) at the points θ and θ + ω). It is in
fact sufficient to know the function u: any 1-periodic solution u of the second-order difference
equation (5) such that id+u is injective parametrizes an invariant graph of frequency ω through
formulas (3)–(4).

The continuity of ϕ and the irrationality of ω are enough to ensure uniqueness: if it exists,
the invariant graph of frequency ω is unique6 and the corresponding parametrization γ is
unique up to a shift in the variable θ . We can then normalize the parametrization by adding the
requirement that u have zero mean value: equation (5) cannot have more than one continuous
solution u of zero mean value such that id + u is injective and finding such a solution is
equivalent to finding an invariant graph of frequency ω.

The classical KAM theorem for twist maps [Mo62] guarantees the existence of an invariant
graph of frequency ω for every Diophantine ω provided |ε| is small enough. More precisely,

6 The argument relies on the positive twist map condition verified by Tε : Suppose that G and G∗ are invariant graphs
of frequency ω and define ϕ, �, γ and ϕ∗, �∗, γ ∗ accordingly; if G and G∗ did not intersect, we would have ϕ < ϕ∗
or ϕ > ϕ∗ on T, which would imply � < �∗ or � > �∗ on R, and hence contradict ω ∈ R − Q (as it is known for
rotation numbers [HK97] that �1 < �2 implies ρ(�1) < ρ(�2) or ρ(�1) = ρ(�2) ∈ Q); we thus can find θ0, c ∈ T

such that γ (c + θ0) = γ ∗(θ0), but the shifted curve θ �→ γ (c + θ) is a solution of (2) as well as γ and iterating this

equation we find γ (c + θ0 + kω) = T k
ε

(
γ (c + θ0)

)
= T k

ε

(
γ ∗(θ0)

)
= γ ∗(θ0 + kω) for all integers k; the irrationality

of ω thus implies that γ ∗ coincides with the shifted curve on a dense subset of T, hence everywhere by continuity,
whence G = G∗.
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given ω ∈ R−Q for which there exist M > 0 and τ � 0 such that |ω− (n/m)| � (1/Mm2+τ )

for all (n, m) ∈ Z × N∗, the map Tε admits an invariant graph of frequency ω as soon as |ε|
is smaller than a constant ρ which depends only on f, M, τ . Moreover, the corresponding
curve γω is known to be analytic in the angle θ and to depend analytically on ε.

The aim of this paper is to investigate the regularity of the map ω �→ γω, which for the
moment is defined on the set of real Diophantine numbers. More specifically, we are interested
in the quasianalytic properties of this map; this will lead us to extend it to certain complex
values of the frequency ω.

1.2. C 1-holomorphy and H 1-quasianalyticity of a complex extension

Throughout the paper, we use the notation

SR = {x ∈ C/Z | |�mx| < R}, Dρ = {ε ∈ C | |ε| < ρ} (6)

for any R, ρ > 0. Let R0 > 0 be such that f extends holomorphically to a neighbourhood
of the closed strip SR0 . Let R ∈ (0, R0). We shall be interested in invariant graphs whose
parametrizations extend holomorphically for θ ∈ SR and ε ∈ Dρ for some ρ > 0. Let

BR,ρ = H∞(SR × Dρ) (7)

denote the complex Banach space of all bounded holomorphic functions of SR × Dρ .
We fix τ > 0 and consider

AR

M =
{

ω ∈ R | ∀(n, m) ∈ Z × N∗, |ω − n

m
| � 1

Mm2+τ

}
(8)

for M > M(τ) = 2ζ(1 + τ) (Riemann’s zeta function): this is a closed subset of the real line,
of positive measure, which has empty interior and is invariant by the integer translations. The
KAM theorem gives us a ρ = ρ(M) > 0 (which depends also on f , R0, R and τ ) and a
function

ω ∈ AR

M �→ u ∈ BR,ρ

such that, for ε real, the restriction of u(. , ε) to T has zero mean value and parametrizes
through (3)–(4) an invariant graph of frequency ω.

Clearly, u depends 1-periodically on ω, we shall thus rather view it as a function of
q = E(ω), where

E: ω ∈ C �→ q = e2π iω ∈ C∗,

and consider that we have a function uM : E(AR

M) → BR,ρ . Observe that E(AR

M) is a subset of
the unit circle S which avoids all roots of unity and has Haar measure � 1 − (M(τ)/M). If
we consider M1 > M , then we get a larger set E(AR

M1
) and, by the aforementioned uniqueness

property, the corresponding function uM1 is an extension of uM , provided we take ρ1 � ρ in
the KAM result and we regard the new target space BR,ρ1 as containing BR,ρ .

Let

AC

M = {
ω ∈ C | ∃ω∗ ∈ AR

M such that |�mω| � |ω∗ − �eω| } (9)

and

KM = E(AC

M) ∪ {0, ∞} ⊂ Ĉ, (10)

where Ĉ denotes the Riemann sphere—see figures 1 and 2. Observe that AC

M is a perfect subset
of C and KM is a perfect subset of Ĉ.

Our main result is that the above function uM extends to a C 1-holomorphic function
from KM to BR,ρ (possibly with a smaller ρ). The reader is referred to section 2.1 for the

5
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Figure 1. The perfect subset AC

M ⊂ C.

Figure 2. The perfect subset KM = K
(i)
M ∪ K

(e)
M ⊂ Ĉ.

definition of the Banach space C 1
hol(K, B) of all C 1-holomorphic functions from a perfect

subset K of C or Ĉ to a Banach space B (C 1-holomorphy essentially means complex
differentiability in the sense of Whitney, i.e. real Whitney differentiability on a closed subset
with partial derivatives which satisfy the Cauchy–Riemann equations).

Theorem 1. Suppose τ > 0, 0 < R < R0, f real analytic and holomorphic in a
neighbourhood of SR0 , with zero mean value. Then there exist c > 0 (depending on τ ,
R0, f and R) and, for each M > 2ζ(1 + τ), a function

ũM ∈ C 1
hol(KM, BR,ρ), with ρ = cM−8

such that, for each ω ∈ AR

M and ε ∈ (−ρ, ρ), the function θ ∈ T �→ ũM(e2π iω)(θ, ε) has zero
mean value and parametrizes through (3)–(4) an invariant graph of frequency ω for Tε.

The proof of theorem 1 will start in section 2.
Theorem 1 provides a function ũM on KM which is an extension of the function uM that

we had on E(AR

M). This extension is unique and, if we consider M1 > M , then ũM1 is an
extension of ũM (if we regard BR,ρ as a subspace of BR,ρ1 for ρ1 < ρ); these facts are simple
consequences of a quasianalyticity property, which is established in [MS11] for all functions
C 1-holomorphic on KM and which we now recall.

6
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Denote by H 1 the one-dimensional Hausdorff outer measure associated with the spherical
metric in Ĉ. Suppose that C is a subset of Ĉ and that L is a linear space of functions, all
of which are defined on C. We say that L is H 1-quasianalytic relatively to C if any subset
of C of positive H 1-measure is a uniqueness set for L (i.e. the only function of L vanishing
identically on this subset of C is ≡ 0); in other words, a function of L is determined by its
restriction to any subset of C of positive H 1-measure.

Observe that the interior
◦
KM of the above compact setKM has two connected components:

◦
K

(i)
M := ◦

KM ∩ { q ∈ Ĉ | |q| < 1 }, ◦
K

(e)
M := ◦

KM ∩ { q ∈ Ĉ | |q| > 1 }.
It is proved in [MS11] that KM has the property that, for any Banach space B, the Banach
space

O(KM, B) = { ϕ: KM → B continuous in KM and holomorphic in
◦
KM}

is H 1-quasianalytic relatively to KM . Since C 1
hol(KM, B) ⊂ O(KM, B), this space inherits

the H 1-quasianalyticity property7. This is why ũM is uniquely determined and must coincide
with ũM1|KM

for M1 > M: this function is in fact determined by its restriction uM to E(AR

M),
and even by its restriction to any subset of E(AR

M) of positive Haar measure of the unit circle.
This quasianalyticity property was our main motivation. What is striking is that, as we

shall see in section 1.4, finding the complexified function ũM in restriction to { |�mω| � h },
i.e. for |q| � e−2πh or |q| � e2πh, is relatively easy because this can be done by solving an
equation which does not involve any small divisor; still, the quasianalyticity property shows
that all the real KAM curves determined by uM can be obtained from this easy-to-find function
by a kind of ‘generalized analytic continuation’ (the restriction of this function to a positive
H 1-measure subset of KM is even sufficient).

On the other hand, resonances produce an obstruction to the analytic continuation in the
Weierstraß sense through any point of the unit circle S, no matter how small ρ is taken:

Theorem 2. Suppose τ > 0, 0 < R < R0, f real analytic and holomorphic in a
neighbourhood of SR0 , with zero mean value but not identically zero. Let M > 2ζ(τ + 1)

and ũM ∈ C 1
hol(KM, BR,ρ) as in theorem 1, possibly with a smaller ρ > 0. Consider the

restriction of ũM to
◦
K

(i)
M or to

◦
K

(e)
M , which is a BR,ρ-valued holomorphic function on an open

subset of Ĉ − S. Then, given a point q∗ of the unit circle S, this holomorphic function has no
analytic continuation in any neighbourhood of q∗.

The proof of theorem 2 is given in section 5.

Remark 1.1. For fixed M , one can also fix ε ∈ Dρ and consider (q, θ) �→ ũM(q)(θ, ε) as an
element of C 1

hol

(
KM, H∞(SR)

)
, i.e. a function of θ which depends C 1-holomorphically on q;

the space C 1
hol

(
KM, H∞(SR)

)
enjoys the aforementioned quasianalyticity property.

1.3. Monogenic extension

Gluing together the ũM ’s given by theorem 1, we get a monogenic function in the sense of Borel.
Here is the precise definition taken from [MS11] (which is an adaptation of the definition given
in [He85]): suppose that (Kj )j∈N is a monotonic non-decreasing sequence of compact subsets
of Ĉ and (Bj )j∈N is a monotonic non-decreasing sequence of Banach spaces with continuous

7 Thus proving ũ ∈ O(KM, BR,ρ) is sufficient to get the H 1-quasianalyticity; this can be achieved with ρ = cM−4

by a simple adaptation of the proof of theorem 1.

7
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injections Bj ↪→ Bj+1; the corresponding space of monogenic functions is the Fréchet space
obtained as the projective limit of Banach spaces

M
(
(Kj ), (Bj )

) = lim← AJ ,

AJ =
⋂

0�j�J

C 1
hol(Kj , Bj ), ‖ϕ‖AJ

= max
0�j�J

‖ϕ|Kj
‖

C 1
hol(Kj ,Bj )

.

As a set, M
(
(Kj ), (Bj )

)
thus consists of all the functions ϕ which are defined in

⋃
j∈N

Kj

and such that, for every j ∈ N, the restriction ϕ|Kj
belongs to C 1

hol(Kj , Bj ) .
Let us apply this construction, under the hypotheses of theorem 1, with any increasing

sequence of positive numbers (Mj )j∈N tending to +∞ (we suppose Mj > 2ζ(1 + τ) for all j )
and with Bj = BR,ρj

, ρj = cM−8
j . We use the notation

M = M
(
(KMj

), (BR,ρj
)
)
, Fτ =

⋃
j∈N

KMj
, DCτ =

⋃
M>0

AR

M

(DCτ is the full-measure set of all real frequencies Diophantine with exponent 2 + τ ). Observe
that

Fτ = { q ∈ Ĉ | |q| < 1 } ∪ E(DCτ ) ∪ { q ∈ Ĉ | |q| > 1 },
with Fτ ∩S = E(DCτ ) a subset of full Haar measure of the unit circle S, and that the elements
of M may be viewed as functions from Fτ to the space H∞(SR){ε} (holomorphic germs in ε

with values in H∞(SR)). Theorem 1 immediately yields.

Corollary 3. There is a function ũ ∈ M such that, for each ω ∈ DCτ and for each real ε

close enough to 0, the function θ ∈ T �→ ũ(e2π iω)(θ, ε) has zero mean value and parametrizes
through (3)–(4) an invariant graph of frequency ω for Tε.

As explained in [MS11], the space M is H 1-quasianalytic relatively to Fτ , so we can say
that ũ is determined by its restriction to any positive H 1-measure subset of Fτ . In particular,
we emphasize that the function ũ|E(DCτ ) which encodes the real KAM curves is determined by
the restriction of ũ to any such subset and we repeat that finding this restriction is easy when
the subset is contained in { |q| � e−2πh } or { |q| � e2πh }.

Thus, we have a single analytic object, ũ, which determines all the real KAM curves, as
if there were only one KAM curve instead of separate invariant graphs, each of which with its
own Diophantine frequency ω ∈ DCτ .

The interior
◦

F τ of Fτ has two connected components, { q ∈ Ĉ | |q| < 1 } and

{ q ∈ Ĉ | |q| > 1 }, and each function of M is holomorphic in
◦

F τ . The H 1-quasianalyticity
thus implies a form of coherence: if two functions of this space coincide on one of the connected

components of
◦

F τ , then they coincide on the whole of Fτ . Given a function like ũ, we
may think of the outside function ũ|{ |q|>1 } as of a ‘generalized analytic continuation’ of the
inside function ũ|{ |q|<1 } (see [RS02]), although, according to theorem 2, classical analytic
continuation in the sense of Weierstraß is impossible across the unit circle S. These two
holomorphic functions give rise to a boundary value function ũ|E(DCτ ) which encodes the real
KAM curves.

Remark 1.2. Instead of keeping τ fixed as we did in the previous discussion, one can also let
it vary so as to reach the set of all Diophantine real numbers

DC :=
⋃
τ>0

DCτ .

8
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One just needs to take any sequences τj ↑ +∞ and Mj ↑ +∞. Observing that

DC =
⋃
j∈N

AR

τj ,Mj

(with AR

τ,M defined by (8) but we now make explicit the dependence on τ ) and using
correspondingly the space of monogenic functions associated with Kτj ,Mj

(instead of Kτ,Mj

with fixed τ ) and BR,ρj
with ρj := c(τj )M

−8
j (with c(τ ) as in theorem 1), we get a monogenic ũ

defined on F := ⋃
Kτj ,Mj

= { q ∈ Ĉ | |q| < 1 } ∪ E(DC) ∪ { q ∈ Ĉ | |q| > 1 }.
Remark 1.3. Stronger than H 1-quasianalyticity is the following more classical property: if
L is a linear space of functions defined in C ⊂ Ĉ, all of which admit an asymptotic expansion
at a point q0 ∈ C, we say that L is quasianalytic at q0 in the sense of Hadamard if the only
function of L with zero asymptotic expansion at q0 is ≡ 0, i.e. a non-tricial function of L
cannot be flat at q0 (see [MS11]). A convergent Taylor series is a particular case of asymptotic
expansion, thus if the functions of L are analytic at q0 the question of the quasianalyticity
at q0 makes sense; the question is not trivial when the functions are holomorphic in the interior
of C but this interior is not connected.

This is what happens with our spaces O(KM, B) and M : given any q0 ∈ Ĉ with |q0| �= 1,
the function ũ which encodes all the KAM curves has a convergent Taylor series at q0 and this
Taylor series determines ũ everywhere. In the case of q0 = 0, this Taylor series is particularly
easy to compute inductively (see formula (12) in section 1.4)8. See the end of section 1.4 for
an open question about the Hadamard quasianalyticity.

1.4. Comments

Invariant graphs with complex frequencies for the complexified map. The extension ũ will
be obtained as a solution of (5), viewed as a complexified difference equation involving
the holomorphic extension of f to the strip SR0 and a complex frequency ω ∈ AC

M . This
corresponds to determining a complex invariant curve for the holomorphic map T̃ε: SR0 ×C →
C/Z × C defined by (1). (In fact, the hypothesis that f be real analytic is not necessary: f

holomorphic in SR0 is sufficient.)
This might be surprising at first sight: if R < R0 < ∞, θ ∈ SR and |�mω| is too large,

we cannot prevent θ ± ω from lying out of the strip SR where the solution ũ is supposed to
be defined; what is then the meaning of the left-hand side of (5)? The explanation is that, in
fact, ũ will be defined in the larger strip SR+|�mω|.

This can be viewed as an effect of the regularizing effect of the operator Eq which is
defined via Fourier series by the formulas

Eq : ϕ =
∑
k∈Z

ϕ̂kek �→ ψ =
∑
k∈Z∗

ψ̂kek, ψ̂k := 1

e2π ikω − 2 + e−2π ikω
ϕ̂k = 1

qk − 2 + q−k
ϕ̂k

(with the notation of section 2.3) and which has the property ψ(θ + ω)− 2ψ(θ) + ψ(θ −ω) =
ϕ(θ) − 〈ϕ〉. Indeed, when |�mω| � h > 0, one can check that ϕ holomorphic in SR implies
ψ = Eqϕ holomorphic in SR+h; on the other hand, equation (5) with the requirement 〈u〉 = 0
is equivalent to

u = εEq

(
f ◦ (id + u)

)
(11)

8 Observe that this Taylor series
∑

n�1 qnun also determines the function f defining the dynamical system Tε too
(the kth Fourier coefficient of εf coincides with the kth Fourier coefficient of u|k|), which may be considered as a
kind of inverse scattering.

9
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and the vanishing of β = ε〈f ◦ (id + u)〉 = 0. For |q| �= 1, it is easy to find a solution u(q) of
equation (11) by means of a fixed point method and to check that it depends holomorphically
on q; the difference E(u) between the right-hand side and the left-hand side of (5) is then the
constant β and it is ≡ 0 because of lemma 15 (E(u) = β constant implies β = 〈(1 + ∂θu)E(u)〉).

The Taylor series at q = 0 of the solution is obtained as follows: the operator Eq can be
expanded as

Eq =
∑
n�1

qnE(n), E(n):
∑
k∈Z

ϕ̂kek �→
∑

d
(
ϕ̂mem + ϕ̂−me−m

)
,

where the last summation is over all factorizations n = md, with integers m, d � 1; then we
have u = ∑

n�1 qnun with un ∈ BR,ρM
, convergent for |q| < e−2π/M , with u1 = εE(1)f and

un = εE(n)f + ε
∑

E(n0)

(
1

r!
f (r)un1 · · · unr

)
, (12)

where the last summation is over all decompositions n = n0 + · · · + nr with integers
r, n0, . . . , nr � 1. Observe that each un is a polynomial in ε and a trigonometric polynomial
in θ , with Fourier coefficients Fk(un) = 0 for |k| > n and F±n(un) = εF±n(f ).

Complex versus real Whitney differentiability. For a closed subset A of Rn, a Banach space B

and a function ϕ: A → B, the definition of being C 1 or C ∞ in the sense of Whitney is
intrinsic: it involves only the set A on which ϕ is defined. Whitney’s extension theorem yields
an alternative definition (see [Wh34,St70]): ϕ is Whitney C 1 on A if and only if there exists a
function ϕ̃ which is C 1 on Rn such that ϕ̃|A = ϕ. Of course, the extension ϕ̃ is in general not
unique.

Similarly, if K is a perfect subset of C � R2 (or Ĉ), there is an intrinsic definition of
being C 1-holomorphic on K (see section 2.1) and Whitney’s extension theorem9 implies that
ϕ is C 1-holomorphic on K if and only if there exists a function ϕ̃ which is C 1 in the real sense
on C (or Ĉ) such that ϕ̃|K = ϕ and ∂̄ϕ|K = 0.

The classical results of Pöschel [Pö82] and Lazutkin [Laz73] are concerned with real
Whitney regularity10. Whitney’s extension theorem is then useful for instance to estimate the
measure of the union of the KAM tori, but the extension it yields is somewhat arbitrary and
has no direct dynamical meaning, whereas in this paper we are interested in the uniqueness
properties that one gets when C 1-holomorphy is imposed on a sufficiently large set KM or Fτ .

Possible generalizations and open questions. The Siegel-type Diophantine condition (8) that
we use is not the optimal one for real frequencies: it is shown in [BG01] that a Bruno-type
condition is sufficient for the existence of an invariant graph for |ε| small enough. Maybe
one could work with a set of complex frequencies larger than AC

M , built from the set of Bruno
numbers instead of AR

M , as the one which is used in [Ri99] to prove C ∞-holomorphy results
in the context of circle maps. (Besides, in the case of the Siegel-type condition, we claim no
optimality for the radius ρ = cM−8.)

Even sticking to the Siegel Diophantine condition, another issue to be considered is C ∞-
holomorphy, i.e. the existence of infinitely many complex derivatives in the sense of Whitney.
One can indeed expect that our function ũ belong to a space of functions C ∞-holomorphic on

9 See [ALG95], remark III.4 and proposition III.8: our C 1-holomorphic functions correspond to their W-Taylorian
1-fields; see also [Gl58], pp 65–6.
10 Moreover they are dealing with the difficult case of finitely differentiable data rather than analytic ones. However,
[Pö82] (section 5a, pp 690–1), prompted by a remark of Arnold, alludes to a complexified version of his result in the
analytic case.

10
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appropriate compact subsets of Ĉ containing E(DCτ ); if so, one could then raise the following
question, which is analogous to the open question formulated by Herman at the end of his
paper on circle maps [He85]: given a point q∗ of E(DCτ ), is ũ, or any function of this space of
C ∞-holomorphic functions, determined by the sequence of the values of its derivatives at q∗?
In other words, is this space of functions quasianalytic in the sense of Hadamard at q∗?

Finally, one should consider the adaptation of this circle of ideas to perturbations of
higher-dimensional twist maps or to near-integrable Hamiltonian systems.

2. Functional spaces

The adaptation of Levi–Moser’s method [LM01] which we employ in section 4 to reach the
C 1-holomorphy in the frequency requires the definition of appropriate functional spaces. The
point is to deal as much as possible with Banach algebras11 (even if this requires defining
norms which differ from the usual ones), so as to ease all the processes of nonlinear analysis
(in particular functional composition). We thus begin by a new definition.

2.1. An algebra norm on the Banach space of C 1-holomorphic functions

Let B be a complex Banach space.

Case of a perfect subset of C. Let K be a perfect subset of C. For any two functions
ϕ, ψ : K → B, we set

�ϕ,ψ : K × K → B, �ϕ,ψ(q, q ′) =


0 if q = q ′,
ϕ(q ′) − ϕ(q)

q ′ − q
− ψ(q) if q �= q ′.

(13)

The usual definition of C 1-holomorphy can be rephrased as follows:

A function ϕ: K → B is C 1-holomorphic iff it is continuous and there exists a
continuous ψ : K → B such that �ϕ,ψ is continuous on K × K .

Since K has no isolated point, the function ψ is then unique; we usually denote it by ϕ′ or ϕ(1).
Observe that at any interior point of K the function ϕ is holomorphic and ϕ′ gives the ordinary
complex derivative. Notice also that, if K is contained in an open set U , then the restriction
to K of any holomorphic function U → B is C 1-holomorphic.

We shall impose furthermore that ϕ, ϕ′ and �ϕ,ϕ′ be bounded. With the notation

δϕ : K × K → B, δϕ(q, q ′) = ϕ(q ′) − ϕ(q),

we get a Banach space by setting

C 1
hol(K, B) := { ϕ: K → B, C 1-holomorphic, such that ‖ϕ‖C 1

hol(K,B) < ∞}, (14)

‖ϕ‖C 1
hol(K,B) := n0(ϕ) + n1(ϕ) + n2(ϕ),

∣∣∣∣∣∣∣∣∣
n0(ϕ) := sup

K

|ϕ|,
n1(ϕ) := max

{
sup
K

|ϕ′|, sup
K×K

|δϕ|},
n2(ϕ) := sup

K×K

|�ϕ,ϕ′ |.
(15)

This norm is not the standard one (see for instance [MS03]) but is equivalent to it. An
elementary property is

11 We follow Rudin’s convention [Ru91] and call ‘Banach algebra’ a complex Banach algebra possessing a unit
element whose norm is 1.

11
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Lemma 4. If � : B → B0 is a bounded linear map of norm L between complex Banach spaces,
then ϕ ∈ C 1

hol(K, B) ⇒ � ◦ ϕ ∈ C 1
hol(K, B0) and

‖� ◦ ϕ‖C 1
hol(K,B0)

� L‖ϕ‖C 1
hol(K,B). (16)

Moreover, if � is an isometry, then the inequality in (16) is in fact an equality.

As a matter of fact, C 1
hol(K) := C 1

hol(K, C) is a Banach algebra and, if B is a Banach
algebra, then C 1

hol(K, B) is a Banach algebra on the algebra C 1
hol(K):

Lemma 5. For any perfect subset K of C,

(i) λ ∈ C 1
hol(K) and ϕ ∈ C 1

hol(K, B) ⇒ λ · ϕ ∈ C 1
hol(K, B) and

‖λ · ϕ‖C 1
hol(K,B) � ‖λ‖C 1

hol(K)‖ϕ‖C 1
hol(K,B); (17)

moreover, when viewed as an element of C 1
hol(K), the constant function 1 has norm

‖1‖C 1
hol(K) = 1;

(ii) if B is a Banach algebra (not necessarily commutative), then ϕ, ψ ∈ C 1
hol(K, B) ⇒

ϕ · ψ ∈ C 1
hol(K, B) and

‖ϕ · ψ‖C 1
hol(K,B) � ‖ϕ‖C 1

hol(K,B)‖ψ‖C 1
hol(K,B). (18)

Proof. The proofs of the two inequalities are similar, we content ourselves with (18). We set
χ = ϕψ and χ1 = ϕψ ′ + ϕ′ψ ; simple computations yield

δχ (q, q ′) = ϕ(q ′) · δψ(q, q ′) + δϕ(q, q ′) · ψ(q),

�χ,χ1(q, q ′) = ϕ(q ′) · �ψ,ψ ′(q, q ′) + δϕ(q, q ′) · ψ ′(q) + �ϕ,ϕ′(q, q ′) · ψ(q),

whence the C 1-holomorphy follows, with χ ′ = χ1; moreover,

n0(χ) � n0(ϕ) · n0(ψ),

n1(χ) � n0(ϕ) · n1(ψ) + n1(ϕ) · n0(ψ),

n2(χ) � n0(ϕ) · n2(ψ) + n1(ϕ) · n1(ψ) + n2(ϕ) · n0(ψ),

whence

‖χ‖C 1
hol(K,B) � n0(ϕ)

(
n0(ψ) + n1(ψ) + n2(ψ)

)
+ n1(ϕ)

(
n0(ψ) + n1(ψ)

)
+ n2(ϕ)n0(ψ)

� ‖ϕ‖C 1
hol(K,B)‖ψ‖C 1

hol(K,B).

�

Case of a perfect subset of Ĉ. To be able to apply the H 1-quasianalyticity result of [MS11],
we needed to add 0 and ∞ to E(AC

M) in the definition (10) of KM , so as to have a compact
subset of Ĉ of the appropriate form. We thus need to explain the definition of C 1

hol(K, B) when
K is a perfect subset of the Riemann sphere Ĉ.

Let K̃ = { ξ ∈ C | 1/ξ ∈ K } (with the convention 1/0 = ∞); both K̃ and K ∩ C are
perfect subsets of C. Our definition of C 1-holomorphy is:

A function ϕ: K → B is C 1-holomorphic iff its restriction ϕ|K∩C is C 1-holomorphic
on K ∩ C and the function ϕ̃: ξ ∈ K̃ �→ ϕ(1/ξ) is C 1-holomorphic on K̃ .

We then define

‖ϕ‖C 1
hol(K,B) := max

{‖ϕ|K∩C‖C 1
hol(K∩C,B), ‖ϕ̃‖C 1

hol(K̃,B)

}
(19)

(i.e. we cover Ĉ by two charts, using q as a complex coordinate in C and ξ = 1/q as a complex
coordinate in Ĉ − {0}). Formula (19) defines a norm on the space C 1

hol(K, B) of all B-valued
C 1-holomorphic functions on K , which makes it a Banach space. It is easy to check that
lemma 4 is still valid, as well as lemma 5:

12
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C 1
hol(K) := C 1

hol(K, C) is a Banach algebra and, if B is a Banach algebra, C 1
hol(K, B)

is a Banach algebra on the algebra C 1
hol(K).

2.2. Preliminary small divisor estimates for q ∈ KM

Here is an example of a C 1-holomorphic function which, in a sense, is the elementary brick
of all the solutions of small divisor problems:

Proposition 6. Let τ > 0, M > 2ζ(1 + τ) and KM as in (10). Then, for any k ∈ Z∗, the
formula

λk(q) = 1

qk − 1
(20)

defines a function λk ∈ C 1
hol(KM) satisfying

‖λk‖C 1
hol(KM) � 7M2|k|3+2τ . (21)

Of course, the functions λk are just the restrictions to KM of meromorphic functions
but, considering them simultaneously, one easily gets non-meromorphic C 1-holomorphic
functions; for instance, for any s in the open unit disk, the series of functions ϕ = ∑

k�1 skλk

is convergent in C 1
hol(KM) and defines a C 1-holomorphic function for which the unit circle

is a natural boundary (because of the accumulation of poles at the roots of unity)—this is an
example of Borel–Wolff–Denjoy series (see e.g. [MS03]).

The proof of proposition 6 will make use of use the Diophantine condition (8) in the
form of

Lemma 7.

k ∈ Z∗ and q ∈ KM ⇒
∣∣∣∣ 1

qk − 1

∣∣∣∣ �
√

2M|k|1+τ . (22)

The proof of lemma 7 is left to the reader.

Proof of proposition 6. We set K̃M = { ξ ∈ C | 1/ξ ∈ KM } and observe that
K̃M = KM ∩ C = E(AC

M) ∪ {0} (because AC

M is symmetric with respect to 0). Let
λ̃k: ξ ∈ K̃M �→ λk(1/ξ). We must check that λk |K̃M

and λ̃k ∈ C 1
hol(K̃M) and control their

norms.
Since λk = λ̃−k , we can restrict ourselves to the case k � 1.
The function λ := λk |K̃M

, being the restriction of a meromorphic function of C with

poles off K̃M , is C 1-holomorphic on K̃M . Inequality (22) implies n0(λ) �
√

2Mk1+τ and we
compute

λ′(q) = −k
qk−1

(qk − 1)2
,

δλ(q, q ′) = λ(q ′) − λ(q) = − q ′k − qk

(qk − 1)(q ′k − 1)
,

�λ,λ′(q, q ′) = k
qk−1

(qk − 1)2
− q ′k−1 + q ′k−2q + · · · + q ′qk−2 + qk−1

(qk − 1)(q ′k − 1)

= k
qk−1

(qk − 1)2
−

∑
k−1=a+b

qa

(qk − 1)

q ′b

(q ′k − 1)
.

13
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We have |δλ(q, q ′)| � 2n0(λ) � 2
√

2Mk1+τ and, noticing that

0 � � � k and q ∈ KM ⇒
∣∣∣∣ q�

qk − 1

∣∣∣∣ �
√

2M|k|1+τ

(this reinforcement of (22) is obtained by distinguishing the cases |q| � 1 and |q| � 1, and by
writing q�/(qk − 1) = −(q−(k−�)/(q−k − 1)) in the latter case), we get |λ′(q)| � 2M2k3+2τ

and |�λ,λ′(q, q ′)| � 4M2k3+2τ . Since
√

2Mk1+τ < M2k3+2τ (because τ > 0 and M >

2ζ(1 + τ) > 2), we conclude that ‖λ‖C 1
hol(K̃M) � 7M2k3+2τ .

On the other hand, n0(λ̃k) �
√

2M|k|1+τ (still because of (22)) and λ̃k = −1 − λ, thus
λ̃′

k = −λ′ and δλ̃k
= −δλ, �λ̃k,λ̃

′
k
= −�λ,λ′ , hence ‖λ̃k‖C 1

hol(K̃M) � 7M2k3+2τ and the proof is
complete. �

2.3. Fourier analysis and functional composition in C 1
hol

(
K, H∞(Sr , B)

)
We shall mainly deal with C 1

hol(KM, B) with target spaces B = C or H∞(Dρ) or Br,ρ =
H∞(Sr × Dρ), with the notation (6)–(7). Notice that Br,ρ is canonically isomorphic to
H∞(Sr , B) with B = H∞(Dρ), where we denote by H∞(D, B) the Banach space of all
B-valued bounded holomorphic functions on D endowed with the sup norm (for any complex
manifold D and any complex Banach space B) and H∞(D) := H∞(D, C).

Let B denote any complex Banach space. We shall use Fourier analysis in H∞(Sr , B), as
indicated in the classical

Lemma 8. Let r > 0 and k ∈ Z. The formula

Fk: ϕ �→ ϕ̂k :=
∫ 1

0
ϕ(θ) e−2π ikθ dθ

defines a bounded linear map Fk: H∞(Sr , B) → B, with

‖ϕ̂k‖B � e−2πr|k|‖ϕ‖H∞(Sr ,B).

We shall also use the notation

ek(θ) = e2π ikθ , θ ∈ C, k ∈ Z

and 〈ϕ〉 := ϕ̂0. Observe that, if ϕ ∈ H∞(Sr , B), the fact that |ek(θ)| = e−2πk�mθ implies that
the series

∑
ϕ̂kek(θ) converges to ϕ(θ) for every θ ∈ Sr , while

∑
ϕ̂kek |Sr′ = ϕ|Sr′ is absolutely

convergent in H∞(Sr ′ , B) in general only for r ′ < r .
The Cauchy inequalities also yield

Lemma 9. If 0 < r ′ < r , then the derivation with respect to θ induces a bounded linear map
∂θ : H∞(Sr , B) → H∞(Sr ′ , B), with

‖∂p

θ ϕ‖
H∞(Sr′ ,B)

� p!

(r − r ′)p
‖ϕ‖H∞(Sr ,B), p ∈ N.

Applying lemma 4 with � = Fk or ∂
p

θ , we get

Corollary 10. Let K be a perfect subset of C or Ĉ, B a complex Banach space, r > 0 and
ϕ ∈ C 1

hol(K, H∞(Sr , B)). Then:

1. For all k ∈ Z, the Fourier coefficients ϕ̂k := Fk ◦ ϕ belong to C 1
hol(K, B) and satisfy

‖ϕ̂k‖C 1
hol(K,B) � e−2πr|k|‖ϕ‖C 1

hol(K,H∞(Sr ,B)). (23)

14
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2. If 0 < r ′ < r , then ∂
p

θ ϕ belongs to C 1
hol(K, H∞(Sr ′ , B)) and satisfies

‖∂p

θ ϕ‖C 1
hol(K,H∞(Sr′ ,B)) � p!

(r − r ′)p
‖ϕ‖C 1

hol(K,H∞(Sr ,B)) (24)

for all p ∈ N.

We now consider composition with respect to the variable θ :

Lemma 11. Let K be a perfect subset of C or Ĉ, B a complex Banach algebra, r > r ′ > 0
and κ ∈ (0, 1). Then, for any ϕ ∈ C 1

hol(K, H∞(Sr , B)) and ψ ∈ C 1
hol(K, H∞(Sr ′ , B)) such

that

‖ψ‖C 1
hol(K,H∞(Sr′ )) � κ(r − r ′),

the series

ϕ ◦ (id + ψ) =
∑
p�0

1

p!
(∂

p

θ ϕ)ψp

is absolutely convergent in C 1
hol(K, H∞(Sr ′ , B)) and defines a function which satisfies

‖ϕ ◦ (id + ψ)‖C 1
hol(K,H∞(Sr′ ,B)) � (1 − κ)−1‖ϕ‖C 1

hol(K,H∞(Sr ,B)).

Proof. Use the Cauchy inequalities (24) and the product inequalities (18). �

We shall use lemma 11 with B = H∞(Dρ), in which case(
ϕ ◦ (id + ψ)

)
(q)(θ, ε) = ϕ(q)

(
θ + ψ(q)(θ, ε), ε

)
if we use the identification C 1

hol(K, H∞(Sr , B)) = C 1
hol

(
K, H∞(Sr × Dρ)

)
.

3. C 1-holomorphy of the solution of the cohomological equation

For ω ∈ R − Q and ϕ analytic on T of zero mean value, the ‘cohomological equation’ is the
linear equation

ψ(θ + ω) − ψ(θ) = ϕ(θ) (25)

which will appear in Levi–Moser’s scheme in section 4. Its solution is formally given by the
Fourier series

ψ =
∑
k∈Z∗

1

e2π ikω − 1
ϕ̂kek =

∑
k∈Z∗

λk(q)ϕ̂kek, q = e2π iω. (26)

As is well known, this defines an analytic function ψ when ω ∈ AR

M (use e.g. (22) with q

on the unit circle). We shall see that this is still true when one considers the complexified
equation associated with q ∈ KM , i.e. ω ∈ AC

M or ω = ±i∞, and that the solution ψ depends
C 1-holomorphically on q when ϕ does.

Notice however that, if �mω �= 0, equation (25) requires that the unknown ψ be defined
in a strip which is larger than the strip where ϕ admits a holomorphic extension. Suppose for
instance �mω > 0 and ϕ holomorphic in Sr ; then we seek a solution ψ holomorphic for all
θ ∈ C/Z such that −r < �mθ < r + �mω, so that equation (25) makes sense for all θ ∈ Sr ; it
turns out that (26) defines such a function. This will be part of proposition 12; before stating
it, we introduce a notation for the functional spaces we shall systematically deal with from
now on.
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Notation 3.1. We fix τ > 0, M > 2ζ(1 + τ) and ρ > 0 and define KM as in (10) and

Bρ := H∞(Dρ). (27)

For any r > 0, as in (6)–(7) we define Br,ρ = H∞(Sr × Dρ), which is thus is canonically
isomorphic to H∞(Sr , Bρ), and we set

Cr,ρ := C 1
hol(KM, Br,ρ) = C 1

hol

(
KM, H∞(Sr , Bρ)

)
. (28)

For any ϕ ∈ Cr,ρ , we also use the notation ‖ϕ‖r := ‖ϕ‖C 1
hol(KM,Br,ρ ) and

ϕ(q, θ) := ϕ(q)(θ) ∈ Bρ, q ∈ KM, θ ∈ Sr,

as well as ϕ(q)(θ, ·) or ϕ(q, θ, ·).
Definition 3.2. For r > 0, we define C +

r,ρ , respectively, C −
r,ρ , to be the space of all functions

ϕ = ∑
k∈Z

ϕ̂kek ∈ Cr,ρ such that each function

qkϕ̂k(q), respectively q−kϕ̂k(q)

has limits for q → 0 and q → ∞, and the series

ϕ+(q, θ) =
∑
k∈Z

qkϕ̂k(q)ek(θ), respectively ϕ−(q, θ) =
∑
k∈Z

q−kϕ̂k(q)ek(θ),

converges in Bρ for all (q, θ) ∈ KM ×Sr and defines an element of Cr,ρ . For any such function,
we define

‖ϕ‖r,+ := max
(‖ϕ‖r , ‖ϕ+‖r

)
, respectively ‖ϕ‖r,− := max

(‖ϕ‖r , ‖ϕ−‖r

)
,

∇ϕ := ϕ+ − ϕ ∈ Cr,ρ, respectively ∇−ϕ := ϕ − ϕ− ∈ Cr,ρ .

We also set

C (±)
r,ρ := C +

r,ρ ∩ C −
r,ρ, ‖ϕ‖r,(±) := max

(‖ϕ‖r,+, ‖ϕ‖r,−
)
.

It is easy to check that
(
C +

r,ρ, ‖·‖r,+
)
,
(
C −

r,ρ, ‖·‖r,−
)

and
(
C (±)

r,ρ , ‖·‖r,(±)

)
are Banach spaces.

Notice that, for q = e2π iω ∈ KM − {0, ∞},
ϕ+(q, θ) = ϕ(q, θ + ω), ϕ−(q, θ) = ϕ(q, θ − ω) (29)

and, if �mω > 0 [respectively if �mω < 0],

ϕ ∈ C +
r,ρ ⇒ ϕ(q) ∈ H∞(S−r,r+�mω, Bρ)

[
respectively H∞(S−r+�mω,r , Bρ)

]
ϕ ∈ C −

r,ρ ⇒ ϕ(q) ∈ H∞(S−r−�mω,r , Bρ)
[
respectively H∞(S−r,r−�mω, Bρ)

]
with the notation Sh1,h2 = { θ ∈ C | h1 < �m(θ) < h2 }.

Thus, the cohomological equation (25) can be rephrased as ∇ψ = ϕ, where ϕ is given
in Cr,ρ and ψ is sought in C +

r,ρ . We shall also need to deal with the shifted equation ∇−ψ = ϕ

for which ψ is sought in C −
r,ρ . But this is asking too much: we’ll have to content ourselves

with ψ ∈ C +
r ′,ρ , respectively C −

r ′,ρ , with any r ′ < r .

Proposition 12. Suppose that 0 < r ′ < r and ϕ = ∑
k∈Z

ϕ̂kek ∈ Cr,ρ . Then the formulas

(�ϕ)(q) =
∑
k∈Z∗

λk(q)ϕ̂k(q)ek, (�−ϕ)(q) = −
∑
k∈Z∗

λ−k(q)ϕ̂k(q)ek (30)

(still with λk(q) = 1/(qk − 1)) define two functions �ϕ ∈ C +
r ′,ρ and �−ϕ ∈ C −

r ′,ρ , which satisfy

∇(�ϕ) = ∇−(�−ϕ) = ϕ − ϕ̂0 in Cr ′,ρ . (31)

Moreover,

(�ϕ)+ = �−ϕ, (�−ϕ)− = �ϕ (32)
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and there exists a positive constant C1 which depends only on τ such that, if r − r ′ � 1, then

‖�ϕ‖r ′,+, ‖�−ϕ‖r ′,− � C1M
2

(r − r ′)σ
‖ϕ‖r , (33)

‖∂θ�ϕ‖r ′,+, ‖∂θ�
−ϕ‖r ′,− � C1M

2

(r − r ′)σ+1
‖ϕ‖r , (34)

where σ := 4 + 2τ .

Proof. For k ∈ Z∗, by virtue of (21) and (23), the fact that ‖ek‖H∞(Sr′ ) = e2π |k|r ′
and

‖∂θek‖H∞(Sr′ ) = 2π |k|e2π |k|r ′
implies

‖λkϕ̂kek‖r ′ , ‖λ−kϕ̂kek‖r ′ � 7M2|k|3+2τ e−2π(r−r ′)|k|‖ϕ‖r ,

‖λkϕ̂k∂θ ek‖r ′ , ‖λ−kϕ̂k∂θ ek‖r ′ � 7M2(2π)|k|4+2τ e−2π(r−r ′)|k|‖ϕ‖r .

The series in (30) can thus be viewed as an absolutely convergent series in Cr ′,ρ , defining
functions �ϕ, �−ϕ which satisfy

‖�ϕ‖r ′ , ‖�−ϕ‖r ′ � 14M2�(α, 3 + 2τ)‖ϕ‖r ,

‖∂θ�ϕ‖r ′ , ‖∂θ�
−ϕ‖r ′ � 14M2(2π)�(α, 4 + 2τ)‖ϕ‖r ,

where

�(α, β) =
∑
k�1

kβe−αk, α = 2π(r − r ′), β > 1.

If r − r ′ � 1, then α � 2π . Since x �→ xβe−αx is increasing on (0, β/α), decreasing on
(β/α, +∞) and bounded by (β/e)βα−β , with

∫ ∞
0 xβe−αx dx = β!α−β−1, we have

�(α, β) < β!α−β−1 +

(
β

e

)β

α−β �
[
β! + 2π

(
β

e

)β
] (

2π(r − r ′)
)−β−1

,

hence

‖�ϕ‖r ′ , ‖�−ϕ‖r ′ � C1M
2

(r − r ′)σ
‖ϕ‖r , ‖∂θ�ϕ‖r ′ , ‖∂θ�

−ϕ‖r ′ � C1M
2

(r − r ′)σ+1
‖ϕ‖r ,

with σ = 4 + 2τ and C1 := 14[σ ! + 2π(σ
e )σ ](2π)−σ .

We now observe that, for each k ∈ Z∗, qkλk(q) = qk/(qk − 1) = −λ−k(q) defines an
element of C 1

hol(KM, Bρ), thus the Fourier series (�ϕ)+(q) = ∑
qkλk(q)ϕ̂k(q)ek coincides

with (�−ϕ)(q) and defines an element of Cr ′,ρ , hence �ϕ ∈ C +
r ′,ρ with ‖�ϕ‖r ′,+ �

C1M
2(r − r ′)−σ‖ϕ‖r and ‖∂θ�ϕ‖r ′,+ � C1M

2(r − r ′)−σ−1‖ϕ‖r . Similarly, (�−ϕ)− = �ϕ

(hence (32)), �−ϕ ∈ C −
r ′,ρ with ‖�−ϕ‖r ′,− � C1M

2(r − r ′)−σ‖ϕ‖r , ‖∂θ�
−ϕ‖r ′,− �

C1M
2(r − r ′)−σ−1‖ϕ‖r .

The identities (31) stem from the relations (qk − 1)λk(q) = −(1 − q−k)λ−k(q) = 1 valid
for all k ∈ Z∗. �

Remark 3.1. Observe that the kernels of ∇ or ∇− do not depend on r and consist of the
functions which are constant in θ , i.e. they coincide with

Cρ := C 1
hol(KM, Bρ).

Remark 3.2. Observe that

ϕ ∈ C −
r,ρ ⇒ �ϕ = �−(ϕ−) ∈ C (±)

r ′,ρ

(because λk(q) = −λ−k(q)q−k for each k ∈ Z∗), with

‖�ϕ‖r ′,(±) � C1M
2

(r − r ′)σ
‖ϕ‖r,−, ‖∂θ�ϕ‖r ′,(±) � C1M

2

(r − r ′)σ+1
‖ϕ‖r,−.
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Lastly, as we shall have to keep track of real analyticity with respect to the variables
ω, θ, ε, we introduce

Definition 3.3. We denote by Cr,ρ,R the subspace of Cr,ρ consisting of all functions ϕ whose
Fourier coefficients satisfy

conj
(
ϕ̂k(q)

) = ϕ̂−k(1/q̄), k ∈ Z, q ∈ KM,

where conj denotes complex conjugacy in Bρ (i.e. (conjψ)(ε) := ψ(ε̄) for any ψ ∈ Bρ). We
also set

C +
r,ρ,R := C +

r,ρ ∩ Cr,ρ,R, C −
r,ρ,R := C −

r,ρ ∩ Cr,ρ,R, C (±)

r,ρ,R := C (±)
r,ρ ∩ Cr,ρ,R

and Cρ,R := { ϕ ∈ Cρ | conj
(
ϕ(q)

) = ϕ(1/q̄) f or all q ∈ KM }.
The functions in these spaces have the property

|q| = 1, θ ∈ R/Z, ε ∈ R ⇒ ϕ(q)(θ, ε) ∈ R.

Since conj
(
λk(q)

) = λ−k(1/q̄), we see that the operators � and �− preserve real analyticity,
so that they induce operators

�: Cr,ρ,R → C +
r ′,ρ,R, �−: Cr,ρ,R → C −

r ′,ρ,R.

4. Levi–Moser’s modified Newton scheme

4.1. Reduction of the problem

Suppose f ∈ H∞(SR0) real analytic with zero mean value, with f ′′ bounded in SR0 and
0 < R < R0. We shall see that this is enough to prove theorem 1.

In view of definition 3.2 and formulas (29), we can define the operator

� = ∇ − ∇− = ∇∇− = ∇−∇, �: C (±)
r,ρ → Cr,ρ, r > 0,

so that, for q = e2π iω ∈ KM − {0, ∞} and θ ∈ Sr ,

(�u)(q, θ) = u(q, θ + ω) − 2u(q, θ) + u(q, θ − ω) ∈ Bρ

appears as a complexification of the left-hand side of equation (5). Therefore, the equation

�u = εf ◦ (id + u) (35)

boils down to equation (5) when q = e2π iω is on the unit circle and θ and ε are real.

Proposition 13. The right-hand side of (35) makes sense for any r, ρ > 0 and u ∈ C (±)
r,ρ such

that ‖u‖r < R0 − r .
Let r ′ ∈ (0, r). If a function u ∈ C (±)

r,ρ,R is a solution of (35) which satisfies ‖u‖r <

min(R0 − r, r) and ‖u‖r ′ < r − r ′, then the formula

ũM(q, θ) := u
(
q, θ − û0(q)

) − û0(q)

defines a function ũM ∈ C 1(KM, Br ′,ρ) such that, for each ω ∈ AR

M and ε ∈ (−ρ, ρ), the
function θ ∈ T �→ ũM(e2π iω, θ, ε) has zero mean value and parametrizes through (3)–(4) an
invariant graph of frequency ω for Tε.

Proof. The right-hand side of (35) makes sense because the hypothesis ‖u‖r < R0 − r allows
us to interpret it according to lemma 11, viewing εf as an element of BR0,ρ = H∞(SR0 , Bρ),
or even as a function of CR0,ρ = C 1

hol(KM, BR0,ρ) which is constant in q.
The assumption ‖u‖r < r and the Cauchy inequalities imply |∂θu(q, θ, ε)| < 1 for real θ ,

hence θ �→ U(θ) = θ + u(q, θ, ε) defines a homeomorphism of R for every q = e2π iω

18
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on the unit circle (i.e. ω ∈ AR

M ) and ε ∈ (−ρ, ρ); according to section 1.1, this yields an
invariant graph for every ω ∈ AR

M , we just need to shift the parametrization and consider
U(θ − û0) = θ + ũM(q, θ, ε) to get the zero mean value normalization.

The fact that ũM ∈ C 1(KM, Br ′,ρ) follows from lemma 11 if we view û0 as a
function of Cr ′,ρ (constant in θ ) satisfying ‖û0‖r ′ � ‖u‖r ′ < r − r ′ and observe that
ũM = u ◦ (id − û0) − û0. �

Therefore, to prove theorem 1, we only need to find c > 0 independent of M and a solution
u ∈ C (±)

R∞,ρ,R of (35) with ρ = cM−8 and some R∞ ∈ (R, R0), such that

‖u‖R∞ < min(R0 − R∞, R∞ − R) (36)

(applying the previous proposition with r = R∞ and r ′ = R).
To obtain this solution u, we shall inductively construct a sequence (un)n�1 with

un ∈ C (±)

Rn,ρ,R, R0 > R1 > R2 > . . . , Rn−→
n→∞R∞ > R

in such a way that the restrictions un|KM×SR∞ ×Dρ
converge to the desired solution in C (±)

R∞,ρ,R, at
least if ρ is small enough. We shall see that the constant c will depend on f only through ‖f ‖R0

and ‖f ′′‖R0
.

As in [LM01], the passage from un to un+1 will be a variant of the Newton method, which
we now explain.

4.2. The inductive step

Let us define an ‘error functional’ as

u �→ E(u) := −�u + εf ◦ (id + u), (37)

so that equation (35) amounts to E(u) = 0. As noticed earlier,

u ∈ C (±)

r,ρ,R, ‖u‖r � R0 − r ⇒ E(u) ∈ Cr,ρ,R. (38)

The Taylor formula yields

E(u + h) = E(u) + E ′(u)[h] + Q(u, h)

with a map

E ′(u)[h] := −�h +
(
εf ′ ◦ (id + u)

)
h

which is linear in h and a remainder term

Q(u, h) :=
(∫ 1

0
εf ′′ ◦ (id + u + th)(1 − t) dt

)
h2

which has a norm of the same order of magnitude as ‖h‖2.
The classical Newton method would consist in defining un+1 = un+h with h chosen so that

E(un)+E ′(un)[h] = 0 and ‖h‖ comparable to ‖E(un)‖, hence a new error E(un+h) = Q(un, h)

which would be quadratically smaller than ‖E(un)‖. Unfortunately, our operator E ′(u) is hard
to invert because it is the sum of a constant coefficient difference operator and a multiplication
operator.

Levi–Moser’s trick consists in adding a term which does not affect the quadratic gain but
makes it possible to determine easily the increment h: let u = un and A = 1 + ∂θun; if, instead
of requiring E ′(u)[h] = −E(u), we require

AE ′(u)[h] − hE ′(u)[A] = −AE(u) (39)

19



Nonlinearity 27 (2014) 000 C Carminati et al

and manage to get a solution h of size comparable to ‖E(u)‖, then we get AE(u + h) =
hE ′(u)[A] + AQ(u, h), hence

E(u + h) = h

A
∂θ

(
E(u)

)
+ Q(u, h), (40)

which might be sufficient to ensure the convergence of the scheme. Now, equation (39) is
tractable because the multiplication operator part in E ′(u) cancels out from the left-hand side:
equation (39) is equivalent to

A�h − h�A = AE(u) (41)

and lemma 14 shows how to factorize the left-hand side, while lemma 15 shows that the right-
hand side has zero mean value, which turns out to be sufficient to obtain a solution h, as stated
in lemma 16.

Lemma 14. For any r > 0 and A, h ∈ C (±)
r,ρ such that A is invertible,

A�h − h�A = ∇−
(
AA+∇

( h

A

))
(42)

with the notation of definition 3.2.

Proof. Let w = h/A and a = AA+. Since ϕ �→ ϕ+ and ϕ �→ ϕ− are algebra maps, the
left-hand side of (42) is

Ah+ + Ah− − hA+ − hA− = aw+ + a−w− − aw − a−w = a(∇w) − a−(∇w)−,

whence the result follows. �

Lemma 15. Let u ∈ C (±)
r,ρ satisfy ‖u‖r < R0 − r , so that E(u) = −�u + εf ◦ (id + u) ∈ Cr,ρ

is well-defined, and let A = 1 + ∂θu. Then AE(u), which belongs to Cr ′,ρ for every r ′ ∈ (0, r),
has zero mean value:

〈AE(u)〉 = 0.

Proof. Since 〈f 〉 = 0, we can write f as the θ -derivative of a periodic function F ∈ H∞(SR0).
The function A ·(εf ◦ (id +u)

)
clearly has zero mean value, as the θ -derivative of εF ◦ (id +u).

As for the remaining part, adding and subtracting (∂θu)+∇u, we can write it as

−A�u = −�u − (∂θu)(∇u − ∇−u) = −�u +
(
(∂θu)+ − ∂θu

)∇u − (∂θu)+∇u + ∂θu(∇u)−

= −�u + (∇∂θu)∇u − ∇(
∂θu · (∇−u)

) = −�u + ∂θ

(1

2
(∇u)2

) − ∇(
∂θu · (∇−u)

)
,

whence the claim follows since the difference operators � and ∇ as well as the differential
operator ∂θ kill the constant terms. �

The next lemma shows how to find a solution of an equation like (41) in the form h = Aw,
w = F

(
A, E(u)

)
, with a functional F which involves the operators � and �− of proposition 12

and the operator of division by AA+.

Lemma 16. Suppose 0 < r ′ < r , E ∈ Cr,ρ,R, A ∈ C (±)

r,ρ,R and ‖A − 1‖r,(±) � 1/6. Then there

exists a unique w ∈ C (±)

r ′,ρ,R, which we denote F(A, E), such that 〈w〉 = 0 and

A�(Aw) − (Aw)�A = AE − 〈AE〉. (43)

Moreover, ∂θw ∈ C (±)

r ′,ρ,R as well and there exists a positive constant C2 which depends only
on τ such that

‖w‖r ′,(±) � C2M
4

(r − r ′)2σ
‖E‖r , ‖∂θw‖r ′,(±) � C2M

4

(r − r ′)2σ+1
‖E‖r , (44)

where σ = 4 + 2τ .
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Proof. Let δ = ‖A − 1‖r,(±), thus 0 � δ � 1/6, and r ′′ = (r ′ +r)/2, whence 0 < r ′ < r ′′ < r .

1. We first observe that α := 1
AA+ ∈ C −

r,ρ,R, with

‖α − 1‖r,− � 1

(1 − δ)2
− 1 � 11

25
<

1

2
,

because (1/A)−1 can be written as the absolutely convergent series
∑

n�1(1−A)n ofC (±)

r,ρ,R

with ‖(1/A) − 1‖r,(±) � (δ/(1 − δ)) and ‖α − 1‖r,− � ‖1/A‖r,−‖(1/A+) − 1‖r,− +
‖(1/A) − 1‖r,−.
As a consequence, if we denote simply by ‖·‖ the norm in Cρ = C 1

hol(KM, Bρ) or Cρ,R,
we get ‖1 − 〈α〉‖ � 1

2 , hence (1/〈α〉) = ∑
n�0(1 − 〈α〉)n absolutely convergent in Cρ,R

and
1

〈α〉 ∈ Cρ,R, ‖ 1

〈α〉‖ � 2.

2. Formula (42) of lemma 14 shows that

(43) ⇔ ∇−
( 1

α
∇w

)
= AE − 〈AE〉,

where AE ∈ Cr,ρ,R. Now, in view of proposition 12 and remark 3.1,

(43) ⇔ ∃µ ∈ Cρ such that
1

α
∇w = ψ + µ,

where ψ = �−(AE) ∈ C −
r ′′,ρ,R.

3. The equation ∇w = αψ + µα leaves no choice but

µ = µ0 := − 1

〈α〉 〈αψ〉
(only possibility for having 〈αψ + µα〉 = 0). Notice that µ0 ∈ Cρ,R. We end up with(〈w〉 = 0

)
& (43) ⇔ w = �χ,

where χ = αψ +µ0α. We notice that χ ∈ C −
r ′′,ρ,R, thus, in view of remark 3.2, the unique

solution to our problem satisfies

w ∈ C (±)

r ′,ρ,R, ‖w‖r ′,(±) � C1M
2

(r ′′ − r ′)σ
‖χ‖r ′′,−, ‖∂θw‖r ′,(±) � C1M

2

(r ′′ − r ′)σ+1
‖χ‖r ′′,−.

4. We obtain the bounds (44) by observing that, on the one hand,

‖ψ‖r ′′,− � 7

6

C1M
2

(r − r ′′)σ
‖E‖r,−

and, on the other hand, ‖µ0‖ � 2‖αψ‖r ′′,− � 3‖ψ‖r ′′,− and ‖χ‖r ′′,− � 3
2‖ψ + µ0‖r ′′,−,

thus ‖χ‖r ′′,− � 7(C1M
2/(r − r ′′)σ )‖E‖r,− and the result follows with C2 = 7C2

1 · 22σ+1.

�
Putting lemma 15 and lemma 16 together, taking into account the fact that (41) implies (40)

and working out the appropriate estimates, we can summarize the inductive step in

Proposition 17. Suppose that 0 < r ′ < r < R0, r − r ′ � 1, ρ � 1, and that u ∈ C (±)

r,ρ,R

satisfies ∂θu ∈ C (±)

r,ρ,R and

‖u‖r,(±) � R0 − r, ‖∂θu‖r,(±) � 1/6. (45)

Let σ = 4 + 2τ . Then

A := 1 + ∂θu ∈ C (±)

r,ρ,R and w := F
(
A, E(u)

) ∈ C (±)

r ′,ρ,R

are well-defined and:
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1. The function ∂θw belongs to C (±)

r ′,ρ,R and

‖Aw‖r ′,(±) � 2(r − r ′)ξ, ‖∂θ (Aw)‖r ′,(±) � 4ξ, where

ξ := (C2M
4/(r − r ′)2σ+1)‖E(u)‖r .

2. If ‖u‖r,(±) + 2(r − r ′)ξ � 1
2 (R0 − r ′) then E(u + Aw) ∈ Cr ′,ρ,R and

‖E(u + Aw)‖r ′ � C3M
8

(r − r ′)4σ

(‖E(u)‖r

)2
, (46)

where C3 is a positive constant which depends only on τ and ‖f ′′‖R0
.

Proof. By (38), we have a well-defined E(u) ∈ Cr,ρ,R and then, by lemma 16, a well-defined
w ∈ C (±)

r ′,ρ,R which satisfies

‖w‖r ′,(±) � (r − r ′)ξ, ‖∂θw‖r ′,(±) � ξ.

Since ‖A‖r,(±) � 7/6 < 2, we get ‖Aw‖r ′,(±) � 2(r − r ′)ξ and the Cauchy inequalities yield
‖∂θA‖r ′,(±) � (1/r − r ′)‖A‖r,(±), whence

‖∂θ (Aw)‖r ′,(±) � ‖A‖r,(±)

(
1

r − r ′ ‖w‖r ′,(±) + ‖∂θw‖r ′,(±)

)
� 4ξ.

Supposing now that ‖u‖r,(±) + 2(r − r ′)ξ � 1
2 (R0 − r ′), we have a well-defined

E(u + Aw) ∈ Cr ′,ρ,R still by (38), but the fact that 〈AE(u)〉 = 0 (lemma 15) implies that
h = Aw solves (41), we can thus take advantage of (40), which takes the form

E(u + Aw) = w∂θ

(
E(u)

)
+ (Aw)2

∫ 1

0
εf ′′ ◦ (id + u + tAw)(1 − t) dt. (47)

Since ‖u + tAw‖r ′ � 1
2 (R0 − r ′), by lemma 11, we have a continuous curve t ∈ [0, 1] �→

εf ′′ ◦ (id + u + tAw) ∈ Cr ′,ρ,R, bounded in norm by 2ρ‖f ′′‖R0
and the second term in the

right-hand side of (47) is bounded in norm by 8(r − r ′)2ξ 2ρ‖f ′′‖R0
. For the first term, we

use the cauchy inequalities: ‖w∂θ

(
E(u)

)‖
r ′ � (r − r ′)ξ · (1/(r − r ′))‖E(u)‖r . Using ρ � 1,

M � 1 and r − r ′ � 1, we get the desired bound with C3 := C2 + 8C2
2‖f ′′‖R0

. �

To simplify further the estimates, we can take into account the fact that 2σ + 1 < 4σ and
M > 1 (because τ > 0 and M > 2ζ(1 + τ)), thus (M4/(r − r ′)2σ+1) < (M8/(r − r ′)4σ ) and,
setting C := max(4C2, C3), content ourselves with

Corollary 18. Suppose 0 < r ′ < r < R0, r − r ′ � 1, ρ � 1 and κ � min(R0 − r, 1
3 ). Then

‖u‖r,(±), ‖∂θu‖r,(±) � δ � κ

2
⇒ w := F

(
A, E(u)

) ∈ C (±)

r ′,ρ,R and

‖Aw‖r ′,(±), ‖∂θ (Aw)‖r ′,(±) � CM8

(r − r ′)4σ
‖E(u)‖r (48)

(still with A := 1 + ∂θu) and, if the right-hand side in (48) is � (κ/2) − δ, then

‖E(u + Aw)‖r ′ � CM8

(r − r ′)4σ

(‖E(u)‖r

)2
. (49)
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4.3. The iterative scheme

Following [LM01], as alluded to at the end of section 4.1, we now prove theorem 1 by means
of the modified Newton method on a scale of Banach spaces corresponding to strips SRn

which
go on shrinking around a limiting strip SR∞ .

We suppose that we are given 0 < R < R0 and f ∈ H∞(SR0) real analytic with
f ′′ ∈ H∞(SR0). Without loss of generality, we also suppose R0 − R � 4

3 . We set

R∞ := R + R0

2
, κ := R0 − R∞

2
= R∞ − R

2
� 1

3
, Rn := R∞ + 2−n−1κ for n � 1.

We observe that R0 > Rn > Rn+1,

Rn − Rn+1 = 2−nκ < 1

and R0 − Rn � R0 − R1 = κ for n � 1. Corollary 18 with r = Rn and r ′ = Rn+1 motivates

Lemma 19. Suppose 0 < ε1 � (κ4σ /28σ+1CM8). Then the induction εn+1 :=
24σnκ−4σCM8(εn)

2 determines a sequence of positive numbers which satisfies∑
n�1

24σnκ−4σCM8εn � (κ/2).

Proof. Let ε̄n := 24σ(n+1)κ−4σCM8εn for n � 1, so that ε̄n+1 = (ε̄n)
2 and ε̄1 =

28σ κ−4σCM8ε1 � 1
2 . We have ε̄n = (ε̄1)

2n−1 � (ε̄1)
n � 2−(n−1)ε̄1 and the result follows

from
∑

n�1 ε̄n � 2ε̄1 < 24σ κ
4 . �

Let 0 < ρ � 1. We set u1 := 0 ∈ C (±)

R1,ρ,R and δ1 := 0, so that E(u1) = εf ∈ CR1,ρ,R with
‖E(u1)‖R1

= ρ‖f ‖R1
. From now on, we suppose that

ε1 := ρ‖f ‖R1
� κ4σ

28σ+1CM8
(50)

and we define inductively

δn+1 := δn + 24σnκ−4σCM8εn, εn+1 := 24σnκ−4σCM8(εn)
2, (51)

so that, by lemma 19, δn � (κ/2) for all n � 1. This is sufficient to apply inductively
corollary 18: the formula

un+1 := un + (1 + ∂θun)F
(
1 + ∂θun, E(un)

)
, n � 1 (52)

yields a sequence of functions un ∈ C (±)

Rn,ρ,R satisfying

‖un‖Rn,(±), ‖∂θun‖Rn,(±) � δn, ‖E(un)‖Rn
� εn.

Moreover, ‖un+1 − un‖R∞,(±) � ‖un+1 − un‖Rn+1,(±) � 24σnκ−4σCM8εn, hence there is a limit

u∞ := lim
n→∞ un|KM×SR∞ ×Dρ

∈ C (±)

R∞,ρ,R

with ‖u∞‖R∞,(±) � (κ/2) < min(R0 − R∞, R∞ − R).
This limit u∞ is indeed a solution of the equation E(u) = 0 because εn−→

n→∞0 and E is

Lipschitz when viewed as a map from { u ∈ C (±)

R∞,ρ,R | ‖u‖R∞,(±) � R0 −R∞ } to CR∞,ρ,R (the
Lipschitz constant is � 4 + ρ‖f ′‖R0

).
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5. The unit circle as a natural boundary

This section is devoted to the proof of theorem 2. It will be a consequence of

Proposition 20. Let ω∗ = p/m with p ∈ Z and m ∈ N∗. Suppose that f is a non-zero
trigonometric polynomial with zero mean value, or that f is an analytic function on T with
zero mean value whose Fourier expansion contains at least one non-zero coefficient with index
k ∈ mZ. Then the difference equation

u(θ + ω∗, ε) − 2u(θ, ε) + u(θ − ω∗, ε) = εf
(
θ + u(θ, ε)

)
(53)

has no solution formal in ε and analytic θ , i.e. no formal solution u =
∑
n�1

εnun(θ) with all

coefficients un analytic on T.

Proposition 20 implies theorem 2. Suppose that the assumptions of theorem 2 hold and

that the restriction of ũM to
◦
K

(i)
M (or its restriction to

◦
K

(e)
M ) has an analytic continuation in an

open connected set U which intersects the unit circle S and
◦
K

(i)
M (or

◦
K

(e)
M ); denote this analytic

continuation u ∈ O(U, BR,ρ). We shall reach a contradiction.
Let us choose an open disc D ⊂ C such that E(D) ⊂ U and D ∩ R �= ∅. Let us take

M1 > M large enough so that D∩AR

M1
�= ∅ (this is possible since D∩R is an open interval and

the Lebesgue measure of (D ∩ R) − AR

M1
tends to 0 as M1 → ∞). We observe that, perhaps

at the price of diminishing ρ, we can consider u as an analytic continuation of the restriction

of ũM1 to
◦
K

(i)
M (or

◦
K

(e)
M ) as well. Therefore, for each ω ∈ D∩AR

M1
and ε ∈ (−ρ, ρ), the function

θ �→ u(e2π iω)(θ, ε) is a solution of the difference equation (5); moreover u(e2π iω)(θ, 0) ≡ 0
(because, for ω irrational, (5) implies u(e2π iω)|ε=0 constant and we have normalized ũM1 by
imposing zero mean value). Since D ∩ AR

M1
is not discrete, by analytic continuation with

respect to ω, we also have θ ∈ T �→ u(e2π iω)(θ, ε) analytic solution of (5) for each ω ∈ D ∩R

and ε ∈ (−ρ, ρ), with u(e2π iω)(θ, 0) ≡ 0.
Choose m∗ ∈ N∗ larger that 1/|D ∩ R|: for every m � m∗ there is a pm ∈ Z such that

(pm/m) ∈ D ∩ R. If f is not a trigonometric polynomial, we then take m � m∗ such that
the mth Fourier coefficient of f is non-zero; if f is a trigonometric polynomial, we take any
m � m∗. In both cases, equation (5) with ω = (pm/m) shows that the Taylor expansion of
u(e2π ipm/m) ∈ BR,ρ with respect to ε is a formal solution of (53) with coefficients analytic on T

and proposition 20 yields a contradiction. �

Proof of proposition 20. Let ω∗ and f be as in the assumptions of proposition 20. Let C
denote the differential C-algebra C ω(T) of all analytic functions of T. Equation (53) can be
written

�∗u = εf ◦ (id + u), (54)

where the right-hand side is defined for any u ∈ ε C [[ε]], i.e. any formal series in ε with
coefficients analytic on T and without 0th order term, by the Taylor formula

f ◦ (id + u) =
∑
r�0

1

r!
f (r)ur ∈ C [[ε]] (55)

(formally convergent for the complete metric space structure induced by the ε−adic valuation
in C [[ε]]), while the left-hand side involves the C[[ε]]-linear operator

�∗: C [[ε]] → C [[ε]]
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which extends the second-order difference operator

�∗: C → C , (�∗ϕ)(θ) := ϕ(θ + ω∗) − 2ϕ(θ) + ϕ(θ − ω∗).

To prove proposition 20, we argue by contradiction and suppose that we are given a formal
solution u = ∑

n�1 εnun ∈ ε C [[ε]] of equation (54).

Let us view C as a linear subspace of the Hilbert space L2(T). The Fourier transform
associates with any ϕ its coordinates (ϕ̂k)k∈Z, ϕ̂k = Fk(ϕ), on the Hilbert basis (ek)k∈Z (notation
of section 2.3). We have an orthogonal decomposition

C = V0 ⊕ V1 ⊕ · · · ⊕ Vm−1,

where Vj := { ϕ ∈ C | ϕ̂k = 0 for k /∈ j + mZ}; let us denote by �0, . . . , �m−1 the
corresponding orthogonal projectors. For instance, the Fourier expansions of f and �0f read

f =
∑
k∈Z∗

f̂kek, �0f =
∑

k∈mZ∗
f̂kek. (56)

The spectral decomposition of �∗ is obtained from the relations �∗ek = Dkek , k ∈ Z, with

Dk = e2π ikω∗ − 2 + e−2π ikω∗ = −4 sin2(kπω∗). (57)

Since Dk depends only on k + mZ, we get

�∗ = D0�0 + D1�1 + · · · + Dm−1�m−1. (58)

Observe that D0 = 0 and D1, . . . , Dm−1 < 0. Therefore

ker(�∗) = V0, range(�∗) = V ⊥
0 = V1 ⊕ · · · ⊕ Vm−1. (59)

This is enough to conclude the proof when f is not a trigonometric polynomial: indeed,
our assumption on the Fourier coefficients of f in this case together with (56) imply that �0f

is not identically zero, hence f /∈ range(�∗), whereas expanding equation (54) in powers of ε

yields �∗u1 = f , a contradiction.
From now on, we thus suppose that f is a trigonometric polynomial of the form

f =
∑

|k|�K

f̂kek, f̂K = A �= 0, (60)

with a certain K ∈ N∗ (the case f̂−K �= 0 is reduced to (60) by changing θ into −θ ). It is
sufficient to reach a contradiction in this case.

Let us first check that one can suppose that all the coefficients un of u belong to V ⊥
0 .

Lemma 21. For any solution u ∈ ε C [[ε]] of (54), the formal series id+�0u has a composition
inverse of the form id + a with a ∈ εV0[[ε]] and the formula

u∗ = (u − �0u) ◦ (id + a)

defines a formal solution of equation (54) which has all its coefficients in V ⊥
0 .

Proof of lemma 21. Of course, composition is to be understood ‘with respect to θ at fixed ε’,
as in (55), i.e. we are inverting (ε, θ) �→ (

ε, θ + (�0u)(θ, ε)
)
. The 0th order coefficient of �0u

being zero, id + �0u has a composition inverse which is given by the (formally convergent)
Lagrange inversion formula

(id + �0u)−1 = id + a, a =
∑
s�1

(−1)s

s!

( d

dθ

)s−1[(
�0u

)s] ∈ ε C [[ε]].

Since V0 consists of all 1
m

-periodic analytic functions of θ , it is a differential subalgebra of C
and each subspace Vj is a V0-module; since �0u ∈ εV0[[ε]], we deduce that a ∈ εV0[[ε]],
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that the composition operator ϕ �→ ϕ ◦ (id + a) leaves Vj [[ε]] ⊂ C [[ε]] invariant for each j

(beware that Vj is not a ring for j �= 0, thus Vj [[ε]] is just a linear subspace of C [[ε]], in fact
a V0[[ε]]-submodule) and that

�∗
(
ϕ ◦ (id + a)

) = (�∗ϕ) ◦ (id + a). (61)

The composition by id + a leaves also V ⊥
0 [[ε]] invariant, hence u∗ = (u − �0u) ◦ (id + a) is a

well-defined formal series with all its coefficients in V ⊥
0 and without 0th order term; the fact

that it is a solution of (54) stems from (61), the associativity of composition and the relations
�∗(u−�0u) = �∗u = εf ◦ (id +u) and (id +u)◦ (id +a) = (id +�0u+u−�0u)◦ (id +a) =
id + u∗. �

Lemma 22. The formula

E = λ1�1 + · · · + λm−1�m−1,

with λj := −(1/4 sin2(jπω∗)) < 0 for j = 1, . . . , m − 1, defines an operator E: C → C
such that, for any ϕ, ψ ∈ C ,

�∗ϕ = ψ and ϕ ∈ V ⊥
0 ⇔ ψ ∈ V ⊥

0 and ϕ = Eψ.

Proof of lemma 22. Immediate consequence of (57)–(58). �

End of the proof of proposition 20. We assume that f is of the form (60) and we have a
formal solution u of equation (54). By lemma 21, at the price of replacing u with u∗, we can
suppose that all the coefficients un of u belong to V ⊥

0 . Let

g = εf ◦ (id + u) =
∑
n�1

εngn, gn ∈ C . (62)

Lemma 22 allows us to rewrite (54) as

gn ∈ V ⊥
0 , un = Egn, n � 1. (63)

A simple computation yields

gn =
∑

|k|�nK

Fk(gn)ek, un =
∑

|k|�nK

Fk(un)ek, n � 1,

with γn := FnK(gn) and αn := FnK(un) inductively determined by γ1 = A and

αn = λ[nK]γn, n � 1,

γn =
n−1∑
r=1

(2π iK)rA

r!

∑
n1, . . . , nr � 1
n1 + · · · + nr = n − 1

αn1 · · · αnr
, n � 2,

with the notation λ[k] := 0 if k ∈ mZ and λ[k] := λj with j ∈ {1, . . . , m − 1} such that
k ∈ j + mZ if k /∈ mZ.

Defining inductively β1 := 1 and

βn =
n−1∑
r=1

1

r!

∑
n1, . . . , nr � 1
n1 + · · · + nr = n − 1

(−λ[n1K])βn1 · · · (−λ[nrK])βnr
, n � 2,

we get

γn = (−2π iK)n−1Anβn, n � 1.
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Let n∗ denote the smallest integer in {1, . . . , m} such that n∗K ∈ mZ. We see that
β1, . . . , βn∗ > 0. Since A �= 0, we reach a contradiction when comparing the requirement
gn∗ ∈ V ⊥

0 (according to (63)) and the relation Fn∗K(�0gn∗) = Fn∗K(gn∗) = γn∗ �= 0 which
implies �0gn∗ �= 0. �

Remark 5.1. When f is assumed to be a real analytic function of zero mean value which
does not belong to V0 (i.e. there exists k ∈ mZ such that the kth Fourier coefficient of f is
non-zero), one can prove by a more geometric method that there exists ρ∗ = ρ∗(m, f ) > 0
such that, for any non-zero ε ∈ (−ρ∗, ρ∗), the difference equation (53) has no solution u

real analytic on T (observing that, associated with such a solution, there would be a curve
γ (θ) = (

θ + u(θ), ω∗ + u(θ) − u(θ − ω∗)
)

consisting of fixed points of T m
ε , and showing that

these fixed points are isolated).
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[Pö82] Pöschel J 1982 Integrability of hamiltonian systems on cantor sets Commun. Pure Appl. Math. 35 653–96
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