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ON COHOMOLOGICAL DECOMPOSITION OF
ALMOST-COMPLEX MANIFOLDS AND DEFORMATIONS

Daniele Angella and Adriano Tomassini

While small deformations of compact Kähler manifolds are Kähler
too, we prove that the cohomological property to be C∞-pure-and-full is
not a stable condition under small deformations. This property, which
has been recently introduced and studied by Li and Zhang in [24] and
Draghici et al. in [13, 14], is weaker than the Kähler one and char-
acterizes the almost-complex structures inducing a decomposition in
cohomology. We also study the stability of this property along curves
of almost-complex structures constructed starting from the harmonic
representatives in special cohomology classes.

1. Introduction

Let (M,J) be a compact almost-complex 2n-dimensional manifold and let ω
be a symplectic form on M . Then J is said to be ω-tamed if ω(·, J ·) > 0 and
ω-compatible (or ω-calibrated) if g(·, ·) := ω(·, J ·) is a J-Hermitian metric.
Define the tamed cone Kt

J as the open convex cone given by the projection
in cohomology of the space of the symplectic forms taming J , namely

Kt
J

def=
{
[ω] ∈ H2

dR(M ; R) | J is ω − tamed
}
,

and the compatible cone Kc
J as its subcone given by the projection of the

space of the symplectic forms compatible with J , namely

Kc
J

def=
{
[ω] ∈ H2

dR(M ; R) | J is ω − compatible
}
.

Li and Zhang proved in [24, Corollay 3.2] that if J is integrable and Kc
J is

non-empty then the following relation between the two cones holds:

(1.1) Kt
J = Kc

J +
((
H2,0

∂
(M) ⊕H0,2

∂
(M)

)
∩H2

dR(M ; R)
)

;

they also proved (see [24, Theorem 1.2]) that, given a complex compact
surface (M,J), if there is a symplectic structure ω such that J is ω-tamed
then (M,J) admits a Kähler structure (see also [29, Proposition 1.6]), i.e.
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in such a case Kt
J is empty if and only if Kc

J is empty: this gives a partial
answer to a question of Donaldson’s, [12, Question 2]. Therefore, the prob-
lem of finding explicit examples of compact complex non-Kähler manifolds,
admitting a holomorphic structure tamed by a symplectic form, makes sense
only in dimension higher than 4, as asked by Li and Zhang in [24, p. 678]
and Streets and Tian [29, Question 1.7].

In view of [6, Theorem A], the most natural category in which one can
find non-Kähler manifolds is that one of nilmanifolds: we prove that no
such example could be found among the nilmanifolds of dimension 6 (see
Theorem 3.4).

In order to generalize (1.1) for an arbitrary almost-complex structure,
Li and Zhang introduced in [24] the concept of C∞-pure-and-full almost-
complex structure. More precisely, an almost-complex structure J is said to
be C∞-pure-and-full if it induces the decomposition

H2
dR(M ; R) = H

(1,1)
J (M)R ⊕H

(2,0),(0,2)
J (M)R,

where the group H
(2,0),(0,2)
J (M)R (respectively, H(1,1)

J (M)R) is given by the
projection in cohomology of the space

(∧2,0M ⊕ ∧0,2M
)∩∧2M (respectively,

∧1,1M ∩ ∧2M); more in general, J is said to be C∞-full if the equality

H2
dR(M ; R) = H

(1,1)
J (M)R +H

(2,0),(0,2)
J (M)R

holds, namely if there exists a basis of H2
dR(M ; R) formed by classes having

at least one type of pure degree representative.
In [24, Theorem 1.1], Li and Zhang proved that if J is C∞-full and if Kc

J
is non-empty, then

Kt
J = Kc

J +H
(2,0),(0,2)
J (M)R,

where H(2,0),(0,2)
J (M)R generalizes the group

(H2,0

∂
(M) ⊕H0,2

∂
(M)) ∩H2

dR(M ; R)

in (1.1).
In [24] dual notions starting from the space of currents are also defined:

we will recall in Section 2 what a pure-and-full almost-complex structure
is. Further studies about C∞-pure-and-full almost-complex structures have
been carried out in [13, 20].

In particular, Draghici et al. proved in [13, Theorem 2.3] that every
almost-complex structure on a compact four-dimensional manifold is
C∞-pure-and-full.

As a consequence of the last two quoted results, (see [24, Corollary
1.1]), if (M,J) is a compact almost complex four-manifold such that Kc

J
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is non-empty, then
Kt

J = Kc
J +H

(2,0),(0,2)
J (M)R.

In particular, if b+(M) = dimRH
(1,1)
J (M)R = 1, then Kt

J = Kc
J .

In real dimension greater than 4, things are different. Indeed, for example,
there are almost-complex structures on compact six-dimensional solvmani-
folds which are not C∞-pure (see [20, Example 3.3]). This turns our attention
to the six-dimensional case.

In this paper, we are interested in studying small deformations of
C∞-pure-and-full complex structures. The celebrated theorem of Kodaira
and Spencer, [22, Theorem 15], states that Kähler metrics on compact com-
plex manifolds are stable under small deformations; Alessandrini and Bas-
sanelli proved in [2] that this stability fails to be true for the class of p-Kähler
manifolds, where p ∈ {2, . . . , n−1} (see [1] for the precise definition) e.g., for
the class of balanced metrics, namely the J-Hermitian metrics on compact
complex manifolds whose fundamental form ω satisfies dωn−1 = 0.

Since the C∞-pure-and-full condition is weaker than the Kähler one (more
precisely, as a consequence of [24], see Theorem 2.4, every compact complex
manifold verifying the ∂∂-Lemma is C∞-pure-and-full), it could be interest-
ing to establish if the C∞-pure-and-full complex structures are stable under
small deformations. As hinted by Li and Zhang in a previous version of [24],
we study the stability of the standard complex structure on the Iwasawa
manifold and try to deform a C∞-pure-and-full almost-complex structure
starting with J-anti-invariant forms as explained in [23].

In [26], Nakamura computed the small deformations of the Iwasawa
manifold X, dividing them in three classes. Then, a direct computation
shows that the complex structure on X is C∞-pure-and-full.

We prove that (see Theorem 3.1 for the precise statement) the small
deformations of class (i) are C∞-pure-and-full while those ones of classes (ii)
and (iii) are not. Hence, as a corollary we get the following (see Section 3).

Theorem 3.2. Compact complex C∞-pure-and-full (or C∞-pure or C∞-full
or pure-and-full or pure or full) manifolds are not stable under small defor-
mations of the complex structure.

Furthermore, we show the following:

Theorem 3.6. Let X := (Z[i])3\(C3, ∗) be the Iwasawa manifold. Then any
small complex deformation of X cannot be tamed by any symplectic form.

As C∞-pure-and-full property is defined for an arbitrary almost-complex
structure (even not integrable), we study its stability along curves of almost-
complex structures {Jt}t∈(−ε,ε), too.

In [14], it is proved the semi-continuity property of h±J for an almost-
complex structure on a compact four-dimensional manifold. More precisely,
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if M is a compact four-manifold with an almost-complex structure J such
that Kc

J �= ∅, then for any almost complex structure J ′ in a sufficiently small
neighborhood of J the following holds:

• Kc
J ′ �= ∅,

• h+
J (M) ≤ h+

J ′(M),
• h−J (M) ≥ h−J ′(M).

In [23], curves of almost-complex structures parametrized by real forms
of pure degree (2, 0) + (0, 2) are constructed. Using this construction,
we prove that (see Theorem 4.1 for the precise statement) there exists
a family {N6(c)}c of compact cohomologically Kähler manifolds with no
Kähler metrics such that

(i) N6(c) admits a C∞-pure-and-full almost-complex structure J ,
(ii) each harmonic form of type (2, 0) + (0, 2) gives rise to a curve

{Jt}t∈(−ε,ε) of C∞-pure-and-full almost-complex structures on N6(c),
(iii) furthermore, the map

t �→ dimRH
(2,0),(0,2)
Jt

(N6(c))R

is an upper-semicontinuous function at t = 0.
In particular, we get the upper-semicontinuity property of h−J for this six-
dimensional example.

We recall that, for a suitable c ∈ R, the completely solvable Lie group

Sol(3) def=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

ecz 0 0 x
0 e−cz 0 y
0 0 1 z
0 0 0 1

⎞

⎟
⎟
⎠ ∈ GL(4; R) | x, y, z ∈ R

⎫
⎪⎪⎬

⎪⎪⎭

admits a cocompact discrete subgroup Γ(c); we define

M
def= Γ(c)\Sol(3)

and
N6(c) def= M × M ;

the manifold N6(c) first appeared in [7] as an example of a cohomologi-
cally Kähler manifold; Fernández et al. proved in [17] that it has no Kähler
structures.

In Section 2, we fix the notation, recall the main results on C∞-pure-
and-full almost-complex structures from [24, 13] and [20] and we give an
example of six-dimensional (compact) non-Kähler solvmanifold endowed
with a C∞-pure-and-full and pure-and-full almost complex structure. In
Section 3, we prove the instability Theorem 3.2. Then, as a consequence
of a general fact (see Theorem 3.3) true for six-dimensional nilmanifolds
(i.e. compact quotient of nilpotent simply connected Lie groups by uni-
form dicrete subgroups), we show that the deformed complex structures
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described in Theorem 3.1 cannot be tamed by any symplectic form ω on the
Iwasawa manifold. Finally, in Section 4, we recall how a cohomology class in
H

(2,0),(0,2)
J (M)R gives rise to a curve of almost-complex structures on (M,J);

we provide several examples of curves of C∞-pure-and-full almost-complex
structures on four and six-dimensional compact manifolds.

2. C∞-pure-and-full almost-complex structures

Let (M,J) be an almost-complex compact 2n-manifold. The endomorphism
J on TM ⊗ C, having eigenvalues i and − i, induces a decomposition of
∧•(M ; C) through ∧p,q

J M :=: ∧p,qM , namely ∧kM =
⊕

p+q=k ∧p,q
J M . We

ask about when this decomposition holds in cohomology. Define H(p,q)
J (M)

as the projection in de Rham cohomology of the space ∧p,qM ; define
H

(p,q),(q,p)
J (M)R as the projection in de Rham cohomology of the space

(∧p,qM ⊕ ∧q,pM) ∩ ∧p+qM . (As a matter of notation, bigraduation with-
out further specification refers to complex forms, single graduation to real
ones). In other words:

H
(p,q),(q,p)
J (M)R =

{
[α] ∈ Hp+q

dR (M ; R) | α ∈ (∧p,q
J M ⊕ ∧q,p

J M
) ∩ ∧p+qM

}
.

If S is a set of pairs (p, q), we define likewise

HS
J (M) def=

⎧
⎨

⎩
[α] ∈ H•

dR(M ; C) | α ∈
⊕

(p,q)∈S

∧p,qM

⎫
⎬

⎭

and
HS

J (M)R

def= HS
J (M) ∩H•

dR(M ; R).
Li and Zhang give the following.

Definition 2.1 ([24, Definition 2.2, Definition 2.3, Lemma 2.2]). An
almost-complex structure J on M is said to be:

• C∞-pure if

H
(2,0),(0,2)
J (M)R ∩H(1,1)

J (M)R = {[0]};
• C∞-full if

H
(2,0),(0,2)
J (M)R +H

(1,1)
J (M)R = H2

dR(M ; R);

• C∞-pure-and-full if it is both C∞-pure and C∞-full, i.e. if the following
decomposition holds:

H
(2,0),(0,2)
J (M)R ⊕H

(1,1)
J (M)R = H2

dR(M ; R).

For a complex manifold M , by saying that M is, for example, C∞-pure-
and-full, we mean that the integrable almost-complex structure naturally
associated with it is C∞-pure-and-full.
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We also use the following notations:
• by saying that J is complex-C∞-pure we mean that the sum

H
(2,0)
J (M) +H

(1,1)
J (M) +H

(0,2)
J (M)

is direct;
• by saying that J is complex-C∞-full we mean that the equality

H2
dR(M ; C) = H

(2,0)
J (M) +H

(1,1)
J (M) +H

(0,2)
J (M)

holds;
• by saying that J is complex-C∞-pure-and-full we mean that J induces

the decomposition

H2
dR(M ; C) = H

(2,0)
J (M) ⊕H

(1,1)
J (M) ⊕H

(0,2)
J (M).

Remark 2.1. While being complex-C∞-full is a stronger condition that
being C∞-full, one has to assume J to be integrable to have that complex-
C∞-pure condition implies the C∞-pure one. Note also that if J is C∞-pure
then

H
(1,1)
J (M) ∩ (H(2,0)

J (M) +H
(0,2)
J (M)) = {[0]}.

Moreover, we say that J is C∞-pure-and-full at the k-th stage if J induces a
decomposition of Hk

dR(M ; R); for k = 2, we recover the previous definitions.

Using the complex of currents instead of the complex of forms and the
de Rham homology instead of the de Rham cohomology, one can define
analogous concepts dually. Recall that the space of currents of dimension
k (or degree 2n − k) is the topological dual of ∧kM : we denote it with
DkM :=: D2n−kM ; we refer to [9, 11] as general references for the study
of currents. Dually, the exterior differential d on ∧•M induces a differential
on D•M , that we denote again as d; we call de Rham homology H•(M ; R)
the cohomology of the differential complex (D•M, d); we remember that
Hk

dR(M ; R) � H2n−k(M ; R). As J induces a bigraduation on ∧•(M ; C), so
Dp,qM are defined.

Therefore, let HJ
(2,0),(0,2)(M)R (respectively, HJ

(1,1)(M)R) be the subspace
of H2(M ; R) given by the homology classes represented by a current of bidi-
mension (2, 0)+(0, 2) (respectively, (1,1)). We recall the following definition
by Li and Zhang (see [24]).

Definition 2.2 ([24, Definition 2.5, Lemma 2.7]). An almost-complex
structure J on M is said to be:

• pure if
HJ

(2,0),(0,2)(M)R ∩HJ
(1,1)(M)R = {[0]};

• full if

HJ
(2,0),(0,2)(M)R +HJ

(1,1)(M)R = H2(M ; R);



ON COHOMOLOGICAL DECOMPOSITION AND DEFORMATIONS 409

• pure-and-full if it is both pure and full, i.e. if the following decompo-
sition holds:

HJ
(2,0),(0,2)(M)R ⊕HJ

(1,1)(M)R = H2(M ; R).

The relations between being C∞-pure-and-full and being pure-and-full are
summarized in the following.

Theorem 2.1 (see also [24, Proposition 2.5]). The following relations
between C∞-pure-and-full and pure-and-full concepts hold:

C∞-full at the k-th stage ��

��

pure at the k-th stage

��
full at the (2n− k) -th stage �� C∞-pure at the (2n− k)-th stage

Proof. First, we prove that if J is C∞-full at the k-th stage then it is also
pure at the k-th stage; for the sake of simplicity, we assume k = 2. Let

〈·, ··〉 : H2
dR(M ; R) → H2(M ; R)

the non-degenerate duality paring. Let c ∈ HJ
(2,0),(0,2)(M)R ∩ HJ

(1,1)(M)R,
with c �= [0]. Obviously, 〈c, ·〉�

H
(2,0),(0,2)
J (M)R

= 0 and 〈c, ·〉�
H

(1,1)
J (M)R

= 0;

since J is C∞-full, it follows that c = [0]. The same argument works to prove
that a full J is also C∞-pure.
To conclude the proof, we have to prove the two vertical arrows, namely
that

C∞-full at the kth stage ?⇒ full at the (2n− k)-th stage

and that

pure at the kth stage ?⇒ C∞-pure at the (2n− k)-th stage.

Recall that a form of degree k can be viewed as a current of dimension 2n−k
(and degree k), by means of the map

T· : ∧kM → D2n−kM, ϕ �→ Tϕ(·) def=
∫

M
ϕ ∧ ·.

Holding Td · = dT·, this map induces the inclusion

H
(p,q)
J (M)R ↪→ HJ

(n−p,n−q)(M)R;

being Hk
dR(M ; R) � H2n−k(M ; R), the statements follow. �

To prove that C∞-full ⇒ pure, see also [20, Theorem 3.7].
A link between H2

dR(M ; R) and H2n−2
dR (M ; R) could provide further rela-

tions between C∞-pure-and-full and pure-and-full notions. This is the matter
of the following results, proved in [20].
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Theorem 2.2 ([20, Theorem 3.7]). Let g be a Hermitian metric on (M,J).
If the harmonic representatives of the classes in H2

dR(M ; R) are of pure
degree, then J is both C∞-pure-and-full and pure-and-full.

On a symplectic 2n-manifold (M,ω), a link between H2
dR(M ; R) and

H2n−2
dR (M ; R) could be provided if the Hard Lefschetz Condition holds; recall

that (M,ω) is said to satisfy the Hard Lefschetz Condition (HLC) if, for every
k ∈ {0, . . . , n}, the isomorphism

(HLC)
[
ωk

]
: Hn−k

dR (M ; R) �−→ Hn+k
dR (M ; R).

holds.

Theorem 2.3 ([20, Theorem 4.1]). Let ω be a symplectic form on M sat-
isfying (HLC) and let J an ω-compatible almost-complex structure on M . If
J is C∞-pure-and-full, then it is also pure-and-full.

We give now a class of examples of C∞-pure-and-full and pure-and-full
manifolds. Clearly, compact Kähler manifolds are C∞-pure-and-full at every
stage (and then also pure-and-full at every stage). Furthermore, the following
theorem holds.

Theorem 2.4 (see [13, 24]). Let M be a compact complex manifold; if the
Hodge–Frölicher spectral sequence degenerates at the first step and there is
a weight 2 formal Hodge decomposition, then M is C∞-pure-and-full.

For the proof, see [13, Theorem 2.16, Proposition 2.17].
As a consequence of the last theorem, we have that

(1) the compact complex surfaces,
(2) the compact complex manifolds satisfying the ∂∂-Lemma (i.e., the

compact complex manifolds for which every ∂-closed, ∂-closed and
d-exact form is also ∂∂-exact)

(3) and the compact complex manifolds admitting a Kähler structure

are C∞-pure-and-full manifolds.
Indeed, for (1) we have that the assumptions of Theorem 2.4 hold by [4,

Theorem 2.6], while for (2) they are satisfied by [10, Section 5.21]; finally,
for (3) we have that a compact complex manifold admitting a Kähler metric
satisfies the ∂∂-Lemma, see [10, Sec 5.11].

Actually, Draghici et al. proved the following.

Theorem 2.5 ([13, Theorem 2.3]). Every almost-complex structure on a
compact four-manifold is C∞-pure-and-full as well as pure-and-full.

This turns our attention to the six-dimensional case.
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Example 2.1. Let G be the Lie group of matrices of the following form

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ex1 0 x2e
x1 0 0 x3

0 e−x1 0 x2e
−x1 0 x4

0 0 ex1 0 0 x5

0 0 0 e−x1 0 x6

0 0 0 0 0 x1

0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

for x1, . . . , x6 ∈ R. Then G is a six-dimensional simply connected completely
solvable Lie group. According to Fernández et al. [16], there exists a uniform
discrete subgroup Γ ⊂ G, so that M = Γ\G is a six-dimensional compact
solvmanifold. The following 1-forms on G

e1 = dx1, e2 = dx2, e3 = exp(−x1) (dx3 − x2dx5)

e4 = exp(x1) e5 = exp(−x1)dx5 , e6 = exp(x1)dx6

× (dx4 − x2dx6) ,

give rise to 1-forms on M . We immediately obtain that
(2.1)

d e1 = 0, d e2 = 0, d e3 = −e1 ∧ e3 − e2 ∧ e5,
d e4 = e1 ∧ e4 − e2 ∧ e6, d e5 = −e1 ∧ e5, d e6 = e1 ∧ e6.

Since G is completely solvable, in view of the Hattori theorem (see [21]), we
easily obtain by (2.1), that

(2.2) H2(M ; R) = spanR

{
e1 ∧ e2, e5 ∧ e6, e3 ∧ e6 + e4 ∧ e5} .

Therefore, setting
⎧
⎪⎨

⎪⎩

ϕ1 = e1 + ie2

ϕ2 = e3 + ie4

ϕ3 = e5 + ie6

,

we have that the almost-complex structure J whose complex forms of type
(1, 0) are ϕ1, ϕ2, ϕ3 is C∞-full. Indeed,

H
(1,1)
J (M)

R
= spanR

{− 1
2iϕ

1 ∧ ϕ1, − 1
2iϕ

3 ∧ ϕ3
}
,

H
(2,0),(0,2)
J (M)

R
= spanR

{
1
2i

(
ϕ2 ∧ ϕ3 − ϕ2 ∧ ϕ3

)}
.

According to Theorem 2.2, since the harmonic representatives are of pure
type, J is both C∞-pure-and-full and pure-and-full.
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3. Instability along curves of complex structures

In this section, we will show that the condition to be C∞-pure-and-full for
a complex structure is not stable under small deformations. In order to do
this, we will consider the Iwasawa manifold, showing that there are curves
of complex structures that are not C∞-pure-and-full.

We first recall the definition of the Iwasawa manifold and some of its
properties, see e. g. [15, 26].

On C
3, consider the product ∗ defined as

(z1, z2, z3) ∗ (w1, w2, w3)
def= (z1 + w1, z2 + w2, z3 + z1w2 + w3) .

It is immediate to check that
(
C

3, ∗) is a nilpotent Lie group isomorphic to

H(3) def=

⎧
⎨

⎩

⎛

⎝
1 z1 z3
0 1 z2
0 0 1

⎞

⎠ ∈ GL (3; C) | z1, z2, z3 ∈ C

⎫
⎬

⎭
.

We have that (Z [i])3 ⊂ C
3 is a cocompact discrete subgroup of

(
C

3, ∗). The
Iwasawa manifold X is defined as the manifold

X
def= (Z [i])3

∖(
C

3, ∗) .
X is a compact complex three-dimensional nilmanifold; by Fernández and
Gray [15], it follows that X is not formal; hence, it has no Kähler metrics,
see [10, Main Theorem]; nevertheless, there exists a balanced metric on X.

We will need the following results on the cohomology of solvmanifolds.
The Hattori–Nomizu theorem states that if M = Γ\G is a compact
nilmanifold (or, more in general, a compact completely solvable solvman-
ifold, i.e. a compact solvmanifold such that, for every ξ in the Lie algebra g
of G, all the eigenvalues of adξ are real) then

(3.1) H•
dR(M ; R) � H•(∧•g∗, d)

(see [21, 27]), where the Chevalley–Eilenberg cohomology H•(∧•g∗,d) is the
cohomology of the complex ∧•g∗ endowed with the differential inherited
from ∧•M ; equivalently, H•(∧•g∗,d) is the cohomology of the complex of
the left-invariant forms. A similar result holds for the Dolbeault cohomology
of nilmanifolds. More precisely, for a compact complex nilmanifold M that is
holomorphically parallelizable (i.e., with trivial holomorphic tangent bundle)
or whose integrable almost-complex structure J is rational (i.e., such that
J [gQ] ⊆ gQ, where gQ is a rational Lie subalgebra of g such that g = gQ⊗R)
or whose J is obtained as a small deformation of a rational one, the following
isomorphism holds:

(3.2) Hp,q

∂
(M) � Hq

(
∧p,•

(
gC

)∗
, ∂

)
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(see [8, 28]). In particular, (3.1) and (3.2) hold for the Iwasawa manifold
and for its small deformations.

Let
(
zi
)
i∈{1,2,3} be the standard complex coordinate system on C

3; the
following (1, 0)-forms on C

3 are invariant for the action (on the left) of
(Z [i])3, so they give rise to a global coframe for T ∗ 1,0X:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ1 def= d z1

ϕ2 def= d z2

ϕ3 def= d z3 − z1 d z2

.

The structure equations are therefore
⎧
⎪⎨

⎪⎩

dϕ1 = 0

dϕ2 = 0

dϕ3 = −ϕ1 ∧ ϕ2

.

By Hattori–Nomizu theorem, we compute the real cohomology algebra of X
(for simplicity, we list the harmonic representative instead of its class and
write ϕAB̄ for ϕA ∧ ϕ̄B and so on):

H1
dR(X; R) = spanR

{
ϕ1 + ϕ̄1, i

(
ϕ1 − ϕ̄1

)
, ϕ2 + ϕ̄2, i

(
ϕ2 − ϕ̄2

)}
,

H2
dR(X; R) = spanR

{
ϕ13 + ϕ1̄3̄, i

(
ϕ13 − ϕ1̄3̄

)
, ϕ23 + ϕ2̄3̄,

i
(
ϕ23 − ϕ2̄3̄

)
, ϕ12̄ − ϕ21̄, i

(
ϕ12̄ + ϕ21̄

)
, iϕ11̄, iϕ22̄

}
,

H3
dR(X; R) = spanR

{
ϕ123 + ϕ1̄2̄3̄, i

(
ϕ123 − ϕ1̄2̄3̄

)
, ϕ131̄ + ϕ11̄3̄,

i
(
ϕ131̄ − ϕ11̄3̄

)
, ϕ132̄ + ϕ21̄3̄, i

(
ϕ132̄ − ϕ21̄3̄

)
, ϕ231̄ + ϕ12̄3̄,

i
(
ϕ231̄ − ϕ12̄3̄

)
, ϕ232̄ + ϕ22̄3̄, i

(
ϕ232̄ − ϕ22̄3̄

)}
.

Note that each harmonic representative is of pure degree. The Betti numbers
of X are

b0 = 1, b1 = 4, b2 = 8, b3 = 10.

Nakamura in [26] computed the small deformations {Xt}t∈Δ(0, ε)⊆C6 of
the Iwasawa manifold X: by [26, page 95], a local system of complex coor-
dinates for the complex structure at t = (t11, t12, t21, t22, t31, t32) ∈ C

6 is
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given by
⎧
⎪⎪⎨

⎪⎪⎩

ζ1
t = z1 +

∑2
j=1 t1j z̄

j

ζ2
t = z2 +

∑2
j=1 t2j z̄

j

ζ3
t = z3 +

∑2
j=1

(
t3j + t2j z

1
)
z̄j +A(z̄) −D(t)z̄3

,

where

A(z̄) def= 1
2

(
t11 t21 z̄

1 z̄1 + 2 t11 t22 z̄
1 z̄2 + t12 t22 z̄

2 z̄2
)
,

D(t) def= t11 t22 − t12 t21.

Nakamura also computed the numerical characters of these deformations,
dividing them into three classes according to their Hodge diamond:

h1,0 h0,1 h2,0 h1,1 h0,2 h3,0 h2,1 h1,2 h0,3

(i) 3 2 3 6 2 1 6 6 1

(ii) 2 2 2 5 2 1 5 5 1

(iii) 2 2 1 5 2 1 4 4 1

More exactly, the classes are characterized by the following values of the
parameters:

class (i): t11 = t12 = t21 = t22 = 0;

class (ii): D (t) = 0 but (t11, t12, t21, t22) �= (0, 0, 0, 0);

class (iii): D (t) �= 0.
Note that the Hodge diamond of the deformations of the class (i) is the
same of the Iwasawa manifold, while deformations of the class (iii) have
the Hodge–Frölicher spectral sequence that degenerates at the first step.
Note also that the table above proves that the Hodge numbers are not stable
under small deformations, [26, Theorem 2], in contrast with the Kähler case.

Equivalently, Xt could be viewed as C
3
/

Γt where Γt is the group gener-
ated by the transformations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ ′1 := ζ1 +
(
ω1 +

∑2
j=1 t1j ω̄j

)

ζ ′2 := ζ2 +
(
ω2 +

∑2
j=1 t2j ω̄j

)

ζ ′3 := ζ3 +
(
ω3 +

∑2
j=1 t3j ω̄j

)
+ ω1 ζ

2 +
(∑2

j=1 t2j ω̄j

) (
ζ1 + ω1

)

+A (ω̄) −D(t) ω̄3

varying ω :=: (ω1, ω2, ω3) ∈ (Z[i])3.
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In the sequel, J will denote the integrable almost-complex structure
associated to X and Jt will denote the one associated to Xt.

Now, we can prove the following.

Theorem 3.1. Let X := (Z [i])3
∖(

C
3, ∗) be the Iwasawa manifold. Then:

• X is C∞-pure-and-full at every stage as well as pure-and-full at every
stage;

• the small deformations of X of the class (i) are C∞-pure-and-full and
pure-and-full at every stage;

• the small deformations of X of the classes (ii) and (iii) are neither
C∞-pure nor C∞-full nor pure nor full.

Proof. We divide the proof in various steps.

Step 1. X is a C∞-pure-and-full manifold at every stage.
Since harmonic representatives in H•

dR(X; R) are of pure degree,
the statement follows from Theorem 2.2.

Step 2. Small deformations of the class (i) remain C∞-pure-and-full at
every stage.

A coframe of (1, 0)-forms invariant for the action of Γt on C
3 is

given by
⎧
⎪⎪⎨

⎪⎪⎩

ϕ1
t

def= d ζ1
t

ϕ2
t

def= d ζ2
t

ϕ3
t

def= d ζ3
t − ζ1

t d ζ2
t

.

Hence,
{
ϕ1

t , ϕ
2
t , ϕ

3
t

}
satisfies the same structure equations as{

ϕ1, ϕ2, ϕ3
}
. Therefore, the same argument in Step 1 applies to

deformations of such a class.
Step 3. Computation of the structure equations for small deformations

of the class (ii).
Consider the system of complex coordinates given by

⎧
⎪⎪⎨

⎪⎪⎩

ζ1
t

def= z1 +
∑2

λ=1 t1λz̄
λ

ζ2
t

def= z2 +
∑2

λ=1 t2λz̄
λ

ζ3
t

def= z3 +
∑2

λ=1(t3λ + t2λz
1)z̄λ +A (z̄)

.

A straightforward computation gives
{
z1 = γ

(
ζ1
t + λ1ζ̄

1
t + λ2ζ

2
t + λ3ζ̄

2
t

)

z2 = α
(
μ0ζ

1
t + μ1ζ̄

1
t + μ2ζ

2
t + μ3ζ̄

2
t

)

where α, β, γ, λi (for i ∈ {1, 2, 3}), μj (for j ∈ {0, 1, 2, 3}) are complex
constants depending only on t = (t11, t12, t21, t22, t31, t32) ∈ C

6 and
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defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
def=

1
1 − |t22|2 − t21t̄12

β
def= t21t̄11 + t22t̄21

γ
def=

1
1 − |t11|2 − αβ (t11t̄12 + t12t̄22) − t12t̄21

λ1
def= −t11

(
1 + αt̄12t21 + α |t22|2

)

λ2
def= α (t11t̄12 + t12t̄22)

λ3
def= −t12

(
1 + αt̄12t21 + α |t22|2

)

μ0
def= βγ

μ1
def= λ1βγ − t21

μ2
def= 1 + λ2βγ

μ3
def= λ3βγ − t22

.

Consider the (1, 0)-forms invariant for the action of Γt on C
3 given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ1
t

def= d ζ1
t

ϕ2
t

def= d ζ2
t

ϕ3
t

def= d ζ3
t − z1 d ζ2

t − (
t21z̄

1 + t22z̄
2
)
d ζ1

t

;

we could now easily compute the structure equations:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dϕ1
t = 0

dϕ2
t = 0

dϕ3
t = σ12 ϕ

1
t ∧ ϕ2

t + σ11̄ ϕ
1
t ∧ ϕ̄1

t + σ12̄ ϕ
1
t ∧ ϕ̄2

t

+σ21̄ ϕ
2
t ∧ ϕ̄1

t + σ22̄ ϕ
2
t ∧ ϕ̄2

t

,

where σ12, σ11̄, σ12̄, σ21̄, σ22̄ are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ12
def= −γ + t21λ̄3γ̄ + t22ᾱμ̄3

σ11̄
def= t21 γ

(
1 + t21t̄12α+ |t22|2 α

)

σ12̄
def= t22 γ

(
1 + t21t̄12α+ |t22|2 α

)

σ21̄
def= −t11 γ

(
1 + t21t̄12α+ |t22|2 α

)

σ22̄
def= −t12 γ

(
1 + t21t̄12α+ |t22|2 α

)

.



ON COHOMOLOGICAL DECOMPOSITION AND DEFORMATIONS 417

Note that, for small deformations of the class (ii), one has σ12 �= 0
and (σ11̄, σ12̄, σ21̄, σ22̄) �= (0, 0, 0, 0).
This ends Step 3.

Step 4. The small deformations of the class (ii) are neither C∞-pure
nor full.
Note that

[
σ12 ϕ

12
t

]
=

[
σ11̄ ϕ

11̄
t + σ12̄ ϕ

12̄
t + σ21̄ ϕ

21̄
t + σ22̄ ϕ

22̄
t

]
�= [0]

in H2
dR (X; C). Therefore,

H
(1,1)
Jt

(Xt) ∩
(
H

(2,0)
Jt

(Xt) +H
(0,2)
Jt

(Xt)
)
�= {[0]},

and in particular Xt is not complex-C∞-pure. It follows from the fact
observed at page 408 that Xt cannot be C∞-pure; from Theorem 2.1
it follows that Xt cannot be even full.

Step 5. The small deformations of the class (ii) are neither pure nor
C∞-full.
For a fixed small t, choose two positive constants A and B such that

(Aσ12̄ −B σ11̄, A σ22̄ −B σ21̄) �= (0, 0);

computing −d
(
Aϕ133̄

t +B ϕ233̄
t

)
, note that

[
(Aσ21̄ −B σ11̄)ϕ

121̄3̄
t + (Aσ22̄ −B σ12̄)ϕ

122̄3̄
t −A σ̄12ϕ

131̄2̄
t −B σ̄12ϕ

231̄2̄
t

]

=
[
(A σ̄12̄ −B σ̄11̄)ϕ

1231̄
t + (A σ̄22̄ −B σ̄21̄)ϕ

1232̄
t

]
�= [0],

in H4
dR (X; C). As before, it follows that Xt is not C∞-pure at the

fourth stage, and consequently it is not even pure nor C∞-full, by
Theorem 2.1.

Step 6. Small deformations of the class (iii) are neither C∞-pure nor
C∞-full.
We omit the computations, since they are quite similar to those ones
corresponding to the deformations of class (ii).

�

As a corollary of the last theorem, we obtain the following theorem of
instability.

Theorem 3.2. Compact complex C∞-pure-and-full (or C∞-pure or C∞-full
or pure-and-full or pure or full) manifolds are not stable under small defor-
mations of the complex structure.
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Remark 3.1. By the proof of Theorem 3.1, it follows that the numbers

h+
Jt

(X) def= dimRH
(1,1)
Jt

(X)R, h−Jt
(X) def= dimRH

(2,0),(0,2)
Jt

(X)R,

where Jt is a small deformation of class (i), are equal to

h+
Jt

(X) = 4 , h−Jt
(X) = 4 ,

for t small enough.
We recall that for the complex deformations of a complex structure J on

a four-dimensional compact manifold M , one has that h+
J (M) and h−J (M)

are topological invariants (see [14]).

Now we show that none of the above deformed complex structures
described in Theorem 3.1 can be tamed by any symplectic form ω on the
Iwasawa manifold.

We start with the following:

Proposition 3.1. Let (M,ω) be a symplectic manifold. Assume that there
exists an ω-tamed complex structure J on M . Denote by ω̃ the fundamental
form of the Hermitian metric

g̃J(X,Y ) =
1
2

(ω(X, JY ) + ω(Y, JX)).

Then
∂∂ ω̃ = 0.

Proof. By definition, we have

ω̃ = 1
2 (ω + Jω).

Therefore, by viewing ω and ω̃ as real elements of ∧2(M ; C), we can write

ω = ω2,0 + ω1,1 + ω2,0,

ω̃ = ω1,1,

where ω1,1 = ω1,1. Hence, writing d = ∂ + ∂, we have that

dω = 0 ⇔
{
∂ ω2,0 = 0,

∂ ω1,1 + ∂ ω2,0 = 0.

Therefore,
∂∂ ω̃ = ∂∂ ω1,1 = −∂∂ ω1,1 = ∂

2
ω2,0 = 0. �

Now, we can prove the following:

Theorem 3.3. Let M = Γ\G be a (non-toral) compact nilmanifold of dimen-
sion 6 endowed with an invariant complex structure J . Then there are no
symplectic structures ω on M such that J is ω-tamed.
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Proof. First of all we show that there are no invariant symplectic forms ω
on M such that J is ω-tamed. On the contrary, let ω be such an invari-
ant symplectic structure. Then by Proposition 3.1, M has an invariant
Hermitian metric g whose fundamental form ω satisfies ∂∂ ω = 0. Then,
by [19, Theorem 1.2 p. 320] we can find a basis of complex (1, 0)-forms
{ϕ1, ϕ2, ϕ3} for J such that

⎧
⎪⎨

⎪⎩

dϕ1 = 0,
dϕ2 = 0,
dϕ3 = Aϕ1 ∧ ϕ2 +B ϕ2 ∧ ϕ2 + C ϕ1 ∧ ϕ1 +Dϕ1 ∧ ϕ2 + E ϕ1 ∧ ϕ2,

where A, B, C, D, E ∈ C. We immediately obtain

(3.3)
∂ ϕ1 = 0, ∂ ϕ2 = 0 , ∂ ϕ3 = E ϕ1 ∧ ϕ2,

∂ ϕ1 = 0, ∂ ϕ2 = 0, ∂ ϕ3 = Aϕ1 ∧ ϕ2 +B ϕ2 ∧ ϕ2 + C ϕ1 ∧ ϕ1

+Dϕ1 ∧ ϕ2.

Write
ω = ω2,0 + ω1,1 + ω2,0 ,

where

ω2,0 =
∑

i<j

aij ϕ
i ∧ ϕj , ω1,1 =

i

2

3∑

i,j=1

bi j ϕ
i ∧ ϕj , ω1,1 = ω1,1 ,

with aij , bi j ∈ C. Then a straightforward computation by using (3.3) implies
that dω = 0 if and only if

A = B = C = D = E = 0

or
b33 = 0 .

In both cases we obtain a contradiction.
Assume that there exists a symplectic form ω on M such that J is

ω-tamed. Then one can consider

(3.4) ω̂(X,Y ) =
∫

M
ω|p(Xp, Yp)η.

η being the volume form given in [25, Lemma 6.2]. Then, it can be showed
(see e.g., [5, 18]) that d ω̂ = 0. Moreover, since J is invariant, we have

ω̂(X, JX) =
∫

M
ω|p(Xp, (JX)p)η

=
∫

M
ω|p(Xp, JpXp)η > 0.

Therefore (3.4) defines an invariant symplectic form ω̂ such that J is
ω̂-tamed. This is absurd. �
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Relating to the speculation in [24, p. 678] by Li and Zhang and to [29,
Question 1.7] raised by Streets and Tian, as a consequence of the last
Theorem, we get the following:

Theorem 3.4. Let X := (Z [i])3
∖(

C
3, ∗) be the Iwasawa manifold.

Then any small complex deformation of X cannot be tamed by any
symplectic form.

4. Stability along curves of almost-complex structures

The C∞-pure-and-full property makes sense for an arbitrary almost-complex
structure, even not integrable. In this section, we will study the stability of
this property along curves of almost-complex structures.

Let J be an almost-complex structure on M2n. Recall the following local
result, see [3]: a curve {Jt}t∈I⊆R

of almost-complex structures through J

could be written, for t ∈ (−ε, ε) with ε > 0 sufficiently small, as

(4.1) Jt = (id−Lt) J (id−Lt)
−1 ,

where Lt is an endomorphism of the tangent bundle such that

Lt J + J Lt = 0;

we could write Lt =: t L + o(t); recall also that: if J is compatible with a
symplectic form ω, then the curves made up of ω-compatible almost-complex
structures Jt are exactly those ones for which Lt = L. For several examples
of families constructed in such a way, see [20].

We begin with studying curves through the standard Kähler structure on
the complex 2-torus,

(
T

2
C
, J0, ω0

)
. Let

L =

⎛

⎜
⎜
⎝

�
0

−�
0

⎞

⎟
⎟
⎠,

where � ∈ C∞(R4; R) is a Z
4-periodic function. Defining (for small t)

(4.2) Jt, �
def= (id−t L)J (id−t L)−1 ,

we get the ω0-compatible almost-complex structure

Jt,� =

⎛

⎜
⎜
⎜
⎝

−1−t �
1+t �

−1
1+t �
1−t �

1

⎞

⎟
⎟
⎟
⎠
.

Set

α :=: α(t, �) def=
1 − t �

1 + t �
.
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A coframe for the holomorphic cotangent bundle is given by
{
ϕ1

t := dx1 + i α dx3

ϕ2
t := dx2 + i dx4

,

from which we compute
{

dϕ1
t = i dα ∧ dx3

dϕ2
t = 0

;

note that taking � = �
(
x1, x3

)
, the corresponding almost-complex structure

Jt, � is integrable, in fact (Jt, �, ω0) is a Kähler structure on T
2
C
. Remember

that Jt, � has to be C∞-pure-and-full, T
2
C

being a four-dimensional manifold.
For the sake of simplicity, we assume � = �

(
x2

)
not constant. Setting

v1
def= dx1 ∧ dx2 − α dx3 ∧ dx4,

v2
def= dx1 ∧ dx4 − α dx2 ∧ dx3,

w1
def= α dx1 ∧ dx3,

w2
def= dx2 ∧ dx4,

w3
def= dx1 ∧ dx2 + α dx3 ∧ dx4,

w4
def= dx1 ∧ dx4 + α dx2 ∧ dx3,

the condition in order that an arbitrary Jt, �-anti-invariant real 2-form ψ =
Av1 +B v2 is closed is expressed by

(4.3)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A3 −B1 α = 0,

A4 −B2 = 0,

−A1 α−B3 = 0,

−B4 α−A2 α−Aα2 = 0,

(here and later on, we write, for example, A3 instead of ∂A
∂x3 ). By solving

(4.3), we obtain

ψ =
A

α
v1 +B v2 with A,B ∈ R.

Therefore, for small enough t �= 0, according to [14], we have the upper-
semicontinuity property

dimRH
(2,0),(0,2)
Jt, �

(
T

2
C

)
R
≤ 2 = dimRH

(2,0),(0,2)
J

(
T

2
C

)
R
,
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from which we get the lower one

dimRH
(1,1)
Jt, �

(
T

2
C

)
R
≥ 4 = dimRH

(1,1)
J

(
T

2
C

)
R
.

Now, we turn our attention to the case of dimension greater than 4. We
construct curves through the standard Kähler structure on the complex
3-torus,

(
T

3
C
, J0, ω0

)
. Let

L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

�
0

0
−�

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where � ∈ C∞(R6; R) is a Z
6-periodic function. As before, defining Jt, � (for

small t) as in (4.2), we get the ω0-compatible almost-complex structure

Jt, � =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1−t �
1+t �

−1
−1

1+t �
1−t �

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

As before, setting

α :=: α(t, �) def=
1 − t �

1 + t �
,

it follows that a coframe for the holomorphic cotangent bundle is given by
⎧
⎪⎨

⎪⎩

ϕ1
t := dx1 + i α dx4

ϕ2
t := dx2 + i dx5

ϕ3
t := dx3 + i dx6

;

therefore
⎧
⎪⎨

⎪⎩

dϕ1
t = i dα ∧ dx4

dϕ2
t = 0

dϕ3
t = 0

;

note that � = �
(
x1, x4

)
gives rise to integrable almost-complex structures, in

fact to Kähler structures; therefore, in such a case Jt, � is C∞-pure-and-full.
Again, we assume � = �

(
x3

)
not constant. The Jt, �-anti-invariant real closed
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2-forms are

ψ =
C

α

(
dx13 − α dx46

)
+D

(
dx16 − α dx34

)
+ E

(
dx23 − dx56

)

+ F
(
dx26 − dx35

)

where C,D,E, F ∈ R.
So, for small t �= 0, we have the upper-semicontinuity property

dimRH
(2,0),(0,2)
Jt, �

(
T

3
C

)
R
≤ 4 < 6 = dimRH

(2,0),(0,2)
J

(
T

3
C

)
R
.

Unfortunately, the explicit computation of H(1,1)
Jt, �

(
T

3
C

)
R

seems to be not so
simple. In particular, it is not clear if Jt, � remains C∞-full (note that Jt, � is
C∞-pure by [13, Proposition 2.7], see also [20, Proposition 3.2]).

Now, we recall how to construct curves of almost-complex structure via
a J-anti-invariant real 2-form, as in [23].

Let (M,J) be an almost-complex manifold; take g a J-Hermitian metric
and γ a real 2-form in ∧2,0M ⊕ ∧0,2M . Define V to be the endomorphism
of the tangent bundle such that

(4.4) γ (·, ·) =: g (V ·, ·);
a direct computation shows that V J + J V = 0. Therefore, setting

L
def=

1
2
V J,

we have LJ + J L = 0. At this point, for small t, define Jt, γ as in (4.2):

Jt, γ
def= (id−t L)J (id−t L)−1 ;

therefore, {Jt, γ}t∈(−ε,ε) is a curve of almost-complex structures naturally
associated with γ.

We give an example of a C∞-pure-and-full structure on a non-Kähler
manifold such that the stability property holds along a curve constructed in
such a way. Let

Sol(3) def=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

ecz 0 0 x
0 e−cz 0 y
0 0 1 z
0 0 0 1

⎞

⎟
⎟
⎠ ∈ GL(4; R) | x, y, z ∈ R

⎫
⎪⎪⎬

⎪⎪⎭
.

Then Sol(3) is a completely solvable Lie group. For a suitable c ∈ R, there
exists a cocompact discrete subgroup Γ(c) such that

M
def= Γ(c) \Sol(3)

is a compact three-dimensional solvmanifold. Define

N6(c) def= M ×M.
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The manifold N6(c) has been studied in [7] as an example of a cohomolog-
ically Kähler manifold; M. Fernández et al. proved in [17] that it has no
Kähler structures, although it is formal and it has a symplectic structure
satisfying (HLC). In [20] a family of C∞-pure-and-full structures on N6(c)
is provided. Now, we will construct a curve of C∞-pure-and-full almost-
complex structures on N6(c).
Let

{
ei
}

i∈{1,...,6} be a coframe for N6(c); the structure equations are

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d e1 = c e1 ∧ e3
d e2 = −c e2 ∧ e3
d e3 = 0
d e4 = c e4 ∧ e6
d e5 = −c e5 ∧ e6
d e6 = 0

.

Let J be the almost-complex structure given by

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
1

−1
1

−1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By Hattori–Nomizu theorem one computes immediately

H2
dR

(
N6(c); R

)
= spanR

{
e1 ∧ e2, e3 ∧ e6 − e4 ∧ e5, e3 ∧ e6 + e4 ∧ e5} ;

hence N6(c) is a C∞-pure-and-full and pure-and-full manifold, the harmonic
representatives being of pure degree. Note that

H
(2,0),(0,2)
J

(
N6(c)

)
R

= spanR

{
e3 ∧ e6 + e4 ∧ e5}.

Put γ := e3∧e6 +e4∧e5; then the linear map V representing γ as in (4.4) is

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0

−1
−1

1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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and then it is immediate to compute

2L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0

−1
1

1
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

Jt := Jt, Φ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1
1

−4−t2

4+t2
− 4t

4+t2
4−t2

4+t2
− 4t

4+t2

4t
4+t2

−4−t2

4+t2
4t

4+t2
4−t2

4+t2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Set

α :=: α(t) def=
4 − t2

4 + t2
, β :=: β(t) def=

4t
4 + t2

.

A coframe for the Jt-holomorphic cotangent bundle is given by
⎧
⎪⎨

⎪⎩

ϕ1
t = e1 + i e2

ϕ2
t = e3 + i

(
α e4 + β e6

)

ϕ3
t = e5 + i

(−β e4 + α e6
)
.

The closed 2-forms
1
2 i
ϕ11̄

t ,
1
2 i
ϕ33̄

t − α

c
d e5,

1
2 i

(
β ϕ22̄

t + α
(
ϕ23̄

t − ϕ2̄3
t

))
+

1
2 i
ϕ33̄

t

generates three different cohomology classes; hence, for small t �= 0, we get

H2
dR

(
N6(c); R

)
= H

(1,1)
Jt

(
N6(c)

)
R

;

this implies that J is C∞-full as well as pure. A straightforward computation
yields

H4
dR

(
N6(c); R

)
= spanR

{
∗g

(
1
2 i
ϕ11̄

t

)
, ∗g

(
ϕ33̄

t − α

c
d e5

)
+
α

c
d
(
e125

)
,

α

4

(
ϕ121̄3̄

t + ϕ1̄2̄13
t

)
+
β

4
ϕ121̄2̄

t +
αβ

c
d
(
e125

)
}

= H
(2,2)
Jt

(
N6(c)

)
R
.

Therefore, N6(c) is also C∞-full at the fourth stage and, consequently, it is
full as well as C∞-pure.

Summarizing, we have proved the following.
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Theorem 4.1. There exists a compact manifold N6(c) such that:

(i) N6(c) admits a C∞-pure-and-full almost-complex structure J ;
(ii) each harmonic form of type (2, 0) + (0, 2) gives rise to a curve

{Jt}t∈(−ε,ε) of C∞-pure-and-full almost-complex structures on N6(c);
(iii) furthermore, the map

t �→ dimRH
(2,0),(0,2)
Jt

(
N6(c)

)
R

is an upper-semicontinuous function at t = 0.
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