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Abstract In view of Andreotti and Grauert (Bull Soc Math France 90:193–259, 1962)
vanishing theorem for q-complete domains in C

n , we reprove a vanishing result by Sha
(Invent Math 83(3):437–447, 1986), and Wu (Indiana Univ Math J 36(3):525–548, 1987),
for the de Rham cohomology of strictly p-convex domains in R

n in the sense of Harvey and
Lawson (The foundations of p-convexity and p-plurisubharmonicity in riemannian geometry.
arXiv:1111.3895v1 [math.DG]). Our proof uses the L2-techniques developed by Hörmander
(An introduction to complex analysis in several variables, 3rd edn. North-Holland Publishing
Co, Amsterdam 1990), and Andreotti and Vesentini (Inst Hautes Études Sci Publ Math
25:81–130, 1965).
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0 Introduction

A weaker condition than holomorphic convexity for domains in C
n has been introduced by

Andreotti and Grauert [1], defining q-complete domains as domains in C
n admitting a proper

exhaustion function whose Levi form has n − p + 1 positive eigenvalues.
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1070 D. Angella, S. Calamai

In a recent series of foundational papers, [6,7], and references therein, Harvey and Lawson
raise the interest on generalizations of the concept of convexity for Riemannian manifolds,
proving many important results for p-convex manifolds: namely, starting with a Riemannian
manifold (X, g), they ask whether it admits an exhaustion function whose Hessian is positive
definite or satisfies weaker positive conditions.

Interpolating between the classical notions of convex functions and pluri-sub-harmonic
functions, in [7], they define the class of p-pluri-sub-harmonic functions in terms of the
positivity of the minors of their Hessian form, and they study p-convex domains, which
can be regarded as domains in R

n endowed with a smooth p-pluri-sub-harmonic proper
exhaustion function.

The notions of geometric pluri-sub-harmonicity and geometric convexity, introduced
and studied by Harvey and Lawson [6], is closely related to holomorphic convexity and
q-completeness in the sense of Andreotti and Grauert [1].

In the complex case, holomorphic convexity and, more in general, q-completeness provide
vanishing theorems for the Dolbeault cohomology ([8], respectively [1,2]).

We are concerned in studying vanishing results for strictly p-convex domains in R
n in the

sense of F. R. Harvey and H. B. Lawson. More precisely, we give a proof of the following
result.

Theorem 3.1 Let X be a strictly p-convex domain in R
n. Then, Hk

d R(X; R) = {0} for every
k ≥ p.

As pointed out to us by Harvey and Lawson, the above result was already known, as a
consequence of [9, Theorem 1] by Sha, and [10, Theorem 1] by Wu, see also [7, Proposition
5.7]: more precisely, they prove, using Morse theory, that the existence of a smooth proper
strictly p-pluri-sub-harmonic exhaustion function has consequences on the homotopy type
of the domain.

In spite of this, our proof differs in the techniques, which are inspired by Andreotti and
Vesentini [2]: in particular, the L2-techniques used in our proof could be hopefully applied
in a wider context, a fact which we would like to investigate further in future work.

The organization of the paper is as follows. In Sect. 1, we recall the main definitions
introduced in [6,7] and the results proven by Andreotti and Grauert in [1]. In Sect. 2, we
prove some useful estimates, which will be used in Sect. 3 to prove Theorem 3.1.

1 The notion of p-convexity by Harvey and Lawson

Following Harvey and Lawson [6,7], firstly, we recall point-wise definitions of p-positive
symmetric endomorphisms; then, we will turn to manifolds, and finally, we will recall the
notion of p-pluri-sub-harmonic (exhaustion) functions and (strictly) p-convex domains.

1.1 p-Positive (sections of) symmetric endomorphisms

Let (V, 〈· | ·· 〉) be an n-dimensional real inner product space. Let G : V → V ∗ denote the
isomorphism defined as G(v) := 〈v | · 〉.
Let Sym2 (V ) denote the space of symmetric elements of (V ⊗ V )∗; namely, A ∈ Sym2 (V )
if and only if A(v⊗w) = A(w⊗v), for any v,w ∈ V . By means of the inner product 〈· | ·· 〉,
the space Sym2 (V ) is isomorphic to the space of the 〈· | ·· 〉-symmetric endomorphisms of
V : given A ∈ Sym2 (V ), we denote by G−1 A ∈ Hom (V, V ) the corresponding 〈· | ·· 〉-
symmetric endomorphism.
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A vanishing result for strictly p-convex domains 1071

The endomorphism G−1 A ∈ Hom (V, V ) extends to D[p]
G−1 A

∈ Hom (∧pV, ∧pV );

namely, on a simple vector vi1 ∧ · · · ∧ vi p ∈ ∧pV , the endomorphism D[p]
G−1 A

acts as

D[p]
G−1 A

(
vi1 ∧ · · · ∧ vi p

) :=
p∑

�=1

vi1 ∧ · · · ∧ vi�−1 ∧ G−1 A
(
vi�

) ∧ vi�+1 ∧ · · · ∧ vi p .

Observe that D[p]
G−1 A

∈ Hom (∧pV, ∧pV ) is a symmetric endomorphism with respect to the
scalar product on ∧pV induced by 〈· | ·· 〉.

Finally, given a 〈· | ·· 〉-symmetric endomorphism E ∈ Hom (V, V ), let sgn (E) denote
the number of non-negative eigenvalues of E .

Notice that, given A ∈ Sym2 (V ), and given two inner products on V inducing, respec-

tively, the isomorphisms G1 and G2, then there holds sgn
(

G−1
1 A

)
= sgn

(
G−1

2 A
)

; it is also

important to notice that, for p > 1, it might hold sgn

(
D[p]

G−1
1 A

)

= sgn

(
D[p]

G−1
2 A

)
, since the

eigenvalues of D[p]
G−1 A

are of the form

λi1 + · · · + λi p for i1, . . . , i p ∈ {1, . . . , n} s.t. i1 < · · · < i p ,

where λ1, . . . , λn are the eigenvalues of G−1 A.

Definition 1.1 [6,7]

• Let V be a R-vector space endowed with an inner product 〈· | ·· 〉. Denote the space of
p-positive forms of kth branch on V as

P(k)
p (V, 〈· | ·· 〉) :=

{
A ∈ Sym2 (V ) : sgn

(
D[p]

G−1 A

)
≥

(
n

p

)
− k + 1

}
.

• Let (X, g) be a Riemannian manifold. Define the space of p-positive sections of kth
branch of the bundle Sym2 (T X) of symmetric endomorphisms of T X as

P(k)
p (X, g) :=

{
A ∈ Sym2 (T X) : ∀x ∈ X, Ax ∈ P(k)

p (Tx X, gx )
}
.

1.2 p-Pluri-sub-harmonic functions

In order to introduce an exhaustion of a given Riemannian manifold, we focus on special
p-positive symmetric 2-forms, those arising from the Hessian of smooth functions.

Thus, let (X, g) be a Riemannian manifold, and let u be a smooth real-valued function
on X . Let ∇ denote the Levi-Civita connection of the Riemannian metric g, and let

Hess u (V,W ) := V W u − (∇V W ) u ,

where V and W are smooth sections of the tangent bundle T X . Thus, Hess u(x) ∈
Sym2 (Tx X), for any x ∈ X .

Definition 1.2 [6] Let (X, g) be a Riemannian manifold.

• The space

PSH(k)
p (X, g) :=

{
u ∈ C∞ (X; R) : Hess u ∈ P(k)

p (X, g)
}
,

is called the space of p-pluri-sub-harmonic functions of kth branch on X .
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1072 D. Angella, S. Calamai

• The space

int
(

PSH(k)p (X, g)
)

:=
{

u ∈ C∞ (X; R) : Hess u ∈ int
(
P(k)

p

)
(X, g)

}
,

(where int
(P(k)

)
p (X, g) denotes the interior of P(k)

p (X, g)) is called the space of
strictly p-pluri-sub-harmonic functions of kth branch on X .

1.3 (Strictly) p-convexity

We are now ready to recall the concept of p-convexity, which is central in [7]. Let (X, g) be
a Riemannian manifold. Let K ⊆ X be a compact set. The p-convex hull of K is given by

K̃ PSH(1)p (X, g) :=
{

x ∈ X : ∀φ ∈ PSH(1)
p (X, g) , φ(x) ≤ max

y∈K
φ(y)

}
.

Definition 1.3 [6] Let (X, g) be a Riemannian manifold. Then, X is called p-convex; if for

any compact set K ⊆ X , then K̃ PSH(1)p (X, g) is relatively compact in X .

Define the p-core of X , [6, Definition 4.1], as

Corep (X, g) :=
{

x ∈ X : for all u ∈ PSH(1)
p (X, g) ,

Hess u(x) 
∈ int
(
P(1)

)

p
(Tx X, gx )

}
.

Definition 1.4 [6] Let (X, g) be a Riemannian manifold. Then, X is called strictly p-convex

if (i) Corep (X, g) = ∅ and, (ii) for any compact set K ⊆ X , then K̃ PSH(1)p (X, g) is relatively
compact in X .

1.4 (Strictly) p-convexity and (strictly) p-pluri-sub-harmonic exhaustion functions

The following correspondences come from [6].

Theorem 1.5 [6, Theorem 4.4, Theorem 4.8] Let (X, g) be a Riemannian manifold. Then
X is p-convex (respectively, strictly p-convex) if and only if X admits a smooth proper
exhaustion function u ∈ PSH(1)

p (X, g) [ respectively, u ∈ int(PSH(1)
p (X, g)) ].

1.5 The p-convexity and the q-completeness

All along the definitions of the previous section, the special case that we had in mind is the
following classical construction in Complex Analysis.

In [1], Andreotti and Grauert pointed out the following concept.

Definition 1.6 [1] Let D ⊆ C
n be a domain, and letφ be a smooth real-valued function on D.

The function φ is called p-pluri-sub-harmonic (respectively, strictly p-pluri-sub-harmonic)
if and only if, for any z ∈ D, the Hermitian form defined, for ξ :=: (ξa)a∈{1,...,n} ∈ C

n , as

L(φ)z (ξ) :=
n∑

a,b=1

∂2φ

∂za∂ z̄b
(z) ξa ξb ,

has n − p + 1 non-negative (respectively, positive) eigenvalues.
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A vanishing result for strictly p-convex domains 1073

Andreotti and Grauert [1], studied domains of C
n admitting strictly q-pluri-sub-harmonic

exhaustion functions (the so-called q-complete domains), proving a vanishing theorem for the
higher-degree Dolbeault cohomology groups of such domains; then Andreotti and Vesentini
[2], reproved the same result extending the L2-techniques by Hörmander [8].

Thus, in the same vein as A. Andreotti and H. Grauert, we would consider domains X in R
n

endowed with an exhaustion function u ∈ C∞(X; R) whose Hessian is in int
(
P(1)

p

)
(X, g),

proving a vanishing result for the higher-degree de Rham cohomology groups for strictly
p-convex domains in the sense of F. R. Harvey and H. B. Lawson.

2 Vanishing of the de Rham cohomology for strictly p-convex domains

Let X be an oriented Riemannian manifold of dimension n, and denote by g its Riemannian
metric and by vol its volume. The Riemannian metric g induces, for every x ∈ X , a point-wise
scalar product 〈· |·· 〉gx : ∧• T ∗

x X × ∧•T ∗
x X → R.

Fix φ ∈ C0(X; R) a continuous function. For every ϕ, ψ ∈ C∞
c (X; ∧•T ∗ X), let

〈ϕ |ψ 〉L2
φ

:=
∫

X

〈ϕ |ψ 〉gx
exp (−φ) vol ∈ R ,

and, for k ∈ N, define L2
φ

(
X; ∧k T ∗ X

)
as the completion of the space C∞

c

(
X; ∧k T ∗ X

)

of smooth k-forms with compact support, with respect to the metric induced by ‖·‖L2
φ

:=
〈· | · 〉L2

φ
. Therefore, the space L2

φ

(
X; ∧k T ∗ X

)
is a Hilbert space, endowed with the scalar

product 〈· | ·· 〉L2
φ
, and C∞

c

(
X; ∧k T ∗ X

)
is dense in L2

φ

(
X; ∧k T ∗ X

)
. For any k ∈ N, let

L2
loc

(
X; ∧k T ∗ X

)
denote the space of k-forms f whose restriction f �K to every compact set

K ⊆ X belongs to L2
(
K ; ∧k T ∗ X

)
.

For every φ1, φ2 ∈ C0(X; R), the operator

d : L2
φ1

(
X; ∧•T ∗ X

)
��� L2

φ2

(
X; ∧•+1T ∗ X

)

is densely defined and closed; denote by

d∗
φ2, φ1

: L2
φ2

(
X; ∧•+1T ∗ X

)
��� L2

φ1

(
X; ∧•T ∗ X

)

its adjoint, which is a densely defined closed operator.
Recall that on a domain X in R

n , fixed k ∈ N, s ∈ N, and φ ∈ C∞ (X; R), the Sobolev

space W s,2
φ

(
X; ∧k T ∗ X

)
is the space of k-forms f :=: ∑̃|I |=k f I dx I such that ∂�1+···+�n f I

∂�1 x1···∂�n xn ∈
L2
φ

(
X; ∧k T ∗ X

)
for every multi-index (�1, . . . , �n) ∈ N

n such that �1 + · · · + �n ≤ s and

for every strictly increasing multi-index I such that |I | = k. The space W s,2
loc

(
X; ∧k T ∗ X

)

is defined as the space of k-forms f whose restriction f �K to every compact set K ⊆ X
belongs to W s,2

(
K ; ∧k T ∗ X

)
.

As a matter of notation, the symbol
∑̃

|I |=k denotes the sum over the strictly increasing

multi-indices I :=: (i1, . . . , ik) ∈ N
k (that is, the multi-indices such that 0 < i1 < · · · < ik)

of length k. Given I1 and I2 two multi-indices of length k, let sign

(
I1

I2

)
be the sign of the

permutation

(
I1

I2

)
if I1 is a permutation of I2 and zero otherwise.
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1074 D. Angella, S. Calamai

2.1 Some preliminary computations

Let X be a domain in R
n , that is, an open connected subset of R

n endowed with the metric
and the volume induced, respectively, by the Euclidean metric and the standard volume of
R

n .
For φ1, φ2 ∈ C∞ (X; R), consider d : L2

φ1

(
X; ∧k−1T ∗ X

)
��� L2

φ2

(
X; ∧k T ∗ X

)
. The

following lemma gives an explicit expression of the adjoint d∗
φ2, φ1

: L2
φ2

(
X; ∧k T ∗ X

)
���

L2
φ1

(
X; ∧k−1T ∗ X

)
(compare, e.g., with [3, §8.2.1], [5, Lemma O.2] in the complex case).

Lemma 2.1 Let X be a domain in R
n. Let φ1, φ2 ∈ C∞ (X; R) and consider

Let

v :=:
∑̃

|I |=k

vI dx I ∈ L2
φ2

(
X; ∧k T ∗ X

)

and suppose that v ∈ dom d∗
φ2, φ1

. Then

d∗
φ2, φ1

v = exp (φ1) d∗
0, 0 (exp (−φ2) v)

=
∑̃

|J |=k−1

⎛

⎝− exp (φ1)
∑̃

|I |=k

n∑

�=1

sign

(
�J
I

)
∂ (vI exp (−φ2) )

∂x�

⎞

⎠ dx J .

Proof By definition of d∗
φ2, φ1

, for every u ∈ dom d, one has 〈du | v 〉L2
φ2

=
〈
u
∣∣∣ d∗
φ2, φ1

v
〉

L2
φ1

.

Hence, consider

u :=:
∑̃

|J |=k−1

u J dx J ∈ C∞
c

(
X; ∧k−1T ∗ X

)
,

and compute

du =
∑̃

|J |=k−1
|I |=k

n∑

�=1

sign

(
�J
I

)
∂u J

∂x�
dx I .

The statement follows by computing

〈du | v 〉L2
φ2

=
∫

X

∑̃

|J |=k−1
|I |=k

n∑

�=1

sign

(
�J
I

)
∂u J

∂x�
vI exp (−φ2) vol

= −
∫

X

∑̃

|J |=k−1
|I |=k

n∑

�=1

sign

(
�J
I

)
∂ (vI exp (−φ2) )

∂x�
u J vol

and
〈
u
∣∣∣ d∗
φ2, φ1

v
〉

L2
φ1

=
∫

X

∑̃

|J |=k−1

(
d∗
φ2, φ1

v
)

J
u J exp (−φ1) vol ,
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A vanishing result for strictly p-convex domains 1075

where d∗
φ2, φ1

v =: ∑̃|J |=k−1

(
d∗
φ2, φ1

v
)

J
dx J . ��

For any fixed φ ∈ C∞ (X; R) and for any j ∈ {1, . . . , n}, define the operator

δ
φ
j : C∞ (X; R) → C∞ (X; R) ,

where

δ
φ
j ( f ) := − exp (φ)

∂ ( f exp (−φ) )
∂x j

= ∂φ

∂x j
· f − ∂ f

∂x j
.

The following lemma states that δφj is the adjoint of ∂
∂x j in L2

φ

(
X; ∧0T ∗ X

)
and computes

the commutator between δφj and ∂
∂xk (compare with, e.g., [8, pages 83–84]).

Lemma 2.2 Let X be a domain in R
n. Let φ ∈ C∞ (X; R) and j ∈ {1, . . . , n}, and consider

the operator δφj : C∞ (X; R) → C∞ (X; R). Then:

• for every w1, w2 ∈ C∞
c (X; R),

∫

X

w1 · ∂w2

∂xk
exp (−φ) vol =

∫

X

δ
φ
k (w1) · w2 exp (−φ) vol ;

• for any k ∈ {1, . . . , n}, the following commutation formula holds in End
(C∞

c (X; R)
)
:

[
δ
φ
j ,

∂

∂xk

]
= − ∂2φ

∂x j∂xk
· .

Finally, we prove the following estimate, which will be used in the proof of Theorem
3.1 (we refer to [8, Sect. 4.2], or, e.g., [5, Lemma O.3] and [3, Sect. 8.3.1] for its complex
counterpart).

Proposition 2.3 Let X be a domain in R
n and φ, ψ ∈ C∞ (X; R). Consider

Then, for any η :=: ∑̃|I |=kηI dx I ∈ C∞
c

(
X; ∧k T ∗ X

)
, one has

∫

X

∑̃

|J |=k−1
|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂2φ

∂x�1 ∂x�2
ηI1 ηI2 exp (−φ) vol

≤ C ·
⎛

⎝
∥∥∥d∗
φ−ψ, φ−2ψη

∥∥∥
2

L2
φ−2ψ

+ ‖dη‖2
L2
φ

+
∫

X

∑̃

|I |=k

n∑

�=1

∣∣∣∣
∂ψ

∂x�

∣∣∣∣

2

|ηI |2 exp (−φ) vol

⎞

⎠ ,

where C :=: C(k, n) ∈ N is a constant depending just on k and n.

Proof It is straightforward to compute

dη =
∑̃

|I |=k
|H |=k+1

n∑

�=1

sign

(
�I
H

)
∂ηI

∂x�
dx H
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1076 D. Angella, S. Calamai

and, using Lemma 2.1,

d∗
φ−ψ, φ−2ψη = − exp (−ψ)

∑̃

|J |=k−1
|I |=k

n∑

�=1

sign

(
�J
I

) (
∂ηI

∂x�
− ∂ (φ − ψ)

∂x�
ηI

)
dx J

= exp (−ψ)
∑̃

|J |=k−1
|I |=k

n∑

�=1

sign

(
�J
I

) (
δ
φ
� (ηI )− ∂ψ

∂x�
ηI

)
dx J .

For every J such that |J | = k − 1, the previous equality gives

∑̃

|I |=k

n∑

�=1

sign

(
�J
I

)
δ
φ
� (ηI ) = exp (ψ)

(
d∗
φ−ψ, φ−2ψη

)

J
+

∑̃

|I |=k

n∑

�=1

sign

(
�J
I

)
∂ψ

∂x�
ηI ,

where d∗
φ−ψ, φ−2ψη =: ∑̃|J |=k−1

(
d∗
φ−ψ, φ−2ψη

)

J
dx J .

By the arithmetic mean–geometric mean inequality, one gets

∫

X

∑̃

|J |=k−1

∣∣∣∣∣∣

∑̃

|I |=k

n∑

�=1

sign

(
�J
I

)
δ
φ
� (ηI )

∣∣∣∣∣∣

2

exp (−φ) vol

≤ 2
∫

X

∑̃

|J |=k−1

(∣∣∣
(

d∗
φ−ψ, φ−2ψη

)

J

∣∣∣
2

exp (2ψ)

+
∣∣∣∣∣∣

∑̃

|I |=k

n∑

�=1

sign

(
�J
I

)
∂ψ

∂x�
ηI

∣∣∣∣∣∣

2
⎞

⎟
⎠ exp (−φ) vol

≤ C

⎛

⎝
∥∥∥d∗
φ−ψ, φ−2ψη

∥∥∥
2

L2
φ−2ψ

+
∫

X

∑̃

|I |=k

n∑

�=1

∣∣∣∣
∂ψ

∂x�

∣∣∣∣

2

· |ηI |2 exp (−φ) vol

⎞

⎠ , (1)

where C :=: C(k, n) ∈ N depends on k and n only.
Now, using Lemma 2.2, one computes

∫

X

∑̃

|J |=k−1

∣∣∣∣∣∣

∑̃

|I |=k

n∑

�=1

sign

(
�J
I

)
δ
φ
� (ηI )

∣∣∣∣∣∣

2

exp (−φ) vol

=
∑̃

|J |=k−1

∑̃

|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

) ∫

X

δ
φ
�1

(
ηI1

) · δφ�2

(
ηI2

)
exp (−φ) vol

=
∑̃

|J |=k−1
|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)

×
∫

X

(
∂ηI1

∂x�2

∂ηI2

∂x�1
+ ∂2φ

∂x�1 ∂x�2
ηI1 ηI2

)
exp (−φ) vol. (2)
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A vanishing result for strictly p-convex domains 1077

Now, note that

|dη|2 =
∑̃

|H |=k+1

∣
∣
∣
∣
∣
∣

∑̃

|I |=k

n∑

�=1

sign

(
�I
H

)
∂ηI

∂x�

∣
∣
∣
∣
∣
∣

2

=
∑̃

|H |=k+1

⎛

⎜
⎜
⎝

∑̃

|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 I1

H

)
sign

(
�2 I2

H

)
∂ηI1

∂x�1

∂ηI2

∂x�2

⎞

⎟
⎟
⎠

=
∑̃

|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 I1

�2 I2

)
∂ηI1

∂x�1

∂ηI2

∂x�2

=
∑̃

|I |=k

n∑

�=1

∣
∣
∣
∣
∂ηI

∂x�

∣
∣
∣
∣

2

−
∑̃

|J |=k−1
|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂ηI1

∂x�2

∂ηI2

∂x�1
. (3)

Hence, in view of (3), (2), (1), we get

∫

X

∑̃

|J |=k−1
|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂2φ

∂x�1 ∂x�2
ηI1 ηI2 exp (−φ) vol

≤
∫

X

⎛

⎜⎜⎜⎜
⎝

∑̃

|J |=k−1
|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂2φ

∂x�1 ∂x�2
ηI1 ηI2

+
∑̃

|I |=k

n∑

�=1

∣∣∣∣
∂ηI

∂x�

∣∣∣∣

2

⎞

⎟⎟⎟⎟
⎠

exp (−φ) vol

=
∫

X

⎛

⎜
⎝

∑̃

|J |=k−1

∣∣∣∣∣∣

∑̃

|I |=k

n∑

�=1

sign

(
�J
I

)
δ
φ
� (ηI )

∣∣∣∣∣∣

2

+
∑̃

|H |=k+1

∣∣(dη)H

∣∣2

⎞

⎟
⎠ exp (−φ) vol

≤ C ·
⎛

⎝
∥∥∥d∗
φ−ψ, φ−2ψη

∥∥∥
2

L2
φ−2ψ

+ ‖dη‖2
L2
φ

+
∫

X

∑̃

|I |=k

n∑

�=1

∣∣∣∣
∂ψ

∂x�

∣∣∣∣

2

|ηI |2 exp (−φ) vol

⎞

⎠ ,

concluding the proof. ��

Remark 2.4 The argument in the proof of Proposition 2.3 actually proves the following
stronger estimate, which will be used in the regularization process in Theorem 3.1.

Let X be a domain in R
n and φ, ψ ∈ C∞ (X; R). Consider
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1078 D. Angella, S. Calamai

Then, for any η :=: ∑̃|I |=kηI dx I ∈ C∞
c

(
X; ∧k T ∗ X

)
, one has

∫

X

⎛

⎜
⎜
⎜
⎜
⎝

∑̃

|J |=k−1
|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂2φ

∂x�1 ∂x�2
ηI1 ηI2

+
∑̃

|I |=k

n∑

�=1

∣
∣
∣
∣
∂ηI

∂x�

∣
∣
∣
∣

2

⎞

⎟
⎟
⎟
⎟
⎠

exp (−φ) vol

≤ C ·
⎛

⎝
∥∥∥d∗
φ−ψ, φ−2ψη

∥∥∥
2

L2
φ−2ψ

+ ‖dη‖2
L2
φ

+
∫

X

∑̃

|I |=k

n∑

�=1

∣∣∣∣
∂ψ

∂x�

∣∣∣∣

2

|ηI |2 exp (−φ) vol

⎞

⎠ ,

where C :=: C(k, n) ∈ N is a constant depending just on k and n.

3 Proof of the main theorem

We are ready to prove the following vanishing theorem for the higher-degree de Rham
cohomology groups of a strictly p-convex domain in R

n (for a different proof, involving
Morse theory, compare [9, Theorem 1] by Sha, and [10, Theorem 1] by Wu, see also [7,
Proposition 5.7]).

Theorem 3.1 Let X be a strictly p-convex domain in R
n. Then Hk

d R(X; R) = {0} for every
k ≥ p.

Proof We are going to prove that every d-closed k-form η ∈ C∞ (
X; ∧k T ∗ X

)
is d-exact,

namely, there exists α ∈ C∞ (
X; ∧k−1T ∗ X

)
such that η = dα; the statement of the theorem

is a direct consequence of this result. Let us split the proof in the following steps.
Step 1—Definitions of the weight functions and other notations. Being X a strictly

p-convex domain in R
n , by Harvey and Lawson’s [6, Theorem 4.8] (see also [7, Theorem

5.4]), there exists a smooth proper strictly p-pluri-sub-harmonic exhaustion function

ρ ∈ int
(

PSH(1)p (X, g)
)

∩ C∞ (X; R) ,

where g is the metric on X induced by the Euclidean metric on R
n .

For every m ∈ N, consider the compact set

K (m) := {x ∈ X : ρ(x) ≤ m} ,
and define

L(m) := min
K (m)

λ
[k]
1 > 0 ,
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where, for every x ∈ X , the real numbers λ[k]
1 (x) ≤ · · · ≤ λ

[k]
(n

k)
(x) are the ordered eigen-

values of D[k]
g−1Hess ρ(x)

∈ Hom
(∧k Tx X, ∧k Tx X

)
, and λ1(x) ≤ · · · ≤ λn(x) are the ordered

eigenvalues of g−1Hess ρ(x) ∈ Hom (Tx X, Tx X); indeed, note that, for every x ∈ X ,

λ
[k]
1 (x) = λ1(x)+ · · · + λk(x) ≥ λ1(x)+ · · · + λp(x) > 0 ,

being ρ strictly p-pluri-sub-harmonic and that the function X � x �→ λ
[k]
1 (x) ∈ R is

continuous.
Fix {ρν}ν∈N ⊂ C∞

c (X; R) such that (i) 0 ≤ ρν ≤ 1 for every ν ∈ N, and (ii) for every
compact set K ⊆ X , there exists ν0 :=: ν0(K ) ∈ N such that ρν�K = 1 for every ν ≥ ν0.

Then, we can choose ψ ∈ C∞ (X; R) such that for every ν ∈ N,

|dρν |2 ≤ exp (ψ) .

For every m ∈ N, set

γ (m) := max
K (m)

(
C · |dψ |2 + exp (ψ)

)
,

where C :=: C(n, k) is the constant in Proposition 2.3.

Fix χ ∈ C∞ (R; R) such that (i)χ ′ > 0, (i i)χ ′′ > 0, and (i i i)χ ′�(−∞,m]>
γ (m)

L(m)
, for every

m ∈ N. Define

φ := χ ◦ ρ :

then, φ ∈ int
(

PSH(1)p (X, g)
)

∩ C∞ (X; R); furthermore

∂2φ

∂x�1∂x�2
= χ ′′ ◦ ρ · ∂ρ

∂x�1
· ∂ρ

∂x�2
+ χ ′ ◦ ρ · ∂2ρ

∂x�1∂x�2
.

Choose μ ∈ C∞ (X; R) such that, for every m ∈ N,

χ ′ ◦ ρ�K (m) ·L(m) ≥ μ�K (m) ≥ γ (m) .

Step 2—For everyη ∈ C∞
c

(
X; ∧k T ∗ X

)
, it holds‖η‖2

L2
φ−ψ

≤ C ·
(∥∥∥d∗

φ−ψ, φ−2ψη

∥∥∥
2

L2
φ−2ψ

+

‖dη‖2
L2
φ

)
. Since

D[k]
g−1Hess ρ

=
⎛

⎝
∑̃

|J |=k−1

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂2ρ

∂x�1∂x�2

⎞

⎠

I1,I2

∈ Hom
(
∧k T X, ∧k T X

)
,
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one estimates

∑̃

|J |=k−1
|I1|=k
|I1|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂2φ

∂x�1∂x�2
ηI1 ηI2

=
∑̃

|J |=k−1
|I1|=k
|I1|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
χ ′′ ◦ ρ · ∂ρ

∂x�1

∂ρ

∂x�2
ηI1 ηI2

+
∑̃

|J |=k−1
|I1|=k
|I1|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
χ ′ ◦ ρ · ∂2ρ

∂x�1∂x�2
ηI1 ηI2

=
∑̃

|J |=k−1

χ ′′ ◦ ρ ·
∣
∣
∣∣
∣
∣

∑̃

|I |=k

n∑

�=1

sign

(
�J
I

)
∂ρ

∂x�
ηI

∣
∣
∣∣
∣
∣

2

+ χ ′ ◦ ρ ·
∑̃

|J |=k−1
|I1|=k
|I1|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂2ρ

∂x�1∂x�2
ηI1 ηI2

≥ χ ′ ◦ ρ · λ[k]
1 (x) ·

∑̃

|I |=k

|ηI |2

≥ μ ·
∑̃

|I |=k

|ηI |2 .

Hence, using Proposition 2.3, we get that, for every η ∈ C∞
c

(
X; ∧k T ∗ X

)
,

‖η‖2
L2
φ−ψ

=
∫

X

∑̃

|I |=k

|ηI |2 exp (− (φ − ψ)) vol

≤
∫

X

∑̃

|I |=k

(

μ− C ·
n∑

�=1

∣∣∣∣
∂ψ

∂x�

∣∣∣∣

2
)

· |ηI |2 exp (−φ) vol

≤
∫

X

⎛

⎜⎜⎜⎜
⎝

∑̃

|J |=k−1
|I1|=k
|I2|=k

n∑

�1, �2=1

sign

(
�1 J
I1

)
sign

(
�2 J
I2

)
∂2φ

∂x�1 ∂x�2
ηI1 ηI2

−C ·
∑̃

|I |=k

n∑

�=1

∣∣∣∣
∂ψ

∂x�

∣∣∣∣

2

|ηI |2
⎞

⎠ exp (−φ) vol

≤ C ·
(∥∥∥d∗

φ−ψ, φ−2ψη

∥∥∥
2

L2
φ−2ψ

+ ‖dη‖2
L2
φ

)
,

where C :=: C(k, n) ∈ N is the constant in Proposition 2.3, depending just on k and n.
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Step 3—C∞
c

(
X; ∧k T ∗ X

)
is dense in

(
dom d ∩ dom d∗

φ−ψ, φ−2ψ, ‖·‖L2
φ−ψ

+
∥
∥
∥d∗
φ−ψ, φ−2ψ ·

∥
∥
∥

L2
φ−2ψ

+ ‖d·‖L2
φ

)
. Consider

Fix η ∈ dom d ∩ dom d∗
φ−ψ, φ−2ψ ⊆ L2

φ−ψ
(
X; ∧k T ∗ X

)
. Firstly, we prove that

{ρν η}ν∈N ⊂ dom d ∩ dom d∗
φ−ψ, φ−2ψ ⊆ L2

φ−ψ
(
X; ∧k T ∗ X

)
(where {ρν}ν∈N ⊂ C∞

c (X; R)

has been defined in Step 1) is a sequence of functions having compact support and converging

to η in the graph norm ‖·‖L2
φ−ψ

+
∥
∥
∥d∗
φ−ψ, φ−2ψ ·

∥
∥
∥

L2
φ−2ψ

+ ‖d·‖L2
φ
. Indeed,

|d (ρν η)− ρν dη|2 exp (−φ) = |η|2 · |dρν |2 exp (−φ)
≤ |η|2 exp (− (φ − ψ)) ∈ L2

(
X; ∧k T ∗ X

)
,

hence, by Lebesgue’s dominated convergence theorem, ‖d (ρν η)− ρν dη‖L2
φ

→ 0 as ν →
+∞. Furthermore, for every ν ∈ N, note that ρν η ∈ dom d∗

φ−ψ, φ−2ψ , since the map

L2
φ−2ψ

(
X; ∧k−1T ∗ X

)
⊇ dom d � u �→ 〈ρν η | du 〉L2

φ−ψ
∈ R

is continuous, being

〈ρν η | du 〉L2
φ−ψ

= 〈η | d (ρν u) 〉L2
φ−ψ

− 〈η | dρν ∧ u 〉L2
φ−ψ

=
〈
ρν d∗

φ−ψ, φ−2ψη | u
〉

L2
φ−2ψ

− 〈η | dρν ∧ u 〉L2
φ−ψ

,

hence, by the Riesz representation theorem, there exists η̃ =: d∗
φ−ψ, φ−2ψ (ρν η) ∈

L2
φ−2ψ

(
X; ∧k−1T ∗ X

)
such that, for every u ∈ dom d ⊆ L2

φ−2ψ

(
X; ∧k−1T ∗ X

)
, it

holds 〈ρν η | du 〉L2
φ−ψ

= 〈η̃ | u 〉L2
φ−2ψ

. Lastly, note that, for every u ∈ dom d ⊆
L2
φ−2ψ

(
X; ∧k−1T ∗ X

)
,

∣∣∣∣
〈
d∗
φ−ψ, φ−2ψ (ρν η)− ρν d∗

φ−ψ, φ−2ψ η | u
〉

L2
φ−2ψ

∣∣∣∣

=
∣∣∣∣〈ρν η | du 〉L2

φ−ψ
−

〈
d∗
φ−ψ, φ−2ψη | ρν u

〉

L2
φ−2ψ

∣∣∣∣

=
∣∣∣〈η | dρν ∧ u 〉L2

φ−ψ

∣∣∣

≤ ‖η‖L2
φ−ψ

· ‖dρν ∧ u‖L2
φ−ψ

,

hence, by Lebesgue’s dominated convergence theorem,
∥∥∥d∗
φ−ψ, φ−2ψ (ρν η) −

ρν d∗
φ−ψ, φ−2ψη

∥∥∥
L2
φ−2ψ

→ 0 as ν → +∞. This shows that ρν η → η as ν → +∞ with

respect to the graph norm.
Hence, we may suppose that η ∈ dom d ∩ dom d∗

φ−ψ, φ−2ψ ⊆ L2
φ−ψ

(
X; ∧k T ∗ X

)
has

compact support. Let {�ε}ε∈R ⊆ C∞ (Rn; R) be a family of positive mollifiers, that is,
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�ε := ε−n �
( ·
ε

)
, where (i)� ∈ C∞

c (Rn; R) , (i i)
∫

Rn �volRn = 1, (i i i) limε→0 �ε = δ,
where δ is the Dirac delta function, and (iv)� ≥ 0.

Consider the convolution {η ∗�ε}ε∈R ⊂ C∞
c

(
X; ∧k T ∗ X

)
; we prove that η ∗�ε → η as

ε → 0 with respect to the graph norm. Clearly, ‖η − η ∗�ε‖L2
φ−ψ

→ 0 as ε → 0. Since

d (η ∗�ε) = dη ∗�ε, one has that ‖d (η ∗�ε)− dη‖L2
φ

→ 0 as ε → 0. Lastly, write

d∗
φ−ψ, φ−2ψ = exp (−ψ) (d∗

0, 0 + Aφ−ψ, φ−2ψ
)
,

where d∗
0, 0 is a differential operator with constant coefficients, and Aφ−ψ, φ−2ψ is a differ-

ential operator of order zero defined, for every v ∈ L2
φ−ψ

(
X; ∧k T ∗ X

)
, as

Aφ−ψ, φ−2ψ (v) :=
∑̃

|J |=k−1
|I |=k

n∑

�=1

sign

(
�J
I

)
∂ (φ − ψ)

∂x�
· ηdx J ;

hence
(
d∗

0, 0 + Aφ−ψ, φ−2ψ
)
(η ∗�ε)

= ((
d∗

0, 0 + Aφ−ψ, φ−2ψ
)
(η)

) ∗�ε − (
Aφ−ψ, φ−2ψη

) ∗�ε + Aφ−ψ, φ−2ψ (η ∗�ε)
→ (

d∗
0, 0 + Aφ−ψ, φ−2ψ

)
(η)

as ε → 0 in L2
φ−2ψ

(
X; ∧k−1T ∗ X

)
; having η compact support, it follows that d∗

φ−ψ, φ−2ψ

(η ∗�ε) → d∗
φ−ψ, φ−2ψ (η) as ε → 0 in L2

φ−2ψ

(
X; ∧k−1T ∗ X

)
.

Step 4—If ‖η‖2
L2
φ−ψ

≤ C ·
(∥∥∥d∗

φ−ψ, φ−2ψη

∥∥∥
2

L2
φ−2ψ

+ ‖dη‖2
L2
φ

)
holds for every

C∞
c

(
X; ∧k T ∗ X

)
, then it holds for every η ∈ dom d ∩ dom d∗

φ−ψ, φ−2ψ . Let η ∈
dom d ∩ dom d∗

φ−ψ, φ−2ψ . By Step 3, take
{
η j

}
j∈N

⊂ C∞
c

(
X; ∧k T ∗ X

)
such that

η j → η as j → +∞ in the graph norm. Since, for every j ∈ N, one has
∥∥η j

∥∥2
L2
φ−ψ

≤ C ·
(∥∥∥d∗

φ−ψ, φ−2ψη j

∥∥∥
2

L2
φ−2ψ

+ ∥∥dη j
∥∥2

L2
φ

)
, and since

∥∥η j − η
∥∥

L2
φ−ψ

→ 0,
∥∥∥d∗
φ−ψ, φ−2ψη j − d∗

φ−ψ, φ−2ψη

∥∥∥
L2
φ−2ψ

→ 0 and
∥∥dη j − dη

∥∥
L2
φ

→ 0 as j → +∞, we

get that also ‖η‖2
L2
φ−ψ

≤ C ·
(∥∥∥d∗

φ−ψ, φ−2ψη

∥∥∥
2

L2
φ−2ψ

+ ‖dη‖2
L2
φ

)
.

Step 5—Existence of a solution in L2
loc

(
X; ∧kT∗X

)
. We prove here that the operator

d : L2
φ−2ψ

(
X; ∧k−1T ∗ X

)
��� ker

(
d : L2

φ−ψ
(

X; ∧k T ∗ X
)

��� L2
φ

(
X; ∧k+1T ∗ X

))

is surjective, hence, for every η ∈ ker
(

d : L2
φ−ψ

(
X; ∧k T ∗ X

)
��� L2

φ

(
X; ∧k+1T ∗ X

))
, the

equation dα = η has a solution α in L2
φ−ψ

(
X; ∧k−1T ∗ X

) ⊆ L2
loc

(
X; ∧k−1T ∗ X

)
.

We recall (see, e.g., [8, Lemma 4.1.1]) that given two Hilbert spaces
(

H1, 〈· | ·· 〉L2
H1

)
and

(
H2, 〈· | ·· 〉L2

H2

)
, and a densely defined closed operator T : H1 ��� H2, whose adjoint is

T ∗ : H2 ��� H1, if F ⊆ H2 is a closed subspace such that im T ⊆ F , then the following
conditions are equivalent:

(i) im T = F ;
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(ii) there exists C > 0 such that, for every y ∈ dom T ∗ ∩ F ,

‖y‖L2
H2

≤ C · ∥∥T ∗y
∥
∥

L2
H1
.

Hence, consider

d : L2
φ−2ψ

(
X; ∧k−1T ∗ X

)
��� L2

φ−ψ
(

X; ∧k T ∗ X
)

and

L2
φ−ψ

(
X; ∧k T ∗ X

)
⊇ F := ker

(
d : L2

φ−ψ
(

X; ∧k T ∗ X
)

��� L2
φ

(
X; ∧k+1T ∗ X

))

⊇ im
(

d : L2
ψ−2ψ

(
X; ∧k−1T ∗ X

)
��� L2

φ−ψ
(

X; ∧k T ∗ X
))

.

By Step 4, for every η ∈ dom d∗
φ−ψ, φ−2ψ ∩ F ⊆ dom d ∩ dom d∗

φ−ψ, φ−2ψ , it holds that

‖η‖2
L2
φ−ψ

≤ C
∥
∥
∥d∗
φ−ψ, φ−2ψη

∥
∥
∥

2

L2
φ−2ψ

,

from which it follows that

F = im
(

d : L2
ψ−2ψ

(
X; ∧k−1T ∗ X

)
��� L2

φ−ψ
(

X; ∧k T ∗ X
))

.

Step 6—Sobolev regularity of the solutions with compact support. We prove that, for
every α ∈ L2

(
X; ∧k−1T ∗ X

)
with compact support, if dα ∈ L2

(
X; ∧k T ∗ X

)
and d∗

0, 0α ∈
L2

(
X; ∧k−2T ∗ X

)
, then α ∈ W 1,2

(
X; ∧k−1T ∗ X

)
. Indeed, take {�ε}ε∈R a family of positive

mollifiers and, for every ε ∈ R, consider α ∗�ε ∈ C∞
c

(
X; ∧k−1T ∗ X

)
; by Remark 2.4 with

φ := 0 and ψ := 0, we get that, for any multi-index I such that |I | = k − 1 and for any
� ∈ {1, . . . , n},

∫

X

∣∣∣∣
∂ (αI ∗�ε)

∂x�

∣∣∣∣

2

vol ≤ C ·
(∥∥d∗

0, 0 (α ∗�ε)
∥∥2

L2 + ‖d (α ∗�ε)‖2
L2

)
,

where C :=:C(k, n) is a constant depending just on k and n; since, for every multi-index I such

that |I | = k−1, and for every � ∈ {1, . . . , n}, it holds that limε→0
∫

X

∣∣∣ ∂(αI ∗�ε)
∂x�

− ∂αI
∂x�

∣∣∣
2

vol =
limε→0

∥∥∥d∗
0, 0 (α ∗�ε)− d∗

0, 0α

∥∥∥
L2

= limε→0 ‖d(α ∗�ε)− dα‖L2 = 0, we get that

∫

X

∣∣∣∣
∂αI

∂x�

∣∣∣∣

2

vol ≤ C ·
(∥∥d∗

0, 0α
∥∥2

L2 + ‖dα‖2
L2

)
,

proving the claim.
Step 7—Regularization of the solution. By Step 5, if η ∈ C∞ (

X; ∧k T ∗ X
)

is such that
dη = 0, then the equation dα = η has a solution α ∈ L2

loc

(
X; ∧k−1T ∗ X

)
; we prove that

actually α ∈ C∞ (
X; ∧k−1T ∗ X

)
.

Note that we may suppose that the solution α ∈ L2
loc

(
X; ∧k−1T ∗ X

)
satisfies

α ∈ (ker d)
⊥

L2
loc(X;∧k−1T ∗ X) = im d∗

0, 0 = im d∗
0, 0 ⊆ ker d∗

0, 0 ;
hence, α satisfies the system of differential equation

{
dα = η

d∗
0, 0α = 0

.
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We prove, by induction on s ∈ N, that α ∈ W s,2
loc

(
X; ∧k−1T ∗ X

)
for every s ∈ N. Indeed,

we have by Step 5 that α ∈ W 0,2
loc

(
X; ∧k−1T ∗ X

) = L2
loc

(
X; ∧k−1T ∗ X

)
. Suppose now

that α ∈ W s,2
loc

(
X; ∧k−1T ∗ X

)
and prove that α ∈ W s+1,2

loc

(
X; ∧k−1T ∗ X

)
. Clearly, η ∈

C∞ (
X; ∧k T ∗ X

) ⊆ W σ,2
loc

(
X; ∧k T ∗ X

)
for every σ ∈ N. Take K a compact subset of X , and

choose χ̂ ∈ C∞
c (X; R) such that suppχ̂ ⊃ K . For any multi-index L :=: (�1, . . . , �n) ∈ N

n

such that �1 + · · · + �n = s, being

d

(
χ̂ · ∂sα

∂�1 x1 · · · ∂�n xn

)
= dχ̂ ∧ ∂sα

∂�1 x1 · · · ∂�n xn
+χ̂ · ∂sη

∂�1 x1 · · · ∂�n xn
∈ L2

(
K ; ∧k T ∗ X

)

and

d∗
0, 0

(
χ̂ · ∂sα

∂�1 x1 . . . ∂�n xn

)
= −

∑̃

|J |=k−1
|I |=k

n∑

�=1

sign

(
�J
I

)
∂χ̂

∂x�
· ∂sαI

∂�1 x1 . . . ∂�n xn
dx J

∈ L2
(

K ; ∧k−2T ∗ X
)

we get that χ̂ · ∂sα

∂�1 x1...∂�n xn ∈ W 1,2
(
K ; ∧k−1T ∗ X

)
, that is, α ∈ W s+1,2

(
K ; ∧k−1T ∗ X

)
.

Hence, α ∈ W s+1,2
loc

(
X; ∧k−1T ∗ X

)
. Since W σ,2

loc

(
X; ∧k−1T ∗ X

)
↪→ Cm

(
X; ∧k−1T ∗ X

)
for

every 0 ≤ m < σ − n
2 , see [4, Corollary 7.11], we get that α ∈ C∞ (

X; ∧k−1T ∗ X
)
,

concluding the proof of the theorem. ��
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