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Abstract

We give a notion of BV function on an oriented manifold where a volume form and a family of lower semicontinuous quadratic
forms Gp :TpM → [0,∞] are given. When we consider sub-Riemannian manifolds, our definition coincides with the one given
in the more general context of metric measure spaces which are doubling and support a Poincaré inequality. We focus on finite
perimeter sets, i.e., sets whose characteristic function is BV, in sub-Riemannian manifolds. Under an assumption on the nilpotent
approximation, we prove a blowup theorem, generalizing the one obtained for step-2 Carnot groups in [24].
© 2014 Elsevier Masson SAS. All rights reserved.

1. Introduction

Sub-Riemannian manifolds are a class of length spaces of non-Euclidean type having a differentiable structure. Our
interest in studying functions of bounded variation in this framework arises from the aim of understanding the structure
of finite perimeter sets in the general sub-Riemannian setting. This clearly requires suitable notions of “intrinsically
regular” hypersurfaces, rectifiability, reduced boundary and blowups.

Sobolev and BV functions have been investigated in Rn endowed with the Lebesgue measure and with the Carnot–
Carathéodory distance dcc associated with a family of vector fields. Under the assumption that the family is Lie bracket
generating, the Lebesgue measure is doubling with respect to the Carnot–Carathéodory distance [37], a Poincaré in-
equality holds [30] and (Rn, dcc) is complete [16]. These are the main assumptions which enable the authors in [25]
to establish Sobolev and isoperimetric inequalities as well as an approximation theorem of Meyers–Serrin type (see
also [22] for a related result with weaker regularity assumptions on the vector fields).
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Our main goal is to develop a systematic theory of BV functions and sets of finite perimeter in manifolds with
suitable structures. To this aim, one needs two ingredients: first a volume measure (with respect to which an integration
by parts formula will hold); second a notion of length of tangent vectors (along which one calculates distributional
derivatives). For the volume measure, when a manifold M is oriented, it suffices to take a non-degenerate n-form ω

which induces the orientation of M (where n = dimM) and consider the measure m defined on Borel sets B ⊂ M by
m(B) = ∫

B
ω. Given an open set Ω ⊂ M and a vector field X, a function u ∈ L1(Ω,m) has distributional derivative

along X if there exists a Radon measure DXu on Ω such that∫
Ω

ϕ dDX u = −
∫
Ω

uϕ divω Xω −
∫
Ω

u(Xϕ)ω, ∀ϕ ∈ C∞
c (Ω),

where divω X is defined in (5). To define the length of tangent vectors, we use a family of lower semicontinuous
quadratic forms Gp :TpM → [0,∞] defined on the tangent bundle of M . Note that the dimension of the vector space
D(p) = {v ∈ TpM | Gp(v) < ∞} may vary with respect to the point. Taking this into account, it is natural to say that
a function u ∈ L1(Ω,m) has bounded variation in Ω if, for every smooth vector field X such that Gp(X(p)) � 1,
p ∈ Ω , the distributional derivative DXu is a Radon measure of finite total variation in Ω and

‖Dgu‖(Ω) := sup |DXu|(Ω) < ∞, (1)

the supremum being taken among all smooth vector fields such that G(X) � 1 on Ω . Thus, we write u ∈ BV(Ω,g,ω),
where g is the scalar product associated with G. More precisely, for each p ∈ M we have that gp(·,·) is the unique
scalar product on D(p) such that gp(v, v) = Gp(v) for every v ∈D(p), Section 2.3 for more information.

In this quite general setting, distributional derivatives can be weakly approximated by derivatives of smooth func-
tions, that is, a Meyers–Serrin theorem holds (see Theorem 2.4). Moreover, the fact that DXu is a Radon measure
with finite bounded variation is characterized in terms of difference quotients along the flow generated by X (see
Theorem 2.5). Using G, one can define the Carnot–Carathéodory distance dcc between points of M as the infimum
of lengths of absolutely continuous curves connecting the two points, where length of tangent vectors is computed
with respect to G. When dcc is finite, (M,dcc,m) is a metric measure space. It is then natural to compare the space
BV(Ω,g,ω) with the notion of BV function in a metric measure space developed in [7,36] (see also [6]). Without
further assumptions, we can only show that BV(Ω,dcc,m) is embedded in BV(Ω,g,ω) (see Theorem 2.7).

Oriented sub-Riemannian manifolds, where G is induced locally by bracket generating families of vector fields,
cast in the framework above. In this case, on coordinate charts, G is given by

Gp(v) = inf

{
m∑

i=1

c2
i

∣∣∣ v =
m∑

i=1

ciXi(p)

}
(with the convention inf∅ = ∞) where X1, . . . ,Xm play the role of orthonormal frame and dim(X1(p), . . . ,Xm(p))

may vary with respect to p. In particular, the aforementioned notion of BV space encompasses the classical one in
oriented Riemannian manifolds, the one associated with a Lie bracket generating family of vector fields in Rn and it
also includes the rank-varying case, e.g. the Grushin case and almost-Riemannian manifolds (see Section 3.1).

In this setting, the approximation result (Theorem 2.4) allows to show that the metric and differential notion of
bounded variation coincide and the corresponding spaces BV(Ω,g,ω) and BV(Ω,dcc,m) are isometric (Theo-
rem 3.1). A first consequence of this fact is that the set function ‖Dgu‖ defined on open sets as in (1) is a Borel
measure. Moreover, the Riesz theorem of Euclidean setting (see for instance [20, Theorem 1, p. 167]) can be gener-
alized. More precisely, if u ∈ BV(Ω,g,ω), then there exists a Borel vector field νu satisfying G(νu) = 1, ‖Dgu‖-a.e.
in Ω . Moreover, for every smooth vector field X such that G(X) � 1 in Ω , the distributional derivative of u along X

can be represented as

DXu = g(X,νu)‖Dgu‖. (2)

Without assumptions on the dimension of D(p), even if a local basis X1, . . . ,Xm inducing G is given, some care is
needed, due to the fact that a smooth vector field X satisfying G(X) � 1 is in general a linear combination of the Xi

with coefficient in L∞ only.
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When we consider sets of finite perimeter, i.e., sets whose characteristic function has bounded variation, this result
provides a notion of geometric normal (which corresponds to its Euclidean analogue) and which is a horizontal Borel
vector field of G-length 1.

In Euclidean metric spaces, the structure of finite perimeter sets has been completely understood since De Giorgi’s
seminal works [18,19]. In this context, if E has finite perimeter, then the perimeter measure of E is concentrated on a
set which is rectifiable and it has codimension one. The main step behind this result is a blowup theorem, showing that
when p belongs to the reduced boundary of E, the sequence of blowups Er = δ1/r (E + p) converges to a halfspace
in L1

loc.
In non-Euclidean metric spaces, after [31], rectifiability theory has been developed in Banach spaces [12,13], and in

Carnot groups [23,35,38], which are Lie groups whose algebra admits a stratification with respect to a one parameter
group of dilations δr . More precisely, in [24] the authors generalize De Giorgi’s theorem in Carnot groups of step 2.
Their proof is inspired by the one in the Euclidean case. Moreover, Carnot groups are homogeneous and this makes the
perimeter measure both homogeneous with respect to dilations and invariant by translations. Joining these properties
with isoperimetric inequalities along with the compact embedding in BV shows that bounded sequences of rescaled
sets have converging subsequences and the blowups are both monotone along a horizontal direction and invariant
along all orthogonal directions. The techniques of [24] have been further extended in [17] to a special class of Lie
groups that do not possess dilations, see Example 3.3, where the “linearization” of the left invariant vector fields is
obtained by the Rothschild–Stein lifting theorem, [39].

As a first step toward a generalization of De Giorgi’s theorem in sub-Riemannian manifolds, in this paper we
show a blowup theorem which generalizes the one [24, Theorem 3.1] in Carnot groups of step 2. Again, the proof
of Theorem 4.2 is inspired by the corresponding one in the Euclidean case. However, the rationale behind our proof
is somehow different from the one in [24]. Without a Carnot group structure, the main idea is to exploit two well
known facts in sub-Riemannian geometry [15]: a metric tangent cone to the manifold at a point p always exists;
the quasi-isometry between dilated balls centered at p and balls in the metric tangent cone can be given explicitly
by a system of suitable coordinates (called privileged, see Definition 3.3) centered at p and, in particular, it is a
diffeomorphism ϕp . In this coordinate system, there exists a subgroup of dilations δr intrinsically associated with the
sub-Riemannian structure (and centered at p). Hence, given a finite perimeter set E and p in its reduced boundary
(see Definition 3.2), reading E through ϕp , it makes sense to consider the blowups Er = δ1/rϕp(E). Our result states
that if the metric tangent cone to (M,dcc) at p is a Carnot group of step 2 then

L1
loc- lim

r↓0
1Er = 1F ,

where F is the vertical halfspace in the Carnot group associated with the geometric normal νE(p) (for the precise
statement, see Theorem 4.2.) In particular, we are able to show that the sequence of blowups {1Er }r>0 is compact
in L1

loc and that if 1
F̃

is a L1
loc-limit then F̃ is monotone along the geometric normal νE(p) and invariant along

orthogonal directions to νE(p), in the distributional sense. To prove compactness, we exploit the fact that the distance
in the metric tangent cone is the limit of Carnot–Carathéodory distances associated with a sequence of “perturbed”
vector fields (see Theorem 3.5). Properties of limits are consequences of the definition of geometric normal and of
the asymptotically doubling property of the perimeter measure. Finally, it is only at this stage of the proof that we
invoke the fact that the metric tangent cone at p is a Carnot group of step 2, to show that the limit of the rescaled sets
actually exists. The latter assumption is fulfilled of course when the manifold itself is a Carnot group of step 2 but also
in more general case, e.g. in the step 2 equiregular case (see also Example 3.7). This hypothesis is essential as it was
shown in [24] that in Carnot groups of step higher than 2 the blowup at a point in the reduced boundary need not be a
vertical hyperplane. Without bounds on the step, the only result available so far is [14], where it has been proved that
at almost every point (with respect to the perimeter measure) there exists a subsequence of blowups converging to a
vertical halfspace.

Let us mention an application of our result in the rank-varying case. As we see in Example 3.5, there exist sub-
Riemannian manifolds with the property: for every point p the metric tangent cone at p is either the Euclidean space
or a Carnot group of step 2. For these manifolds, which are also called almost-Riemannian, the horizontal distribution
is rank-varying and it has full rank at points where the tangent cone is the Euclidean space. Combining our theorem
with the one in the Euclidean case, we obtain that, for sets of finite perimeter in these manifolds, the blowups at points
in the reduced boundary converge to a halfspace.
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Another important corollary of our blowup theorem is that, setting h(Br(p)) = m(Br (p))
r

where Br(p) is the open
ball for dcc , the density

lim
r↓0

‖Dg1E‖(Br(p))

h(Br(p))
(3)

exists and equals to the perimeter of F in the unit ball in the Carnot group divided by the Lebesgue measure of the unit

ball. This improves the weaker estimates on ‖Dg1E‖(Br (p))

h(Br (p))
which have been proved in [7, Theorem 5.4] in the metric

setting. Moreover, denoting by Sh the spherical measure build by the Carathéodory’s construction (see [21, 2.10.1])
with h as gauge function, the existence of the limit in (3) implies upper and lower bounds on the Radon–Nikodym
of ‖Dg1E‖ with respect to Sh (restricted to the reduced boundary of E). As the Radon–Nikodym derivative of the
perimeter measure ‖Dg1E‖ with respect to Sh has been shown to exist in the metric context (see [7, Theorem 5.3]),
an open question is whether this derivative coincides with (3) for ‖Dg1E‖-almost every p. In the constant rank
(equiregular) case, a related result in [2] computes the density of the spherical top-dimensional Hausdorff measure
SQ

dcc
(where Q is the Hausdorff dimension of any ball) with respect to m in terms of the Lebesgue measure of the unit

ball in the metric tangent cone.
The paper is organized as follows. We define distributional derivatives along vector fields in manifolds with a

volume form in Section 2.2. Using a family of metrics in the tangent bundle we then define the space of BV func-
tions in Section 2.3 and we prove an approximation results for distributional derivatives. In Section 2.4 we show that
BV(Ω,dcc,m) is continuously embedded in BV(Ω,g,ω). Section 3 is a primer in sub-Riemannian geometry. Even
though our main results are local, we find it useful to recall the general definition of sub-Riemannian structure that
relies on images of Euclidean vector bundles and includes the rank-varying case. In Section 3.1 we list some sig-
nificative examples, including Carnot groups. In Section 3.2 we analyze the notion of BV space in sub-Riemannian
manifolds. First, we specify its relation with the BV space defined in a metric measure space, showing that the two BV
spaces are actually isometric. Second, we prove a Riesz theorem which generalize the Euclidean analogue. Section 3.3
recalls the notion (and basic properties) of privileged coordinates and nilpotent approximation (for more details we
refer the reader to [15].) In Section 3.4 we explain the relation between nilpotent approximations and metric tangent
cones to sub-Riemannian manifold at a point and, under an additional assumption at the point, we recall how to show
that the nilpotent approximation is isometric to a Carnot group endowed with the control distance induced by a left
invariant metric on the horizontal bundle. In Section 4 we prove the blowup theorem. We split the proof into two main
parts. In Sections 4.1 and 4.2 we demonstrate compactness of the dilated sets and monotone and invariance properties
of limits. Then, in Section 4.3 we use the assumption on the nilpotent approximation to provide the existence and
characterize the limit of dilated sets as a vertical halfspace.

2. Preliminaries

2.1. Basic notation and notions

Given a set A ⊂ B , we will use the notation 1A :B → {0,1} for the characteristic function of A, equal to 1 on A

and equal to 0 on B \ A. In a metric space (X,d), the notation Br(x) will be used to denote the open ball with radius
r and center x.

Differential notions. Throughout this paper, M denotes a smooth, oriented, connected and n-dimensional manifold,
with tangent bundle T M . The fiber TxM can be read as the space of derivations on germs of C1 functions ϕ at x,
namely [vϕ](x) = dϕx(v), for v ∈ TxM . In the same spirit, we read the action of the differential dFx :TxM → TxN

of a C1 map F :M → N as follows:

dfx(v)(ϕ) = v(ϕ ◦ F)(x), ϕ ∈ C1(N).

Any C1 diffeomorphism F :M → N between smooth manifolds induces an operator F∗ :T M → T N , by the formula
(F∗X)(F (x)) = dFx(X(x)); equivalently, in terms of derivations, we write[

(F∗X)ϕ
] ◦ F = [

X(ϕ ◦ F)
]
, ∀ϕ ∈ C1(N).

Measure-theoretic notions. If F is a σ -algebra of subsets of X and μ :F → Rm is a σ -additive measure, we shall
denote by |μ| :F → [0,∞) its total variation, still a σ -additive measure. By the Radon–Nikodym theorem, μ is
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representable in the form g|μ| for some F -measurable function g :X → Rm satisfying |g(x)| = 1 for |μ|-a.e. x ∈ X.
Given a Borel map F , we shall use the notation F# for the induced push-forward operator between Borel measures,
namely

F#μ(B) := μ
(
F−1(B)

)
, for all B Borel.

2.2. Volume form, divergence and distributional derivatives

We assume throughout this paper that M is endowed with a smooth n-form ω. We assume also that
∫
M

f ω > 0
whenever f ∈ C1

c (M) is nonnegative and not identically 0, so that the volume measure

m(E) =
∫
E

ω, E ⊂ M Borel (4)

is well defined and, in local coordinates, has a smooth and positive density with respect to Lebesgue measure. Ac-
cordingly, we shall also call ω volume form.

The volume form ω allows to define the divergence divω X of a smooth vector field X as the smooth function
satisfying

divω Xω = LXω, (5)

where LX denotes the Lie derivative along X. Using properties of exterior derivative and differential forms, we remark
that divω X is characterized by

−
∫
M

ϕ divω Xω =
∫
M

(Xϕ)ω, ∀ϕ ∈ C1
c (M). (6)

By applying this identity to a product f ϕ with f ∈ C1(M) and ϕ ∈ C∞
c (M), the Leibnitz rule gives

−
∫
M

f ϕ divω Xω −
∫
M

f (Xϕ)ω =
∫
M

ϕ(Xf )ω, ∀ϕ ∈ C∞
c (M). (7)

We can now use this identity to define Xf also as a distribution on M , namely DXf = g in the sense of distributions
in an open set Ω ⊂ M means

−
∫
Ω

f ϕ divω Xω −
∫
Ω

f (Xϕ)ω =
∫
Ω

ϕgω, ∀ϕ ∈ C∞
c (Ω). (8)

Our main interest focuses on the theory of BV functions along vector fields. For this reason, we say that a measure
with finite total variation in Ω , that we shall denote by DXf , represents in Ω the derivative of f along X in the sense
of distributions if

−
∫
Ω

f ϕ divω Xω −
∫
Ω

f (Xϕ)ω =
∫
Ω

ϕ dDX f, ∀ϕ ∈ C∞
c (Ω). (9)

By (4) and (7), when f is C1 we have DXf = (Xf )m.
We can now state a simple criterion for the existence of DXf , a direct consequence of Riesz representation theorem

of the dual of Cc(Ω). In order to state our integrations by parts formulas (8), (9) in a more compact form we also use
the identity

divω(ϕX) = ϕ divω X + Xϕ.

Proposition 2.1. Let Ω ⊂ M be an open set and f ∈ L1
loc(Ω,m). Then DXf is a signed measure with finite total

variation in Ω if and only if
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sup

{∫
Ω

f divω(ϕX)ω

∣∣∣ ϕ ∈ C∞
c (Ω), |ϕ| � 1

}
< ∞.

If this happens, the supremum above equals |DXf |(Ω).

A direct consequence of this proposition is the lower semicontinuity in L1
loc(Ω,m) of f �→ |DXf |(Ω). We also

emphasize that, thanks to (9), we have the identity

DψXf = ψDXf, ∀ψ ∈ C∞(Ω), (10)

and the properties (8) and (9) need only to be checked for test functions ϕ whose support is contained in a chart.

2.3. Distributions, metrics and BV functions on manifolds

On M we shall consider a family of lower semicontinuous quadratic (i.e. 2-homogeneous, null in 0 and satisfying
the parallelogram identity) forms Gx :TxM → [0,∞] and the induced family D of subspaces

D(x) := {
v ∈ TxM

∣∣Gx(v) < ∞}
.

We are not making at this stage any assumption on the dimension of D(x) (which need not be locally constant) or
on the regularity of x �→ Gx . We shall only assume that the map (x, v) �→ Gx(v) is Borel. This notion can be easily
introduced, for instance using local coordinates. Obviously Gx induces a scalar product gx on D(x), namely the
unique bilinear form on D(x) satisfying

gx(v, v) = Gx(v), ∀v ∈D(x).

For Ω ⊂ M open, we shall denote by Γ (Ω,D) the smooth sections of D, namely:

Γ (Ω,D) := {
X
∣∣X is smooth vector field in Ω, X(x) ∈ D(x) for all x ∈ Ω

}
.

We shall also denote

Γ g(Ω,D) := {
X ∈ Γ (Ω,D)

∣∣ gx

(
X(x),X(x)

)
� 1, ∀x ∈ Ω

}
.

Note that both D and g are somehow encoded by G. Thus the following definition of BV space only depends on
G and ω.

Definition 2.1 (Space BV(Ω,g,ω) and sets of finite perimeter). Let Ω ⊂ M be an open set and u ∈ L1(Ω,m). We
say that u has bounded variation in Ω , and write u ∈ BV(Ω,g,ω), if DXu exists for all X ∈ Γ g(Ω,D) and

sup
{|DXu|(Ω)

∣∣X ∈ Γ g(Ω,D)
}

< ∞. (11)

We denote by ‖Dgu‖ the associated Radon measure on Ω . If E ⊂ M is a Borel set, we say that E has finite perimeter
in Ω if 1E ∈ BV(Ω,g,ω).

Remark 1. Let us point out that replacing Ω in (11) with any of its open subsets, we get a set function on open
sets. Thus, the so-called De Giorgi–Letta criterion, see for instance [11, Theorem 1.53], allows us to extend this set
function to a Radon measure on Ω .

Equivalently, thanks to Proposition 2.1, we can write condition (11) as follows:

sup

{∫
Ω

udivω(ϕX)ω

∣∣∣X ∈ Γ g(Ω,D), ϕ ∈ C∞
c (M), |ϕ| � 1

}
< ∞. (12)

These BV classes can be read in local coordinates thanks to the following result (more generally, one could consider
smooth maps between manifolds).
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Proposition 2.2. Let Ω ⊂ M and U ⊂ Rn be open sets, let u ∈ L1(Ω) and let φ ∈ C∞(Ω,U) be an orientation-
preserving diffeomorphism with inverse ψ . For each y ∈ U , set

G̃y(w) := Gψ(y)

(
dyψ(w)

)
, ∀w ∈ TxU 
Rn, ũ(y) := u

(
ψ(y)

)
(13)

and define D̃ in U and a metric g̃ in D̃ accordingly. Then, setting ω̃ := ψ∗ω, the following holds

φ#(DXu) = Dφ∗Xũ, ∀X ∈ Γ (Ω,D) (14)

in the sense of distributions. In particular u ∈ BV(Ω,g,ω) if and only if ũ ∈ BV(U, g̃, ω̃).

Proof. Let X be a smooth section of D with compact support contained in Ω and consider the change of variable∫
Ω

udivω Xω =
∫
U

ũ(divω X) ◦ ψω̃.

By Lemma 2.3 below, it follows that∫
Ω

udivω Xω =
∫
U

ũdivω̃(φ∗X)ω̃,

where we denote by divω̃ Y the divergence of Y with respect to ω̃. If we apply this identity to the vector field ϕX and
use the relation φ∗(ϕX) = (ϕ ◦ φ−1)φ∗X we obtain (14).

Finally, since for all y ∈ U we have G̃y(φ∗X(y)) � 1 if and only if

Gψ(y)

(
dyψ

(
φ∗X(y)

))= Gψ(y)

(
X
(
ψ(y)

))
� 1

the claim follows. �
Lemma 2.3. Under the assumptions of Proposition 2.2, the following formula holds

(divω X) ◦ ψ = divω̃(φ∗X). (15)

Proof. If ϕ ∈ C∞
c (Ω), then a change of variable in the oriented integral yields

−
∫
Ω

ϕ divω Xω =
∫
Ω

Xϕω =
∫
U

(Xϕ) ◦ ψω̃ =
∫
U

[
(ψ∗X̃)ϕ

] ◦ ψω̃,

where the last equality is a consequence of the definition X̃ = φ∗X. The previous equalities give

−
∫
U

ϕ divω Xω =
∫
U

X̃(ϕ ◦ ψ)ω̃ = −
∫
U

ϕ ◦ ψ divω̃ X̃ω̃ = −
∫
Ω

ϕ(divω̃ X̃) ◦ φω.

The arbitrary choice of ϕ proves the validity of (15). �
Distributional derivatives of L1 functions as defined in (9) can be weakly approximated by derivatives of smooth

functions as we prove in the next theorem.

Theorem 2.4 (Meyers–Serrin). Let Ω ⊂ M be open, u ∈ L1(Ω,m). Then there exist un ∈ C∞(Ω) convergent to u in
L1

loc(Ω,m) and satisfying Xunm → DXu and |Xun|m → |DXu| weakly, in the duality with Cc(Ω), for all smooth
vector fields X in Ω such that DXu exists. The same is true if we consider vector-valued measures built with finitely
many vector fields.

Proof. By a partition of unity it is not restrictive to assume that Ω is well contained in a local chart. Then, by
Proposition 2.2, possibly replacing g and ω by their counterparts g̃ and ω̃, we can assume that Ω ⊂ Rn. In this case,
writing ω = ω̄ dx1 ∧· · ·∧dxn with ω̄ ∈ C∞(Ω̄) strictly positive, we also notice that it is not restrictive to assume ω̄ ≡ 1
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in Ω ; indeed, comparing (6) with the classical integration by parts formula in Ω with no weight, we immediately see
that

divω X = divX + X log ω̄,

where, in the right hand side, divX is the Euclidean divergence of X. One can then compare the integration by parts
formulas in the weighted and in the classical case to obtain that DXu depends on ω through the factor ω̄. This is also
evident in the smooth case, where the function Xu is clearly independent of ω, but DXu = (Xu)m.

After this reductions to the standard Euclidean setting, we fix an even, smooth convolution kernel ρ in Rn with
compact support and denote by ρε(x) = ε−nρ(x/ε) the rescaled kernels and by u ∗ ρε the mollified functions. We
shall use the so-called commutator lemma (see for instance [9]) which ensures

(DXv) ∗ ρε − X(v ∗ ρε) → 0, as ε ↓ 0, strongly in L1
loc(Ω) (16)

whenever v ∈ L1
loc(Ω) and X is a smooth vector field in Ω . Since (DXu) ∗ ρεm and |(DXu) ∗ ρε|m converge in the

duality with Cc(Ω) to DXu and |DXu| respectively (see for instance [11, Theorem 2.2]), (16) shows that the same
is true for X(u ∗ ρε)m and |X(u ∗ ρε)|m. The same proof works for vector-valued measures (convergence of total
variations, the only thing that cannot be obtained arguing componentwise, is still covered by [11, Theorem 2.2]). �

The following result provides a characterization of |DXu| in terms of difference quotients involving the flows
generated by the vector field X (for similar results in the context of doubling metric spaces supporting a Poincaré
inequality, see [36]).

Given a smooth vector field X in Ω ⊂ M open, we denote by ΦX
t the flow generated by X on M . By compactness,

for any compact set K ⊂ Ω the flow map starting from K is smooth, remains in a domain Ω ′ � Ω and is defined for
every t ∈ [−T ,T ], with T = T (K,X) > 0. Recall that the Jacobian JΦX

t of the flow map x �→ ΦX
t (x) is the smooth

function JΦX
t satisfying (ΦX

t )∗ω = JΦX
t ω, so that the change of variables formula∫

φω =
∫

φ ◦ ΦX
t JΦX

t ω

holds. By smoothness, there is a further constant C depending only on X (and T ) such that JΦX
t satisfies∣∣JΦX

t (x) − 1
∣∣� C|t |, ∣∣JΦX

t (x) − 1 − t divω X(x)
∣∣� Ct2, ∀x ∈ K, t ∈ [−T ,T ]. (17)

Estimate (17) is a simple consequence of Liouville’s theorem, showing that the time derivative of t �→ log(JΦX
t (x))

equals (divω X)(ΦX
t (x)).

Theorem 2.5. Let Ω ⊂ M be an open set and let u ∈ L1(Ω,m). Then DXu is a signed measure with finite total
variation in Ω if and only if

sup
K⊂Ω compact

{∫
K

|u(ΦX
t ) − u|
|t | ω

∣∣∣ 0 < |t | � T (K,X)

}
< ∞. (18)

Moreover, if DXu is a signed measure with finite total variation in Ω , it holds

|DXu|(Ω) = sup

{
lim inf

t→0

∫
Ω ′

|u(ΦX
t ) − u|
|t | ω

∣∣∣Ω ′ � Ω

}
. (19)

Proof. Let us prove that the existence of DXu implies (18). For 0 < |t | < T (K,X) we will prove the more precise
estimate∫

K

|u(ΦX
t ) − u|
|t | ω �

(
1 + C|t |)|DXu|(Ωt ) with Ωt :=

⋃
r∈[0,|t |]

ΦX
r (K), (20)

which also yields the inequality � in (19). In order to prove (20) we can assume with no loss of generality, thanks to
Theorem 2.4, that u ∈ C∞(Ω). Under this assumption, since the derivative of t �→ u(ΦX

t (x)) equals Xu(ΦX
t (x)) we

can use Fubini’s theorem and (17) to get, for t > 0 (the case t < 0 being similar)
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∫
K

∣∣u(ΦX
t

)− u
∣∣ω �

t∫
0

∫
K

|Xu|(ΦX
r

)
ωdr �

t∫
0

(1 + Cr)

∫
Ωt

|Xu|ωdr.

Estimating (1 + Cr) with (1 + Ct) we obtain (20).
Let us prove the inequality � in (19). By the lower semicontinuity on open sets of the total variation of measures

under weak convergence and the inner regularity of |DXu|, it suffices to show that for all Ω ′ � Ω the difference
quotients t−1(u(ΦX

t ) − u)m weakly converge, in the duality with Cc(Ω
′), to DXu. By the upper bound (18) we

need only to check the convergence on C∞
c (Ω ′) test functions. This latter convergence is a direct consequence of the

identity (which comes from the change of variables x = ΦX−t (y))∫
Ω ′

u(ΦX
t ) − u

t
ϕ dω(x) = −

∫
Ω ′

ϕ(ΦX−t )JΦX−t − ϕ

−t
u dω(y), ϕ ∈ C∞

c

(
Ω ′),

of the expansion (17) and of the very definition of DXu. The same argument can be used to show that finiteness of the
supremum in (18) implies the existence of DXu. �
2.4. BV functions in metric measure spaces (X,d,m)

Let (X,d) be a metric space, and define for f :X →R the local Lipschitz constant (also called slope) by

|∇f |(x) := lim sup
y→x

|f (y) − f (x)|
d(y, x)

. (21)

If we have also a reference Borel measure m in (X,d), we can define the space BV(Ω,d,m) as follows.

Definition 2.2. Let Ω ⊂ X be open and u ∈ L1(Ω,m). We say that u ∈ BV(Ω,d,m) if there exist locally Lipschitz
functions un convergent to u in L1(Ω,m), such that

lim sup
n

∫
Ω

|∇un|dm < +∞.

Then, we define

‖Du‖(Ω) := inf

{
lim inf
n→∞

∫
Ω

|∇un|dm
∣∣∣ un ∈ Liploc(Ω), lim

n

∫
Ω

|un − u|dm = 0

}
.

In locally compact spaces, in [36] (see also [10] for more general spaces) it is proved that, for u ∈ BV(Ω,d,m),
the set function A �→ ‖Du‖(A) is the restriction to open sets of a finite Borel measure, still denoted by ‖Du‖.
Furthermore, in [36] the following inner regularity is proved:

u ∈ L1(Ω) ∩ BVloc(Ω,d,m), sup
Ω ′�Ω

‖Du‖(Ω ′)< ∞ ⇒ u ∈ BV(Ω,d,m). (22)

In the next sections we shall use a fine property of sets of finite perimeters, proved within the metric theory in [7]
(see also [6] for the Ahlfors regular case) to be sure that the set of “good” blow-up points has full measure with respect
to ‖Dg1E‖. The basic assumptions on the metric measure structure needed for the validity of the result are (in local
form):

(i) a local doubling assumption, namely for all K ⊂ X compact there exist r̄ > 0 and C � 0 such that m(B2r (x)) �
Cm(Br(x)) for all x ∈ K and r ∈ (0, r̄);

(ii) a local Poincaré inequality, namely for all K ⊂ X compact there exist r̄ , c, λ > 0 such that∫
Br (x)

|u − ux,r |dm � cr

∫
Bλr (x)

|∇u|dm (23)

for all u locally Lipschitz, x ∈ K and r ∈ (0, r̄), with ux,r equal to the mean value of u on Br(x).
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Proposition 2.6. (See [7].) Assume that (i), (ii) above hold and let E ⊂ Ω be such that 1E ∈ BV(Ω,d,m). Then

lim inf
r↓0

min{m(Br(x) ∩ E),m(Br(x) \ E)}
m(Br(x))

> 0, lim sup
r↓0

‖D1E‖(Br(x))

h(Br(x))
< ∞ (24)

for ‖D1E‖-a.e. x ∈ Ω , where h(Br(x)) = m(Br(x))/r .

In order to apply Proposition 2.6 for our blow-up analysis, we need to provide a bridge between the metric theory
outlined above and the differential theory described in Section 2.3. As a matter of fact, we will see that in the setting of
Section 2.3, under mild assumptions, we have always an inclusion between these spaces, and a corresponding inequal-
ity between ‖Dgu‖ and ‖Du‖. First, given a function G :T M → [0,∞] in a smooth manifold M as in Section 2.3,
we define the associated Carnot–Carathéodory distance by

dcc(x, y) := inf

{ T∫
0

√
Gγt (γ̇t )

∣∣∣ T > 0, γ0 = x, γT = y

}
, (25)

where the infimum runs among all absolutely continuous curves γ . Notice that since Gx is infinite on TxM \ D(x),
automatically the minimization is restricted to horizontal curves, i.e. the curves γ satisfying γ̇ ∈ D(γ ) a.e. in [0, T ].
We will often use, when convergence arguments are involved, an equivalent definition of dcc(x, y) in terms of action
minimization:

d2
cc(x, y) := inf

{ 1∫
0

Gγt (γ̇t )

∣∣∣ γ0 = x, γ1 = y

}
. (26)

Notice also that we cannot expect dcc to be finite in general, hence we adopt the convention inf∅ = +∞. However,
any X ∈ Γ g(Ω,D) induces, via the flow map ΦX

t , admissible curves γ in (25) with speed G(γ̇ ) less than 1, for initial
points in Ω and |t | sufficiently small. It follows immediately that for Ω ′ � Ω and |t | sufficiently small, depending
only on Ω ′ and X, it holds:

dcc

(
ΦX

t (x), x
)
� |t |, ∀x ∈ Ω ′. (27)

Theorem 2.7. Let m be defined as in (4) and assume that the distance dcc defined in (25) is finite and induces
the same topology of M . Then for any open set Ω ⊂ M we have the inclusion BV(Ω,dcc,m) ⊂ BV(Ω,g,ω) and
‖Dgu‖(Ω) � ‖Du‖(Ω).

Proof. Take a locally Lipschitz function u in Ω (with respect to dcc) with
∫
Ω

|∇u|dm finite, X ∈ Γ g(Ω,D) and
apply (27) to obtain that |u(ΦX

t (x)) − u(x)|/|t | is uniformly bounded as |t | ↓ 0 on compact subsets of Ω and

lim sup
t↓0

|u(ΦX
t (x)) − u(x)|

|t | � |∇u|(x), ∀x ∈ Ω.

By integrating on Ω ′ � Ω we get from Theorem 2.5 that DXu is a measure with finite total variation in Ω and that

|DXu|(Ω) �
∫
Ω

|∇u|dm.

Eventually, we apply the very definition of BV(Ω,dcc,m) to extend this inequality to all u ∈ BV(Ω,dcc,m), in the
form |DXu|(Ω) � ‖Du‖(Ω). We can now use the arbitrariness of X to get the conclusion. �
Remark 1. The main obstacle to the inclusion BV(Ω,g,ω) ⊂ BV(Ω,dcc,m) is that, whenever u ∈ BV(Ω,g,ω), the
smooth approximation un of u given in Theorem 2.4 need not satisfy the weak convergence ‖Dgun‖ → ‖Dgu‖. This
is due to the fact that the supremum in (11) is taken over an infinite set of generators X. Nevertheless, while the general
validity of the inclusion BV(Ω,g,ω) ⊂ BV(Ω,dcc,m) is still an open problem, this difficulty can be bypassed for
a large class of metrics G, namely the one of sub-Riemannian structures on manifolds. Indeed in Theorem 3.1 we
prove that in the sub-Riemannian context the equality BV(Ω,g,ω) = BV(Ω,dcc,m) holds along with ‖Dgu‖(Ω) =
‖Du‖(Ω).
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3. Sub-Riemannian manifolds

A frame free approach to describe sub-Riemannian structures locally generated by families of vector fields [37]
relies on images of Euclidean vector bundles. Recall that a Euclidean vector bundle is a vector bundle whose fiber at a
point x is equipped with a scalar product 〈·,·〉x which depends smoothly on x (in particular smooth orthonormal bases
locally exist).

Definition 3.1 (Sub-Riemannian structure). A sub-Riemannian structure on M is a pair (U, f ) where U is a Euclidean
vector bundle over M and f : U → T M is a morphism of vector bundles (i.e., a smooth map, linear on fibers, such
that f (Ux) ⊂ TxM , where Ux denotes the fiber of U over x) such that

Liex(D) = TxM, ∀x ∈ M, (28)

where we have set

D := {
f ◦ σ

∣∣ σ ∈ Γ (U)
}
, (29)

and Γ (U) := {σ ∈ C∞(M,U) | σ(x) ∈ Ux}.

Given a sub-Riemannian structure on M , we denote by D(x) the vector space f (Ux) ⊂ TxM and we define the
quadratic forms Gx :TxM → [0,∞] by

Gx(v) =
{

min{|u|2x | u ∈ Ux, f (u) = v}, v ∈ D(x),

+∞, v /∈ D(x).
(30)

Notice that in general the dimension of D(x) need not be constant and (x, v) �→ Gx(v) is lower semicontinuous. Let
gx :D(x) ×D(x) → M be the unique scalar product satisfying

gx(v, v) = Gx(v), ∀v ∈D(x).

We shall denote by Px :D(x) → Ux the linear map which associates with v the unique vector u ∈ f −1(v) having
minimal norm. It can be computed intersecting f −1(v) with the orthogonal to the kernel of f |Ux

.
We will often compute G in local coordinates as follows: let σ1, . . . , σm be an orthonormal frame for U|Ω (where

m = rank U) in an open set Ω ⊂ M . Then, defining Xj = f ◦ σj , for every x ∈ Ω and v ∈ D(x) we have

Gx(v) = min

{
m∑

i=1

c2
i

∣∣∣ v =
m∑

i=1

ciXi(x)

}
. (31)

In this case we shall also view Px as an Rm-valued map. Notice that, by polarization, it holds

gx(v,w) = 〈
Px(v),Px(w)

〉
, v,w ∈D(x). (32)

Remark 2. The above definition includes the cases (see also Section 3.1 for more examples):

• U is a subbundle of T M and f is the inclusion. In this case the distribution D has constant rank, i.e., dimD(x) =
dim Ux = rank U. When U = T M and f is the identity, we recover the definition of Riemannian manifold.

• U is the trivial bundle of rank m on M , i.e., U is isomorphic to M ×Rm and D is globally generated by m vector
fields f ◦ e1, . . . , f ◦ ek , where ej (x) = (x, ēj ) and ē1, . . . , ēm is the canonical basis of Rm; in particular, we
recover the case when M = Ω ⊂Rn and we take m vector fields satisfying the Hörmander condition.

The finiteness of the Carnot–Carathéodory distance d(·,·) induced by G as in (25) (note that we will drop from now
on the cc in (25) and (26)) is guaranteed by the Lie bracket generating assumption on D (see [5]), as well as the fact
that d induces the topology of M as differentiable manifold. The metric space (M,d) is called a Carnot–Carathéodory
space.

Since D is Lie bracket generating, at every point x ∈ M there exists kx ∈ N such that the flag at x associated with
D stabilizes (with step kx ), that is,
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{0} �D1(x) ⊂D2(x) ⊂ · · · ⊂Dkx (x) = TxM, (33)

where D1(x) =D(x) and Di+1(x) = (Di +[D,Di])(x). The minimum integer kx such that (33) holds is called degree
of non-holonomy at x. With the flag (33) we associate two nondecreasing sequences of integers defined as follows. The
growth vector is the sequence (n1(x), . . . , nkx (x)), where ni(x) = dimDi (x). Notice that for every x ∈ M , nkx (x) = n.
To define the second sequence, let v1, . . . , vn ∈ TxM be a basis of TxM linearly adapted to the flag (33). The vector of
weights is the sequence (w1(x), . . . ,wn(x)) defined by wj(x) = s if vj ∈ Ds(x) \Ds−1(x). Notice that this definition
does not depend on the choice of the adapted basis, and that 1 = w1(x) � · · · � wn(x) = kx .

We say that a point x ∈ M is regular if the growth vector is constant in a neighborhood of x, otherwise we say that
x is singular. If every point is regular, we say that the sub-Riemannian manifold is equiregular.

3.1. Examples

In this section we mention some examples of sub-Riemannian manifolds. A first fundamental class of examples is
provided by Carnot groups.

Example 3.1 (Carnot groups). Let us consider a connected, simply connected and nilpotent Lie group G, whose Lie
algebra g admits a step s stratification

g = V1 ⊕ V2 ⊕ · · · ⊕ Vs,

namely [V1,Vj ] = Vj+1 for every j = 1, . . . , s −1 and [V1,Vs] = {0}. Every layer Vj of g defines at each point x ∈ G

the following fiber of degree j at x

H
j
x = {

Y(x) ∈ TxG
∣∣ Y ∈ Vj

}
.

All fibers of degree j are collected into a subbundle Hj of TG for every j = 1, . . . , s. Fix a scalar product 〈·,·〉e on
H 1

e . Then this canonically defines a scalar product 〈·,·〉x on H 1
x by left invariance. In this way we endow the vector

bundle H 1 with a Euclidean structure. In the language of Definition 3.1, the inclusion i :H 1 → TG defines a left
invariant sub-Riemannian structure on G. According to (29), the corresponding module D is precisely made by all
smooth sections of H 1, the so-called horizontal vector fields and D(x) = H 1

x for every x ∈ G. The validity of (28)
is ensured by the assumption that g is stratified. Note that different choices of scalar product on H 1

e define Lipschitz
equivalent sub-Riemannian structures on G.

The group G equipped with a left invariant sub-Riemannian structure is called Carnot group. Let m be the di-
mension of V1, n the dimension of G, and let (y1, . . . , yn) be a system of graded coordinates on G. An equivalent
way to define a left invariant sub-Riemannian structure on G is the following. Fix a basis X1, . . . ,Xm of V1 with the
following form

Xj(y) = ∂j +
n∑

i=m+1

aji(y)∂i for every j = 1, . . . ,m,

where aji is a homogeneous polynomial such that aji(δry) = rωi−1aji(y) for every y ∈ G and r > 0, where δry =∑n
j=1 rωj ej and the degree ωj is defined by the condition ej ∈ Vωj

for every j = 1, . . . , n. Under these coordinates,
we take the Euclidean vector bundle U =G×Rm and

f :G×Rm → TG, f (y, ξ) =
(

y,

m∑
j=1

ξjXj (y)

)
.

Example 3.2 (Heisenberg group). The Heisenberg group is a special instance of a step 2 Carnot group. It can be
represented in the language of Definition 3.1 as R3 equipped with the left invariant vector fields

X1 = ∂1 − x2

2
∂3, X2 = ∂2 + x1

2
∂3,

with respect to some polynomial group operation. We have V1 = span{X1,X2} ⊂ h and V2 = span{X3} ⊂ h, where
h is the 3-dimensional Lie algebra of left invariant vector fields and X3 = ∂3. Following the previous general case of
Carnot groups, we set U =R3 ×R2, equipped by the morphism f defined by
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f
(
x, (1,0)

)= X1(x), f
(
x, (0,1)

)= X2(x),

for every x ∈R3. In this case, we have D = {b1X1 + b2X2: b1, b2 :R3 →R smooth}.

Example 3.3. Let us consider a connected Lie group G with Lie algebra g equipped with a linear subspace g1 =
span{X1, . . . ,Xm} that satisfies

g = g1 ⊕ g2 and [g1,g1] = g2.

We notice that here g need not be nilpotent and G is not necessarily simply connected, hence the exponential mapping
might not be invertible. This cannot occur for Carnot groups, where the exponential mapping is always bianalytic. The
main point is that the groups G in general need not have dilations. Here the Euclidean vector bundle defining their
sub-Riemannian structure is given by

f : G ×Rm → T G, f (y, ξ) =
(

y,

m∑
j=1

ξjXj (y)

)
.

The foremost example of these groups is the rototranslation group R2 × S1, m = 2, equipped with vector the fields

X1 = cos θ∂x + sin θ∂y and X2 = ∂θ .

In the next examples, we refer the reader to Sections 3.3, 3.4 for notions of nilpotent approximations and privileged
coordinates.

Example 3.4 (Rank-varying sub-Riemannian structure – Grushin plane). Consider the sub-Riemannian structure on
R2 defined by U =R2 ×R2, and f ((x1, x2), (1,0)) = X1, f ((x1, x2), (0,1)) = X2, where

X1 = ∂1, X2 = x1∂2.

Then D(x) = span{X1(x),X2(x)} and n1(x1, x2) = 2 if x1 �= 0, whereas n1(0, x2) = 1. The growth vector at points in
the vertical axis Σ = {(x1, x2) | x1 = 0} is equal to (1,2). On the other hand, at points of R2 \ Σ , the growth vector is
equal to (2). In other words, Σ is the set of singular points and the varying dimension is n1(x). Given v = v1∂1 +v2∂2,
the sub-Riemannian metric in this case is

Gx(v) =

⎧⎪⎨⎪⎩
v2

1 + v2
2

x2
1
, x1 �= 0,

v2
1, x1 = 0, v2 = 0,

∞, x1 = 0, v2 �= 0.

As a consequence, the scalar product is

gx(v,w) = v1w1 + v2w2

x2
1

, v,w ∈D(x), v = v1∂1 + v2∂2, w = w1∂1 + w2∂2.

At (0,0) (and at any point in the vertical axis), the nilpotent approximation (and thus the metric tangent cone)
is the sub-Riemannian structure itself. Indeed, since the degree of non-holonomy at (0,0) is 2 and since coordi-
nates (x1, x2) are linearly adapted to the flag of D at (0,0), they are also privileged. The weights at (0,0) are
w1(0,0) = 1,w2(0,0) = 2. Hence both X1,X2 are homogeneous of non-holonomic order −1 at (0,0). Geodesics
can be computed explicitly and the Carnot–Carathéodory distance is homogeneous with respect to the dilation
δλ(x1, x2) = (λx1, λ

2x2).

Example 3.5 (Singular point at which the metric tangent cone is a Carnot group). Consider the sub-Riemannian
structure on R3 given by U =R3 ×R3 and f (x, (1,0,0)) = X1, f (x, (0,1,0)) = X2, f (x, (0,0,1)) = X3, where

X1 = ∂1 − x2

2
∂3, X2 = ∂2 + x1

2
∂3, X3 = x2

3∂3.

Set D(x) = span{X1(x),X2(x),X3(x)}. Then n1(x1, x2, x3) = 3 if x3 �= 0, whereas n1(x1, x2,0) = 2. The growth
vector at points in the plane Σ = {(x1, x2, x3) | x3 = 0} is equal to (2,3). On the other hand, at points of R3 \ Σ , the
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growth vector is equal to (3). In other words, Σ is the set of singular points and the varying dimension is n1. The
sub-Riemannian metric is

Gx(v) =

⎧⎪⎨⎪⎩
v2

1 + v2
2 + (v3+ x2v1

2 − x1v2
2 )2

x4
3

, x3 �= 0,

v2
1 + v2

2, x3 = 0,2v3 + x2v1 − x1v2 = 0,

∞, x3 = 0,2v3 + x2v1 − x1v2 �= 0.

Coordinates (x1, x2, x3) are linearly adapted to the flag of D at (0,0,0) and the degree of non-holonomy of the
structure at (0,0,0) is 2. Hence (x1, x2, x3) are privileged at (0,0,0). A simple computation shows that ord0X1 =
ord0X2 = −1 whereas ord0X3 = 1. Therefore, the truncated vector fields are X̂1 = X1, X̂2 = X2 and X̂3 = 0 and the
metric tangent cone at (0,0,0) is isometric to the Heisenberg group (see Example 3.2).

Example 3.6 (Generalized Grushin plane). Let us consider a generalization of Example 3.4 where we replace X2 with

Xα
2 (x) = xα

2 ∂2,

with α > 1. The sub-Riemannian metric becomes

G(x,y)(v) =

⎧⎪⎨⎪⎩
v2

1 + v2
2

x2α
1

, x1 �= 0,

v2
1, x1 = 0, v2 = 0,

+∞, x1 = 0, v2 �= 0,

from which we deduce that the map Px : D(x) → R2 is given by

Px(v) =
{

(v1,
v2
xα

1
), x1 �= 0,

(v1,0), x1 = 0, v2 = 0.

The growth vector is (1,2) at points in the vertical axis and it is (2) outside the vertical axis. Set X(x1, x2) = x1∂2.
Then X(x) ∈D(x) for every point x but x �→ Gx(X(x)) explodes at points in the vertical axis. Indeed,

Px

(
X(x)

)=
{

(0, 1
xα−1

1
), x1 �= 0,

(0,0), x1 = 0,

whence

Gx

(
X(x)

)= ∣∣Px

(
X(x)

)∣∣2 =
{

1
x4α−2

1
, x1 �= 0,

0, x1 = 0.

Notice however that x �→Px(X(x)) is measurable.

The sub-Riemannian structures of Examples 3.4, 3.5, 3.6 are also called almost-Riemannian, see [3,4].

Example 3.7 (corank -1 or contact distributions). (See [26].) Let M be a smooth manifold and β be a completely
non-integrable one-form on M . Set U = kerβ . Then U is a vector bundle in M of rank dimM − 1. Choosing any
Euclidean structure on U, we can define the sub-Riemannian structure (U, i) on M where i is the inclusion. The
growth vector of the distribution is constantly equal to (dimM − 1,dimM) and the structure is equiregular. This class
of sub-Riemannian manifolds satisfies at each point the assumptions of our blow-up theorem below, see Section 4.

3.2. BV functions on sub-Riemannian manifolds

In this section we provide characterizations for BV functions in sub-Riemannian manifolds and prove the Riesz
theorem. First of all, we notice that in a sub-Riemannian manifold one can locally fix an orthonormal frame

X1 = f ◦ σ1, X2 = f ◦ σ2, . . . , Xm = f ◦ σm (34)

where σ1, . . . , σm is a local orthonormal frame of U. The frame (34) defines the vector measure

Xu := (DX1u, . . . ,DXmu). (35)
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Theorem 3.1. Let Ω ⊂ M be an open set and let u ∈ L1(Ω). Then, the following three conditions are equivalent:

(i) sup{|DXu|(Ω) | X = f ◦ σ, σ ∈ Γ (U|Ω), |σ | � 1} < ∞;
(ii) u ∈ BV(Ω,d,m);

(iii) u ∈ BV(Ω,g,ω).

Furthermore, if one of the previous conditions holds, then we have

‖Dgu‖(Ω) = ‖Du‖(Ω) = sup
{|DXu|(Ω)

∣∣X = f ◦ σ, σ ∈ Γ (U|Ω), |σ | � 1
}
.

If Ω has an orthonormal frame (34), then ‖Dgu‖(Ω) = |Xu|(Ω), where Xu is the vector measure (35) defined on Ω .

Proof. For every open set A ⊂ Ω , we define the set function

s(A) = sup
{|DXu|(A)

∣∣X = f ◦ σ, σ ∈ Γ (U|A), |σ | � 1
}
.

The simple inequality s(Ω) � ‖Dgu‖(Ω) is a consequence of the fact that a larger class of vector fields is considered
in the definition of ‖Dgu‖, hence the implication from (iii) to (i) follows. From Theorem 2.7, we get ‖Dgu‖(Ω) �
‖Du‖(Ω), hence the implication from (ii) to (iii) follows. Next, we prove the implication from (i) to (ii), that follows
by establishing the inequality

‖Du‖(Ω) � s(Ω).

By a partition of unity, we can assume with no loss of generality that in Ω the vector fields Xi = f ◦ σi are globally
given. We assume first that u ∈ C1(Ω). In this case we prove first the inequality (where the left hand side should be
understood as the slope (21) w.r.t. d), in local coordinates

|∇u|2(x) �
m∑

i=1

(
Xiu(x)

)2
. (36)

In order to prove this inequality, if c ∈ L2([0,1];Rm), γ̇ =∑
i ciXi(γ ), γ0 = x and γ1 = y, we have

∣∣u(x) − u(y)
∣∣= ∣∣∣∣∣

1∫
0

dγt u(γ̇t ) dt

∣∣∣∣∣=
∣∣∣∣∣

1∫
0

m∑
i=1

ci(t)Xiu(γt ) dt

∣∣∣∣∣� ‖c‖2 sup
t∈[0,1]

√√√√ m∑
i=1

(
Xiu(γt )

)2
.

Minimizing with respect to c gives

|u(x) − u(y)|
d(x, y)

� sup

{√√√√ m∑
i=1

(
Xiu(z)

)2
∣∣∣ d(x, z) � 2d(x, y)

}
.

Then, taking the limit as y → x provides (36). Now, considering the vector-valued measure Xu in (35), whose total

variation |Xu| is equal to
√∑

i (Xiu)2m, we may write∫
Ω

|∇u|dm � |Xu|(Ω).

We can now invoke the definition of BV(Ω,d,m) and Theorem 2.4 to obtain the inequality

‖Du‖(Ω) � |Xu|(Ω). (37)

The estimate |Xu|(Ω) � s(Ω) immediately follows observing that for each ϕ ∈ C1
c (Ω,Rm) with |ϕ| � 1 there holds∫

Ω

udivω

(
m∑

i=1

ϕiXi

)
ω � s(Ω).

Collecting all previous inequalities, we achieve
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s(Ω) � ‖Dgu‖(Ω) � ‖Du‖(Ω) � |Xu|(Ω) � s(Ω),

that establishes all the claimed equalities. �
From now on, in view of Theorem 3.1, the measures ‖Dgu‖ and ‖Du‖ will be identified, and we will use their local

representation as total variation of the vector-valued measure Xu in (35). We also notice that due to Proposition 2.2 and
the Poincaré inequality with respect to vector fields in Rn, see for instance [30] and [32], a local Poincaré inequality
also holds in our framework. This implies that we can apply Proposition 2.6 to obtain the inequalities

lim inf
r↓0

min{m(Br(x) ∩ E),m(Br(x) \ E)}
m(Br(x))

> 0, lim sup
r↓0

‖Dg1E‖(Br(x))

h(Br(x))
< ∞ (38)

(recall that h(Br(x)) = m(Br(x))/r) for ‖Dg1E‖-a.e. x ∈ Ω , whenever 1E ∈ BV(Ω,g,ω).

Definition 3.2 (Dual normal and reduced boundary). Write, in polar decomposition, X1E = ν∗
E‖Dg1E‖, where

ν∗
E :Ω → Rm is a Borel vector field with unit norm. We call ν∗

E dual normal to E.
We denote by F∗

g E the reduced boundary of E, i.e. the set of all points x in the support of ‖Dg1E‖ satisfying (38)
and

lim
r↓0

1

‖Dg1E‖(Br(x))

∫
Br(x)

∣∣ν∗
E(y) − ν∗

E(x)
∣∣2 d‖Dg1E‖(y) = 0. (39)

It is simple to check that, while the dual normal ν∗
E depends on the choice of the orthonormal frame, the reduced

boundary F∗
g E does not.

We notice that (38) and the relative isoperimetric inequality give

0 < lim inf
r↓0

‖Dg1E‖(Br(x))

h(Br(x))
� lim sup

r↓0

‖Dg1E‖(Br(x))

h(Br(x))
< ∞. (40)

Then, the doubling property of h implies the asymptotic doubling property:

lim sup
r↓0

‖Dg1E‖(B2r (x))

‖Dg1E‖(Br(x))
< ∞ for ‖Dg1E‖-a.e. x ∈ Ω.

We shall use the following proposition, a direct consequence of the Lebesgue continuity theorem in all metric measure
spaces with an asymptotically doubling measure: here our measure is ‖Dg1E‖.

Proposition 3.2. If E has locally finite perimeter in Ω , then ‖Dg1E‖-a.e. point of Ω belongs to F∗
g E.

Now, we are in the position to establish Riesz theorem in sub-Riemannian manifolds, compare with Remark 4. As
a byproduct, applying Riesz theorem to a characteristic function 1E , we can identify a geometric normal νE , image of
the dual normal under the morphism f .

Theorem 3.3 (Riesz theorem in sub-Riemannian manifolds). Let u ∈ BV(Ω,g,ω). There exists a Borel vector field νu

satisfying G(νu) = 1, ‖Dgu‖-a.e. in Ω and

DXu = g(X,νu)‖Dgu‖, ∀X ∈ Γ g(Ω,D). (41)

If E is a set of finite perimeter and u = 1E , νE := ν1E
is given in a local frame Xi = f ◦ σi by f (

∑
i ν

∗
E,iσi) and it

will be called geometric normal.

Proof. By a partition of unity, we can assume that in Ω an image of an orthonormal frame X1 = f ◦ σ1, . . . ,Xm =
f ◦σm is globally given and, taking into account Proposition 2.2, we can assume with no loss of generality that Ω ⊂Rn

and that ω = ω̄ dx1 ∧ · · · ∧ dxn. Let Xu be as in (35) and write, in polar decomposition, Xu = w|Xu| = w‖Dgu‖ for
some Borel w :Ω → Rm with |w| = 1. If X =∑

i ciXi with ci smooth, obviously
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DXu =
m∑

i=1

ciDXi
u =

m∑
i=1

ciwi‖Dgu‖. (42)

Assume now that X ∈ Γ g(Ω,D). By a measurable selection theorem we can write X = ∑
i ciXi with ci Borel

and
∑

i c
2
i � 1. If we define, as in the proof of Theorem 2.4, Xε = ∑m

i=1 ci ∗ ρεXi , the commutator theorem and the
distributional identity divω Y = divY +Y log ω̄ give (notice indeed that divω(ciXi) makes sense only as a distribution)

vε = divω(ci ∗ ρεXi) − [
divω(ciXi)

] ∗ ρε → 0 strongly in L1
loc(Ω), ∀i = 1, . . . ,m. (43)

Hence, adding with respect to i gives divω Xε → divω X strongly in L1
loc(Ω). Recall that the distribution div(ciXi)

satisfies∫
Ω

ψ(y)d div(ciXi)(y) = −
∫
Ω

ci(y)Xiψ(y)dy, ∀ψ ∈ C1
c (Ω),

whence

divω(ciXi) ∗ ρε(x) =
∫
Ω

ρε(x − y)d div(ciXi)(y) +
∫
Ω

ρε(x − y)ci(y)Xi log ω̄ dy.

Thus, a direct computation shows that

∣∣vε(x)
∣∣� n∑

j=1

∣∣∂jXij (x)
∣∣ ∫
Ω

∣∣ci(y)ρε(x − y)
∣∣dy +

∫
Ω

∣∣∣∣∣ci(y)

n∑
j=1

∂jρε(x − y)
(
Xij (x) − Xij (y)

)∣∣∣∣∣dy,

where Xij are smooth functions such that Xi = ∑n
j=1 Xij ∂j . The first summand is locally uniformly bounded since

|ci | � 1 and Xij is smooth. As for the second term, changing variable we obtain∫ ∣∣∣∣∣ci(y)

n∑
j=1

∂jρε(x − y)
(
Xij (x) − Xij (y)

)∣∣∣∣∣dy �
n∑

j=1

‖ci∂jρ‖L∞
1

ε

∫ ∣∣Xij (x − εy) − Xij (x)
∣∣dy.

It follows that vε is locally uniformly bounded, and the convergence in (43) holds in the weak∗ sense in L∞
loc as well.

Therefore, up to subsequences, divω Xε → divω X weakly∗ in L∞
loc(Ω). Since u ∈ L1(Ω), we can pass to the limit

into (42) with X = Xε to obtain that (42) holds for any smooth vector field X =∑
i ciXi with ci just bounded Borel.

Now, let us prove (41) with νu = f (w) =∑
i wiXi . To this aim, we notice that in the representation X =∑

i ciXi

we can always assume that c(y) is orthogonal to the kernel of f |Uy
. Recalling that

m∑
i=1

aibi = gy

(
m∑

i=1

aiXi(y),

m∑
i=1

biXi(y)

)
for all a orthogonal to the kernel of f |Uy

and all b ∈ Rm, we apply the previous equality with a = c and b = w, to
obtain (41). Notice that it has been essential the establishment of (42) with non-smooth c’s: even if the initial c’s were
smooth, their pointwise projection on the orthogonal to the kernel of f might be not smooth (see Example 3.6).

By construction, G(νu) � 1, because |w| = 1; the converse inequality can be proved noticing that on any Borel set
A it holds |DXu|(A) �

∫
A

√
G(νu)d‖Dgu‖, for all X ∈ Γ g(Ω,D). Choosing A open and maximizing with respect

to X gives

‖Dgu‖(A) �
∫
A

√
G(νu)d‖Dgu‖.

Since A is arbitrary, we have
√

G(νu) � 1, ‖Dgu‖-a.e. in Ω . �
Remark 3. A byproduct of the previous proof (just take w = ν∗

E in the previous proof, and notice that we proved that
G(

∑
i wiXi) = 1) is the fact that the dual normal ν∗

E is orthogonal ‖Dg1E‖-a.e. to the kernel of f .
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Remark 4. It is rather natural to ask whether Theorem 3.3 holds in the general framework of Section 2.3, where G

is only Borel and we consider general smooth sections of D. More precisely, in this setting, for u ∈ BV(Ω,g,ω),
it would be interesting to find a positive finite measure σ in Ω and a Borel vector field νu in Ω with G(νu) = 1,
‖Dgu‖-a.e., satisfying:

DXu = g(X,νu)σ, ∀X ∈ Γ g(Ω,D). (44)

A good candidate for the measure σ would be the supremum of |DXu|, in the lattice of measures, as X varies in
Γ g(Ω,D).

3.3. Privileged coordinates and nilpotent approximation

In this section we recall the notion of privileged coordinates and of nilpotent approximation of a sub-Riemannian
manifold at a point.

Let (U, f ) be a sub-Riemannian structure on M and fix p ∈ M . Let Ω be a neighborhood of p and let σ1, . . . , σm

be a local orthonormal frame for the U|Ω , where m = rank U. Define Xj = f ◦ σj .
Given a function ψ ∈ C∞(M), for i ∈ {1, . . . ,m} we call Xiψ a first non-holonomic derivative of ψ . Similarly,

if i, j ∈ {1, . . . ,m}, XiXjψ is a non-holonomic derivative of order 2. With this terminology, we say that ψ has
non-holonomic order at p greater than s if all non-holonomic derivatives of ψ of order σ � s − 1 vanish at p. If
moreover there exists a non-holonomic derivative of order s of ψ which does not vanish at p we say that ψ has
non-holonomic order s at p.

By duality, given a differential operator Q, we say that Q has non-holonomic order � s at p if Qψ has order
� s + η at p whenever ψ ∈ C∞(M) has order � η at p. Clearly, the non-holonomic order (of a function or of a
differential operator) is an intrinsic object, i.e., it does not depend on the chosen vector fields X1, . . . ,Xm.

Definition 3.3 (Privileged coordinates). Let ϕ = (ϕ1, . . . , ϕn) :Ω → Rn be a coordinate system centered at p, i.e., ϕ

is a smooth diffeomorphism and ϕ(p) = 0. We say that ϕ is a system of privileged coordinates if

• the canonical basis (∂z1 , . . . , ∂zn) of T0R
n is linearly adapted to the flag associated with ϕ∗D at 0;

• for every i = 1, . . . , n the non-holonomic order of the i-th coordinate function z �→ zi at 0 is equal to wi(p).

Existence of privileged coordinates at points of sub-Riemannian manifolds have been proved in a constructive way
in several works [15,27,29,39]. Moreover, if the non-holonomy degree kp is 2 at a point p (see Example 3.7), each
coordinate system satisfying the first property in Definition 3.3 directly satisfies the second one.

Let ϕ :Ω →Rn be a system of privileged coordinates at p. We consider the sub-Riemannian structure (U|Ω,ϕ∗ ◦f )

on Rn. Clearly, the vector fields ϕ∗X1, . . . , ϕ∗Xm are global generators for ϕ∗D. Using Proposition 2.2, the order of a
function ψ ∈ C∞(Ω) at p coincides with the order of ψ ◦ ϕ−1 ∈ C∞(Rn) at 0.

Privileged coordinates allow to compute non-holonomic orders (both of functions and of differential operators)
using the following facts.

(i) A monomial function h ∈ C∞(Rn), h(z) = z
α1
1 z

α2
2 · · · zαn

n has order w1(p)α1 + · · · + wn(p)αn at 0.
(ii) Given i ∈ {1, . . . , n}, a vector field F(z) = z

α1
1 z

α2
2 · · · zαn

n ∂zi
has order w1(p)α1 + · · · + wn(p)αn − wi(p) at 0.

Thanks to (i), the order at 0 of a function h ∈ C∞(Rn), denoted with ord0(h) is the smallest number w1(p)α1 +
· · · + wn(p)αn, such that a monomial z

α1
1 z

α2
2 · · · zαn

n appears with a nonzero coefficient in the Taylor expansion of h

at 0. Using (ii), we have a notion of homogeneity of vector fields. Namely, a vector field F on Rn is homogeneous of
order s if

F =
n∑

i=1

fi(z)∂zi
,

where

ord0(fi) − wi(p) = s, ∀i = 1, . . . , n.
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By definition, the order of ϕ∗Xi at 0 is greater than −1. Hence, we have an expansion

ϕ∗Xi = Y
(−1)
i + Y

(0)
i + Y

(1)
i + · · · ,

where Y
(s)
i is the homogeneous component ϕ∗Xi of order s. Define m vector fields on Rn by

X̂i = Y
(−1)
i . (45)

Denote by D̂ the distribution on Rn generated pointwise by X̂1, . . . , X̂m and define, in analogy with (31)

Ĝx(v) =
{

min{∑m
i=1 c2

i | v =∑m
i=1 ciX̂i(x)}, v ∈ D̂(x),

+∞, v /∈ D̂(x),
(46)

and ĝx the corresponding scalar product on D̂(x).

Remark 5. Take Û =Rn ×Rm and f̂ : Û → TRn defined by f̂ (z, v) =∑m
i=1 viX̂i(z). Then one can define D̂ and Ĝx

as the one induced by the sub-Riemannian structure (Û, f̂ ) on Rn. The fact that Liez D̂ =Rn for every z ∈ Rn follows
by the Lie bracket generating condition on ϕ∗D.

Denote by d̂ the Carnot–Carathéodory distance on Rn associated with the sub-Riemannian structure (Û, f̂ ), and
denote by B̂r the set {y ∈Rn | d̂(y,0) < r}. Given λ > 0, define the dilation δλ : Rn →Rn by

δλ(z1, . . . , zn) = (
λw1(p)z1, . . . , λ

wn(p)zn

)
(47)

The sub-Riemannian structure (Û, f̂ ) on Rn defined in Remark 5 is called a nilpotent approximation of (U, f )

at p. Let us recall some properties of nilpotent approximations that will be useful in the sequel.

Proposition 3.4. Let (Û, f̂ ) be a nilpotent approximation of (U, f ) at p. Then:

(i) the growth vector of ϕ∗D at 0 coincides with the growth vector of D̂ at 0;
(ii) any vector field V ∈ Lie{X̂1, . . . , X̂m} is complete and Lie{X̂1, . . . , X̂m} is nilpotent;

(iii) the distance d̂ is homogeneous with respect to δλ, i.e., d̂(δλz, δλz
′) = λd̂(z, z′), for every λ � 0, z, z′ ∈Rn;

(iv) given r > 0 and a smooth vector field X on Ω such that ordpX � −1, the vector field Y r on Rn defined by

Y r = r(δ1/r )∗(ϕ∗X − X̂),

where X̂ is the homogeneous component of ϕ∗X of order −1 at 0, satisfies the following property: Y r and its
divergence converge uniformly to zero on compact sets of Rn as r tends to zero.

Proof. It is easy to see that if X has order � α and Y has order � β at 0 then [X,Y ] has order � α + β at 0. If
X is homogeneous of order α at 0 and Y is homogeneous of order β at 0 then [X,Y ] is homogeneous of order
α + β or it is zero. Let XI = [Xik [· · · [Xi2,Xi1] · · ·]], where I = (i1, . . . , ik) ∈ {1, . . . ,m}k . Denote by X̂I the Lie
bracket [X̂ik [· · · [X̂i2, X̂i1] · · ·]]. Since X̂I is homogeneous of order −k (or it is zero), ϕ∗XI − X̂I has order � −k at 0.
Therefore ϕ∗XI (0) − X̂I (0) ∈ ϕ∗Dk−1(0). As a consequence, dim D̂k(0) = dimϕ∗Dk(0) for every k, which gives the
first property.

By homogeneity, for every i = 1, . . . ,m,

X̂i =
n∑

j=1

fij (z)
∂

∂zj

,

with fij satisfying

fij (δλz) = λwj −1fij (z).

This implies that fij is a homogeneous polynomial of non-holonomic degree wj − 1, whence it depends only on
coordinates zk with k such that wk(p) < wj (p). Let j � n1 (where n1 = dim D̂(0)). Then, since fij is constant, the
solution of żj = fij (z) is a linear function of t . Take now j ∈ {n1 + 1, . . . , n2} then, since fij (z) only depends on
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z1, . . . , zn1 , the solution of żj = fij (z) is a quadratic function of t . Iterating this process we obtain that the flow of X̂i

is defined for every t , that is, X̂i is complete.
Since fij is a polynomial of degree wj(p) − 1 � wn(p) − 1 = kp − 1, every Lie bracket between the X̂i of length

greater than kp vanishes identically. Therefore, the Lie algebra generated by X̂1, . . . , X̂m is nilpotent and, for every
V ∈ Lie{X̂1, . . . , X̂m}, we have

V =
n∑

j=1

Vj (z)∂zj
,

where Vj is a polynomial of non-holonomic degree � wj(p) − 1. Using the above argument, one infers that the flow
of V is defined for every t .

The homogeneity of d̂ is a consequence of the fact that, under the action of δλ, the length of a curve (calculated
with Ĝ) is multiplied by λ, which in turn follows by X̂j being homogeneous of order −1.

If X is a smooth vector field on Ω having order at p greater than −1 then ϕ∗X = X̂ + R, with X̂ homogeneous of
order −1 at 0 and R having order � 0 at 0. Homogeneity of order −1 at 0 means that X̂ satisfies

(δ1/r )∗X̂(z) = r−1X̂(z),

whence

r(δ1/r )∗X̂(z) = X̂(z).

Let R =∑n
i=1 ci(z)∂zi

. Since R has positive order, there exist ρ0 > 0 and C0 > 0 such that∣∣ci(z)
∣∣� C0

(|z1|1/w1 + · · · + |zn|1/wn
)wi , ∀z ∈ B̂ρ0 . (48)

Let K ⊂Rn be any compact set and let ω̃ = (ϕ−1)∗ω (see Proposition 2.2). Denote by ω̄ the density of ω̃ with respect
to the Lebesgue measure, i.e., ω̃ = ω̄ dz. Thanks to the identity divω̃ Y = divY + Y log ω̄, it suffices to show that the
Euclidean divergence of Y r , i.e., the divergence with respect to the Lebesgue measure, converges to zero on compact
sets. We have

Y r(z) = r
[
(δ1/r )∗R

]
(z) = r

n∑
i=1

r−wi ci(δrz)∂zi
, divY r(z) = r

n∑
i=1

r−wi
∂hi

∂zi

(r, z),

where hi(r, z) = ci(δrz). Hence, to prove the required convergences, it suffices to show that, for every i = 1, . . . , n,

lim sup
r↓0

1

rwi
sup
K

∣∣ci(δrz)
∣∣< ∞, (49)

lim sup
r↓0

1

rwi
sup
K

∣∣∣∣∂hi

∂zi

∣∣∣∣(r, z) < ∞. (50)

Assume r < ρ0/diamK . Then δrz ∈ B̂ρ0 , whence (48) implies∣∣ci(δrz)
∣∣� C0r

wi
(|z1|1/w1 + · · · + |zn|1/wn

)wi � C0r
wi max

z∈K

(|z1|1/w1 + · · · + |zn|1/wn
)wi ,

and (49) is proved. As for (50), we have

∂hi

∂zi

(r, z) = rwi
∂ci

∂zi

(δrz),

whence

lim sup
r↓0

1

rwi
sup
K

∣∣∣∣∂hi

∂zi

∣∣∣∣(r, z) �
∣∣∣∣∂ci

∂zi

∣∣∣∣(0),

since ci is smooth. �
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3.4. Nilpotent approximation and metric tangent cones

The following theorem provides an estimate between the sub-Riemannian distance d and the distance d̂ associated
with the nilpotent approximation of (U, f ) at p. It has been proved for equiregular sub-Riemannian manifolds in
[34, Proposition 4.4] (see also [15] for the general case). Our proof is inspired by the arguments in [1, Lemma 8.46,
Theorem 8.49]. Just for notational simplicity, we omit the diffeomorphism ϕ and rename the vector fields ϕ∗Xi by Xi .

Theorem 3.5. Let d and d̂ be the Carnot–Carathéodory distances associated with the family of vector fields
X1, . . . ,Xm and X̂1, . . . , X̂m, respectively. Let Kr be the closure of B̂r . Then, the following estimate holds

lim
ε↓0

1

ε
sup

x, y∈KRε

∣∣d(x, y) − d̂(x, y)
∣∣= 0, ∀R > 0. (51)

Proof. If x, y ∈ KRε , then we write x = δεx̄, y = δεȳ, with x̄, ȳ ∈ KR , where KR = δ1/εKRε . Using homogeneity
of d̂ (and renaming x̄, ȳ), (51) can be restated as

lim
ε↓0

sup
x,y∈KR

∣∣∣∣d(δεx, δεy)

ε
− d̂(x, y)

∣∣∣∣= 0, ∀R > 0.

Set

dε(x, y) = d(δεx, δεy)

ε
,

and

Xε
i = ε(δ1/ε)∗Xi, i = 1, . . . ,m.

Using the last statement in Proposition 3.4, Xε
i converges to X̂i uniformly on compact sets. By construction, dε is

the Carnot–Carathéodory distance associated with Xε
1, . . . ,X

ε
m. Recall that in [1, Formula 8.26] it has been shown the

existence of a constant C depending only the blowup point (i.e., the origin) and on the compact set KR such that if ε

is small enough

dε(x, y) � C|x − y|1/k0, ∀x, y ∈ KR, (52)

where k0 is the non-holonomy degree of the sub-Riemannian structure at 0.
Since (52) provides equicontinuity, it suffices to show that dε → d̂ pointwise on KR × KR . We prove first the

lim sup inequality. Set U = L2([0,1],Rm) and choose c ∈ U such that (recall the formulation (26) in terms of action
minimization) d̂(x, y) = ‖c‖2 and γ (1) = y, where γ (0) = x and γ̇ =∑

i ciX̂i(γ ). Then, if yε = γε(1), where

γ̇ε =
m∑

i=1

ciX
ε
i (γε), γε(0) = x,

standard ODE theory and the uniform convergence of Xε
i to X̂i on compact sets give yε → y. On the other hand, the

very definition of dε gives dε(x, yε) � ‖c‖2. By (52) we obtain that lim supε dε(x, y) � d̂(x, y).
In order to prove the lim inf inequality fix a sequence (εh) ↓ 0 on which the lim infε dε(x, y), that we already know

to be finite, is achieved. Choosing ch ∈ U such that

γ̇h =
m∑

i=1

ch
i X

εh

i (γh), γh(0) = x, γh(1) = y,
∥∥ch

∥∥
2 = dεh

(x, y),

we can assume with no loss of generality that ch weakly converge in U to some c. Again, standard ODE theory and
the uniform convergence of Xε

i to X̂i on compact sets give

γ̇ =
m∑

i=1

ciX̂i(γ ), γ (0) = x, γ (1) = y.

Hence, d̂(x, y) � ‖c‖2. Since ‖c‖2 � lim infh ‖ch‖2 we obtain the lim inf inequality. �
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Remark 6. Notice that by the Ball–Box theorem (see [37]), there exists a constant L > 0 such that

B̂ε/L(0) ⊂ Bε(0) ⊂ B̂Lε(0) (53)

for all ε > 0 sufficiently small. Hence, (51) is equivalent to

lim
ε↓0

1

ε
sup

x,y∈B̄Rε(0)

∣∣d(x, y) − d̂(x, y)
∣∣= 0, ∀R > 0.

The main consequence of (51) is that (Rn, d̂) is a metric tangent cone in Gromov’s sense (see [28]) to (M,d)

at p, the quasi-isometry being the identity map (in privileged coordinates centered at p). Note that by very definition,
a metric tangent cone carries also a homogeneous structure, relying on a 1-parameter group of dilations.

Under an additional assumption, the nilpotent approximation (and thus a metric tangent cone) is a Carnot group.
To see this, let G be the group of diffeomorphisms of Rn generated by the set1{

Φ
X̂i1
t1

◦ Φ
X̂i2
t2

◦ · · · ◦ Φ
X̂ik
tk

, ti ∈R, ij ∈ {1, . . . ,m}, k ∈ N
}
,

where, obviously, we take the composition as the group operation. Thanks to the Baker–Campbell–Hausdorff formula,
since Lie{X̂1, . . . , X̂m} is nilpotent, for every Φ ∈ G there exists V ∈ Lie{X̂1, . . . , X̂m} such that Φ = ΦV

1 . Define2

Gp = {
Φ ∈ G

∣∣Φ(0) = 0
}
. (54)

Proposition 3.6. If Gp = {IdRn} then there exists a group operation � on Rn such that X̂i are left invariant vector
fields.

Proof. Define the map Ψ :Gp → Rn by Ψ (Φ) = Φ(0). Since the X̂i are bracket generating, Ψ is surjective and,
by assumption, Ψ is injective. Thus, for every x ∈ Rn there exists a unique Φ ∈ Gp such that Φ(0) = x. Taking
V ∈ Lie{X̂1, . . . , X̂m} such that Φ = ΦV

1 , we have ΦV
1 (0) = x. Notice that V may not be unique. Define the operation

� :Rn ×Rn → Rn

x � y := ΦW
1 ◦ ΦV

1 (0),

where V ∈ Lie{X̂1, . . . , X̂m}, respectively W ∈ Lie{X̂1, . . . , X̂m}, is a vector field such that ΦV
1 (0) = x, respectively,

ΦW
1 (0) = y. Let us verify that x � y is well-defined, i.e., it does not depend on the choice of V and W . Let V ′,W ′ be

such that ΦV ′
1 (0) = x, ΦW ′

1 (0) = y. Then, using (ΦW
1 )−1 = Φ−W

1 ,

Φ−W ′
1 ◦ ΦW

1 (0) = 0.

Thus, our assumption implies that Φ−W ′
1 ◦ ΦW

1 = IdRn , that is, ΦW
1 (z) = ΦW ′

1 (z) for every z ∈ Rn. Then

ΦW
1 ◦ ΦV

1 (0) = ΦW
1 (x) = ΦW ′

1 (x) = ΦW ′
1 ◦ ΦV ′

1 (0).

It is easily seen that (Rn, �) is a Lie group, where the inverse of x = ΦV
1 (0) is given by x−1

� = Φ−V
1 (0). Let lx :Rn →

Rn be the left translation, i.e., lxy = x � y. Then, by definition of push-forward,(
(lx)∗X̂i

)
(y) = d

dt

∣∣∣∣
t=0

(
lx
(
γ (t)

))
,

where γ (t) = Φ
X̂i
t (l−1

x y). For every t , since Ψ is bijective, there exists Z(t) ∈ Lie{X̂1, . . . , X̂m} such that Φ
Z(t)
1 (0) =

γ (t). Let V and W be such that ΦV
1 (0) = x and ΦW

1 (0) = y. We have

Φ
Z(t)
1 (0) = γ (t) = Φ

X̂i
t

(
l−1
x y

)= Φ
X̂i
t

(
x−1
� � y

)= Φ
X̂i
t ◦ ΦW

1 ◦ Φ−V
1 (0).

1 Recall that ΦY
t denotes the flow generated by a vector field Y .

2 We emphasize the dependence of Gp on the point p at which the nilpotent approximation is considered. (Recall that ϕ(p) = 0 and the vector
fields X̂1, . . . , X̂m actually depend on p.)



L. Ambrosio et al. / Ann. I. H. Poincaré – AN 32 (2015) 489–517 511
Hence, since Ψ is injective, Φ
Z(t)
1 = Φ

X̂i
t ◦ ΦW

1 ◦ Φ−V
1 as diffeomorphisms. Thus

d

dt

∣∣∣∣
t=0

(
lx
(
γ (t)

))= d

dt

∣∣∣∣
t=0

(
x � γ (t)

)= d

dt

∣∣∣∣
t=0

(
Φ

Z(t)
1 ◦ ΦV

1 (0)
)= d

dt

∣∣∣∣
t=0

(
Φ

X̂i
t ◦ ΦW

1 ◦ Φ−V
1 ◦ ΦV

1 (0)
)

= d

dt

∣∣∣∣
t=0

(
Φ

X̂i
t ◦ ΦW

1 (0)
)= X̂i

(
ΦW

1 (0)
)= X̂i(y). �

In particular, if Gp = {IdRn} the Lie group Rn equipped with the left invariant sub-Riemannian structure associated
X̂1, . . . , X̂m is a Carnot group. In other words, our assumption implies that any metric tangent cone to (M,d) at p is
isometric to a Carnot group. Notice that when p is regular it has been shown in [15] that Gp = {IdRn}. Nevertheless,
as we see in Example 3.5, the metric tangent cone may be a Carnot group even at singular points.

A direct consequence of Proposition 3.4 is that if kp = 2 at every p ∈ M then M is equiregular and has a step 2
Carnot group as metric tangent cone at each point.

Remark 7. Recall that n1(p) is the dimension of span{X̂1(0), . . . , X̂m(0)}. When Gp = {IdRn} there exist j1 < j2 <

· · · < jn1(p) such that X̂j1, . . . , X̂jn1
is an orthonormal frame for the Carnot group, whereas X̂k ≡ 0 for all other

indexes k.

4. The blow-up theorem

In the next subsections we will always be in the following setup:

(A1) E is a set of locally finite perimeter in an open set Ω ⊂ M and p ∈ F∗
g E ∩ Ω ;

(A2) σ1, . . . , σm is a local orthonormal frame on Ω , inducing the vector fields Xi = f ◦ σi , ϕ :Ω → Rn is a system
of privileged coordinates centered at p and X̂1, . . . , X̂m are defined as in (45).

Note that (A2) is fulfilled by any sub-Riemannian structure (U, f ) on M , provided Ω is small enough.
In the previous setup, D̂, Ĝ, d̂ denote the corresponding objects relative to the nilpotent approximation (see Sec-

tion 3.3) and δr denote the corresponding dilations. Notice that the Lebesgue measure on Rn is well-behaved with
respect to the dilations

δλ(z1, . . . , zn) = (
λw1(p)z1, . . . , λ

wn(p)zn

)
,

the Jacobian being

Jδλ(z) = λQp, ∀z ∈Rn

where (w1(p), . . . ,wn(p)) is the vector of weights of D at p (and of D̂ at 0) and

Qp =
kp∑
i=1

i dim
(
Di (p) \Di−1(p)

)=
n∑

i=1

wi(p).

For simplicity, in the sequel we rename Qp by Q and wi(p) by wi .
We are interested in the asymptotic behavior of δ1/rϕ(E ∩ Ω) as r → 0. Given this setup, we can always reduce

ourselves to the case when Ω = Rn, p = 0 and ϕ is equal to the identity, possibly replacing E by ϕ(E ∩ Ω) and
Xi by ϕ∗Xi (see also Proposition 2.2). This reduction will simplify our notation. In addition, the differential form
ω̃ = (ϕ−1)∗ω can be written as ω̄ dx1 ∧ · · · ∧ dxn with ω̄ smooth and strictly positive in Rn and we are interested in
the asymptotic behavior near the origin. Since the volume form is only used to define the divergence, affecting DX1E

in a multiplicative way (see also the more detailed discussion in the proof of Theorem 2.4), we can actually assume
that ω̄ ≡ 1 and the measure m associated with ω̃ coincides with the Lebesgue measure.

Before stating our main result, we recall that in a Carnot group G (see Example 3.1) with Lie algebra g, a Borel
set F is called vertical halfspace if F is invariant3 along all vector fields X ∈ g (i.e., DX1F = 0) except a vector field

3 Hereafter, on a Carnot group G we always consider distributional derivatives computed using the Lebesgue measure in graded coordinates.
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X in V1, for which there is (strict) monotonicity, namely DX1F is nonnegative and nonzero. Setting v = X(0) ∈ T0G,
we say that F is orthogonal to v.

The following result has been first proved in [24, Lemma 3.6], see also [14, Proposition 5.4] for a different proof
(for Carnot groups of arbitrary steps satisfying further algebraic conditions see [33, Proposition 2.9]). It shows that
invariance needs only to be checked along directions in the horizontal layer.

Lemma 4.1. Let G be a Carnot group of step 2, let m be the dimension of its horizontal layer V1 and let F ⊂ G be
a Borel set. Assume that V1 contains (m − 1) independent vector fields Yi such that DYi

1F = 0 and a vector field X

such that DX1F � 0. Then, if DX1F is not 0, F is a vertical halfspace.

Recall that kp is the non-holonomic degree of the sub-Riemannian structure at p and Gp is defined in (54).

Theorem 4.2. Under the assumptions in (A1) and (A2) above, the following properties hold:

(a) the family 1δ1/rϕ(E∩Ω) is relatively compact in the L1
loc(R

n) topology as r → 0;
(b) any limit point 1F is monotone along the direction X̂ =∑

i ν
∗
E,i(p)X̂i , i.e.

DX̂1F � 0,

and 0 belongs to the support of DX̂1F ;
(c) any limit point 1F is invariant along all directions X̂ =∑

i ciX̂i with ci ∈ C∞,
∑m

i=1 c2
i � 1 and 〈c(0), ν∗

E(p)〉 = 0,
i.e.

DX̂1F = 0.

Moreover, if Gp = {IdRn} and kp = 2, then Rn with the left invariant sub-Riemannian structure associated with
X̂1, . . . , X̂m is a Carnot group of step 2 and F is the vertical halfspace passing through the origin, normal to
νE(p) = ϕ∗f (ν∗

E(p)). In particular the whole family 1δ1/rϕ(E∩Ω) converges to 1F as r ↓ 0 and

lim
r↓0

‖Dg1E‖(Br(p))

h(Br(p))
= ‖Dĝ1F ‖(B̂1)

L n(B̂1)
(55)

with h(Br(p)) = m(Br(p))/r .

Remark 8. Let us mention that when the sub-Riemannian manifold satisfies the condition

kp = 2, ∀p ∈ M,

then Gp = {IdRn} at every point and therefore the assumptions in the second part of Theorem 4.2 are fulfilled by any
finite perimeter set. For instance, this is the case for corank 1 distribution (see Example 3.7).

The next remark points out an application of our results to rank-varying distributions.

Remark 9. Consider the sub-Riemannian manifold of Example 3.5. Outside the plane Σ = {(x1, x2, x3) | x1 = x2 = 0}
the structure is Riemannian, whereas at points x ∈ Σ we have kx = 2. Hence, combining the blowup theorem in the
Euclidean case with Theorem 4.2 above we obtain that any finite perimeter set in this sub-Riemannian manifold admits
a blowup at each point of its reduced boundary.

Concerning the proof of Theorem 4.2, statement (a) is proved in Theorem 4.3, statements (b), (c) are proved in
Lemma 4.4, while the second part of Theorem 4.2, which requires in addition the assumptions on Gp and kp , is
proved in Section 4.3.
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4.1. Compactness

In this subsection we show that the family of rescaled sets δ1/rϕ(E ∩ Ω) is relatively compact with respect to the
L1

loc convergence. Here the difficulty in the proof arises from the fact that, in some sense, not only the sets but also
the metric depends on r , since the rescaled sets have finite perimeter with respect to a family of vector fields which
does depend on r . For this reason, and also because the convergence of vector fields does not occur in strong norms,
standard compactness results relative to a fixed system of vector fields are not applicable.

Denoting by B̄1 the closed unit ball relative to d̂ centered at the origin, a simple compactness argument valid
in general metric spaces (see for instance [8]) provides for any η > 0 a partition of B̄1 in finitely many Borel sets
A

η

1, . . . ,A
η

N(η) and points z
η

1, . . . , z
η

N(η) satisfying{
x

∣∣∣ d̂(x, z
η
i

)
<

η

3

}
⊂ A

η
i ⊂

{
x

∣∣∣ d̂(x, z
η
i

)
<

5η

4

}
, i = 1, . . . ,N(η). (56)

The proof of the next result is based on the following compactness criterion. Assume that Gh ⊂Rn are Borel sets, and
that for any R > 0 and ε > 0 there exist η = η(R, ε), h(R, ε) and mi,h ∈ [0,1] satisfying

R−Q

N(η)∑
i=1

∫
δR(A

η
i )

|1Gh
− mi,h|dx < ε, for h � h(R, ε), (57)

where A
η
1, . . . ,A

η

N(η) are as in (56). Then (Gh) is relatively compact in the L1
loc(R

n) convergence. The proof of the
criterion is elementary, since for any R > 0 and ε > 0 we can choose η in such a way that the map

1Gh
�→

N(η)∑
i=1

mi,h1A
η
i
, h � h(R, ε)

provides a projection on a compact set (since the mi,h are finitely many and belong to [0,1]), ε-close in L1(B̄R) norm.

Theorem 4.3 (Compactness). Let E ⊂Rn be a set of finite perimeter in a neighborhood of 0. Then, if

L := lim sup
r↓0

‖Dg1E‖(Br(0))

rQ−1
< ∞, (58)

the family of sets δ1/rE is relatively compact in L1
loc(R

n) as r ↓ 0.

Proof. By a scaling argument it suffices to show that, for any R > 0 and ε > 0, there exist η(R, ε) > 0 and r̄(R, ε) > 0
such that

(Rr)−Q

N(η)∑
i=1

∫
δRr (A

η
i )

|1E − mr,i |dx < ε for all r ∈ (0, r̄), (59)

with mr,i ∈ [0,1] equal to the mean value of 1E on the set δRr(B3ηRr/2(z
η
i )).

We choose η ∈ (0,1) satisfying the smallness condition 32Q−1cLRη < ε, where L is the constant in (58), c is the
multiplicative constant in the Poincaré inequality (23) and N̄ , detailed below, depends only on the (local) doubling
constant of d relative to the Lebesgue measure. Given η, because of (56) and (51), we can find r̄ > 0 such that, for all
r ∈ (0, r̄), it holds

BRηr/4
(
δRrz

η
i

)⊂ δRr

(
A

η
i

)⊂ B3Rηr/2
(
δRrz

η
i

)⊂ B2Rr(0). (60)

Let us check the first inclusion (the proof of the other ones is similar). If d(w, δRrz
η
i ) < Rηr/4, then for r � r(δ)

sufficiently small from (51) (see also the equivalent formulation in Remark 6) it holds d̂(w, δRrz
η
i ) < Rδr/3. Hence

d̂(δ1/(Rr)w, z
η
i ) < δ/3, so that (56) gives δ1/(Rr)w ∈ A

η
i and then w ∈ δRr(A

η
i ). Possibly choosing a smaller r̄ , we can

also assume that the Poincaré inequality (23) holds at all points δRrz
η with radius 3Rηr/2, for r ∈ (0, r̄).
i
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From (60) we deduce that any point belongs to at most N̄ balls B3Rηr/2(δRrz
η
i ), with N̄ depending only on the

doubling constant of d . Indeed, setting by brevity α = Rηr/4, if x̄ belongs the balls B6α(δRrz
η
i ) for i ∈ J , then

all these balls are contained in B12α(x̄); on the other hand, this ball contains the balls Bα(δRrz
η
i ), i ∈ J , which are

pairwise disjoint by the first inclusion in (60). Since B12α(x̄) ⊂ B18α(δRrz
η
i ) we get

L n
(
Bα

(
δRrz

η
i

))
� c−5

D L n
(
B32α

(
δRrz

η
i

))
� c−5

D L n
(
B12α(x̄)

)
,

where cD is the doubling constant,4 so that J has cardinality at most c5
D , so that N̄ � c5

D .
Now, using the second inclusion in (60) and the Poincaré inequality (23) (which, by [30], is known to hold with

λ = 1 in length spaces), we can estimate the sum in (59) with

N(η)∑
i=1

∫
δRr (A

η
i )

|1E − mr,i |dx �
N(η)∑
i=1

∫
B3Rηr/2(δRr z

η
i )

|1E − mi,r |dx

=
N(η)∑
i=1

c
3Rηr

2
‖Dg1E‖(B3Rηr/2

(
δRrz

η
i

))
� 3cRN̄ηr‖Dg1E‖(B2Rr(0)

)
.

By our choice of η, we obtain (59). �
4.2. Invariant and monotone directions

Lemma 4.4. Let ζ ∈ L∞(Rn) be a weak∗ limit point in L∞(Rn) of 1δ1/rϕ(E∩Ω) as r tends to 0 and let X = ∑
i ciXi

with ci ∈ C∞(Ω) and
∑

i c
2
i � 1. Then, if X̂ denotes the homogeneous component of order −1 at 0 of ϕ∗X, the

following properties hold:

(i) if 〈ν∗
E(p), c(p)〉 = 1, then ζ is monotone along X̂;

(ii) if 〈ν∗
E(p), c(p)〉 = 0 then ζ is invariant along X̂.

Finally, the family 1δ1/rϕ(E∩Ω) is relatively compact in the L1
loc(R

n) topology as r → 0, and therefore ζ is a charac-
teristic function 1F . Moreover, if X is as in (i), 0 belongs to the support of DX̂1F .

Proof. First of all we shall perform the preliminary reduction described at the beginning of Section 4, so that Ω =Rn,
p = 0, ϕ is equal to the identity and m = L n.

Let us start with a preliminary remark. Since DX1E = ∑
i ciDXi

1E = 〈c, ν∗
E〉‖Dg1E‖, we can add and subtract

ν∗
E(0) in the scalar product and use the defining property (39) of points in the reduced boundary to obtain that

lim
r↓0

|‖Dg1E‖ − DX1E |(Br(0))

‖Dg1E‖(Br(0))
= 0 (61)

under the assumption on X made in (i), while

lim
r↓0

|DX1E |(Br(0))

‖Dg1E‖(Br(0))
= 0 (62)

under the assumption on X made in (ii). Thanks to property (40) valid at points in the reduced boundary we have also
‖Dg1E‖(Br(0)) � L n(Br(0))/r as r ↓ 0, and the Ball–Box inclusions (53) give ‖Dg1E‖(Br(0)) � rQ−1 as r ↓ 0.
Hence, using once more the Ball–Box inclusions also in the numerators of (61) and (62), we can write them in the
more convenient form

4 The local doubling property of the Lebesgue measure with respect to the distance d in privileged coordinates is proved in [37].



L. Ambrosio et al. / Ann. I. H. Poincaré – AN 32 (2015) 489–517 515
lim
r↓0

r1−Q|‖Dg1E‖ − DX1E |(B̂Rr) = 0, ∀R > 0, (63)

lim
r↓0

r1−Q|DX1E |(B̂Rr ) = 0, ∀R > 0. (64)

Now we have all the ingredients to prove (i). Fix ψ ∈ C1
c (Rn) nonnegative and let R be such that the ball B̂R

contains the support of ψ . By the definition of DX̂ζ , we have to prove that

−
∫
Rn

ζψ div X̂ dz −
∫
Rn

ζ(X̂ψ)dz � 0. (65)

Let ρi → 0 be such that 1δ1/ρi
E weak∗ converges to ζ and define

Yi := ρi(δ1/ρi
)∗X.

Recalling that Yi converge to X̂ and divYi converge to div X̂ uniformly on compact sets of Rn (see Proposition 3.4),
it will be sufficient to show that

lim
i→∞

∫
δ1/ρi

E

ψ divYi dz +
∫

δ1/ρi
E

Yiψ dz � 0.

Setting ψi(y) = ψ(δ1/ρi
y) and changing variables, this is equivalent to

lim
i→∞ρ

1−Q
i

(∫
E

ψi divX dy +
∫
E

Xψi dy

)
� 0.

Now we can integrate by parts, and we are left to show that

lim
i→∞ρ

1−Q
i

∫
B̂Rρi

(0)

ψi dDX1E � 0.

This is an immediate consequence of (63), because ψi are nonnegative, uniformly bounded and their support is con-
tained in B̂Rρi

. The proof of (ii) is analogous, and relies on (64).
The fact that ζ = 1F for some Borel set F follows by Theorem 4.3, which provides compactness in the stronger

L1
loc(R

n) topology (finiteness of L in (58) follows by ‖Dg1E‖(Br(0)) � rQ−1). In order to prove that 0 belongs to
the support of DX̂1F , under assumption (i) on X, we notice that the same argument used above (with integration by
parts to justify the first equality) gives∫

B̂R

χ(z) dDX̂1F (z) = lim
i→∞

∫
B̂R

χ(z) dDYi
1δ1/ρi

E(z) = lim
i→∞ρ

1−Q
i

∫
B̂Rρi

χ(δ1/ρi
y) dDX1E(y) (66)

for any χ ∈ C∞
c (B̂R). If we use (63), ‖Dg1E‖(Br(0)) � rQ−1 and assume that χ is nonnegative and χ ≡ 1 in a

neighborhood of 0, we get
∫

χ(z)DX̂1F > 0, proving that 0 belongs to the support of DX̂1F . �

4.3. Characterization of F when the tangent cone is a Carnot group

Proof of the second part of Theorem 4.2. Assume Gp = {idRn}. Proposition 3.6 ensures that Rn (with the opera-
tion �) is a Lie group such that X̂1, . . . , X̂m are left-invariant. Since the Lie algebra Liez{X̂1, . . . , X̂m} is stratified
(see Proposition 3.4), the group Rn with the left-invariant sub-Riemannian structure associated with X̂1, . . . , X̂m is a
Carnot group.

Recall that n1(p) = dim D̂(0) � m. Define the left invariant vector field Ŷ1 by

Ŷ1 =
m∑

ν∗
E,i(0)X̂i .
i=1
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Since |ν∗
E(0)| = Ĝ0(νE(0)) = 1, we have Ĝ(Ŷ1) ≡ 1. By construction, thanks to Lemma 4.4, Ŷ1 is a monotone di-

rection, i.e., DŶ1
1F � 0. Let Ŷ2, . . . , Ŷn1 be left invariant vector fields on Rn such that Ŷ1, . . . , Ŷn1 is an orthonormal

frame for the Carnot group. Then, again by Lemma 4.4, DŶj
1F = 0 for every j = 2, . . . , n1. Therefore, applying

Lemma 4.1 we obtain that F is the halfspace orthogonal to the geometric normal νE(0) = f (ν∗
E(0)).

Finally, we prove (55). After our reduction to the case Ω =Rn and ω = dx1 ∧ · · ·∧ dxn (see Proposition 2.2), both
total variations ‖Dg1E‖, ‖Dĝ1F ‖ are computed using L n as reference measure. Moreover, thanks to (51), in the left
hand side of (55) we can replace Br(p) by B̂r . Set

Y1 =
m∑

i=1

ν∗
E,i(0)Xi, Yj =

m∑
i=1

cijXi, j = 2, . . . , n1

where cij are such that Ŷj =∑m
i=1 cij X̂i . Thanks to (61), it holds

lim
r↓0

‖Dg1E‖(B̂r )

h(B̂r )
= lim

r↓0

DY11E(B̂r )

h(B̂r )
,

and, similarly, ‖Dĝ1F ‖ = DŶ1
1F . Thus, (also taking (51) into account) (55) is equivalent to

lim
r↓0

DY11E(B̂r )

rQ−1
= DŶ1

1F (B̂1).

By scaling, we can read the property we want to prove as

lim
r↓0

r1−Q(δ1/r )#DY1 1E

(
B̂1(0)

)= DŶ1
1F

(
B̂1(0)

)
. (67)

Now, by (66) the family of nonnegative measures r1−Q(δ1/r )#DY1 1E weakly converges to DŶ1
1F as r ↓ 0. Since

∂B̂1(0) is DŶ1
1F -negligible, applying a well-known convergence criterion (see for instance [11, Proposition 1.62(b)])

we obtain (67). �
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