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Abstract

The Vlasov-Poisson system is a classical model in physics used to describe the evolu-
tion of particles under their self-consistent electric or gravitational field. The existence
of classical solutions is limited to dimensions d  3 under strong assumptions on the ini-
tial data, while weak solutions are known to exist under milder conditions. However, in
the setting of weak solutions it is unclear whether the Eulerian description provided by
the equation physically corresponds to a Lagrangian evolution of the particles. In this
paper we develop several general tools concerning the Lagrangian structure of transport
equations with non-smooth vector fields and we apply these results: (1) to show that
weak solutions of Vlasov-Poisson are Lagrangian; (2) to obtain global existence of weak
solutions under minimal assumptions on the initial data.
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5 The superposition principle under local integrability bounds 39

1 Introduction

The d-dimensional Vlasov-Poisson system describes the evolution of a nonnegative distri-
bution function f : (0,1) ⇥ Rd

⇥ Rd
! [0,1) according to Vlasov’s equation, under the

action of a self-consistent force determined by the Poisson’s equation:
8
>>>><

>>>>:

@tft + v ·rxft + Et ·rvft = 0 in (0,1)⇥ Rd
⇥ Rd

⇢t(x) =

Z

Rd
ft(x, v) dv in (0,1)⇥ Rd

Et(x) = � cd

Z

Rd
⇢t(y)

x� y

|x� y|d
dy in (0,1)⇥ Rd

.

(1.1)

Here ft(x, v) stands for the density of particles having position x and velocity v at time
t, ⇢t(x) is the distribution of particles in the physical space, Et = �r(��1

⇢t) is the force

field, cd > 0 is a dimensional constant chosen in such a way that cd div
⇣

x
|x|d

⌘
= �0, and

� 2 {±1}. The case � = 1 corresponds to the case of electrostatic forces between charged
particles with the same sign (repulsion) while � = �1 corresponds to the gravitational case
(attraction).

This system appears in several physical models. For instance, when � = 1 it describes
in plasma physics the evolution of charged particles under their self-consistent electric field,
while when � = �1 the same system is used in astrophysics to describe the motion of
galaxy clusters under the gravitational field. Many di↵erent models have been developed in
connection with the Vlasov-Poisson equation: amongst others, we mention the relativistic
version of (1.1) (where the velocity of particles is given by v/

p
1 + |v|2) and the Vlasov-

Maxwell system (which takes into account both the electric and magnetic fields of the
Maxwell equations).

Regarding the existence of classical solutions, namely, solutions where all the relevant
derivatives exist, the first contributions were given by Iordanskii [24] in dimension 1, by Ukai
and Okabe [33] in dimension 2, and by Bardos and Degond [6] in dimension 3 for small data.
For symmetric initial data, more existence results have been proven in [7, 34, 21, 32] (see
also the presentation in [31] for an overview of the topic and the references quoted therein).
Finally, in 1989 Pfa↵elmoser [30] and Lions and Perthame [27] were able to prove global
existence of classical solutions starting from a pretty general class of initial data. Moreover,
in [27] the problem of uniqueness is also addressed: there the authors show uniqueness in the
class of solutions with bounded space densities in [0,1)⇥R3 by considering the Lagrangian
flow associated to the vector field bt(x, v) := (v,Et(x)) (see also [28] for a di↵erent proof
based on stability in the Wasserstein metric).

The above mentioned results require strong integrability and moment conditions on
the initial data, and it would be very desirable to get global existence of solutions under
much weaker assumptions. In the classical paper [5], Arsen’ev proved global existence of
weak solutions under the hypothesis that the initial datum is bounded and has finite kinetic
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energy (see also [23]). This result has then been improved in [22], where the authors relaxed
the boundedness assumption to an L

p bound for some suitable p > 1.
Notice that these higher integrability hypotheses are needed even to give a meaning to

the equation in the distributional sense: indeed, when ft is merely L
1 the product Etft

does not belong to L
1
loc. To overcome this di�culty, in [15] the authors considered the

concept of renormalized solutions and obtained global existence in the case � = 1 under the
assumption that the total energy is finite and f0 log(1 + f0) 2 L

1 (in the case � = �1 they
still need some L

p assumption on f). Also, under some suitable integrability assumptions
on ft, they can show that the concepts of weak and renormalized solutions are equivalent.

It is important to observe that the Vlasov-Poisson system has a transport structure
which allows one to prove that, when the solutions is su�ciently smooth, ft is transported
along the characteristics of the vector field bt(x, v) := (v,Et(x)). However, when dealing
with weak or renormalized solutions, it is not clear whether such a vector field defines a
flow on the phase-space, and one loses the relation between the Eulerian and Lagrangian
picture.

The goal of this paper is twofold: on the one hand we show that the Lagrangian picture
is still valid even for weak/renormalized solutions, and secondly we obtain global existence
of weak solutions under minimal assumptions on the initial data. Both results rely on a
combination of the following tools, which we believe have their own interest:

(i) the local version of the DiPerna-Lions theory developed in [2];

(ii) the uniqueness of bounded compactly supported solutions to the continuity equation
for a special class of vector fields obtained by convolving a singular kernel with a measure
(this is based on the techniques developed in [11, 8], see Section 4.2);

(iii) the fact that the concept of Lagrangian solution is equivalent to the one of renormalized
solution (see Sections 4.4 and 5);

(iv) a general superposition principle stating that every nonnegative solution of the conti-
nuity equation has a Lagrangian structure without any regularity or growth assumption on
the vector field (see Section 5).

The above machinery is needed to prove a general result on the renormalization prop-
erty for solutions of transport equations which is crucial in our proof. However, from a
PDE viewpoint this renormalization property is all we shall need, so in order to keep the
presentation as much as possible independent of this heavy machinery we shall organize
the paper as follows: in the next section we state our results keeping the presentation on
the Lagrangian structure of solutions at an informal level. Then in Sections 3.1 and 3.2 we
prove our PDE results without introducing the tools mentioned above but simply using the
consequences of them, and we postpone points (i)-(iv) above to Sections 4 and 5.

Acknowledgement. The authors are grateful to Anna Bohun, François Bouchut, and
Gianluca Crippa for useful discussions on the topic of this paper. The first and third
author acknowledge the support of the ERC ADG GeMeThNES, the second author has
been partially supported by PRIN10 grant from MIUR for the project Calculus of Variations
and by the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
(GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM), the third author has
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been partially supported by NSF Grant DMS-1262411 and NSF Grant DMS-1361122. This
material is also based upon work supported by the National Science Foundation under Grant
No. 0932078 000, while the second and third authors were in residence at the Mathematical
Sciences Research Institute in Berkeley, California, during the fall semester of 2013.

2 Statement of the results

As already observed in the introduction, the Vlasov-Poisson system has a transport struc-
ture: indeed we can rewrite it as

@tft + bt ·rx,vft = 0, (2.1)

where the vector field bt(x, v) = (v,Et(x)) : R2d
! R2d is divergence-free, and is coupled to

ft via the relation Et = � cd ⇢t ⇤ (x/|x|d). Recalling that cd div
⇣

x
|x|d

⌘
= �0, the vector field

Et can also be found as Et = �rxVt where the potential Vt : (0,1)⇥ Rd
! R solves

��Vt = � ⇢t in Rd
, lim

|x|!1
Vt(x) = 0. (2.2)

Notice that, because the kernel x/|x|d is locally integrable, the electric field Et belongs to
L
1
loc(Rd;Rd), therefore bt 2 L

1
loc(R2d;R2d).

Now, since bt is divergence-free, the above equation can be rewritten as

@tft + divx,v(btft) = 0,

and the equation can be reinterpreted in the distributional sense provided the product btft
belongs to L

1
loc. However, as mentioned in the introduction, this is not true if ft is merely

L
1. To overcome this di�culty one notices that if ft is a smooth solution of (2.1) then also

�(ft) is a solution for all C1 functions � : R ! R; indeed

@t�(ft) + bt ·rx,v�(ft) =
⇥
@tft + bt ·rx,vft

⇤
�
0(ft) = 0,

or equivalently (since divx,v(bt) = 0)

@t�(ft) + divx,v(bt�(ft)) = 0. (2.3)

Notice that, since � is bounded by assumption, �(ft) 2 L
1 so bt�(ft) 2 L

1
loc whenever bt 2

L
1
loc, and (2.3) is well defined in the sense of distribution. This motivates the introduction

of the concept of renormalized solution [15]:

Definition 2.1. Let b 2 L
1
loc([0, T ]⇥R2d;R2d) be a Borel vector field. A Borel function f 2

L
1
loc([0, T ]⇥R2d) is a renormalized solution of (2.1) (starting from f0) if (2.3) holds in the

This description is correct in dimension d � 3 since the fundamental solution of the Laplacian decays at
infinity, while in dimension 2 the function Vt is given by the convolution of ⇢t with � 1

2⇡ log |x|.
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sense of distributions for every � 2 C
1
\ L

1(R), namely, for every � 2 C
1
c ([0, T )⇥ R2d),

Z

R2d
�0(x, v)�(f0(x, v)) dx dv

+

Z T

0

Z

R2d

⇥
@t�t(x, v) +rx,v�t(x, v) · bt(x, v)

⇤
�(ft(x, v)) dx dv dt = 0. (2.4)

In the case of the Vlasov-Poisson system, a function f 2 L
1((0, T );L1(R2d)) is a renor-

malized solution of (1.1) (starting from f0) if, setting

⇢t(x) :=

Z

Rd
ft(x, v) dv, Et := � cd

Z

Rd
⇢t(y)

x� y

|x� y|d
dy, bt(x, v) := (v,Et(x)), (2.5)

the function ft solves (2.4) with the vector field bt given by (2.5).

Notice that, in the case of the Vlasov-Poisson system, the global integrability of ft is
needed to make sense of ⇢t and Et.

This definition takes care of the integrability of the term Etft appearing in the equation.
However a second problem comes when dealing with weak solutions: the vector field bt is not
Lipschitz in general, so one cannot use the standard Cauchy-Lipschitz theory to construct
a flow for such a vector field. In the seminal paper [18], DiPerna and Lions showed that,
even for Sobolev vector fields, one can introduce a suitable notion of flow (this result has
then been extended in several directions, see for instance [1, 14, 11]). However this theory
requires the a priori assumption that the trajectories of the flow do not blow up in finite
time, which is expressed in terms of the vector field by the following global hypothesis:

|bt|(x, v)

1 + |x|+ |v|
2 L

1
�
(0, T );L1(R2d)

�
+ L

1
�
(0, T );L1(R2d)

�
. (2.6)

We notice that for Vlasov-Poisson (or more in general for any Hamiltonian system where
bt(x, v) is of the form (v,�rVt(x))) the above assumption is satisfied if and only if

Et(x)

1 + |x|
=

�rVt(x)

1 + |x|
2 L

1
�
(0, T );L1(Rd;Rd)

�
.

Unfortunately this is a very restrictive assumption, as it requires both some integrability
and moment (in v) conditions on ft, so we cannot apply the classical DiPerna-Lions’ theory
in this context.

In our recent paper [2] we developed a local version of the DiPerna-Lions’ theory under
no global assumptions on the vector field, and this will be a crucial tool for us to give a
Lagrangian description of solutions. More precisely, in Theorem 5.1 we shall first prove that
every bounded nonnegative solution of a continuity equation can be always represented as
a superposition of mass transported along integral curves of the vector field (notice that a
priori these curves may split/intersect). Then, by a modification of the argument in [8] we
shall prove that for any vector field of the form (v, µt ⇤ x/|x|

d), with µt a time-dependent
measure, there is uniqueness of bounded compactly supported solutions of the continuity
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equation (see Theorem 4.4). Finally, combining these facts with the theory from [2], we can
show that all bounded/renormalized solutions of Vlasov-Poisson are Lagrangian.

As mentioned before, to express the fact that solutions are Lagrangian we shall need
to introduce the concept of Maximal Regular Flow. Roughly speaking this is a (uniquely
defined) incompressible flow on the phase-space composed of integral curves of bt that
“transport” the density ft (notice that, since trajectories may blow-up in finite time, mass of
ft can disappear at infinity and/or come from infinity, but it has to follow the integral curves
of bt). However, since the definition is rather technical, in order to keep the presentation
simpler we shall not introduce now the concept but postpone it to Section 4. This will leave
the general reader with the intuitive concept of what is going on, and only the interested
readers may decide to enter into the details of the definition and the proofs.

Our first main result shows that bounded or renormalized solutions of Vlasov-Poisson
are Lagrangian. As shown in Theorem 4.10, the concept of Lagrangian solutions is a priori
stronger than the one of renormalized solutions as all Lagrangian solutions of Vlasov-Poisson
are renormalized, but thanks to our general superposition principle (Theorem 5.1) we can
prove that the two concepts are actually equivalent.

Here and in the sequel we shall use the notation L
1
+ to denote the space of nonnegative

integrable functions. Also, by weakly continuous solutions we shall always mean that the
map t 7!

R
R2d ft ' dx dv is continuous for any ' 2 Cc(R2d).

Theorem 2.2. Let T > 0 and ft 2 L
1((0, T );L1

+(R2d)) be a weakly continuous function.
Assume that:
(i) either ft 2 L

1((0, T );L1(R2d)) and ft is a distributional solution of the Vlasov-Poisson
equation (1.1);
(ii) or ft is a renormalized solution of the Vlasov-Poisson equation (1.1) (according to
Definition 2.1).
Then ft is a Lagrangian solution transported by the Maximal Regular Flow associated to
bt(x, v) = (v,Et(x)). In particular ft is renormalized.

The next corollary provides conditions in dimension d = 2, 3, 4 in order to avoid the
finite-time blow up of the flow that transports ft.

Corollary 2.3. Let d = 2, 3, 4, fix T > 0, and let ft 2 L
1((0, T );L1

+(R2d)) be a renormal-
ized solution of the Vlasov-Poisson equation (1.1) (according to Definition 2.1). Assume
that both the kinetic energy and the potential energy are integrable in time, that is

Z T

0

Z

R2d
|v|

2
ft(x, v) dx dv dt+

Z T

0

Z

Rd
|Et(x)|

2
dx dt < 1, (2.7)

Then the flow associated to bt = (v,Et) is globally defined on [0, T ] for f0-a.e. (x, v), ft is
the image of f0 through this flow, and the map

[0, T ] 3 t 7!

Z

R2d
 
�
ft(x, v)

�
dx dv

is constant in time for all  : [0,1) ! [0,1) Borel.
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Remark 2.4. As can be formally seen performing an integration by parts, the quantity
Z

R2d
|v|

2
ft(x, v) dx dv + �

Z

Rd
|Et(x)|

2
dx

coincides with the total energy of the system (i.e., the sum of the kinetic and potential
energy), namely

Z

R2d
|v|

2
ft dx dv + �

Z

Rd
H ⇤ ⇢t ⇢t dx, H(x) :=

cd

d� 2
|x|

2�d
,

see (3.22) and Lemma 3.4. This quantity is formally conserved in time along solutions of
the Vlasov-Poisson system; whether this property holds also for distributional/renormalized
solutions is an important open problem in the theory. However, since weak solutions are
usually built by approximation, a lower semicontinuity argument shows that the energy at
time t is controlled from above by the initial energy. Hence, when � = 1 the validity of
(2.7) is often guaranteed by the assumption on the initial datum

Z

R2d
|v|

2
f0 dx dv +

Z

Rd
H ⇤ ⇢0 ⇢0 dx < 1,

see Corollary 2.7 and Remark 2.9 below.
Notice that, in the case � = �1, a bound on the total energy does not provide in general

a control on both the kinetic energy and the potential energy. Still, one can prove the
validity of (2.7) under some additional integrability assumptions on f0 (see Remark 2.8).

Our second result deals with existence of global Lagrangian solutions under minimal
assumptions on the initial data. In this case the sign of � (i.e., whether the potential is
attractive or repulsive) plays a crucial role, since in the repulsive case the total energy
controls the kinetic part, while in the attractive case the loss of an a priori bound of
the kinetic energy prevents us for showing such a result unless we impose some higher
integrability on the initial data (see Remark 2.8). Still, we can state a general existence
theorem that holds both in the attractive and repulsive case, and then show that in the
repulsive case it gives us what we want.

The basic idea behind our general existence result is the following: when proving ex-
istence of solutions by approximation it may happen that, in the approximating sequence,
there are some particles that move at higher and higher speed while still remaining local-
ized in a compact set in space (think of a family of particle rotating faster and faster along
circles around the origin). Then, while in the limit these particles will disappear from the
phase-space (having infinite velocity), the electric field generated by them will survive, since
they are still in the physical space. Hence the electric field is not anymore generated by
the marginal of ft in the v-variable, instead it is generated by an “e↵ective density” ⇢e↵t (x)
that may be larger than ⇢t(x).

So, our strategy will be first to prove global existence of Lagrangian (hence renormalized)
solutions for a generalized Vlasov-Poisson system where the electric field is generated by
⇢
e↵
t . Then, in the particular case � = 1, we show that if the initial datum has finite total

energy then ⇢e↵t = ⇢t and our solution solves the classical Vlasov-Poisson system.
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We begin by introducing the concept of generalized solutions to Vlasov-Poisson. We use
the notation M+ to denote the space of nonnegative measures with finite total mass.

Definition 2.5 (Generalized solution of the Vlasov-Poisson equation). Given f 2 L
1(R2d),

let ft 2 L
1((0,1);L1

+(R2d)) and ⇢
e↵
t 2 L

1((0,1);M+(Rd)). We say that the couple
(ft, ⇢e↵t ) is a (global in time) generalized solution of the Vlasov-Poisson system starting
from f if, setting

⇢t(x) :=

Z

Rd
ft(x, v) dv, E

e↵
t := � cd

Z

Rd
⇢
e↵
t (y)

x� y

|x� y|d
dy, bt(x, v) := (v,Ee↵

t (x)),

(2.8)
then the following holds: ft is a renormalized solution of the continuity equation with vector
field bt starting from f ,

⇢t  ⇢
e↵
t as measures for a.e. t 2 (0,1), (2.9)

and
|⇢

e↵
t |(Rd)  kf0kL1(R2d) for a.e. t 2 (0,1). (2.10)

Notice that, since k⇢tkL1(Rd) = kftkL1(R2d), it follows by (2.9) and (2.10) that whenever
the mass of ft is conserved in time, that is kftkL1(R2d) = kf0kL1(R2d) for a.e. t 2 (0,1),

then ⇢
e↵
t = ⇢t and generalized solutions of the Vlasov-Poisson system are just standard

renormalized solutions.
We prove here that generalized solutions of the Vlasov-Poisson equation exist globally

for any L
1 initial datum, both in the attractive and in the repulsive case.

Theorem 2.6. Let us consider f0 2 L
1
+(R2d). Then there exists a generalized solution

(ft, ⇢e↵t ) of the Vlasov-Poisson system starting from f0. In addition, the map

[0,1) 3 t 7! ft 2 L
1
loc(R2d)

is continuous, and the solution ft is transported by the Maximal Regular Flow associated to
bt(x, v) = (v,Ee↵

t (x)).

As observed before, if ⇢e↵t = ⇢t then ft is a renormalized solution of the Vlasov-Poisson
system. When � = 1 (i.e., in the repulsive case) the equality ⇢e↵ = ⇢t is satisfied in many
cases of interest, for instance whenever the total initial energy is finite (see Corollary 2.7
below), or in the case of infinite energy if other weaker conditions are satisfied as it happens
in the context of [35] and [27] (see Remark 3.6).

The following result improves the one announced in [15], generalizing that statement
to any dimension and under weaker conditions on the initial data. As we shall explain in
Remark 2.9, the case d = 2 is slightly di↵erent from d � 3 because of the slower decay at
infinity of the kernel x/|x|d. For this reason we restrict the next two statements to the case
d � 3, while in Remark 2.9 we explain how to deal with the case d = 2.
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Corollary 2.7. Let d � 3, and let f0 2 L
1
+(R2d) satisfy

Z

R2d
|v|

2
f0 dx dv +

Z

Rd
H ⇤ ⇢0 ⇢0 dx < 1, H(x) :=

cd

d� 2
|x|

2�d
.

Assume that � = 1. Then there exists a global Lagrangian (hence renormalized) solution
ft 2 C([0,1);L1

loc(R2d)) of the Vlasov-Poisson system (1.1) with initial datum f0.
Moreover, the following properties hold:

(i) the density ⇢t and the electric field Et are strongly continuous in L
1
loc(Rd);

(ii) for every t � 0, we have the energy bound

Z

R2d
|v|

2
ft dx dv +

Z

Rd
H ⇤ ⇢t ⇢t dx 

Z

R2d
|v|

2
f0 dx dv +

Z

Rd
H ⇤ ⇢0 ⇢0 dx; (2.11)

(iii) if d = 3, 4 then the flow is globally defined on [0,1) (i.e., trajectories do not blow-up)
and ft is the image of f0 through an incompressible flow.

Remark 2.8. When d = 3 (resp. d = 4), the above result can be generalized to the
attractive case � = �1 under the additional assumption f0 2 L

9/7(R6) (resp. f0 2 L
2(R8)).

Indeed, thanks to this hypothesis, one can combine elliptic regularity and interpolation
inequalities to prove that both the kinetic and potential energy are globally bounded (see
for instance [15] or [13, Remark 8.5]).

Remark 2.9. In dimension d = 2, even with an initial datum f0 2 C
1
c (Rd), the electric

field E0 cannot belong to L
2 (this is due to the fact that the kernel x/|x|d does not belong

to L
2 at infinity) and therefore the initial potential energy cannot be finite. For this reason

one needs to slightly modify the equation adding a fixed background density ⇢b satisfying
Z

Rd
⇢b(x) dx =

Z

Rd
⇢0(x) dx,

giving rise to the following system:
8
>>>><

>>>>:

@tft + v ·rxft + Et ·rvft = 0 in (0,1)⇥ Rd
⇥ Rd

⇢t(x) =

Z

Rd
ft(x, v) dv in (0,1)⇥ Rd

Et(x) = � cd

Z

Rd

�
⇢t(y)� ⇢b(y)

� x� y

|x� y|d
dy in (0,1)⇥ Rd

,

(2.12)

The presence of ⇢b allows for cancellations in the expression for the L
2 norm of E0, which

turns out to be finite if ⇢b and ⇢0 are su�ciently nice. In this setting, when � = 1 one can
show that an analogous statement to Corollary 2.7 holds also for d = 2. On the other hand,
when � = �1 one needs to assume that f0 2 L logL(R4) (compare with Remark 2.8 above).
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Remark 2.10. In [9], Bohun, Bouchut, and Crippa gave a di↵erent proof of Corollary 2.7
in dimension d = 2 (for the modified system of Remark 2.9) and d = 3, showing the existence
of weak solutions and of a globally defined flow. Both for dimension 2 and for dimension 3,
their idea is to prove an a priori estimate on solutions with bounded energy, which shows
that the flow cannot blow up in finite time. This, in turn, allows to apply the classical
DiPerna-Lions theory (with the further di�culty that the vector field is not W 1,1

loc ), instead
of the theory of maximal regular flows developed in the second part of this paper.

More precisely, in dimension d = 2, the key observation is that any solution of the
modified Vlasov-Poisson system (2.12) with � = 1 and finite energy satisfies the standard
growth conditions on the vector field in (2.6), which prevent the finite-time blow-up of the
flow. Indeed, decomposing Et as

Et(x)

1 + |x|+ |v|
=

Et(x)1{|v|Et(x)}
1 + |x|+ |v|

+
Et(x)1{|v|>Et(x)}
1 + |x|+ |v|

=: E1t(x, v) + E2t(x, v)

we have that E2t(x, v) 2 L
1(R4) uniformly in t and

Z

R4
|E2t(x, v)| dx dv 

Z

R2
|Et(x)|

Z

{|v||Et(x)|}

1

|v|
dv dx = 2⇡

Z

R2
|Et(x)|

2
dx

for every t � 0. Hence, we see that

|bt|(x, v)

1 + |x|+ |v|


|v|+ |Et(x)|

1 + |x|+ |v|
2 L

1
�
(0, T );L1(R4)

�
+ L

1
�
(0, T );L1(R4)

�
.

In dimension d = 3 any solution of the Vlasov-Poisson system with � = 1 and finite
energy satisfies the following property: any regular lagrangian flow X : [a, b] ⇥ R6

! R6

relative to bt(x, v) = (v,Et(x)), where [a, b] ⇢ [0,1), verifies the inequality (a kind of local
equi-integrability)

L 6
�
Br \ {(x, v) 2 R6 : |X(t, x, v)|  �}

�
 g(r,�) (2.13)

for every r,� > 0 and for a function g(r,�) which converges to 0 as �! 1 at fixed r. This
property of the vector field b can replace the assumption (2.6) and it is enough to guarantee
a stability property of the regular lagrangian flow in the classical DiPerna-Lions setting.
The proof of (2.13) is obtained by showing that for every r > 0

Z

Br

sup
s2[a,b]

⇣
1 + log(1 + |X2(s, x, v)|)

⌘↵
dx dv < 1,

where ↵ 2 (0, 1/3) and X = (X1
,X2) 2 R3

⇥ R3. This estimate is based on the finiteness
of energy, which in turn implies by the Sobolev embedding that the potential Vt belongs to
L
6(R3).

Remark 2.11. In this paper we restricted ourselves to the Vlasov-Poisson system, but the
argument and techniques introduced here generalize to other equations. For instance, a
minor modification of our proofs allows one to obtain the same results in the context of the
relativistic Vlasov-Poisson system.

The proofs of Theorems 2.2 and 2.6 and Corollary 2.7 are given in the next section.
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3 Vlasov-Poisson: Lagrangian solutions and global existence

3.1 The flow associated to Vlasov-Poisson: proof of Theorem 2.2 and
Corollary 2.3

Proof of Theorem 2.2. Notice that the vector field b satisfies assumption (A1) of Section 4.1
and is divergence-free. Also, by Theorem 4.4 it satisfies assumption (A2). Therefore by
Theorem 5.1 we deduce that ft (resp. �(ft) with �(s) = arctan(s) if ft is not bounded but
is renormalized) is a Lagrangian solution, and Theorem 4.10 ensures in particular that ft is
a renormalized solution.

Proof of Corollary 2.3. Thanks to Theorem 2.2 we know that the solution is transported
by the maximal regular flow associated to bt = (v,Et). Also, since ft is renormalized, the
function gt :=

2
⇡ arctan ft : (0, T )⇥Rd

! [0, 1] is a solution of the continuity equation with
vector field b. Hence, in order to prove that trajectories do not blow up, it is enough to
apply the criterion stated in Proposition 4.11 with µt = gt dx, that is

Z T

0

Z

R2d

|bt(x, v)| gt(x, v)�
1 + (|x|2 + |v|2)1/2

�
log

�
2 + (|x|2 + |v|2)1/2

� dx dv dt < 1. (3.1)

To this end, we observe that g2t  gt  ft, hence
Z T

0

Z

R2d

|bt| gt�
1 + (|x|2 + |v|2)1/2

�
log

�
2 + (|x|2 + |v|2)1/2

� dx dv dt



Z T

0

Z

R2d
ft dx dv dt+

Z T

0

Z

R2d
|Et|

gt

(1 + |v|) log(2 + |v|)
dx dv dt



Z T

0

Z

R2d
ft dx dv dt+

Z T

0

Z

R2d

✓
|Et|

2

(1 + |v|)4 log2(2 + |v|)
+ (1 + |v|)2g2t

◆
dx dv dt



⇣Z

Rd

1

(1 + |v|)4 log2(2 + |v|)
dv

⌘⇣Z T

0

Z

Rd
|Et|

2
dx dt

⌘
+ 2

Z T

0

Z

R2d
(1 + |v|)2ft dx dv dt.

Also, since d  4, Z

Rd

1

(1 + |v|)4 log2(2 + |v|)
dv < 1,

thus (3.1) follows from (2.7).
Now, by the no blow-up criterion in Proposition 4.11 we obtain that the Maximal

Regular Flow X of b is globally defined on [0, T ], namely its trajectories X(·, x, v) belong
to AC([0, T ];R2d) for g0-a.e. (x, v) 2 R2d, and gt = X(t, ·)#g0 = g0 � X(t, ·)�1. Since
ft = tan

�
⇡
2 gt

�
and the map [0, 1) 3 s ! tan

�
⇡
2 s
�
2 [0,1) is a di↵eomorphism, we obtain

that ft = X(t, ·)#f0 = f0 � X(t, ·)�1 as well. In particular, for all Borel functions  :
[0,1) ! [0,1) we have

Z

R2d
 (ft) dx dv =

Z

R2d
 (f0) �X(t, ·)�1

dx dv =

Z

R2d
 (f0) dx dv,

where the second equality follows by the incompressibility of the flow.
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3.2 Global existence results: proof of Theorem 2.6 and Corollary 2.7

Proof of Theorem 2.6. To prove global existence of generalized Lagrangian solutions of
Vlasov-Poisson we shall use an approximation procedure. Since the argument is rather
long and involved, we divide the proof in five steps that we now describe briefly: In Step 1
we start from approximate solutions fn, obtained by smoothing the initial datum and the
kernel, and we decompose them along their level sets. Exploiting the incompressibility of
the flow, these functions are still solutions of the continuity equation with the same vector
field and, when n varies, they are uniformly bounded. This allows us to take their limit
as n ! 1 in Step 2, and show that the limit belongs to L

1. In Step 3 we introduce ⇢e↵

as the limit as n ! 1 of the approximate densities ⇢n, and we motivate its properties. In
Step 4 we show that the vector fields En converge to the vector field obtained by convolving
⇢
e↵ with the Poisson kernel. Finally, in Step 5 we combine stability results for continuity

equations with the results of Section 5 to take the limit in the approximate Vlasov-Poisson
equation and show that the limiting solution is transported by the limiting incompressible
flow. We now enter into the details of the proof.

Step 1: approximating solutions. Let K(x) := � cd x/|x|
d and let us consider approx-

imating kernels Kn := K ⇤  n, where  n(x) := n
d
 (nx) and  2 C

1
c (Rd) is a standard

convolution kernel in Rd. Let fn
0 2 C

1
c (R2d) be a sequence of functions such that

f
n
0 ! f0 in L

1(R2d), (3.2)

and denote by f
n
t distributional solutions of the Vlasov system with initial datum f

n
0 and

kernel Kn (see for instance [19] or [31] for this classical construction based on a fixed point
argument in the Wasserstein metric). Also, define ⇢nt :=

R
f
n
t dv and E

n
t := Kn ⇤ ⇢

n
t . Notice

that sinceKn is smooth and decays at infinity, both E
n
t andrE

n
t are bounded on [0,1)⇥Rd

(with a bound that depends on n). Hence, since bnt := (v,En
t ) is a Lipschitz divergence-free

vector field, its flow Xn(t) : R2d
! R2d is well defined and incompressible, and by standard

theory for the transport equation we obtain that

f
n
t = f

n
0 �Xn(t)�1

8 t 2 [0,1), (3.3)

and
k⇢

n
t kL1(Rd) = kf

n
t kL1(R2d) = kf

n
0 kL1(R2d) 8 t 2 [0,1). (3.4)

Assuming without loss of generality that L 2d({f0 = k}) = 0 for every k 2 N (otherwise
we consider as level sets the values ⌧ + k in place of k, for some ⌧ 2 (0, 1)), from (3.2) we
deduce that

f
n,k
0 := 1{kfn

0 <k+1}f
n
0 ! f

k
0 := 1{kf0<k+1}f0 in L

1(R2d) 8 k 2 N. (3.5)

Now, for any k, n 2 N we consider fn,k
t := 1{kfn

t <k+1}f
n
t . Then it follows by (3.3) that

f
n,k
t = 1{kfn

0 �Xn(t)�1<k+1}f
n
0 �Xn(t)�1

8 t 2 [0,1), (3.6)

12



f
n,k
t is a distributional solution of the continuity equation with vector field bnt , and

kf
n,k
t kL1(R2d) = kf

n,k
0 kL1(R2d) 8 t 2 [0,1). (3.7)

Step 2: limit in the phase-space. By construction the functions {fn,k
}n2N are nonneg-

ative and bounded by k + 1, hence there exists f
k
2 L

1((0,1) ⇥ R2d) nonnegative such
that, up to subsequences,

f
n,k

* f
k weakly* in L

1((0,1)⇥ R2d) as n ! 1 8 k 2 N. (3.8)

Moreover, for any K compact subset of R2d and any bounded function � : (0,1) ! [0,1)
with compact support we can use the test function �(t) 1K(x, v) sign(fk

t )(x, v) in the previ-
ous weak convergence, and thanks to Fatou’s Lemma, (3.7), and (3.5), we get

Z 1

0
�(t) kfk

t kL1(K) dt  lim inf
n!1

Z 1

0
�(t) kfn,k

t kL1(K) dt

 lim inf
n!1

Z 1

0
�(t) kfn,k

t kL1(R2d) dt

= lim inf
n!1

Z 1

0
�(t) kfn,k

0 kL1(R2d) dt

=
⇣Z 1

0
�(t) dt

⌘
kf

k
0 kL1(R2d).

(3.9)

Since � was arbitrary, taking the supremum among all compact subsets K ⇢ R2d we obtain

kf
k
t kL1(R2d)  kf

k
0 kL1(R2d) for a.e. t 2 (0,1), (3.10)

so, in particular, fk
2 L

1((0,1);L1(R2d)).
Thanks to (3.10) we see that, if we define

f :=
1X

k=0

f
k in (0,1)⇥ R2d

, (3.11)

then

kftkL1(R2d) 

1X

k=0

kf
k
t kL1(R2d) 

1X

k=0

kf
k
0 kL1(R2d) = kf0kL1(R2d) for a.e. t 2 [0,1),

(3.12)
which implies that f 2 L

1((0,1);L1(R2d)).
We now claim that

f
n
* f weakly in L

1((0, T )⇥ R2d) (3.13)
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for every T > 0. Indeed, fix ' 2 L
1((0, T ) ⇥ R2d). Noticing that f

n =
P1

k=0 f
n,k and

f =
P1

k=0 f
k, by the triangle inequality we have that, for every k0 � 1,

���
Z T

0

Z

R2d
' (fn

� f) dx dv dt
��� =

���
1X

k=0

Z T

0

Z

R2d
' (fn,k

� f
k) dx dv dt

���



���
k0�1X

k=0

Z T

0

Z

R2d
' (fn,k

� f
k) dx dv dt

���

+
1X

k=k0

Z T

0

Z

R2d
|'| |f

n,k
| dx dv dt+

1X

k=k0

Z T

0

Z

R2d
|'| |f

k
| dx dv dt.

Using (3.7) and (3.10), the last two terms can be estimated by

1X

k=k0

Z T

0

Z

R2d
|'| |f

n,k
| dx dv dt+

1X

k=k0

Z T

0

Z

R2d
|'| |f

k
| dx dv dt

 Tk'k1

1X

k=k0

Z

R2d
|f

n,k
0 | dx dv + Tk'k1

1X

k=k0

Z

R2d
|f

k
0 | dx dv

 Tk'k1

Z

{fn
0 �k0}

|f
n
0 | dx dv + Tk'k1

Z

{f0�k0}
|f0| dx dv

= Tk'k1
⇣
kf

n
0 1{fn

0 �k0}kL1(R2d) + kf01{f0�k0}kL1(R2d)

⌘
.

Notice that, thanks to (3.5) and (3.2), it follows that

f
n
0 1{fn

0 �k0} ! f01{f0�k0} in L
1(R2d),

so by letting n ! 1 and using (3.8) we deduce that

lim sup
n!1

���
Z T

0

Z

R2d
' (fn

� f) dx dt
���  lim sup

n!1

���
k0�1X

k=0

Z T

0

Z

R2d
'(fn,k

� f
k) dx dv dt

���

+ 2Tk'k1kf01{f0�k0}kL1(R2d)

= 2Tk'k1kf01{f0�k0}kL1(R2d).

Hence, letting k0 ! 1, since ' 2 L
1 was arbitrary we obtain (3.13).

Step 3: limit of the physical densities. Since the sequence {⇢
n
}n2N is bounded in

L
1((0,1);M+(Rd)) ⇢

⇥
L
1((0,1), C0(Rd))

⇤⇤
(see (3.4)), there exists ⇢e↵ 2 L

1((0,1);M+(Rd))
such that

⇢
n
* ⇢

e↵ weakly* in L
1((0,1);M+(Rd)). (3.14)

Moreover, by the lower semicontinuity of the norm under weak* convergence, using (3.4)
again we deduce that

ess sup
t2(0,1)

|⇢
e↵
t |(Rd)  lim

n!1

⇣
sup

t2(0,1)
k⇢

n
t kL1(Rd)

⌘
= lim

n!1
kf

n
0 kL1(R2d) = kf0kL1(R2d). (3.15)
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Now, let us consider any nonnegative function ' 2 Cc((0,1) ⇥ Rd). By (3.14) and (3.13)
we obtain that, for any R > 0,

Z 1

0

Z

Rd
't(x) d⇢

e↵
t (x) dt = lim

n!1

Z 1

0

Z

Rd
⇢
n
t (x)'t(x) dx dt

= lim
n!1

Z 1

0

Z

R2d
f
n
t (x, v)'t(x) dv dx dt

� lim inf
n!1

Z 1

0

Z

Rd⇥BR

f
n
t (x, v)'t(x) dv dx dt

=

Z 1

0

Z

Rd⇥BR

ft(x, v)'t(x) dv dx dt,

so by letting R ! 1 we get
Z 1

0

Z

Rd
't(x) d⇢

e↵
t (x) dt �

Z 1

0

Z

R2d
ft(x, v)'t(x) dv dx dt =

Z 1

0

Z

Rd
't(x) d⇢t(x) dt.

By the arbitrariness of ' we deduce that

⇢t  ⇢
e↵
t as measures for a.e. t 2 (0,1), (3.16)

as desired.

Step 4: limit of the vector fields. Set Ee↵
t := K ⇤ ⇢

e↵
t and bt(x, v) := (v,Ee↵

t (x)). We
claim that

bn * b weakly in L
1
loc((0,1)⇥ R2d;R2d) (3.17)

and that, for every ball BR ⇢ Rd,

[⇢nt ⇤Kn](x+h) ! [⇢nt ⇤Kn](x) as |h| ! 0 in L
1
loc((0,1);L1(BR)), uniformly in n. (3.18)

To show this we first prove that the sequence {bn}n2N is bounded in L
p
loc((0,1) ⇥

R2d;R2d) for every p 2 [1, d/(d � 1)). Indeed, using Young’s inequality, for every t � 0,
n 2 N, and r > 0,

k⇢
n
t ⇤KnkLp(Br) = k(⇢nt ⇤  n) ⇤KkLp(Br)

 k(⇢nt ⇤  n) ⇤ (K1B1)kLp(Br) + k(⇢nt ⇤  n) ⇤ (K1Rd\B1
)kLp(Br)

 k(⇢nt ⇤  n) ⇤ (K1B1)kLp(Rd) + L d(Br)
1/p

k(⇢nt ⇤  n) ⇤ (K1Rd\B1
)kL1(Rd)

 k⇢
n
t kL1(Rd)k nkL1(Rd)kKkLp(B1) + L d(Br)

1/p
k⇢

n
t kL1(Rd)k nkL1(Rd)kKkL1(Rd\B1)

hence, up to subsequences, the sequence {bn}n2N converges weakly in L
p
loc. In order to

identify the limit we now show that for every ' 2 Cc((0,1)⇥ Rd)

lim
n!1

Z 1

0

Z

Rd
⇢
n
t ⇤Kn 't dx dt =

Z 1

0

Z

Rd
⇢
e↵
t ⇤K 't dx dt.
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Indeed, by standard properties of convolution,

���
Z 1

0

Z

Rd
⇢
n
t ⇤Kn 't dx dt�

Z 1

0

Z

Rd
⇢
e↵
t ⇤K 't dx dt

���

=
���
Z 1

0

Z

Rd
⇢
n
t 't ⇤Kn dx dt�

Z 1

0

Z

Rd
⇢
e↵
t 't ⇤K dxdt

���



���
Z 1

0

Z

Rd
(⇢nt � ⇢

e↵
t )'t ⇤K dxdt

���+
���
Z 1

0

Z

Rd
⇢
n
t ('t ⇤K � 't ⇤K ⇤  n) dx dt

���



���
Z 1

0

Z

Rd
(⇢nt � ⇢

e↵
t )'t ⇤K dxdt

���+
⇣

sup
t2(0,1)

k⇢
n
t kL1(Rd)

⌘
k't ⇤K � 't ⇤K ⇤  nkL1((0,1)⇥Rd).

Letting n ! 1, the first term converges to 0 thanks to the weak convergence (3.14) of ⇢nt to
⇢
e↵
t and the fact that '⇤K = '⇤ (1B1K)+'⇤ (1Rd\B1

K) is a bounded continuous function,
compactly supported in time and decaying at infinity in space. The second term, in turn,
converges to 0 since the first factor is bounded (see (3.15)) and 't ⇤ K ⇤  n converges to
't ⇤K uniformly in (0,1)⇥ Rd.

This computation identifies the weak limit of ⇢nt ⇤Kn in L
1
loc([0, T ]⇥R2d), showing that

it coincides with ⇢e↵t ⇤K and proving (3.17).

We now prove (3.18). First of all, since K 2 W
↵,p
loc (Rd;Rd) for every ↵ < 1 and p <

d/(d� 1 + ↵), using Young’s inequality we deduce that, for any t 2 (0,1),

k⇢
n
t ⇤KnkW↵,p(BR;Rd) = k(⇢nt ⇤  n) ⇤KkW↵,p(BR;Rd)  C(R)k⇢nt ⇤  nkL1(Rd).

Since k nkL1(Rd) = 1, thanks to (3.4) we deduce that the last term is bounded independently
of t and n, that is, for every R > 0,

sup
t2(0,1)

sup
n2N

k⇢
n
t ⇤KnkW↵,p(BR;Rd) < 1. (3.19)

Hence, by a classical embedding between fractional Sobolev spaces and Nikolsky spaces (see
for instance [25, Lemma 2.3]) we find that, for |h|  R,

Z

BR

|⇢
n
t ⇤Kn(x+ h)� ⇢

n
t ⇤Kn(x)|

p
dx  C

�
p,↵, R, k⇢

n
t ⇤KnkW↵,p(B2R;Rd)

�
|h|

↵p
,

from which (3.18) follows.

Step 5: conclusion. Thanks to (3.17) and (3.18), we can apply the stability result from
[18, Theorem II.7] (which does not require any growth condition on the vector fields, see
also [2, Proposition 6.5] for the stability of the associated flows) to deduce that, for every
k 2 N, fk is a weakly continuous distributional solution of the continuity equation starting
from f

k
0 , so by linearity also F

m :=
Pm

k=1 f
k is a distributional solution for every m 2 N.

Since Fm is bounded, the proof of Theorem 2.2 shows that Fm is a renormalized solution
for every m 2 N. Letting m ! 1, because Fm

! f strongly in L
1
loc((0,1)⇥R2d) we obtain

that f is a renormalized solution of the continuity equation starting from f0 with vector

This can be seen by a direct computation, using the definition of fractional Sobolev spaces.
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field b. Together with (3.16), (3.12), and (3.15), this proves that (ft, ⇢e↵t ) is a generalized
solution of the Vlasov-Poisson equation starting from f0 according to Definition 2.5.

Finally, the fact that f is transported by the Maximal Regular Flow associated to
bt simply follows by the fact that each density f

k is transported by Maximal Regular
Flow associated to bt (using again the argument in the proof of Theorem 2.2) and that
f =

P1
k=0 f

k is an absolutely convergent series (see (3.12)). Also, thanks to Theorem 4.10
we deduce that ft belongs to C([0,1);L1

loc(R2d)).

The proof of Corollary 2.7 follows the lines of the proof of Theorem 2.6, obtained by
approximating both the initial datum and the kernel with a sequence of smooth data with
uniformly bounded energy. In turn, this bound ensures that the approximating sequence of
phase-space distributions is tight in the v variable uniformly in time, allowing us to show
that ⇢e↵t = ⇢t for a.e. t 2 (0,1). The approximation of the initial datum with a smooth
sequence having uniformly bounded energy is a technical task that we describe in the next
lemma.

Lemma 3.1. Let d � 3, let  be a standard convolution kernel, and set  k(x) := k
d
 (kx)

for every k � 1. Let f0 2 L
1(R2d) be an initial datum of finite energy, namely

Z

R2d
|v|

2
f0(x, v) dx dv +

Z

Rd
[H ⇤ ⇢0](x) ⇢0(x) dx < 1,

where ⇢0(x) :=
R
Rd f0(x, v) dv and H(x) := cd

d�2 |x|
2�d for every x 2 Rd. Then there exist a

sequence of functions {fn
0 }n2N ⇢ C

1
c (R2d) and a sequence {kn}n2N such that kn ! 1 and,

setting ⇢n0 (x) =
R
Rd f

n
0 (x, v) dv,

lim
n!1

⇣Z

R2d
|v|

2
f
n
0 dx dv+

Z

Rd
H⇤ kn⇤⇢

n
0 ⇢

n
0 dx

⌘
=

Z

R2d
|v|

2
f0 dx dv+

Z

Rd
H⇤⇢0 ⇢0 dx. (3.20)

Proof. We split the approximation procedure in three steps. Here and in the sequel we
use the notation L

1
c to denote the space of bounded functions with compact support.

Step 1: approximation of the initial datum when f0 2 L
1
c (R2d). Assuming that

f0 2 L
1
c (R2d), we claim that there exists {fn

0 }n2N ⇢ C
1
c (R2d) such that

lim
n!1

⇣Z

R2d
|v|

2
f
n
0 dx dv +

Z

Rd
H ⇤ ⇢

n
0 ⇢

n
0 dx

⌘
=

Z

R2d
|v|

2
f0 dx dv +

Z

Rd
H ⇤ ⇢0 ⇢0 dx. (3.21)

To this end, consider smooth functions f
n
0 which converge to f0 pointwise, whose L

1

norms are bounded by kf0kL1(R2d), and whose supports are all contained in the same ball.
By construction the densities ⇢n0 are bounded as well and their supports are also contained
in a fixed ball; moreover, the functions H ⇤ ⇢

n
0 are bounded and converge to H ⇤ ⇢0 locally

in every L
p
loc. By dominated convergence, these observations show the validity of (3.21).

Step 2: approximation of the initial datum when f0 2 L
1(R2d). Assuming that

f0 2 L
1(R2d), we claim that there exists a sequence of functions {fn

0 }n2N ⇢ C
1
c (R2d) such

that (3.21) holds.
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Indeed, by Step 1 it is enough to approximate f0 with a sequence in L
1
c (R2d) with

converging energies. To this aim, for every n 2 N we define the truncations of f0 given by

f
n
0 (x, v) := min{n, 1Bn(x, v)f0(x, v)} (x, v) 2 R2d

.

Since H � 0 the integrands in the left-hand side of (3.21) converge monotonically, hence
the integrals converge by monotone convergence.

Step 3: approximation of the kernel. We conclude the proof of the lemma. In order
to approximate the kernel, we notice that, given the sequence of functions f

n
0 2 C

1
c (Rd)

provided by Steps 1-2, for n 2 N fixed we have

lim
k!1

Z

Rd
H ⇤  k ⇤ ⇢

n
0 ⇢

n
0 dx =

Z

Rd
H ⇤ ⇢

n
0 ⇢

n
0 dx.

Hence, choosing kn su�ciently large so that
���
Z

Rd
H ⇤  kn ⇤ ⇢

n
0 ⇢

n
0 dx�

Z

Rd
H ⇤ ⇢

n
0 ⇢

n
0 dx

��� 
1

n
,

we conclude the proof of the approximation lemma. ⇤
In order to prove Corollary 2.7, in particular properties (i)-(ii)-(iii), we need some pre-

liminary estimates. As we shall see, the proof of the energy inequality (2.11) is based on
the conservation of energy along approximate solutions and on a lower semicontinuity ar-
gument. Notice that, since ��H = �0, a formal integration by parts (rigorously justified
in the case that µ has a smooth compactly supported density with respect to the Lebesgue
measure) shows that, for every µ 2 M+(Rd),

Z

Rd
H ⇤ µ(x) dµ(x) =

Z

Rd
|rH ⇤ µ(x)|2 dx, (3.22)

meaning that, if one of the two sides is finite, then so is the other and they coincide. The
above identity would immediately imply the convexity of the potential energy and its lower
semicontinuity with respect to the weak* convergence of measures. However, since the
justification of (3.22) requires some work, we shall prove directly the lower semicontinuity.

Lemma 3.2. Let d � 3 and H(x) := cd
d�2 |x|

2�d, with the convention H(0) = +1. Then
the functional

F(µ) :=

Z

Rd
H ⇤ µ(x) dµ(x), µ 2 M+(Rd),

is lower semicontinuous with respect to the weak* topology of M (Rd).

Proof. Given a sequence of nonnegative measures µ
n weakly* converging to µ in M (Rd),

the measures dµ
n(x) dµn(y) 2 M (R2d) weakly* converge to dµ(x) dµ(y). Hence, since the

function Ĥ(x, y) := H(x� y) is continuous as a map from R2d to [0,+1], we deduce that
Z

Rd

Z

Rd
H(x� y) dµ(x) dµ(y)  lim inf

n!1

Z

Rd

Z

Rd
H(x� y) dµn(x) dµn(y).
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The following lemma adapts the previous one to the time-dependent framework. In
particular it takes care of a further approximation of the kernel in the right-hand side of
(3.23) below and involves the time dependence of the functional. We need this kind of lemma
since, at the level of generality of Theorem 2.6, the weak convergence of the approximating
solutions is not pointwise in time, but it happens only as functions in space-time.

Lemma 3.3. Let d � 3, T > 0, � 2 Cc((0, T )) nonnegative,  � 0 a convolution
kernel, and  n(x) := n

d
 (nx) for every n � 1. Then, for every sequence {⇢

n
}n2N ✓

L
1((0, T );M+(Rd)) converging weakly* in L

1((0, T );M+(Rd)) to ⇢ 2 L
1((0, T );M+(Rd)),

we have
Z T

0
�(t)

Z

Rd
H ⇤ ⇢t(x) d⇢t(x) dt  lim inf

n!1

Z T

0
�(t)

Z

Rd
H ⇤  n ⇤ ⇢

n
t (x) d⇢

n
t (x) dt. (3.23)

Proof. Since  n ⇤ ⇢
n
t dt weakly* converges to ⇢t dt in M ((0, T )⇥ Rd), the sequence of non-

negative measures  n ⇤⇢
n
t (x) ⇢

n
t (y) dt 2 M ((0, T )⇥R2d) weakly* converges to ⇢t(x) ⇢t(y) dt.

Hence, since the function �(t)H(x�y) is continuous as a map from (0, T )⇥R2d to [0,+1],
we get that (3.23) holds.

In the following lemma we establish a general inequality between the potential energy
and the L

2-norm of the force field, that will be used to show the validity of property (iii)
in Corollary 2.7.

Lemma 3.4. Let d � 3 and H(x) := cd
d�2 |x|

2�d. Then, for every ⇢ 2 L
1(Rd) nonnegative,

Z

Rd
H ⇤ ⇢ ⇢ dx �

Z

Rd
|rH ⇤ ⇢|

2
dx. (3.24)

Proof. We split the approximation procedure in three steps.

Step 1: Proof of equality in (3.24) for ⇢ 2 L
1
c (Rd). Consider first ⇢ a smooth,

compactly supported function. For every R > 0, the integration by parts formula gives
Z

BR

H ⇤ ⇢ ⇢ dx =

Z

BR

|rH ⇤ ⇢|
2
dx�

Z

@BR

H ⇤ ⇢r(H ⇤ ⇢) · ⌫BR dH
d�1

.

By approximation, the same identity holds when ⇢ is bounded and compactly supported.
Now, since H ⇤⇢ and rH ⇤⇢ respectively decay as R2�d and R

1�d when evaluated on @BR,
we see that the boundary term in the previous equality disappears as R ! 1 (recall that
d � 3). This proves that equality holds in (3.24) for ⇢ 2 L

1
c (Rd)

Step 2: Proof of (3.24) for ⇢ 2 L
1(Rd). Given ⇢ 2 L

1(Rd), for every n 2 N consider
the truncations of ⇢ given by ⇢n := min{n, 1Bn⇢}. Since H � 0, it follows by monotone
convergence and Step 1 that

Z

Rd
H ⇤ ⇢ ⇢ dx = lim

n!1

Z

Rd
H ⇤ ⇢

n
⇢
n
dx � lim

n!1

Z

Rd
|rH ⇤ ⇢

n
|
2
dx.

Assuming without loss of generality that the left hand side is finite, we see that the sequence
{rH ⇤⇢

n
}n2N is bounded in L

2. Hence, since its limit in the sense of distribution is rH ⇤⇢,
the lower semicontinuity of the L

2-norm with respect to weak convergence implies that
rH ⇤ ⇢ 2 L

2(Rd) and that (3.24) holds.
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Proof of Corollary 2.7. We start by showing the existence of renormalized solutions. Given
f0 with finite energy, let {f

n
0 }n2N ⇢ C

1
c (R2d) and {kn}n2N be as in Lemma 3.1. Also let

K := cd x/|x|
d and Kn := K ⇤  kn . Applying verbatim the arguments in Steps 1-3 in the

proof of Theorem 2.6 we get a sequence fn of smooth solutions with kernels Kn such that

f
n
* f weakly in L

1([0, T ]⇥ R2d) for any T > 0, (3.25)

and
⇢
n
* ⇢

e↵ weakly* in L
1((0, T );M+(Rd)),

where ⇢nt (x) :=
R
Rd f

n
t (x, v) dv. In addition, the conservation of the energy along classical

solutions gives that, for every n 2 N and t 2 [0,1)

Z

R2d
|v|

2
f
n
t dx dv +

Z

Rd
H ⇤  kn ⇤ ⇢

n
t ⇢

n
t dx =

Z

R2d
|v|

2
f
n
0 dx dv +

Z

Rd
H ⇤  kn ⇤ ⇢

n
0 ⇢

n
0 dx  C,

(3.26)
Hence, since H � 0 we deduce that

sup
n2N

sup
t2[0,1)

Z

R2d
|v|

2
f
n
t dx dv  C, (3.27)

and by lower semicontinuity of the kinetic energy we deduce that, for every T > 0,

Z T

0

Z

R2d
|v|

2
ft dx dv dt  lim inf

n!1

Z T

0

Z

R2d
|v|

2
f
n
t dx dv dt  C T. (3.28)

We now want to exploit (3.27) and (3.28) to show that ⇢e↵ = ⇢, where ⇢t(x) :=
R
Rd ft(x, v) dv 2

L
1((0, T );L1(Rd)). For this, we want to show that for any ' 2 Cc((0,1)⇥ Rd)

lim
n!1

Z 1

0

Z

Rd
'⇢

n
t dx dt =

Z 1

0

Z

Rd
'⇢t dx dt. (3.29)

To this aim, for every k 2 N we consider a continuous nonnegative function ⇣k : Rd
! [0, 1]

which equals 1 inside Bk and 0 outside Bk+1, and observe that

Z 1

0

Z

Rd
' (⇢nt � ⇢t) dx dt =

Z 1

0

Z

R2d
't(x) f

n
t (x, v) (1� ⇣k(v)) dx dv dt

+

Z 1

0

Z

R2d
't(x) (f

n
t (x, v)� f(x, v)) ⇣k(v) dx dv dt

+

Z 1

0

Z

R2d
't(x) ft(x, v) (⇣k(v)� 1) dx dv dt.

The second term in the right-hand side converges to 0 by the weak convergence of fn to f

in L
1, while, thanks to (3.27) and (3.28), the other two terms are estimated as

���
Z 1

0

Z

R2d
' f

n
t (x, v) (1� ⇣k(v)) dx dv dt

��� 
k'k1
k2

Z T

0

Z

R2d
f
n
t (x, v)|v|

2
dx dv dt 

C Tk'k1
k2

,
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and ���
Z 1

0

Z

R2d
' ft(x, v) (1� ⇣k(v)) dx dv dt

��� 
C Tk'k1

k2
.

Letting k ! 1, this proves (3.29). Thanks to this fact, the conclusion of the proof proceeds
exactly as in Steps 4 and 5 in the proof of Theorem 2.6 with ⇢

e↵
t = ⇢t. In this way, we

obtain a global Lagrangian (hence renormalized) solution ft 2 C([0,1);L1
loc(R2d)) of the

Vlasov-Poisson system (1.1) with initial datum f0.

In order to prove properties (i)-(ii)-(iii) (and in particular (2.11)) we perform a lower
semicontinuity argument on the energy of the approximate solutions fn constructed in the
first part of the proof of Corollary 2.7.

Step 1: bound on the total energy for L 1-almost every time. Consider a nonneg-
ative function � 2 Cc((0,1)). Testing the weak convergence (3.25) with �(t) |v|2�r(x, v)
where �r 2 C

1
c (R2d) is a nonnegative cuto↵ function between Br and Br+1, we find that,

for every r > 0,
Z 1

0

Z

R2d
�(t) |v|2�r(x, v) ft dx dv dt = lim

n!1

Z 1

0

Z

R2d
�(t) |v|2�r(x, v) f

n
t dx dv dt

 lim inf
n!1

Z 1

0
�(t)

Z

R2d
|v|

2
f
n
t dx dv dt.

Taking the supremum with respect to r, we deduce that
Z 1

0
�(t)

Z

R2d
|v|

2
ft dx dv dt  lim inf

n!1

Z 1

0
�(t)

Z

R2d
|v|

2
f
n
t dx dv dt. (3.30)

As regards the potential energy, it follows from Lemma 3.3 that
Z 1

0
�(t)

Z

Rd
H ⇤ ⇢t ⇢t dx dt  lim inf

n!1

Z 1

0
�(t)

Z

Rd
H ⇤  kn ⇤ ⇢

n
t ⇢

n
t dx dt (3.31)

Adding (3.30) and (3.31), by the subadditivity of the lim inf and by the energy identity
(3.26) on the approximating solutions, we find that

Z 1

0
�(t)

⇣Z

R2d
|v|

2
ft dx dv +

Z

Rd
H ⇤ ⇢t ⇢t dx

⌘
dt

 lim inf
n!1

Z 1

0
�(t)

⇣Z

R2d
|v|

2
f
n
0 dx dv +

Z

Rd
H ⇤  kn ⇤ ⇢

n
0 ⇢

n
0 dx

⌘
dt

=
⇣Z 1

0
�(t) dt

⌘⇣Z

R2d
|v|

2
f0 dx dv +

Z

Rd
H ⇤ ⇢0 ⇢0 dx

⌘
.

By the arbitrariness of � it follows that (2.11) holds for L 1-a.e. t 2 (0,1) and that
|v|

2
ft 2 L

1
loc((0,1)⇥ R2d). In particular this allows us to integrate the transport equation

@tft + divx,v(btft) = 0 with respect to v on the whole Rd and obtain

@t⇢t + divx(Jt) = 0, Jt(x) :=

Z

Rd
v ft(x, v) dv 2 L

1
loc((0,1)⇥ Rd).
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By classical results on continuity equations, this implies that ⇢t is weakly* continuous in
time (see for instance [4, Lemma 8.1.2]).

Step 2: boundedness of the total energy for every time. Observe that the kinetic
energy (resp. the potential energy) is lower semicontinuous with respect to strong L1

loc(R2d)-
convergence of f (resp. weak* convergence in M (Rd) of ⇢). Since (2.11) holds true for a.e.
t 2 (0,1) by Step 1, and the maps t 7! ft 2 L

1(R2d) and t 7! ⇢t 2 M (Rd) are continuous for
the L

1
loc and the weak* convergence respectively, given any time t̄ 2 [0,1) we approximate

it with a sequence tn ! t̄ such that the energy bound (2.11) holds for every tn and let
n ! 1 to obtain that (2.11) holds with t = t̄.

Step 3: strong L
1
loc-continuity of the physical density and the electric fields.

Given t 2 [0,1), consider a sequence of times tn ! t. Fix r > 0, and notice that for any
R > 0

Z

Br

Z

Rd
|ftn � ft| dv dx 

Z

Br

Z

BR

|ftn � ft| dv dx+

Z

Br

Z

Rd\BR

|v|
2

R2
(ftn + ft) dv dx.

Thanks to (2.11) and the strong L
1
loc continuity of ft, we can first let n ! 1 and then

R ! 1 to deduce that

lim
n!1

Z

Br

|⇢tn � ⇢t| dx  lim
n!1

Z

Br

Z

Rd
|ftn � ft| dv dx = 0.

This proves the strong L
1
loc-continuity of ⇢t. Since Et = K ⇤ ⇢t and k⇢tkL1(Rd)  C, it is

simple to see that also Et is strongly continuous in L
1
loc(Rd).

Step 4: global characteristics in dimension 3 and 4. The bound (2.11) and Lemma 3.4
imply that Et = rH ⇤ ⇢t 2 L

1((0,1), L2(Rd)), so we can apply Corollary 2.3 to deduce
that trajectories do not blow up.

Remark 3.5. As a consequence of Theorem 2.2, Corollary 2.7, and Remarks 2.8 and 2.9,
we deduce that, for d = 2, 3, 4 and � = 1, finite energy solutions conserve the mass, namely
kftkL1(R2d) = ⇢t(Rd) = ⇢0(Rd) = kf0kL1(R2d) for every t 2 [0,1). In particular, in this case

solutions are strongly continuous in L
1(R2d) and not only in L

1
loc(R2d) (see for instance the

argument in Step 2 of the proof of Theorem 4.10).

Remark 3.6. As shown in the first part of Corollary 2.7, the construction in the proof
of Theorem 2.6 provides renormalized solutions of the Vlasov-Poisson system if further
assumptions are made on the initial datum, such as finiteness of the total energy. Still, there
are examples of infinite energy data such that the generalized solutions built in Theorem 2.6
solve the Vlasov-Poisson system. For instance, in [29] Perthame considers an initial datum
f0 2 L

1
\L

1(R6) with (1+ |x|
2)f0 2 L

1(R6) and infinite energy, and he shows the existence
of a solution f 2 L

1([0,1);L1
\ L

1(R6)) of the Vlasov-Poisson system such that the
quantities

t
1/2

kEtkL2 , t
3/5

k⇢tkL5/3 ,

Z

R6

|x� vt|
2

t
ft(x, v) dx dv (3.32)
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are bounded for all t 2 (0,1). It can be easily seen that, under Perthame’s assumptions,
the construction in the proof of Theorem 2.6 provides a solution of the Vlasov-Poisson
equation as the one built in [29]. In particular, thanks to the a priori estimate (3.32) on the
approximating sequence, it is easy to see that ⇢e↵ = ⇢, therefore providing a Lagrangian
(and therefore renormalized and distributional) solution of Vlasov-Poisson.

Analogously, under the assumptions of [35], a similar argument shows that the general-
ized solutions built in Theorem 2.6 solve the classical Vlasov-Poisson system.

4 Maximal Regular Flows of the state space and renormal-
ized solutions

The aim of this and next section is to develop the abstract theory of Maximal Regular
Flows and Lagrangian/renormalized solutions that are behind the results presented in the
previous sections. We warn the reader that from now on, since the theory is completely
general, we shall often consider flows of vector fields in Rd and denote by x a point in Rd.
Then, for the applications to kinetic equations in the phase-space R2d, one should apply
these results replacing d with 2d and x with (x, v).

4.1 Preliminaries on Maximal Regular Flows

In this section we recall the basic results in [2], where a local version of the theory of
DiPerna-Lions [18] and Ambrosio [1] was developed. First we recall the definition of a local
(in space and time) version of the Regular Lagrangian Flow introduced by Ambrosio [1].
Here and in the sequel, B(Rd) denotes the collection of Borel sets in Rd, and AC([⌧1, ⌧2];Rd)
is the space of absolutely continuous curves on [⌧1, ⌧2] with values in Rd.

Definition 4.1 (Regular Flow). Let B 2 B(Rd), ⌧1 < ⌧2, and b : (⌧1, ⌧2) ⇥ Rd
! Rd be

a Borel vector field. We say that a Borel map X : [⌧1, ⌧2] ⇥ B ! Rd is a Regular Flow
(relative to b) in [⌧1, ⌧2]⇥B if the following two properties hold:

(i) for a.e. x 2 B, X(·, x) 2 AC([⌧1, ⌧2];Rd) and solves the ODE ẋ(t) = bt(x(t)) a.e. in
(⌧1, ⌧2), with the initial condition X(⌧1, x) = x;

(ii) there exists a constant C = C(X) satisfying X(t, ·)#(L d
B)  CL d for all t 2

[⌧1, ⌧2].

Let T 2 (0,1) and let b : (0, T ) ⇥ Rd
! Rd be a Borel vector field. The main object

of our analysis is the Maximal Regular Flow, which takes into account the possibility of
blow-up before time T (or after time 0, when an initial condition s 2 (0, T ) is under
consideration).

Definition 4.2 (Maximal Regular Flow). For every s 2 (0, T ) we say that a Borel map
X(·, s, ·) is a Maximal Regular Flow starting at time s if there exist two Borel maps T

+
s,X :

Rd
! (s, T ], T�

s,X : Rd
! [0, s) such that X(·, x) is defined in (T�

s,X(x), T+
s,X(x)) and the

following two properties hold:
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(i) for a.e. x 2 Rd, X(·, s, x) 2 ACloc((T
�
s,X(x), T+

s,X(x));Rd) and solves the ODE ẋ(t) =

bt(x(t)) a.e. in (T�
s,X(x), T+

s,X(x)), with the initial condition X(s, s, x) = x;

(ii) there exists a constant C = C(s,X) such that

X(t, s, ·)#
�
L d

{T
�
s,X < t < T

+
s,X}

�
 CL d

8 t 2 [0, T ]; (4.1)

(iii) for a.e. x 2 Rd, either T
+
s,X(x) = T (resp. T

�
s,X(x) = 0) and X(·, s, x) can be

continuously extended up to t = T (resp. t = 0) so that X(·, s, x) 2 C([s, T ];Rd)
(resp. X(·, s, x) 2 C([0, s];Rd)), or

lim
t"T+

s,X (x)
|X(t, s, x)| = 1 (resp. lim

t#T�
s,X (x)

|X(t, s, x)| = 1). (4.2)

In particular, T+
s,X(x) < T (resp. T

�
s,X(x) > 0) implies (4.2).

The definition of Maximal Regular Flow can be extended up to the times s = 0 and
s = T setting T

�
0,X ⌘ 0 and T

+
T,X ⌘ T .

A Maximal Regular Flow has been built in [2] under general local assumptions on b.
Before stating the result, we recall these assumptions. For T 2 (0,1) we are given a Borel
vector field b : (0, T )⇥ Rd

! Rd satisfying:

(A1)
R T
0

R
BR

|bt(x)| dx dt < 1 for any R > 0;

(A2) for any nonnegative ⇢̄ 2 L
1
+ (Rd) with compact support and any closed interval [a, b] ⇢

[0, T ], the continuity equation

d

dt
⇢t + div (bt⇢t) = 0 in (a, b)⇥ Rd (4.3)

has at most one solution in the class of all weakly⇤ nonnegative continuous functions
[a, b] 3 t 7! ⇢t with ⇢a = ⇢̄ and [t2[a,b] supp ⇢t b Rd.

Since the vector fields that arise in the applications we have in mind are divergence-free,
we assume throughout the paper that our velocity field b satisfies

div bt = 0 in Rd in the sense of distributions, for a.e. t 2 (0, T ). (4.4)

The existence and uniqueness of the Maximal Regular Flow after time s, as well as the
semigroup property, were proved in [2, Theorems 5.7, 6.1, 7.1] assuming a one sided bound
(specifically a lower bound) on the divergence. In this context, uniqueness should be un-
derstood as follows: if X and Y are Maximal Regular Flows, for all s 2 [0, T ] one has

(
T
±
s,X(x) = T

±
s,Y (x) for a.e. x 2 Rd

X(·, s, x) = Y (·, s, x) in (T�
s,X(x), T+

s,X(x)) for a.e. x 2 Rd.
(4.5)

Under our assumptions on the divergence, by simply reversing the time variable, the Max-
imal Regular Flow can be built both forward and backward in time, so we state the result
directly in the time-reversible case.
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Theorem 4.3 (Existence, uniqueness, and semigroup property). Let b : (0, T )⇥ Rd
! Rd

be a Borel vector field satisfying (A1) and (A2). Then the Maximal Regular Flow starting
from any s 2 [0, T ] is unique according to (4.5), and existence is ensured under the additional
assumption (4.4). In addition, still assuming (4.4), for all s 2 [0, T ] the following properties
hold:

(i) the compressibility constant C(s,X) in Definition 4.2 equals 1 and for every t 2 [0, T ]

X(t, s, ·)#
�
L d

{T
�
s,X < t < T

+
s,X}

�
= L d

�
X(t, s, ·)({T�

s,X < t < T
+
s,X})

�
; (4.6)

(ii) if ⌧1 2 [0, s], ⌧2 2 [s, T ], and Y is a Regular Flow in [⌧1, ⌧2] ⇥ B, then T
+
s,X > ⌧2,

T
�
s,X < ⌧1 a.e. in B; moreover

X(·, s, x) = Y (·,X(⌧1, s, x)) in [⌧1, ⌧2], for a.e. x 2 B; (4.7)

(iii) the Maximal Regular Flow satisfies the semigroup property, namely for all s, s0 2 [0, T ]

T
±
s0,X(X(s0, s, x)) = T

±
s,X(x), for L d-a.e. x 2 {T

+
s,X > s

0
> T

�
s,X}, (4.8)

and, for a.e. x 2 {T
+
s,X > s

0
> T

�
s,X},

X
�
t, s

0
,X(s0, s, x)

�
= X(t, s, x) 8 t 2 (T�

s,X(x), T+
s,X(x)). (4.9)

4.2 Uniqueness for the continuity equation and singular integrals

In this section we deal with uniqueness of solutions to the continuity equation when the
gradient of the vector field is given by the singular integral of a time dependent family of
measures. The theorem is a minor variant of a result by Bohun, Bouchut, and Crippa [8]
(see also [11], where the uniqueness is proved for vector fields whose gradient is the singular
integral of an L

1 function). We give the proof of the theorem under the precise assumptions
that we need later on, since [8] deals with globally defined regular flows (hence the authors
need to assume global growth conditions on the vector field), whereas here we present a
local version of such result.

Theorem 4.4. Let b : (0, T )⇥ R2d
! R2d be given by bt(x, v) = (b1t(v), b2t(x)), where

b1 2 L
1((0, T );W 1,1

loc (Rd;Rd)), b2t = K ⇤ ⇢t,

with ⇢ 2 L
1((0, T );M+(Rd)) and K(x) = x/|x|

d.
Then b satisfies (A2) of Section 4.1, namely the uniqueness of bounded compactly supported
nonnegative distributional solutions of the continuity equation.

Proof. To simplify the notation we give the proof in the case of autonomous vector fields
(in particular ⇢t = ⇢ is independent of time), but the exact same computations work for
the general statement. From now on, we denote by P

�
X
�
the set of probability measures

on a space X, and we use et : C([0, T ];Rk) ! Rk to denote the evaluation map at time t,
that is et(⌘) := ⌘(t) (depending on the context, k may be equal to d or 2d).
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It is enough to show that, given BR ⇢ Rd and ⌘ 2 P
�
C([0, T ];BR⇥BR)

�
concentrated

on integral curves of b and such that (et)#⌘  C0L 2d for all t 2 [0, T ], the disintegration
⌘x of ⌘ with respect to the map e0 is a Dirac delta for e0#⌘-a.e. x. Indeed, thanks
to Theorem 5.1 below, any two bounded nonnegative distributional solutions supported
inside BR ⇥BR and starting from the same initial datum ⇢̄ can be represented by ⌘1, ⌘2 2

P
�
C([0, T ];BR ⇥BR)

�
. Hence, setting ⌘ = (⌘1 + ⌘2)/2, if we can prove that ⌘x is a Dirac

delta for ⇢̄-a.e. x we deduce that (⌘1)x = (⌘2)x = ⌘x for ⇢̄-a.e. x, thus ⌘1 = ⌘2.

To show that ⌘x is a Dirac delta for e0#⌘-a.e. x, let us consider the function

��,⇣(t) :=

ZZZ
log

⇣
1 +

|�
1(t)� ⌘

1(t)|

⇣ �
+

|�
2(t)� ⌘

2(t)|

�

⌘
d⌘x(�) d⌘x(⌘) d⇢̄(x),

where �, ⇣ 2 (0, 1) are small parameters to be chosen later, t 2 [0, T ], ⇢̄ := (e0)#⌘, and we
use the notation �(t) = (�1(t), �2(t)) 2 Rd

⇥ Rd. It is clear that ��,⇣(0) = 0.
Let us define the probability measure µ 2 P

�
Rd

⇥ C([0, T ];Rd)2
�
by dµ(x, ⌘, �) :=

d⌘x(⌘) d⌘x(�) d⇢̄(x), and assume by contradiction that ⌘x is not a Dirac delta for ⇢̄-a.e. x.
This means that there exists a constant a > 0 such that

ZZZ ✓Z T

0
min

�
|�(t)� ⌘(t)|, 1

 
dt

◆
dµ(x, ⌘, �) � a.

By Fubini’s Theorem this implies that there exists a time t0 2 (0, T ] such that
ZZZ

min
�
|�(t0)� ⌘(t0)|, 1

 
dµ(x, ⌘, �) �

a

T
.

Since the integrand is bounded by 1 and the measure µ has mass 1, this means that the set

A :=

⇢
(x, ⌘, �) : min

�
|�(t0)� ⌘(t0)|, 1

 
�

a

2T

�

has µ-measure at least a/(2T ). Then, assuming without loss of generality that a  2T , this
implies that |�(t0)� ⌘(t0)| � a/(2T ) for all (x, ⌘, �) 2 A, hence

��,⇣(t0) �

ZZZ

A
log

⇣
1 +

|�
1(t0)� ⌘

1(t0)|

⇣ �
+

|�
2(t0)� ⌘

2(t0)|

�

⌘
dµ(x, ⌘, �)

�
a

2T
log

⇣
1 +

a

2�T

⌘
.

(4.10)

We now want to show that this is impossible.

Computing the time derivative of ��,⇣ we see that

d��,⇣

dt
(t) 

Z

Rd

Z Z ✓
|b1(�2(t))� b1(⌘2(t))|

⇣
�
� + |�2(t)� ⌘2(t)|

� +⇣|b2(�
1(t))� b2(⌘1(t))|

⇣ � + |�1(t)� ⌘1(t)|

◆
dµ(x, ⌘, �). (4.11)

By our assumption on b1, the first summand is easily estimated using the Lipschitz regularity
of b1 in BR:

Z

Rd

Z Z
|b1(�2(t))� b1(⌘2(t))|

⇣(� + |�2(s)� ⌘2(s)|)
dµ(x, ⌘, �) 

krb1kL1(BR)

⇣
. (4.12)
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To estimate the second integral we show that for some constant C, which depends only on
d, ⇢(Rd), and R, one has

ZZZ
⇣ |K ⇤ ⇢(�1(t))�K ⇤ ⇢(⌘1(t))|

⇣ � + |�1(t)� ⌘1(t)|
dµ(x, ⌘, �)  C ⇣

✓
1 + log

⇣
C

⇣ �

⌘◆
. (4.13)

To this end, we first recall the definition of weak L
p norm of a µ-measurable function

f : X ! R in a measure space (X,µ):

|||f |||Mp(X,µ) := sup
�
�µ({|f | > �})1/p : � > 0

 
.

By [11, Proposition 4.2 and Theorem 3.3(ii)] there exists a modified maximal operator M̃ ,
which associates to every � 2 M+(Rd) a function M̃(DK ⇤ �) 2 L

1(Rd) satisfying the
following properties: there exists a set L with L d(L) = 0 such that

|K ⇤�(x)�K ⇤�(y)|  C
⇥
M̃(DK ⇤�)(x)+M̃(DK ⇤�)(y)

⇤
|x�y| 8x, y 2 Rd

\L, (4.14)

and the weak-L1 estimate

|||M̃(DK ⇤ �)|||M1(BR)  C �(Rd) (4.15)

holds with a constant C which depends only on d and R. Applying (4.14), we see that

ZZZ
|K ⇤ ⇢(�1(t))�K ⇤ ⇢(⌘1(t))|

⇣ � + |�1(t)� ⌘1(t)|
dµ 

Z
gt(x, ⌘, �) dµ, (4.16)

where

gt(x, ⌘, �) := min

⇢
C M̃(DK⇤⇢)(�1(t))+C M̃(DK⇤⇢)(⌘1(t)),

|K ⇤ ⇢|(�1(t)) + |K ⇤ ⇢|(⌘1(t))

⇣ �

�
.

Let us fix p := d
d�1/2 2

⇣
1, d

d�1

⌘
, so that |K| 2 L

p
loc(Rd). The last term in (4.16) can be

estimated thanks to the following interpolation inequality (see [11, Lemma 2.2])

kgtkL1(µ) 
p

p� 1
|||gt|||M1(µ)

✓
1 + log

⇣ |||gt|||Mp(µ)

|||gt|||M1(µ)

⌘◆
.

Also, the first term in the right-hand side above can be estimated using our assumption
(et)#⌘  C0L d and (4.15):

|||gt|||M1(µ)  2 |||M̃(DK ⇤ ⇢)(⌘1(t))|||M1(µ)

= 2 |||M̃(DK ⇤ ⇢)(⌘1(t))|||M1(⌘)

= 2 |||M̃(DK ⇤ ⇢)(x)|||M1(BR⇥BR,et#⌘)

 2C0 |||M̃(DK ⇤ ⇢)(x)|||M1(BR⇥BR,L 2d)

 2C0 L d(BR) |||M̃(DK ⇤ ⇢)(x)|||M1(BR,L d)

 2C0C L d(BR) ⇢(Rd).
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Similarly, the second term in the right hand side can be estimated using (et)#⌘  C0L d

and Young’s inequality:

|||gt|||Mp(µ)  2 (⇣ �)�1
kK ⇤ ⇢(⌘1(t))kLp(µ)

= 2 (⇣ �)�1
kK ⇤ ⇢(⌘1(t))kLp(⌘)

 2C0 (⇣ �)
�1

kK ⇤ ⇢(x)kLp(BR⇥BR)

 2C0 (⇣ �)
�1L d(BR) kK ⇤ ⇢kLp(BR)

 2C0 (⇣ �)
�1L d(BR) kKkLp(BR) ⇢(Rd)

 C (⇣ �)�1
,

where C depends on d, R, and ⇢(Rd). Combining these last estimates with (4.16), we
obtain (4.13).

Then, using (4.11), (4.12), and (4.13), we deduce that

d��,⇣

dt
(t) 

C

⇣
+ C ⇣ + C ⇣ log

⇣
C

⇣ �

⌘

for some constant C depending only on d, R, ⇢(Rd), and krb1kL1(Rd). Integrating with
respect to time in [0, t0], we find that

��,⇣(t0)  C t0

✓
1

⇣
+ ⇣ + ⇣ log

⇣
C

⇣

⌘
+ ⇣ log

⇣1
�

⌘◆
.

Choosing first ⇣ > 0 small enough in order to have C t0 ⇣ < a/(2T ) and then letting � ! 0,
we find a contradiction with (4.10), which concludes the proof. ⇤

4.3 Generalized flows and Maximal Regular Flows

We denote by R̊d = Rd
[ {1} the one-point compactification of Rd and we recall the

definition of generalized flow and of regular generalized flow in our context, as introduced
in [2, Definition 5.3].

Definition 4.5 (Generalized flow). Let b : (0, T ) ⇥ Rd
! Rd be a Borel vector field. The

measure ⌘ 2 M+
�
C([0, T ]; R̊d)

�
is said to be a generalized flow of b if ⌘ is concentrated on

the set

� :=
�
⌘ 2 C([0, T ]; R̊d) : ⌘ 2 ACloc({⌘ 6= 1};Rd) and

⌘̇(t) = bt(⌘(t)) for a.e. t 2 {⌘ 6= 1}
 
. (4.17)

In connection with the definition of generalized flow, let us provide a sketch of proof of the fact that the
set � in (4.17) is Borel in C([0, T ]; R̊d).

First of all one notices that, for all intervals [a, b] ⇢ [0, T ], the set {⌘ : ⌘([a, b]) ⇢ Rd} is Borel. Then,
considering the absolute continuity of a curve ⌘ in the integral form

|⌘(t)� ⌘(s)| 
Z t

s

|br(⌘(r))| dr 8 s, t 2 [a, b], s  t,

it is su�cient to verify (arguing componentwise and splitting in positive and negative part) that for any
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We say that a generalized flow ⌘ is regular if there exists L0 � 0 satisfying

(et)#⌘ Rd
 L0L

d
8 t 2 [0, T ]. (4.18)

In the case of a smooth bounded vector field, a particular class of generalized flows is
the one generated by transporting the initial measure along the integral lines of the flow:

⌘ =

Z

Rd
�X(·,x) d[(e0)#⌘](x).

In the next definition we propose a generalization of this construction involving Maximal
Regular Flows.

Definition 4.6 (Measures transported by the Maximal Regular Flow). Let b : (0, T )⇥Rd
!

Rd be a Borel vector field having a Maximal Regular Flow X, and let ⌘ 2 M+
�
C([0, T ]; R̊d)

�

with (et)#⌘ ⌧ L d for all t 2 [0, T ]. We say that ⌘ is transported by X if, for all s 2 [0, T ],
⌘ is concentrated on

�
⌘ 2 C([0, T ]; R̊d) : ⌘(s) = 1 or ⌘(·) = X(·, s, ⌘(s)) in (T�

s,X(⌘(s)), T+
s,X(⌘(s)))

 
. (4.19)

The absolute continuity assumption (et)#⌘ ⌧ L d on the marginals of ⌘ is needed to
ensure that this notion is invariant with respect to the uniqueness property in (4.5). In
other words, if X and Y are related as in (4.5) then ⌘ is transported by X if and only if
⌘ is transported by Y .

It is easily seen that if ⌘ is transported by a Maximal Regular Flow, then ⌘ is a general-
ized flow according to Definition 4.5, but in connection with the proof of the renormalization
property we are more interested in the converse statement. As shown in the next theorem,
this holds for regular generalized flows and for divergence-free vector fields satisfying (A1)-
(A2) of Section 4.1.

Theorem 4.7 (Regular generalized flows are transported by X). Let b : (0, T )⇥Rd
! Rd

be a divergence-free vector field satisfying (A1)-(A2) of Section 4.1 and let X be its Max-
imal Regular Flow. Let ⌘ 2 M+

�
C([0, T ]; R̊d)

�
be a regular generalized flow according to

Definition 4.5.
Given s 2 [0, T ], consider a Borel family {⌘s

x} ⇢ P
�
C([0, T ]; R̊d)

�
, x 2 R̊d, of condi-

tional probability measures representing ⌘ with respect to the marginal (es)#⌘, that is,

nonnegative Borel function c and for any s, t 2 [0, T ] with s  t fixed, the function

⌘ 7!
Z t

s

cr(⌘(r)) dr

is Borel in {⌘ : ⌘([a, b]) ⇢ Rd}. This follows by a monotone class argument, since the property is obviously
true for continuous functions and it is stable under equibounded and monotone convergence.

As soon as the absolute continuity property is secured, also the verification of the Borel regularity of

� \ {⌘ : ⌘([a, b]) ⇢ Rd} =
�
⌘ 2 C([0, T ]); R̊d) : ⌘ 2 AC([a, b];Rd), ⌘̇(t) = bt(⌘(t)) a.e. in (a, b)

 

can be achieved following similar lines. Finally, by letting the endpoints a, b vary in a countable dense set
we obtain that � is Borel.
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R
⌘s
x d[(es)#⌘](x) = ⌘. Then for (es)#⌘-almost every x 2 Rd we have that ⌘s

x is con-
centrated on the set

�̂s :=
�
⌘ 2 C([0, T ]; R̊d) : ⌘(s) = x, ⌘(·) = X(·, s, ⌘(s)) in (T�

s,X(⌘(s)), T+
s,X(⌘(s)))

 
.

(4.20)
In particular ⌘ is transported by X.

Proof. First of all we notice that the set �̂s in (4.20) is Borel. Indeed, the maps ⌘ 7!

T
±
s,X(⌘(s)) are Borel because T

±
X are Borel in Rd, and the map ⌘ 7! X(t, s, ⌘(s)) is Borel

as well for any t 2 [0, T ]. Therefore, choosing a countable dense set of times t 2 [0, T ] the
Borel regularity of �̂s is achieved.

The fact that ⌘s
x is concentrated on the set {⌘ : ⌘(s) = x} is immediate from the

definition of ⌘s
x. We now show that for (es)#⌘-almost every x 2 Rd the measure ⌘s

x is
concentrated on the set

�
⌘ 2 C([0, T ]; R̊d) : ⌘(·) = X(·, s, x) in [s, T+

s,X(x))
 
. (4.21)

Applying the same result backward in time, this will prove that ⌘s
x is concentrated on the

set �̂s in (4.20).

For r 2 (s, T ] we denote by ⌃s,r : C([0, T ]; R̊d) ! C([s, r]; R̊d) the map induced by
restriction to [s, r], namely ⌃s,r(⌘) := ⌘|[s,r].

For every R > 0, r 2 (s, T ], let us consider

⌘R,r := ⌃s,r
#

⇣
⌘

�
⌘ : ⌘(t) 2 BR for every t 2 [s, r]

 ⌘
.

By construction ⌘R,r is a regular generalized flow relative to b with compact support, hence
our regularity assumption on b allows us to apply [2, Theorem 3.4] to deduce that

⌘R,r =

Z
�Y (·,x) d[(es)#⌘

R,r](x), (4.22)

where Y (·, x) is an integral curve of b in [s, r] for (es)#⌘-a.e. x 2 Rd. Let us denote by
⇢R,r the density of (es)#⌘R,r with respect to L d, which is bounded by L0 thanks to (4.18).
For every � > 0 we have that

Y (t, ·)#
�
L d

{⇢R,r > �}
�
= (et)#

Z

{⇢R,r>�}
�Y (·,x) dL

d(x)


1

�
(et)#

Z

{⇢R,r>�}
�Y (·,x) d[(es)#⌘

R,r](x)


1

�
(et)#⌘

R,r


1

�
(et)#⌘ Rd


L0

�
L d

,

(4.23)

hence Y (·, x) is a Regular Flow of b in [s, r] ⇥ {⇢R,r > �} according to Definition 4.1. By
Theorem 4.3(ii) we deduce that Y (·, x) = X(·, s, x) for a.e. x 2 {⇢R,s > �} and therefore,
letting � ! 0,

Y (·, x) = X(·, s, x) in [s, r] for (es)#⌘
R,s-a.e. x 2 Rd

. (4.24)
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Letting R ! 1 we have that ⌘R,r
! �r increasingly, where

�r := ⌃s,r
#

⇣
⌘ {⌘ : ⌘(t) 6= 1 for every t 2 [s, r]}

⌘
,

and by (4.22) and (4.24) we get that

�r =

Z
�X(·,s,x) d[(es)#�

r](x) 8 r 2 (s, T ]. (4.25)

Now, arguing by contradiction, let us assume that there exists a Borel set E ⇢ Rd such that
(es)#⌘(E) > 0 and ⌘s

x is not concentrated on the set (4.21) for every x 2 E, namely

⌘s
x

⇣�
⌘ 2 C([0, T ]; R̊d) : ⌘ 6= X(·, s, x) as a curve in [s, T+

s,X(x))
 ⌘

> 0.

Since this is equivalent to

⌘s
x

✓ [

r2Q\(s,T+
s,X (x))

�
⌘ 2 C([0, T ]; R̊d) : ⌘ 6= X(·, s, x) in [s, r], ⌘([s, r]) ⇢ Rd

 ◆
> 0,

we deduce that for every x 2 E there exists rx 2 Q \ (s, T+
s,X(x)) such that

⌘s
x

⇣�
⌘ 2 C([0, T ]; R̊d) : ⌘ 6= X(·, s, x) as a curve in [s, rx], ⌘([s, rx]) ⇢ Rd

 ⌘
> 0.

In other words, for every x 2 E there exists a rational number rx such that

⌃s,rx
#

⇣
⌘s
x {⌘ : ⌘(t) 6= 1 for every t 2 [s, rx]}

⌘
is nonzero and not a multiple of �X(·,s,x).

Therefore, there exist a Borel set E
0
⇢ E of positive (es)#⌘-measure and r 2 (s, T ] \ Q

such that for every x 2 E
0

⌃s,r
#

⇣
⌘s
x {⌘ : ⌘(t) 6= 1 for every t 2 [s, r]}

⌘
is nonzero and not a multiple of �X(·,s,x).

Notice now that, by (4.25) and (es)#�r
 (es)#⌘, it follows that

Z
�X(·,s,x) d[(es)#⌘](x) � �r =

Z
⌃s,r
#

⇣
⌘s
x {⌘ : ⌘(t) 6= 1 for every t 2 [s, r]}

⌘
d[(es)#⌘](x),

hence �X(·,s,x) � ⌃s,r
#

⇣
⌘s
x {⌘ : ⌘(t) 6= 1 for every t 2 [s, r]}

⌘
for (es)#⌘-a.e. x, and

therefore a contradiction with the existence of E0. This proves that ⌘s
x is concentrated on

the set defined in (4.21), as desired.

Finally, in order to prove that ⌘ is transported by X we apply the definition of disinte-
gration and the fact that for (es)#⌘-a.e. x 2 Rd the measure ⌘s

x is concentrated on the set

�̂s in (4.20) to obtain that ⌘(�̂) =
R
⌘s
x(�̂) d[(es)#⌘](x) = 1, where �̂ is the set in (4.19).

⇤
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4.4 Regular generalized flows and renormalized solutions

We now recall the well-known concept of renormalized solution to a continuity equation.
This was already introduced in Section 2 in the context of the Vlasov-Poisson system, but
we prefer to reintroduce it here in its general formulation for the convenience of the reader.
To fix the ideas we consider the interval (0, T ) and 0 as initial time, but the definition can
be immediately adapted to general intervals, forward and backward in time.

Definition 4.8 (Renormalized solutions). Let b 2 L
1
loc((0, T ) ⇥ Rd;Rd) be a Borel and

divergence-free vector field. A Borel function ⇢ : (0, T )⇥Rd
! R is a renormalized solution

of the continuity equation relative to b if

@t�(⇢) +r · (b�(⇢)) = 0 in (0, T )⇥ Rd
8� 2 C

1
\ L

1(R) (4.26)

in the sense of distributions. Analogously, we say that ⇢ is a renormalized solutions starting
from a Borel function ⇢0 : Rd

! R if

Z

Rd
�0(x)�(⇢0(x)) dx+

Z T

0

Z

Rd
[@t�t(x) +r�t(x) · bt(x)]�(⇢t(x)) dx dt = 0 (4.27)

for all � 2 C
1
c ([0, T )⇥ Rd) and all � 2 C

1
\ L

1(R).

Remark 4.9 (Equivalent formulations). As shown for instance in [4, Section 8.1]), an
equivalent formulation of (4.27) is the following: for every ' 2 C

1
c (Rd) the function t 7!R

Rd '(x)�(⇢t(x)) dx coincides a.e. with an absolutely continuous function t 7! A(t) such
that A(0) =

R
Rd '(x)�(⇢0(x)) dx and

d

dt
A(t) =

Z

Rd
r'(x) · bt(x)�(⇢t(x)) dx for a.e. t 2 (0, T ). (4.28)

Moreover, by an easy approximation argument, the same holds for every Lipschitz compactly
supported test function ' : Rd

! R. In this way, possibly splitting ' into its positive and
negative part, only nonnegative test functions need to be considered. Analogously, by
writing every � 2 C

1(Rd) as the sum of a C
1 monotone nondecreasing function and of a C

1

monotone nonincreasing function, we can use the linearity of the equation with respect to
�(⇢t) to reduce to the case of � 2 C

1
\ L

1(R) monotone nondecreasing.

In the next theorem we show first that, flowing an initial datum ⇢0 2 L
1(Rd) through the

maximal flow, we obtain a renormalized solution of the continuity equation. In turn, this is
a key tool to prove the second part of the lemma, namely that any measure ⌘ transported
by the maximal regular flow induces, through its marginals, a renormalized solution. The
proof of these facts heavily relies on the incompressibility of the flow and therefore on the
assumption that the vector field is divergence-free. A generalization of this lemma to the
case of vector fields with bounded divergence is possible, but rather technical and long. We
notice that the assumptions (A1) and (A2), as well as the one on the divergence of the
vector field b, are used only for the existence and uniqueness of a maximal regular flow
which preserves the Lebesgue measure on its domain of definition (see Theorem 4.3).
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To fix the ideas, in part (i) of the theorem below we consider only 0 as initial time. An
analogous statement can be given for any other initial time s 2 [0, T ], considering intervals
[0, s] or [s, T ], with no additional assumption on b.

Theorem 4.10. Let b : (0, T )⇥Rd
! Rd be a divergence-free vector field satisfying (A1)-

(A2) of Section 4.1. Let X(t, s, x) be the maximal regular flow of b according to Defini-
tion 4.2.

(i) If ⇢0 2 L
1(Rd), we define ⇢t 2 L

1(Rd) by

⇢t := X(t, 0, ·)#(⇢0 {T
+
0,X > t}), t 2 [0, T ).

Then ⇢t is a renormalized solution of the continuity equation starting from ⇢0. In
addition the map t 7! ⇢t is strongly continuous on [0, T ) with respect to the L

1
loc

convergence, and it is also strongly L
1 continuous from the right.

(ii) If ⌘ 2 M+
�
C([0, T ]; R̊d)

�
is transported by X, and (et)#⌘ Rd

⌧ L d for every
t 2 [0, T ], then the density ⇢t of (et)#⌘ Rd with respect to L d is strongly continuous
on [0, T ) with respect to the L

1
loc convergence and it is a renormalized solution of the

continuity equation.

Proof. We split the proof in four steps.

Step 1: proof of (i), renormalization property of ⇢t. In the proof of (i) we set for
simplicityX(t, x) = X(t, 0, x) and T

+
0,X = TX . We first notice that, by the incompressibility

of the flow (4.6) and by the definition of ⇢t, for every t 2 [0, T ) and ' 2 Cc(Rd) one has
Z

{TX>t}
'(X(t, x)) ⇢t(X(t, x)) dx =

Z

X(t,·)({TX>t})
'⇢t dx =

Z

{TX>t}
'(X(t, x)) ⇢0 dx,

hence, for any t 2 [0, T ),

⇢t(X(t, x)) = ⇢0(x) for L d-a.e. x 2 {TX > t}. (4.29)

Let � 2 C
1
\ L

1(R). Using again (4.6) and by (4.29) we have that
Z

Rd
'�(⇢t) dx =

Z

X(t,·)({TX>t})
'�(⇢t) dx =

Z

{TX>t}
'(X(t, ·))�(⇢0) dx (4.30)

for any ' 2 Cc(Rd). In addition, the blow-up property (4.2) ensures that t 7! '(X(t, x))
can be continuously extended to be identically 0 on the time interval [TX(x), T ) (in case of
blow-up before time T ); furthermore, for the same reason, if ' 2 C

1
c (Rd) then the extended

map is absolutely continuous in [0, T ] and

d

dt
'(X(t, x)) = �[0,TX (x))(t)r'(X(t, x)) · bt(X(t, x)) for L 1-a.e. t 2 (0, T ). (4.31)

Therefore, using (4.30) and integrating (4.31), for all ' 2 C
1
c (Rd) we find that

d

dt

Z

Rd
'�(⇢t) dx =

Z

{TX>t}
r'(X(t, ·)) · bt(X(t, ·))�(⇢0) dx =

Z

Rd
r' · bt �(⇢t) dx
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for L 1-a.e. t 2 (0, T ), which proves the renormalization property.

Step 2: proof of (i), strong continuity of ⇢t. We notice that, as a consequence of
the possibility of continuously extending the map t 7! '(X(·, x)) after the time TX(x) for
' 2 Cc(Rd), the map [0, T ) 3 t 7! ⇢t is weakly continuous in the duality with Cc(Rd). Let
us prove now the strong continuity of t 7! ⇢t.

We start with the proof for t = 0. Fix ✏ > 0, let  2 Cc(Rd) with k � ⇢0kL1(Rd) < ✏,

and notice that the positivity L d-a.e. in Rd of TX gives
Z

Rd
|⇢t(x)�  (x)| dx 

Z

X(t,·)({TX>t})
|⇢t(x)�  (x)| dx+

Z

X(t,·)({0<TXt})
| (x)| dx

and that the second summand in the right hand side is infinitesimal as t # 0. Changing
variables and using (4.29) together with the incompressibility of the flow, it follows that

Z

X(t,·)({TX>t})
|⇢t(x)�  (x)| dx =

Z

{TX>t}
|⇢0(x)�  (X(t, x))| dx,

therefore

lim sup
t#0

Z

Rd
|⇢t �  | dx  lim sup

t#0

Z

{TX>t}
|⇢0(x)�  (X(t, x))| dx 

Z

Rd
|⇢0 �  | dx.

This proves that lim supt k⇢t � ⇢0kL1(Rd)  2✏ and, by the arbitrariness of ✏, the desired
strong continuity at t = 0 follows.

We now notice that the same argument together with the semigroup property of The-
orem 4.3(iii) shows that the map t 7! ⇢t is strongly continuous from the right in L

1. In
addition, reversing the time variable and using again the semigroup property, we deduce
that the identity ⇢t(x) = ⇢s(X(t, s, x)) 1{TX>t}(X(0, s, x)) holds, therefore

lim
s"t

Z

Rd
|⇢t(x)� ⇢s(x) 1{TX>t}(X(0, s, x))| dx = 0 8 t 2 (0, T ).

Hence, in order to prove that the map t 7! ⇢t is strongly continuous in L
1
loc, we are left to

show that for every R > 0 and t 2 (0, T ) one has

lim
s"t

Z

BR

|⇢s(x)� ⇢s(x) 1{TX>t}(X(0, s, x))| dx = 0. (4.32)

For this, we observe that by (4.29) and the incompressibility of the flow, we have that

Z

BR

|⇢s(x)� ⇢s(x) 1{TX>t}(X(0, s, x))| dx =

Z

BR

|⇢s|(x) 1{TXt}(X(0, s, x)) dx

=

Z

Rd
|⇢0|(y) 1{TXt}(y) 1BR(X(s, 0, y)) dy.

(4.33)
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Since trajectories go to infinity when the time approaches TX (see (4.2)), it follows that

1{TXt}(y) 1BR(X(s, 0, y)) ! 0 for L d-a.e. y as s " t,

so (4.32) follows by dominated convergence. This concludes the proof of (i).

Step 3: proof of (ii), renormalization property of ⇢t. We begin by showing that ⇢t
is a renormalized solution of the continuity equation.

By Remark 4.9 it is enough to prove that, given a bounded monotone nondecreasing
function � 2 C

1(R) and ' 2 C
1
c (Rd) nonnegative, the function t 7!

R
Rd '�(⇢t) dx is

absolutely continuous in [0, T ] and

d

dt

Z

Rd
'�(⇢t) dx =

Z

Rd
r' · bt �(⇢t) dx for L 1-a.e. t 2 (0, T ). (4.34)

To show that the map is absolutely continuous, let us consider s, t 2 [0, T ] and let ⇢̃tr be
the evolution of ⇢t through the flow X(·, t, x), namely

⇢̃
t
r := X(r, t, ·)#(⇢t {T

+
t,X > r > T

�
t,X}) for every r 2 [0, T ]. (4.35)

Since ⌘ is transported by X (by assumption), we claim that

⇢̃
t
r  ⇢r for every r 2 [0, T ]. (4.36)

Indeed, with the notation of the statement of Theorem 4.7, since �X(r,t,x) = (er)#⌘t
x for

⇢t-a.e. x 2 {T
+
t,X > r > T

�
t,X}, for every r 2 [0, T ] one has

⇢̃
t
r L d =

Z

{T�
t,X<s}

�X(s,t,x) ⇢t(x) dx 

Z

Rd
(er)#⌘

t
x ⇢t(x) dx

= (er)#

Z

Rd
⌘t
x ⇢t(x) dx = (er)#⌘ = ⇢r L d

.

Combining (4.36), the equality ⇢̃tt = ⇢t, the monotonicity of �, and statement (i), we deduce
that

Z

Rd
[�(⇢t)� �(⇢s)]' dx 

Z

Rd
[�(⇢̃tt)� �(⇢̃ts)]' dx =

Z t

s

Z

Rd
�(⇢̃tr)r' · br dx dr (4.37)

and similarly

Z

Rd
[�(⇢t)� �(⇢s)]' dx �

Z

Rd
[�(⇢̃st )� �(⇢̃ss)]' dx =

Z t

s

Z

Rd
�(⇢̃sr)r' · br dx dr.

In particular ���
Z

Rd
[�(⇢t)� �(⇢s)]' dx

���  k�k1

Z

Rd

Z t

s
|r'| |br| dr dx,

which shows that the function t 7!
R
Rd '�(⇢t) dx is absolutely continuous in [0, T ].
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Hence, in order to prove (4.34) it su�ces to notice that (4.37) and the strong continuity
of r 7! ⇢̃

t
r at r = t (ensured by statement (i)) give

Z

Rd
[�(⇢t)� �(⇢s)]' dx  (t� s)

Z

Rd
�(⇢t)r' · bt dx+ o(t� s),

hence (4.34) holds at any di↵erentiability point of t 7!
R
Rd '�(⇢t) dx, thus for a.e. t.

Step 4: proof of (ii), strong continuity of ⇢t. We now show that ⇢t is strongly
continuous on [0, T ) with respect to the L

1
loc convergence; more precisely we show that, for

every t 2 [0, T ) and for every r > 0,

lim
s"t

Z

Br

|⇢s � ⇢t| dx = 0 (4.38)

(reversing the time variable, the same argument gives the right-continuity). To this end,
let us define ⇢̃t as in (4.35) for every t 2 [0, T ]; we claim that

⇢̃
t
s = ⇢s {T

+
s,X > t} for every s 2 [0, t]. (4.39)

Indeed, let us fix s, t 2 [0, T ] and s  t. Denoting with ⌘t
x the disintegration of ⌘ with

respect to the map et, recalling that ⌘t
x is concentrated on curves ⌘ 2 C([0, T ]; R̊d) with

⌘(t) = x, by Theorem 4.7 we have that, for L d-a.e. x 2 Rd,

1{T�
t,X<s}(x) �X(s,t,x) = (es)#

⇣
⌘t
x

�
⌘ 2 C([0, T ]; R̊d) : ⌘(t) = x and T

�
t,X(x) < s

 ⌘

= (es)#
⇣
⌘t
x

�
⌘ 2 C([0, T ]; R̊d) : ⌘(t) 6= 1 and T

�
t,X(⌘(t)) < s

 ⌘
,

hence we can rewrite ⇢̃ts in terms of ⌘ as

⇢̃
t
s L d =

Z

{T�
t,X<s}

�X(s,t,x) ⇢t(x) dx

=

Z

Rd
(es)#

⇣
⌘t
x

�
⌘ 2 C([0, T ]; R̊d) : ⌘(t) 6= 1 and T

�
t,X(⌘(t)) < s

 ⌘
⇢t(x) dx

= (es)#
⇣
⌘

�
⌘ 2 C([0, T ]; R̊d) : ⌘(t) 6= 1 and T

�
t,X(⌘(t)) < s

 ⌘
.

(4.40)

By the semigroup property (Theorem 4.3(iii)) there exists a set Es,t ✓ Rd of L d-measure 0
such that

T
±
s,X(X(s, t, x)) = T

±
t,X(x) 8x 2 {T

+
t,X > s > T

�
t,X} \ Es,t,

T
±
t,X(X(t, s, x)) = T

±
s,X(x) 8x 2 {T

+
s,X > t > T

�
s,X} \ Es,t,

X
�
·, s,X(s, t, x)

�
= X(·, t, x) in (T�

t,X(x), T+
t,X(x)) 8x 2 {T

+
t,X > s > T

�
t,X} \ Es,t,

X
�
·, t,X(t, s, x)

�
= X(·, s, x) in (T�

s,X(x), T+
s,X(x)) 8x 2 {T

+
s,X > t > T

�
s,X} \ Es,t.
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Since (es)#⌘ Rd is absolutely continuous with respect to L d (hence the set of curves ⌘
such that ⌘(s) 2 Es,t is ⌘-negligible) and ⌘ is transported by the maximal regular flow, we
have the following equalities, which hold up to a set of ⌘-measure 0:

�
⌘ 2 C([0, T ]; R̊d) : ⌘(s) 6= 1 and T

+
s,X(⌘(s)) > t

 

=
�
⌘ 2 C([0, T ]; R̊d) : ⌘(s) 6= 1, ⌘(s) /2 Es,t, T

+
s,X(⌘(s)) > t

and ⌘(·) = X(·, s, ⌘(s)) in (T�
s,X(⌘(s)), T+

s,X(⌘(s))
 

=
�
⌘ 2 C([0, T ]; R̊d) : ⌘(t) 6= 1, ⌘(t) /2 Es,t, T

�
t,X(⌘(t)) < s

and ⌘(·) = X(·, t, ⌘(t)) in (T�
t,X(⌘(t)), T+

t,X(⌘(t))
 

=
�
⌘ 2 C([0, T ]; R̊d) : ⌘(t) 6= 1 and T

�
t,X(⌘(t)) < s

 
.

(4.41)

This implies that

⇢s {T
+
s,X > t} = (es)#

⇣
⌘

�
⌘ 2 C([0, T ]; R̊d) : ⌘(s) 6= 1 and T

+
s,X(⌘(s)) > t

 ⌘

= (es)#
⇣
⌘

�
⌘ 2 C([0, T ]; R̊d) : ⌘(t) 6= 1 and T

�
t,X(⌘(t)) < s

 ⌘
,

that combined with (4.40) gives (4.39).
Now, in order to prove (4.38), we apply the triangular inequality to infer that

Z

Br

|⇢s � ⇢t| dx 

Z

Br

|⇢s � ⇢̃
t
s| dx+

Z

Br

|⇢̃
t
s � ⇢t| dx.

The second term in the right-hand side converges to 0 when s " t by the strong L
1
loc

continuity of ⇢ts with respect to s proved in statement (i). To see that also the first term
converges to 0, we use (4.39), the identity ⇢tL d = (et)#⌘ Rd, and the fact that ⌘ is
transported by the maximal flow, to obtain

Z

Br

|⇢s � ⇢̃
t
s| dx =

Z

Br

⇢s 1{T+
s,Xt} dx =

Z
1Br\{T+

s,Xt}(⌘(s)) d⌘(⌘)

= ⌘
⇣�
⌘ : ⌘(s) 2 Br \ {T

+
s,X  t} and ⌘(·) = X(·, s, ⌘(s)) in [s, T+

s,X(⌘(s))
 ⌘

.

Notice that, if ⌘ is a curve which belongs to the set in the last line, then it belongs to Br

at time s and blows up in [s, t], thus

Z

Br

|⇢s � ⇢
t
s| dx  ⌘

⇣�
⌘ : ⌘(s0) 2 Br and ⌘(s00) = 1 for some s

0
, s

00
2 [s, t]

 ⌘
.

Since set in the right-hand side monotonically decreases to the empty set as s " t, its
⌘-measure converges to 0, which proves (4.38) and concludes the proof. ⇤

We now discuss a general no blow-up criterion for a generalized flow ⌘. This result plays
an important role in the proof of Corollary 2.3.
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Proposition 4.11 (No blow-up criterion). Let b 2 L
1
loc([0, T ] ⇥ Rd;Rd) be a Borel vector

field, let ⌘ 2 M+
�
C([0, T ]; R̊d)

�
be a generalized flow of b, and for t 2 [0, T ] let µt :=

(et)#⌘ Rd. Let ⌘1 denote the constant curve ⌘ ⌘ 1, and assume that ⌘({⌘1}) = 0 and

Z T

0

Z

Rd

|bt|(x)

(1 + |x|) log(2 + |x|)
dµt(x) dt < 1. (4.42)

Then ⌘ is concentrated on curves that do not blow up, namely

⌘
�
{⌘ 2 C([0, T ]; R̊d)) : ⌘(t) = 1 for some t 2 [0, T ]}

�
= 0.

In particular, if we assume that µt ⌧ L d for every t 2 [0, T ] and that ⌘ is concentrated on
the maximal regular flow X associated to b, then X is globally defined on [0, T ] for µ0-a.e.
x, namely the trajectories X(·, x) belong to AC([0, T ];Rd) for µ0-a.e. x 2 Rd.

Proof. Since ⌘({⌘1}) = 0 we know that ⌘-a.e. curve is finite at some time. In particular,
if we fix a countable dense set of times {tn}n2N ⇢ [0, T ], we see that (by continuity of the
curves) ⌘ is concentrated on [n2N�n with

�n := {⌘ 2 C([0, T ]; R̊d)) : ⌘(tn) 2 Rd
},

so it is enough to show that ⌘ �n is concentrated on curves that do not blow up.
By applying Theorem 4.7 with s = tn it follows that ⌘ �n is concentrated on curves

⌘ that are finite on the time interval (T�
tn,X

(⌘(tn)), T
+
tn,X

(⌘(tn))) ⇢ [0, T ]. Hence, since
(et)#(⌘ �n)  µt, by Fubini theorem and assumption (4.42) we get

Z Z T+
tn,X (⌘(tn))

T�
tn,X (⌘(tn))

���
d

dt

⇥
log log(2 + |⌘(t)|)

⇤��� dt d[⌘ �n](⌘)



Z Z T+
tn,X (⌘(tn))

T�
tn,X (⌘(tn))

|⌘̇(t)|

(1 + |⌘(t)|) log(2 + |⌘(t)|)
dt d[⌘ �n](⌘)

=

Z Z T+
tn,X (⌘(tn))

T�
tn,X (⌘(tn))

|bt|(⌘(t))

(1 + |⌘(t)|) log(2 + |⌘(t)|)
dt d[⌘ �n](⌘)



Z T

0

Z

Rd

|bt|(x)

(1 + |x|) log(2 + |x|)
dµt(x) dt < 1.

This implies that, for ⌘-a.e. curve ⌘ 2 �n,

sup
T�
tn,X (⌘(tn))s<⌧T+

tn,X (⌘(tn))

�� log log(2 + |⌘(s)|)� log log(2 + |⌘(⌧)|)
��



Z T+
tn,X (⌘(tn))

T�
tn,X (⌘(tn))

���
d

dt

⇥
log log(2 + |⌘(t)|)

⇤��� dt < 1,

which in turn says that T
�
tn,X

(⌘(tn)) = 0, T+
tn,X

(⌘(tn)) = T , and the curve ⌘ cannot blow
up in [0, T ], as desired.
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To show the second part of the statement, le us consider the disintegration of ⌘ with
respect to e0. By the properties of ⌘ we have that, for µ0-a.e. x, the probability measure
⌘x is concentrated on the set

�
⌘ : ⌘(0) = x, ⌘ 6= 1 in [0, T ], ⌘ = X(·, x) in [0, TX(x))

 
.

Since ⌘x is a probability measure it follows that this set is nonempty, that TX(x) = T , and
this set has to coincide with {X(·, x)}, thus ⌘x = �X(·,x), as desired.

5 The superposition principle under local integrability bounds

In order to represent the solution to the continuity equation by means of a generalized
flow we would like to apply the so-called superposition principle (see [3, Theorem 12] or
[2, Theorem 2.1]). However, the lack of global bounds makes this approach very di�cult
to implement. An analogue of the classical superposition principle is the content of the
following theorem.

Theorem 5.1 (Extended superposition principle). Let b 2 L
1
loc([0, T ]⇥Rd;Rd) be a Borel

vector field, and let ⇢t 2 L
1((0, T );L1

+(Rd)) be a distributional solution of the continuity
equation, weakly continuous in duality with Cc(Rd). Assume that:
(i) either |bt|⇢t 2 L

1
loc([0, T ]⇥ Rd);

(ii) or div bt = 0 and ⇢t is a renormalized solution.
Then there exists ⌘ 2 M+

�
C([0, T ]; R̊d)

�
, concentrated on the set � defined in (4.17), which

satisfies
|⌘|(C([0, T ]; R̊d))  sup

t2[0,T ]
k⇢tkL1(Rd)

and
(et)#⌘ Rd = ⇢tL

d for every t 2 [0, T ].

In addition, if ⇢t belongs also to L
1((0, T );L1

+ (Rd)) (or ⇢t is a renormalized solution) and
b is divergence-free and satisfies (A1)-(A2) of Section 4.1, then ⌘ is transported by the
Maximal Regular Flow of X of b.

Remark 5.2. Noticing that the assumption |⌘|(C([0, T ]; R̊d))  supt2[0,T ] µt(Rd) implies
that the curve ⌘ ⌘ 1 has ⌘-measure 0, if we assume that

Z T

0

Z

Rd

|bt|(x)

(1 + |x|) log(2 + |x|)
⇢t(x) dx dt < 1 (5.1)

then it follows by Proposition 4.11 that ⇢t is transported by the Maximal Flow, namely
T
+
0,X(x) = T , X(·, 0, x) 2 AC([0, T ];Rd) for a.e. x 2 {⇢0 > 0}, and ⇢tL d = X(t, ·)#⇢0L d.

Let us first briefly explain the idea behind the proof of the theorem above. To overcome
the lack of global bounds on b we introduce a kind of “damped” stereographic projection,
with a damping depending on the growth of |b| at 1, and we look at the flow of b on the
d-dimensional sphere Sd in such a way that the north pole N of the sphere corresponds
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to the points at infinity of Rd. Then we apply the superposition principle in these new
variables and eventually, going back to the original variables, we obtain a representation
of the solution as a generalized flow. Let us observe that it is crucial for us that the map
sending Rd onto Sd is chosen a function of b: indeed, as we shall see, by shrinking enough
distances at infinity we can ensure that the vector field read on the sphere becomes globally
integrable.

We denote by N be the north pole of the d-dimensional sphere Sd, thought of as a subset
of Rd+1. For our constructions we will use a smooth di↵eomorphism which maps Rd onto
Sd \ {N} and whose derivative has a prescribed decay at 1.

Lemma 5.3. Let D : [0,1) ! (0, 1] be a monotone nonincreasing function. Then there
exist r0 > 0 and a smooth di↵eomorphism  : Rd

! Sd \ {N} ⇢ Rd+1 such that

 (x) ! N as |x| ! 1, (5.2)

|r (x)|  D(0) 8x 2 Rd
, (5.3)

|r (x)|  D(|x|) 8x 2 Rd
\Br0 . (5.4)

Proof. We split the construction in two parts: first we perform a 1-dimensional construc-
tion, and then we use this construction to build the desired di↵eomorphism.

Step 1: 1-dimensional construction. Let D0 : [0,1) ! (0, 1] be a monotone nonin-
creasing function. We claim that there exists a smooth di↵eomorphism  0 : [0,1) ! [0,⇡)
such that

lim
r!1

 0(r) = ⇡, lim
r!1

 
0
0(r) = 0, (5.5)

 0(r) = c0D0(0) r 8 r 2 [0,⇡/D0(0)), for some c0 2 (0, 1), (5.6)

| 
0
0(r)|  D0(0) 8 r 2 [0,1), (5.7)

| 
0
0(r)|  D0(r) 8 r 2 [2⇡/D0(0),1). (5.8)

Indeed, define the nonincreasing L
1 function D1 : [0,1) ! (0,1) as

D1(r) :=

(
D0(0) if r 2 [0, 1 + ⇡/D0(0)]

min{D0(r), r�2
} if r 2 (1 + ⇡/D0(0),1).

We then consider an asymmetric convolution kernel, namely a nonnegative function � 2

C
1
c ((0, 1)) with

R
R � = 1, and consider the convolution of D1(r) with �(�r):

 1(r) :=

Z 1

0
�(r0)D1(r + r

0) dr0 8 r 2 [0,1).

Notice that  1 is smooth on (0,1), positive, nonincreasing, and  1  D1 in [0,1). In
particular  1 2 L

1((0,1)). Moreover we have that  1 ⌘ D0(0) in [0,⇡/D0(0)], hence
k 1kL1((0,1)) � ⇡ and c0 := ⇡k 1k

�1
L1((0,1)) 2 (0, 1). Finally, we define  0 as

 0(r) := c0

Z r

0
 1(s) ds 8 r 2 [0,1).
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Since | 
0
0(r)| = c0| 1(r)|  D1(r), taking into account that ⇡/D0(0) > 1 it is easy to check

that all the desired properties are satisfied.

Step 2: “radial” di↵eomorphism in any dimension. Let D0 : [0,1) ! (0, 1] to be
chosen later and consider  0 and c0 as in Step 1. We define  : Rd

! Sd \ {N} ⇢ Rd+1

which maps every half-line starting at the origin to an arc of sphere between the south pole
and the north pole:

 (x) := sin( 0(|x|))
⇣
x

|x|
, 0
⌘
� cos( 0(|x|))

�
0, . . . , 0, 1

�
.

Thanks to (5.6) and to the fact that the functions x 7! |x|
2, t 7! sin(

p
t)/

p
t, and t 7!

cos(
p
t) are all of class C

1, we obtain that  2 C
1(Rd;Rd+1). We also notice that its

inverse � : Sd \ {N} ! Rd can be explicitly computed:

�(x1, . . . , xd+1) =  
�1
0 (arccos(�xd+1))

(x1, . . . , xd)

|(x1, . . . , xd)|

=  
�1
0 (arcsin(|(x1, . . . , xd)|))

(x1, . . . , xd)

|(x1, . . . , xd)|
.

Writing r = |x| and denoting by Id the identity matrix on the first d components, we
compute the gradient of  :

r (x) =
cos( 0(r)) 0

0(r) r � sin( 0(r))

r3
(x, 0)⌦ (x, 0) +

sin( 0(r))

r
Id

�
sin( 0(r)) 0

0(r)

r
(x, 0)⌦ (0, . . . , 0, 1).

It is immediate to check that |r (x)| 6= 0 for all x 2 Rd, so it follows by the Inverse
Function Theorem that � is smooth as well. Also, we can estimate

|r (x)|  2 | 0
0(r)|+ 2

sin( 0(r))

r
. (5.9)

Using now (5.7) and (5.8), the first term in the right hand side above can be bounded by
2D0(0) for every x 2 Rd, and by 2D0(r) for every x 2 Rd such that r = |x| � 2⇡/D0(0). As
regards the second term, for r 2 [0,⇡/D0(0)] we have that

sin( 0(r))

r
=

sin(c0D0(0) r)

r
 c0D0(0), (5.10)

while for r 2 [⇡/D0(0),1) we estimate the numerator with 1 to get

sin( 0(r))

r


D0(0)

⇡
. (5.11)

Therefore, since c0 < 1, by (5.9), (5.10), and (5.11) we get

|r (x)|  4D0(0) 8x 2 Rd
. (5.12)
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Now, for r 2 [2⇡/D0(0),1), thanks to (5.5) and (5.8) we can estimate

sin( 0(r))

r
=

1

r

Z 1

r
� cos( 0(s)) 

0
0(s) ds 

1

r

Z 1

r
| 

0
0(s)| ds 

1

r

Z 1

r
D0(s) ds, (5.13)

thus by (5.8), (5.9), and (5.13), we obtain

|r (x)|  2D0(r) +
2

r

Z 1

r
D0(s) ds 8x 2 Rd

\B2⇡/D0(0). (5.14)

So, provided we choose D0(r) := min{4�1
, r

�2
}D(r) we obtain that (5.12) implies (5.3).

Also, by choosing r0 := 2⇡/D0(0) > 2, from (5.14) and becauseD is monotone nonincreasing
we deduce that

|r (x)| 
D(r)

2
+

1

r

Z 1

r

D(r)

s2
ds 

D(r)

2
+

D(r)

r2
 D(r) 8x 2 Rd

\Br0 ,

proving (5.4) and concluding the proof. ⇤

Proof of Theorem 5.1. We first assume that |bt|⇢t 2 L
1
loc([0, T ]⇥Rd) and we prove the result

in this case. This is done in two steps:
- In Step 1, based on Lemma 5.3, we construct a di↵eomorphism between Rd and Sd \ {N}

with the property that the vector field b, read on the sphere, becomes globally integrable.
- In Step 2 we associate to ⇢t a solution of the continuity equation on the sphere; this is
done by adding a time-dependent mass in the north pole. Then the classical superposition
principle applies on the sphere, and this implies the desired superposition result for ⇢t.

Once the theorem has been proved for |bt|⇢t 2 L
1
loc([0, T ]⇥Rd), we show in Step 3 how

to handle the case when ⇢t is a renormalized solution.
Finally, in Step 4 we exploit the results of Section 4 to show that ⇢t is transported by

the Maximal Regular Flow.

Step 1: construction of a di↵eomorphism between R̊d and Sd. We build a di↵eo-
morphism  2 C

1(Rd; Sd \ {N}) such that

lim
x!1

 (x) = N, (5.15)

Z T

0

Z

Rd
|r (x)| |bt(x)| ⇢t(x) dx dt < 1. (5.16)

To this end, we apply Lemma 5.3 with D(r) = 1 in [0, 1) and D(r) = (2nCn)�1 for r 2

[2n�1
, 2n), where

Cn := 1 +

Z T

0

Z

B2n

|bt(x)| ⇢t(x) dx dt for every n 2 N.

In this way we obtain a smooth di↵eomorphism  : Rd
! Sd \ {N} such that (5.15) holds,

|r (x)|  1 on Rd, and

|r (x)| 
1

2nCn
8x 2 B2n \B2n�1 , n � n0, (5.17)
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for some n0 > 0. Thanks to these facts we deduce that
Z T

0

Z

Rd
|r (x)| |bt(x)| ⇢t(x) dx dt



Z T

0

Z

B2n0

|bt(x)| ⇢t(x) dx dt+
1X

i=n0+1

Z T

0

Z

B2i\B2i�1

|r (x)| |bt(x)| ⇢t(x) dx dt



Z T

0

Z

B2n0

|bt(x)| ⇢t(x) dx dt+
1X

i=n0+1

1

2i
< 1,

(5.18)

which proves (5.16).

Step 2: superposition principle on the sphere. We build ⌘ 2 M+
�
C([0, T ]; R̊d)

�

such that |⌘|(C([0, T ]; R̊d))  supt2[0,T ] k⇢tkL1(Rd), ⌘ is concentrated on curves ⌘ which are
locally absolutely continuous integral curves of b in {⌘ 6= 1}, and whose marginal at time
t in Rd is ⇢tL d.

Without loss of generality, possibly dividing every ⇢t by supt2[0,T ] k⇢tkL1(Rd), we can

assume that supt2[0,T ] k⇢tkL1(Rd) = 1. Let � : Sd \ {N}) ! Rd be the inverse of the
di↵eomorphism  constructed in Step 1, set mt := k⇢tkL1(Rd)  1, and define

ct(y) :=

(
r (�(y)) bt(�(y)) if y 2 Sd \ {N}

0 if y = N
(5.19)

and
µt :=  #(⇢tL

d) + (1�mt) �N 2 P
�
Sd
�
, t 2 [0, T ].

Notice that, since � is the inverse of  , we have �#
�
µt (Sd \ {N})

�
= ⇢t. Hence, since

ct(N) = 0 we get
Z T

0

Z

Sd
|ct| dµt dt =

Z T

0

Z

Sd\{N}
|r |(�(y)) |bt|(�(y)) dµt(y) dt

=

Z T

0

Z

Rd
|r |(x) |bt|(x) ⇢t(x) dx dt < 1,

where in the last inequality we used (5.16).
We now show that the probability measure µt is a solution to the continuity equation

on Sd ⇢ Rd+1 with vector field ct. To this end we first notice that, by the weak continuity
in duality with Cc(Rd) of ⇢t and by the fact that all the measures µt have unit mass,
we deduce that µt is weakly continuous in time. Indeed, any limit point of µs as s ! t is
uniquely determined on Sd\{N}, and then the mass normalization gives that it is completely
determined. We want to prove that the function t 7!

R
Sd ' dµt is absolutely continuous and

satisfies
d

dt

Z

Sd
' dµt =

Z

Sd
ct ·r' dµt a.e. on (0, T ) (5.20)

for every ' 2 C
1(Rd+1). We remark that, since ⇢t is a solution to the continuity equation

in Rd with vector field bt, changing variables with the di↵eomorphism  we obtain that
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(5.20) holds for every ' 2 C
1
c (Rd+1

\ {N}), hence we are left to check that (5.20) holds
also when ' is not necessarily 0 in a neighborhood of the north pole.

Fix ' 2 C
1(Rd+1). Since µt(N) = 1 �mt = 1 � µt(Sd \ {N}), for every t 2 [0, T ] we

have that
Z

Sd
' dµt =

Z

Sd\{N}
' dµt + '(N)µt(N) = '(N) +

Z

Sd
('� '(N)) dµt. (5.21)

Now, given " > 0 let us consider a function �" 2 C
1(Rd+1) which is 0 in B"(N), 1 outside

B2"(N), and whose gradient is bounded by 2/". Since ⇢t is a solution to the continuity
equation in Rd and since �" (' � '(N)) is a smooth, compactly supported function in
C

1
c (Rd+1

\ {N}) we deduce that

d

dt

Z

Sd
�" ('� '(N)) dµt =

Z

Sd\{N}
ct ·r[�" ('� '(N))] dµt

=

Z

Sd\{N}
('� '(N)) ct ·r�" dµt +

Z

Sd\{N}
�" ct ·r' dµt.

(5.22)

To estimate the first term in the right-hand side of (5.22) we use that |'�'(N)|  "kr'k1
in B"(N) and that |r�"|  2/" to get that

����
Z

Sd\{N}
ct ·r�" ('� '(N)) dµt

����  2 kr�k1

Z

B2"(N)\B"(N)
|ct| dµt,

and notice the latter goes to 0 in L
1(0, T ) as " ! 0 since |c| is integrable with respect to

µt dt in space-time thanks to (5.20). Since the second term in the right-hand side of (5.22)
converges in L

1(0, T ) to
R
Sd\{N} ct ·r' dµt, taking the limit as " ! 0 in (5.22) we obtain

that t 7!
R
Sd(' � '(N)) dµt is absolutely continuous in [0, T ] and that for a.e. t 2 (0, T )

one has
d

dt

Z

Sd
('� '(N)) dµt =

Z

Sd
ct ·r' dµt.

Using the identity (5.21), this formula can be rewritten in the form (5.20), as desired.

Since µt is a weakly continuous solution of the continuity equation and the integrability
condition (5.20) holds, we can apply the superposition principle (see [3, Theorem 12] or
[2, Theorem 2.1]) to deduce the existence of a measure � 2 P

�
C([0, T ]; Sd)

�
which is

concentrated on integral curves of c and such that (et)#� = µt for all t 2 [0, T ].

We then consider �̂ : Sd ! R̊d to be the inverse of  extended to N as �̂(N) = 1, and
define � : C([0, T ]; Sd) ! C([0, T ]; R̊d) as �(⌘) := �̂ � ⌘. Then the measure

⌘ := �#� 2 P
�
C([0, T ]; R̊d)

�

is concentrated on locally absolutely continuous integral curves of b in the sense stated in
(4.17), and

(et)#⌘ Rd =
�
�̂#(et)#�

�
Rd =

�
�̂#µt

�
Rd = ⇢tL

d
.
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Step 3: the case of renormalized solutions. We now show how to prove the result
when div bt = 0 and ⇢t is a renormalized solution. Notice that in this case we have no
local integrability information on |bt|⇢t, so the argument above does not apply. However,
exploiting the fact that ⇢t is renormalized we can easily reduce to that case.

More precisely, we begin by observing that, by a simple approximation argument, the
renormalization property (see Definition 4.8) is still true when � is a bounded Lipschitz
function. Thanks to this observation we consider, for k � 0, the functions

�k(s) :=

8
<

:

0 if s  k,

s� k if k  s  k + 1,
1 if s � k + 1.

Since ⇢t is renormalized, �k(⇢t) is a bounded distributional solution of the continuity equa-
tion, hence by Steps 1-2 above there exists a measure ⌘k 2 M+

�
C([0, T ]; R̊d)

�
with

|⌘k|(C([0, T ]; R̊d))  sup
t2[0,T ]

k�k(⇢t)kL1(Rd),

which is concentrated on the set defined in (4.17) and satisfies

(et)#⌘k Rd = �k(⇢t)L d for every t 2 [0, T ].

Since
P

k�0 �k(s) = s, we immediately deduce that the measure ⌘ :=
P

k�0 ⌘k satisfies all
the desired properties.

Step 4: representation via the Maximal Regular Flow. Under the additional as-
sumption that b is divergence-free and satisfies (A1)-(A2) of Section 4.1, if ⇢t 2 L

1((0, T )⇥
Rd) (resp. that ⇢t is renormalized) then ⌘ (resp. every ⌘k) is a regular generalized flow and
by Theorem 4.7 it is transported by the Maximal Regular Flow.
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