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1. InAs nanowire samples and morphological characterization

Exploiting the chemical beam epitaxy technique, we have grown gold catalyzed InAs nanowire (NW) 

samples characterized by different average length (from 250-to 2000 nm), average diameter (from 25 to 

60 nm) and NW density (from ≈ 5 to ≈ 50 NWs/µm
2
). Each sample was imaged using scanning electron

microscopy (SEM), and the images were processed using a in house developed Mathematica code 

[Gomes, U.P. et al, Semicond. Sci. Technol. 30, 115012 (2015)]. that performs automatic morphological 

analysis of a statistical population of individual NWs (> 1000). Typically, standard deviations for NW 

diameter and length were ≈ 8 nm and ≈100 nm, respectively. 

Among the samples analyzed, those with average length of ≈ 1 µm and average diameter of ≈ 50 nm 

displayed high NW homogeneity and narrow distributions, and allowed to preserve these characteristics 

for different coverage of the substrate with NWs, from ≈ 5 NWs/µm
2
 to ≈ 50 NWs/µm

2
.  

As an example, in Figs. SI.1 a-c we report 45° tilted SEM micrographs of three InAs NW assemblies 

(samples A, B and C) characterized by about the same NW average length (≈ 1 µm) and NW average 

diameter (≈ 50 nm) but different substrate coverage. 
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(a) 

sample A 

≈5 NWs/μm
2

(b) 

sample B 

≈30 NWs/μm
2

(c) 

sample C 

≈50 NWs/μm
2

Figure SI.1. (a-c) 45° tilted SEM micrographs of InAs NW samples with similar NW average dimensions (≈ 1 µm length and ≈ 

50 nm diameter) but different substrate coverage, as indicated.  

We carried out the 2D Fourier analysis of several top-view SEM micrographs of each samples 

taken with different magnifications. This gave us an indication of the random character of the 

NW arrangements. This is evident in Fig.SI.2, where we report SEM images (quasi top-view) of 

sample B. Binarized images such as the one shown in panel (c) were processed using the FFT 

tool of free image processing software (ImageJ). The results - see the plot shown in panel (d) - 

confirm the absence of long range order in the NW arrangement and likely reflect the average 

shape (hexagonal) of the NW cross-section. 

200 nm1 μm 

200 nm1 μm 

200 nm1 μm 
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Figure SI.2. (a,b) quasi top-view SEM micrographs of InAs NW sample B; (c) the same SEM micrograph as in (a) after being 

binarized. (d) fast Fourier transform (FFT) of the image reported in (c). The absence of dot patterns accounts for the disordered 

NW arrangement. 

 

 

 

2. Optical response in low-substrate coverage InAs NWs sample 

We have observed non-negligible features in the reflectance spectra only for NW samples characterized 

by substrate coverage well exceeding 10 NWs/μm
2
. For samples with ≤ 10 NWs/μm

2
, the reflectance 

spectra were practically indistinguishable from the spectra measured for the bulk substrate or for the 

substrate covered with catalyst nanoparticles (with NPs/μm
2
 ≈ NWs/μm

2 
). As an example in Fig. SI.3 we 

compare the reflectance spectra (both transverse-electric, TE, and transverse-magnetic, TM) measured for 

the sample A (see Fig. SI.1a), characterized by a substrate coverage of ≈5 NWs/μm
2
, and the spectra 

measured for the substrate covered with catalyst NPs. 
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Figure SI.3. Specular reflectance spectra measured for TE and TM configuration as function of the incidence angle varying 

between 5° and 70°, for a low-substrate coverage g InAs NW sample and for a substrate simply covered with NPs: (a) substrate 

with NPs, TM configuration; (b) same configuration for InAs NW sample; (c) substrate with NPs, TE configuration; (d) same 

configuration for InAs NW sample. 

 

3. Angular dispersion of the intensity and energy of the TM reflectance minima 

Reflectance spectra were measured in the InAs NW assembly for TM light polarization, increasing the 

incidence angle from 5° to 70°. The experimental curves display a minimum at about 1 eV (Min-1) and a 

minimum at about 2 eV (Min-2). We probed a marked change of the intensity and energy position of these 

minima, as reported in Fig. SI.4 In particular, blue-shift of ~0.1 eV and ~0.16 eV for Min-1 and Min-2 

were detected, respectively. The peak-to-valley ratio 

evolves with θ as well, increasing for both minima.  

.  
 

Figure SI. 4. Angular dispersion of the minima observed in TM 

polarization. (a) Intensity of the reflectance at Min-1 and MIN-2. (b) 

Energy position of Min-1 and Min-2. 
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In addition, the longitudinal near-field distribution at different angle of incidence (0°, 55° and 70°) was 

simulated resorting to the FDTD code described in the manuscript. The resulting local electric field shape 

changes are reported in Fig. SI.5. The outcomes of the calculation is consistent with the experimental 

trends reported in Fig. 2 of the manuscript. In fact, the increase of the angle of incidence involves a 

strengthening of the local field intensity associated to the formation of a dip in the reflection. In addition, 

it is evident the confinement of the field mainly at the upper surface of the NWs, that can represent a 

useful feature for sensing application. 

 

 

Figure SI.5. Longitudinal electric field intensity distribution around a NW with respect to the angle of incidence (θ) in TM 

polarization for the Min-1. (a) θ=0°. (b) θ=55°. (c) θ=70°. 

 

It’s worth noting that, placing an appropriate gold coating at the top of the nanowires i.e. in the region 

where the field is maximum, the nanostructures could become even more suitable for sensing applications. 

In Fig. SI.6 we report the results for a 30 nm thick Au-coating. The latter is found to yield a significant 

enhancement of the electric field in the proximity of the nanowire-Au contact area, that can be likely 

ascribed to localized plasmon effects. 

 

 

Figure SI.6. Electric field intensity distribution with respect to the angle of incidence (θ) in TM polarization for a gold 

coated structure. (a) θ=0°. (b) θ=55°. (c) θ=70°. 
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4. Effective–medium model for the InAs NWs assembly: optical propagation 

We assume monochromatic waves with angular frequency   and wavevector ˆ ˆ
x zk x k z k  impinging 

on the effective multi-layer described in the main text. Maxwell’s equations provide: 
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Thus, the problem can be split into two sub-problems for TE and TM-polarized waves. For the sake of 

compactness, we rename the effective dielectric constants of the layer of gold nanoparticles (with radius 

a ) and of the underlying nanowire assembly of length l  as 
1, 1z 

 and 
2, 2z 

, respectively. The 

dielectric constant of the bulk substrate is indicated as 
S . Reflectance properties of the multi-layer 

medium are studied below as a function of the incidence angle  atani x zk k   of the impinging optical 

beam. 

 

TE polarization. We first assume a TE polarized field  0x zE E  :  
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Imposing boundary conditions for the continuity of the magnetic field and the tangential electric field at 

all the interfaces one gets M e b  where: 
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Thus, the reflection coefficient can be calculated by inverting the system above:  
2

1TER  e . 

 

 

TM polarization. We assume a TM polarized field  0yE  : 
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Imposing boundary conditions for the continuity of the magnetic field, the tangential electric field, and the 

orthogonal displacement vector at all the interfaces one gets M e b  where: 
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Thus, also in this case, the reflection coefficient can be calculated by inverting the system above: 
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