Introduction

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへぐ

Spectral Multipliers on Stratified Groups

Mattia Calzi

Scuola Normale Superiore

7th May 2018

・ロト ・ 個 ト ・ ヨト ・ ヨト

æ

Introduction ●00 Rockland Systems

2-Step Groups

Invariant Differential Operators & Fourier Transform

Study of translation-invariant differential operators on \mathbb{R}^n

 \sim

Fourier transform

イロト 不得下 イヨト イヨト ニヨー

G Lie group

Study of left-invariant differential operators on *G*

Introduction ●00 Rockland Systems

2-Step Groups

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Invariant Differential Operators & Fourier Transform

Study of translation-invariant differential operators on \mathbb{R}^n	~~~>	Fourier transform
G Lie group		
Study of left-invariant differential operators on <i>G</i>	$\sim \rightarrow$	Fourier transform

Introduction ●00 Rockland Systems

2-Step Groups

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Invariant Differential Operators & Fourier Transform

Study of translation-invariant differential operators on \mathbb{R}^n	~~~>	Fourier transform
G Lie group		
Study of left-invariant differential operators on <i>G</i>	~~~	Fourier transform ?

The Fourier transform is operator-valued, hence less manageable.

2-Step Groups

An Alternative Way

 $\mathcal{L}_1, \ldots, \mathcal{L}_n$: left-invariant differential operators such that $(\mathcal{L}_j, C_c^{\infty})$ are essentially self-adjoint with commuting closures.

E: associated spectral measure,

$$\mathcal{L}_j = \int_{\mathbb{R}^n} \lambda_j \, \mathrm{d} E(\lambda).$$

For every bounded measurable function $m \colon \mathbb{R}^n \to \mathbb{C}$ there is a unique distribution $\mathcal{K}(m)$ such that

$$\int_{\mathbb{R}^n} m \, \mathrm{d} E \cdot \varphi = \varphi \ast \mathcal{K}(m) \qquad \forall \varphi \in C_c^\infty.$$

Questions

Does K induce a Plancherel isomorphism?
(RL) K(m) ∈ L¹(G) ⇒ m ∈ C₀(ℝⁿ)?
K: S(ℝⁿ) → ?
(S) If K: S(ℝⁿ) → 'S(G),' does the converse hold

2-Step Groups

An Alternative Way

 $\mathcal{L}_1, \ldots, \mathcal{L}_n$: left-invariant differential operators such that $(\mathcal{L}_j, C_c^{\infty})$ are essentially self-adjoint with commuting closures.

E: associated spectral measure,

$$\mathcal{L}_j = \int_{\mathbb{R}^n} \lambda_j \, \mathrm{d} E(\lambda).$$

For every bounded measurable function $m \colon \mathbb{R}^n \to \mathbb{C}$ there is a unique distribution $\mathcal{K}(m)$ such that

$$\int_{\mathbb{R}^n} m \, \mathrm{d} E \cdot \varphi = \varphi \ast \mathcal{K}(m) \qquad \forall \varphi \in C_c^{\infty}.$$

Questions

Does K induce a Plancherel isomorphism?
RL) K(m) ∈ L¹(G) ⇒ m ∈ C₀(ℝⁿ)?
K: S(ℝⁿ) → ?
(S) If K: S(ℝⁿ) → 'S(G),' does the converse hold

2-Step Groups

An Alternative Way

 $\mathcal{L}_1, \ldots, \mathcal{L}_n$: left-invariant differential operators such that $(\mathcal{L}_j, C_c^{\infty})$ are essentially self-adjoint with commuting closures.

E: associated spectral measure,

$$\mathcal{L}_j = \int_{\mathbb{R}^n} \lambda_j \, \mathrm{d} E(\lambda).$$

For every bounded measurable function $m \colon \mathbb{R}^n \to \mathbb{C}$ there is a unique distribution $\mathcal{K}(m)$ such that

$$\int_{\mathbb{R}^n} m \, \mathrm{d} E \cdot \varphi = \varphi \ast \mathcal{K}(m) \qquad \forall \varphi \in C_c^{\infty}.$$

Questions

• Does K induce a Plancherel isomorphism?

(RL)
$$\mathcal{K}(m) \in L^1(G) \implies m \in C_0(\mathbb{R}^n)$$
?

•
$$\mathcal{K}: \mathcal{S}(\mathbb{R}^n) \to ?$$

(S) If $\mathcal{K} \colon \mathcal{S}(\mathbb{R}^n) \to `\mathcal{S}(G)$,' does the converse hold?

Stratified Groups

Definition

 \boldsymbol{G} is a stratified group iff:

• G is nilpotent and simply connected, so that exp: $\mathfrak{g} \stackrel{\cong}{\longrightarrow} G$;

•
$$\mathfrak{g} = \bigoplus_{k \ge 1} \mathfrak{g}_k$$
, with $\mathfrak{g}_{k+1} = [\mathfrak{g}_1, \mathfrak{g}_k] \quad \forall k \ge 1$.

Natural dilations: $\bigoplus_{k \ge 1} \mathfrak{g}_k \ni (x_k) \mapsto (r^k x_k) \in \bigoplus_{k \ge 1} \mathfrak{g}_k, r > 0.$

A differential operator ${\mathcal L}$ is homogeneous of degree $\delta\in{\mathbb C}$ if

$$\mathcal{L}[\varphi(\mathbf{r}\,\cdot\,)] = \mathbf{r}^{\delta}(\mathcal{L}\varphi)(\mathbf{r}\,\cdot\,)$$

for every r>0 and $arphi\in C^\infty.$ $\mathcal{S}({\mathfrak{G}})$ is induced by $\mathcal{S}(\mathfrak{g})$ through exp.

Stratified Groups

Definition

 \boldsymbol{G} is a stratified group iff:

• G is nilpotent and simply connected, so that exp: $\mathfrak{g} \stackrel{\cong}{\longrightarrow} G$;

•
$$\mathfrak{g} = \bigoplus_{k \ge 1} \mathfrak{g}_k$$
, with $\mathfrak{g}_{k+1} = [\mathfrak{g}_1, \mathfrak{g}_k] \quad \forall k \ge 1$.

Natural dilations: $\bigoplus_{k \ge 1} \mathfrak{g}_k \ni (x_k) \mapsto (r^k x_k) \in \bigoplus_{k \ge 1} \mathfrak{g}_k, r > 0.$

A differential operator $\mathcal L$ is homogeneous of degree $\delta \in \mathbb C$ if

$$\mathcal{L}[\varphi(\mathbf{r}\,\cdot\,)] = \mathbf{r}^{\delta}(\mathcal{L}\varphi)(\mathbf{r}\,\cdot\,)$$

for every r > 0 and $\varphi \in C^{\infty}$. S(G) is induced by $S(\mathfrak{g})$ through exp.

Hypoellipticity and Schwartz Functions

Theorem

Let $\mathcal{L}_1, \ldots, \mathcal{L}_n$ be formally self-adjoint, commuting, homogeneous, left-invariant differential operators without constant terms. Then, the following assertions are equivalent:

- $\mathcal{L}_1, \ldots, \mathcal{L}_n$ are jointly hypoelliptic;
- the algebra generated by L₁,..., L_n contains a Rockland (i.e., homogeneous and hypoelliptic) operator;
- dπ(L₁),..., dπ(L_n) are jointly injective on C[∞](π) for every non-trivial irreducible unitary representation π of G;

Helffer and Nourrigat (1979), Hulanicki (1984), Veneruso (2003), Martini (2010), C.

Introduction	Rockland Systems	2-Step Groups
	0•	

Plancherel Measure

Proposition

 $\exists ! \beta$ positive Radon measure on \mathbb{R}^n such that

 $\mathcal{K} \colon L^2(\beta) \to L^2(G)$ isometrically.

(Christ (1991), Martini (2010).)

Corollary

$$\mathcal{K} \colon L^{1}(\beta) \to C_{0}(G).$$
(Martini (2010).)

Proposition

 $\mathcal{K}(L^{\infty}(\beta)) \cap \mathcal{S}(G)$ is closed in $\mathcal{S}(G)$. Analogously for $C_{c}^{\infty}(G)$, $L^{1}(G)$, etc.

Plancherel Measure

Proposition

 $\exists ! \beta$ positive Radon measure on \mathbb{R}^n such that

 $\mathcal{K} \colon L^2(\beta) \to L^2(G)$ isometrically.

(Christ (1991), Martini (2010).)

Corollary

$$\begin{aligned} \mathcal{K} \colon L^{1}(\beta) \to C_{0}(G). \\ (Martini \ (2010).) \end{aligned}$$

Proposition

 $\mathcal{K}(L^{\infty}(\beta)) \cap \mathcal{S}(G)$ is closed in $\mathcal{S}(G)$. Analogously for $C_{c}^{\infty}(G)$, $L^{1}(G)$, etc.

Introduction 000	Rockland Systems 00	2-Step Groups ●0000
2-Step Groups		

Setting: $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$, $\mathfrak{g}_2 = [\mathfrak{g}_1, \mathfrak{g}_1] = [\mathfrak{g}, \mathfrak{g}]$.

- $\forall \omega \in \mathfrak{g}_2^*$, define $B_\omega \colon \mathfrak{g}_1 \times \mathfrak{g}_1 \ni (X, Y) \mapsto \langle \omega, [X, Y] \rangle$;
- *d*: minimum dimension of the radical of B_{ω} ;
- $W := \{ \omega : \text{ the dimension of the radical of } B_{\omega} \text{ is } > d \};$

For example,

- $d = 0 \iff G$ is a Moore-Wolf group;
- d = 0 and $W = \{0\} \iff G$ is a Métivier group.

Theorem

 \mathcal{L} : homogeneous sub-Laplacian; T_1, \ldots, T_n : basis of \mathfrak{g}_2 ; $n' \leq n$. Then $(\mathcal{L}, iT_1, \ldots, iT_{n'})$ satisfies:

Introduction 000	Rockland Systems	2-Step Groups ●0000
2-Step Groups		

Setting: $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$, $\mathfrak{g}_2 = [\mathfrak{g}_1, \mathfrak{g}_1] = [\mathfrak{g}, \mathfrak{g}]$.

- $\forall \omega \in \mathfrak{g}_2^*$, define $B_\omega \colon \mathfrak{g}_1 \times \mathfrak{g}_1 \ni (X, Y) \mapsto \langle \omega, [X, Y] \rangle$;
- *d*: minimum dimension of the radical of B_{ω} ;
- $W := \{ \omega : \text{ the dimension of the radical of } B_{\omega} \text{ is } > d \};$

For example,

- $d = 0 \iff G$ is a Moore-Wolf group;
- d = 0 and $W = \{0\} \iff G$ is a Métivier group.

Theorem

 \mathcal{L} : homogeneous sub-Laplacian; T_1, \ldots, T_n : basis of \mathfrak{g}_2 ; $n' \leq n$. Then $(\mathcal{L}, iT_1, \ldots, iT_{n'})$ satisfies:

	d = 0	<i>d</i> > 0
$W = \{ 0 \}$		(RL) and (S)
n' < n		(RL)
$n' < n \text{ and } W = \{ 0 \}$	(RL) and (S) a.e.	(RL) and (S)

2-Step Groups 0●000

・ロト ・聞ト ・ヨト ・ヨト

Free Groups & General Sub-Laplacians

Theorem

If G is a free 2-step nilpotent Lie group on an odd number of generators, \mathcal{L} is a homogeneous sub-Laplacian on G and T_1, \ldots, T_n form a basis of \mathfrak{g}_2 , then $(\mathcal{L}, iT_1, \ldots, iT_n)$ satisfies property (RL).

Theorem

If \mathcal{L}' is a (not necessarily homogeneous) sub-Laplacian on G, then it satisfies properties (RL) and (S).

2-Step Groups 0●000

Free Groups & General Sub-Laplacians

Theorem

If G is a free 2-step nilpotent Lie group on an odd number of generators, \mathcal{L} is a homogeneous sub-Laplacian on G and T_1, \ldots, T_n form a basis of \mathfrak{g}_2 , then $(\mathcal{L}, iT_1, \ldots, iT_n)$ satisfies property (RL).

Theorem

If \mathcal{L}' is a (not necessarily homogeneous) sub-Laplacian on G, then it satisfies properties (RL) and (S).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへで

Groups of Heisenberg Type – 1

Definition

G is a group of Heisenberg type iff:

- \mathfrak{g} is endowed with a scalar product such that $\mathfrak{g}_1 \perp \mathfrak{g}_2$;
- the map J_Z such that $\langle [X, Y] | Z \rangle = \langle X | J_Z(Y) \rangle$ $(X, Y \in \mathfrak{g}_1)$ satisfies $|J_Z| = |Z| I$ for every $Z \in \mathfrak{g}_2$.

Setting:

- assume that g₁ is the orthogonal sum of k J-invariant subspaces v₁,..., v_k;
- \$\mathcal{L}_1, \ldots, \mathcal{L}_k\$ are the sum of the squares of an orthonormal basis of \$\varphi_1, \ldots, \varphi_k\$, respectively;
- T_1, \ldots, T_n form a basis of \mathfrak{g}_2 ;
- for every linear mapping μ: ℝ^k → ℝ^h which is proper on ℝ^k₊, define L_μ := (μ(L₁,..., L_k), iT₁,..., iT_n).

Groups of Heisenberg Type – 1

Definition

G is a group of Heisenberg type iff:

- \mathfrak{g} is endowed with a scalar product such that $\mathfrak{g}_1 \perp \mathfrak{g}_2$;
- the map J_Z such that $\langle [X, Y] | Z \rangle = \langle X | J_Z(Y) \rangle$ $(X, Y \in \mathfrak{g}_1)$ satisfies $|J_Z| = |Z| I$ for every $Z \in \mathfrak{g}_2$.

Setting:

- assume that g₁ is the orthogonal sum of k J-invariant subspaces v₁,..., v_k;
- \$\mathcal{L}_1, \ldots, \mathcal{L}_k\$ are the sum of the squares of an orthonormal basis of \$\varphi_1, \ldots, \varphi_k\$, respectively;
- T_1, \ldots, T_n form a basis of \mathfrak{g}_2 ;
- for every linear mapping $\mu \colon \mathbb{R}^k \to \mathbb{R}^h$ which is proper on \mathbb{R}^k_+ , define $L_\mu := (\mu(\mathcal{L}_1, \dots, \mathcal{L}_k), iT_1, \dots, iT_n).$

Groups of Heisenberg Type – 2

Theorem

The following assertions are equivalent:

- L_{μ} satisfies property (RL);
- L_{μ} satisfies property (S);
- if $m(L_{\mu})$ is a differential operator, then m is a polynomial;

• dim_Q
$$\mu(\mathbb{Q}^k) = \dim_{\mathbb{R}} \mu(\mathbb{R}^k).$$

In addition, there is a linear mapping $\mu' : \mathbb{R}^k \to \mathbb{R}^p$ such that $L_{\mu'}$ satisfies the preceding conditions and

$$L_{\mu}=m(L_{\mu'})$$
 and $L_{\mu'}=m'(L_{\mu})$

for some measurable $m \colon \mathbb{R}^{p+n} \to \mathbb{R}^{h+n}$ and $m' \colon \mathbb{R}^{h+n} \to \mathbb{R}^{p+n}$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Products of Heisenberg Groups

Setting:

- $G = G_1 \times \cdots \times G_n$, with G_1, \ldots, G_n Heisenberg groups $(n \ge 2)$;
- \$\mathcal{L}_1, \ldots, \mathcal{L}_n\$ are homogeneous sub-Laplacians on \$G_1, \ldots, G_n\$, respectively;

•
$$\mathcal{L} := \mathcal{L}_1 + \cdots + \mathcal{L}_n;$$

• T_1, \ldots, T_n form a basis of the centre of \mathfrak{g} .

Theorem

 $(\mathcal{L}, iT_1, \dots, iT_{n'})$ satisfies properties (RL) and (S) iff n' < n.

Theorem

If G' is a stratified group and \mathcal{L}' a positive Rockland operator on G' which satisfies property (S), then the family $(\mathcal{L} + \mathcal{L}', iT_1, \ldots, iT_{n'})$, on $G \times G'$, satisfies properties (RL) and (S) for every $n' \leq n$.

Products of Heisenberg Groups

Setting:

- $G = G_1 \times \cdots \times G_n$, with G_1, \ldots, G_n Heisenberg groups $(n \ge 2)$;
- \$\mathcal{L}_1, \ldots, \mathcal{L}_n\$ are homogeneous sub-Laplacians on \$G_1, \ldots, G_n\$, respectively;

•
$$\mathcal{L} := \mathcal{L}_1 + \cdots + \mathcal{L}_n;$$

• T_1, \ldots, T_n form a basis of the centre of \mathfrak{g} .

Theorem

 $(\mathcal{L}, iT_1, \dots, iT_{n'})$ satisfies properties (RL) and (S) iff n' < n.

Theorem

If G' is a stratified group and \mathcal{L}' a positive Rockland operator on G' which satisfies property (S), then the family $(\mathcal{L} + \mathcal{L}', iT_1, \ldots, iT_{n'})$, on $G \times G'$, satisfies properties (RL) and (S) for every $n' \leq n$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 臣 のへぐ

Thank you for your attention!