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We derive consistent equations for gravitational wave oscillations in bigravity. In this framework a second
dynamical tensor field is introduced in addition to general relativity and coupled such that one massless and
one massive linear combination arise. Only one of the two tensors is the physical metric coupling to matter,
and thus the basis in which gravitational waves propagate is different from the basis where the wave is
produced and detected. Therefore, one should expect—in analogy to neutrino oscillations—to observe an
oscillatory behavior. We show for the first time how this behavior arises explicitly, discuss phenomeno-
logical implications, and present new limits on the graviton parameter space in bigravity.
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Introduction.—The question of whether a theory of a
massless spin 2 particle can have a consistent massive
extension has been a long-standing open problem. The
quest that led to formulating this theory took place in the
second half of the last century [1–6]. Only recently has it
been proven that a consistent framework of massive gravity
exists and relies on the existence of multiple spin 2 fields
with nonlinear interactions [7–16].
In this Letter, we study a setup with two dynamical spin 2

fields corresponding to two metrics [17,18] known
as bigravity. The coupling of the metrics to matter is a
delicate problem and has been discussed in Ref. [19] as an
arbitrary choice of coupling reintroduces inconsistencies.
Demanding the absence of a ghost in the theory translates
into an asymmetric coupling of the metrics to matter, and
this asymmetry is at the core of the physical phenomenon
we will discuss in this Letter. The simplest choice of matter
coupling that permits a ghost-free theory is minimal
coupling of one metric tensor to matter, which we will call
the physical metric, and no coupling of the second metric
tensor to matter. This second metric tensor is a reference or
sterile metric that only interacts with the physical metric via
the nonlinear terms in the Lagrangian. This situation is
analogous to the introduction of a sterile neutrino that
carries no electroweak charges.
In this theory the gravitational interactions are mediated

by two gravitons, one massless and one massive. Since the
two are superpositions of the physical and the sterile metric,
their effective coupling to matter is different and depends
on the mixing angle between the metrics. This leads to an
oscillation phenomenon, first mentioned in Ref. [20] in a
theory of massive gravity and Ref. [21] in bigravity. In this
work we will study the propagation of gravitational waves
(GWs) in this bimetric theory, which are produced in the
“flavor basis” at the source, namely, only as perturbations
of the physical metric. Describing the wave propagation we

find a close analogy to neutrino oscillation described in the
wave-packet formalism.
This phenomenon is presented for the first time in a

consistent approach.Attempts have been previouslymade in
Refs. [22,23], however only in a specific setting, and leading
to an unphysical result; in particular, during propagation the
mode coupling to matter exhibits an enhancement of the
strain in violation of (local) energy conservation. We show
that in the parameter space we consider physical no such
behavior is found, as one should expect in a healthy theory.
The novelty of our work in the bigravity setup is that we
consider gravitonmasses corresponding to length scales that
can be probed by astrophysical tests, while the majority of
prior works have focused on much smaller graviton masses,
i.e., of the order of the Hubble scale today. This approach
makes it possible to confront direct detection data of GW
signals as seen by the LIGO experiment [24] with the
oscillation hypothesis. The corresponding parameter space
ofmg¼10−22–10−20eV and comparably large mixing angle
θ is studied, in close resemblance to the effects of pure
massive gravity. Note that previous studies have found
instabilities that plague the parameter regime in which the
graviton mass is of the Hubble scale today, and specific
parameter choices are needed to obtain viable solutions
[25,26]. However, for the larger graviton masses probed
here, this problem is considered to be less restricitve [27].
Gravitational wave oscillations.—In this model, the

oscillation of metric perturbations is driven by the
classical dynamics of the Friedmann equations [22].
They are extracted from the Einstein field equations of
bigavity [28]

Rμν −
1

2
gμνRþ BμνðgÞ ¼

1

M2
g
Tμν; ð1aÞ

~Rμν −
1

2
~gμν ~Rþ ~Bμνð~gÞ ¼ 0 ð1bÞ
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with BμνðgÞ ¼ m2 cos2ðθÞP3
n¼0 βnV

ðnÞ
μν and ~Bμνð~gÞ ¼

m2 sin2ðθÞP4
n¼1

ffiffiffiffiffiffiffiffiffi
g−1 ~g

p
βn ~V

ðnÞ
μν , cos2ðθÞ ¼ M2

eff=M
2
g, and

sin2ðθÞ ¼ M2
eff=M

2
~g. The V

ðnÞ
μν , ~V

ðnÞ
μν encode the variation of

the interaction terms in the action with respect to g, ~g.
Furthermore, by applying the covariant derivatives to
Eqs. (1), we obtain the conservation laws

∇μBμ
μν ¼ 0; ~∇μ

~Bμ
μν ¼ 0; ∇μTμ

μν ¼ 0; ð2Þ
the first two of which are known as Bianchi constraints.
Background cosmology: We now calculate the cosmo-

logical implications on a static background. For both
g and ~g, we assume an Friedmann-Robertson-Walker
background metric, ds2 ¼ aðηÞ2ð−dη2 þ dx⃗ 2Þ and
d~s2 ¼ bðηÞ2½−~cðηÞ2dη2 þ dx⃗ 2�. The lapse function ~cðηÞ
determines the light cone for the second metric and plays a
role for the propagation speed of the massive gravitational
wave excitations. This is the most general ansatz compat-
ible with a homogeneous and isotropic Universe [29].
Plugging this ansatz into Eqs. (1) and omitting explicit

dependencies yields the cosmic evolution equations

3

a2
ðH2 þ kÞ ¼ ΛðyÞ þ ρðηÞ

M2
g
; ð3aÞ

3

b2
ðJ2=~c2 þ kÞ ¼ ~ρðyÞ

M2
~g

; ð3bÞ

where ΛðyÞ≡m2sin2θ½β0 þ 3β1yþ 3β2y2 þ β3y3� and
~ρðyÞ≡M2

~gm
2cos2θ½β1y−3þ3β2y−2þ3β3y−1þβ4�. Here, a

prime denotes a derivative with respect to η, y ¼ b=a, and
H ¼ a0=a as well as J ¼ b0=b are the Hubble parameters
for both metrics in conformal time.
Moreover, Eqs. (2) imply that ρ0ðηÞ ¼ −3Hð1þ ωÞρðηÞ

and ð~cH − JÞ½β1yþ 2β2y2 þ β3y3�≡ ð~cH − JÞΓðyÞ ¼ 0,
for a perfect fluid with equation of state P ¼ ωρ. It was
shown that only the vanishing of the round brackets yields a
physically meaningful solution [28]. Thus, we find JðηÞ ¼
~cðηÞHðηÞ.
Using this result, we can derive an algebraic equation for

y, by subtracting Eq. (3a) from Eq. (3b),

β1cos2θy−1 þ ð3β2cos2θ − β0sin2θÞ
þ ð3β3cos2θ − 3β1sin2θÞy

þ ðβ4cos2θ − 3β2sin2θÞy2 − β3sin2θy3 ¼
ρðηÞ
M2

gm2
: ð4Þ

By assumption, ρ is the density of a perfect fluid with
ω ≥ −1, which behaves as [28]

ρðηÞ ¼ ρ0

(
1; if ω ¼ −1;�

aðηÞ
aðη0Þ

�
−3ð1þωÞ

; if ω > −1;
ð5Þ

such that any fluid of type ω > −1 is diluted, i.e., ρ → 0 for
η → ∞. It is in fact sufficient to consider such densities,
since any cosmological constant (CC) type of energy

density may be included in the interaction terms of the
bigravity theory.
In this limit, we denote the solution of Eq. (4) as y�. An

exact expression is in principle feasible, however not very
enlightening. Therefore, and since we are interested in late
times, we leave y� undetermined and linearize Eq. (4) as
y ¼ y� þ δy to obtain

δyðηÞ¼−
ρðηÞ

3m2M2
g

y3�
Γ�ðcos2θþy2�sin2θÞ−2 ~ρ�y4�

3m2M2
~g

ð6Þ

with the short-hand notation Γ� ¼ Γðy�Þ and ~ρ� ¼ ~ρðy�Þ.
This manipulation allows us to rewrite Eq. (3a) as

aðηÞ−2½HðηÞ2þk�¼1
3
Λ�þ½ρðηÞ=3M2

Pl� with the physical CC
Λ� ¼ Λðy�Þ and Planck mass M2

Pl¼½M2
gcos2θþy2�sin2θ −

ð2~ρ�y4�=3m2M2
~gΓ�Þ�½cos2θ−ð2~ρ�y4�=3m2M2

~gΓ�Þ−1�, which

approachesM2
gð1þ y2� tan2 θÞ, as ~ρ� → 0, in agreement with

Refs. [22,23].
Finally, we may use that y0 ¼ ðb=aÞ0 ¼ yðJ −HÞ and

J ¼ ~cH to find that

~cðηÞ ¼ 1þ y0

yH
≃ 1þ δy0

y�H

≃ 1 − ð1þ ωÞ ρðηÞ
m2Γ�M2

Pl

y2�
ð2~ρ�y4�=3m2M2

~gΓ�Þ − cos2θ
:

ð7Þ
Note that ~c can be both larger or less than 1, depending on
the choice of the β parameters. However, ~c > 1 would
introduce GWs propagating with a speed larger than the
speed of light. In certain frameworks this might be
acceptable; e.g., the present case is similar to the framework
studied in Ref. [30], where all matter propagates on the g
background and no causal paradoxes arise.
From Eq. (7) we obtain j~c − 1j ≈ 10−20 for typical values

in the parameter region of interest. This motivates the limit
where ~c ¼ 1 and y takes the constant value y�, which we
apply in the following.
Gravitational wave oscillations: We now address the

propagation of tensor perturbations around the background
metric. (The scalar mode couples to the trace of a conserved
source and will thus in principle be excited, too. However,
it is suppressed due to the Vainshtein effect [31].) Defining
the transverse traceless components, the equations of
motion are [32]

h00 þ 2Hh0 þ k2hþ sin2θm2Γ�a2ðh − ~hÞ ¼ 0; ð8aÞ

~h00 þ 2H ~h0 þ k2 ~hþ cos2θ
m2Γ�
y2�

a2ð ~h − hÞ ¼ 0; ð8bÞ

where k ¼ jk⃗j denotes the three-momentum and the
polarization indices þ=× are implicit. For the linear
combinations h1 ≡ cos2θhþ sin2θy2� ~h and h2 ≡ h − y2� ~h,
one of the equations decouples and we obtain
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h001 þ 2Hh01 þ k2h1 ¼ 0; ð9aÞ
h002 þ 2Hh02 þ k2h2 þ a2m2

gh2 ¼ a2m2
gκðθ; y�Þh1; ð9bÞ

where we have defined the physical graviton mass m2
g≡

m2Γ�½sin2θ þ ðcos2θ=y2�Þ�, and the source term is propor-
tional to κðθ;y�Þ≡ð1−y2�Þ=ðcos2θþy2�sin2θÞ. We observe
that Eqs. (9) comprise one massless and one massive
propagating tensor perturbation, where the latter is sourced
by the former. Ignoring the Hubble rate, which is typically
much smaller than thewave numbers k under consideration,
and setting the expansion rate to a constant, a ¼ 1, we can
solve these equations and rotate back to the physical basis

hðt;kÞ¼
cos2θcosðktÞþy2�sin2θcos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

g

q
t
�

cos2θþy2�sin2θ
; ð10aÞ

~hðt;kÞ¼
cos2θcosðktÞ−cos2θcos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

g

q
t
�

cos2θþy2�sin2θ
; ð10bÞ

where η has been replaced by cosmic time t as per a ¼ 1.
Since the graviton mass is restricted to be much

smaller than the typical wave number k, we may expandffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

g

q
≃ k½1þm2

g=ð2k2Þ�≡ ω0 þ δω. We see that the

numerator in Eq. (10a) is minimized when the second
cosine acquires a total phase shift of δωT�π, and thus
T�ðω0Þ ¼ ð2πω0=m2

gÞ, which coincides with the expression
for the oscillation length for neutrinos, confirming our
naive expectation.
In order to make a quantitative statement about the modu-

lation of the strain observed in GW observations, we average
this expression over a time scale T, which is bigger than the
period of one massless mode’s inverse frequency, T0 ¼
ð2π=ω0Þ, but much smaller than the period of the modulation
induced by the mass term, T� ¼ ðπ=δωÞ. Squaring the strain,
we find its envelope function where the normalization is
determined by the condition hh2ðt; kÞijT¼0 ¼ 1; i.e., initially
a pure perturbation of the physical metric has been excited.
Finally, we aim to express the strain in terms of the

cosmic redshift z, which is defined as 1þ z ¼ aðt0Þ=aðtÞ.
For a universe dominated by a CC, we find that H ¼ const
and aðtÞ ¼ eHt. We therefore express the time as
t ¼ −ð1=HÞ logð1þ zÞ. [Note that we have reinstated
aðtÞ ≠ const in conflict with the condition a ¼ 1 used in
the analytic derivation of Eq. (11). Thus, Eq. (11) is only a
valid approximation for small z.] In summary, the squared
amplitude of the GW signal in bigravity is modulated as

hh2ðz;kÞiT0≪T≪T�

¼ cos4θ
ðcos2θþy2�sin2θÞ2

×

�
1þy4�tan4θþ2y2�tan2θcos

�
δω

H
logð1þzÞ

��
: ð11Þ

At this point, we would like to point out that the
phenomenon has previously been studied in Refs. [22,23],

where the authors find a modulation that is proportional to
~c − 1. As we will outline in the following, this is not the
leading effect in our analysis,where oscillations occur also in
flat space. Furthermore, we find that the phenomenon leads
to a reduction rather than an amplification of the amplitude
compared to general relativity (GR), as expected from
neutrino oscillations. Both are physically sensible outcomes.
Phenomenology: Given that we have reached a quanti-

tative understanding of GW oscillations in terms of the
modulation (11), we now ask whether this effect is visible in
realistic scenarios. To this end, we have made use of the
available data for the events GW150914 [33] and
GW151226 [34] obtained by means of numerical simula-
tions [35–46]. This yields the strain as it would be observed
in a detector onEarth.We thenmodulate the strain according
to Eq. (11). Two such examples for GW150914 are shown in
Fig. 1, where the parameters are chosen such that one
obtains a maximally visible effect, i.e., θ ¼ π=4 and y� ¼ 1.
One observes that a gravitonmass ofmg¼10−22 eV strongly
changes the shape of the signal, where the modulation is at
first strongly suppressing the amplitude and then gradually
approaching the GR amplitude towards the typical merger
peak, commonly referred to as chirp. On the other hand,
a larger graviton mass mg ¼ 10−19 eV leads to a global
suppression of the amplitude by a constant factor. This effect
is similar to the decoherence of oscillating neutrino wave
packets and we will now briefly discuss this effect.
The massive and the massless modes propagate in wave

packets with different group velocities vg ¼ ð∂ω=∂kÞ. As
for very light, relativistic neutrinos, the difference of group
velocities is approximately given by Δvg ≃ ðm2

g=2E2Þ. The
wave packets will decohere; i.e., interference will be absent
and the frequency dependence of the suppression is lost to a
constant reduction, once the time of propagation exceeds
Tcoh ∼ Lcoh=c ∼ σx=Δvg, where σx is the spatial or tempo-
ral width of the wave packet [47]. Since its determination
would involve an exact solution of the full set of Einstein
equations for the system, it will be practically impossible to
obtain σx. However, from the shape of the signal, we
estimate σx ∼ 0.1 s for GW150914. Therefore, we find that
for E=ℏ ∼ 100 Hz

Lcoh ∼ 0.1 s
2E2

m2
g
¼

�
10−22 eV

mg

�
2

Gpc: ð12Þ

This rather heuristic argument is nevertheless in good
agreement with Fig. 2, where for mg¼10−22 eV no aver-
aging is observable at distances of the order 100Mpc, while
formg ¼ 5 × 10−22 eV, or evenmg ¼ 10−19 eV, the ampli-
tude levels out for distances below the Gpc scale. Note that
the longer time scale of GW151226 has little effect on the
mass scale relevant for decoherence by virtue of Eq. (12).
The resulting Oð1Þ correction is not relevant for the
estimate presented here.
Once the distance increases beyond the scale set by Lcoh,

the strain suppression relative to the prediction ofGR caused
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by oscillations levels out. For example, for y� ¼ 1, θ ¼ π=4
we find hhðt; kÞiT≫Tcoh

¼ ð2=πÞ, which predicts a suppres-
sion factor constant in frequency and distance of about 64%
at large redshifts, which is clearly confirmed in Fig. 2.
Note that higher graviton masses lead to shorter length

scales before the amplitude averages out, in complete analogy
to neutrino oscillations. In practice, such a frequency-
independent suppression is indistinguishable from ordinary
GWs ofGR andwould be interpreted as a larger redshift; i.e.,
onewould generally overestimate the redshift on such binary
black hole (BBH) merger events. However, if the source of
the GW can be localized, e.g., by electromagnetic observa-
tions, a discrepancy between the inferred redshift and the
one obtained from the GW amplitude within GR could hint
at graviton oscillations in the decoherence regime.
Additionally, if a larger set of events becomes available, this

can be used to constrain the larger-graviton mass regime by
comparing the expected distribution ofBBHsystemswith the
observed event rates.
For the low-mass regime, we can constrain the param-

eters of the model by demanding that the waveform be in
agreement with the error bars of the observed events. We
have used a simple χ2 analysis to obtain Fig. 3, where we
set y� ¼ 1 exploiting the parameter redundancy of m and
the βi. For very small mg, or θ ≈ 0, π=2, the suppression
vanishes. Similarly, all events that lie beyond Lcoh are
indistinguishable from an equivalent event in GR at larger
z. From the remaining events the waveform in bigravity is
clearly distinguishable from the GR strain, and we draw our
conclusions on the excluded parameter space. We note that
GW150914 gives stronger constraints than the second
event GW151226. But even with only one observation,
we find that for large enough mixing angles we may
exclude values ofmg≳10−22 eV, comparable to the bounds
set by GW150914 via a modified dispersion relation [24].
We have adopted the model-independent mass bound from

FIG. 1. Bigravity versus GR: simulated strain in the detector due to gravitational waves as emitted by the black hole merger event
GW150914. The dashed orange curve shows the results in GR, while the solid blue curve is obtained by multiplying by the frequency-
dependent modulation due to bigravity. Note the presence of modulation in panel (a) versus the constant suppression in panel (b).

FIG. 2. Average suppression of a GW150914-like strain as a
function of the redshift for different sets of the parametersmg and
θ (¼π=4 unless stated explicitly). Note that, for a large mg and
redshift, the suppression levels out at ∼64% as discussed in the
main text for θ ¼ π=4. The value of the mixing angle θ
determines the average level of reduction of the strain relative
to GR at large distances.

FIG. 3. Excluded parameter space due to a simplified waveform
analysis as discussed in the main text. Note that massive gravity is
recovered for θ ¼ π=2, from which we apply model independent
mass bounds.
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Solar System tests, mg<7.2×10−23 eV [48], to the present
case by multiplying the mass with a factor sin θ to account
for the bigravity modification of the classical Newtonian
potential, see, e.g., Ref. [49]. We find that GW oscillations
give stronger constraints for smaller mixing angles, where
the bound from local gravity tests quickly becomes weaker.
In conclusion, GW oscillations offer excellent prospects to
probe the bigravity parameter space once more events at
higher precision become available.
Conclusions.—We have studied the oscillatory behavior

of gravitational waves in the framework of bigravity In full
analogy to neutrino oscillations, we have seen that a
nondiagonal coupling of the two modes to matter gives
rise to potentially significant modulations of the strain that
would be observable, e.g., in the LIGO or LISA detectors.
Using the first ever detected gravitational wave signals
GW150914 and GW151226, we illustrated that the bigrav-
ity modification of GR can lead to drastic modulations of
the strain compared to the predictions of GR. Using this, we
have constrained the parameter space of the model in the
low-mass regime, and pointed out that, once more events
are available, the high-mass regime can be constrained, too.
In this Letter, we have made several approximations

and assumptions in order to be able to give compact
analytic expressions that allow the reader to understand
the mechanisms behind gravitational wave oscillations.
Nevertheless, the fully general results are obtained easily
by following our approach such that future analyses may
directly use the results of this work.

We would like to thank Evgeny Akhmedov for very
useful discussions on the fundamentals of neutrino oscil-
lations. We are also grateful to Angnis Schmidt-May and
Mikael von Strauss for very useful comments on the Letter.
M. P. is supported by IMPRS-PTFS.

Note added.—Recently, Ref. [50] appeared, where GW
oscillations in doubly coupled bigravity are studied. Note
that there, the leading effect is proportional to ~c − 1
because of the democratic coupling of the tensors to matter.
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