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Abstract. Lower semicontinuity results for polyconvex functionals of the Calculus of Variations
along sequences of maps u : Ω ⊂ Rn → Rm in W 1,m, 2 ≤ m ≤ n, weakly converging in W 1,m−1 are
established.

In addition, for m = n + 1, we also consider the autonomous case for weakly converging maps
in W 1,n−1.

1. Introduction

Let m,n be positive integers, let Ω be a bounded open set of Rn and let u : Ω ⊂ Rn → Rm be a
map in the Sobolev space W 1,p(Ω,Rm) for some p ≥ 1. The functional associated to the map u is
an integral of the type

F (u) =

∫
Ω
f
(
x, u(x),M`(∇u(x))

)
dx , (1.1)

where throughout the paper ` := min{m,n} andM`(A) denotes the vector whose components are
all the minors of order up to ` of the matrix A ∈ Rm×n, i.e.,

M`(A) = (A, adj2A, . . . , adjiA, . . . , adj`A) .

The celebrated result by Morrey (see [30] and [31]) establishes that the quasi-convexity of the energy
density

g(A) = f(x0, u0,M`(A))

for Ln a.e. (x0, u0) is a necessary condition for the functional F to be (sequentially) lower semi-
continuous in the weak∗ W 1,∞ topology.

Since the seminal works of Morrey [30] and of Acerbi & Fusco [2] several authors investigated
the sufficiency of quasi-convexity for the lower semicontinuity of F under various conditions (cp.
[7, 17, 12, 18, 19, 26, 27, 28, 29]). However, due to the high generality of the quasi-convexity
assumption, in all those contributions (and in all known results) some polynomial growth of the
energy density (depending on the topology considered) with respect to the gradient variable is
required.

A relevant subclass of quasi-convex functions arising in applications to continuum mechanics
and geometric measure theory, [7, 23], is given by polyconvex integrands introduced by Ball [5],
i.e., those energy densities f such that f(x0, u0, ·) is convex for every point (x0, u0). In this case
weak lower semicontinuity holds under weaker assumptions concerning both the growth of the
integrands and the underlying topology following the results of Dacorogna & Marcellini [8] (cp.
[1, 3, 4, 6, 9, 11, 13, 14, 15, 21, 22, 24, 25]).
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In this paper we follow this line of research. More precisely, we investigate the lower semiconti-
nuity properties of energies as in (1.1), with densities f satisfying

(Hp) f = f(x, u, ξ) : Ω×Rm ×Rσ → [0,∞) is C0(Ω×Rm ×Rσ) and f(x, u, ·) is convex for all
(x, u) ∈ Ω× Rm (see (2.1) for the definition of σ),

along sequences

(Seq) (uj)j ⊂W 1,`(Ω,Rm) satisfying

uj ⇀ u in W 1,`−1. (1.2)

As pointed out by Malý in [26], lower semicontinuity fails if the requirements of (Seq) above are
relaxed to weak topology in W 1,p for p < `− 1 even for integrands depending only on the minors.
We remark that if ` ≥ 3 condition (Seq) is equivalent to

uj → u in L1 and sup
j
‖uj‖W 1,`−1 <∞, (1.3)

while if ` = 2 it is stronger and indeed it is equivalent to

uj → u in L1, sup
j
‖uj‖W 1,1 <∞, and (∇uj)j is equi-integrable.

Let us first describe our contributions in the case when the co-domain dimension m is less than
or equal to the domain dimension n, i.e., 2 ≤ m ≤ n (cp. with Theorem 1.4 below for a sharper
result in case m = n). In particular, in Theorem 1.1 we prove the following Serrin type result
building upon the chain-rule argument introduced in [4], that extends to this setting the ideas of
[32]. However, contrary to the above mentioned results, we also need to assume Lipschitz continuity
in the variable u.

Theorem 1.1. Let 2 ≤ m ≤ n, let f satisfy (Hp), and suppose in addition that

f(·, ·, ξ) is locally Lipschitz continuous for all ξ ∈ Rσ. (1.4)

Then, for every sequence (uj)j ⊂W 1,m(Ω,Rm) satisfying (Seq) we have

F (u) ≤ lim inf
j

F (uj).

In the autonomous case f = f(ξ) the conclusions of Theorem 1.1 has been established in [11,
Theorem 3.1] under the only assumption (1.3) (which is weaker than (Seq) for m = 2 as noted
above).

The conclusions of Theorem 1.1 can be extended to the class of densities that are approximated
from below by those satisfying (1.4). It was established in [20, Theorem 7] that demi-coercive
integrands, i.e. coercive up to addition of null Lagrangeans, belong to the latter class. More
precisely, supposing that

(Dem) there exist functions α : Ω× Rm → Rσ, β, γ : Ω× Rm → R, with β > 0 such that

f(x, u, ξ) + 〈α(x, u), ξ〉 ≥ β(x, u)|ξ|+ γ(x, u), (1.5)

for all (x, u, ξ) ∈ Ω× Rm × Rσ,

we can establish the next result.

Theorem 1.2. Let 2 ≤ m ≤ n, and let f enjoy (Hp) and (Dem).
Then, for every sequence (uj)j ⊂W 1,m(Ω,Rm) satisfying (Seq) we have

F (u) ≤ lim inf
j

F (uj).

Furthermore, due to (1.2), we can slightly weaken (Dem) and deduce the following corollary in
which demicoercivity is required only for higher order minors.
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Corollary 1.3. Let 2 ≤ m ≤ n, let f enjoy (Hp) and

f(x, u, ξ) + 〈α(x, u), ξ〉 ≥ β(x, u)|η|+ γ(x, u), (1.6)

for all (x, u, ξ) ∈ Ω×Rm ×Rσ and for some functions α : Ω×Rm → Rσ, β, γ : Ω×Rm → R, with
β > 0, where ξ = (ξ̄, η) ∈ Rσ−τ × Rτ with τ =

(
n
m

)
.

Then, for every sequence (uj)j ⊂W 1,m(Ω,Rm) satisfying (Seq) we have

F (u) ≤ lim inf
j

F (uj).

Note that the assumption that f is bounded from below cannot be dropped. An example
is given by taking the demicoercive integrand f(ξ) = −(det ξ)+, ξ ∈ R2×2, and the sequence
uj(x, y) = yj(sin(jx), cos(jx)), (x, y) ∈ (0, 1)2.

In case the dimensions n and m are equal we can actually remove the Lipschitz continuity
assumption on f as in Theorem 1.1 obtaining the following sharp result.

Theorem 1.4. Let 2 ≤ m = n, and let f enjoy (Hp).
Then, for every sequence (uj)j ⊂W 1,n(Ω,Rn) satisfying (Seq) we have

F (u) ≤ lim inf
j

F (uj). (1.7)

The result above can be extended to energy densities that can be approximated from below by
those satisfying (Hp). In particular, our result can be used to deal with some integrands such that
f(·, ·,Mn(A)) → +∞ if detA → 0+. For n = m = 3, these integrands appear in problems of
non-linear elasticity.

Theorem 1.4 builds upon the recent contribution [11, Theorem 1.1] where an additional technical
hypothesis on the integrand was assumed (see case (a) in the proof of Theorem 1.4 below). Actually,
[11, Theorem 1.1] was proven under the convergence conditions in (1.3).

Finally, let us discuss the case m > n. To our knowledge the best known result is [18, Corol-
lary 4.2] where lower semicontinuity in the weak W 1,p topology, p > n − 1, is established for
autonomous densities (see also [28], [17], [18, Remark 4.3] for related results). Moreover, the coun-
terexample [18, Example 4.4] shows that even a smooth dependence of the integrand with respect
to the variable u is forbidden.

For m = n + 1 a geometric argument allows us to reduce the problem to the case of equal
dimensions, and to prove the following result in the autonomous setting under the only assumption
(Seq). This is ,to the best of our knowledge, the first result establishing lower semicontinuity in the
critical case when the dimension of the co-domain is strictly greater than the one of the domain.

Theorem 1.5. Let 2 ≤ m = n+ 1, let f : Rσ → [0,∞) be convex, and

F (u) =

∫
Ω
f
(
Mn(∇u(x))

)
dx .

Then, for every sequence (uj)j ⊂W 1,n(Ω,Rn+1) satisfying (Seq) we have

F (u) ≤ lim inf
j

F (uj).

Eventually, we resume the structure of the paper. In Section 2 we introduce the notation,
recall several auxiliary results and prove some technical lemmas. Section 3 is devoted to prove
Theorem 1.1 and Theorem 1.2. In Section 4 we give the proof of Theorem 1.4; and finally in
Section 5 we prove Theorem 1.5.
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2. Definitions and preliminary results

The aim of this section is to introduce some notations and to recall some basic definition and
results which will be used in the sequel.

We begin with some algebraic notation. Let n,m ≥ 2 and Mm×n be the linear space of all m×n
real matrices. For A ∈ Mm×n, we denote A = (Aij), 1 ≤ i ≤ m, 1 ≤ j ≤ n, where upper and lower
indices correspond to rows and columns respectively.

The euclidean norm of A will be denoted by |A|. The number of all minors up to the order
` = min{m,n} of any matrix in Mm×n is given by

σ :=
∑̀
i=1

(m
i

)(n
i

)
. (2.1)

We shall also adopt the following notations. We set

Il,k = {α = (α1, . . . , αl) ∈ Nl : 1 ≤ α1 < α2 < . . . < αl ≤ k},

where 1 ≤ l ≤ k. If α ∈ Il,m and β ∈ Il,n, then Mα,β(A) = det(Aαiβj ).
By Ml(A) we denote the vector whose components are all the minors of order l, and by Ml(A)

the vector of all minors of order up to l, for every l ∈ {1, . . . , `}.
As usual, Qr(x), Br(x) denote the open euclidean cube, ball in Rn, n ≥ 2, with side r, radius

r and center the point x, respectively. The center shall not be indicated explicitly if it coincides
with the origin.

We shall often deal in what follows with convergences of measures. As usual, we shall name
local weak ∗ convergence of Radon measures the one defined by duality with Cc(Ω), and weak ∗

convergence the one defined by duality with C0(Ω) on the subset of finite Radon measures.

2.1. Approximation of convex functions. We survey now on an approximation theorem for
convex functions, due to De Giorgi, that plays an important role in the framework of lower semi-
continuity problems (see [10]). Given a convex function f : Rk → R, k ≥ 1, consider the affine
functions ξ → aj + 〈bj , ξ〉, with aj ∈ R and bj ∈ Rk, given by

aj :=

∫
Rk
f(η)

(
(k + 1)αj(η) + 〈∇αj(η), η〉

)
dη (2.2)

bj := −
∫
Rk
f(η)∇αj(η)dη, (2.3)

where, for all j ∈ N, αj(ξ) := jnα(j(qj − ξ)), (qj)j ⊂ Qk and α ∈ C1
0 (Rk) is a non negative function

such that
∫
Rk α(η)dη = 1.

Lemma 2.1. Let f : Rk → R be a convex function and aj, bj be defined as in (2.2)-(2.3). Then,

f(ξ) = sup
j∈N

(aj + 〈bj , ξ〉) , for all ξ ∈ Rk.

The main feature of the approximation above is the explicit dependence of the coefficients aj and
bj on f . In particular, if f depends on the lower order variables (x, u) regularity properties of the
coefficients aj and bj with respect to (x, u) can be easily deduced from related hypotheses satisfied
by f thanks to formulas (2.2) and (2.3) and Lemma 2.1. We thus have the following approximation
result:

Theorem 2.2. Let f = f(x, u, ξ) : Ω × Rm × Rσ → [0,∞), be a continuous function, convex in
the last variable ξ. Then, there exist two sequences of compactly supported continuous functions
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ai : Ω× Rm → R, bi : Ω× Rm → Rσ such that, setting for every i ∈ N,

fi(x, u, ξ) :=
(
ai(x, u) + 〈bi(x, u), ξ〉

)
+
, (2.4)

then
f(x, u, ξ) = sup

i
fi(x, u, ξ).

Moreover, for every i ∈ N there exists a positive constant Ci such that

(a) fi is continuous, convex in ξ and

0 ≤ fi(x, u, ξ) ≤ Ci(1 + |ξ|) for all (x, u, ξ) ∈ Ω× Rm × Rσ; (2.5)

(b) if ωi denotes a modulus of continuity of ai + |bi| we have

|fi(x, u, ξ1)− fi(y, v, ξ2)| ≤ Ci|ξ1 − ξ2|+ ωi(|x− y|+ |u− v|)(1 + min{|ξ1|, |ξ2|}) (2.6)

for all (x, u, ξ1) and (y, v, ξ2) ∈ Ω× Rm × Rσ.

The compactness of the supports of ai and bi is obtained by first approximating f with a mono-
tone sequence fj(x, u, ξ) := mj(x, u)f(x, u, ξ), where mj ∈ Cc(Ω× Rm), mj = 1 on Ωj × {|u| < j}
and mj = 0 on Ω×Rm \ (Ωj+1 × {|u| < j + 1}), Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω a family of open sets invading
Ω; and then applying to each fj De Giorgi’s approximation result in Lemma 2.1.

2.2. Convergence of minors. Let us start recalling the following lemma (see [21, Lemma 2.2],
and also [6, Corollary 3.3] for m = n).

Lemma 2.3. Let 2 ≤ l ≤ `, uj, u ∈W 1,∞(Ω,Rm) be maps such that

(a) (uj)j converges to u in L∞(Ω,Rm);

(b) supj ‖Ml(∇uj)‖L1 <∞.

Then, Ml(∇uj) ⇀Ml(∇u) weakly ∗ in the sense of measures on Ω.

For sequences satisfying weaker assumptions than those in Lemma 2.3 we can still determine
the absolutely continuous part, with respect to the Lebesgue measure, of the limit measures of the
sequence of minors as proven by Celada and Dal Maso in [6, Lemma 1.2] (see also [16]). We state
their result in the form needed for our purposes.

Lemma 2.4. Let n ≥ 2 and (uj)j ⊂W 1,n(Ω,Rn) be bounded in L∞, weakly converging in W 1,n−1

to u, and such that det∇uj
*
⇀µ locally as Radon measures.

Then, the absolutely continuous part µa of µ satisfies µa = det∇u dLn.

We recall also Zhang’s biting lemma for minors in the form needed in the subsequent sections
(cp. with [33, Theorem 2.1] for the full statement).

Theorem 2.5. Let 2 ≤ m ≤ n, U ⊂ Rn be a bounded open smooth set, and (uj)j ⊂W 1,m−1(U,Rm)
be weakly converging to u in W 1,m−1.

Then, there exists a subsequence (not relabelled for convenience) and a decreasing family (Uh)h
of Borel subsets of U such that Ln(Uh) ↓ 0 and

Mm−1(∇uj) ⇀Mm−1(∇u) L1(U \ Uh), for all h ∈ N.

We will also need the following result proved in [6, Lemma 3.2].

Lemma 2.6. Let (µk)k be a sequence of signed Radon measures on Ω. Assume that

(a) there exists T ∈ D′(Ω) such that µk → T in the sense of distributions on Ω;
(b) there exists a positive Radon measure ν such that µ+

k ⇀ ν (locally) weakly∗ in the sense
of measures on Ω.



6 G. DE PHILIPPIS, S. DI MARINO, AND M. FOCARDI

Then, there exists a Radon measure µ such that T = µ on Ω and µk ⇀ T locally weakly ∗ in the
sense of measures on Ω.

2.3. Two truncation results for minors. In this section we give two truncation results. The
first statement below, that is instrumental to prove Theorem 1.1, follows from Lemma 2.3 and by
refining De Giorgi’s truncation method on the codomain as employed by Malý [26, Theorem 3.1].

Proposition 2.7. Let 2 ≤ m ≤ n and let (uj)j ⊂ W 1,m(Ω,Rm) and u in W 1,∞(Ω,Rm) be such
that uj ⇀ u in W 1,m−1(Ω,Rm).

Set ūj := (u2
j , . . . , u

m
j ), Dα := (∂α1 , . . . , ∂αm) for all α ∈ Im,n, and let (wj)j ⊂ W 1,m−1(Ω,Rτ ),

τ = #Im,n, such that

either sup
j
‖wj‖W 1,m−1 <∞ if m ≥ 3 or (∇wj)j is equi-integrable if m = 2,

and satisfying

sup
j

∫
Ω

∣∣∣ ∑
α∈Im,n

det
[
Dαw

α
j , Dαu

2
j , . . . , Dαu

m
j

]∣∣∣ dx <∞. (2.7)

Then, there exist sequences (v̄j)j ∈W 1,m(Ω,Rm−1) and sj ↓ 0 such that

v̄j → ū := (u2, . . . , um) in L∞(Ω,Rm−1), (2.8)

and

{x ∈ Ω : ūj(x) 6= v̄j(x)} ⊆ Aj := {x ∈ Ω : |ūj(x)− ū(x)| > sj}. (2.9)

Moreover, setting vj = (u1
j , v̄j) we have

vj ⇀ u in W 1,m−1(Ω,Rm), (2.10)

Mm−1(∇vj) ⇀Mm−1(∇u) weakly ∗ in the sense of measures, (2.11)

and

lim
j

∫
Aj

1 +
∣∣Mm−1(∇vj)

∣∣+
( ∑
α∈Im,n

det
[
Dαw

α
j , Dαv̄

2
j , . . . , Dαv̄

m
j

])
+

 dx = 0. (2.12)

Proof. With the same notations as above, we first note that up to a subsequence not relabeled for
convenience we can assume that

lim
j
Ln
(
{y ∈ Ω : |ūj − ū| > 2−2j+1}

)
= 0. (2.13)

Moreover thanks to the boundedness of the sequence and (2.7), for every j ∈ N we can choose a
kj ∈ {j + 1, . . . , 2j} such that∫

{2−kj<|ūj−ū|≤2−kj+1}

(∣∣∣ ∑
α∈Im,n

det
[
Dαw

α
j , Dαu

2
j , . . . , Dαu

m
j

]∣∣∣+ |∇uj |m−1
)
dx ≤ C

j
. (2.14)

Let now ψ : R+ → R be defined as

ψ(s) :=


1 0 ≤ s ≤ 1

2− s 1 ≤ s ≤ 2

0 s ≥ 2,

and set

v̄j := ū+ ψ
(
2kj |ūj − ū|

)
(ūj − ū).
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Clearly,

v̄j = ūj on the set {|ūj − ū| ≤ 2−kj} (2.15)

and
|v̄j − ū| ≤ 2−kj+1,

so that (v̄j)j converges to ū in L∞, i.e. (2.8) and (2.9) are satisfied with sj := 2−kj . Moreover,

∇v̄j = ∇ū+Rj [ūj − ū](∇ūj −∇ū), (2.16)

where

Rj [y] := ψ(2kj |y|) Idm−1 + 2kj ψ′(2kj |y|) y ⊗ y
|y|

∈ R(m−1)×(m−1).

In particular, setting
Rj := Rj [ūj − ū],

then for some dimensional constant C ∣∣Mm−1
(
Rj
)∣∣ ≤ C. (2.17)

The above equation and a standard computation show that

|∇v̄j | ≤ C(1 + |∇ūj |) and
∣∣Mm−1(∇vj)

∣∣ ≤ C(1 +
∣∣Mm−1(∇uj)

∣∣) (2.18)

where vj = (u1
j , v̄j) and C depends also on ‖∇ū‖L∞ . Equation (2.18) implies (2.10) while (2.11)

follows by (2.10) and (2.8) by a standard induction and integration by part argument (this follows
for instance by an inspection of the proof of [11, Corollary 2.6] noting that it is enough that all but
one components of uj converge in L∞).

We are thus left to show (2.12). To this end, notice that, thanks to (2.16),[
Dαw

α
j , Dαv̄

2
j , . . . , Dαv̄

m
j

]T
=
[
Dαw

α
j , RjDαu

2
j , . . . , RjDαu

m
j

]T
+
[
Dαw

α
j ,
(
Idm−1 −Rj

)
Dαu

2, . . . ,
(
Idm−1 −Rj

)
Dαu

m
]T
,

where BT denotes the transpose of B ∈ Rm×m.
Now an elementary computation based on the formula for the determinant of the sum of two

matrices (cp. [7, Proposition 5.67]) shows that∫
{2−kj<|ūj−ū|≤2−kj+1}

( ∑
α∈Im,n

det
[
Dαw

α
j , Dαv̄

2
j , . . . , Dαv̄

m
j

])
+
dx

≤
∫

{2−kj<|ūj−ū|≤2−kj+1}

∣∣detRj
∣∣ · ∣∣∣ ∑

α∈Im,n

det
[
Dαw

α
j , Dαu

2
j , . . . , Dαu

m
j

]∣∣∣dx
+ C

( ∫
{2−kj<|ūj−ū|≤2−kj+1}

(1 + |∇uj |m−1) dx

)m−2
m−1

(2.19)

where C depends on ‖∇u‖L∞ and ‖wj‖W 1,m−1 . By (2.17), | detRj | ≤ C, hence, (2.14), (2.18) and
(2.19) imply that

lim
j

∫
{2−kj<|ūj−ū|≤2−kj+1}

∣∣Mm−1(∇vj)
∣∣+
( ∑
α∈Im,n

det
[
Dαw

α
j , Dαu

2
j , . . . , Dαu

n
j

])
+
dx = 0, (2.20)
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where we have also used that Ln
(
{2−kj < |ūj − ū| ≤ 2−kj+1}

)
→ 0. In addition, since equality

v̄j = ū holds true on the set {2−kj+1 < |ūj − ū|}, we infer that∫
{2−kj+1<|ūj−ū|}

∣∣Mm−1(∇vj)
∣∣+
( ∑
α∈Im,n

det
[
Dαw

α
j , Dαv̄

2
j , . . . , Dαv̄

m
j

])
+
dx

=

∫
{2−kj+1<|ūj−ū|}

∣∣Mm−1
(
∇(u1

j , ū)
)∣∣+

( ∑
α∈Im,n

det
[
Dαw

α
j , Dαū

2, . . . , Dαū
m
])

+
dx

≤ C
∫

{2−kj+1<|ūj−ū|}

(
1 + |∇u1

j |+ |∇wj |
)
dx, (2.21)

for some constant C depending on ‖∇ū‖L∞ .
Finally, (2.12) immediately follows from (2.13), (2.20) and (2.21) thanks to the assumptions on

(wj)j , the fact that uj is weakly convergent in W 1,m−1 (so that |∇uj | is equi-integrable) and since
kj ≤ 2j. �

The ensuing proposition, that can be proven analogously to Proposition 2.7, is a slight improve-
ment of a well-known result by Fusco and Hutchinson (see [21, Proposition 2.5], and also [11,
Proposition 2.8] for a variant under weaker assumptions).

Proposition 2.8. Let 2 ≤ m, n and let (uj)j ⊂ W 1,`(Ω,Rm) and u in W 1,∞(Ω,Rm) be such that
uj → u in L1(Ω,Rm) and

sup
j
‖M`(∇uj)‖L1 <∞.

Then there exist sequences (vj)j ∈W 1,`(Ω,Rm) and sj ↓ 0 such that

vj → u L∞(Ω,Rm), (2.22)

M`(∇vj) ⇀M`(∇u) weakly ∗ in the sense of measures, (2.23)

{x ∈ Ω : uj(x) 6= vj(x)} ⊆ Aj := {x ∈ Ω : |uj(x)− u(x)| > sj}, (2.24)

and

lim
j

∫
Aj

(
1 + |M`(∇vj)|

)
dx = 0. (2.25)

Moreover, if uj ⇀ u in W 1,`−1(Ω,Rm), then also vj ⇀ u in W 1,`−1(Ω,Rm).

2.4. A blow-up type lemma. The contents of the next lemma show that to infer the lower
semicontinuity inequality

F (u) ≤ lim inf
j

F (uj), (2.26)

for functionals F defined as in (1.1), with integrands f satisfying (Hp) and along sequences (uj)j ⊂
W 1,`(Ω,Rm) satisfying (Seq) we can always reduce ourselves to affine target maps. This was first
observed in [19] and we refer to [11, Lemma 2.11] for a proof in case 3 ≤ ` (the other case follows
similarly).

Lemma 2.9. Suppose that for Ln a.e. x0 ∈ Ω, and for all sequences εk ↓ 0 and (uk)k ⊂
W 1,`(Q1,Rm) such that

uk ⇀ u0 := ∇u(x0) · y in W 1,`−1(Q1,Rm),
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we have

lim inf
k

∫
Q1

f
(
x0 + εk y, u(x0) + εk uk,M`(∇uk)) dy ≥ f(x0, u(x0),M`(∇u(x0))

)
, (2.27)

then the lower semicontinuity inequality (2.26) holds.

3. The case m ≤ n

In this section we prove Theorem 1.1. The argument is based on the chain rule formula in the
spirit of [4] and on Proposition 2.7.

Proof of Theorem 1.1. We divide the proof in some steps. First note that, thanks to Theorem 2.2,
it will be enough to prove the Theorem for functionals of the form

F (u) =

∫
Ω
f(x, u(x),Mm(∇u(x))) dx

with

f(x, u, ξ) =
(
a(x, u) + 〈b(x, u), ξ〉

)
+

satisfying (2.5) and (2.6), with a and b continuous and compactly supported. Moreover, thanks to
Lemma 2.9 it is enough to show that if εk ↓ 0 and (uk)k ⊂W 1,m(Q1,Rm) is a sequence such that

uk ⇀ u0 := ∇u(x0) · y in W 1,m−1(Q1,Rm),

then

lim inf
k

∫
Q1

f(x0 + εk y, u(x0) + εk uk,Mm(∇uk)) dy ≥ f(x0, u(x0),Mm(∇u(x0))). (3.1)

We assume without loss of generality that x0 = 0 and u(x0) = 0. Moreover we can also safely
assume that

sup
k

∫
Q1

f(εk y, εk uk,Mm(∇vk)) dy ≤ C (3.2)

and that the liminf is actually a limit. We also recall the notation ξ = (ξ̄, η) ∈ Rσ−τ × Rτ so that
we can write

f(x, u, ξ) =
(
a(x, u) + 〈b̄(x, u), ξ̄〉+ 〈c(x, u), η〉

)
+
. (3.3)

Step 1. Truncation. We show that we can replace the sequence (uk)k with a new sequence
(ũk)k ⊂W 1,m which is uniformly bounded in L∞. Since uk ⇀ u0 in W 1,m−1 we clearly have

sup
k

∫
Q1

|∇uk|m−1 ≤ C. (3.4)

Let us now take M ≥ 1 + ‖u0‖L∞ and j ∈ N, j ≥ 1. Then we can find jk ∈ {1, · · · , j} such that∫
Q1∩{Mjk≤|uk|≤Mjk+1}

|∇uk|m−1 ≤ C

j
.

Let us now set ũk := πMjk (uk) where

πM (u) :=

u if |u| ≤M
M

u

|u|
if |u| ≥M.

(3.5)
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Clearly |ũk| ≤M j , ũk = uk on {|uk| ≤M jk} and∫
Q1∩{ũk 6=uk}

|∇ũk|m−1 ≤
∫
Q1∩{Mjk≤|uk|≤Mjk+1}

|∇uk|m−1 +
1

Mm−1

∫
Q1∩{Mjk+1≤|uk|}}

|∇uk|m−1

≤ C

j
+

C

Mm−1
:= ηM,j

(3.6)

where we have used that Lip (πMjk ) ≤ 1, Lip
(
πMjk

∣∣
{|u|≥Mjk+1}

)
≤ 1/M and (3.4). Hence since

Mm(∇ũk) = 0 on {ũk 6= uk} we get thanks to (3.6) and by taking into account (3.3) and the
boundedness of b̄ that∫

Q1

f
(
εky, εkũk,Mm(∇ũk)

)
dx ≤

∫
Q1

f
(
εky, εkuk,Mm(∇uk)

)
dx+ η̃M,j .

with η̃M,j ↓ 0 as M, j ↑ +∞. It will be thus enough to prove (3.1) with ũk instead of uk. For
notational simplicity we will re-name ũk as uk.

Step 2. Re-writing the functional through the chain-rule. Using that (uk)k ⊂ W 1,m, that c is
Lipschitz continuous and the multi-linearity and antisimmetry of the determinant, following [4] we
can write〈

c(εky, εkuk(y)),Mm(∇uk(y))
〉

=
∑

α∈Im,n

cα
(
εky, εkuk(y)

)
det

[
∂(u1

k, . . . , u
m
k )

∂(yα1 , . . . , yαm)

]

=
∑

α∈Im,n

(
det
[
Dαw

α
k , Dαu

2
k, . . . , Dαu

m
k

]
− det

[
(DαC

α)(εky, εkuk), Dαu
2
k, . . . , Dαu

m
k

])
,

(3.7)

where we have set

Cα(x, u) =

∫ u1

0
cα(x, t, u2, . . . , um)dt (3.8)

and

wαk (y) =
1

εk
Cα(εky, εkuk(y)). (3.9)

Notice that

|Dwαk (y)| ≤ εk‖u1
k‖L∞ Lip(cα)

(
1 +

m∑
i=2

|Duik(y)|
)

+ ‖cα‖L∞ |Du1
k(y)| (3.10)

and therefore

wαk ⇀ cα(0, 0)u1
0 in W 1,m−1(Ω,Rm). (3.11)

Moreover, ∥∥(DαC
α)(εk ·, εkuk(·)‖L∞ ≤ εk‖u1

k‖L∞Lip(cα)
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so that recalling (3.3), equation (3.7) and the bounds of the sequence in W 1,m−1 imply,

lim inf
k→∞

∫
Q1

f
(
εky, εkuk,Mm(∇uk)

)
dx

≥ lim inf
k→∞

∫
Q1

(
a(εky, εkuk) +

〈
b̄(εky, εkuk),Mm−1(∇uk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαu

2
k, . . . , Dαu

m
k

])
+
dx− lim sup

k→∞

∥∥(DαC
α)(εk ·, εkuk(·))‖L∞

∥∥uk∥∥W 1,m−1

= lim inf
k→∞

∫
Q1

(
a(εky, εkuk) +

〈
b̄(εky, εkuk),Mm−1(∇uk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαu

2
k, . . . , Dαu

m
k

])
+
dx.

(3.12)

Note that since we are assuming that the limit is finite, the boundedness in W 1,m−1 ∩L∞ of the
sequence (uk)k and (3.12) imply

sup
k

∫
Q1

( ∑
α∈Im,n

det
[
Dαw

α
k , Dαu

2
k, . . . , Dαu

m
k

])
+
≤ C, (3.13)

for some constant C depending on ‖a‖L∞ , ‖b̄‖L∞ , supk ‖uk‖W 1,m−1 (and not on k).

Step 3. L1 boundedness. We are going to improve (3.13) to

sup
k

∫
Qρ

∣∣∣∣∣ ∑
α∈Im,n

det
[
Dαw

α
k , Dαu

2
k, . . . , Dαu

m
k

]∣∣∣∣∣ ≤ Cρ for all 0 < ρ < 1, (3.14)

for some constant Cρ independent of k. For, notice that the order one distributions

C1
0 (Q1) 3 ϕ 7−→ Tk(ϕ) :=

∑
α∈Im.n

∫
Q1

ϕdet
[
Dαw

α
k , Dαu

2
k, . . . , Dαu

m
k

]
=

∑
α∈Im.n

∫
Q1

u2
k det

[
Dαw

α
k , Dαϕ, . . . ,Dαu

m
k

]
,

(3.15)

are such that |Tk(ϕ)| ≤ C‖∇ϕ‖L∞ , where C depends on the L∞ and W 1,m−1 bounds on the
sequence uk. In particular they converge (up to subsequences) as order one distributions, since
by (3.13) their positive parts converge as measures, (3.14) is a consequence of Lemma 2.6 and the
Uniform Boundedness Principle.

Step 4. Conclusion. We now apply Proposition 2.7 in the open set Qρ, ρ < 1 to construct
a sequence (v̄k)k which satisfies conclusions (2.8), (2.9) (2.11) and (2.12). In particular, setting
vk = (u1

k, v̄k) we have

vk ⇀ u0 in W 1,m−1(Qρ,Rm), ūk → ū0 := (u2
0, · · · , um0 ) in L∞(Qρ,Rm−1) .

By (2.12) and the boundedness of a and b,

lim sup
k

∫
Ak

(
a(εky, εkvk) +

〈
b̄(εky, εkvk),Mm−1(∇vk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαv

2
k, . . . , Dαv

m
k

])
+

≤ C lim sup
k

∫
Ak

(
1 + |Mm−1(∇vk)|+

( ∑
α∈Im,n

det
[
Dαw

α
k , Dαv

2
k, . . . , Dαv

m
k

])
+

)
= 0
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where Ak = {v̄k 6= ūk}. Hence, thanks to the positivity of the integrand, (3.12) and the above
equation we have

lim inf
k→∞

∫
Q1

f
(
εky, εkuk,Mm(∇vk)

)
= lim inf

k→∞

∫
Q1

(
a(εky, εkuk) +

〈
b̄(εky, εkuk),Mm−1(∇uk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαu

2
k, . . . , Dαu

m
k

])
+

≥ lim inf
k→∞

∫
Qρ\Ak

(
a(εky, εkuk) +

〈
b̄(εky, εkuk),Mm−1(∇uk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαu

2
k, . . . , Dαu

m
k

])
+

= lim inf
k→∞

∫
Qρ

(
a(εky, εkvk) +

〈
b̄(εky, εkvk),Mm−1(∇vk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαv

2
k, . . . , Dαv

m
k

])
+

= lim inf
k→∞

∫
Qρ

(
a(0, 0) +

〈
b̄(0, 0),Mm−1(∇vk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαv

2
k, . . . , Dαv

m
k

])
+
,

where in the last step we have used that the sequence vk is bounded in W 1,m−1 ∩L∞(Qρ,Rm) and
that the coefficients a, b are uniformly continuous. Let now ϕ ∈ C1

c (Qρ), 0 ≤ ϕ ≤ 1, then

lim inf
k→∞

∫
Qρ

(
a(0, 0) +

〈
b̄(0, 0),Mm−1(∇vk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαv

2
k, . . . , Dαv

m
k

])
+

≥ lim inf
k→∞

∫
Qρ

(
a(0, 0) +

〈
b̄(0, 0),Mm−1(∇vk)

〉
+

∑
α∈Im,n

det
[
Dαw

α
k , Dαv

2
k, . . . , Dαv

m
k

])
ϕ

=

∫
Qρ

(
a(0, 0) +

〈
b̄(0, 0),Mm−1(∇v0)

〉)
ϕ+ lim

k

∫
Qρ

∑
α∈Im,n

v2
k det

[
Dαw

α
k , Dαϕ, . . . ,Dαv

m
k

])
=

∫
Qρ

(
a(0, 0) +

〈
b̄(0, 0),Mm−1(∇u0)

〉)
ϕ+

∫
Qρ

∑
α∈Im,n

u2
0 det

[
cα(0, 0)Dαu

1
0, Dαϕ, . . . ,Dαv

m
k

])
=

∫
Qρ

(
a(0, 0) +

〈
b̄(0, 0),Mm−1(∇u0)

〉
+
〈
c(0, 0),Mm(∇u0)

〉)
ϕ,

where we have used (2.11), (3.11). Taking the supremum on ϕ ∈ Cc(Qρ) , 0 ≤ ϕ ≤ 1, and letting
ρ ↑ 1 we then get

lim inf
k→∞

∫
Q1

f
(
εky, εkuk,Mm(∇vk)

)
≥
(
a(0, 0) +

〈
b(0, 0),Mm−1(∇u0)

〉
+
〈
c(0, 0),Mm(∇u0)

〉)
+

= f
(
0, 0,Mm(∇u(0))

)
,

which concludes the proof. �

3.1. The demi-coercive case. In this subsection we address the demi-coercive case by proving
both Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2. We use [20, Theorem 7] to find a sequence of positive convex functions
fj ∈ C∞(Ω×Rm×Rσ) such that f = supj fj . The conclusion then follows at once from Theorem 1.1
applied to each fj , and then by taking the supremum on j. �

Before proving Corollary 1.3 we recall the notation ξ = (ξ̄, η) ∈ Rσ−τ × Rτ .
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Proof of Corollary 1.3. Given any δ > 0 let fδ(x, u, ξ) := f(x, u, ξ) + δ|η|, then each fδ satisfies
assumption (Dem). In particular, by Theorem 1.2 we get for all δ > 0

lim inf
j

∫
Ω
f(x, uj ,Mm(∇uj)) dx+ δ sup

j
‖Mm−1(∇uj)‖L1

≥ lim inf
j

∫
Ω
fδ(x, uj ,Mm(∇uj)) dx ≥

∫
Ω
f(x, u,Mm(∇u)) dx,

and the conclusion follows at once from the last inequality thanks to (1.2) by letting δ ↓ 0. �

4. The case of equal dimensions m = n

In this section we prove Theorem 1.4, to this end let us introduce the notation ξ = (ξ̄, η) ∈
Rσ−1 × R if ξ ∈ Rσ and m = n.

Proof of Theorem 1.4. As in the proof of Theorem 1.1 we can assume that

f(x, u, ξ) =
(
a(x, u) + 〈b̄(x, u), ξ̄〉+ c(x, u) η

)
+

where a, c : Ω × Rn → R, b̄ : Ω × Rn → Rσ−1 are continuous and compactly supported. By
Lemma 2.9 to infer (1.7) we are left with proving

lim inf
k

∫
Q1

f(x0 + εk y, u(x0) + εk uk,Mn(∇uk)) dy ≥ f(x0, u(x0),Mn(∇u(x0))). (4.1)

along sequences satisfying

uk → u0 := ∇u(x0) · y L1, and sup
k
‖uk‖W 1,n−1 <∞,

for all points x0 of approximate differentiability of u. We will set without loss of generality x0 = 0
and u(x0) = 0. As usual we can assume that the left hand side in (4.1) is a limit. We distinguish
two cases

(a) c(0, 0) = 0,

(b) c(0, 0) 6= 0.

Our main new contribution is a strategy to handle case (a), that was trivialized in [11, Theo-
rem 1.1] by means of a mild technical assumption. We repeat the proof of case (b) given in [11,
Theorem 1.1] as well for the readers convenience.

In what follows we shall give the proof in case m ≥ 3 for which Theorem 2.5 is instrumental.
The remaining case m = 2 can be handled more easily with similar arguments by taking advantage
of the equi-integrability assumption on (∇uk)k.

Proof in case (a): In this case the function f(0, 0, ξ̄, η) does not depend on η, therefore, to
simplify the notation in the rest of the proof, we introduce the (convex) function

g(ξ̄) := f(0, 0, ξ̄, η).

Next, we employ Zhang’s biting lemma for minors Theorem 2.5 to select a sequence (Uh)h of
Borel subsets of Q1 such that Ln(Uh) ↓ 0 and (Mn−1(∇uk))k converges to Mn−1(∇u0) weakly in
L1(Q \ Uh) for every h. Fix now M > ‖u0‖L∞ + 1 and set

uk,M = πM (uk), (4.2)
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where πM is defined as in (3.5). Then, as f ≥ 0, we have for all k∫
Q1\Uh

f(εky, εkuk,M ,Mn(∇uk,M )) dy

≤
∫
Q1

f(εky, εkuk,Mn(∇uk)) dy

+

∫
{y∈Q1\Uh: |uk|≥M}

f(εky, εkuk,Mn−1(∇uk), 0) dy

≤
∫
Q1

f(εky, εkuk,Mn(∇uk)) dy + C ηh,M ,

(4.3)

where we have set C = ‖ai‖L∞ + ‖bi‖L∞ and

ηh,M := sup
k

∫
{y∈Q1\Uh: |uk|≥M}

(1 + |Mn−1(∇uk)|) dy.

Note that by the equi-integrability of (Mn−1(∇uk))k on Q1 \Uh for each h, we have that ηh,M ↓ 0
as M ↑ ∞ for all h. We divide the rest of the proof in two steps.

Step 1. Freezing of the coefficients. In view of (2.6) in Theorem 2.2 and the boundedness of
(uk)k in W 1,n−1, we have for each given L > 0∫

Q1\Uh
f(εky, εkuk,M ,Mn(∇uk,M )) dy

≥
∫
{y∈Q1\Uh: | det∇uk,M |≤L}

f
(
εky, εkuk,M ,Mn(∇uk,M )

)
dy

≥
∫
{y∈Q1\Uh: | det∇uk,M |≤L}

g
(
Mn−1(∇uk,M )

)
dy − (1 + L)ω(εk(

√
n+M)).

(4.4)

Step 2. Conclusion in case (a).
We first recall Hadamard’s inequality

|detA| ≤ c(n)|A|n for all A ∈ Rn×n.

In particular, from this and Chebychev’s inequality we infer that

Ln({y ∈ Q1 : | det∇uk,M | ≥ L}) ≤ Ln
( {
y ∈ Q1 : |∇uk,M |n ≥ c(n)−1L

} )
≤
(
c(n)

L

)1− 1
n
∫
Q1

|∇uk|n−1 dy ≤ C L
1
n
−1.

In turn, the previous estimate and the equi-integrability of (Mn−1(∇uk))k on L1(Q1 \Uh) give that

δh,M,L := sup
k

∫
{y∈Q1\Uh: | det∇uk,M |≥L}

(1 + |Mn−1(∇uk)|) dy

goes to 0 as L ↑ ∞ for all h and M .
Thus, by collecting inequalities (4.3), (4.4) we find∫

Q1

f(εk y, εk uk,Mn(∇uk)) dy

≥
∫
Q1\Uh

g(Mn−1(∇uk,M )) dy − (1 + L)ωi(εk(
√
m+M))− C (ηh,M + δh,L,M )
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≥
∫
Q1\Uh

g(Mn−1(∇uk)) dy − (1 + L)ω(εk(
√
m+M))− 2C (ηh,M + δh,L,M ), (4.5)

from which we infer

lim inf
k

∫
Q1

f(εky, εkuk,Mn(∇uk)) dy

≥ lim inf
k

∫
Q1\Uh

g(Mn−1(∇uk)) dy − 2C (ηh,M + δh,L,M )

≥ Ln(Q1 \ Uh) g(Mn−1(∇u(0)))− 2C (ηh,M + δh,L,M )

= Ln(Q1 \ Uh) f(0, 0,Mn(∇u(0)))− 2C (ηh,M + δh,L,M ). (4.6)

The last equality follows from the very definition of g, the last but one inequality instead is a
consequence of the weak convergence of (Mn−1(∇uk))k to Mn−1(∇u(0)) in L1(Q1 \ Uh). The
conclusion in case (a) then follows from (4.6) by letting first L ↑ ∞, then M ↑ ∞ and finally h ↑ ∞.

Proof in case (b): Without loss of generality we may assume c(0, 0)) > 0. Otherwise, we replace
the functions uk = (u1

k, . . . , u
n
k) with (−u1

k, u
2
k, . . . , v

n
k ), the coefficient c(x, u) with−c(x,−u1, . . . , un)

and the remaining coefficients a and b accordingly.
Fix now M > ‖u0‖L∞ + 1 and consider the functions uk,M defined in (4.2). Then, as f is

non-negative, for all k we have∫
{y∈Q1: |uk|≤M}

f(εky, εkuk,M ,Mn(∇uk,M )) dy ≤
∫
Q1

f(εky, εkuk,Mn(∇uk)) dy. (4.7)

Therefore, since the sequence (uk,M )k is bounded in W 1,n−1(Q1,Rn) we deduce that

sup
k

∫
{y∈Q1: |uk|≤M}

(c(εky, εkuk) det∇uk,M )+ dy <∞.

Recalling the choice c(0, 0) > 0, the continuity of c yields for tk sufficiently large

sup
k

∫
{y∈Q1: |uk|≤M}

(det∇uk,M )+ dy <∞,

in turn implying

sup
k

∫
Q1

(det∇uk,M )+ dy <∞.

Arguing as in Step 3 in the proof of Theorem 1.1, an application of Lemma 2.6 gives that, up to
a subsequence not relabeled for convenience, the sequence (det∇uk,M )k converges locally weakly*
in the sense of measures in Q1. In particular, (det∇uk,M )k is bounded in L1

loc(Q1). Hence, with
fixed ρ ∈ (0, 1), Proposition 2.8 provides sequences sk ↓ 0 and (vk)k in W 1,n(Qρ,Rn) satisfying
conclusions (2.23), (2.24) and (2.25) there. Note that, for k sufficiently large, recalling the choice
of M , we have

{y ∈ Qρ : |uk(y)| > M} ⊆ Ak = {y ∈ Qρ : |uk(y)− u0(y)| > sk} .
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Therefore, estimate (2.5) and equation (4.7) imply∫
Qρ

f(εky, εkvk,Mn(∇vk)) dy

≤
∫
Qρ\Ak

f(εky, εkuk,M ,Mn(∇uk,M )) dy + C

∫
Ak

(1 + |Mn(∇vk)|) dy

≤
∫
{y∈Qρ: |uk|≤M}

f(εky, εkuk,M ,Mn(∇uk,M )) dy + C

∫
Ak

(1 + |Mn(∇vk)|) dy

≤
∫
Q1

f(εky, εkuk,Mn(∇uk)) dy + C

∫
Ak

(1 + |Mn(∇vk)|) dy.

The convergence of (vk)k to u0 in L∞, the latter inequality, (2.25) and (2.6) imply

lim inf
k

∫
Q1

f(εky, εkuk,Mn(∇uk)) dy ≥ lim inf
k

∫
Qρ

f(0, 0,Mn(∇vk)) dy.

In turn, from this and by taking into account that (Mn(∇vk))k converges to Mn(∇u(0)) weakly*
in the sense of measures on Qρ, by the convexity of f(0, 0, ·) we get

lim inf
k

∫
Q1

f(εky, εkuk,Mn(∇uk)) dy ≥ ρn f(0, 0,Mn(∇u(0))),

from which the conclusion follows straightforwardly as ρ ↑ 1. �

5. The autonomous case m = n+ 1

In this last section we prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma 2.1 it is sufficient to establish the lower semicontinuity property
for integrands of the form

f(ξ) =
(
a+ 〈b,Mn−1(ξ)〉+ 〈c,Mn(ξ)〉

)
+
.

Moreover we can assume that c 6= 0, the other case being elementary.
The main idea is to reduce to the case c = e1 = (1, 0, . . . , 0) via a change of variable in the

codomain. The geometric intuition behind this reduction is that, up to signs, Mn(∇u) is parallel
to the normal vector to the image of u and hence 〈c,Mn(∇u)〉 is its component along the direction
of c. By a suitable change of coordinates we can make then c parallel to e1. More precisely, let us
show that there exists an invertible matrix A ∈ R(n+1)×(n+1) such that

〈c,Mn(∇w)〉 = 〈e1,Mn(∇(Aw))〉 = det(∇(Aw)),

for all w ∈W 1,n(Ω,Rn+1), where v := (v1, . . . , vn), v ∈ Rn+1. Indeed, by the Cauchy-Binet formula
(see [7, Proposition 5.66])

Mn(∇(Au)) = adjA · Mn(∇u)

where we recall that adjA = (detA)A−1. Hence, for c 6= 0 it is straightforward to find such a
matrix A.

Therefore, we can assume that the functional F satisfies

F (u) =

∫
Ω
f
(
Mn(∇u)

)
=

∫
Ω

(
a+ 〈b,Mn−1(∇u)〉+ det(∇u)

)
+
. (5.1)

In addition, by Lemma 2.9 we may suppose that Ω = Q1 and uk ⇀ u0 := ∇u(0) · y in W 1,n−1.
We now divide the proof in two steps.
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Step 1. Truncation. As in Step 1 of the proof Theorem 1.1 we show that we can replace the
sequence uk with a sequence vk such that vk is uniformly bounded. Indeed, since uk ⇀ u0 in
W 1,n−1 we have

sup
k

∫
Q1

|∇uk|n−1 ≤ C. (5.2)

With fixed M ≥ 1 + ‖u0‖L∞ and j ∈ N, we can find jk ∈ {1, · · · , j} such that∫
Q1∩{Mjk≤|uk|≤Mjk+1}

|∇uk|n−1 ≤ C

j
. (5.3)

Let us now define vk as follows: vk = πMjk (uk), where we recall the definition of πM in (3.5), and

vn+1
k = un+1

k . Clearly, |vk| ≤ M j , vk = uk on {|uk| ≤ M jk}. For n ≥ 3 we estimate the minors of
order n− 1 of ∇vk on the region where vk differs from uk as follows∫
Q1∩{vk 6=uk}

|Mn−1(∇vk)| ≤ C
∫
Q1∩{Mjk≤|uk|≤Mjk+1}

|∇vk|n−1 +

∫
Q1∩{Mjk+1≤|uk|}}

|Mn−1(∇vk)|

≤ C
∫
Q1∩{Mjk≤|uk|≤Mjk+1}

|∇uk|n−1 +
C

Mn−2

∫
Q1∩{Mjk+1≤|uk|}}

|∇uk|n−1

≤ C

j
+

C

Mn−2
:= ηM,j ,

(5.4)

where we have used inequalities (5.2), (5.3), the fact that Lip (πMjk ) ≤ 1, and the following point-
wise estimate in the region {|uk| ≥M jk+1}:

|Mn−1(∇vk)| ≤ C
∑

I⊂{1,...,n+1}
|I|=n−1

∏
i∈I
|∇vik| ≤

C

Mn−2

∑
I⊂{1,...,n+1}
|I|=n−1

∏
i∈I
|∇uik| ≤

C

Mn−2
|∇uk|n−1.

Note that in the second inequality above we have used that Lip
(
πMjk

∣∣
{|u|≥Mjk+1}

)
≤ M−1, and

that in each product there are at least n− 2 indices i that are less than or equal to n.
By taking into account (5.1), (5.4), the equi-integrability of Mn−2, and that det(∇vk) = 0 on

{vk 6= uk} we get ∫
Q1

f
(
Mn(∇vk)

)
≤
∫
Q1

f
(
Mn(∇uk)

)
+ η̃M,j ,

with η̃M,j ↓ 0 as M, j ↑ +∞. The equi-integrability of ∇uk provides the same conclusion for n = 2.
It will be thus enough to prove lower semicontinuity along sequences whose first n-components are
bounded in L∞.

Step 2. Conclusion. Let (uk)k be a sequence such that ‖uk‖W 1,n−1 and ‖uk‖L∞ are uniformly
bounded with

lim inf
k

F (uk) = lim
k
F (uk) <∞.

In particular, we have that

sup
k

∫
Q1

(
det(∇vk)

)
+
<∞.

As in Step 3 of Theorem 1.1 an integration by parts implies that the order 1 distributions

Tk(ϕ) :=

∫
Q1

ϕdet(∇vk)
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are bounded. Hence, up to a subsequence, by Lemma 2.6 we obtain that det(∇vk))k is lo-
cally weakly∗ converging as measures to some measure µ. Furthermore, µa = det(∇u0) dLn by
Lemma 2.4, and

Mn−1(∇uk)
*
⇀Mn−1(∇u)

by the usual integration by parts argument. In conclusion, for every continuous function 0 ≤ ϕ ≤ 1
with compact support in Q1 we have that

lim inf
k

F (uk) ≥ lim inf
k

∫
Q1

(
a+ 〈b,Mn−1(∇uk)〉+ det(∇uk)

)
ϕdx

=

∫
Q1

(
a+ 〈b,Mn−1(∇u0)〉+ det(∇u0)

)
ϕdx+

∫
Q1

ϕdµs,

(5.5)

where µ = det(∇u0) dLn + µs. By taking the supremum on all such ϕ’s we get

lim inf
k

F (uk) ≥
∫
Q1

f(∇u0)dx+ (µs)+(Q1) ≥ F (u0).

This concludes the proof. �
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[25] J. Malý, Weak lower semicontinuity of polyconvex integrals, Proc. Edinb. Math. Soc., 123 (1993), 681–691.
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