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Rotating superfluids in anharmonic traps: From vortex lattices to giant vortices
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We study a superfluid in a rotating anharmonic trap and explicate a rigorous proof of a transition from a vortex
lattice to a giant vortex state as the rotation is increased beyond a limiting speed determined by the interaction
strength. The transition is characterized by the disappearance of the vortices from the annulus where the bulk
of the superfluid is concentrated due to centrifugal forces while a macroscopic phase circulation remains. The
analysis is carried out within two-dimensional Gross-Pitaevskii theory at large coupling constant and reveals
significant differences between “soft” anharmonic traps (like a quartic plus quadratic trapping potential) and
traps with a fixed boundary: in the latter case the transition takes place in a parameter regime where the size of
vortices is very small relative to the width of the annulus, whereas in soft traps the vortex lattice persists until the
width of the annulus becomes comparable to the vortex cores. Moreover, the density profile in the annulus where
the bulk is concentrated is, in the soft case, approximately Gaussian with long tails and not of the Thomas-Fermi
type like in a trap with a fixed boundary.
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I. INTRODUCTION

A superfluid confined in a rotating trap undergoes several
phase transitions as the rotational speed is increased. In an-
harmonic traps, where the speed can in principle be arbitrarily
large, these transitions can essentially be associated with three
critical speeds. At slow rotation the fluid is vortex free [1,2]
but when the speed exceeds a first critical value a quantized
vortex is created. As the speed goes further up the number of
vortices increases [3–8] and a vortex lattice emerges.1 This
picture holds in harmonic and anharmonic traps alike, but in
the latter case a new feature comes into play when a second
critical velocity is exceeded: the centrifugal forces create a
“hole” with strongly depleted density around the center of the
trap [9–11], while the vortex lattice still prevails in the bulk. At
a third critical speed a remarkable transition takes place: the
vortex lattice disappears and the fluid becomes again vortex
free in the bulk. Thus the process described above is in a
sense reversed. All vorticity is now concentrated in a giant
vortex situated in the hole and creating a macroscopic phase
circulation in the bulk. In the past, several authors have studied
this phenomenon theoretically by variational and numerical
methods [9,12–18] but mathematically rigorous proofs of the

1The emergence of a vortex lattice implies, among other things, that
the solutions considered in [40–42] cannot be ground states of the
interacting system at rapid rotation. We thank the referee for pointing
out these references to us.

giant vortex transition have been obtained only very recently
[19–23]. An experimental realization of this transition appears
to be still out of reach, although anharmonic traps have been
available already for some time [24–27].

In this paper we present rigorous results on the giant vortex
transition in a two-dimensional trapping potential that is the
sum of a quadratic and a homogeneous potential of the form

Vtrap(r) = krs + 1
2�2

oscr
2, (1)

with r the radial variable, k > 0, s > 2, and 0 � �osc < �rot,
where �rot denotes the rotational speed. The case s = 4 was
studied in [19] in an asymptotic regime that corresponds to a
fixed value of the interaction strength while the rotational speed
tends to infinity. In contrast, the papers [20–23] focus on the
interplay between rotation speed and interaction strength and
provide precise information about the third critical speed as a
function of the interaction parameter when the latter is large.
The model studied in these papers is that of a “flat” trap with
the unit circle as the boundary, as in [10,11], that can formally
be regarded as the limiting case s = ∞. A mathematical
advantage of this model is that the extension of the system
is fixed, while for finite s the system expands as � and/or ε−1

tend to ∞. There are, however, both physical and mathematical
reasons for treating the latter case separately. One reason is that
s = 4 corresponds to the lowest correction beyond quadratic
in the Taylor expansion of a symmetric potential around its
minimum and such a deviation from a quadratic potential has
a better chance to be realized in experiments than the limiting
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case s → ∞. A further reason is that the limit s → ∞ cannot
be interchanged with the limit of strong coupling, which is
the basis of almost all rigorous analysis of quantized vortices
including the present one. This will be explained further below.
In particular, the formulas for the limiting velocities obtained
in this paper do not simply pass in the s → ∞ limit over to
those for a flat trap with Dirichlet boundary conditions, as
considered in [21], contrary to what might be expected.

In fact, our analysis reveals significant qualitative differ-
ences between the two cases. In the flat trap the giant vortex
transition takes place at a rotational velocity where the vortex
cores are still vanishingly small relative to the width of the
annulus containing the bulk of the density. In a trap with finite
s, on the other hand, the vortex lattice persists until the width
of the annulus becomes comparable to the size of the vortex
cores. Moreover, the density profile in the flat trap is well
approximated by a Thomas-Fermi (TF) functional without a
kinetic-energy term, while in the case of finite s the radial
kinetic energy cannot be neglected and the profile in the radial
variable is approximately Gaussian centered at the middle of
the annulus. The long tails of such a function impose the use
of a larger domain than in former situations [20,21,28]. All
together these differences necessitate new ideas for the proofs
of the giant vortex transition compared to the earlier papers.
Common to the present setting and [20,21] is a macroscopic
phase circulation around the annulus as well as a breaking of
rotational symmetry of the density in the ground state, even in
the giant vortex regime.

The mathematical proofs of some of the statements in the
sequel are rather lengthy and will not be detailed in the present
paper, which is concerned with essential ideas and the main
results. A full account of the proofs can be found in [22].

II. MATHEMATICAL SETTING

We now define precisely the mathematical setting which is
that of two-dimensional Gross-Pitaevskii (GP) theory (cf. [3]).
The general form of the energy functional for the superfluid
order parameter � (the wave function of the condensate) in a
rotating trap is

EGP
phys[�] =

∫
R2

dr
[

1

2
|(i∇ + A)�|2

+
(

Vtrap − 1

2
�2

rotr
2

)
|�|2 + |�|4

ε2

]
. (2)

Here A = �rote3 ∧ r with �rot > 0 being the rotation velocity,
e3 is the unit vector in the x3 direction, r = (x1,x2), r = |r|,
Vtrap is the trap potential, and 1/ε2 with ε > 0 is the GP
coupling constant. The latter is, for a dilute Bose gas, given
by 2πNa/L, with N being the particle number, a being
the scattering length of the interaction potential between the
particles, and L being a characteristic length in the x3 direction
[29]. Units have been chosen such that h̄ and the particle mass
are both 1. (This differs from [20,21], where the particle mass
is taken to be 1

2 .) The normalization of the wave function is∫ |�|2 = 1. The subscript “phys” indicates that the functional
(2) is written in the terms of the original physical variables, in
contrast to the scaled functional defined in Eq. (8) below. We
denote by EGP

phys the GP energy, i.e., the minimum of Eq. (2)

under the normalization condition, and by �GP any of the
(in general nonunique) minimizers. In this paper we always
assume strong coupling, which means ε � 1.

We now specialize to external potentials of the form
of Eq. (1) and �rot > �osc � 0. With the definition �eff =
(�2

rot − �2
osc)1/2 the sum of the external and centrifugal

potentials in Eq. (2) becomes

Vtrap(r) − 1
2�2

rotr
2 = krs − 1

2�2
effr

2. (3)

The limiting case s → ∞ and �osc = 0 corresponds to the
flat trap considered in [10,11,20,21]; the potential (3) is then
simply − 1

2�2
rotr

2 and the integration is limited to the unit disk
in R2.

In order that the effect of the quadratic term in the potential
is visible also when �rot → ∞ it is natural to keep the ratio
�eff/�rot fixed, and we write accordingly

�2
eff = γ�2

rot, (4)

with 0 < γ � 1 fixed. The potential (krs − 1
2γ�2

rotr
2) has a

unique minimum at r = Rm with

Rm =
(

γ�2
rot

sk

)1/(s−2)

. (5)

We now write

r = Rmx, r = Rmx, �(r) = R−1
m ψ(x), �rot = R−2

m �,

(6)

and obtain

EGP
phys[�] = R−2

m EGP[ψ], (7)

with the scaled energy functional

EGP[ψ] =
∫
R2

[
1

2
|(i∇ + �xeϑ )ψ |2

+ γ�2V (x)|ψ |2 + ε−2|ψ |4
]
d2x, (8)

where we have written

V (x) =
(

1

s
xs − 1

2
x2

)
. (9)

Note that the scaled potential γ�2V (x) has a unique minimum
at x = 1, independently of �, while the minimum of Eq. (3)
wanders to infinity as �rot → ∞. Note also that we can take
� → ∞ either by letting �rot → ∞ keeping k fixed, or by
taking k → 0 at fixed �rot > �osc. We note further that by
Eqs. (5) and (6) the original rotational velocity �rot is related
to � by

�rot = (sk/γ )2/(s+2)�(s−2)/(s+2). (10)

In particular, for the important special case s = 4,

�rot ∼ �1/3. (11)

The potential term and the interaction term in Eq. (8) become
comparable when � ∼ ε−1. As discussed below, this is the
order of the second critical speed �c2, above which the
centrifugal force creates a hole. We are primarily interested in
the case of fast rotation well above the second critical speed,
which means that � � ε−1.
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For � � ε−1 it is more convenient to use a different scaling
than Eq. (6), replacing Rm ∼ �

2/(s−2)
rot by Rε ∼ ε−2/(s+2) [30,

31]. In terms of the scaled rotational velocity �′ = R2
ε�rot,

the first critical velocity, where vortices start to appear, is
�′

c1 ∼ | ln ε|. See [1,7,8] for the case of harmonic traps and
[31] for an adaption to s > 2. Note that �′ ∼ ε−1 is equivalent
to � ∼ ε−1.

III. TF DENSITY PROFILE

In the parameter range � � ε−4 the bulk density profile of
a minimizer ψGP of Eq. (8) can be approximately described
by the TF density:

ρTF(x) = ε2

2
[μTF − γ�2V (x)]+, (12)

where [t]+ = t if t > 0 and 0 otherwise. The chemical
potential μTF is determined by the normalization

∫
ρTF = 1.

The density ρTF is the minimizer of the TF functional:

ETF[ρ] =
∫
R2

[γ�2V (x)ρ(x) + ε−2ρ(x)2]d2x, (13)

i.e, the GP functional (8) without the kinetic term. The
corresponding energy will be denoted ETF. For � � ε−4 the
radial kinetic energy significantly influences the bulk density
profile and the TF approximation becomes inaccurate. This
will be discussed further below.

From Eq. (12) it is clear that ρTF vanishes at the origin for
μTF = 0 and a hole of finite radius forms as soon as μTF < 0.
The normalization of Eq. (12) implies that the critical velocity
for the appearance of the hole is given by

�c2 = ε−1{(2/γ )
∫

[−V ]+}−1/2. (14)

As (ε�) → ∞ we have μTF/(γ�2) → (s − 2)/2s and the
density ρTF becomes concentrated around x = 1. The inner
and outer radii, xin < 1 and xout > 1, respectively, of the
support, as well as the chemical potential μTF, are determined
by the equations

ρTF(xin) = ρTF(xout) = 0, 2π

∫ xout

xin

ρTF(x) x dx = 1. (15)

A Taylor expansion of V around its minimum [maximum for
ρTF(x)] at x = 1 (see Sec. 2.3 in [30] for details) gives the
thickness of the support:

xout − xin = (ε�)−2/3[12/(s − 2)γ ]1/3[1 + O((ε�)−2/3)].

(16)

By the normalization of ρTF it follows that the maximum
‖ρTF‖∞ = ρTF(1) is O((ε�)2/3). In the flat trap, on the other
hand, which corresponds formally to s = ∞, the thickness of
the annulus where the TF density is concentrated is O((ε�)−1)
and the density is of order O(ε�) [11].

The reason for the different powers of ε� can be understood
by the following consideration. The Taylor expansion leading
to Eq. (16) is justified as soon as the turning point xturn where
V ′′(xturn) = 0 is much farther from 1 than the inner and outer
radii xin and xout, which means that

1 − xturn � (ε�)−2/3(s − 1)−1/3. (17)

Now xturn = [1/(s − 1)]1/(s−2), and since we are interested
in large s we can write Eq. (17) as 1 − s−1/s �
(ε�)−2/3s−1/3. Since 1 − s−1/s = 1 − exp[−(ln s)/s] =
(ln s)/s + O((ln s/s)2) we obtain

ε� � s/(ln s)3/2 (18)

as a condition for the validity of the Taylor expansion. While
this condition is always fulfilled for each finite s if ε� is
large enough it is clearly violated for every fixed value of ε�

if s → ∞. In fact, in the flat trap the Taylor expansion fails
and the TF density has the form ρTF

flat(x) ∼ (ε�)2(x2 − x2
in)+

[cf. [11], Eq. (A.7)] with maximum value ρTF
flat(1) ∼ (ε�).

In the following we consider a fixed, finite s and employ
formula (16) above.

IV. VORTEX LATTICE REGIME

An upper bound for the ground-state energy EGP of Eq. (8)
can be obtained by a variational ansatz that is analogous to
Eq. (4.1) in [11]. It corresponds to a bulk profile determined
by the TF density and a regular lattice of vortices localized at
positions xi in the disk with radius xout centered at the origin.
More precisely, the trial function is of the form

ψ(x) = c
√

ρ(x)ξ (x)φ(x), (19)

where c is a normalization constant, ρ is a suitable regulariza-
tion of the TF density ρTF, ξ (x) is a function vanishing at the
lattice points xj , and φ(x) = ∏

j (ζ − ζj )/|ζ − ζj | is a phase
factor generated by vortices of unit strength in each lattice
point. We have here used the complex notation ζ = x1 + ix2

for points in R2. The vortices are placed so that ∇φ compen-
sates as far as possible the vector potential term proportional
to � in the kinetic energy, which means an arrangement in a
triangular lattice with density �/π . Moreover, if t is the radius
of a vortex core where the function ξ deviates significantly
from 1 the kinetic energy of a vortex localized in xj is, to lowest
order in the small parameters, ∼ ρ(xj )| ln(t2�)|. Optimizing
t to minimize the sum of kinetic and interaction energy gives
t ∼ ε/ρ(xj )1/2, provided t is much smaller than the distance
between vortices, which is ∼�−1/2. With ρ(xj ) ∼ (ε�)2/3

this leads to t ∼ ε2/3�−1/3 and this is � �−1/2 if � � ε−4.
Following closely the computation in Sec. 4 in [11] one now
obtains for ε−1 � � � ε−4 the upper bound

EGP � ETF + 1
6�| ln(ε4�)|[1 + O((ε4�)1/3)]. (20)

The last term is the radial kinetic energy of the density profile
ρ. It is smaller than the second term if � � ε−4.

A lower bound matching Eq. (20) is considerably more
difficult to achieve, but it can be proved using techniques from
Ginzburg-Landau (GL) theory in the same way as in Sec. 5
in [11]. The result is the following:

Theorem 1. (Energy between �c2 and �c3). If ε−1 � � �
ε−4 as ε → 0, then

EGP = ETF + 1
6�| ln(ε4�)|[1 + o(1)]. (21)

An important difference to the flat trap considered in [11]
becomes apparent here: in [11] an upper bound corresponding
to Eq. (20) [with ln(ε) in place of ln(ε4�)] is shown to be valid
under the condition � � ε−2, but the lower bound, derived
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by using techniques from GL theory [35], holds only for � �
ε−2| ln ε|−1.

For rotational speeds between the first and the second value
the energy asymptotics can be proved in a similar way and is
given by the following:

Theorem 2 (Energy between �c1 and �c2). If | ln ε| � �′ �
ε−1 as ε → 0, then

EGP′ = ETF′ + 1
2�′| ln(ε2�′)|[1 + o(1)]. (22)

Here �′ = R2
ε�rot as before while EGP′

and ETF′
denote

the GP energy and the TF energy, respectively, multiplied by
R−2

ε rather than R−2
m .

A further result that holds in the regimes of both Theorem 1
and Theorem 2 is that the vorticity is uniformly distributed in
the bulk in the limit ε → 0. A proof for the case of a flat trap
with Dirichlet (or Neumann) boundary conditions is given
in [21], Theorem 1.3, and can be generalized to the present
situation. The precise formulation of the statement in the
regime of Theorem 1 is delicate because of the concentration
of the density in an annulus that gets thinner as ε → 0, but the
main point is that the phase circulation around a subset S with
area |S| in the annulus is asymptotically equal to 2�|S|, and
this holds uniformly in S provided |S| is not too small.

V. GIANT VORTEX REGIME

The first step in a study of the giant vortex transition is to
consider a variational ansatz for the wave function of the form

ψ(x) = g(x) exp(i�ϑ), (23)

with a real valued function g, normalized such that
∫

g2 = 1.
The ansatz (23) is well behaved as a function of the angular
variable ϑ if � is an integer; otherwise it should be replaced by
the integer part [�]. In order to simplify the notation, however,
we shall in the sequel always assume that � is an integer; since
� → ∞ the inclusion of the difference � − [�] for noninteger
values leads only to negligible corrections. Inserting Eq. (23)
into Eq. (8) gives

EGP[ψ] =
∫
R2

[
1

2
|∇g|2 + 1

2
�2(x − x−1)2g2

+ γ�2

(
1

s
xs − 1

2
x2

)
g2 + ε−2g4

]
d2x ≡ Egv[g ].

(24)

The unique positive minimizer ggv of the functional Egv[g ] is
rotationally symmetric, i.e., a function of the radial variable
x alone. The corresponding energy will be denoted Egv. A
rough upper bound for it can be obtained by taking for
g a regularization of

√
ρTF. Since g is concentrated in an

annulus of width  = O((ε�)−2/3) and g2 = O((ε�)2/3), the
angular contribution to the kinetic energy, 1

2�2
∫

(x − x−1)2g2,
is O((�)2) = O(ε−4/3�2/3), while the radial kinetic term∫ |∇g|2 is O((ε�)4/3| ln(ε4�)|) as in Eq. (20). Hence,

EGP � ETF + O(ε−4/3�2/3) + O((ε�)4/3| ln(ε4�)|). (25)

From now on we shall always assume that

� = �0ε
−4, (26)

with some fixed �0 > 0 while ε → 0. [For the physical
rotational velocity in Eq. (10) and s = 4 this means that �rot ∼
ε−4/3.] Then the second term in Eq. (25) is O(�2/3

0 /ε4), while
the second term in Eq. (21) (the vortex lattice kinetic energy)
is O(�0| ln �0|/ε4) and thus larger if �0 is sufficiently large.
A radial kinetic-energy term O(�4/3

0 | ln �0|/ε4) is common to
both Eqs. (21) and (25). The bottom line is that for large �0

the giant vortex ansatz is energetically favorable to Eq. (21).
These simple considerations are, however, far from a proof

that a true minimizer ψGP of Eq. (8) has no vortices in the
bulk above some �c3 ∼ ε−4. In [20,21] such a proof is carried
out in full detail for the case of a flat trap (s = ∞), both
with Neumann and Dirichlet boundary conditions, and it is
shown that there �c3 ∼ ε−2| ln ε|−1. The technique used in
that proof depends on tools that were originally developed in
the context of GL theory, in particular vortex ball constructions
and Jacobian estimates [32–35]. A prerequisite for these
techniques to apply is that potential vortices can be isolated
in small discs with a radius much smaller than the thickness
of the annulus where the bulk of the density is concentrated.
As pointed out in the discussion preceding Eq. (20) above,
the radius of vortices is expected to be of order ε2/3�−1/3 ∼
ε2�

−1/3
0 while the thickness of the annulus defined by the

TF profile is ∼(ε�)−2/3 ∼ ε2�
−2/3
0 . It is thus clear that the

methods used in [20,21] to prove the transition to a giant vortex
in a flat trap do not apply in the present situation. Nevertheless
the absence of vortices in the bulk can be proved for � as
in Eq. (26), provided �0 is sufficiently large. The rest of the
paper is devoted to a precise statement of this result and an
outline of its proof.

VI. GAUSSIAN DENSITY PROFILE

In contrast to the regime � � ε−4 and the situation
discussed in [20,21] the TF profile is not a good approximation
to the bulk density profile in the homogeneous trap beyond the
vortex lattice regime, i.e., in the present situation for � ∼ ε−4.
In fact, the bulk of the density is contained in an annulus
determined by a Gaussian density distribution that we consider
first. We write the energy functional (24) as

Egv[g ] = −γ
(s − 2)

2s
�2

+
∫
R2

[
1

2
|∇g|2 + �2U (x)g2 + ε−2g4

]
d2x, (27)

with

U (x) = 1

2
(x − x−1)2 + γ

(
1

s
xs − 1

2
x2

)
+ γ (s − 2)/(2s).

(28)

Taylor expansion of U around x = 1 (e.g., for 1/2 � x � 3/2)
yields

U (x) = 1
2α2(x − 1)2 + O((x − 1)3), (29)

with

α2 = 4 + γ (s − 2). (30)
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We consider now for � as in Eq. (26) the auxiliary one-
dimensional functional:

Eaux[f ] =
∫
R

[
1

2
|f ′|2 + 1

2
�2α2(x − 1)2f 2 + ε−2f 4

]
dx

= �

∫
R

(
1

2
|f̂ ′|2 + 1

2
α2y2f̂ 2 + �

−1/2
0 f̂ 4

)
dy, (31)

where the variable transformation y = �1/2(x − 1), f̂ (y) =
�−1/4f (x) has been employed. It is clear that all three terms in
Eq. (31) are of the same order of magnitude, but the importance
of the last term diminishes with increasing �0. Without the last
term the minimizer is the Gaussian

f̂osc(y) = π−1/4α1/4 exp
( − 1

2αy2
)
. (32)

In [22] it is proved that the unique positive minimizer ggv of
Eq. (27) is well approximated by the minimizer of Eq. (31)
and that the latter is, indeed, approximately Gaussian for large
�0, so that

ggv(x) ≈ gosc(x) = �1/4f̂osc(�1/2(x − 1)). (33)

In particular, the integral of g2
gv over an annulus

Aη = {x : 1 − �−1/2η � x � 1 + �−1/2η} (34)

tends to 1 if and only if η → ∞, even though �−1/2η → 0.
Furthermore, the same holds for the density |ψGP|2 of the
minimizer of the full GP functional (8), as shown in [22].
Thus any annulus of the form of Eq. (34) contains the bulk of
the density if η → ∞. For the proof of absence of vortices in
Aη it is, however, necessary to restrict η. In fact, we prove that
the annulus is vortex free if η = O(| ln ε|1/2). In the course
of the proof, slightly larger annuli, with η = O(| ln ε|3/2) and
η = O(| ln ε|3/4), respectively, have also to be considered for
technical reasons.

VII. ENERGY ESTIMATES AND ABSENCE OF VORTICES

Our result on the giant vortex transition is as follows:

Theorem 3 (Absence of vortices in the bulk). There
are constants 0 < �̄0 < ∞ and c > 0 such that for � =
�0/ε

4 with �0 > �̄0 and ε sufficiently small the minimizer
ψGP is free of zeros in the annulus Abulk = {x : |1 − x| �
c�

−1/2
0 ε2| ln ε|1/2}.

An essential part of the proof is the derivation of the precise
energy asymptotics in the giant vortex regime:

Theorem 4. (Energy in the giant vortex regime). For � =
�0/ε

4 with �0 > �̄0 the ground-state energy is

EGP = Egv + O(| ln ε|9/2) = −γ
(s − 2)

2s
�2

+�

[
α

2
+ 1

2π

√
α

2π�0
+ O

(
�

−3/4
0

) + O(�−1/2)

]

+O(| ln ε|9/2). (35)

An upper bound to the energy is obtained by taking in Eq. (27)
a trial function built from the Gaussian gosc(x). The lower
bound is considerably more delicate and is discussed further
below. As for the comparison with Eq. (21) we note that the
negative first term in Eq. (35) is the same as the leading term in

ETF, namely the potential energy in the minimum of γ�2V (x)
at x = 1, while the term proportional to � is smaller than the
term �| ln ε4�| = � ln �0 in Eq. (21) for large �0.

For technical reasons we consider besides the functional
(27) also a functional Egv

η defined by the same formula except
that the integration is restricted to an annulus Aη with η =
O(| ln ε|3/2). Its unique positive minimizer gη can be shown to
be close to gosc on the smaller annulus A√

η :

gη(x) = [
1 + O

(
�

−1/4
0

)]
gosc(x). (36)

The corresponding energy Egv
η (gη) is denoted by E

gv
η . The

choice of η = O(| ln ε|3/2) is to some extent arbitrary, but the
method of sub- and supersolutions [36] used in the proof of
Eq. (36) and of the exponential smallness of |ψGP| outside of
A√

η (which is needed for the energy estimates) requires that
| ln ε| � η � ε−1.

The next step is a decoupling of the energy functional that
has been used repeatedly in analogous contexts in GL and GP
theory [37]. We define for x ∈ Aη a function u(x) by writing

ψGP(x) = gη(x)u(x) exp(i�ϑ). (37)

Since gη is without zeros, the function u contains all possible
zeros of the minimizer ψGP in the annulus. The variational
equation for gη leads to the lower bound

EGP � Egv
η + Eη[u], (38)

with

Eη[u] =
∫
Aη

g2
η

[
1
2 |∇u|2 − B · J(u) + ε−2g2

η(1 − |u|2)2
]
,

(39)

where B = �(x − x−1)eϑ and J(u) = i
2 (u∇u∗ − u∗∇u).

The main task is now to estimate the negative term involving
g2

ηB · J(u). As usual in the context of GP theory (see, e.g., [20,
21,28]) an essential step is an integration by parts. Namely, one
writes g2

ηB = ∇⊥F with the dual gradient ∇⊥ = (−∂x2 ,∂x1 )
and a potential function F . In order to employ Eq. (36) we also
restrict the integration to A√

η, which can be shown to create
only negligible errors if η � | ln ε|. If gη|B| would be exactly
symmetrical about x = 1 like gosc we could choose F to vanish
on both boundaries of the annulusA√

η and integration by parts
would give

−
∫
A√

η

g2
η B · J(u) =

∫
A√

η

F ∇⊥ · J(u). (40)

Moreover, a simple computation employing Eq. (36)
gives |F (x)| � α−1[1 + O(�−1/4

0 )g2
η(x)], while |∇⊥ · J(u)| �

|∇u|2. Thus, because α > 2, the positive first term in Eq. (39)
integrated over A√

η dominates Eq. (40) for �0 large enough.
This reasoning is, however, not rigorous because gη|B| is

not perfectly symmetric about x = 1, and if F is chosen to
vanish on one boundary, e.g., the inner one, it will not vanish
exactly on the other. The integration by parts then creates a
boundary term F (R) = ∮

x=R
J(u) · d with R being the radius

of that boundary. To control the circulation integral one would
like to use a part of the kinetic energy

∫
A√

η
g2

η|∇u|2, so the first
step is to transform the boundary integral into two-dimensional
integrals. If R̄ = R − c�−1/2 with c small and χ is a smooth,
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monotone radial function on [R̄,R] with χ (R̄) = 0, χ (R) = 1,
and |∇⊥χ | � C�1/2, we can write∮

x=R

J(u) · d =
∫

∇⊥χ · J(u) +
∫

χ ∇⊥ · J(u). (41)

The analogous computation holds for R̄ = R + c�−1/2 and the
interval [R̄,R]. To bound the integrals in terms of

∫
g2

η|∇u|2,
however, we need gη to be large in the interval [R̄,R] or [R,R̄].
Because gη is, in fact, very small on the boundary of the
annulus A√

η this strategy runs into difficulties.
A way out is to introduce two potential functions: F1,

vanishing on the inner boundary of the annulus, and F2,
vanishing on the outer boundary. The former is applied below
the radius Rmax where gη has its maximum, and the latter is
applied above Rmax. The integration by parts now creates two
boundary terms of opposite signs at x = Rmax, and one has to
estimate

[F1(Rmax) − F2(Rmax)]
∮

x=Rmax

J(u) · d. (42)

Since gη is large in a neighborhood of Rmax, Eq. (41) can be
put to good use: Taking R = Rmax we have g2

η � C�1/2 on
[R̄,R] by Eq. (36), and from Eq. (41), using the normalization
of g2|u|2, we obtain∣∣∣∣∣

∮
x=Rmax

J(u) · d

∣∣∣∣∣
� C

∫
A√

η

g2
η|u||∇u| + C�−1/2

∫
A√

η

g2
η|∇u|2

� C(�−1/2 + δ)
∫
A√

η

g2
η|∇u|2 + Cδ−1, (43)

for any δ > 0. Here and in the following, C denotes a
finite, positive constant that may differ from line to line.
The difference

∣∣F1(Rmax) − F2(Rmax)
∣∣ is estimated separately.

It is small because gη|B| is approximately symmetric about
x = 1, and, making use of the variational equation for gη, it
is shown to be at most O(�0η

3/2). Choosing δ = Cδ�
−1
0 η−3/2

with sufficiently small Cδ we now obtain for all �0 > �̄0

sufficiently large the crucial bound∫
A√

η

g2
η

[
1
2 |∇u|2 − B · J(u)

]
� −C�2

0η
3 + C ′

∫
A√

η

g2
η|∇u|2,

(44)

with C ′ > 0. Replacing the integration domain by Aη only
produces a negligible correction if η � | ln ε|, and E

gv
η also

differs from Egv only by small terms. This completes the proof
of the lower bound in Theorem 4.

A further consequence of Eq. (44), combined with the
variational bound E

gv
η � 0 and the exponential smallness of

|ψGP|2 outside A√
η, is the bound∫

A√
η

ε−2g4
η(1 − |u|2)2 � C�2

0η
3, (45)

on the interaction term for �0 > �̄0. This leads to Theorem
3 by the following reasoning. Using the variational equation
satisfied by gη as well as the Gagliardo-Nirenberg inequality in

a similar way as in [20], Lemma 5.1, one obtains the gradient
estimate:

|∇u(x)| � Cε−2+(c2α/2), (46)

with α as in Eq. (30) for all x such that

|1 − x| � c�
−1/2
0 ε2| ln ε|1/2. (47)

Here we have used that, because of Eq. (36),

gη(x) � Cε−1+(c2α/2), (48)

for x satisfying Eq. (47).
We now claim that, as ε → 0, |1 − |u(x)|| < | ln ε|−a holds

for all a > 0 on the annulus defined by Eq. (47), provided
c < (2/α)1/2. The proof is by contradiction: suppose that |1 −
|u(x)|| � | ln ε|−a at some x and a > 0. Then the gradient
estimate (46) implies that |1 − |u(x)|| � | ln ε|−a/2 on a disk
of radius Cε2−(c2α/2) around x. We thus obtain∫

A√
η

ε−2g4
η(1 − |u|2)2 � Cε−2+c2α| ln ε|−2a. (49)

This is a contradiction to Eq. (45) for c < (2/α)1/2 and η =
| ln ε|3/2. Thus |1 − |u(x)|| < | ln ε|−1 holds, implying that u,
and hence also ψGP, is free of zeros in the bulk defined by
Eq. (47).

VIII. CIRCULATION AND SYMMETRY BREAKING

The degree (winding number) of the giant vortex ansatz
(23) is clearly �. This can also be shown to hold, to very
good accuracy, for the true minimizer ψGP in the giant vortex
regime, ensuring a macroscopic circulation around the central
hole where the density is strongly depleted:

Theorem 5 (Asymptotics for the degree). If � is given by
Eq. (26) with �0 > �̄0 and R is any radius satisfying R =
1 + O(�−1/2), then as ε → 0 the degree of ψGP around the
circle with radius R is � + O(�0| ln ε|9/4).

Indeed, a simple computation, using Eq. (37), gives

degree of ψGP = � + i(2π )−1
∮

x=R

u−1|u|∂Rϑ (u|u|−1),

(50)

and the second term is easily estimated exploiting Eq. (43)
and the bound

∫
g2

η|∇u|2 � C�2
0η

3 that follows from Eq. (44)
together with E

gv
η � 0.

According to Theorems 3–5 the ansatz (23) gives an excel-
lent approximation to the energy and the qualitative properties
of a true minimizer ψGP if �0 is large enough. Nevertheless,
while Eq. (23) is an eigenfunction of angular momentum and
its modulus is therefore rotationally symmetric, this is not the
case for a true minimizer:

Theorem 6 (Symmetry breaking). No minimizer ψGP in the
giant vortex regime �0 > �̄0 is an eigenfunction of angular
momentum.

The indirect proof is very similar to the proof of a cor-
responding result in [21], Theorem 1.6, which in turn is
inspired by Theorem 2 in [38], and [39]. One assumes that
ψGP(x) = f (x) exp(inϑ) with a real radial function f and
n ∈ Z. As a byproduct of the analysis in the previous section
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it can be shown that n = �[1 + O(ε4| ln ε|9/4)]. Moreover, f

is exponentially small with respect to ε outside the annulus
A√

η with η = | ln ε|3/2. It has a unique maximum at xm, close
to 1. Define

A(x) = x2f ′(x) for x ∈ A√
η, x � xm,

and A(x) = 0 for x > xm, as well as a smooth interpolation to
zero inside the inner boundary of A√

η. Likewise define

B(x) = nxf (x) for x ∈ A√
η,

with a smooth interpolation to 0 outside A√
η. Consider then

w(x) = [A(x) + B(x)] exp[i(n + 1)ϑ]

+ [A(x) − B(x)] exp[i(n − 1)ϑ]. (51)

A computation, employing the variational equation for f , then
shows that the second variation of the GP functional, i.e.,
the quadratic form Q given by Eq. (2.3) in [38], is negative
when evaluated on w, implying that f (x) exp(inϑ) cannot be
a minimizer.

IX. CONCLUSIONS

We have analyzed the change in the density and vortex
patterns of a superfluid in a rotating, anharmonic trap as
the rotational velocity and the interaction parameter both

tend to infinity. In particular we have shown rigorously that
the fluid undergoes a transition into a giant vortex state
where there are no vortices in the bulk if the rotational
velocity exceeds a certain limit depending on the interaction
strength while a macroscopic circulation remains. In this
paper we have focused on soft trapping potentials, e.g.,
the sum of a quartic and a quadratic potential, where the
problems turns out to differ markedly, both physically and
mathematically, from the previously considered case of a
flat trapping potential with a fixed boundary. The differences
concern both the shape of the bulk density in the giant
vortex state, which in soft traps turns out to be approximately
Gaussian rather than of a Thomas-Fermi type, as well as the
relative size of vortex cores and the annulus where the bulk is
concentrated.
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