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c Université Grenoble 1 and CNRS, LPMMC, UMR 5493, BP 166, 38042 Grenoble, France.
d Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1090 Vienna, Austria.

e Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Vienna, Austria.

October 26th, 2012

Abstract

A Bose-Einstein condensate of cold atoms is a superfluid and thus responds to rotation of its

container by the nucleation of quantized vortices. If the trapping potential is sufficiently strong,

there is no theoretical limit to the rotation frequency one can impose to the fluid, and several phase

transitions characterized by the number and distribution of vortices occur when it is increased from

0 to ∞. In this note we focus on a regime of very large rotation velocity where vortices disappear

from the bulk of the fluid, gathering in a central hole of low matter density induced by the centrifugal

force.

1 Introduction

1.1 The model

The main theoretical framework for the description of rotating BECs is the so-called Gross-Pitaevskii
(GP) theory. The behavior of the fully Bose-condensed gas is described by a single macroscopic wave
function Ψ and the ground state of the condensate is determined by the minimization of the GP energy
functional. Assuming a strong confinement along the rotation axis so that the condensate is quasi-2D,
the GP functional can be expressed, in the rotating frame, as

EGP
phys[Ψ] =

∫

R2

{

1

2
|(i∇+A)Ψ|

2
+

(

Vtrap(r)−
1

2
Ω2

rotr
2

)

|Ψ|2 +
|Ψ|4

ε2

}

dr. (1)

HereA = Ωrote3∧r with Ωrot > 0 the rotation velocity, e3 the unit vector in the x3-direction, r = (x1, x2),
r = |r|, Vtrap the trap potential and 1/ε2 with ε > 0 the GP coupling constant. We work in units such
that ~ and the particle mass are both 1 and the wave-function is normalized as

∫

|Ψ|2 = 1.
In (1) we have introduced a ‘vector potential’ A in order to separate the contribution of Coriolis and

centrifugal forces due to the transformation to the rotating frame. This emphasizes the importance of
the effective potential

Veff(r) = Vtrap(r)−
1

2
Ω2

rotr
2, (2)
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and makes it immediately clear that the physical behavior of the gas will be strongly affected by the type
of trap that is being used. In this note we consider a potential of the form

Vtrap(r) = krs +
1

2
Ω2

oscr
2 (3)

with k > 0 and s > 2 (anharmonic traps). Indeed in the purely harmonic (quadratic) case k = 0,
the rotation frequency would be limited by the frequency Ωosc of the trap and rapid rotation regimes
forbidden: Any larger rotation speed would make Veff unbounded from below, and thus the atoms would
fly apart under the action of the centrifugal force. If k > 0 on the other hand, the effective potential (2)
is bounded below for any Ωrot, and there is thus no theoretical obstruction to the exploration of regimes
of very large rotation frequencies.

It is also worth mentioning here that among anharmonic traps (s > 2) one has to distinguish between
‘soft potentials’ (s < ∞) discussed here and ‘hard potentials’ or ‘flat traps’ considered in [4, 7, 16]
(formally given by s = ∞). Indeed, the physics of the transition to a giant vortex state is different in
these two cases and the third critical speed is considerably smaller in the latter (after an appropriate
scaling, see below).

1.2 Phase transitions and critical speeds

Let us briefly review what is expected to happen when the rotation velocity imposed to a trapped Bose
gas is increased. We only discuss the case of anharmonic traps (k > 0) and refer to the literature (see
e.g. [3, 9] for reviews) for the specificities of the purely harmonic case.

• As long as the rotation speed is smaller than a first critical speed Ωc1 , the fluid is vortex-free.

• When Ωrot is increased past Ωc1 , vortices start to appear and form regular patterns. When many
vortices are nucleated they are distributed according to a triangular lattice. This behavior lasts
until a second critical speed Ωc2 is attained.

• At Ωrot ≈ Ωc2 , the centrifugal force becomes so important that it dips a hole of strongly depleted
matter density at the center of the trap. A vortex lattice survives in the annular bulk of the fluid
until a third critical speed is reached.

• When Ωrot crosses the third critical speed Ωc3 , all the vortices retreat in the central hole of low
matter density. The bulk of the fluid is then vortex-free but a phase circulation remains around
the hole, indicating that it acts as a multiply quantized giant vortex.

Experiments using anharmonic traps we are aware of have so far been limited to rotation frequencies
Ωrot < Ωc2 : In [2] a clear density dip is observed at the center of the trap but experimental limitations
have prevented the creation of the giant vortex. The theoretical problem is nevertheless of interest and
has been intensely investigated [8, 10, 11, 12, 13, 14, 15].

In this note we focus on the third phase transition, when the state of the condensate changes from
a “vortex-lattice-plus-hole” to a “giant vortex”. We explain the main physical insights leading to a
mathematically rigorous estimate of the critical speed we have recently obtained. A more complete
discussion and the details of the proof can be found in [5, 6], together with a more thorough discussion
of the literature.

2 Emergence of the giant vortex state

2.1 Scaling of the GP functional

In the rest of this note we will consider the strongly interacting (Thomas-Fermi) regime ε→ 0 and focus
on angular velocities Ωrot ≫ 1 close to the third critical speed.
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In order to make the effect of the quadratic part in the potential Vtrap apparent even in the limit
Ωrot → ∞, we keep the ratio Ωeff/Ωrot fixed by setting Ω2

eff = γΩ2
rot for some 0 < γ ≤ 1 fixed, where

Ωeff = (Ω2
rot − Ω2

osc)
1/2, so that the effective potential becomes Veff(r) = krs − 1

2Ω
2
effr

2.
Moreover we scale variables in such a way that the bulk of the mass of the condensate does not expand

as Ωrot → ∞: Most of the mass is indeed concentrated close to the minimum of the potential Veff(r) at
r = Rm with Rm = [Ω2

eff/(sk)]
1/(s−2), which wanders to infinity as Ωrot → ∞. It is thus convenient to

define the scaling in such a way that the global minimum of the rescaled potential is independent of the
angular velocity. This can be done by introducing the following variables

x = R−1
m r, ψ(x) = RmΨ(r), Ω = R2

mΩrot (4)

which yields EGP
phys[Ψ] = R−2

m EGP[ψ] with the scaled energy functional

EGP[ψ] =

∫

R2

{

1

2
|(i∇+Ωxeϑ)ψ|

2 + γΩ2V (x)|ψ|2 + ε−2|ψ|4
}

dx (5)

and the potential (with minimum at x = 1)

V (x) =
1

s
xs −

1

2
x2. (6)

The potential and interaction terms in (5) become comparable when Ω ∼ ε−1, which is the order of
the second critical speed Ωc2 (see [5, 6]). In the sequel we take Ω ≫ ε−1 (and will in fact specialize to
Ω & ε−4) and investigate the features of the transition associated with the third critical speed.

2.2 The matter density profile

As a first step we look for a good approximation to the density profile of the fluid. To this end we define
the functional

Egv[g] =

∫

R2

{

1

2
|∇g|2 +

1

2
Ω2(x− x−1)2g2 + γΩ2

(

1

s
xs −

1

2
x2

)

g2 + ε−2g4
}

dx. (7)

This is nothing but (5) restricted to wave functions of the form1

ψ(x) = g(x) exp(iΩϑ) (8)

with a real valued function g, normalized such that
∫

g2 = 1. In the giant vortex ansatz (8) all the
vorticity is concentrated in a single vortex at the origin with huge winding number Ω. We denote ggv
and Egv the ground state and ground state energy of Egv respectively.

A noticeable fact is that when Ω = Ω0ε
−4 with Ω0 = O(1), ggv progressively changes from a Thomas-

Fermi to a gaussian profile. This is most conveniently understood by a change of variables. Since the
minimizer of (7) is radial we consider only radial functions and define y = Ω1/2(x − 1), and f(y) =
Ω−1/4g(x). Equation (7) then turns into

Eaux[f ] = Ω

∫

R

{

1

2
|f ′|2 +

1

2
α2y2f2 +Ω

−1/2
0 f4

}

dy (9)

up to an unimportant constant term. We have set α2 = 4+ γ(s− 2), Taylor-expanded the potential and
neglected terms beyond quadratic (see [5, Section III.B]). Without the last term the minimizer is the
gaussian

fosc(y) = π−1/4α1/4 exp
{

− 1
2αy

2
}

(10)

1Strictly speaking we should use the integer part of Ω in the phase factor, but since Ω is very large in our regime, it
makes little difference to assume that it is an integer.
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which will give a good approximation (after scaling) to the giant vortex profile ggv when Ω0 is large, i.e.,
Ω ≫ ε−4. Notice that it is quite different, in particular because of its long tails, from the TF profile
(with µTF a chemical potential fixed by normalization and [ · ]+ the positive part)

fTF(y) = Ω
1/4
0

√

[

µTF − 1
4α

2y2
]

+
, (11)

which is a better approximation of ggv for Ω ≪ ε−4.
An important step of our approach is an energy decoupling: Defining, for any normalized wave function

ψ a function v by writing ψ = ggvv exp(iΩϑ) and using the variational equation satisfied by ggv, we get
EGP[ψ] = Egv + E [v] with

E [v] =

∫

R2

g2gv

{

1

2
|∇v|2 −B · J(v) + ε−2g2gv(1− |v|2)2

}

dx. (12)

We denote by J(v) = i
2 (v∇v

∗ − v∗∇v) the superfluid current associated to v and B = Ω(x− x−1)eϑ the
vector potential corrected by the contribution of the giant vortex.

Our analysis of the phase transition leading to the giant vortex state is based on the minimization
of the reduced functional (12) under the constraint

∫

g2gv|v|
2 = 1. Thanks to the energy decoupling

this is equivalent to the original variational problem: A function u minimizes (12) if and only if ψ =
ggvu exp(iΩϑ) minimizes the scaled GP functional (5). Note that ggv does not vanish, except at the
origin, and thus all the potential vortices of ψ are accounted for by the reduced wave function u.

2.3 Disappearance of vortices

Now that we have a good approximation to the matter density profile, we can discuss the nucleation of
vortices in the bulk of the fluid, that is in the region where ggv is significantly large. We first discuss
the size that vortex candidates would have. Using an ansatz v that vanishes inside the bulk in a region
(vortex core) of size t and minimizing (7) with respect to t gives an estimate of the size of vortex cores
: t ∼ ε2/3Ω−1/3. From the considerations in the above section, one can guess that the thickness of the
annulus where the mass resides is of order Ω−1/2. When Ω & ε−4 we have t & Ω−1/2 which means that
vortices become too large to completely fit in the bulk of the fluid, whereas they are relatively small when
Ω ≪ ε−4. This alone is of course no proof that a phase transition occurs in this regime but it turns out
that one can, when Ω ≪ ε−4, rigorously estimate the energetic contribution of vortices and prove that
many are nucleated and uniformly distributed in the bulk. This result is obtained by making use of the
powerful “vortex balls methods” (see, e.g., [1, 17] for reviews) that apply in this regime.

The regime Ω & ε−4 on the other hand poses a new challenge. Since vortex candidates are comparable
in size to the bulk of the fluid, the intuition behind the vortex balls methods fails and a different approach
has to be used. In fact, one can rule out density depletions without any precise estimate of the vortices’
energy. The argument goes as follows2: a trial state v = 1 indicates that if u minimizes (12), then
E [u] ≤ 0. If on the other hand we can prove that E [u] & 0 with a sufficiently small error, it is clear that
it is not favorable to nucleate vortices, since the trial state v = 1 is then almost optimal.

To estimate the energy it is convenient to integrate the second term of (12) by parts : Since ∇·g2gvB =

0, we can write g2gvB = ∇⊥F with the dual gradient ∇⊥ = (−∂x2
, ∂x1

) and a suitable potential function
F . By Stokes’ formula we then have3

−

∫

R2

g2gv B · J(u) =

∫

R2

F ∇⊥ · J(u). (13)

2With significant simplifications, see [5, 6] for the full details.
3In full rigor, the integration should be restricted to a bounded region and boundary terms included in the analysis.
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Now, it is clear that the only potentially negative term in (12) is (13). It is thus the only one that could
favor the nucleation of vortices. Note also that the quantity ∇⊥ · J(u) appearing in the r.h.s. of (13) is
nothing but the curl of the superfluid current. It can thus (in analogy with fluid mechanics) be thought
of as a vorticity measure. A trivial estimate yields

∣

∣∇⊥ · J(u)
∣

∣ ≤ |∇u|2 and we thus have

∫

R2

1

2
g2gv|∇u|

2 −

∫

R2

g2gv B · J(u) ≥

∫

R2

(

1

2
g2gv − |F |

)

|∇u|2. (14)

The potential F is an explicit function of ggv and, using for the latter the gaussian ansatz described
in the preceding section, one can see that 2|F | ≤ g2gv. When Ω0 is sufficiently large for the gaussian
approximation to become accurate one can then infer that (14) is & 0, which indicates that nucleating
vortices can not decrease the energy. This is the desired lower bound to the energy E [u] and actually
gives more information: Since we have not used the third term in (12) so far, we deduce an upper bound
to this term. A careful analysis then reveals that energy considerations prevent u from vanishing in the
bulk of the condensate.

As mentioned before the behavior in the case of hard trapping potentials (s = ∞) is quite different: the
squeezing of the condensate against the hard walls of the trap due to the centrifugal force is much more
pronounced is this case and vortices therefore energetically more costly. This explains why the third
critical speed is considerably larger for soft trapping potentials (Ωc3 ≫ ε−4) than for hard potentials
(Ωc3 ∼ ε−2| log ε|−1).

3 Conclusions

We have sketched the energetic considerations leading to our proof that a phase transition from a vortex
lattice to a giant vortex state occurs in BECs rotated at a very large rotation speed. Our main finding
is that in the rescaled variables introduced in Section 2.1, the transition happens when Ω ≫ ε−4, i.e.,
Ωrot ≫ ε−4(s−2)/(s+2) in the physical variables. It would be interesting to know a precise estimate of the
critical speed for the phase transition, but since the potential vortex cores are comparable in size to the
bulk of the fluid, it is not even clear that a sharp transition, rather than a smooth crossover, occurs.
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