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Abstract

We study a rapidly rotating Bose-Einstein condensate confined to a finite trap in the framework of
two-dimensional Gross-Pitaevskii theory in the strong coupling (Thomas-Fermi) limit. Denoting the
coupling parameter by 1/ε2 and the rotational velocity by Ω, we evaluate exactly the next to leading
order contribution to the ground state energy in the parameter regime | log ε| ≪ Ω ≪ 1/(ε2| log ε|)
with ε → 0. While the TF energy includes only the contribution of the centrifugal forces the next
order corresponds to a lattice of vortices whose density is proportional to the rotational velocity.
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1 Introduction

Bose-Einstein condensates respond to rotational motion of the enclosing container by the creation of
quantized vortices. This remarkable manifestation of superfluidity has been studied, both experimentally
and theoretically, in dilute, ultracold Bose gases since almost a decade and still offers a number of
unsolved problems. We refer to the monograph [1], the review article [2], as well as the papers [3]-[17]
for extensive lists of references. Most of the theoretical work has been carried out within the framework
of the Gross-Pitaevskii (GP) equation for the wave function of the condensate. In the GP equation
the interaction is encoded in a single parameter g = 4πNa/L, where a is the scattering length of the
interaction potential, N the particle number and L the length scale associated with the external confining
potential. For rotating gases in their ground state the GP equation was derived in [10] (upper bound) and
[11] (lower bound) from the quantum mechanical many-body Hamiltonian with purely repulsive, short
range interactions and fixed values of the rotational velocity and the coupling parameter as N → ∞.
The extension of this derivation to the case when the coupling parameter and the rotational velocity
tend to infinity (or approach a critical value in the case of harmonic traps) has not yet been completed,
but the leading order asymptotics of the many-body energy for large coupling and rotational velocity in
anharmonic traps was computed in [12].
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Detailed results on the emergence of vortices as the rotational velocity is increased have been obtained
within two-dimensional GP theory when the GP interaction parameter is large (‘Thomas-Fermi’ limit)
and the rotational velocity is of the order of the logarithm of this parameter [6, 7, 8, 9, 18]. In this case
the number of vortices remains finite as the interaction parameter tends to infinity. The rotation has no
effect on the energy to leading order in the coupling parameter but there is a logarithmic contribution
due to the vortices in the next to leading order. By contrast, the papers [13]–[17] are mainly concerned
with the situation when the rotation is so fast that the centrifugal energy and the interaction energy are
comparable in magnitude. This holds when the rotational velocity increases like the square root of the
interaction parameter. This case was also considered in the many-body context in [12], relying partly on
estimates from [16]. The main result of [16] and [17] was the rigorous evaluation of the GP ground state
energy to leading order in the interaction parameter in the regime just mentioned. This energy can be
computed by minimizing a simple density functional that contains besides the interaction term another
term of the same order corresponding to the centrifugal potential. This functional was first introduced
in [13] where many of the basic insights about the physics of rapidly rotating condensates in anharmonic
traps can be found, see also [14] and [15]. We note that, since the rotational velocity is unbounded, the
confining potential must increase more rapidly than quadratically with the distance form the rotational
axis in order that the centrifugal forces do not tear the condensate apart.

In the present paper we evaluate exactly the next term in the asymptotic expansion beyond the leading
contribution in the parameter regime

| log ε| ≪ Ω ≪ 1/(ε2| log ε|) (1.1)

where the coupling parameter g has been written as 1/ε2 with ε → 0, and Ω is the rotational velocity. We
remark that the dimensionless parameter ε can be interpreted as the ratio between the ‘healing length’
(4πN/L3)−1/2 and the extension L of the confining trap. The subleading term in the energy corresponds
to the energy of a lattice of vortices of degree one such that the total vorticity is proportional to the
rotational velocity. In order to bring out the salient points as simply as possible we restrict ourselves to
the model considered in [16], i.e., the case of a flat, circular trap (‘bucket’) of finite radius.

When computing the upper bound on the energy we make a variational ansatz with a wave function
that is essentially the product of a shape function, taking the deformation due to the centrifugal forces
into account, and a function corresponding to a lattice of vortices uniformly distributed over the trap.
The evaluation of the energy can be cast in the form of an electrostatic problem with the vortices
playing the role of point charges while the vector potential due to the rotation can be regarded as an
electric field generated by a uniform charge distribution. The optimal arrangement of the vortices is then
determined by a minimization problem for the total electrostatic energy. When the rotational velocity
reaches O(1/(ε2| log ε|)) a different trial function, with the vorticity concentrated in a region where the
density is small (‘giant vortex’), gives a lower energy. This transition was first noted in [13] and the
estimates of the present paper corroborate it since our rigorous upper bound to the energy is smaller
than the energy of the giant vortex if Ω ≪ 1/(ε2| log ε|)).

To prove the lower bound the problem is reformulated in such a way that results from Ginzburg-Landau
(GL) theory obtained in [20] and [21] can be employed. The strong inhomogeneity of the density in fast
rotating condensates causes problems that make the reduction to the GL case not entirely straightforward,
but once these have been overcome a lower bound that matches the upper bound to subleading order in
the asymptotic parameter range (1.1) can be derived. The techniques of [20] and [21] also turn out to be
useful for the investigation of the vorticity of the minimizer.

2 The Mathematical Setting

We now recall the setting of [16] that will be used in the present paper. The condensate is confined to
the two-dimensional unit disc B1 and the rotational axis is perpendicular to the disc and passes through
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its center. We note that this model can also be applied to the description of a three-dimensional rotating
condensate confined to a long cylinder. The plane of the disc is the xy plane and ~r = (x, y) is the position
vector with length r, while ~ez denotes the unit vector in the z direction. The complex valued order
parameter (the wave function of the condensate) is denoted by Ψ(~r). In the non-inertial rotating frame
the GP energy functional can be written as

EGP[Ψ] =

∫

B1

d~r

{

∣

∣

∣

(

∇− i ~A
)

Ψ
∣

∣

∣

2

− Ω2r2|Ψ|2
4

+
|Ψ|4
ε2

}

, (2.1)

where the vector potential ~A is given by

~A ≡ Ω

2
~ez ∧ ~r. (2.2)

For convenience we also introduce the abbreviation

ω ≡ εΩ. (2.3)

For fixed ω the centrifugal and the interaction terms in (2.1) are both O(1/ε2). The kinetic first term,
containing A ∼ Ω, is formally also of order 1/ε2 if Ω ∼ 1/ε, but a complex phase factor in Ψ, due to

vortices, can partly compensate the effect of ~A. Indeed, in the ground state this term is of lower order
as we shall see.

The ground state properties of the condensate are obtained by minimizing the GP functional over the
domain

DGP =
{

Ψ ∈ H1(B1) | ‖Ψ‖2 = 1
}

. (2.4)

Here H1(B1) denotes the Sobolev space of complex valued functions Ψ on B1 such that both Ψ and ∇Ψ
are square integrable. The choice (2.4) naturally leads to (magnetic) Neumann boundary conditions for
the minimizer on ∂B1. Alternatively one could impose Dirichlet boundary conditions. For Ω ∼ 1/ε this
would affect the energy to order O(1/ε) that is negligible compared to the vortex contribution O(Ω| log ε|)
that we are interested in. In other parameter regions the effect of the boundary conditions can be more
significant, and the same remark applies to an extension of our analysis to homogeneous potentials as in
[17]. For simplicity we shall, however, in this paper stick to the choice (2.4) that highlights the vortex
contributions.

We denote by EGP the GP ground state energy and by ΨGP any corresponding minimizer. The
existence of such minimizer(s) as well as the fact that any minimizer solves the GP differential equation

−
(

∇− i ~A
)2

ΨGP − A2ΨGP + 2ε−2
∣

∣ΨGP
∣

∣

2
ΨGP = µGPΨGP, (2.5)

with boundary condition ∇rΨ
GP = 0 on ∂B1 can be deduced by standard techniques (see, e.g., [7]). The

chemical potential µGP is fixed by the L2−normalization of ΨGP, i.e.,

µGP = EGP + ε−2‖ΨGP‖4
4. (2.6)

In [16] we studied the asymptotics of EGP as ε → 0 and proved that the energy is well approximated
to leading order by minimizing the ‘Thomas-Fermi’ (TF) functional

ETF[ρ] =
1

ε2

∫

B1

d~r

{

ρ2 − ω2r2ρ

4

}

. (2.7)

Note that, unlike in [16, 17], we have included the factor 1/ε2 in the definition of ETF. The density
ρ(~r) ≥ 0 is the probability density associated with a condensate wave function Ψ, i.e., ρ = |Ψ|2. The TF
ground state energy,

ETF ≡ min
‖ρ‖1=1,ρ≥0

ETF[ρ] = ETF[ρTF], (2.8)
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and the corresponding normalized density ρTF can be explicitly calculated. The formulas and some
properties of relevance for this paper are collected in the Appendix. We note in particular that the
centrifugal forces may create a ‘hole’ in ρTF, i.e., the density ρTF vanishes on a disc centered at the origin
if ω > ωh ≡ 4/

√
π.

3 The Main Results

The main results proved in [16] are, in a slightly different notation, contained in the following

Theorem 3.1 (Leading order ground state energy asymptotics [16])
If Ω ∼ 1/ε as ε → 0, then

EGP = ETF + O
(

ε−1| log ε|
)

, (3.1)

whereas if 1/ε ≪ Ω,
EGP = ETF + O(ε−2) + O((εΩ)2| log ε|). (3.2)

In this paper we investigate the correction beyond the leading order TF term for the parameter range
| log ε| ≪ Ω ≪ 1/(ε2| log ε|). Our main result is as follows (the notation Ω . 1/ε means that Ω ≤ C/ε as
ε → 0, with some C < ∞):

Theorem 3.2 (Improved ground state energy asymptotics)
If | log ε| ≪ Ω . ε−1 as ε → 0, then

EGP = ETF +
Ω| log(ε2Ω)|

2
(1 + o(1)), (3.3)

whereas, if ε−1 . Ω ≪ ε−2| log ε|−1,

EGP = ETF +
Ω| log ε|

2
(1 + o(1)). (3.4)

In [16] we have shown that as a consequence of the energy asymptotics |ΨGP|2 converges as ε → 0 to
ρTF in L1-norm. Inside the hole, if present, it is exponentially small, i.e., bounded by exp(−const./εβ)
for a β > 0. See [16], Propositions 2.4 and 2.5.

The energy bounds also allow to prove a result about the uniform distribution of the vorticity of ΨGP

outside the hole, at least for Ω . 1/ε:

Theorem 3.3 (Uniform distribution of vorticity)
Let ΨGP be any GP minimizer and ε > 0 sufficiently small. If | log ε| ≪ Ω . ε−1, there exists a finite
family of disjoint balls

{

Bi
ε

}

⊂ supp
(

ρTF
)

such that

1. the radius of any ball is smaller than Ω−1/2,

2. the sum of all the radii is much smaller than Ω1/2,

3. on ∂Bi
ε,
∣

∣ΨGP
∣

∣ ≥ C| log(ε2Ω)|−1 with C > 0

and, denoting by ~ri,ε the center of each ball Bi
ε and by di,ε the winding number of |ΨGP|−1ΨGP on ∂Bi

ε,

2π

Ω

∑

di,εδ (~r − ~ri,ε)
w−→

ε→0
χTF(~r) d~r, (3.5)

in the sense of measures, where χTF(~r) stands for the characteristic function of supp
(

ρTF
)

.
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For Ω ≫ 1/ε the vorticity distribution is still an open question. In this regime ΨGP is not uniformly
bounded in ε and is essentially supported in an annulus of very small width ∼ ω−1 close to the boundary.
As we shall see, a trial function with a uniform distribution of vortices still gives the right energy to
subleading order for Ω ≪ 1/(ε2| log ε|), but for larger Ω a trial function without any vortices in the
support of ρTF (a ‘giant vortex’) has lower energy. It can be expected that for the true minimizers the
vortices are gradually expelled from the essential support of the density as Ω approaches 1/(ε2| log ε|)
but there are so far no rigorous results on the details of this phenomenon. The numerical investigations
of [22], however, support this picture.

4 Energy Upper Bound

For an upper bound we test the functional (2.1) with a trial function of the form

Ψ(~r) = c
√

ρ(~r) ξ(~r)g(~r), (4.1)

where c is a normalization constant, ρ a suitable regularization of ρTF, g is a phase factor, and ξ a
function that vanishes at the vortices, i.e., the singularities of g. To define the functions precisely we first
introduce some notation.
We denote by L a finite, regular lattice (triangular, rectangular or hexagonal) of points ~ri ∈ B1. Each
lattice point ~ri lies at the center of a lattice cell Qi and the lattice constant ℓ is chosen so that the area
of Qi is

|Qi| =
2π

Ω
. (4.2)

Thus,
ℓ = (const.)Ω−1/2 (4.3)

and the total number of lattice points in the unit disc is

N =
Ω

2
(1 + O(Ω−1/2)). (4.4)

For large ω = εΩ the support of ρTF has an area of the order (ω + 1)−1 and the number of lattice points
on the support of ρTF is of the order

N ′ = (ω + 1)−1Ω. (4.5)

In particular, for Ω ≫ 1/ε, N ′ = O(1/ε).
Using complex notation ζ = x + iy for the points ~r = (x, y) ∈ R

2 the phase factor g is defined as

g(~r) =
∏

ζi∈L

ζ − ζi

|ζ − ζi|
. (4.6)

The phase factor is singular at the lattice points but these singularities are compensated by the function

ξ(~r) =

{

1 if |ζ − ζi| ≥ t,
t−1|ζ − ζi| if |ζ − ζi| ≤ t.

(4.7)

Here t, with
min{ε, (ε/Ω)1/2} ≤ t ≪ Ω−1/2, (4.8)

is a variational parameter that will be fixed later. Thus ξ(~r) vanishes at the lattice points ~ri and is equal
to 1 outside of the union of the discs Bi

t of radius t centered at those points.
The size of t can be estimated by the following heuristic argument. The kinetic energy of a vortex in

a cell is of the order ekin ∼
∫ ℓ

t
(1/r)2r dr ∼ log(ℓ/t). Creating a vortex also causes an excess interaction
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energy because the density depletion in the vortex core of radius t has to be compensated by an increase
in density elsewhere. This leads to the additional interaction energy eint ∼ ρ (t/ε)2, and by minimizing
ekin + eint we obtain t ∼ ερ−1/2. For slow rotations where ρ = O(1) this gives t ∼ ε, while for rapid
rotation, where ρ = O(ω), we obtain t ∼ (ε/Ω)1/2. These heuristic considerations are confirmed by the
rigorous estimates below.

The density ρ(~r) can for ω ≤ ωh (see Eq. (A.1)) simply be taken to be equal to the TF density
ρTF(~r) (A.3) (note that ρTF depends on ω). For ω > ωh, however, ρTF vanishes in a ‘hole’ of radius

Rh = 1− const.(ω)−1 (see Eq. (A.6)) and
√

ρTF does not have finite kinetic energy. Hence it is necessary
in this case to regularize ρTF near the boundary of the hole. At the same time one has to take care that
the TF energy of the regularized density remains close to ETF. Both conditions are met if we put

ρ(r) =







0 if r ≤ Rh,
ρTF(Rh + Ω−1)Ω2(r − Rh)2 if Rh ≤ r ≤ Rh + Ω−1,
ρTF(r) otherwise.

(4.9)

Thus the regularized density is equal to ρTF except in an annulus of thickness Ω−1 around the hole, where
it increases quadratically with the distance from the hole. The latter property ensures finiteness of the
kinetic energy. We also note that, by (A.6) and (A.7), ρTF(Rh +Ω−1) = O(ε2Ω), so that, for any ~r ∈ B1,

ρ(r) = ρTF(r) + O(ε2Ω). (4.10)

We now collect some simple estimates that are needed in the proof of the upper bound. In the
following C will stand for a positive, finite constant that may differ from line to line but is independent
of Ω and ε.

First, note that ρTF ≤ C(ω + 1) while the area of the support of ρTF is C(ω + 1)−1. The density of
vortices is Ω/2π and the area of each vortex disc is πt2. Also, ε2Ω = o(1) by assumption. We thus have,
using (4.5) and (4.10),

∫

ρξ2 =

∫

ρ −
∫

ρ(1 − ξ2) ≥
∫

ρTF − ε2 − C Ω · t2 ≥ 1 − O(t2Ω). (4.11)

Hence the normalization constant satisfies

c ≤ 1 + C t2Ω. (4.12)

Likewise, using that |∇ξ| = t−1 in each vortex disc and zero outside the union of the discs, while the
number of vortices in the support of ρ is ≤ (ω + 1)−1Ω,

‖√ρ ∇ξ‖2
2 ≤ C(ω + 1) · t−2 · (ω + 1)−1Ω · t2 = C Ω. (4.13)

Next we consider, for ω > ωh, i.e., Rh > 0,

‖ξ∇√
ρ‖2

2 ≤ 1

4

∫ |∇ρ|2
ρ

≤ 1

4

∫

r<Rh+Ω−1

|∇ρ|2
ρ

+
1

4

∫

r≥Rin+Ω−1

|∇ρTF|2
ρTF

. (4.14)

By (4.9) and (4.10) first term is bounded by C Ω · (ε2Ω). Using (A.3) we obtain

∫

r≥Rh+Ω−1

|∇ρTF|2
ρTF

= C (εΩ)2
∫ 1

Rh+Ω−1

r3 dr

r2 − Rh
2 ≤ C (εΩ)2

∫ ω−1

Ω−1

du

u
≤ C (ε2Ω) · Ω| log ε|. (4.15)

The above estimate shows that the closer Ω is to ε−2, the larger is the kinetic contribution of the profile
√

ρTF and for Ω ∼ (ε2| log ε|)−1 is becomes of the same order as the other remainders, i.e., ∼ Ω. For
ω ≤ ωh, on the other hand, ρ = ρTF, and ∇√

ρ is uniformly bounded in ω, so ‖ξ∇√
ρ‖2

2 ≤ C in this case.
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Because g is a phase factor while
√

ρ and ξ are real-valued functions we have

∣

∣

∣

(

∇− i ~A
)

(
√

ρ ξ g)
∣

∣

∣

2

= |∇ (
√

ρ ξ)|2 + ξ2ρ
∣

∣

∣

(

∇− i ~A
)

g
∣

∣

∣

2

≤

2ξ2 |∇√
ρ|2 + 2ρ |∇ξ|2 + ξ2ρ

∣

∣

∣

(

∇− i ~A
)

g
∣

∣

∣

2

. (4.16)

We now obtain, using Eqs. (4.12)–(4.15),

EGP[Ψ] − ETF[|Ψ|2] = c2

∫

B1

d~r
∣

∣

∣

(

∇− i ~A
)

(
√

ρ ξ g)
∣

∣

∣

2

≤

c2

∫

B1

d~r ξ2ρ
∣

∣

∣

(

∇− i ~A
)

g
∣

∣

∣

2

+ 2c2

∫

B1

d~r ξ2 |∇√
ρ|2 + 2c2

∫

B1

d~r ρ |∇ξ|2 ≤

(

1 + O(t2Ω)
)

∫

B1

d~r ξ2ρTF
∣

∣

∣

(

∇− i ~Aε

)

g
∣

∣

∣

2

+ C
{

Ω + ε2Ω2| log ε|
}

. (4.17)

The estimate for the vortex kinetic energy
∫

B1

d~r ξ2 ρTF|(∇− i ~A)g|2 is given in the following Proposition.

Proposition 4.1 (Vortex kinetic energy)
If ε → 0, and 1 ≪ Ω ≪ 1/ε2, then

∫

B1

d~r ξ2 ρTF
∣

∣

∣

(

∇− i ~A
)

g
∣

∣

∣

2

≤ 1
2Ω | log(t2Ω)| + O(Ω) + O(Ω (ε2Ω)1/2| log(t2Ω)|). (4.18)

Proof: The idea behind the proof is the electrostatic analogy that was already mentioned in the
Introduction and is made precise in Eq. (4.22) below and the considerations following it. The vortices, i.e.,
the singularities of the phase factor g, play the role of unit charges while the vector potential corresponds,
after a conformal transformation, to the electric field of a uniform charge distribution. The density of
the vortices is chosen in such a way that the field from the uniform charge distribution is compensated
as far as possible and this requires in particular that each unit cell Qi has total charge zero. If the unit
cells were rotationally symmetric there would be no interaction between them by Newton’s theorem.
Complete rotational symmetry is, of course, not possible, but the closest approximation to it among the
regular lattices is a lattice with hexagonal cells, i.e., a triangular arrangement of the vortices, that gives
the lowest electrostatic interaction energy. However, the difference between the three possible types of
unit cells, triangular, rectangular and hexagonal does not show up in the term of order Ω | log(t2Ω)| but
only in higher order corrections to this contribution.

To formalize these ideas we note first that |(∇− i ~A) g|2 = |∇φ − ~A|2 where φ =
∑

i arg(ζ − ζi) is the
phase of g. The conjugate harmonic function

φ̃(~r) =
∑

i

log |~r − ~ri| (4.19)

satisfies
∇φ = ∇rφ̃ ~eϑ −∇ϑφ̃ ~er (4.20)

where ∇r = ~er · ∇ = ∂/∂r and ∇ϑ = ~eϑ · ∇ = r−1∂/∂ϑ. With ~A = A(r)~eϑ we thus have

∣

∣

∣
∇φ − ~A

∣

∣

∣

2

=
∣

∣

∣
∇ϑφ̃

∣

∣

∣

2

+
∣

∣

∣
∇rφ̃ − A

∣

∣

∣

2

=
∣

∣

∣
∇ϑφ̃ ~eϑ + ∇rφ̃ ~er − A ~er

∣

∣

∣

2

=
∣

∣

∣
∇φ̃ − A ~er

∣

∣

∣

2

. (4.21)

We now define
~E(~r) = ∇φ̃(~r) − A(r)~er (4.22)
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and note that ∇φ̃ =
∑

i(~r − ~ri)/|~r − ~ri|2 can be regarded as the electric field generated by point charges
localized at the positions of the vortices, while A(r)~er = (Ω/2)r~er is the field generated by a uniform

charge density of magnitude Ω/2π = |Qi|−1. We can thus write ~E(~r) =
∑

i
~Ei(~r) =

∑

i ∇Φi(~r) with

Φi(~r) =

∫

B1

d~r′ σi(~r
′) log |~r − ~r′| (4.23)

and
σi(~r

′) = δ(~r′ − ~ri) − |Qi|−1χi(~r
′) (4.24)

where χi is the characteristic function of the cell Qi.
By a transformation of variables, writing ~r = Ω−1/2~x, we map the cells Qi of side length ℓ ∼ Ω−1/2 onto
cells Qi

1 of side length O(1). The characteristic function of Qi
1 is denoted by χi,1(~x

′) and we use the index
1 also for the charge densities, electric fields and potentials generated by the cells Qi

1. We can then write

σi(~r) = Ω
[

δ(~x′ − ~xi) − |Qi
1|−1χi,1(~x

′)
]

= Ω σi,1(~x
′) (4.25)

and
Ei(~r) = Ω1/2Ei,1(~x) (4.26)

where

Ei,1(~x) = ∇
∫

B1

d~x′ σi,1(~x
′) log |~x − ~x′| = ∇Φi,1(~x). (4.27)

Consider now the cell Q0
1 centered at the origin. The multipole expansion of Φ0,1(~x) for ~x /∈ Q0

1 is

Φ0,1(~x) = q log |~x| −
∞
∑

k=1

Ck cos(kϑ) + Sk sin(kϑ)

|~x|k (4.28)

with

q =

∫

Q0

1

d~x′ σ0,1(~x
′),

Ck = k−1

∫

Q0

1

d~x′ σ0,1(~x
′)|~x′|k cos(kϑ′), Sk = k−1

∫

Q0

1

d~x′ σ0,1(~x
′)|~x′|k sin(kϑ′). (4.29)

By neutrality of the charge distribution (4.24) it is clear that q = 0 and by symmetry of the unit cell
it is also clear that there is no dipole moment, i.e., C1 = S1 = 0. We conclude that Φ0,1(~x) decays at

least as |~x|−2 and the corresponding field ~E0,1(~x) decays at least as |~x|−3. For square or hexagonal cells
it decreases even faster.

All cells Qi are obtained by translations and scaling from the cell Q0
1. From the considerations above

(note, in particular, Eq. (4.26)) we can thus conclude that if two of the original cells, Qi and Qj have

distance O(Ω−1/2n) from each other, then the strength of the field ~Ej(~r) for ~r ∈ Qi is at most O(Ω1/2n−3).
Since, for a fixed cell Qi, there are at most O(n) cells at distance O(Ω−1/2n) from it, we can estimate for
~r ∈ Qi

∣

∣

∣

~E(~r) − ~Ei(~r)
∣

∣

∣
≤
∑

j 6=i

| ~Ej(~r)| ≤ const.Ω1/2
∑

n

n · n−3 = O(Ω1/2). (4.30)

Writing
| ~E|2 = | ~Ei|2 + 2( ~E − ~Ei) · ~Ei + | ~E − ~Ei|2 (4.31)

and using the simple bound ~Ei(~r) ≤ |~r − ~ri|−1, we conclude that for ~r ∈ Qi

| ~E(~r)|2 ≤ | ~Ei(~r)|2 + const.(Ω1/2|~r − ~ri|−1 + Ω) (4.32)
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and hence

∫

Qi\Bi
t

d~r | ~E(~r)|2 −
∫

Qi\Bi
t

d~r | ~Ei(~r)|2 ≤ const.

∫ C Ω−1/2

t

dr r
(

Ω1/2r−1 + Ω
)

= O(1) (4.33)

while
∫

Bi
t

d~r ξ(~r)2| ~E(~r)|2 −
∫

Bi
t

d~r ξ(~r)2| ~Ei(~r)|2 ≤ const.

∫ t

0

dr r (r/t)2(Ω1/2r−1 + Ω) = O((t2Ω)1/2). (4.34)

On the other hand, since ~Ei(~r) ≤ |~r − ~ri|−1,

∫

Qi\Bi
t

d~r | ~Ei(~r)|2 ≤ 2π

∫ C Ω1/2

t

dr r r−2 = π| log(t2Ω)| + O(1) (4.35)

and
∫

Bi
t

d~r ξ(~r)2| ~Ei(~r)|2 ≤ 2π

∫ t

0

dr r (r(Ω/ε)1/2)2r−2 = O(1). (4.36)

Putting all the estimates above together we obtain
∫

B1

d~r ρTF(~r) ξ(~r)2| ~E(~r)|2 ≤
(

1 + O((t2Ω)1/2)
)

∑

i

sup
~r∈Qi

ρTF(~r)
(

π| log(t2Ω)| + O(1)
)

. (4.37)

It remains to estimate the Riemann approximation error

R ≡ |Q0|
∑

i

sup
~r∈Qi

ρTF(~r) −
∫

B1

d~r ρTF(~r) ≤ |Q0|
∑

i

{

sup
~r∈Qi

ρTF(~r) − inf
~r∈Qi

ρTF(~r)

}

. (4.38)

We use here that ‖dρTF/dr‖∞ ≤ C(εΩ)2 and that the number of cells Qi that intersect the support of
ρTF is bounded by C ε−1(1 + Ω−1/2). Hence

R ≤ CΩ−1 · Ω−1/2(εΩ)2 · ε−1(1 + Ω−1/2) = C (ε2Ω)1/2(1 + Ω−1/2). (4.39)

It now follows that the right hand side of (4.37) is bounded by

(1 + O((t2Ω)1/2)) (1 + R) |Q0|−1
(

π| log(t2Ω)| + O(1)
)

=

1
2Ω | log(t2Ω)| + O(Ω) + O(Ω (ε2Ω)1/2| log(t2Ω)|). (4.40)

✷

To complete the proof of the upper bound we still need to estimate the difference between ETF[|Ψ|2]
and ETF = ETF[ρTF] and choose the radius t of the vortex discs.

The TF functional is

ETF[|Ψ|2] = ε−2

∫

B1

d~r

{

|Ψ|4 − (εΩ)2r2|Ψ|2
4

}

. (4.41)

We consider the two terms separately. For the nonlinear interaction term we use that c = 1 + O(t2Ω)
and ξ2ρ ≤ ρTF to obtain

ε−2

∫

B1

d~r|Ψ|4 = ε−2

∫

B1

d~r(c2ξ2ρ)2 ≤ 1 + C t2Ω

ε2

∫

B1

d~r
(

ρTF
)2

= ε−2

∫

B1

d~r
(

ρTF
)2

+remainder. (4.42)
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Since ρTF ≤ C (εΩ + 1) and
∫

ρTF = 1, the remainder is

t2Ω

ε2

∫

B1

d~r
(

ρTF
)2 ≤ C

t2Ω

ε2
(εΩ + 1) (4.43)

and this has to be small compared to Ω| log(t2Ω)|. If Ω . 1/ε this is clearly satisfied for t = ε. On the
other hand, if εΩ ≫ 1 we can take t = (ε/Ω)1/2 Note that for Ω ∼ 1/ε both choices coincide.

The centrifugal contribution can by partial integration and using the normalization of Ψ be written

− Ω2

4

∫

B1

d~r r2|Ψ|2 = −πΩ2

2
+ πΩ2

∫ 1

0

dr r Φ(r), (4.44)

with

Φ(r) =

∫ r

0

dr′ r′ |Ψ(r′)|2. (4.45)

Likewise,

− Ω2

4

∫

B1

d~r r2ρTF = −πΩ2

2
+ πΩ2

∫ 1

0

dr r ΦTF(r), (4.46)

with

ΦTF(r) =

∫ r

0

dr′ r′ ρTF(r′).

From (4.9) and (4.12) we obtain
Φ(r) ≤ ΦTF(r) + C t2Ω. (4.47)

Moreover, the support of Φ as well as ΦTF has area ≤ (εΩ + 1)−1. Hence

Ω2

∫ 1

0

dr
{

ΦTF(r) − Φ(r)
}

≤ C Ω2 · t2Ω(εΩ + 1)−1. (4.48)

If εΩ is bounded and t = ε, this is bounded by C Ω · (εΩ)2 ≤ C Ω. If εΩ ≫ 1, we take t2 = ε/Ω and
obtain again C Ω as bound.
We summarize the findings in the following

Proposition 4.2 (Energy upper bound)
For ε → 0 and 1 ≪ Ω . 1/ε we have

EGP ≤ ETF + 1
2Ω| log(ε2Ω)| + O(Ω), (4.49)

and for 1/ε . Ω ≪ 1/ε2

EGP ≤ ETF + 1
2Ω| log ε| + O(Ω) + O(Ω (ε2Ω)1/2| log ε|). (4.50)

As we will see in the next section, the upper bounds are matched by corresponding lower bounds
only in the parameter range | log ε| ≪ Ω ≪ 1/(ε2| log ε|). In fact, for Ω . | log ε| there are only finitely
many vortices [6, 8, 9, 18] and the upper bound (4.49) is too large. For 1/(ε2| log ε|) . Ω ≪ 1/ε2, on
the other hand, a trial function different from (4.1) gives lower energy than (4.50). This is the trial
function considered in [16] Eq. (3.36) for Ω ≫ ε−1 that corresponds to a ‘giant vortex’ where all the
vorticity is concentrated at the center and the support of ρTF is vortex free. In fact, for such a trial
function the next correction to the TF energy is O(1/ε2), cf. (3.2), and this is smaller than Ω| log ε| in the
parameter range. This transition at Ω ∼ 1/(ε2| log ε|) can also be understood by the following heuristic
argument, employing the electrostatic analogy: For Ω ≫ 1/ε the number of cells in the support of ρTF is
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∼ 1/ε. Without vortices each cell has unit ‘charge’, originating from the vector potential, and the mutual
interaction energy of the cells is of the order 1/ε2. Putting a vortex in each cell neutralizes the charge so
that the interaction energy becomes negligible, but instead there is an energy cost of order Ω| log ε| due
to the vortices. Equating these two energies leads to Ω ∼ 1/(ε2| log ε|) as the limiting rotational velocity
above which the ansatz (4.1) is definitely not optimal.

It should be noted that also for 1/ε . Ω ≪ 1/(ε2| log ε|) one could for the upper bound replace the
distribution of the vorticity on a lattice within the ‘hole’ by a single phase factor corresponding to a giant
vortex at the origin, but in order to obtain the correction beyond the TF term the support of ρTF can
not be vortex free. The detailed vortex distribution of the true minimizer of the GP energy functional is,
however, an open question.

5 Energy Lower Bound

The lower bound to the GP ground state energy EGP will be proved by a step-by-step reduction to the
lower bound of the energy of a Ginzburg-Landau (GL) energy function for which results of [19, 20, 21]
can be employed. As a preparation we first prove a bound on the GP minimizers in terms of the TF
density:

Lemma 5.1 (Upper Bound for
∣

∣ΨGP
∣

∣)
For ε → 0 and | log ε| ≪ Ω ≪ (ε2| log ε|)−1,

∥

∥ΨGP
∥

∥

2

∞
≤ ρTF(1)(1 + o(1)). (5.1)

Proof: Setting U ≡
∣

∣ΨGP
∣

∣

2
, we first note that the upper bound (4.50) and the trivial lower bound

EGP ≥ ETF imply the convergence of U to ρTF in L2-norm. Indeed, using the simple bound 2ρTF ≥
ε2µTF + ω2r2/4, the L1 normalization of U, and the identity µTF = ETF + ε−2‖ρTF‖2

2, we have
∫

B1

d~r
(

U − ρTF
)2 ≤

∫

B1

d~r

[

U2 − µTFU − ω2r2U

4
+ ρTF2

]

= ε2
(

ETF [U] − ETF
)

(5.2)

≤ ε2
(

EGP − ETF
)

≤ C Ωε2| log ε| = o(1), (5.3)

by (4.49) and (4.50) and the conditions on Ω. As a consequence

‖U‖2
2 −

∥

∥ρTF
∥

∥

2

2
= 2

∫

B1

d~r ρTF
(

U − ρTF
)

+

∫

d~r
(

U − ρTF
)2 ≤ ρTF(1)1/2 o(1) (5.4)

where we have used the Schwarz inequality and the trivial bound ‖ρTF‖2
2 ≤ ‖ρTF‖∞ = ρTF(1), which

follows from the L1 normalization of ρTF. Now ρTF(1) ≥ C(ω + 1) and theqrefore

‖U‖2
2 −

∥

∥ρTF
∥

∥

2

2
≤ o(1) ρTF(1). (5.5)

Since ε2(µGP − µTF) = ε2(EGP − ETF) + ‖U‖2
2 −

∥

∥ρTF
∥

∥

2

2
we thus have

ε2(µGP − µTF) ≤ o(1) ρTF(1). (5.6)

Now acting as in the proof of Proposition 2.4 in [16], we obtain from the variational equation (2.5)

− 1

2
∆U ≤

[

ε2µGP +
ω2

4
− 2U

]

U

ε2
≤
[

ε2
(

µGP − µTF
)

+ 2
(

ρTF(1) − U
)] U

ε2
≤

2
[

(1 + o(1))ρTF(1) − U
] U

ε2
, (5.7)

by (A.5) and the above estimate for ε2(µGP − µTF). At the maximum of U the left hand side of (5.7) is
nonnegative and thus (5.1) holds.
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✷

We now proceed with the proof of the lower bound. The first step is the extraction of the TF profile
ρTF from the GP minimizer ΨGP, i.e., the ansatz ΨGP =

√

ρTFu, which, one the one hand, allows to get
rid of the leading order term in the energy asymptotics and, on the other hand, implies that u minimizes
a weighted GL functional. Unfortunately such a factorization is well defined only if the TF profile ρTF

does not vanish inside B1 , i.e., for ω < ωh. In order to get rid of this problem we first restrict the
integration domain in the GP functional and set

T ≡
{

~r ∈ B1

∣

∣ ρTF(r) ≥ ω| log δ|−1
}

, (5.8)

with
δ ≡ ε2Ω| log ε| ≪ 1, (5.9)

by (1.1). Note that
| log δ| ≤ C| log ε|, (5.10)

since δ ≫ ε2| log ε|2, by (1.1), so that 0 ≥ log δ ≥ log(ε2| log ε|2) ≥ C log ε. Note that R2
h+ω−1| log δ|−1 <

1, since R2
h = 1 − Cω−1 and | log δ| ≫ 1, so, by (A.7), the set T is not empty. Moreover, if ω/ωh is

sufficiently small then the set T coincides with the whole trap B1 since, in that case, ρTF(r) ≥ C > 0 for
any ~r ∈ B1.
For Ω and ε satisfying (1.1) we now define for ~r ∈ T

u(~r) ≡ ΨGP(~r) ρTF(r)
−1/2

. (5.11)

This is a smooth function with |u|2 ≤ C| log δ| because of Lemma 5.1. Adding the kinetic energy term
to both sides of (5.2) we obtain, exploiting the nonnegativity of the integrand,

EGP ≥ ETF +

∫

supp(ρTF)

d~r

{

∣

∣

∣

(

∇− i ~A
)

ΨGP
∣

∣

∣

2

+ ε−2
(

ρTF −
∣

∣ΨGP
∣

∣

2
)2
}

. (5.12)

Introducing the weighted GL-type functional

ẼGP [u] ≡
∫

T

d~r ρTF(r)

{

∣

∣

∣

(

∇− i ~A
)

u
∣

∣

∣

2

+ ε−2ρTF(r)
(

1 − |u|2
)2
}

, (5.13)

we thus obtain, since T ⊂ supp
(

ρTF
)

,

EGP
[

ΨGP
]

− ETF − ẼGP [u] ≥ 1

2

∫

T

d~r ∇ρTF · ∇ |u|2 ≥ Cω2

∫

T

d~r ~r · ∇ |u|2 ≥

− Cω2

∫

T

d~r |u|2 ≥ −Cω| log δ|, (5.14)

which yields, by (5.10),
EGP ≥ ETF + ẼGP [u] − Cω| log ε|. (5.15)

According to (5.15) the correction to the leading term ETF can thus be estimated from below by a
weighted GL energy ẼGP[u], where the Lebesgue measure is replaced by ρTF(~r) d~r. Compared with the

usual GL setting there are two differences, however: The internal magnetic field ~A is in our case fixed
from the outset and the coupling parameter is ρTF(~r) ε−2, i.e., it depends on the TF density at each
position.
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To deal with the latter point we decompose the integration domain into small cells: Let L̂ be the
square regular lattice

L̂ ≡
{

~ri = (mℓ̂, nℓ̂), m, n ∈ Z
∣

∣Qi ⊂ T
}

, (5.16)

where Qi denotes the lattice cell centered at ~ri ∈ L̂ and

√

| log ε|
Ω

≪ ℓ̂ ≪ min

[

1,
1

ω| log δ|

]

. (5.17)

Note that the above conditions are compatible: Multiplying both side by ω and assuming that ω ≥
| log δ|−1, (5.17) becomes

√
δ ≪ ωℓ̂ ≪ | log δ|−1, which can always be fulfilled since δ ≪ 1 by definition.

Note also that the lattice spacing is much larger than the one chosen in the upper bound proof, where
the lattice constant was ℓ ∼ Ω−1/2. By the lower bound on ℓ̂ each lattice cell can be expected to contain
a large number of vortices which turns out to be helpful for estimating the energy. The upper bound on
ℓ̂ guarantees that ℓ̂ is much smaller than the width of T, which is of order (ω + 1)−1. This is useful for
the extraction of the TF profile.

By (A.3), ρTF(r) ≥ ρTF(ri)(1 − O(ℓ̂ω| log δ|)), for any ~r ∈ Qi, so that the above inequalities imply

ẼGP [u] ≥
∑

~ri∈L

∫

Qi

d~r ρTF(r)

{

∣

∣

∣

(

∇− i ~A
)

u
∣

∣

∣

2

+ ε−2ρTF(r)
(

1 − |u|2
)2
}

≥

(1 − o(1))
∑

~ri∈L

ρTF(ri) E(i)[u], (5.18)

with

E(i)[u] ≡
∫

Qi

d~r

{

∣

∣

∣

(

∇− i ~A
)

u
∣

∣

∣

2

+ ε−2ρTF(ri)
(

1 − |u|2
)2
}

. (5.19)

Now the analogy with the GL functional is made explicit, since, except for the coupling parameter which
still contains ρTF, the functional E(i) is precisely the GL energy functional

EGL
[

u, ~A′
]

=

∫

Qi

d~r

{

∣

∣

∣

(

∇− i ~A′
)

u
∣

∣

∣

2

+
∣

∣

∣
∇ ∧ ~A′ − ~hex

∣

∣

∣

2

+ ε−2ρTF(ri)
(

1 − |u|2
)2
}

(5.20)

evaluated at (u, ~A) with an external magnetic field ~hex = Ω~ez. It is clear that the GL energy

EGL ≡ inf
u, ~A′

EGL[u, ~A′] (5.21)

is a lower bound to the ground state energy of E(i) because the configuration with the uniform internal
magnetic field corresponding to ~A′ = ~A = Ω~ez ∧ ~r/2 is only one among all possible configurations
considered in the minimization of the GL functional.

We can now state the main estimate needed for the proof of the lower bound.

Proposition 5.1 (Lower bound inside cells)

For any Ω satisfying (1.1) and ε sufficiently small, it is possible to find ℓ̂ in such a way that (5.17) is
fulfilled and

E(i) [u] ≥ Ωℓ̂2| log γ|
2

(1 − o(1)) , (5.22)

where γ ≡ min[ε, ε2Ω].
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Proof: The key point in the proof of (5.22) is a rescaling of Qi (together with the choice (5.17) of the
lattice spacing), which allows to reduce the problem to the minimization of a GL functional in a different

regime. We thus set ~x ≡ ℓ̂−1(~r − ~ri),

ũ(~x) ≡ u
(

~ri + ℓ̂~x
)

, ~B(~x) ≡ ℓ̂ ~A
(

~ri + ℓ̂~x
)

, (5.23)

where ~ri stands for the center of Qi. By such a change of coordinates in (5.19), we obtain

E(i)[u] = Ẽ(i) [ũ] =

∫

Q1

d~x

{

∣

∣

∣

(

∇− i ~B
)

ũ
∣

∣

∣

2

+ ε−2ℓ̂2ρTF(ri)
(

1 − |ũ|2
)2
}

, (5.24)

where Q1 is a unitary square centered at the origin. Note that the rescaled vector potential ~B is explicitly
given by

~B(~x) =
Ωℓ̂~ez ∧ ~ri

2
+

Ωℓ̂2~ez ∧ ~x

2
, (5.25)

and the corresponding magnetic field is

h̃ ≡ curl ~B = Ωℓ̂2. (5.26)

In the following we investigate the minimization of the functional Ẽ(i): We first notice that, by gauge
invariance, one can get rid of the constant term Ωℓ̂~ez ∧ ~ri/2 in (5.25):

inf
ũ∈H1(Q1)

Ẽ(i)[ũ] ≥ inf
ũ∈H1(Q1)

∫

Q1

d~x

{

∣

∣

∣

(

∇− iℓ̂2 ~A(~x)
)

ũ
∣

∣

∣

2

+ ε−2ℓ̂2ρTF(ri)
(

1 − |ũ|2
)2
}

. (5.27)

We now introduce a new infinitesimal parameter ǫ defined as

ǫ ≡ ε

ℓ̂
√

ρTF(ri)
≤ Cε

√

Ω| log δ|
ω| log ε| ≤ C

√
ε ≪ 1, (5.28)

by (5.9), (5.8) and (5.17). It follows that

E(i)[u] ≥ inf
ũ∈H1(Q1)

∫

Q1

d~x

{
∣

∣

∣

∣

(

∇− ih̃ex~ez ∧ ~x

2

)

ũ

∣

∣

∣

∣

2

+ ǫ−2
(

1 − |ũ|2
)2
}

, (5.29)

for a magnetic field h̃ex satisfying the conditions

| log ǫ| ≪ h̃ex = Ωℓ̂2 ≪ 1

ǫ2
. (5.30)

Indeed, by (5.8) and (5.28),

Ωℓ̂2 =
Ωε2

ǫ2ρTF(ri)
≤ ε| log δ|

ǫ2
≪ 1

ǫ2
, Ωℓ̂2 ≫ | log ε| ≥ | log ǫ|, (5.31)

because 0 ≥ log ǫ = log ε − log(ℓ̂
√

ρTF(ri)) and

ℓ̂
√

ρTF(ri) ≪ min

[

1
√

| log δ|
,

1√
ω| log δ|

]

≪ 1, (5.32)
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which implies log ǫ ≥ log ε and | log ǫ| ≤ | log ε|.
The functional on the right hand side of (5.29) is precisely the GL functional on Q1 with external magnetic
field h̃ex~ez and parameter ǫ, i.e.,

ẼGL
[

ũ, ~A′
]

≡
∫

Q1

d~x

{

∣

∣

∣

(

∇− i ~A′
)

ũ
∣

∣

∣

2

+
∣

∣

∣
curl ~A′ − h̃ex~ez

∣

∣

∣

2

+ ǫ−2
(

1 − |ũ|2
)2
}

, (5.33)

evaluated on the configuration
(

ũ , ~A′
)

=
(

u , h̃ex(ǫ)~ez ∧ ~x/2
)

. (5.34)

and (5.30) corresponds to the GL regime where the external magnetic field is between the first and the
second critical fields. We can thus apply the lower bound for the GL functional proven in [20], Theorem
1.1 (note that in the definition of the GL functional given in [20] there is overall factor 1/2), to get

E(i)[u] ≥ (1 − o(1))hex log
1

ǫ
√

hex

= (1 − o(1))
Ωℓ̂2

2
log

ρTF(ri)

ε2Ω
≥ (1 − o(1))

Ωℓ̂2| log γ|
2

, (5.35)

since ρTF(ri) ≥ ω| log δ|−1 inside T, if Ω & ε−1, and ρTF(ri) ≥ C, if Ω ≪ ε−1.

✷

The proof of the lower bound to the GP energy EGP is now almost complete. Collecting the lower bounds
inside all cells proven in the proposition above, we have

ẼGP [u] ≥ Ωℓ̂2| log γ|
2

∑

~ri∈L

ρTF(ri)(1 − o(1)). (5.36)

The replacement of the Riemann sum by the integral can be done exactly as in (5.18): By the symmetry
of the lattice cell and the L1−normalization of ρTF,

∑

~ri∈L

ρTF(ri) ≥
1

ℓ̂2

(

∫

∪iQi

d~r ρTF(r) − C max[ℓ̂, ωℓ̂]

)

≥ 1 − o(1)

ℓ̂2
, (5.37)

and we finally obtain

EGP ≥ ETF +
Ω| log γ|

2
(1 − o(1)). (5.38)

Since γ = min[ε, ε2Ω] this gives the lower bounds in (3.3) and (3.4). Note that the condition Ω ≪
1/(ε2| log ε|) entered in (5.9).

6 Vorticity of GP Minimizers

In this Section we prove Theorem 3.3, which is a consequence of the energy asymptotics in (3.3) together
with a similar result in GL theory. Indeed we shall prove that one can associate to any GP minimizer
a GL configuration satisfying certain energy bounds, which, by exploiting a result proven in [20], yield
the uniform distribution of vorticity. The proof closely follows the analysis performed in Section 5 in [20]
and relies on Proposition 5.1 in this reference as a key ingredient.

It is appropriate to point out that Theorem 3.3 is a statement about the uniform distribution of the
local winding numbers of Ψ in the support of ρTF but not about the nature of the singularties. The energy
considerations behind this result are not sufficient to exclude the occurrence of singularities that are not
pointlike, e.g., lines of zeros of ΨGP. While we expect that ΨGP contains only isolated vortices in the
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parameter range (1.1), a proof of this has not been accomplished. The same is true for the corresponding
question in GL theory (see, e.g., [20, 21]).

Proof of Theorem 3.3:
Exploiting the energy bounds proved before (see (4.49), (5.15), (5.18) and (5.22)), we obtain, with ℓ̂ and
L̂ as in (5.16)-(5.17),

− o(1)Ωℓ̂2| log(ε2Ω)|
∑

~ri∈L̂

ρTF(ri) ≤
∑

~ri∈L̂

ρTF(ri)

[

E(i)[u] − Ωℓ̂2| log(ε2Ω)|
2

]

≤ CΩ, (6.1)

so that, since the sum is performed over the lattice L̂ ⊂ T, i.e., where ρTF ≥ ω| log δ|−1,

∑

~ri∈L̂

ρTF(ri)

∣

∣

∣

∣

∣

E(i)[u] − Ωℓ̂2| log(ε2Ω)|
2

∣

∣

∣

∣

∣

≤ g(ε) Ωℓ̂2| log(ε2Ω)|
∑

~ri∈L̂

ρTF(ri), (6.2)

for some g(ε) → 0, as ε → 0.
Now we can distinguish, as in [20], between good and bad cells, where the above inequality yields an
upper (resp. lower) bound. The key point is that, if the definition of such cells is done in the appropriate
way, the upper bound can be used to prove a uniform distribution of vorticity (inside good cells) and,
at the same time, there are only few bad cells, i.e., their number is only a remainder with respect to the
total number of cells. The final result would then be a simple consequence of the fact that cells cover
supp

(

ρTF
)

in the limit ε → 0.
We say that a cell Qi is a good cell, if

E(i)[u] − Ωℓ̂2| log(ε2Ω)|
2

≤
√

g(ε) Ωℓ̂2| log(ε2Ω)|, (6.3)

while inside bad cells the inequality is reversed.
We can thus apply to any good cell Proposition 5.1 in [20], which implies the existence of a finite family
of disjoint discs Bi

ε, i = 1, . . . , k, such that the sum of all the radii is bounded by Ω−1/2 and |u| > 1/2 on
∂Bi

ε. Points 1, 2 and 3 in Proposition 3.3 then easily follows. In particular point 2 follows from a simple

bound on the total number of cells, i.e., N ≪ Ω−1, which is a consequence of the conditions (5.17) on ℓ̂.
Furthermore, setting di equal to the winding number of u on ∂Bi

ε, which is also the winding number of
|ΨGP|−1ΨGP because ρTF > 0 inside T , we have

2π
∑

di
ε ≥ Ωℓ̂2(1 − o(1)), 2π

∑

|di
ε| ≤ Ωℓ̂2(1 + o(1)). (6.4)

The second estimate above in particular implies that, by (5.17), the measure on the left hand side of
(3.5) is uniformly bounded in ε, which guarantees its weak convergence. It remains only to show that it
converges to the uniform measure on supp

(

ρTF
)

. To this purpose we first have to show that the number

of bad cells included in any given open set S ⊂ supp
(

ρTF
)

(independent of ε, i.e., such that |S| ≥ C > 0)
is, for ε → 0, much smaller than the total number of cells in S. In fact, since the area of S is positive and
the diameter of the cells tends to zero for ε → 0, it suffices to shows that this is true for S = supp

(

ρTF
)

.
Denote by I the sets of indices i ∈ N such that Qi is a good (resp. bad) cell, then, by definition of bad
cell and (6.2),

NBΩℓ̂2| log(ε2Ω)|
√

g(ε) ≤
∑

i∈J

[

E(i)[u] − Ωℓ̂2| log(ε2Ω)|
2

]

≤ CNΩℓ̂2| log(ε2Ω)|g(ε), (6.5)
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where NB denotes the number of bad cells and N the total number of cells. As a consequence

NB ≤ C
√

g(ε)N, (6.6)

and, since g(ε) = o(1), the number of bad cells is always much smaller than the total number of cells.
The result can be easily extended to any set S ⊂ B1 by observing that the upper and lower bounds to
the energy applies to any open subset of B1.
Theqrefore, for any given open subset S ⊂ supp

(

ρTF
)

, good cells exhaust the whole of S as ε → 0, i.e.,

NGℓ̂2 → |S|. Now, collecting all the disc families inside good cells and setting

µ ≡ 2π

Ω

∑

di,εδ (~r − ~ri,ε) , (6.7)

where ~ri,ε stands for the center of Bi
ε, one has, by the first estimate in (6.4),

µ(S) ≥ NGℓ̂2 ≥ (1 − o(1))|S|, (6.8)

and similarly, by the second estimate in (6.4),

µ(S) ≤ (1 + o(1))NGℓ̂2 ≤ (1 + o(1))|S|, (6.9)

which implies (3.5), since S is arbitrary.

✷

7 Conclusions

Within the framework of two-dimensional GP theory we have evaluated exactly to subleading order the
contributions of vorticity to the energy of a rapidly rotating Bose-Einstein condensate in a finite, flat
trap. The results of the mathematical analysis lend support to the physical picture of a large number of
vortices that are arranged in a triangular lattice at not too high rotational velocities but are eventually
replaced by a ‘giant vortex’ with all the vorticity located outside the bulk of the density at sufficiently
fast rotation. It would be desirable to substantiate this picture even further by generalizing Theorem
3.3 for Ω ≫ ε−1 and by proving a lower bound to the energy matching the ‘giant vortex’ upper bound
of [16] to subleading order for Ω & ε−2| log ε|−1. Further interesting open problems concern the nature
of the singularities of the GP minimizer, in particular the exclusion of line singularities and the precise
arrangement of the vortices. This would in particular require energy estimates beyond the subleading
order considered here.
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A The TF Energy and Density

We collect here from [16] some formulas for the TF energy and density (in a slightly different notation).
Defining

ωh ≡ 4/
√

π, (A.1)
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we have

ε2ETF =



















1

π
− ω2

8
− πω4

768
, if ω ≤ ωh,

−ω2

4

[

1 − 8

3
√

πω

]

, if ω > ωh,

(A.2)

ρTF(r) =























1

π
+

ω2

16
− ω2

8
(1 − r2), if ω ≤ ωh,

[

ω

2
√

π
− ω2

8
(1 − r2)

]

+

, if ω > ωh,

(A.3)

where [t]+ = t, if t ≥ 0, and 0 otherwise. The TF density ρTF can be as well expressed as

ρTF(r) =
1

2

[

ε2µTF +
ω2r2

4

]

+

, (A.4)

where the chemical potential µTF = ETF + ε−2‖ρTF‖2
2 is fixed by the normalization of ρTF and it is

explicitly given by

ε2µTF =



















2

π
− ω2

8
, if ω ≤ ωh,

−ω2

4

[

1 − 4√
πω

]

, if ω > ωh.

(A.5)

Note that, if ω > ωh, a ‘hole’ centered at the origin occurs in the TF minimizer, i.e., ρTF(r) = 0 for
all r ≤ Rh with

Rh ≡
(

1 − ωh

ω

)1/2

(A.6)

the radius of the hole. For ω ≥ ωh and Rh ≤ r ≤ 1 we can also write the density as

ρTF(r) =
ω2

8
(r2 − R2

h). (A.7)

Note also that the behaviour of ETF in the regimes Ω ≪ ε−1 (ω → 0) and Ω ≫ ε−1 (ω → ∞) is
respectively

ε2ETF =
1

π
− O(ω2), ε2ETF = −ω2

4
(1 − O(ω−1)). (A.8)
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