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Abstract

Principal component analysis (PCA) is a general method to analyse the factors of the term
structure of interest rates. There are usually two or three factors. However, it is shown by Liu
that when we apply PCA to forward rates, not spot rates, we need more factors to explain 95%
of variability. In order to verify the robustness of this result, we introduce another method
based on Fourier series, which is proposed by Malliavin and Mancino. The results reconfirm
the observation of Liu with different data sets. In particular, the Fourier series method gives
us similar results to PCA.
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1. Introduction

The use of principal component analysis (PCA) on the
term structure of interest rates is a common method to
reduce the dimensionality of the vector space of the orig-
inal variables. It is a well known result that three factors
are sufficient to explain most of the spot rate variability
(see e.g. [1]). Nevertheless, the empirical results of [2]
show that the number of factors for the forward rates is
much greater than generally believed. Briefly speaking,
for the 40 maturities of real market data in [2], we re-
quire more than 20 factors in order to explain at least
95% of variability.
In order to verify the validity of PCA applied to the

term structure of interest rates, we introduce another
method which has been proposed by Malliavin and Man-
cino [3] and has been developed by Barucci and Rèno [4],
Malliavin and Thalmaier [5], and Malliavin and Man-
cino [6]. They have presented a method to compute the
volatility based on Fourier series. This method is non-
parametric and can be applied to high-frequency finan-
cial data. Thus, we apply this method to the term struc-
ture of forward rates.
In this paper, we will compute the volatility matrix

of the forward rates by using the Fourier estimation
methodology, and then compare this with the results of
applying PCA. The organization of the present paper is
as follows:
First, we summarize the Fourier series methodology

presented by Malliavin and Mancino [3] in Section 2.
Then, the method of estimating the volatility by using
the Fourier series method will be given in Section 3. Next
we perform a numerical study and give the results in Sec-
tion 4. Finally, we summarize our findings in Section 5.

2. Fourier series method

We briefly recall the Fourier series method introduced
by Malliavin and Mancino [3].
Let X be a d-dimensional stochastic process defined

on a filtered probability space (Ω,F , (Ft), P ) given by

dXi(t) = µi(t)dt+Bi,j(t)dW
j(t), 0 ≤ t ≤ T,

where W is a d1-dimensional standard Brownian mo-
tion, µi is a d-dimensional drift process and Bi,j is a
Rd×d1 -valued càdlàg volatility process, both of which
are adapted to (Ft).
The volatility matrix Σ = (Σi,j)1≤i,j≤d of process X

is an adapted process defined by

Σi,j(t) =

d1∑
k=1

Bi,k(t)Bj,k(t), 0 ≤ t ≤ T.

Suppose that T = 2π. Now we shall show how the
Fourier series method reconstructs Σ(t) for all t ∈
(0, 2π). Let us denote the (random) Fourier coefficients
of “dXj”, j = 1, . . . , d by

ak(dXj) :=
1

π

∫
(0,2π)

cos(kt)dXj(t),

bk(dXj) :=
1

π

∫
(0,2π)

sin(kt)dXj(t).

The Fourier coefficients of each cross volatility Σi,j ,
1 ≤ i, j ≤ d, are defined by

ak(Σi,j) =
1

π

∫
(0,2π)

cos(kt)Σi,j(t)dt,

bk(Σi,j) =
1

π

∫
(0,2π)

sin(kt)Σi,j(t)dt.
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It follows from the Fourier-Féjer inversion formula
that we can reconstruct Σ from its Fourier coefficients
by

Σi,j(t) = lim
N→∞

N∑
k=0

(
1− k

N

)(
ak(Σi,j) cos(kt)

+ bk(Σi,j) sin(kt)
)
.

Based on the observations of X at times ti = 2πi/n,
i = 0, . . . , n, and by fixing some positive integer N , we
can approximate Σ as follows:

(1) Fourier coefficients ak(dXj), bk(dXj), k = 0, . . . ,
2N , are approximated by

âk(dXj) =
1

π

n∑
i=1

(
cos(kti−1)− cos(kti)

)
Xj(ti−1)

+
1

π

(
Xj(tn)−Xj(t0)

)
,

b̂k(dXj) =
1

π

n∑
i=1

(
sin(kti−1)− sin(kti)

)
Xj(ti−1).

(2) Fourier coefficients of each cross volatility Σi,j , 1 ≤
i, j ≤ d, are approximated by

â0(Σi,j) =
π

2(N + 1− n0)

N∑
s=n0

(
âs(dXi)âs(dXj)

+ b̂s(dXi)b̂s(dXj)
)
,

âk(Σi,j) =
π

N + 1− n0

N∑
s=n0

(
âs(dXi)âs+k(dXj)

+ âs(dXj)âs+k(dXi)
)
,

for k = 1, 2, . . . , N , and

b̂k(Σi,j) =
π

N + 1− n0

N∑
s=n0

(
âs(dXi)b̂s+k(dXj)

+ âs(dXj)b̂s+k(dXi)
)
,

for k = 0, 1, . . . , N .

(3) The volatilities Σi,j(t) are approximated by

Σ̂N,n
i,j (t) =

N∑
k=0

(
1− k

N

)(
âk(Σi,j) cos(kt)

+ b̂k(Σi,j) sin(kt)
)
. (1)

3. Method of estimating the volatility

Let rt(T ) denote the spot rate during the period [t, T ];
i.e. the rate of the spot borrowing until the maturity T .
The forward rate at t during the period [Ti, Ti+1] is given
by

Ft(Ti, Ti+1) =
(Ti+1 − t)rt(Ti+1)− (Ti − t)rt(Ti)

Ti+1 − Ti
(2)

=: Fi(t), i = 1, . . . , d.

We will write F(t) = (F1(t), . . . , Fd(t)).

Suppose that sample data of the forward rate curve
F(t), t = t0, t1, . . . , tN are given. From the data, we
can calculate ∆F(1), . . . ,∆F(N), where for each l =
1, . . . , N , ∆F(l) := F(tl) − F(tl−1) is a d-dimensional
vector (∆F1(l), . . . ,∆Fd(l)).

Remark 1 Assume that the forward rates process F(t)
= (F1(t), . . . , Fd(t)) are Brownian semi-martingales
given by

dFi(t) =
r∑

j=1

µi(t)dt+ σi,j(t)dW
j(t), i = 1, . . . , d.

where W = (W 1, . . . ,W r) is an r-dimensional Brownian
motion and σi,j and µi are adapted processes. Then we
define the time-dependent volatility matrix by

Σi,j(t) =

r∑
l=1

σi,l(t)σj,l(t).

According to [6, Theorem 3.4], under a suitable con-
dition, the following convergence holds in probability

lim
n,N→∞

sup
t

∣∣∣Σ̂N,n
i,j (t)− Σi,j(t)

∣∣∣= 0.

4. Numerical study

We use time series of American zero rates and
Japanese zero rates from May 2005 to May 2008 and
from June 2005 to June 2008 respectively, where for
each, we have a total of 777 and 723 daily observations.
The maturities of the American zero rates are

T1 = 2009/5/15,
T2 = 2010/5/15,
T3 = 2011/5/15,
...
T13 = 2021/5/15,

and the maturities of the Japanese zero rates are

T1 = 2009/6/20,
T2 = 2010/6/20,
T3 = 2011/6/20,
...
T13 = 2021/6/20.

We use this data to calculate the forward rates by for-
mula (2). Here we have HA = 777 observations for
American data and HJ = 723 observations for Japanese
data. We follow the steps introduced previously to ap-
proximate the volatility matrix using the Fourier se-
ries method. We calculate the Fourier coefficients by
N1 = H/2 points and estimate the Fourier coefficients of
cross volatility by N2 = H/4. We smooth the Féjer ker-
nel in (1) by replacing (1−k/N) with sin2(δk)/(δk)2 for
some appropriate parameter δ > 0. In this study, we use
δA = 2π/259 and δJ = 2π/241 for American data and
Japanese data, respectively. We use both the Fourier se-
ries method and PCA to analyze the interest rates and
the results are as follows:

4.1 Analysis of spot rates

In order to compare our results with general beliefs, in
this section we perform empirical studies on both meth-
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Fig. 1. Percentage of variance explained by the first three eigen-

values as a function of time for American spot rate.
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Fig. 2. Estimated eigenvalues using PCA, the proportion of con-

tributions of principle component and eigenvectors of first three
factors for American spot rate.

ods to analyse the spot rate.

4.1.1 American interest rate data

We analyse the Fourier series method and PCA each,
to see what will happen to the American spot rates. Fig.
1 shows the result of the Fourier series method, that is,
the percentage described by the first three eigenvalues
as a function of time during the trading days. Fig. 2
shows the result of PCA. In the Fourier series method,
the first eigenvalue can almost describe spectrum more
than 98% except for a few points. It is similar to the
result of PCA, where one eigenvalue can describe 92%
and two eigenvalues can describe over 95% of variability.

4.1.2 Japanese interest rate data

The results for Japanese spot rates are organized simi-
larly. Fig. 3 shows the result of the Fourier series method
and Fig. 4 shows the result of PCA. Both of the results
are similar to those in the previous section. The first
eigenvalue excluding a few points can describe spectrum
more than 98% in the Fourier series method, and one
eigenvalue can describe around 94% of the variability in
PCA.

4.2 Analysis of forward rates

Now we are going to explain the empirical studies of
both methods to analyse the forward rate.

4.2.1 American interest rate data

First we analyse the Fourier series method. Fig. 5
shows the percentage described by the first three eigen-
values. As you see, the first eigenvalue can only describe
spectrum of the volatility matrix from 30% to 60%. Even
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Fig. 3. Percentage of variance explained by the first three eigen-

values as a function of time for Japanese spot rate.
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Fig. 4. Estimated eigenvalues using PCA, the proportion of con-

tributions of principle component and eigenvectors of first three
factors for Japanese spot rate.

if we consider three eigenvalues, it is still not significant
as three eigenvalues only describe from 70% to 90%. This
result is similar to [2]. We need more factors to explain
most of the forward rate variability. We note that if we
want to describe spectrum more than 95%, we need at
least the first six eigenvalues. We also apply PCA to the
term structure of American forward rates and the result
is shown in Fig. 6. Three eigenvalues can only describe
50%.

4.2.2 Japanese interest rate data

We use the same arrangement as in the previous sec-
tion. Fig. 7 shows the percentage described by the first
three eigenvalues. The first eigenvalue can only describe
spectrum of the volatility matrix from 30% to 80%. Fur-
thermore, three eigenvalues only describe from 70% to
90%. If we want to describe spectrum of more than 95%,
we need at least the first six eigenvalues. The result of
applying PCA to the term structure of Japanese forward
rates is shown in Fig. 8 and three eigenvalues describe
70%.

Remark 2 There is no significant difference between
the Fourier series method and PCA applied to the
Japanese forward rate, while the two methods do not give
a very close result for the American forward rate.

5. Conclusions

In this paper we applied two methods to the term
structure of interest rates. The numerical studies show
that the results of [2] are reconfirmed with different data
sets and different methods. In short, if we want to ex-
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Fig. 5. Percentage of variance explained by the first three eigen-

values as a function of time for American forward rate.
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Fig. 6. Estimated eigenvalues using PCA, the proportion of con-

tributions of principle component and eigenvectors of first three
factors for American forward rate.

plain up to 95% of forward rate variability, both methods
seems to require strictly more than three eigenvalues,
while a few eigenvalues are sufficient for spot rates.
In future work, we plan to generate a different estima-

tor by using the Fourier series method to verify if this
result is robust or not.
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Fig. 7. Percentage of variance explained by the first three eigen-

values as a function of time for Japanese forward rate.
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Fig. 8. Estimated eigenvalues using PCA, the proportion of con-

tributions of principle component and eigenvectors of first three
factors for Japanese forward rate.
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