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Abstract
The recent availability of high frequency data has permitted more efficient ways of comput-

ing volatility. However, estimation of volatility from asset price observations is challenging

because observed high frequency data are generally affected by noise-microstructure

effects. We address this issue by using the Fourier estimator of instantaneous volatility

introduced in Malliavin and Mancino 2002. We prove a central limit theorem for this estima-

tor with optimal rate and asymptotic variance. An extensive simulation study shows the

accuracy of the spot volatility estimates obtained using the Fourier estimator and its robust-

ness even in the presence of different microstructure noise specifications. An empirical

analysis on high frequency data (U.S. S&P500 and FIB 30 indices) illustrates how the Fou-

rier spot volatility estimates can be successfully used to study intraday variations of volatility

and to predict intraday Value at Risk.

1 Introduction
The relevance of the estimation of time varying volatility in financial economics has been rec-
ognized for a long time but the recent availability of high-frequency financial data has given an
enormous impulse to its investigation and application. As a matter of fact, estimates of spot
volatility can be used to predict intraday Value at Risk (VaR) and to estimate stochastic volatil-
ity model parameters which are necessary for forecasting stock and futures prices, bond yields
and so on.

Indeed, estimators capable of replicating satisfactorily intra-day volatility time variations may
be useful tools for developing indicators of financial fragility and speculative behaviors. A first
step towards this objective is the use of the spot volatility estimates to calibrate agent based mod-
els, such as the model proposed in Refs. [1–6]. In fact, knowledge of spot volatility allows us to
reconstruct the agents’ fractions giving insights into the main strategies used by the traders in the
financial markets considered as illustrated in Refs. [1, 3, 4, 7]. Furthermore, the estimates of spot
volatility can also be applied in medical research such as in cardiac and neuronal signal
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processing. In fact, these estimates could be used to approximate heart rate volatility in order to
design an early predictor of malign arrhythmias. In the recent scientific literature, we can find
analysis of the short-term (5-minute) heart rate variability (HRV) based on the Fourier and frac-
tal methodology for detecting anomalies in the variations of beat-to-beat interval series [8].

Volatility can be estimated through parametric or nonparametric methods as illustrated in
the review [9]. Nonparametric methods address the computation of the historical volatility
without assuming a specific functional form of the volatility while trying to reproduce well
known stylized facts [7, 10]. Volatility is mainly computed over discrete time intervals relying
on the quadratic variation formula and thus it is an integrated volatility. Instantaneous volatil-
ity estimation from high frequency data was first proposed in Ref. [11], by using rolling and
block sampling filters. The benchmark for computing the volatility of a financial time series in
a time interval with high frequency data (e.g. daily volatility) is provided by the sum of the
squared intraday returns (i.e. realized volatility) [9, 12, 13]. In the limit, as the time interval
between two consecutive observations converges to zero, the realized volatility converges to the
quadratic variation of the process and its derivative provides the instantaneous volatility of the
process. However, the approximation of the quadratic variation derivative required to get the
instantaneous volatility generates appreciable numerical instabilities.

This paper deals with an alternative approach, based on the Fourier series and the Bohr convo-
lution formula. This approach has been introduced in Refs. [14, 15] and it is mainly designed for
measuring instantaneous multivariate volatility. The Fourier method reconstructs the instanta-
neous volatility as a series expansion with coefficients gathered from the Fourier coefficients of
the price variation. For this reason it is based on the integration of the time series of returns rather
than on its differentiation. Doing so, the Fourier estimator uses all the available observations and
avoids any manipulation of the original data and any unstable numerical derivatives.

Several papers have studied the efficiency of the Fourier method in estimating the integrated
volatility or co-volatilities even in the presence of microstructure noise, e.g. [16–22]. In fact, by
considering the Fourier estimator of 0-th Fourier coefficient of the volatility function we obtain
a consistent estimator of the integrated volatility. Moreover, the Fourier methodology has
inspired some spot volatility estimators, such as the robust to jumps Fourier estimator in
Ref. [23] and the spectral estimator in Ref. [24]. Conversely, the statistical properties and the
empirical effectiveness of the Fourier method in estimating the whole path of the volatility pro-
cess needs to be investigated further. This paper contributes to filling this gap.

Firstly, we prove the pointwise central limit theorem for the spot volatility estimator with a
speed of convergence which is the optimal one for a spot volatility estimator. Furthermore, we
show how to optimize the asymptotic variance through a suitable choice of ratio of the observa-
tion number to the number of the Fourier frequencies. These frequencies are those to be used
in the Fejer series to reconstruct the volatility process.

Secondly, we study the efficiency of the Fourier estimator of spot volatility with high fre-
quency data. In particular, we investigate the asymptotic normality of the estimator and the
accuracy of the spot volatility estimates using 1-second returns. The accuracy of the estimates
is tested comparing the empirical and theoretical distributions of the so called standardized
returns [25]. We stress the point that the Fourier estimation method is a globalmethod. In fact,
it is designed to estimate the volatility path over the entire interval of interest. This fact may be
relevant when the estimated volatility is used to calibrate stochastic volatility models. In con-
trast, most spot volatility estimators, especially the methods based on the quadratic variation
formula, are defined as pointwise estimators; thus, their adjustment parameters are tuned to
work well only at a specific point in time. Moreover, we show the robustness of the Fourier esti-
mator to various microstructure noise specifications such as the additive noise and the round-
ing error. We prove that the estimator has a competitive edge even when compared to bias
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adjusted estimators, such as the Two-Scales realized spot variance estimator [26, 27]. In fact,
the Fourier estimator performs very well using high frequency data in all the different scenarios
considered and without requiring any ad hoc adjustment.

Finally, we conduct an empirical analysis on high frequency liquid and illiquid data. As
stressed in Ref. [25], high quality realized variance estimates can be constructed in a liquid
market. Nevertheless, we show that the Fourier estimator provides accurate estimates even
when illiquid assets are considered. This is probably due to its robustness to rounding errors.
In fact, the price of an illiquid asset behaves like a price affected by rounding errors [28]. In
addition, we illustrate some exercises to analyze the intraday volatility variations and to predict
intraday Value at Risk.

The paper is organized as follows. Section 2 introduces the Fourier estimator. Section 3 con-
tains the central limit theorem. Section 4 illustrates the finite sample properties of the Fourier
estimator, including its robustness to microstructure noise. Section 5 presents an empirical
analysis conducted on illiquid and liquid data. Section 6 concludes. Finally, Section 7 contains
the proof of the central limit theorem and Section 8 summarizes some properties of Fejer and
Dirichlet kernels.

2 Fourier Estimator of Spot Volatility
In this section we recall the definition of the Fourier estimator of spot volatility introduced in
Ref. [14]. However, before to enter the technical definition of the estimator, we introduce the
main argument underlying the Fourier methodology, that is the use of the convolution formula
Eq (3).

Suppose that the asset log-price p(t) follows a semi-martingale satisfying the Itô stochastic
differential equations

dpðtÞ ¼ sðtÞ dWðtÞ þ bðtÞ dt; ð1Þ
whereW is a Brownian motion on a filtered probability space satisfying the usual conditions,

and σ and b are adapted random processes such that E½R T

0
b2ðtÞdt� < 1 and

E½R T

0
s4ðtÞdt� < 1. Our model is very general, in particular it includes a fairly large class of sto-

chastic volatility models which are widely used in finance, e.g. classical models such as [29–31].
In particular, leverage effects are allowed [32]. We stress the point that our approach is non-
parametric, therefore we do not specify any functional form of the volatility process σ, we only
assume the continuity of the paths (essentially, the Hölder-continuity of any Brownian path).

By change of the origin of time and rescaling the unit of time we can always reduce ourselves
to the case where the time window [0, T] becomes [0,2π].

We now define the Fourier estimator of spot volatility introduced in Ref. [14]. For any posi-
tive integer n, let 0 = t0 � � � � � tn = 2π be the (possibly unequally-spaced) trading dates of the
asset, i.e., the observation times of the asset price. Denote ρ(n) := max0 � i � n − 1jti+1 − tij and
suppose that ρ(n)! 0 as n!1. Moreover, let δi(p) := p(ti+1) − p(ti).

For any integer k, jkj � 2N, define the discrete Fourier transform

ckðdpnÞ :¼
1

2p

Xn�1

i¼0

e�iktidiðpÞ; ð2Þ

then, for any integer k, jkj � N, consider the following convolution formula

ckðs2
n;NÞ :¼

2p
2N þ 1

X
jhj�N

chðdpnÞck�hðdpnÞ: ð3Þ
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Formula (3) contains the identity relating the Fourier transform of the price process p(t) to the
Fourier transform of the volatility σ2(t). By Eq (3) we gather all the Fourier coefficients of the
volatility function by means of the Fourier transform of the log-returns. Then, the reconstruc-
tion of the volatility function σ2(t) from its Fourier coefficients, can be obtained by the Fourier-
Fejer summation. Finally, the Fourier estimator of spot volatility is defined: for any t 2 (0,2π)

ŝ2
n;N;MðtÞ ¼

X
jkj�M

1� jkj
M

� �
ckðs2

n;NÞ eitk: ð4Þ

We note that the definition of the estimator ŝ2
n;N;MðtÞ depends on three parameters, the number

of data n and the two cutting frequencies N,M. The choice of the relative growth of them will
be discussed in the following paragraphs.

Note that we can write the estimated Fourier coefficients (3) as

ckðs2
n;NÞ ¼

1

2p

Xn�1

i¼0

Xn�1

j¼0

DNðtj � tiÞe�iktjdiðpÞdjðpÞ;

where DN is the rescaled Dirichlet kernel defined as

DNðxÞ ¼
1

2N þ 1

X
jhj�N

eihx ¼ 1

2N þ 1

sin ð2N þ 1Þ x
2

sin x
2

: ð5Þ

Thus, the Fourier estimator of spot volatility (4) can be expressed as follows

ŝ2
n;N;MðtÞ ¼

1

2p

Xn�1

i¼0

Xn�1

j¼0

FMðt � tjÞDNðtj � tiÞdiðpÞdjðpÞ; ð6Þ

where FM is the Fejer kernel defined as

FMðxÞ ¼
X
jkj�M

1� jkj
M

� �
eikx ¼ 1

M þ 1

sin ðM þ 1Þ x
2

sin x
2

� �2

: ð7Þ

We stress the point that the estimator (6) contains two terms: the quadratic part

1

2p

Xn�1

j¼0

FMðt � tjÞðdjðpÞÞ2 ð8Þ

and the cross terms

1

2p

Xn�1

i¼0

Xn�1

j¼0

j 6¼i

FMðt � tjÞDNðtj � tiÞdiðpÞdjðpÞ: ð9Þ

The quadratic term (8) behaves like the Kernel-based spot volatility estimators seen in Refs.
[33, 34]. Nevertheless, the second addend (9) is crucial in terms of robustness of the estimator
in the presence of microstructure noise, through the choice of the frequency N, as it has also
been pointed out for the Realised kernels estimator of integrated variance proposed in
Ref. [35] and for the Laplace estimator proposed in Ref. [36]. A comparative analysis of the
robustness of the Fourier spot volatility estimator with high frequency data is conducted in
Section 4.

Remark 2.1 Although we have not considered the Fourier estimator of multivariate volatility
in this paper, it is worth noting that the convolution formula (3) is directly applicable for
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obtaining the Fourier estimator of the covariance process between two asset price processes as
explained in Ref. [15].Moreover, the advantage of the convolution approach used by the Fourier
estimator is that it is immune to the so called Epps effect [37]. In fact, when returns are recorded
at the highest available observation frequency, they are asynchronous across different assets [38].
The realized covariance type estimators (e.g. [12, 25, 26, 39]) require choosing a “synchroniza-
tion”method. Thus these estimators suffer from a downward bias, when the sampling interval is
reduced. On the contrary, the Fourier estimator uses all the available observations and avoids
any “synchronization” of the original data, because it is based on the integration of the time
series of returns rather than on its differentiation.

3 Asymptotic Normality
In this section we study the pointwise asymptotic error distribution for the Fourier estimator of
spot volatility defined in Eq (6). The central limit theorem assumes the ratio N

n
between the cut-

ting frequency and the number of data to be asymptotically constant (the Nyquist frequency
N ¼ n

2
being a reference ratio), while the frequencyM is slower increasing with respect to n.

The speed of convergence is the optimal rate of convergence for a spot volatility estimator, at
the cost of a (possible) bigger error variance. The discussion on how to optimize the asymptotic
variance through a suitable choice of the ratio N

n
is contained in Remark 3.3.

The limiting error distribution for the integrated multivariate volatility of the Fourier esti-
mator with asynchronous trading in the absence of microstructure noise is studied in Ref. [21]
and in the presence of microstructure noise in Ref. [22]. Note that the Fourier estimation of
integrated quantities (integrated volatility or covariance) involves only the 0-th Fourier coeffi-
cient in the expansion.

We assume that the volatility process σ is a.s. continuous in [0,2π] (e.g. driven by a second
Brownian semimartingale), more precisely Hölder continuous with parameter n 2 ð0; 1

2
Þ. For

simplicity, we consider equally spaced observations, thus rðnÞ ¼ 2p
n
.

Theorem 3.1 Assume that the following conditions hold: limn;M!1
Mg

n
¼ a > 0, for some γ>

1, and limn;N!1
N
n
¼ c > 0. Then, for any fixed t 2 (0,2π), as n, N,M!1,ffiffiffiffiffi

n
M

r
ŝ2

n;N;MðtÞ � s2ðtÞ
� �

! N 0;
4

3
ð1þ 2ZðcÞÞ s4ðtÞ

� �
;

where the convergence is stable in law and the constant η(c) is defined in Eq (10).

Remark 3.2 (Rate of convergence) The convergence rate in Theorem 3.1 is of order n
g�1
2g . It

appears in the proof that 1< γ< 2ν + 1, where n 2 ð0; 1
2
Þ. For γ close to 2 the rate of convergence

becomes 1
4
, which is the optimal rate of convergence for a non-parametric spot volatility

estimator.
Remark 3.3 (Optimal variance) The constant η(c) is equal to

ZðcÞ :¼ 1

2~c2
rð~cÞð1� rð~cÞÞ; ð10Þ

where ~c ¼ 2c and r(x) = x − [x], with [x] the integer part of x. The computation of the constant
η(c) is presented in Lemma 1 formula (26) in Ref. [21]. Note that η(c) is nonnegative for any pos-
itive c and equal to zero when c ¼ 1

2
k, k = 1, 2, . . ..

The case η(c) = 0 is interesting since it provides the optimal asymptotic variance 4
3
s4ðtÞ as dis-

cussed in Ref. [23]. The optimal asymptotic variance is obtained for c ¼ 1
2
k, k = 1, 2, . . . and the

choice k = 1 (i.e. c ¼ 1
2
) corresponds to the natural choice of the Nyquist frequency for the Fourier

estimator. Furthermore, for empirical purposes, the number of frequencies used in the Fourier
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transform is chosen less than the number n of the available price observations, so that the values
c ¼ 1

2
k, k = 2, 3, . . . are not effective while the value c ¼ 1

2
is appropriate. We stress that with this

choice of c (in other words of N/n) the Fourier estimator has the same rate of convergence and
asymptotic variance of the Fejer kernel-based realized spot volatility considered in Refs. [34, 40].
Therefore, with an appropriate choice of N/n, the effect of adding the cross terms in Eq (6), which
is essential in order to get an estimator robust to microstructure noise, is also not detrimental in
view of the asymptotic efficiency. This particular feature of the Fourier estimator is analyzed in
Section 4.

4 Simulation studies
In this section we study the efficiency of the Fourier estimator of spot volatility with high fre-
quency data. Firstly, we illustrate some finite sample properties of this estimator. In particular,
we investigate the asymptotic normality and the accuracy of the spot volatility estimates using
1-second returns. The accuracy of the estimates is tested by comparing the empirical and theo-
retical distributions of the so called standardized returns. Secondly, we study the robustness of
the Fourier estimator to some microstructure noise specifications, namely, the additive (even
dependent) noise and the rounding error. Our analysis shows that it has a competitive edge,
even when compared with methods specifically designed to handle market microstructure
contaminations.

4.1 Finite sample properties
In this section we investigate the finite sample properties of the Fourier spot volatility estima-
tor. Consider the following one factor stochastic volatility model, which is also studied in
Ref. [27]:

dpðtÞ ¼ m dt þ sðtÞ dWðtÞ; ð11Þ

sðtÞ ¼ exp ðb0 þ b1 tðtÞÞ; ð12Þ

dtðtÞ ¼ b2 tðtÞ dt þ dZðtÞ; ð13Þ
whereW and Z are correlated Brownian motions such that hdW, dZit = λ dt. The parameter β0
is chosen equal to β1/(2β2). The initial random variable τ0 is sampled from the distributionN
(0, −1/(2β2)) and the initial log-price is p0 = log(9). The values of the parameters are as follows:
μ = 0.03, β1 = 0.125, β2 = −0.025, λ = −0.3. The second-by-second return and variance paths
over a daily trading period of T = 6.5 hours = 1 day are computed using the explicit Euler dis-
cretization scheme with variable step-size. We simulate 504 trading days with n = 23400 obser-
vations per day.

Firstly, we study the asymptotic error distribution of the Fourier estimator ŝ2ðtÞ. Fig 1
shows the empirical distribution of

ffiffiffiffiffiffiffiffiffiffi
n=M

p ðŝ2ðtÞ � s2ðtÞÞ=s2ðtÞ, when n = 23400, ρ(n) = T/n,

T = 1 day,M ¼ 1
2p

1
8
ð ffiffiffi

n
p

log nÞ, N = c n. The bandwidthM is chosen in order to fulfill the

requirementMγ/n = O(1) with 1< γ< 2. Our choice is the one used in Ref. [33] to construct
realised kernel spot volatility estimators. We consider c = 1/2 (i.e. 2c = 1) (Fig 1 t� 0.15 (left
upper panel), t� 0.5 (middle upper panel), t� 0.9 (right upper panel)) and c = 1/8 (i.e. 2c = 1/
4) (Fig 1 t� 0.15 (left lower panel), t� 0.5 (middle lower panel), t� 0.9 (right lower panel)).

In each panel we also show the probability density functionN 0; 4
3
ð1þ 2ZðcÞÞ� �

prescribed by

Theorem 3.1, where η(c) is defined in Eq (10). The empirical distributions shown in Fig 1 con-
firm the findings of Theorem 3.1, namely, the result that the asymptotic distribution of

Fourier Spot Volatility Estimator

PLOS ONE | DOI:10.1371/journal.pone.0139041 September 30, 2015 6 / 33



ffiffiffiffiffiffiffiffiffiffi
n=M

p ðŝ2ðtÞ � s2ðtÞÞ=s2ðtÞ isN ð0; 4
3
mÞ, when c = 1/(2m),m = 1, 2, . . .. In fact, when c = 1/2

the variance attains its smallest value (i.e. 4/3), while the variance is larger when c = 1/8. The
empirical distributions shown in each panel are tested for normality using the Bera-Jarque test
at the significance level of 0.05. The test shows that the null hypothesis is not rejected and the
p-values are shown in Fig 1.

We also try to determine the largest price frequency still capable of fitting satisfactorily the
theoretical distribution prescribed by Theorem 3.1. We repeat the previous experiment choos-
ing the Nyquist frequency N = n/2 andM ¼ 1

2p
1
8
ð ffiffiffi

n
p

log nÞ which are shown to reduce the vari-

ance and a sampling interval of ten seconds (i.e. n = 23400/10), thirty seconds (i.e. n = 23400/
30), one minute (i.e. n = 23400/60) and five minutes (i.e. n = 23400/300). We evaluate the
empirical distribution at t� 0.5 and we apply the Bera-Jarque test at the significance level of
0.05. The empirical and theoretical distributions are shown in Fig 2. We can observe that when
the sampling interval increases from ten seconds to one minute (upper panels and left lower
panel) the p-values remain substantially constant while the p-value of the five minute sample
deteriorates and the null hypothesis is rejected. This suggests that the finite sample is able to

reproduce theoretical properties of
ffiffiffiffiffiffiffiffiffiffi
n=M

p ðŝ2ðtÞ � s2ðtÞÞ=s2ðtÞ when the price observations
are more than one per minute.

Fig 1. Empirical distribution of the normalized asymptotic error. The panels show the empirical distribution of
ffiffiffiffiffiffiffiffiffiffi
n=M

p ðŝ2ðtÞ � s2ðtÞÞ=s2ðtÞ for t� 0.15 left
panels, t� 0.5 middle panels, t� 0.9 right panels and c = 1/2 upper panels, c = 1/8 lower panels with 1-second returns.

doi:10.1371/journal.pone.0139041.g001
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Secondly, we prove that the Fourier estimator provides accurate spot volatility estimates. We
use the simulated data p(ti), ti = i/n, i = 0, 1, . . ., n, n = 23400, to estimate the variance σ2(t) on the
time grid tvj ¼ 0:5ð2j� 1ÞD t, j = 1, 2, . . ., 23400/120, Δ t = 120/23400 = 1/195. That is, we esti-

mate the spot variance using a sampling interval of two minutes. In this exercise the log-prices, p
(ti) are not affected by microstructure noise. Fig 3 shows four realizations of the true variance
(solid line) and the corresponding estimates (dotted line) obtained with the Fourier estimator
withN = n/2 andM ¼ 1

2p
1
8

ffiffiffi
n

p
logn. It is worth noting that Fig 3 shows that the Fourier estimator

Fig 2. Empirical distribution of the normalized asymptotic error for various sampling intervals. The panels show the empirical distribution offfiffiffiffiffiffiffiffiffiffi
n=M

p ðŝ2ðtÞ � s2ðtÞÞ=s2ðtÞ for t� 0.5 and c = 1/2 using 1-second returns (left upper panel), 30-second returns (right upper panel), 1-minute returns (left lower
panel) 5-minute returns (right lower panel).

doi:10.1371/journal.pone.0139041.g002
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approximates the true variance with a satisfactory accuracy over the entire interval. This property
is a consequence of the fact that the Fourier method generates a global estimator. This accuracy is
relevant for calibrating parametric models such as those of [29–31]. In fact, as shown in the
empirical analysis, we can use the spot volatility estimates to reconstruct accurate standardized
returns which could be used to efficiently estimate model parameters.

We further investigate the accuracy of the Fourier spot volatility estimates using the stan-
dardized returns defined by:

zt ¼
rt

st

ffiffiffiffiffiffi
D t

p ; ð14Þ

Fig 3. True and estimated variance path. The four graphs show the true variance, σ2(t), (solid line) and the Fourier estimated variance, ŝ2ðtÞ, (dotted line)
as a function of time for four realizations obtained with model (11)–(12) and a sampling interval of 2 minutes.

doi:10.1371/journal.pone.0139041.g003
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where rt = pt+Δ t − pt is the log-return. These standardized returns are random variables nor-
mally distributed with zero mean and variance equal to one when the sample interval is suffi-
ciently small. Specifically, we compute the standardized returns ztruet and zFRt obtained using the
true and the Fourier spot volatilities, respectively, and we compare their cumulative density
functions with the theoretical one,N(0,1). Fig 4 shows the results of this comparison when Δ
t = 10 seconds (Fig 4 left upper panel), Δ t = 30 seconds (Fig 4 right upper panel), Δ t = 1 min-
ute (Fig 4 left lower panel) and Δ t = 3 minutes (Fig 4 right lower panel). The cumulative den-
sity functions are obtained elaborating the data of one realization of the log-price variable

Fig 4. Comparison of cumulative density functions. Cumulative density functions of standard normal sample (red solid line), of the standardized returns
obtained using the true volatility (green dotted line) and of the standardized returns obtained using the Fourier spot volatility estimates (blue dash-dot line)
when Δ t = 10 seconds (left upper panel), Δ t = 30 seconds (right upper panel), Δ t = 1 minute (left lower panel) and Δ t = 3 minutes (right lower panel).

doi:10.1371/journal.pone.0139041.g004
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observed in one day. In addition, we measure the performance of the Fourier estimator by gen-
erating 504 replications of the standardized return ztruet and zFRt for various values of the sam-
pling interval. Then we use the Kolmogorov-Smirnov (KS) and the Jarque-Bera (JB) test at the
5% significance level to determine whether the 504 random samples have the hypothesized
standard normal cumulative density function.

Table 1 shows the results of the tests for the sampling intervals Δ t = 10 seconds, 30 seconds,
1 minute and 3 minutes. The upper panel in Table 1 shows the sampling interval Δ t, the per-
centage of the KS test rejections, the average p-values, the percentage of the JB test rejections
and the average p-values obtained using the true standardized returns ztruet , while the lower
panel shows the same quantities but for the estimated standardized returns zFRt . We can see
that as we increase Δ t the percentage of the test rejections increases and the fitting of the cumu-
lative density functions deteriorates (see Fig 4). The poor fit observed when Δt = 3 minutes is
due to the fact that the assumption of standardized returns drawn by a standard normal distri-
bution holds only for sufficiently small sampling intervals. When we correct the standardized
returns by replacing rt with rt − 0.03 Δ t in Eq (14), the percentage of the test rejections of the
KS test and the average p-values are 4% and 0.47 respectively for both samples. For the JB test,
the percentage of rejections and the average p-values are 3% and 0.51 respectively for both
samples. That is, the percentage of rejections of the two tests is more than halved.

We highlight that the standardized returns obtained using the true and estimated volatility
behave similarly for the four sampling rates considered. This finding indicates that the Fourier
estimator is able to reproduce the statistical features of the true spot volatility.

4.2 Robustness to microstructure noise effects
In this subsection we illustrate the robustness of the Fourier estimator to various microstruc-
ture noise specifications. The simulation study confirms the global character of the Fourier esti-
mator. Indeed, it is possible to choose the frequencies N andM independently of time in order
to get accurate spot volatility estimates over the time interval t 2 (0, T). Furthermore, even if
we chooseM and N independent of the noise specification we still get satisfactory results.

We compare the performance of the Fourier estimator with that of two alternative spot vola-
tility estimators: the Fejer kernel-based realized estimator [33, 34, 40] and the Two-Scales real-
ized spot variance estimator [26, 27]. We choose the Fejer kernel-based realized estimator
because it coincides with the quadratic part of the Fourier estimator and is given by Eq (8). We

Table 1. Comparison of true and estimated standardized returns.We compare the true standardized returns ztruet and the estimated standardized returns
zFRt using Kolmogorov-Smirnov and Jarque-Bera tests.

True standardized returns ztruet

Δ t KS rejections (%) KS-pvalue JB rejections (%) JB-pvalue

10 secs 4% 0.47 6% 0.50

30 secs 3% 0.43 5% 0.48

1 min 8% 0.43 8% 0.48

3 mins 9% 0.46 6% 0.51

Fourier standardized returns zFRt
Δ t KS rejections (%) KS-pvalue JB rejections (%) JB-pvalue

10 secs 4% 0.47 5% 0.50

30 secs 4% 0.43 5% 0.48

1 min 8% 0.43 8% 0.48

3 mins 10% 0.46 6% 0.51

doi:10.1371/journal.pone.0139041.t001
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show that the Fourier estimator behaves substantially different from the Fejer kernel-based
realized estimator, as the presence of the cross term (9) is essential to rendering the estimator
efficient in the presence of microstructure noise. The numerical simulations show that the Fou-
rier estimator is robust to microstructure noise effects while the Fejer kernel-based realized
estimator is highly biased in the presence of noise. We choose the Two-Scales realized spot var-
iance estimator because it is a suitable competitor to the Fourier estimator when noisy data are
considered. In fact, the Two-Scales estimator is constructed by the localization of an integrated
volatility estimator specifically designed to be robust to microstructure noise [26].

For the reader’s convenience we recall the definition of these two estimators. The Fejer ker-
nel-based realized estimator is the quadratic part of the Fourier estimator given in Eq (8). We
will denote it as ŝ2

KFðtÞ. The Two-Scales realized spot variance estimator (TS hereafter) has the
following form:

ŝ2
TSðtÞ :¼

1

h

X
t�h�ti�t

ðpðtiÞ � pðti�RÞÞ2
R

� nh� Rþ 1

nRh

� �
1

h

X
t�h�ti�t

ðpðtiÞ � pðti�1ÞÞ2: ð15Þ

The parameter R is the sub-sampling size parameter (scale parameter) and h is the interval
length parameter (bandwidth parameter) [27]. The parameters R and h play a relevant role as
the parameters N and 1/M, which appear in the Fourier estimator’s definition. We rescale the
Fourier and Fejer kernel-based realized estimators by the quantity

Pn
i¼1 FMðt � tiÞðti � ti�1Þ,

where FM is the Fejer kernel. This scaling improves the performance of both estimators without
changing their asymptotic properties [34, 40].

Let us now describe the data-set considered in this subsection. The log-prices, p(ti), i = 0, 1,
. . ., n, are generated simulating the following stochastic volatility model:

dpðtÞ ¼ ðm� sðtÞ2=2Þdt þ sðtÞ dWðtÞ; ð16Þ

ds2ðtÞ ¼ g ðy� s2ðtÞÞdt þ nsðtÞ dZðtÞ; ð17Þ

whereW(t) and Z(t) are standard Brownian motions with correlation λ (i.e. hdW, dZit = λ dt).
This model (with jumps) has been simulated in Ref. [28] to study the effect of rounding errors
on integrated volatility estimators. Following [28], we choose T = 1, ν = 0.5/252, γ = 5/252, θ =
0.1, μ = 0.05/252, λ = −0.5, s2

0 ¼ 1, p(0) = log(9).
We now introduce the four models of microstructure noise considered in the simulation

study. The first three kinds consist of additive noises experienced in the financial prices and
already extensively analyzed in the literature ([35, 41–43] and the reference therein). The last
one is the rounding error [28, 44]. The rounding error is very critical when high frequency data
are used. In fact, the financial prices are often rounded at 1% and this can result in a “piecewise
constant” time series. In the first three specifications we suppose that the logarithm of the
observed price ~pðtiÞ is given by:

~pðtiÞ ¼ pðtiÞ þ ZðtiÞ; i ¼ 0; . . . ; n; ð18Þ

where p is the efficient (latent) log-price process defined by Eq (16) and η describes the micro-
structure noise component.

The first noise specification, (M), is based on the following assumptions:
(M.I) the random shocks η(ti) for any i = 0, 1, . . ., n are independent and identically distrib-

uted with Gaussian distributionN ð0; ~Z2Þ
(M.II) the true return process δi(p) is independent of η(ti) for any i = 0, 1, . . ., n − 1 and for

any n.
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The second specification, (M)0, assumes (M.I)0 and (M.II), where
(M.I)0 the random shocks η(ti) for any i = 0, 1, . . ., n are allowed for negative first order

autocorrelation of the random shocks.
The third noise specification, (MD), is based on (M.I) and (M.II)0, where
(M.II)0 the random shocks η(ti) are linearly dependent on the return δi(p), namely:

ZðtiÞ ¼ zdiðpÞ þ Ẑ i ;

where Ẑ i are Gaussian i.i.d. random variables with variance equal to ~Z2 for any i and z = 0.1.
When we consider these three noise specifications, we choose ~Z ¼ x stdðrÞ where std(r) is the
standard deviation of the 1-second returns. The quantity ξ is the so called noise-to-signal ratio
(see Ref. [42] for further details).

The last noise specification, (MR), takes into account the fact that prices involve rounding
errors. The observed log-price are defined as follows:

~pðtiÞ ¼ log
exp ðpðtiÞÞ

la

	 

la

� �
; i ¼ 0; . . . ; n; ð19Þ

where [�] denotes rounding to the nearest integer and lα is the fixed rounding error level. As
highlighted in Ref. [28], given that stock prices are often rounded to the cent, the choice lα =
0.01 mimics the financial markets.

We apply the explicit Euler discretization scheme with variable step-size to compute sec-
ond-by-second return and variance paths over a daily trading period of T = 1 day. We simulate
a total of 504 trading days (about two years) and n = 23400 observations per day (approxi-
mately one observation per second). The volatility is estimated using a sampling interval of 1
minute since this sampling has shown a good accuracy of the standardized returns (see Fig 4 in
Section 4.1).

We measure the performance of the spot volatility estimator, ŝ2ðtÞ, over the entire interval
[0, T] and near the right boundary by evaluating numerically the relative mean squared error

RMSEðtÞ ¼ E ðŝ2ðtÞ � s2ðtÞÞ2=s4ðtÞ� �
and the bias BIASðtÞ ¼ E ŝ2ðtÞ � s2ðtÞ½ �. Specifically,

the performance over the interval [0, T] is evaluated using the integrated relative mean squared
error

IRMSE ¼ 1

T

Z T

0

E ðŝ2ðtÞ � s2ðtÞÞ2=s4ðtÞ� �
dt

and the integrated bias

IBIAS ¼ 1

T

Z T

0

E ŝ2ðtÞ � s2ðtÞ½ �dt :

We investigate whether there exists an easily implementable formula for choosing the so
called cutting frequencies N andM of the Fourier estimator and the bandwidths R and h of the
TS estimator in order to minimize the integrated relative mean squared error and the relative
error at t = Tb = 0.98. More specifically, we explore how the optimal choice of N,M, R and h
depends on n. Consider the following values of N andM:

N ¼ cN n
a; a ¼ 1;

2

3
;
1

2
;
1

3
;
1

4
; ð20Þ

M ¼ cM nb; b ¼ 2

3
;
1

2
;
1

3
;
1

4
;
1

6
;
1

8
; ð21Þ
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where cN and cM are positive constants. We choose cN ¼ 1
2
and cM ¼ 1

2p
1
8
for the Fourier estima-

tor and cM ¼ 1
2p

1
8
for the Fejer kernel-based realized estimator which depends only on the

parameterM. We note that β := 1/γ, where γ is the parameter used in Theorem 3.1 to parame-
terize the cutting frequencyM. Theorem 3.1 requires 1

2
< b < 1. In our exercise we also explore

the behavior of the Fourier estimator for values of β not within the interval prescribed by the
central limit theorem. This is theoretically justified by the fact that the highest frequencies
should be cut in order to filter out microstructure noise effects arising from high frequency
data as shown in Ref. [20]. We check whether 1-second observed data are able to match the
asymptotic behavior.

The parameters R and h of the TS estimator are chosen in a slightly different way by taking
into consideration the plug-in approach illustrated in Ref. [27]. More precisely, we choose the
following values of R and h:

R ¼ cR n
a; a ¼ 2

3
;
1

2
;
1

3
;
1

4
; cR ¼ 0:05ðxþ 1Þ=i; i ¼ 1; 2; . . . ; 10; ð22Þ

h ¼ ch=n
b; b ¼ 2

3
;
1

2
;
1

3
;
1

4
;
1

6
;
1

8
; ch ¼ 0:5 i=ðxþ 1Þ; i ¼ 1; 2; . . . ; 10; ð23Þ

where ξ is the noise to signal ratio. Note that, for a fixed value of n, we consider forty values of
R and sixty values of h. This is done since we want to explore not only the dependence of R and
h on n but also on the noise level ξ. For this reason we allow the constants cR and ch to vary
with the noise level. Tuning the constants cR and ch on the noise level strongly improves the
performance of the TS estimator, while this is not needed in the case of the Fourier estimator,
which turns out to have a good performance even without such ad hoc choices of the constants
cN and cM.

Note that we are looking for a bandwidth/frequency choice that can provide satisfactory vol-
atility approximations over the entire time interval without being dependent on time and on
specific properties of the volatility process. This fact may be relevant when the estimated vola-
tility is used to calibrate stochastic volatility models. In fact, given the sample, if the value ofM
and N are independent of time (and, possibly, of noise) the estimator ŝ2ðtÞ is a continuous
function of t and this makes it suitable for the calibration of stochastic volatility models.

We examine the performance of the Fourier estimator, the Fejer-kernel based estimator and
the TS estimator both in the absence (ξ = 0) and in the presence of noise. In the simulations
conducted by using the first three noise specifications, we consider two values of the noise-to-
signal ratio, ξ = 0.8 and ξ = 3.2. That is, we consider a total of six different noises for the addi-
tive case. Regarding the fourth specification (i.e. rounded prices) we consider only the rounding
levels lα = 0.01 (commonly observable in financial prices) and lα = 0.1. Tables 2, 3 and 4 show,
from left to right, the noise to signal ratio, the pair (αi, βi) which minimizes the integrated
mean squared error, the integrated bias, the pair (αb, βb) which minimizes the mean square
error and the bias at t = Tb.

We can see that both the Fourier and the TS estimators are very robust to any noise specifi-
cations considered. The TS estimator performs slightly worse than the Fourier one in approxi-
mating the volatility over the entire interval, while the TS volatility estimates near the
boundary are slightly more accurate than the Fourier ones. This is probably due to the fact that
the bandwidths, R and h, are chosen independently of some specific properties of the volatility
process (e.g., integrated quarticity, integrated volatility of volatility, as in Ref. [27]). In other
words, the Fourier estimator fits the term global slightly better than the TS estimator.
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Table 2. Robustness of the Fourier estimator under microstructure noise effects. The sampling interval is 1 second.

Fourier estimator

No Noise

Noise-to-signal ratio ξ (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.0 (no noise) ð1; 2
3
Þ 3.08e-4 -8.64e-4 ð1; 2

3
Þ 3.32e-4 -7.31e-3

Noise specification (M.I)-(M.II)

Noise-to-signal ratio ξ (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.8 ð2
3
; 2
3
Þ 8.58e-3 4.38e-3 ð2

3
; 2
3
Þ 8.64e-3 1.87e-2

3.2 ð2
3
; 2
3
Þ 2.06e-2 4.86e-2 ð2

3
; 2
3
Þ 1.84e-2 6.55e-2

Noise specification (M.I)0-(M.II)

Noise-to-signal ratio ξ (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.8 ð2
3
; 2
3
Þ 8.48e-3 2.22e-3 ð2

3
; 2
3
Þ 8.43e-3 1.64e-2

3.2 ð2
3
; 2
3
Þ 1.83e-2 1.67e-2 ð2

3
; 2
3
Þ 1.38e-2 3.38e-2

Noise specification (M.I)-(M.II)0

Noise-to-signal ratio ξ (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.8 ð2
3
; 2
3
Þ 8.59e-3 5.01e-3 ð2

3
; 2
3
Þ 8.61e-3 1.95e-2

3.2 ð2
3
; 2
3
Þ 1.98e-2 4.98e-2 ð2

3
; 2
3
Þ 1.73e-2 6.81e-2

Noise specification (MR)

Rounding level lα (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.01 ð2
3
; 2
3
Þ 8.36e-3 3.15e-3 ð2

3
; 2
3
Þ 8.51e-3 1.75e-2

0.1 ð1
2
; 1
2
Þ 4.99e-2 3.36e-2 ð1

2
; 1
2
Þ 1.55e-2 4.25e-2

doi:10.1371/journal.pone.0139041.t002

Table 3. Robustness of the Fejer-kernel based realized estimator to microstructure noise effects. The sampling interval is 1 second.

Fejer-kernel based realized estimator

No Noise

Noise-to-signal ratio ξ βi IRMSE IBIAS βb RMSE(Tb) BIAS(Tb)

0.0 (no noise) 1
2

2.19e-4 -1.01e-3 1
2

2.64e-4 7.49e-3

Noise specification (M.I)-(M.II)

Noise-to-signal ratio ξ βi IRMSE IBIAS βb RMSE(Tb) BIAS(Tb)

0.8 1
6

1.01e+1 3.16e+0 1
6

1.01e+1 3.16e+0

3.2 1
6

2.29e+3 4.73e+1 2
3

2.23e+3 4.72e+1

Noise specification (M.I)0-(M.II)

Noise-to-signal ratio ξ βi IRMSE IBIAS βb RMSE(Tb) BIAS(Tb)

0.8 1
6

4.90e+0 2.21e+0 1
2

4.89e+0 2.12e+0

3.2 1
6

1.25e+3 3.54e+1 1
2

1.25e+3 3.53e+1

Noise specification (M.I)-(M.II)0

Noise-to-signal ratio ξ βi IRMSE IBIAS βb RMSE(Tb) BIAS(Tb)

0.8 1
3

2.19e+0 1.48e+0 1
3

2.19e+0 1.48e+0

3.2 1
6

4.18e+3 2.04e+1 1
2

4.18e+3 2.04e+1

Noise specification (MR)

Rounding level lα βi IRMSE IBIAS βb RMSE(Tb) BIAS(Tb)

0.01 1
2

9.59e-2 2.58e-1 1
2

2.27e-1 3.15e-1

0.1 1
2

1.58e+1 2.17e+0 1
2

4.75e+1 3.57e+0

doi:10.1371/journal.pone.0139041.t003
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Furthermore, the comparison between the results shown in Tables 2 and 3 confirms that the
absence of the cross terms appearing in the Fourier estimator significantly affects its
robustness.

The test used to select the optimal pair (α, β) is infeasible since it is based on the minimiza-
tion of the unknown mean squared error. However, in view of the empirical applications, we
propose an elementary feasible test for the bandwidth (frequency) selection. For each t and for
each pair (α, β) we construct 504 realization of the standardized log-return za;bt and we apply
the Bera-Jarque test at the significance level 0.05 with null hypothesis that za;bt is normal with
unspecified mean and variance. We compute the rejection percentage of the null hypothesis for
each pair (α, β) and we select the optimal pair to be the one with the smallest rejection percent-
age. Proceeding with this simple test the selected optimal pairs of the Fourier estimator are the
same as those shown in Table 2. Indeed, there is one exception at the rounding error at level
0.1 where the optimal pair selected by the new test is (2/3,1/4). The smallest percentage of
rejection varies in the interval [5%, 85%] depending on the noise specifications.

5 Empirical Analysis
In this section we present an empirical analysis conducted on illiquid and liquid data to illus-
trate the ability of the Fourier spot volatility estimator to capture intraday variations of volatil-
ity and to predict high-frequency Value-at-Risk (VaR) [26–28].

The same empirical analysis is carried on two data-sets and we have T = 1 day. The first
data-set consists of 5-second observations of the U.S. S&P 500 index obtained by Bloomberg.
We consider 5 trading days fromMarch 4, 2013 to March 7, 2013 corresponding to about one
week data. Each trading day starts at 15.30 (Rome local time) and ends at 22:30 (Rome local
time). We use the observations from 15:30 to 22:00 since the others remain substantially

Table 4. Robustness of the Two-Scales realized spot variance estimator to microstructure noise effects. The sampling interval is 1 second.

Two Scales Realized Spot variance estimator
No Noise

Noise-to-signal ratio ξ (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.0 (no noise) ð2
3
; 1
6
Þ 4.73e-2 -9.60e-2 ð2

3
; 1
6
Þ 3.92e-3 -4.50e-2

Noise specification (M.I)-(M.II)

Noise-to-signal ratio ξ (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.8 ð2
3
; 1
6
Þ 3.87e-2 -9.77e-2 ð2

3
; 1
6
Þ 1.31e-2 -6.48e-2

3.2 ð2
3
; 1
6
Þ 5.46e-2 -6.54e-2 ð2

3
; 1
6
Þ 1.41e-2 -1.71e-2

Noise specification (M.I)0-(M.II)

Noise-to-signal ratio ξ (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.8 ð2
3
; 1
6
Þ 4.66e-2 -1.16e-1 ð2

3
; 1
6
Þ 7.86e-3 -3.79e-2

3.2 ð2
3
; 1
6
Þ 1.14e-1 -1.73e-1 ð2

3
; 1
6
Þ 4.39e-2 -1.19e-1

Noise specification (M.I)-(M.II)0

Noise-to-signal ratio ξ (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.8 ð2
3
; 1
6
Þ 3.89e-2 -9.85e-2 ð2

3
; 1
6
Þ 5.35e-3 -3.48e-2

3.2 ð2
3
; 1
6
Þ 5.47e-2 -6.53e-2 ð2

3
; 1
6
Þ 1.41e-2 -1.70e-2

Noise specification (MR)

Rounding level lα (αi, βi) IRMSE IBIAS (αb, βb) RMSE(Tb) BIAS(Tb)

0.01 ð2
3
; 1
6
Þ 4.13e-2 -1.06e-1 ð2

3
; 1
6
Þ 5.29e-3 -3.26e-2

0.1 ð2
3
; 1
6
Þ 1.02e-1 -5.67e-2 ð2

3
; 1
6
Þ 6.61e-2 6.95e-2

doi:10.1371/journal.pone.0139041.t004
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unchanged. This choice corresponds to 4680 (5-second) observations. The second data-set
consists of the nearby Italian stock index futures, FIB30 in January 2001 observed every 5.67
seconds. Specifically, we consider four consecutive trading days, January 27, 28, 29 and 30,
2001. As shown in subsection 5.1 the first data-set is characterized by illiquid data while the
second one by liquid data.

We will show that the Fourier estimator has a good performance when both illiquid and liq-
uid data are used. Furthermore, the optimal frequenciesM and N are chosen by using the sim-
ple test illustrated in Section 4.2.

5.1 Intraday variations of volatility when data are illiquid
In this subsection we consider the first data-set of U.S. S&P 500 index 5-second returns
observed on March 4-7, 2013. We first carry out a preliminary analysis to study the main fea-
tures of the observed data. This analysis is conducted through the volatility signature plot and
the autocorrelation functions. Fig 5 shows the volatility signature plots corresponding to
March 4, 5, 6 and 7, 2013 evaluated using the Realized Volatility (RV) and the Fourier estima-
tor for integrated volatility. Roughly speaking, the volatility signature plots of Fig 5 are plots of
the realized variance against sampling intervals and, as explained in Ref. [25], these sampling
intervals are chosen to be multiples of the smallest sampling interval. Ref. [25] highlights that
highly liquid assets display the largest realized variance estimates at the highest sampling rates
(i.e. 5-second returns) while illiquid assets display the largest realized variance estimates at the
lowest sampling rates (i.e. 20-minute returns). In fact, liquid assets show a negative serial auto-
correlation so that the oscillating swings in the returns reduce for larger sampling intervals by
the effect of cancelation. The signature plots illustrated in Fig 5 show that we are dealing with
an illiquid asset.

This finding is confirmed by Figs 6 and 7. Fig 6 shows the 5-second return autocorrelation
function on March 4-7, 2013 while Fig 7 shows the autocorrelation function of the returns on
March 4, 2013 for four different sampling frequencies (i.e. upper left panel 5-second returns,
upper right panel 10-second returns, lower left panel 30-second returns and lower right panel
1-minute returns). These two figures show a positive serial autocorrelation at high frequencies
and this implies smaller estimates of the realized variance for these frequencies. As stressed in
Ref. [25], high quality realized variance estimates can be constructed in a liquid market. How-
ever, we investigate the performance of the Fourier estimator also against illiquid assets.

Fig 8 shows the autocorrelation function of a sampled Gaussian distributionN(0, Δ t) with
sampling frequency of 1-minute (upper panel) and the autocorrelation of 1-minute observed
returns on March 4, 2013 (lower panel). The results shown in the two panels and the prelimi-
nary analysis illustrated above suggest the use of 1-minute returns in order to reconstruct the
distribution of the standardized return zt, defined in Eq (14). As previously mentioned, the
standardized return, zt, is a standard Gaussian random variable when the prices are not affected
by microstructure noise effects.

We compute an estimate, zFRt , of the standardized return zt using the spot volatility esti-
mated with the Fourier method as done in Subsection 4.1. The frequencies N andM for the
Fourier estimator are chosen according to N = n/2 andM ¼ 1

2p
1
8

ffiffiffi
n

p
log n. Fig 9 shows the

empirical cumulative distribution function for zFRt and the expected cumulative distribution
function (i.e.N(0,1)), with Δ t = T/n = (1/390) seconds. Moreover, the BJ and the KS tests
applied to the random sample zFRt do not reject the null hypothesis at the significance level 0.05
and their p-values are 0.3, 0.6, respectively. The Fourier estimator shows a good performance
in interpreting changes of volatilities despite the fact that the asset is illiquid. This finding is
confirmed also by the second application, that is, the Value at Risk (VaR) prediction. This
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application has already been illustrated in Refs. [26, 28] to measure the performance of inte-
grated volatility estimators and in Ref. [27] for the spot volatility estimators.

We apply the Fourier and TS estimators to predict 1%, 5%, 95%, 99% Value at Risk of
1-minute returns. As explained in Ref. [28], the conditional coverage probability must be the
same as the theoretical level α of VaR in the left tail and 1 − α in the right tail. Hence, a measure
of the performance is given by the difference between −Q(α) and Q(1 − α) where Q(�) is the
quantile function of the empirical distribution of the standardized returns zFRt and zTSt . Table 5
shows the conditional coverage probability (i.e. the empirical frequency that the failure of VaR
prediction occurs) for the left and right tails of the 1-minute return distribution. Theoretically,
we should expect a 1% and 5% rate of violation when we consider the 1% and 5% VaRs. We
highlight the fact that the VaR predictions at 5% and 95% are satisfactory since we have two
correct significant digits in the predictions.

Fig 5. Volatility signature plots versus sampling frequency in seconds. The graphs show the signature plots of illiquid market data on March 4-7, 2013.

doi:10.1371/journal.pone.0139041.g005
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5.2 Intraday variations of volatility when data are liquid
In this subsection we repeat the exercises of Subsection 5.1 using the nearby Italian stock index
futures, FIB30, recorded every 5.67 seconds. Specifically, we consider four consecutive trading
days (January 27-30, 2001). Quotes prior to 10 a.m. are removed to eliminate opening quotes
from our sample.

Fig 10 shows the volatility signature plots corresponding to January 27, 28, 29 and 30, 2001
evaluated using the Realized Variance (RV) and the Fourier estimator for the integrated volatil-
ity. The four plots in Fig 11 show the autocorrelation functions corresponding to the 5.67-sec-
ond returns on January 27-30, 2001. We can see that the first-order autocorrelation is
significantly negative while the second and third autocorrelations are slightly positive. The blue
lines denote the 95% confidence interval. The shape of the signature plot of Fig 10 and the neg-
ative first order autocorrelation in Fig 11 show that FIB30 returns are liquid data. Fig 12 shows

Fig 6. Autocorrelation functions. The four panels show the autocorrelation in 5-second returns (March 4-7, 2013).

doi:10.1371/journal.pone.0139041.g006
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the autocorrelation function of the returns on January 27, 2001 for four different sampling fre-
quencies (i.e. upper left panel 5.67-second returns, upper right panel 15-second returns, lower
left panel 30-second returns and lower right panel 1-minute returns). As in Subsection 5.1, the
preliminary analysis suggests the use of 1-minute returns to sample the standardized return,
zFRt . Furthermore, the simple test illustrated in Section 4.2 selects the frequencies N = n/2 and

M ¼ 1
2p

1
8

ffiffiffi
n

p
log n. Fig 13 shows the empirical distributions of the 1-minute standardized

returns compared with the Gaussian density function obtained using illiquid data (Fig 13 left
panel) and liquid data (Fig 13 right panel). The comparison of left and right panels highlights
that the Fourier estimator provides accurate spot volatility estimates for both liquid and illiquid
data. This is confirmed also by the VaR predictions shown in Table 5 (Liquid Data column),
where the VaR predictions have at least two correct significant digits. Note that VaR predic-
tions obtained using the TS estimators slightly outperform those obtained with Fourier estima-
tor in the case of liquid data while the opposite happens in the case of illiquid data.

Fig 7. Autocorrelation for various sampling intervals on March 4, 2013.Upper left panel (5-second returns), upper right panel (10-second returns), lower
left panel (30-second returns) and lower right panel (1-minute returns).

doi:10.1371/journal.pone.0139041.g007
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6 Conclusions
We have obtained the asymptotic error distribution of the Fourier spot volatility estimator
with optimal rate of convergence and variance. Furthermore, extensive simulation studies and
two empirical analysis have been proposed to show the efficiency of the Fourier estimator with
high frequency data. The results illustrated in Sections 4 and 5 show that it is robust to various
noise specifications. In addition, it is a globally robust estimator in the sense that it allows us to
choose values of the so called cutting frequencies independently of the specific instant of time
in the observed time window, of the specific features of the volatility process and of different
noise models and levels. This feature of the Fourier estimator makes it particularly suited for
empirical applications, such as the calibration of stochastic volatility models for asset prices,
futures prices and models where the price volatility can provide insights into the traders’ strate-
gies in the financial market. Finally, the high frequency intraday variations of volatility could

Fig 8. Comparison of the autocorrelation functions. Autocorrelation function of a sampled normal processN(0, Δ t) with sampling interval of 1 minute
(upper panel) and of the 1-minute returns observed on March 4, 2013 (lower panel).

doi:10.1371/journal.pone.0139041.g008
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Fig 9. Comparison of the empirical cumulative distribution function and the standard normal one. Cumulative distribution functions of a sampled
normal processN(0,1) (blue line) and of the sampled process zFRt (red line) with a sampling interval of 1 minute (March 4-7, 2013).

doi:10.1371/journal.pone.0139041.g009

Table 5. VaR prediction. Intraday VaR predictions obtained analyzing illiquid and liquid data with the Fourier
and the TS estimators (sampling rate: one observation per minute).

Illiquid Data Liquid Data

Fourier TS Fourier TS

1% 0.0119 0.0159 0.0087 0.0175

99% 0.0103 0.0144 0.0081 0.0148

5% 0.0484 0.0445 0.0508 0.0545

95% 0.0495 0.0520 0.0548 0.0572

doi:10.1371/journal.pone.0139041.t005
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be used to detect the onset of flash crashes (i.e. a deep fall in security prices occurring in a few
seconds). The most relevant flash crash occurred on May 6th, 2010 when 4.1 billion dollars
traded on the NYSE resulted in a drop of the Dow Jones Industrial Average of over 1000 points
and then a rise to approximately the previous value. The mechanism which causes these events
has been studied in depth and the high frequency spot volatility estimators could provide useful
insights into this speculative trading.

7 Appendix A
Remark 7.1 Given the discrete time observations {tj}j = 0, . . ., n, denote ϕn(τ) := sup{tj 2 [0, t]:tj �
τ}, then using Itô formula we can write Eq (6) as

ŝ2
n;N;MðtÞ ¼

1

2p

Z 2p

0

FMðt � �nðvÞÞs2ðvÞdv þ F1ðtÞ þ F2ðtÞ; ð24Þ

Fig 10. Volatility signature plots versus sampling frequency in seconds. The graphs show the signature plots of liquid market data on January 27-30,
2001

doi:10.1371/journal.pone.0139041.g010
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where

F1ðtÞ ¼
1

2p

Z 2p

0

FMðt � �nðvÞÞ
Z v

0

DNð�nðvÞ � �nðuÞÞsðuÞdWu sðvÞdWv ð25Þ

F2ðtÞ ¼
1

2p

Z 2p

0

Z v

0

FMðt � �nðuÞÞDNð�nðvÞ � �nðuÞÞsðuÞdWu sðvÞdWv: ð26Þ

Proof. (of Theorem 3.1) According to Lemma 2.2 in Ref. [15], we can assume that b = 0. Fur-
ther, it is not restrictive to assume that the volatility process is a.s. bounded in [0,2π], then
ess supkσ2k1 <1, where kσ2k1 = supt σ

2(t).

Fig 11. Autocorrelation functions. The four panels show the autocorrelation in 5.67-second returns on January 28-31, 2001.

doi:10.1371/journal.pone.0139041.g011
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Using the decomposition by Eqs (24), (25), (26), we write

ffiffiffiffiffi
n
M

r
ðŝ2

n;N;MðtÞ � s2ðtÞÞ ¼
ffiffiffiffiffi
n
M

r
1

2p

Z 2p

0

FMðt � �nðvÞÞs2ðvÞdv � s2ðtÞ
� �

þ
ffiffiffiffiffi
n
M

r
ðF1ðtÞ þ F2ðtÞÞ:

The proof is divided into three steps.
I)We prove that

ffiffiffiffiffi
n
M

r
1

2p

Z 2p

0

FMðt � �nðvÞÞs2ðvÞdv � s2ðtÞ
� �

ð27Þ

Fig 12. Autocorrelation for various sampling intervals on January 27, 2001.Upper left panel (5.67-second returns), upper right panel (15-second
returns), lower left panel (30-second returns) and lower right panel (1-minute returns).

doi:10.1371/journal.pone.0139041.g012
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converges to 0 in probability. We write Eq (27) as

ffiffiffiffiffi
n
M

r
1

2p

Z 2p

0

FMðt � �nðvÞÞs2ðvÞdv � 1

2p

Z 2p

0

FMðt � vÞs2ðvÞdv
� �

ð28Þ

þ
ffiffiffiffiffi
n
M

r
1

2p

Z 2p

0

FMðt � vÞs2ðvÞdv � s2ðtÞ
� �

: ð29Þ

For the term (28) it holds a.s.:

ffiffiffiffiffi
n
M

r  1

2p

Z 2p

0

FMðt � �nðvÞÞs2ðvÞdv � 1

2p

Z 2p

0

FMðt � vÞs2ðvÞdv


� ess sup k s2k1
ffiffiffiffiffi
M
n

r
! 0;

by Lemma 8.1 i). Then, consider the L1-norm of the term (29) and split it in two terms:

ffiffiffiffiffi
n
M

r
E

 1

2p

Z 2p

0

FMðt � vÞs2ðvÞdv � s2ðtÞ


	 


�
ffiffiffiffiffi
n
M

r
1

2p

Z
½0;2p�\fjt�vj� 2p

Mþ1g
FMðt � vÞ E½js2ðvÞ � s2ðtÞj� dv

ð30Þ

þ
ffiffiffiffiffi
n
M

r
1

2p

Z
½0;2p�\fjt�vj> 2p

Mþ1g
FMðt � vÞE½js2ðvÞ � s2ðtÞj� dv: ð31Þ

Fig 13. Empirical distribution functions. Left panel: pdf of a random variableN(0,1) (red dashed line) and of the sampled process zFRt with a sampling
interval of 1 minute (illiquid data). Right panel: pdf of a random variableN(0,1) (red dashed line) and of the sampled process zFRt with a sampling interval of 1
minute (liquid data).

doi:10.1371/journal.pone.0139041.g013

Fourier Spot Volatility Estimator

PLOS ONE | DOI:10.1371/journal.pone.0139041 September 30, 2015 26 / 33



Consider Eq (30). It is smaller than

ffiffiffiffiffi
n
M

r
1

2p

Z
½0;2p�\fjt�vj� 2p

Mþ1g
FMðt � vÞdv E sup

½0;2p�\fjt�vj� 2p
Mþ1g

js2ðvÞ � s2ðtÞj
" #

�
ffiffiffiffiffi
n
M

r
1

2p

Z
½0;2p�\fjt�vj� 2p

Mþ1g
FMðt � vÞdv C

ðM þ 1Þn � C

ffiffiffiffiffi
n
M

r
1

Mn

which goes to zero as soon as 1< γ< 1+2ν (this holds under the given assumptions). Note
that the first inequality follows because the volatility path is ν-Hölder continuous. Consider Eq
(31): ffiffiffiffiffi

n
M

r
1

2p

Z
½0;2p�\fjt�vj> 2p

Mþ1g
FMðt � vÞ js2ðvÞ � s2ðtÞjdv

�
ffiffiffiffiffi
n
M

r
2 ess supk s2 k1

1

2p

Z
½0;2p�\fjt�vj> 2p

Mþ1g
FMðt � vÞdv � C

ffiffiffiffiffi
n
M

r
1

M

where we have used Lemma 8.1 ii). This converges to zero as soon as 1< γ< 3.
II) According to Ref. [45] we determine the variance of our asymptotic distribution, by

studying � ffiffiffiffiffi
n
M

r
ðF1ðtÞ þ F2ðtÞÞ;

ffiffiffiffiffi
n
M

r
ðF1ðtÞ þ F2ðtÞÞ

�

where h, i denotes the quadratic covariation in [0, 2π]. This is composed of four terms, each of
them leads to the same limit. We study the first one in detail, the remaining terms are similar.
Consider� ffiffiffiffiffi

n
M

r
F1ðtÞ;

ffiffiffiffiffi
n
M

r
F1ðtÞ

�

¼ n
M

1

ð2pÞ2
Z 2p

0

F2
Mðt � �nðv2ÞÞ

Z v2

0

DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1

� �2

s2ðv2Þdv2:

Applying Itô formula, we get

Z v2

0

DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1

� �2

¼
Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞs2ðv1Þdv1

þ2

Z v2

0

Z v1

0

DNð�nðv2Þ � �nðuÞÞsðuÞdWu

� �
DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1

:

Let

F11ðtÞ :¼
1

ð2pÞ2
Z 2p

0

F2
Mðt � �nðv2ÞÞ

Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞs2ðv1Þdv1 s2ðv2Þdv2

F12ðtÞ :¼
1

ð2pÞ2
Z 2p

0

F2
Mðt � �nðv2ÞÞ

Z v2

0

Z v1

0

DNð�nðv2Þ � �nðuÞÞsðuÞdWu

� �

�DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1
s2ðv2Þdv2:

Fourier Spot Volatility Estimator

PLOS ONE | DOI:10.1371/journal.pone.0139041 September 30, 2015 27 / 33



We prove that, for any t fixed, in probability:

n
M

F11ðtÞ !
1

3
ð1þ 2ZðcÞÞs4ðtÞ ð32Þ

where η(c) is equal to Eq (10), and

n
M

F12ðtÞ ! 0: ð33Þ

We begin with Eq (32). Let V :¼ 2p 1
2
ð1þ 2ZðcÞÞ ¼ pð1þ ZðcÞÞ. We have: nM F11ðtÞ � V

2

3

1

2p
s4ðtÞ


¼

 nM 1

ð2pÞ2
Z 2p

0

F2
Mðt � �nðv2ÞÞ

Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞs2ðv1Þdv1 s2ðv2Þdv2 � V

2

3

1

2p
s4ðtÞ


�

 1

ð2pÞ2
Z 2p

0

1

M
F2
Mðt � �nðv2ÞÞ n

Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞs2ðv1Þdv1 � Vs2ðv2Þ

� �
s2ðv2Þdv2


ð34Þ

þV

 1

ð2pÞ2
Z 2p

0

1

M
F2
Mðt � �nðv2ÞÞs4ðv2Þdv2 �

2

3

1

2p
s4ðtÞ

: ð35Þ

Consider Eq (34): it is less than

1

ð2pÞ2
Z 2p

0

1

M
F2
Mðt � �nðv2ÞÞ

n
Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞs2ðv1Þdv1 � Vs2ðv2Þ

 s2ðv2Þdv2

which is op(1) in virtue of Lemmas 8.1 iv) and 8.3.
Consider now Eq (35): by Lemma 8.1 iv), it holds in probability

lim
n;M!1

 1

ð2pÞ2
Z 2p

0

1

M
F2
Mðt � �nðv2ÞÞs4ðv2Þdv2 �

2

3

1

2p
s4ðtÞ

 ¼ 0:

Finally, observe that V 2
3

1
2p s

4ðtÞ ¼ 1
3
ð1þ 2ZðcÞÞs4ðtÞ.

We prove now Eq (33). Consider

n
M

1

ð2pÞ2
Z 2p

0

F2
Mðt � �nðv2ÞÞ

Z v2

0

Z v1

0

DNð�nðv2Þ � �nðuÞÞsðuÞdWu

� �

�DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1
s2ðv2Þdv2:

Using Itô isometry, we have in L2-norm:

n2E
Z v2

0

Z v1

0

DNð�nðv2Þ � �nðuÞÞsðuÞdWu

� �
DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1

� �2
" #

¼ n2E
Z v2

0

Z v1

0

DNð�nðv2Þ � �nðuÞÞsðuÞdWu

� �2

D2
Nð�nðv2Þ � �nðv1ÞÞs2ðv1Þdv1

" #

�k s2 k21 n2

Z v2

0

Z v1

0

D2
Nð�nðv2Þ � �nðuÞÞduD2

Nð�nðv2Þ � �nðv1ÞÞdv1:

Therefore, it is enough to observe that, as N
n
! c,

n
Z v2

0

n
Z v1

0

D2
Nð�nðv2Þ � �nðuÞÞdu

� �
D2

Nð�nðv2Þ � �nðv1ÞÞdv1 ¼ oð1Þ
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combining Lemmas 8.3 ii) and iii). Finally, remark that 1
M

R 2p

0
F2
Mðt � �nðv2ÞÞdv2 ¼ Oð1Þ, by

Lemma 8.1 iii). This concludes the proof.
III) The last step of the proof requires to prove the convergence in probability� ffiffiffiffiffi

n
M

r
ðF1ðtÞ þ F2ðtÞÞ;W

�
! 0:

Observe that:� ffiffiffiffiffi
n
M

r
F1ðtÞ;W

�
¼

ffiffiffiffiffi
n
M

r
1

2p

Z 2p

0

FMðt � �nðv2ÞÞ
Z v2

0

DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1
sðv2Þdv2:

Consider the L1-norm:

E

 1

2p

Z 2p

0

FMðt � �nðv2ÞÞ
Z v2

0

DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1
sðv2Þdv2


	 


� k s k1
1

2p

Z 2p

0

FMðt � �nðv2ÞÞE

Z v2

0

DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1


	 


dv2:

ð36Þ

Moreover, we have

E


Z v2

0

DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1


	 


�k s2 k
1

2
1

Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞdv1

� �1

2
:

Thus ffiffiffiffiffi
n
M

r
E

 1

2p

Z 2p

0

FMðt � �nðv2ÞÞ
Z v2

0

DNð�nðv2Þ � �nðv1ÞÞsðv1ÞdWv1
sðv2Þdv2


	 


� C

ffiffiffiffiffi
1

M

r Z 2p

0

FMðt � �nðv2ÞÞðn
Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞdv1Þ

1

2:

ð37Þ

Using Lemma 8.3 i)

lim
n;N!1

n
Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞdv1 � C2

therefore, Eq (37) is less than

C

ffiffiffiffiffi
1

M

r Z 2p

0

FMðt � v2Þdv2 � C

ffiffiffiffiffi
1

M

r
2p ! 0 as M ! 1:

□

8 Appendix B
This Appendix contains some results about the Fejer and Dirichlet kernels: these results are
known but we place them here for the reader’s convenience.

Lemma 8.1 (Fejer kernel properties)
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i. For any M Z p

�p

FMðxÞdx ¼ 2p:

Moreover, under the assumption limn;M!1Mg

n ¼ a > 0 for some γ> 1, then

lim
n;M!1

Z p

�p

FMð�nðxÞÞdx ¼ 2p;

in particular, 
Z p

�p

FMð�nðxÞÞdx �
Z p

�p

FMðxÞdx
 � C

M
n
:

ii. For any M� 1 Z p

2p

Mþ1

FMðxÞdx � C
M

:

iii. If limn;M!1 M g

n ¼ a > 0 for some γ> 1

lim
M;n!1

Z p

�p

1

M
F2
Mð�nðxÞÞdx ¼ lim

M!1

Z p

�p

1

M
F2
MðxÞdx ¼ 4p

3
: ð38Þ

iv. If limn;M!1 M g

n ¼ a > 0 for some γ> 1 and σ2 is Holder continuous with parameter ν 2
(0,1], then

lim
n;M!1

1

M

Z p

�p

F2
Mðt � �nðsÞÞs2ðsÞds ¼ lim

M!1

Z p

�p

1

M
F2
Mðt � sÞs2ðsÞds ¼ 4p

3
s2ðtÞ: ð39Þ

Proof. The proofs can be found e.g. in Ref. [23], in order (5.9), Lemma 6.1, (5.10) or Remark
5.2, Lemma 5.1. □

Remark 8.2 As in Ref. [23] Remark 5.2 all above results are true in [0, T] very similarly.
Lemma 8.3

i. If limn;N!1 N
n ¼ c 6¼ 0, then for any p> 1 there exists a constant Cp such that

lim
n;N

n sup
v22½0;2p�

Z 2p

0

Dp
Nð�nðv2Þ � �nðv1ÞÞdv1 � Cp:

ii. If limn;N!1 N
n ¼ c 6¼ 0, then

lim
n;N!1

n
Z v2

0

D2
Nð�nðv2Þ � �nðv1ÞÞdv1 ¼ pð1þ ZðcÞÞ:
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iii. If limn;N!1 N
n ¼ c 6¼ 0, then for any v1 < v2 we have

lim
N;n

n
Z v1

0

D2
Nð�nðv2Þ � �nðuÞÞdu ¼ 0:

Moreover, if σ2 is Holder continuous with parameter ν 2 (0,1], also holds for any v1 < v2

lim
n;N!1

n
Z v1

0

D2
Nð�nðv2Þ � �nðuÞÞs2ðuÞdu ¼ 0:

Proof. The proofs can be found e.g. in Ref. [21] Lemma 3, Lemma 1 and Lemma 4(1), in
order. □
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