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Abstract

Aggregate and systemic risk in complex systems are emergent phenomena
depending on two properties: the idiosyncratic risk of the elements and the topology
of the network of interactions among them. While a significant attention has been
given to aggregate risk assessment and risk propagation once the above two
properties are given, less is known about how the risk is distributed in the network
and its relations with its topology. We study this problem by investigating a large
proprietary dataset of payments among 2.4M Italian firms, whose credit risk rating is
known. We document significant correlations between local topological properties of
a node (firm) and its risk. Moreover we show the existence of an homophily of risk, i.e.
the tendency of firms with similar risk profile to be statistically more connected
among themselves. This effect is observed when considering both pairs of firms and
communities or hierarchies identified in the network. We leverage this knowledge to
show the predictability of the missing rating of a firm using only the network
properties of the associated node.

Keywords: Financial networks; Corporate networks; Credit risk; Credit rating;
Machine learning

Assessing the aggregate risk emerging in complex systems is of paramount importance
in disparate fields, such as economics, finance, epidemiology, infrastructure engineering,
etc. A large body of recent literature has explored, both theoretically and empirically, how
risk propagates [1] and how to assess aggregate risk when the risk of each individual entity
is known [2], as well as the topology of the network of interaction among them. Although
both aspects have been shown to be important, their mutual relation is relatively less ex-
plored. In theoretical studies, one typically assumes independence between idiosyncratic
risk and topology, while in empirical studies the correlation is the one present in the in-
vestigated dataset.

But what is the relation (if any) between the idiosyncratic risk of a node and its local
topological properties (e.g. degree, centrality, community, etc)? In this paper we answer
this question by studying a specific system where the assessment of aggregate risk is par-
ticularly important, namely the network of interaction between firms. Assessing the risk
of firms is one of the fundamental activities of the credit system. Banks spend a significant
amount of resources to scrutinise the balance sheet of firms in order to obtain accurate
estimations of their riskiness, the internal rating, and provide credit conditions reflect-
ing both the capability of the firm to repay the loans and its probability of default. The
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riskiness of a firm depends on many idiosyncratic factors (e.g. balance sheet, structure of
management, etc.) as well as the industrial sector or its geographical location [3-5]. How-
ever, corporate firms do not live in isolation, but interact with each other on a daily basis.
The interactions can be of different kinds, including those due to the supply chain, pay-
ments, business partnerships, financial contracts, and mutual ownership. The structure
of interactions is complex and multifaceted, but its knowledge is critical both for macroe-
conomists and for the credit and banking industry to understand the dynamics of the
economy, the business cycle, the structure of corporate control, and, of course, the risk of
firms (in isolation or in aggregation).

Here we study the interplay between the risk of firms and the interlinkages connecting
them. The network is built from a large proprietary dataset provided by a major European
bank. The dataset contains the payments collected at daily granularity between more than
two million Italian firms together with the information on internal risk rating for a large
fraction of them. We want to understand whether and in which measure a firm’s role in the
network can be informative of its riskiness. This is important for two reasons. First, even
if the risk of a firm is not known to all the counterparts, it may affect its ability to interact
with other firms. For example, a poor rating (i.e. high riskiness) may prevent the access to
credit and as a result it may cause a reduction or delay in payments toward suppliers. If
the supplier has high risk, the missing or delayed payment can prevent its own payments,
increasing the likelihood of a cascade of missing payments and a propagation of financial
distress. The second reason is that, in certain cases, the knowledge of the riskiness of a firm
or of a group of firms is lacking or imprecise. In these cases, the existence of a correlation
between network properties and risk can allow or improve the assessment of risk. Indeed,
in the last part of the paper we will show how network properties of a node can be used
to predict the risk of the corresponding firm.

Previous works on networks of firms focussed mainly on ownership relations [6—10],
or dealt with the theoretical modelling of other types of relation [11]. Exceptions are the
empirical studies on the Japanese economic firm-to-firm network [12, 13], where links
represent buyer-supplier relationship. In other cases, as in the seminal paper [14], even if
the theoretical framework applies to single firms, the empirical part focuses on the aggre-
gate, sector network, due to lack of more granular data. The use of payments as a proxy
of interactions between economic entities is not new and has been investigated mainly
for banks [15-19] in the context of systemic risk studies, where, however, other choices
to characterise interactions are possible [20-23]. Apparently much less is known about
the payment network between firms, mostly because of lack of data. Concerning rating
prediction, there is a vast literature mainly considering the problem as a classification task
[24]. The idea of employing machine learning techniques in credit rating scoring has been
explored before [25, 26], but in these cases the predictors for the rating are all derived
from balance sheets, so the results are not comparable with ours. Other works use more
heterogeneous information to predict the rating [27-31].

This paper contributes to these streams of literature in several aspects. First, we inves-
tigate the topological properties of payment networks by considering standard network
metrics, such as degree and strength distribution and components decomposition. We
find that the large payment networks investigated in this paper share the properties ob-
served in other complex networks, namely they are sparse but almost entirely made of a
single component, they are scale free and small world. Then, we look into the distribution
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of risk of firms in the network of payments in order to quantify the dependence between
the network property of a node or a group of nodes and the risk of the firm represented by
the node(s). The main and most innovative contribution of this paper is to document the
existence of such correlations. We find an homophily of risk, i.e. the tendency of a firm to
interact with firms with similar risk. This is a two nodes property, but a similar behaviour
is observed, even more clearly, also at larger aggregation scales. Communities of firms,
detected by using different methods, often display a statistically significant abundance of
firms of a specific risk class, indicating the tendency of firms with similar rating to be
linked together through payments. Risk is therefore not spread uniformly on the network,
but rather it is concentrated in specific areas. This implies that an idiosyncratic shock on
a single firm can propagate more or less quickly depending on the local network structure
and the community the node belongs to. The last contribution, is to exploit this correlation
between risk of a firm and network characteristics of the corresponding node to predict
the risk rating of the firm using network properties alone. To this end, we employ machine
learning techniques to build classifiers for risk rating whose inputs are only network prop-
erties (e.g. degree, community, etc.). We show that our classification method has a good
performance both in terms of accuracy and of recall and that outperforms significantly

random assignments.

1 The network of payments

1.1 The dataset

The investigated dataset contains information on payments between more than two mil-
lion Italian firms and is built from transactional data of the payment platform of a major
European bank® Transactions are registered with daily granularity for the year 2014, for
a total of 47M records, each of which includes the two counterparts involved, date, type,
amount, and number of transactions in the same day. Transactions are originally identified
by account, but in case of customers and former customers, multiple accounts associated
to the same firm are aggregated into a single entity.” This results in a total of 2.4M entities
(which will be referred to as firms, for brevity) operating through the platform during the
whole investigated period. The firms can be of different types: customers, who have an
account in the bank, non customer, and former customers. There is also a small residual
class on NA, which we aggregated with the non customer class. More information on the
frequencies of the different classes is available in Appendix 1.

In principle, any firm or public body can make use of the platform, but in practice in
most cases at least one is a customer of the bank. Similar considerations hold for the total
amount exchanged: in each month more than 50% of the volume is transferred between
customers, and it rises to above 95% when considering transaction with at least one cus-
tomer involved. More details on the dataset and some descriptive statistics is presented
in Appendix 1. Finally, for a large fraction of customers, the dataset contains information
on the economic sector and on the internal rating of the firm on a three value scale: Low
(L), Medium (M), and High (H) risk.

1.2 Networks definition and basic metrics

A network, or graph, is identified by two sets: V, the sets of nodes with cardinality |V| = n,
and E, the sets of links or edges, with cardinality |E| = m. The latter is the collection of or-
dered pairs of connected nodes. In our case, we also take into account the strength of
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Table 1 Basic metrics of the network of payments

Month  Nodesn  Links m In-degree EkI™]  Out-degree E[k®™]  Density p = = Diameter d

n(n-1)

Jan 1,000,555 3,271,861 661 4.20 3.27-107° 20
Feb 997,006 3,067,029 6.11 398 3.09-10° 18
Mar 1,018,164 3,146,559  6.19 3.98 3.04-10° 18
Apr 1,047,706 3,346,763 652 4.09 305-10° 19
May 1,048803 3359315 658 4.08 3.05-10° 20
Jun 1,039876  3,239886 630 4.02 300-10° 19
Jul 1,091,393 3510435 644 414 295.10° 20
Aug 891,587 2319697 521 344 292-10° 19
Sep 1,041,124 3465233 6.80 4.25 320-10° 20
Oct 1,066,044 3,289,946  6.11 4.00 289-10° 18
Nov 1,023,692 3,103,365 6.15 3.90 296107 18
Dec 1,052,975 3,000,284 560 374 271-10° 19

interactions so a weight w;; is associated with each link. Starting from transaction data,
payment networks are constructed as follows: given a time window, each node represents
a firm active in that period; if there is payment between two firms a link from the source
to the recipient is added, with weight equal to the payment amount. If multiple transac-
tions occur between the same (ordered) pair of nodes, the weight of the link is the sum
of the amounts of the payments. Therefore for each time period we construct a directed
and weighted network. The time window of analysis may vary depending on the type of
information one wants to extract from the dataset. In the following, the focus will be on
monthly networks, for which results are quite stable, at the cost of dealing with fewer and
larger graphs. For the period covered by the dataset, each monthly network consists on
average of n = 1M nodes and m = 3.2M links with the lowest activity in August and the
highest in July (see Appendix A.1). The density p = -5 is thus small, resulting in a so
called sparse network. Nevertheless this low density does not imply a disaggregated sys-
tem. Indeed for all the monthly networks the diameter is very small compared to the size:
on average across the months, starting from a node one has to pass at most 19 links to
reach any other node in the weakly connected component (see Table 1). Thus the net-

works have the so called small-world property.

1.3 Networks topology

When considering a small number of firms, one would expect simple topologies: one firms
is the supplier of intermediate products for another firm, resulting in a line (the simplest
supply chain), or one firm is a supplier or a buyer for many others firms, resulting in a
star network. Instead what is observed is a much more complex organisation, with a non
negligible presence of cycles.

At a very coarse level, it is possible to identify two large classes of firms. The first con-
stitute the core of the network, which includes approximately 20% of the nodes and more
than half of the links. This core has a density an order of magnitude larger than that of the
whole network and it is characterised by the fact that any pair of firms is connected, di-
rectly or via intermediaries. Around 60% of the total volume circulates among the nodes of
the core (see Table 5 in Appendix 1). The other class is made of payers-only, i.e nodes that
have no incoming links. These represent each month about one half of the active firms and
their activity is sporadic. To better understand the role of this significant subset of firms
we check their customer status and we find that the majority of them are unclassified in
terms of client status, and that their number is larger than one expects from the uncondi-
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Figure 1 Empirical complementary cumulative degree (left) and strength (right) distributions and their
power law fit. The scale is logarithmic for both axes. Data refers to January

tional distribution among all the firms (see Table 6 in Appendix 1). This means that likely
they are not customers and, more importantly, almost no information, for example about
risk, is available on them. For further details on this refer to Tables 3 and 4 in Appendix 1.

We now turn our attention to the distribution of degree and strength. In our case the
in- (out-) degree is the number of payers (payees) of a given firm and the correspond-
ing amount of Euro. For the monthly aggregation case the average in- and out-degree of
a firm is 6 and 4, respectively (see Table 1). These low values are a direct consequence
of the low density of the network. However the degrees and the strengths are extremely
heterogeneous as testified by the degree and strength distribution.

Figure 1 shows the empirical cumulative distribution for these two quantities in a double
logarithmic scale. The approximately straight line indicates the presence of a fat tail with
a power law behaviour. The fit of the exponent supports the observation that in- and out-
degree distribution data are consistent with a power-law tail and the estimated exponents
are around 2.6 and 2.8, respectively. Similarly, in-strength and out-strength are well fitted
by power-law distributions of exponents around 2.1 and 2, respectively. Despite the fact
that a large fraction of nodes is different in each month, the tail exponents are remarkably
stable (see Table 7 of Appendix A.3).

The scale free behaviour is quite ubiquitous in complex networks has been found in
many other real economic and financial networks [12, 32—37]. The fat-tailed distribution
for the degree has two interesting consequences: first, there is no characteristic scale for
the average degree or strength; second, there are a few nodes that act as hubs for the sys-
tem, in the sense that, having a large amount of connections, many pairs of nodes are
connected through them. This partially explains the low values for the diameter.

Finally, we measure the tendency of firms to be connected to firms which are similar
with respect to some attribute, namely the number and the total volume of connections
(i.e. degree and strength). Following [38], we compute the assortativity coefficient for a

categorical variable,

e Z,’eii—ﬂibi, 1)
1- er Lll'bl‘

where e is the fraction of edges connecting vertices of type i and j, a; = }_;e; and

bj =", e;. It is rmax = 1 for perfect mixing, while when the network is perfectly disas-

sortative (each node connects to a node of a different type) it is rmin = — I_Zzla;blh . Using the

number of connections as categorical variable, an high value for the assortativity coeffi-
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cient indicates that highly connected firms tend to interact significantly more than average
with other highly connected firms. Similar reasoning holds using the volume exchanged as
categorical variable. Beside the entire graph, we also consider the subgraph of firms with
rating and the subgraph of customers.

The assortativity coefficient is consistently slightly negative for both attributes, for all
months and graphs, namely around —0.03 for the entire graph and the subgraph of firms
with rating, and —0.04 for the subgraph of customers, with no strong differences among
months and attributes. Table 8 of Appendix 1 reports the summary of values of the assor-
tativity coefficient for each month. A possible explanation for the low assortativity can be
that large, very interconnected firms are connected to many subsidiaries which in turn do
not engage with many other firms, being their business almost exclusively focussed on the
relationship with the large and central firms.

Summarising, each month the payment network of firms is very sparse but almost en-
tirely connected. Half of the firms appear in the network as payers only (no incoming links)
and they are mainly unclassified with respect to customer status, so no much information
is available on them. Of the remaining nodes, almost half constitutes the denser core of the
network where more than a half of the transactions occur and above 60% of the volume
circulates. Finally, the network is small world, scale free, and slightly disassortative both
for degree and for strength.

Even if we cannot directly compare the topological properties of our network with other
similar ones, we can take as point of comparison other firm-to-firm networks commonly
used in the literature. The corporate control/ownership networks display typically some
similarity with ours, for example sparsity [8, 10], a power law degree distribution [7, 10]

with the presence of hubs [10], small diameter [6], and bow tie structure [8].

2 Risk distribution and network topology
In this Section we investigate the distribution of risk of firms in the network of payments.
We are interested in measuring the dependence between the network property of a node
or a group of nodes and the risk of the firm represented by the node(s). We proceed in a
bottom-up fashion, zooming out from single nodes to subsets. At first we consider a firm’s
local property (the number of connections) and we check if it correlates with the risk.
Then we consider pairs of linked firms and measure the homophily in risk, i.e. whether
firms with similar risk profile tend to do business together and thus to be linked. Finally, we
divide firms into subsets induced by the network structure and we check whether the in-
ferred subsets are informative with respect to the riskiness of the composing firms. Specif-
ically, we partition the network in groups (or communities) of firms by using only network
information, and we test if the distribution of risk within each group is statistically differ-
ent from the global one. Thus the goal is to understand if the inferred communities are
homogeneous with respect to the risk profile of the composing firms: a community with
many firms with high risk rating is a clear indication of financial fragility and a possible
source of instability, since the distress of one or few firms of the community is likely to
propagate to the other firms.

For the sake of brevity, in the following the analysis is presented for one month, but re-

sults are consistent for all the months, and the complete results are reported in Appendix 2.
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Figure 2 Probability of rating of a firm conditional 1.0
to its out-degree. The solid lines show the fitted
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2.1 Degree and risk

The first investigation is on the relation between the degree of a firm and its risk. The
probability for each risk level » € L, M, H conditional to the out-degree is computed® and
plotted against the degree. The results are shown in Fig. 2. We notice an interesting cor-
relation between degree and risk: small degree nodes are more likely medium risk firms,
whereas large degree nodes are more likely low risk firms. The high risk firms are more
evenly spread across degrees, even if a larger fraction is observed for low degree nodes.
To assess if the three curves are statistically different we perform a multinomial logistic
regression on data [39] (the solid lines in the plot). This choice is justified by the fact the
quantities just described are the probabilities of outcomes in a multi-class problem given
an independent variable (the degree). The estimated probabilities follow quite closely the
trend of the empirical distribution and the coefficients are all significant. More detailed
results of the fit are given in Table 9 of Appendix B.4 (first two columns).

The correlation just highlighted can, at least in part, be influenced by the effect of the
size of the firm (in term of assets value from the balance sheet): a large firm is usually
considered less risky than a small one. At the same time, a larger size generally implies a
higher number of connections, as seen for example in the interbank network [18]. As the
size of firms is not available to us, we use the sum of the incoming and outgoing amounts
as proxy. Defined in this way, the size has a Spearman rank correlation of 0.67, 0.57 with
in- and out- degree, respectively. To control for the effect of the size, we repeat the same
procedure on subsets of firms, grouping according to their size into tertiles. We repeat the
multinomial logistic regression adding the size tertiles among the predictors, and we still
obtain statistically significant coefficients (last four column in Table 9 of Appendix B.4).

Similarly, the three conditional degree distributions given the rating result statisti-
cally different, as for every month all pairs reject the null hypothesis in the 2-sample
Kolmogorov—Smirnov test [40]. Therefore topological characteristics (the degree) of the
node can be used to obtain information on the riskiness of the corresponding firm, even
when controlling for size. From a risk management perspective this is an important re-

sults, since on average highly connected nodes are also less risky.

2.2 Assortative mixing of risk
The next step is to check whether risk is correlated with direct connection preferences.
To clarify this point, we consider two features: the assortative mixing of the risk and the
conditional distribution of rating given the distance.

In the first case we compute a weighted variant of the assortativity coefficient in Eq. (1)
using as categorical variable the risk rating. When the rating is not available, we assign the
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node to a residual class.9 In practice, the quantities e; are substituted by &;, the fraction of
volume from nodes of type i to nodes of type j. The reason for this choice is to mitigate the
impact of the aforementioned large number of uncategorised payers. In most cases their
links are associated with low volume and few transactions. Also, customer firms, even if
they represent only around 1/3 of the firms, exhibit a generally more intense activity, both
in terms of number of transactions and of volume, hence accounting for the stronger ties
between the firms.

The assortativity metric is positive for all the three graphs, 0.070, 0.157, 0.163 for the
whole set, the nodes with rating, and the customers, respectively, with significant vari-
ability across the months but always positive sign.© Table 11 of Appendix B.5 reports the
summary of values of the assortativity coefficients for each month.

With the same quantities &; we define metrics to assess different preferences in connec-
tion between incoming and outgoing payments. We test if firms are more concerned with
the risk of payers than of the payees by testing for different risk distribution between in-
coming and outgoing connection. To discriminate between these two cases, for each node
i we compute the percentage excess of volume with respect to the average toward nodes
in certain risk class and we group according the rating of the node. The distributions are
compared using Mann—Whitney U test [41]. This non-parametric test allow to assess if
one distribution is stochastically greater than the other. Details on the metrics and the
test performed are given in Appendix B.5. We find that it is likely that firms are, at least in
part, aware of the riskiness of their counterparts and results suggest they use this informa-
tion in choosing their business partners. However the hypothesis that incoming payments
show a more marked preference for low risk is not supported by data. Moreover the over-
all positive assortativity is mainly due to low risk nodes. This suggests that low risk firms
are more careful in the choice of their business counterparts, possibly also because their
relative larger creditworthiness allow them to find available partners more easily.

The quantities considered so far in this section are pairwise comparisons between the
rating of nearest neighbours, and give an aggregate measure. A possible! way to enrich
this information is to consider the conditional distribution of rating for nodes at a given
distance® and to compare it to the unconditional distribution. In the case of no influence of
the rating on the connection pattern, the conditional distribution of risk given the distance
should be statistically indistinguishable from the null unconditional distribution. To test
if this is the case, we first compute the distance between all the nodes for which the rating
is available. Then for any fixed &, the occurrences of ratings are computed by looking at
the set of pairs at distance k. Finally, the estimated distributions are tested against the null
one with an hypergeometric test, as explained in details in Appendix B.6.

Results for April are summarised in Fig. 3, which considers the case when the source
node s in class L (for the others rating and months see Table 12 and Fig. 9 in Appendix B.4).
Results are similar when considering a medium or high risk source. For each k a marker
indicates the percentage of nodes with low (green circles), medium (yellow squares) or
high (red diamonds) risk at distance k. A marker is full when the percentage is statistically
different from the null distribution (the dashed lines, with matching colours).

We note that up to distance 5 the class of low risk firms is significantly over-represented
in the distributions. At greater distances, medium and high risk groups are over-

represented. This means that more steps in the networks are necessary to reach riskier
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firms. This fact is particularly interesting when considering that each firm is in theory
unaware of others firms’ ratings and in some cases even its own.

When considering the same quantities for incoming paths, results (see Appendix B.5,
Fig. 9 right panels) are very similar, namely at short distances the low risk class is over-
represented, while medium and high risk nodes are over-represented for longer distances.

A possible explanation for these observations is that among the hubs of the systems (i.e
the most connected nodes) firms with rating L (i.e the most creditworthy) constitute the
vast majority. This holds true when considering both in-coming and out-going links, and
including also the nodes with no rating. Moreover, they are in the denser core previously
described, while many high risk firms have a few or no out-going links and they are pe-
ripheral in network.

2.3 Network organisation and risk

In this Section we study the relation between the organisation of the network at a more
aggregate level and the distribution of risk. We are interested in two types of organisation
of networks into groups. The first is the modular organisation: each module is composed
by nodes, which are much more connected among themselves than with the rest of the
network. In economic terms, modules could represent, for example, firms operating in the
same region or area, and the high density of the module reflects the fact that payments are
more frequent with geographically close firms. We saw before that the network shows an
assortative tendency with respect to risk, so we want to test if the homophily on risk can
be observed beyond the pairwise relationship.

The second is a hierarchical organisation. Since the payment network is directed, we
look for a ranked partition (i.e. each group of nodes is labelled with an integer from 1 to
the number of groups M) such that most links are from nodes in low rank classes to nodes
in high rank classes. This type of organisation could represent, for example, a supply chain
and the flow of payments between the firms of a group and those in the group in the next
rank class reflects the (opposite) flow of goods or services. This classification is important
because a high risk concentration in low class nodes of a strongly hierarchical network
can trigger a cascade of distress in the higher rank classes.

Modularity and hierarchy are conceptually opposite as the first penalises connections
towards other groups, which instead are encouraged in the latter (provided that they go
from low rank to high rank nodes).

For each metric, we proceed in the following way:

i. we find the optimal partition according to the criterion;
ii. we compute the distribution of ratings within each subset of the partition;
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iii. we test whether such local distribution is statistically different from the overall
distribution of ratings by employing the hypergeometric test used in the previous
Section and described in Appendix B.6. In order to have a large enough sample for
testing, we only consider subsets with at least 500 known ratings.

We showed so far that the structure of the payments network is very complex. Since our
goal is to obtain information on the risk of the firms, it can be helpful to filter the network
before performing communities detection, in order to keep the most relevant connec-
tions. Thus we focus on the subgraph of customers. The reasons for this choice are many.
First, the percentage of nodes with rating active every month is quite low, around 20%,
but it raises to 70% when considering only the customers (see Table 3 in Appendix A.1
for a summary). This will help having a more informative local distribution of risk when
considering subsets of nodes. Secondly, more than a half of the volume is transferred be-
tween customers (see Table 4 in Appendix A.1), so even if a large fraction of transactions
is dropped, we are mostly pruning weak connections, while keeping the strongest ones.
Finally, as it has been shown in the previous Subsection about assortativity, considering
the entire network can be misleading, especially when looking at the connections without

considering the weights, as it will be necessary for some metrics.

2.3.1 Modular structure

One of the standard methods for inferring a modular structure in a network is via mod-
ularity maximisation. This method divides nodes into subsets, called modules, such that
nodes are well connected with other nodes in the same module and there is a smaller num-
ber of links with nodes in other modules. Given a partition P in modules C, the modularity

is

1 k}“k;’m
Q:%ZZ<AI'/_ oy ): 2)

CePijeC

where A is the (i, /) element of the adjacency matrix and k}“ (k") is the in- (out-) degree
of node i. The optimal partition is the one which maximises modularity. Despite the as-
sociated optimisation problem is NP-Hard, fast and reliable heuristics for an approximate
solution exist, and here the well known Louvain method [42] is employed.

In each month we find that the optimal partition has around 2000 modules. These are
quite heterogeneous in size: for example, the 13 largest ones cover more than 95% of the
nodes of the network. We perform the hypergeometric test of the null hypothesis of an
homogeneous distribution of risk. This hypothesis assumes as null distribution of risk the
one empirically observed across the entire network (see Appendix B.6 for more details).
We perform the analysis in each module with at least 500 known ratings, amounting to
around 19 modules per month. (see Table 14 in Appendix B.6 for more details). These
are clearly very large modules, but a significant number of them shows an over or under-
expression of one or two risk classes.

For some specific module it is possible to draw statistical robust conclusions on its risk
profile. The top panel of Fig. 4 shows the over- or under-representation for the largest
modules of January. The seventh module, for example, has an over-representation of firms
with low risk and an under-representation of the other two risk profiles, thus it repre-
sents a group of firms with small risk. On the contrary the eighth module has an over-
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Figure 4 Distribution of ratings in the three partitions, modularity (top), hierarchy (bottom). The dashed lines
are the unconditional (null) distribution of ratings among nodes in the entire sample. A full marker indicates
that the over (above the dashed line) or under (below the dashed line) representation with respect to the null
distribution is statistically significant in the hypergeometric test at 1% significance level with Bonferroni
correction

representation of highly risky firms and under-representation of low risk firms, represent-
ing a possible warning for the bank.

2.3.2 Hierarchical organisation

We now consider explicitly the directed nature of the payment graph and the hierarchical
organisation of the network. An ordered partition is such that each subset is associated
with an integer number (rank) r € {1,...,M}. A graph has a hierarchical organisation if
nodes are more likely linked to other nodes with a higher rank [43], such as in military or-
ganisations or in administrative staff. Finding the optimal ordered partition and revealing
the hierarchy of a graph is in general complex and requires the minimisation of a suitable
cost function, similarly to what is done with modularity.

In this paper we use a cost function proposed in [44]. Given a rank function r: V —
{1,..., M}, the cost function penalises links from a high rank node to a low rank node. The
penalisation is a linear function of the difference between the ranks. Thus the optimal
hierarchical partition is obtained by solving the optimisation problem

At =min 3 f(r(w) (),

(u,v)eE

where R denotes the set of all ordered partitions and the cost function is

x+1, x>0,

0, x<0.

flx) =
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The hierarchy of the graph is defined by

*

A
G =1-—.
m

By definition, # € [0, 1], and 0 is the value for the trivial partition with only one set, while
h =1 is obtained when the network is a Directed Acyclical Graph and it signals a perfect
hierarchy. The linear choice of the penalisation function is convenient because the asso-
ciated optimisation is solvable in polynomial time and few exact algorithms exist [44, 45],
while non-linear forms can lead to NP-hard problem.

We apply the hierarchy detection to the monthly networks of payments and the results
are summarised in Table 15 of Appendix B.6. First of all we notice that the number of
inferred classes, roughly 18, is much lower than in the modular case. Moreover the size
of the classes is much more homogeneous. The value of / is also quite stable, around
0.75, indicating a strong hierarchical structure, a remarkable result considering that we
are studying only the customers network.

We now consider the distribution of risk in each class and we study the over- or under-
expression of certain levels of risk as a function of the rank of the class in the inferred
hierarchy. The test rejects the null hypothesis of homogeneous risk distribution, the same
used in the modular case, a considerable number of times. As displayed in the bottom
panel of Fig. 4, low rank classes have an over-expression of high and medium risk firms,
while middle and low rank classes (i.e. r € [8,12]) have an over-expression of low risk firms
and an under-expression of medium and high risk firms. More details on the test results
are given in Table 15 in Appendix B.6. This empirical evidence may signal the presence
of paths of risk propagation, since low rank firms, typically riskier, are payers of high rank
firms, which are instead less risky.

2.4 Discussion

Both investigated partitions give interesting insights on the relationship between risk and
network structure. On one side, the percentage of rejected tests in the case of modularity
partition is consistent with the observed assortativity of risk. It may be noticed that the
preference for low risk business partners is not always a realistic option, because in some
sectors business partners are not replaceable for a variety of reasons. To better assess this
point, one possibility could be to include the comparison between modules and geograph-
ical location of firms, which is not available to us. On the other side, the relation between
risk and hierarchical partition is probably related to the peculiar conditional distribution
of risk with respect to the distance described in Sect. 2.2. Indeed, given the fact the high
risk nodes are over-represented for longer distances, they should be located in extreme
positions in the ranking, either at the top or at the bottom, and this is what is observed. It
must be stressed that in the case of the two methods chosen here, one does not exclude
the other, as they give different and complementary standpoints for interpretation. In this
sense a multi-dimensional perspective is needed, where the dimensions are the mecha-
nisms that either favour or discourage the creation of business relationships.

3 Missing rating prediction using payments network data
In the previous sections we showed that network metrics can be informative of the risk
of a firm. It is therefore natural to ask whether it is possible to predict the missing risk
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rating of a firm by using on/y information on network characteristics of the corresponding
node, as well as risk rating of the neighbour firms. This problem is particularly relevant
since we noticed that around 30% of the customers in the dataset do not have a rating
and this percentage is even higher when the entire dataset is considered (see Table 3 in
Appendix A.1).

Here we use network characteristics as predictors for the missing ratings into well
known methods of machine learning for classification problem. The predictors we em-
ploy are the following:

i. in- and out-degree;

ii. weighted fraction of (in- and out-) neighbours with a given rating (H, M, L or NA)

ili. rank of the class in the hierarchy inferred by agony minimisation;

iv. membership in community inferred by modularity maximisation;

v. sum of in- and out-strength.

The fractions in (ii.) are computed considering the amount (weight) of each payment and
are together a measure for rating assortativity, while (v.) is a proxy for the size. Data are
preprocessed following [24] so that variables are comparable in order of magnitude, as
detailed in Appendix C.7. These transformations result into a total of 25 predictors. The
dataset is the one which includes only the customers, and we consider the monthly net-
work for January (see below for the other months). In order to assess the performance of
the prediction, we train each model using 75% of the data, and the remaining 25% is used
for testing.

We consider three methods for classification:

i. multinomial logistic;

ii. classification trees;

iii. neural networks.

See [24] for a review of these methods.

The class H is under-represented in the sample, as it includes only around 10% of the
firms with rating. This affects the ability of any classifiers to recover this class. This is
undesirable, since the class H the most critical for the riskiness.

To address this issue we proceed with a 2-step classification strategy for all the three
methods. The intuition behind this strategy is to train a classifier more specialised in the
recovery of one specific class at the first step, and then separate the remaining classes in
the second step. In the first step we fix a risk class, say L, and we merge the other two
classes into a fictitious class X. We fit a first instance of the chosen model on the modified
database. In the second step, we train another instance of the model only on the two pre-
viously merged classes. This is repeated for all the three risk classes. In the case of class H
being the one selected for step one, we apply SMOTE [46] before training, a well-known
algorithm for data rebalancing."

Once the models are trained, the prediction are obtained by iterating the following two
steps for each risk class (see the schematic representation in Fig. 5)

i. apply the first step classifier;

ii. if the entry is classified as X, apply the second step classifier.

The final prediction is the median of the predictions. In case of draw, more weight is
given when the class is obtained from the first instance (as the classifier is more spe-
cialised). For the 2-steps method, the random classifier can be defined in the following
way: the null distribution for the first step is obtained for each classifier, by taking into
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Figure 5 Schematic representation of the 2-steps classifier

Table 2 Accuracy and recall for 2-steps classifiers. R: random, ML: multinomial logistic, CT:
classification tree, NN: neural network

Method Accuracy Recall

L M H
random 1-step 0413 0438 0.625 0.108
random 2-steps 0.366 0.368 0.391 0.249
multinomial logistic 0477 0.553 0452 0.253
classification tree 0496 0.502 0.567 0.151
neural network 0.505 0.526 0.559 0.166

account the fictitious class, and at the second step by considering only the two classes
previously merged.

Table 2 shows the results for each classifier, together with the value for the same metrics
computed for the random classification. In the case of classification trees and neural net-
works, different combinations for the hyper-parameters have been tested (such as depth
for the trees, and number and size of hidden layers for neural networks), here we present
the results for the best choice for each model, and in the Appendix C.8 we explain the
selecting procedure.

We repeat the procedure also for the other months, using only one hyper-parameters
choice for each type (the one resulting from the tests on the first month), see Table 16 for
details of the results.

The three models behave quite similarly, with slightly better overall performance of neu-
ral networks, and the training times are comparable.

It is interesting to study which of the network features are more predictive of the risk.
While this is a complicated task for neural networks, it can be performed for classification
trees. Figure 6 shows the importance of the predictors in the classification trees. As the
2-steps method includes 6 classification trees, we evaluate the importance of features for
each classifiers (bars) and then also compute the average (line). We repeat the same for
each month and present the average and standard deviation. We observe a good agreement
across months, but interestingly less across classifiers in the ensemble (see for example the
importance of in-degree for step 2 for L classifier with respect to the other classifiers).

From the figure we conclude that the most important features are: (i) in- and out- degree,
(ii) percentage of neighbours with rating L or H, (iii) the proxy of the size, and (iv) the po-
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Figure 6 The ten most important features for the classification tree. Each bar represents the importance for a
single classifier as detailed in Fig. 5). The pink line is the average across all classifiers. Results are averaged
across months and the black bar indicate the standard deviation. The importance of a feature is computed as
the (normalized) total reduction of the criterion brought by that feature (also known as the Gini importance)

sition in the hierarchy. Interestingly, the community to which the node belongs, according
to the modularity partition, seems to play a minor role.

It must be noted that, among the predictors only network deduced metrics have been
included, while any data from the balance sheet, which is likely to represent the main
source for the risk rating model, as well as the sector or geographic location, are excluded.
When adding the economic sector, which is the only metadata available to us, as further
predictor the prediction power only slightly improves to from 49%—50% to around 52% of
accuracy for both classification trees and neural networks. The natural benchmark models
are the random classifiers, both 1-step and 2-steps, due to the total lack of data employed
in the proprietary rating model. We are able to outperform the first by 30% to 38%, and
the latter by 15% to 22% in term of accuracy, and especially in the case of neural network,

we are able to find a good compromise with recall for H.

4 Conclusions
In this paper we empirically study the interactions and the risk distribution of 2 million
Italian firms, via the investigation of payments networks built from transactional data.
Our contribution is threefold. On one side, the empirical study of the relationship be-
tween the high number of firms to our knowledge has not been done before, especially
with this granularity. The study of the structure of the network highlights a complex in-
terdependence between firms; indeed particularly interesting is the presence of a relatively
small core of firms, which are involved in most transactions. This feature, paired with the
power-law tail distribution of the number of connections and the total volume exchanged
by the firms, can be a symptom of an architecture which favours the spread of distress, or

positive feedbacks. Also relevant is the observed tendency of large, well-connected firms

Page 15 of 29



Letizia and Lillo EPJ Data Science (2019) 8:21 Page 16 of 29

to be connected to small (in terms of exchanged volume), poorly connected firms. This can
be the result of almost exclusive relationships between a big producer and its subsidiaries.

The second and main contribution is the assessment of the correlation between the net-
work structure and the distribution of risk. From our analysis, we conclude that the risk
level of a firm is correlated to its features and role in the network at different levels. For
single firms, we observed that low risk firms are more likely to have a high number of
connections, and some of them acts as hubs for the entire network, being connected to
thousands of other firms. When pairs of linked firms are considered, we observed the ten-
dency to favour connections towards firms with the same risk level. This tendency can
be observed also on a more aggregate level. Indeed, we found that also groups of firms
which are more connected among them than with the rest of the network, have a local
distribution of risk which is statistically different from the global one, meaning that some
risk classes are over- or under- represented. Finally, we divided firms into a hierarchical
organisation, in such a way to highlight the main direction along which money circulates.
This simplified structure showed once more that many levels of the hierarchy have a local
distribution of risk statistically different from the global one. As high risk firms are over-
represented at the beginning of the flow of money, this can be a source of distress for the
entire system.

Finally, we showed that network metrics and community structure can be successfully
used to predict the missing ratings with machine learning models. We propose a simple
2-steps strategy to compromise between overall accuracy and recall on the smallest but
riskier class. We test our strategy with three methods, namely multinomial logistic, clas-
sification trees and neural networks. Since predictors are all network-derived quantities,
and no information from balance sheets or other meta-data are used, the random rating
assignment is the natural benchmark. We find that all the three methods are able to out-

perform significantly the benchmark, with slightly better results for neural networks.

Appendix 1: Dataset and network metrics

A.1 The dataset

The dataset is built from transactional data of the payment platform of a major Italian
bank for a total of 47M records. Table 3 shows the distribution of rating across the firms,
disaggregating them in terms of their customer status. Table 4 presents the details of the
exchanged volume by customer status.

A.2 Time aggregation

When defining a network from temporal data, choosing the time scale of analysis is crucial
because it can affect deeply the topology. Shorter time scales (daily or weekly) emphasise
peculiar behaviours as, for example, which supplier is paid first once liquidity is available.
Longer time scales help giving a more stable picture of the supply chain structure among
firms.

In order to give an intuition of different behaviours, two quantities can be considered.
The first is the persistence of links and nodes, which is measured by counting the number
of times a node or an edge appears in the networks for different time aggregations. From
Fig. 7 one can see that most of the nodes are active only for few days, while a small core of
firms is intensely active through the whole year. Secondly, the size of the networks, both
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Table 3 Average monthly distribution of nodes by customer status and rating

Status Rating Count % % with rating
not customer incl. NA L 2121 0.000 0.010
M 4592 0.003
H 305 0.000
NA 676,762 0.990
customer L 87,801 0.305 0.702
M 95,893 0.333
H 18,811 0.065
NA 85,841 0.298
ex L 3901 0.017 0.340
M 7850 0.179
H 926 0.017
NA 41,775 0.767
total 1,026,577 0217

Table 4 Percentage of volume by customer status, the row indicates the status of the payer, the
column the recipient

Month No Yes Ex NA No Yes Ex NA Month
Jan 0.000 0.036 0.001 0.001 no 0.000 0.014 0.000 0.000 Feb
0.009 0.604 0.030 0.110 yes 0.027 0.543 0.037 0.154
0.000 0.046 0.002 0.003 ex 0.000 0.037 0.000 0.002
0.000 0.149 0.002 0.006 NA 0.000 0.184 0.001 0.000
Mar 0.000 0.015 0.000 0.000 no 0.000 0.018 0.000 0.000 Apr
0.023 0.541 0.037 0.151 yes 0.023 0.525 0.033 0.155
0.000 0.036 0.000 0.002 ex 0.000 0.040 0.000 0.002
0.000 0.193 0.001 0.000 NA 0.000 0.199 0.003 0.000
May 0.000 0.018 0.000 0.000 no 0.000 0.015 0.000 0.000 Jun
0.023 0.542 0.035 0.144 yes 0.018 0.534 0.037 0.172
0.000 0.040 0.000 0.001 ex 0.000 0.033 0.000 0.001
0.000 0.194 0.001 0.000 NA 0.000 0.189 0.001 0.000
Jul 0.000 0.014 0.000 0.000 no 0.000 0.014 0.000 0.000 Aug
0.019 0.538 0.031 0.181 yes 0.018 0.591 0.029 0.140
0.000 0.031 0.000 0.002 ex 0.000 0.029 0.000 0.001
0.000 0.183 0.001 0.000 NA 0.000 0.172 0.005 0.000
Sep 0.000 0.015 0.000 0.000 no 0.000 0.013 0.000 0.000 Oct
0.019 0.599 0.027 0.131 yes 0.022 0.581 0.029 0.141
0.000 0.032 0.000 0.001 ex 0.000 0.037 0.000 0.001
0.000 0.175 0.001 0.000 NA 0.000 0.175 0.000 0.000
Nov 0.000 0.015 0.000 0.000 no 0.000 0.014 0.000 0.000 Dec
0.013 0.578 0.037 0.165 yes 0.012 0.578 0.036 0.194
0.000 0.031 0.000 0.001 ex 0.000 0.028 0.001 0.001
0.000 0.158 0.000 0.000 NA 0.000 0.137 0.000 0.000

in terms of number of nodes and links, for different time aggregations is shown in Fig. 8.

Interestingly, for daily aggregation, see Left panel, both quantities show a high periodicity,

with a very high peak (a factor ~ 5 with respect to the other days) at the end of each

month. This effect is evident also with weekly aggregation, (see central panel), but not in

the monthly time scale. This last observation justifies the choice of monthly networks as

focus of this paper.
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A.3 Network metrics
A network’s component is a subsets of nodes such that there is path between any pair of
nodes, either undirected (weakly connected components), or directed (strongly connected
components). From the definition of the networks it is clear that there are no isolated
nodes, since the smallest weak components include at least two nodes, namely a payer
and a payee. As it is common for many other real networks, it is possible to identify a
weak component, which is of the order of magnitude of the entire network. In our case
this giant component (GC) includes on average 98% of the nodes. Considering instead the
largest strongly connected component (SCC), it includes approximately 20% of the nodes
but more than half of the links. As a consequence the density of the strongly connected
component is an order of magnitude larger than the density of the whole network or of
the weakly connected component. See Table 5 in for more details of these quantities.

In the standard definition of the bow-tie structure of a network, the nodes in the GC
but outside the strongly connected component are divided between the in-component,
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Table 5 Percentage size (%n) and density (p) of the largest weakly (GC) and strongly (SCC)
connected components. The last column (%w) contains the relative volume transferred among
nodes in the SCC with respect to the total volume

GC SCC

Month %n 0 %n P = mn %w
Jan 0.989 34-107° 0232 3.29-107 0.75
Feb 0.989 321-107° 0.237 299.107 0.69
Mar 0.980 3.15.107° 0.235 298107 0.70
Apr 0.980 3.16-107° 0.231 309107 067
May 0.981 3.16-107° 0.232 3.06-107° 0.69
Jun 0.980 3.11-10°° 0.230 303107 0.69
Jul 0.982 305-107° 0.237 288107 0.70
Aug 0.970 308-107° 0.204 323.107° 0.69
Sep 0981 331107 0.233 323-107 0.73
Oct 0.981 3.00-107° 0.237 281107 0.68
Nov 0.979 3.08-107° 0.227 3.00-107 0.65
Dec 0.979 281107 0.228 269107 067
Table 6 Number of payer-only by customer status

Client status No Yes Ex Not available
Jan 22,552 76,097 33,494 373,501

Feb 21,263 71,724 30,800 370,867

Mar 21,036 72,456 30,645 385,769

Apr 23,239 74,738 34,464 402,241

May 22,793 75,033 32,889 407,682

Jun 21,834 73,209 31,215 399,492

Jul 21,650 72,092 30,883 421,928

Aug 19,236 69,525 27,672 330,268

Sep 22,033 73216 31,351 404,944

Oct 20,417 70,567 29,141 407,276

Nov 21,127 73,243 30,250 394,656

Dec 19,334 69,969 27,915 400,004

the nodes from which links arrive in the strongly connected component, and the out-
component, the nodes reachable from the SCC. Nodes in the in-component that have no
incoming links, represent each month about one half of the active firms and their activity

is sporadic.

Appendix 2: Risk distribution

B.4 Degree and risk

The multinomial logistic regression aims to model the probabilities for a classification
problem with more than two outcomes. Here we treat the responses (L, M, H) as categor-
ical and ordered. In practice this means to find parameters that best fit the model

Pir<L)

(0] <m) ZﬂL+b}‘X1"'+b€Xp,
P(r < M)
(i) ot -+ h,

where X; are the predictors, 2 and &’ are the coefficients. We consider the cases p = 1,
where the predictor is the degree X; = k, and the case p = 2 where also the size is used as
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Table 7 Results of power law fit of the degree and strength distribution for all the months obtained
by using the algorithm described in [47]. The & parameter is the fitted exponent and the kpin and
Wmin parameter is the estimated minimum value after which the behaviour of the distribution is
consistent with a power law tail. Since the volume of payments are scaled, the values of Wi, s are
not much informative, so for the strength F(Wmin) = 1 — ECDF(Win) is reported instead

Month Degree Strength
L L - . e

Jan 255 159 2.85 24 1.89 0.03 1.89 0.01
Feb 2.56 148 2.80 19 2.10 0.03 1.99 0.01
Mar 2.53 125 2.70 44 211 0.03 1.97 0.01
Apr 267 257 2.82 22 2.14 0.03 2.01 0.01
May 2.66 227 283 23 212 0.03 207 0.01
Jun 2.58 135 2.83 23 2.07 0.03 1.96 0.01
Jul 252 124 2.80 21 207 0.03 202 0.01
Aug 2.62 236 2.74 14 2.07 0.03 1.94 0.01
Sep 264 187 283 32 2.09 0.04 2.03 0.01
Oct 2.53 129 2.75 25 2.05 0.03 1.95 0.01
Nov 259 134 2383 19 2.06 0.03 2.04 0.01
Dec 2.55 180 262 41 2.06 0.03 1.98 0.01

Table 8 Assortativity coefficient for degree and strength. The columns with rating refers to the
subgraph of nodes with known rating. The columns customers refers to the subgraph of nodes with
customer status yes

Attribute: Degree Strength

Nodes: All With rating Clients All With rating Clients
Jan -0.035 -0.035 -0.046 -0.036 -0.031 -0.046
Feb -0.027 -0.029 -0.036 -0.030 -0.031 -0.039
Mar -0.025 -0.030 -0.038 -0.027 -0.027 -0.037
Apr -0.027 -0.027 -0.037 -0.030 -0.029 -0.041
May -0.026 -0.033 -0.039 -0.027 -0.026 -0.035
Jun -0.025 -0.027 -0.032 -0.028 -0.030 -0.037
Jul -0.025 -0.028 -0.036 -0.028 -0.028 -0.038
Aug -0.027 -0.035 -0.040 -0.032 -0.034 -0.041
Sep -0.024 -0.027 -0.030 -0.028 -0.030 -0.036
Oct -0.028 -0.028 -0.037 -0.032 -0.033 -0.043
Nov -0.023 -0.028 -0.031 -0.026 -0.028 -0.035
Dec -0.027 -0.030 -0.034 -0.031 -0.035 -0.041

predictor X, = s. In the following Table 9, the b coefficients are shown, together with an

indication for the statistical significance.

B.5 Assortativity of risk

To test if nodes show different preferences in connection between incoming and outgoing

payments we define the quantities

A () = W™ (X) = axby
' 1 —axb,
A(.Oth) (X) _ WSOUt) (X) - &r(l')éx
l 1 - a,;)bx

, Xel{lL,M,H},

X e {L, M, H).

The notation is consistent with the definition in (1): r(i) is the risk of node i; ay, by are

the percentage volume from or to nodes with rating X for the whole network, wgom) X)

(w?“) (X)) is the percentage of the volume from (to) node i to (from) nodes of rating X. Sam-
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Table 9 Coefficients for multinomial logistic regression of out-degree distribution. The first two
columns refer to the regression with the degree as only predictor. The last four columns refer to the
regression with also the size as predictor. The superscript indicates the predictors: k for the degree, s
for the size. The subscript indicates the risk rating. The stars indicate significance: one star if the

p-value < 0.05, two stars if the p-value < 0.01

b o bf bi Oy by
Jan 0.258** 0.352** 0.261** -0.007 0.312%* 0.091**
Feb 0.221** 0.305** 0.210** 0.024** 0.233** 0.159**
Mar 0.226** 0.314** 0.220** 0.013 0.237** 0.173**
Apr 0.243** 0.328** 0.240** 0.007 0.270** 0.131**
May 0.229** 0.324** 0.206** 0.051** 0.237** 0.195**
Jun 0.239** 0.325** 0.232%* 0.017* 0.237%* 0.199**
Jul 0.238** 0.344** 0.227** 0.026* 0.263** 0.187**
Aug 0.183** 0.272%* 0.175** 0.020* 0.179** 0.2171**
Sep 0.238** 0.355** 0.218** 0.046 0.255** 0.228**
Oct 0.220** 0.329** 0.207** 0.030%* 0.232%* 0.220**
Nov 0.226** 0.338** 0.211** 0.034** 0.233** 0.234**
Dec 0.219** 0.331** 0.220** -0.002* 0.231** 0.227**

Table 10 Coefficients for multinomial logistic regression of in-degree distribution. The first two
columns refer to the regression with the degree as only predictor. The last four columns refer to the
regression with also the size as predictor. The superscript indicates the predictors: k for the degree, s
for the size. The subscript indicates the risk rating. The stars indicate significance: one star if the

p-value < 0.05, two stars if the p-value < 0.01

b o bf bi Oy by
Jan 0.294** 0.352** 0.297** -0.009 0.284** 0.196**
Feb 0.300** 0.359** 0.308** -0.030"* 0.292** 0.185**
Mar 0.301** 0.379** 0.313** -0.038** 0.317** 0.175**
Apr 0.294** 0.352** 0.301** -0.022%* 0.296"* 0.157**
May 0.299** 0.372** 0.304** -0.015% 0.308** 0.178**
Jun 0.302** 0.381** 0.310** -0.028** 0.309** 0.202**
Jul 0.309** 0.406** 0.312** -0.013* 0.326** 0.224**
Aug 0.267** 0.372** 0.281** -0.044** 0.309** 0.1771**
Sep 0.290** 0.392** 0.289%* 0.0015 0.308** 0.233**
Oct 0.299** 0.420** 0.307** -0.023** 0.344** 0.205**
Nov 0.295** 0.409** 0.300** -0.016** 0.334** 0.208**
Dec 0.283** 0.405** 0.291** -0.028"* 0.329** 0.213**

Table 11 Assortativity coefficient for risk rating. The columns with rating refers to the subgraph of
nodes with known rating. The columns customers refers to the subgraph of nodes with customer
status yes. In the last two columns, the metric for assortativity is modified in order to take into
account weights, specifically e; is computed as the fraction of volume, not the number of edges (see
main text for more details)

Metric: Standard Weighted

Nodes: All With rating Clients All With rating Clients
Jan —-0.063 0.025 0.035 0.073 0.115 0.109
Feb -0.066 0.026 0.038 0.106 0.181 0.188
Mar -0.067 0.025 0.039 0.073 0.150 0.150
Apr -0.067 0.026 0.036 0.069 0.154 0.156
May -0.067 0.025 0.038 0.065 0.146 0.139
Jun -0.068 0.026 0.039 0.060 0.150 0.128
Jul -0.072 0.025 0.037 0.046 0.142 0.137
Aug -0.078 0.025 0.040 0.078 0.149 0.224
Sep -0.067 0.025 0.040 0.087 0.168 0.216
Oct -0.076 0.024 0.037 0.080 0.151 0.213
Nov -0.072 0.024 0.039 0.070 0.175 0.149
Dec -0.082 0.024 0.040 0.037 0.199 0.151
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Table 12 Number of rejected test for each month and risk pair: the first row indicates the rating of
the starting node of the path, the second row the rating of the target node for outgoing (left) and
incoming (right) paths

Month  Outgoing paths Incoming paths

L M H L M H

L M H L M H L M H L M H L M H L M H
Jan 11 10 13 1 g8 14 1 10 13 5 17 14 2 19 13 5 17 14
Feb 11 12 10 11 11 9 1 12 10 4 15 9 2 17 10 4 15 9
Mar 1212 1 13 13 12 12 12 11 4 17 13 4 19 10 4 17 13
Apr 12 9 12 11 10 1 12 9 12 4 17 14 3 19 13 4 17 14
May 1215 12 12 15 12 12 15 12 6 19 14 3 20 15 6 19 14
Jun 10 11 7 10 12 7 10 1 7 4 16 1 1 18 N 4 16 11
Jul 10 14 10 1 15 10 10 14 10 4 13 16 1 18 16 4 13 16
Aug 13 11 10 13 11 0 13 1 0 3 6 1 2 18 1N 3 16 11
Sep 12 12 1 1213 13 12 12 11 4 18 14 2 20 14 4 18 14
Oct 10 8 12 9 9 10 10 8 12 5 15 13 2 17 13 5 15 13
Nov 9 12 7 10 1 8 9 12 7 5 15 11 3 17 1 5 15 1
Dec 10 10 10 9 10 10 10 10 10 3 15 9 1 7 8 3 15 9

ples are obtained by grouping nodes by rating, for a total of 18(= (3 ratings)? - 2 directions)
distributions. For example, the distribution of excess percentage volume from L towards
M is given by

[ADCY |ie L) ~F ).
Similarly, the excess percentage volume entering M from H is given by
[AH)™ | i e M} ~ FiP (H).

Note that in general, F)(}")(Y) + Fg") (X).

We perform two sets of test. In the first case we fix one rating and we compare out-
and in- excess percentage volume with respect to a certain rating. In all the cases the null
hypothesis is rejected with very low p-values, however it is not straightforward to give an
economic interpretation of the overall results: for all the ratings, the excess percentage
toward L is greater that the analogous for incoming volume, while the opposite holds for
payments to and from H. In the second set of tests we fix a rating and a direction (in or
out), and we compare the excess percentage volume from (or to) all the ratings. Also in
this case all the tests reject the null with very low p-values, so we are able to order the
distributions and evaluate the preference in connection. For the outgoing volume, rating
L is preferred to the more risky ones in all the case. Payments to nodes rated M follows in
preference from nodes having risk M and H, but are last in order for nodes having rating L.
For incoming payments, the situation is slightly different. Rating M is preferred by nodes
rated M and H, and it is followed by L. While the preference is reversed for payments from
nodes rated L.

As further robustness check we also compute the closeness centrality for each node and
we compare the distribution depending on the risk (see Table 13). The closeness centrality
[48] of the nodes is defined as the harmonic mean of the distances to all other nodes.
We observe again asymmetry in the position of nodes in the network depending on their
rating: closeness for low risk nodes is higher and more spread than that of high risk nodes
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Table 13 Average closeness centrality for each month and risk rating

L M H
Jan 0.029 0026 0023
Feb 0028 0026 0023
Mar 0030 0033 0022
Apr 0028 0027 0022
May 0028 0026 0.023
Jun 0.028 0025 0.022
Jul 0.028 0025 0022
Aug 0025 0023 0.020
Sep 0028 0025 0.022
Oct 0028 0025 0022
Nov  0.027 0024 0022
Dec 0026 0024 0021

(0.027 on average across months, and 0.022 respectively) which is a direct consequence of
the fact that low risk nodes are more connected.

B.6 Test for risk distribution within a community

The statistical test employed in the main text has the purpose to assess whether a given
rating is under- or over-represented in a certain subset, obtained by one of the partitioning
methods described in the paper. In general, this means to test if the distribution of ratings
in a single subset is statistically different from the unconditional distribution obtained
considering the entire sample. To do so, one computes the p-value representing the prob-
ability to observe a given number of ratings in each community under the null hypothesis
of that ratings are distributed in the community as in the whole sample. As shown in [49]
the probability under the null is the hypergeometric distribution. Moreover, since for each
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community multiple tests (one for each rating and community) are performed, a correc-
tion for the p-value for multiple hypothesis testing is used. In particular, the Bonferroni
correction is chosen, i.e. fixed a threshold p; for the p-value, the corrected threshold is
given by f—,i, where N, is the number of tests. The threshold of is fixes at p; = 1% before
correction.

Specifically, given a partition {C;}; the following quantities are computed

ks, = #{nodes in C; with rating x},
n; = #{nodes in C;},
K, = #{nodes with rating x},

N’ = #{nodes)}
and the p-value is given by

]P)()/> kx,i’ knLll > II\%) I(L I(M I(H’N/

Nh NTEENTEENTE .
Ply < oy ot < ) y Ypergeom<N/ NN )

nj

p:

Note that {K,} and N’ are computed in the specific monthly network under considera-
tion.

In the case of the distribution conditioned on the distance, the subsets are obtained by
considering pairs of nodes. For example, the fraction of nodes with rating L at distance k

from H is computed as

P I{(i,j) : d(i,j) = k,i € H,j € L}|
M (i) (i) = ki € HY|

The partitions resulting from the other methods are very different in terms of num-
ber and size of subsets, so to make tests comparable, only communities including at least
500 nodes with known rating. In the cases of modularity, subsets are ordered by descend-
ing size. Note that, since each month the set of active nodes and the labelling of subsets

changes, one cannot easily compare the behaviour of a subsets across months.

Table 14 Summary for test results: modularity

L M H Tested nCos0 nC

+ - + - + -
Jan 4 9 8 4 6 5 17 13 1971
Feb 5 Il 9 2 9 7 20 15 1900
Mar 5 13 7 2 8 4 20 14 2070
Apr 4 9 7 3 7 6 19 14 1902
May 3 9 8 2 7 5 18 13 1856
Jun 5 12 I 3 6 6 21 15 2148
Jul 6 8 10 5 5 3 17 12 1862
Aug 5 12 8 3 8 5 21 16 2608
Sep 3 9 9 2 4 4 16 12 1879
Oct 5 Il 9 2 6 4 18 13 1922
Nov 5 9 7 4 5 4 17 1 2083
Dec 3 Il 10 3 7 3 19 15 2323
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Table 15 Summary for test results: hierarchy

L M H Tested NCosos nC h

+ - + - + -
Jan 5 5 5 4 3 5 12 11 18 0.75
Feb 5 5 4 4 4 5 12 11 17 0.74
Mar 4 4 4 4 4 4 12 11 18 0.74
Apr 4 4 3 4 3 6 12 10 15 0.75
May 6 4 4 4 3 6 12 13 18 0.74
Jun 5 3 3 4 4 6 12 11 17 0.75
Jul 4 3 3 4 3 5 12 M 16 0.74
Aug 6 4 3 5 3 5 14 11 20 0.78
Sep 5 4 3 4 4 6 12 10 17 0.74
Oct 5 4 3 4 3 5 12 11 17 0.73
Nov 5 3 4 4 3 5 12 10 18 0.75
Dec 4 3 3 4 3 7 12 12 19 0.75

Tables 14, 15, present a summary of the tests, recording for each month and risk class the
number of times the null hypothesis has been rejected, separated in over- (+) and under-
() representation. The last two columns contain the number classes respectively tested,
and in total (nC).

Appendix 3: Classification

C.7 Data pre-processing

It is well established [24] that rescaling/transforming data in order to have them in [0, 1]
or in [-1,1] or standardised, generally improves the performance of classification, espe-
cially when different predictors have very different scale. So, before training the models
we perform data preprocessing, in particular:

i. for in- and out- degree we use quantile transformation of the logarithm of the
degree. This choice is explained by the aforementioned power-law tail distribution
of these quantities, and aim to avoid too scattered data;

ii. the predictors for assortativity are already € [0, 1] so they do not need preprocessing;

iii. the distribution of nodes into hierarchy classes is standardised, i.e each rank is
shifted and rescaled to have mean 0 ad variance 1;

iv. the module is the only categorical variable. The usual binary transformation would
result into a new binary variable for each possible value. As we discussed before, the
number of modules is very high but a small fraction of them contains almost all the
nodes, so we only keep those that have more than 500 nodes and merge all the
remaining into a residual class;

v. quantile transformation is applied also to the log-distribution of the size.

C.8 Models training and hyper-parameter optimisation

Models training is performed using already implemented packages: for multinomial logis-
tic and classification trees Scikit-learn Python package [50] has been employed, while for
neural networks Keras Python package [51] and Tensorflow [52] have been used. However,
during optimisation, the parameters defining the architecture of the model, the so called
hyper-parameters, remain fixed. For this reason, a common practice is to train many mod-
els using different values for these hyper-parameters and compare performance according
to the chosen metric(s). A thorough discussion on this topic is beyond the scope of this
paper, we refer to [53] and related literature for detailed information.



Letizia and Lillo EPJ Data Science (2019) 8:21 Page 26 of 29

Table 16 Accuracy and recall for other for all months

Month Method Accuracy Recall
L M H
feb logit 0474 0.549 0.446 0.263
nn 0.496 0.533 0.532 0.158
tree 0486 0516 0.520 0.187
mar logit 0475 0.555 0443 0.259
nn 0511 0.490 0.612 0.125
tree 0480 0487 0.525 0.226
apr logit 0477 0.548 0457 0.253
nn 0498 0497 0.568 0.171
tree 0472 0473 0518 0.245
may logit 0476 0.541 0462 0.240
nn 0.509 0529 0.569 0.115
tree 0.505 0.524 0.562 0.134
jun logit 0487 0.545 0484 0218
nn 0.507 0.553 0.536 0.130
tree 0514 0.499 0.612 0.092
jul logit 0491 0.542 0.500 0.196
nn 0519 0.528 0.591 0.099
tree 0.507 0.504 0.577 0.149
aug logit 0468 0520 0458 0.250
nn 0.496 0.539 0518 0.155
tree 0493 0459 0.593 0.142
sep logit 0492 0.546 0491 0212
nn 0518 0.502 0.609 0.103
tree 0.493 0.510 0531 0.199
oct logit 0494 0.537 0.505 0.204
nn 0517 0.495 0.608 0.113
tree 0.521 0516 0.601 0.089
nov logit 0492 0539 0.498 0.189
nn 0516 0.495 0.606 0.105
tree 0.508 0.496 0.584 0.136
dec logit 0479 0.524 0478 0.234
nn 0.500 0511 0.549 0.145
tree 0510 0.564 0.522 0.135

Here we apply a simple grid search for the hyper-parameters of interest. This has been
done for both 1-step and 2-steps classifiers. The metrics we employ take into account the
domain specific interpretation of the risk classes. In particular we want to penalise more
misclassification towards lower risk classes, i.e M — L, H — M, H — L,' and towards
distant classes, i.e L — H, H — L. For this reason, beside the standard accuracy and recall,
we also consider weighted scores for accuracy ws,cc, recall wsec, precision wsp,, which are

function of the confusion matrix C. With the notation

Cx,y: |{x_>5/}|’ C-,y:ZCx,y; Vx,ye {L;M;H}r

1 -0.25 -0.5

1
WSacc = C_ Z Cx,yP;,C;, P = -0.75 1 -0.25 |,

" xye(L,M,H) -1 -0.75 1
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c 1 -025 -075
Wsee= ) SOP, P=1-075 1 025,

xyelLMH} % -1 -075 1.75

1 -0.25 -0.75

C
wspe=  » . —ZPE. PP=|_075 1  -025

xyell,MH} -1 -0.75 1.75

For classification trees, the hyper-parameter of interest is the depth, i.e the maximum
number of condition to be satisfied for classification (or the length of the longest path
from root to leaves). A higher value for depth results in lower training error but may lead to
over-fitting. We considered value of depth from 3 to 10. For the 1-step model, the tree with
depth 6 resulted the best choice, while for the 2-steps, the best results have been attained
with a depth of 9 for the first step tree and 5 for the second. For neural networks, the hyper-
parameters of interest are the number and size of hidden layers. As before, increasing too
much these values may lead to over-fitting. In order to avoid extremely high number of
parameters when adding layers, we consistently reduce their size as their number increases
(intuitively, the number of parameter grows as [ [,|/;, where |/;| is the size of the ith layer).
For example, in the case of 1 (hidden) layer the number of nodes is between 10 and 100,
while for two layers, it goes from 5 each to 10 each. For the 1-step model the best results
are obtained with 1 layer of 50 nodes, while for the 2-steps the best choice is 2 layers of 5
nodes each for the first step and 1 layer of 10 nodes for the second.
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In order to comply with privacy regulation any payment from or to physical persons is excluded. Moreover the filter
is implemented to exclude any ambiguous record.

The results for the in-degree are qualitatively very similar, see Table 10 in Appendix B.4
As a robustness check, we consider also specific subgraphs of the network, see below).

Results for the standard assortativity coefficient are quite different, and the choice of the subgraph appears to be
crucial. When considering the entire network, the assortativity coefficient is negative, around —-0.07, hence
indicating a slightly disassortative behaviour with respect to risk. The subgraphs, instead, show an assortative
tendency, with coefficients around 0.025 and 0.038 for the nodes with rating and for customers, respectively. This
shift can be explained again by the impact of the large number of uncategorised nodes.

An alternative strategy to go beyond first order neighbours in the computation of assortativity has been recently
proposed by [54].

The distance between nodes in a network is defined as the length of the shortest directed path connecting two
nodes, where a path is a sequence of links. Clearly, in a directed network in general d(u, v) # d(u,v) and moreover
d(u,v) can be not defined (or co) if there is no path from u to v.

Using SMOTE in the 1-step classification would also be an option if the objective were to use the classifier as a first
filter to detect possibly critical nodes. However, we found that the overall performance of the classifier is quite poor,
especially when considering the cost of classifying as highly risky (H) a firm which is creditworthy (L).

X indicates the real class, while X indicates the predicted class.
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