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Abstract. We present a model which explains several experimental observa-
tions relating contact angle hysteresis with surface roughness. The model is
based on the balance between released capillary energy and dissipation asso-
ciated with motion of the contact line: it describes the stick–slip behavior of
drops on a rough surface using ideas similar to those employed in dry friction,
elasto–plasticity and fracture mechanics. The main results of our analysis are
formulas giving the interval of stable contact angles as a function of the surface
roughness. These formulas show that the difference between advancing and re-
ceding angles is much larger for a drop in complete contact with the substrate
(Wenzel drop) than for one whose cavities are filled with air (Cassie-Baxter
drop). This fact is used as the key tool to interpret the experimental evidence.

1. Introduction. We consider liquid drops resting on a rough solid surface. The
angle at which the liquid/vapor interface meets the solid is the contact angle. While
Young’s law gives one value of this angle, the one associated with a drop minimizing
the total interfacial energy, contact angle hysteresis shows that there exists a whole
interval of stable contact angles. Both the end points and the width of this interval
depend in a non–monotone way on the roughness of the solid, see the reviews [5],
[17], and [6]. Figure 1, taken from [7], shows some well known measurements of
advancing and receding angles which bound the interval of stable contact angles
(the hysteresis interval).

More recent experiments show that, even at constant roughness, there may be
more than one value for the receding angle, depending on the details of the drop
deposition process, see [11]. In fact, in Figure 2, a large pressure is exerted on a
Cassie–Baxter (CB) drop (i.e., a drop which has vapor-filled cavities underneath)
which turns it into a Wenzel (W) drop (i.e., a drop with complete contact with
the underlying surface) inducing a dramatic change in the measured receding angle.
Another recent observation is that plants use roughness to make the surfaces of
their leaves ultrahydrophobic, see [3], although their constitutive material might
in principle even be hydrophilic. A mechanism by which roughness may lead to
CB–drops with large contact angles on hydrophilic surfaces, in spite of their high
cost in terms of surface energy, is discussed in [10].

We introduce a new model to capture these phenomena. It predicts a much
narrower hysteresis interval for CB–drops than for W–drops. This can explain
both the downward jump at large pressures of the experimental points in Figure 2,
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Figure 1. Experimental dependence of advancing and receding
contact angles on the surface roughness. Reprinted with permission
from [7]. Copyright (1964) American Chemical Society

and the non–monotone behavior of Figure 1. The main result of this paper is the
quantitative dependence of the hysteresis interval on the surface roughness and the
type of drop. It is given both in terms of formulas (see Equations (3.2)–(3.4)) and
in terms of stability diagrams (see Figures 7–9).

Our model also leaves the possibility of metastable drops. That is, drops can
be stable without minimizing surface energy. In fact, CB–drops can even be stable
on hydrophilic surfaces and exhibit on them the large contact angles typical of
super–hydrophobicity.

Our new model shares with similar ones used in dry friction [15], fracture and
damage mechanics [8], [9], and elasto–plasticity [4] two main features. First, there is
a critical “loading” that needs to be overcome before the system starts to dissipate
energy. In our case, adding liquid to an existing stable drop at first only changes the
contact angle and the drop does not move. Surface energy is only dissipated after
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Figure 2. Experimental dependence of receding contact angles on
the pressure pushing the drop onto the surface. Drops are of CB–
type at low pressure and of W–type at high pressure. Reprinted
from [11] with permission.

the drop starts moving. Second, the model is rate independent, i.e., the response of
the system does not depend on the loading rate. Loading the system at a doubled
rate will lead to the same response, at twice the speed.

The main idea behind our model is that the stability of a drop is not related to
global or local minimality of its interfacial energy, but rather to the fact that the
energy–landscape seen by a stable drop should not be too steep. More precisely: if
the energy that would be gained by moving (i.e., the slope of the energy landscape)
is smaller than the energy that would be dissipated through the motion, then the
drop will not move. Once the drop starts moving, the dynamics is controlled by
the balance between available energy and energy dissipated through motion. Of
course, we are here focusing on the quasi-static limit (no inertia) and on small
drops (no gravity, and viscous dissipation inside the drop negligible with respect
to dissipation at the moving contact line). On the other hand, we assume that
the size of the asperities is much smaller than the size of the drops. In order to
implement these ideas, we use the derivative–free framework proposed in [13] (see
also the review [14]).

Our model implies four different diagrams of stable contact angles, depending on
the type of drop (W– or CB–type) and on the state of the surface in the vicinity of
the contact line (dry or with puddles). It turns out that CB–drops are never stable
when surrounded by water-filled cavities, while the three nontrivial diagrams are
shown in Figures 7–9.

The model can also predict the time evolution under slowly changing external
loads (e.g. the adding or removing of liquid). It identifies the microstructure (i.e.,
the microscopic pattern of contacts) with which the drop will advance or recede,
which corresponds to the most unstable direction in the given energy landscape.

Our approach gives a qualitative explanation of the experiments mentioned above.
Figure 1 can be understood as a superposition of the two stability diagrams for a
dry surface. The highly non–monotone behavior of the width of the hysteresis in-
terval comes from a transition from W–drops (Figure 7) to CB–drops (Figure 8).
Indeed, using a notion of stability introduced in Section 3.2, one can show that, for
the case of a dry surface, the stable configurations at low roughness are of W–type.
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Figure 3. Stable contact angles according to our model (shaded
regions; schematic plot), superposed on the experimental data from
Figure 1.

At higher roughness, the stable configurations are instead CB , see Figure 10, and
they display a much narrower hysteresis interval.

The stable contact angles resulting from the transition from W– to CB–drops are
shown schematically in Figure 3, where they are superposed on the experimental
results of Johnson and Dettre. The comparison is only qualitative, because in the
experimental data roughness is measured only indirectly, through the number of
heat treatments undergone by the solid surface in the sample preparation. The
figure shows a transition from a regime in which the difference between advancing
and receding contact angles increases monotonically with roughness, to one in which
such a difference is smaller, and insensitive to roughness. At least in the two-
dimensional geometry analyzed in the paper, the difference between the cosines of
advancing and receding contact angles turns out to depend linearly on the area
of solid tops, see the discussion in Section 3. A more stringent test of our model
against experimental evidence would be desirable: such a comparison is indeed
feasible, given the reliability with which artificial surfaces can be manufactured
today matching a prescribed topographic pattern.

Figure 2 reflects the fact that the stability interval depends on the type of drop.
Assuming that the corresponding surface is dry and has sufficiently large roughness
(r > r∗ in the notation of Section 3), we see from Figures 7 and 8 that forcing a
transition from a CB to W drop (by applying a large enough pressure) may reduce
the lower end of the stability interval (i.e., the receding contact angle) from well
above to well below 90◦.

Our model can also reproduce the arguments in [10] in so far that CB–drops can
be stable on a hydrophilic surface, although they do not minimize surface energy,
see Figure 11.
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The rest of the paper is organized as follows. In Section 2, we describe the
model in detail. In Sections 3 and 4, our results and their physical implications are
discussed without proofs. These are deferred to Section 5.

2. A new model for contact angle hysteresis.

2.1. Setup and notation. In the following we assume a 2–d setup, i.e., both
surface and drops are infinitely extended along one direction (perpendicular to the
plane of Figure 4). Although this assumption is not necessarily valid in experiments,
see [5], it is very useful in a first attempt to build some intuition.

The solid surface is described by a periodic step function S : [−R, R] → (−∞, 0]
for some sufficiently large R ∈ R+. Here S(x) is the height of the solid at position
x ∈ [−R, R]. The two relevant parameters for S are its roughness r (i.e. the length
of the surface divided by the length of its horizontal projection) and its proportion
of tops ϕ < 1 (i.e., the ratio between the length of the solid tops within a unit
cell, and the length of the horizontal projection of the unit cell), see Figure 4. It
is normalized in such a way that at the tops S(x) = 0, and its period is of length
ε ≪ 1.

0
S

< >εϕ< >ε(1 − ϕ)

∧

ε
2
(r − 1)

∨

Figure 4. Microscopic roughness of the solid

This gives a generic surface, for which the area of contact with a drop can be
easily determined: It is either the whole surface, or the tops without the cavities.
This is a simplification with respect to smooth surfaces for which the wetted area
needs to be computed by finding configurations meeting the wall cavities at the
right microscopic contact angles. In this case, the proportion of wetted area ϕ does
depend on the exact shape of the surface. This, however, does not introduce new
features to the model: it will lead to the same results, but with a variable ϕ.

Furthermore, we introduce a region near the solid: RS := {(x, y) |x ∈ [−R, R] , y ∈
[S(x), 0]}, see Figure 5, and the box: B := [−R, R]× (0, 1]. Note that the height of
B can be chosen arbitrarily as long as it is much bigger than the periodicity of the
microstructure of the solid (i. e. ε ≪ 1). At time t a drop is given by some subset
L(t) ⊂ {B∪RS}, where the liquid is located. A time dependent drop configuration
is described by the function L from [0,∞) into the subsets of {B ∪ RS}.

We restrict our attention to drops which are of the following form (see Figure 5):
The liquid is situated at the left side of {B ∪ RS}. Inside B the boundary of L(t)
forms a liquid/vapor interface which consists of a straight line. This line meets the
solid at position X(L(t)) and the upper boundary of B at position Z(L(t)). We call
X(L(t)) the triple point and Z(L(t)) the upper interface point. The angle formed
between the boundary of B and the liquid/vapour interface at position Z(L(t)) is
the contact angle θ(L(t)). In the region near the solid, L(t) can have two possible
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Figure 5. Drop configuration

configurations: either W–type (the cavities {RS|x<X(L(t))} are all nonempty) or
CB–type (the cavities {RS|x<X(L(t))} are all empty). The discussion at the end of
Section 2.3 shows that we only need to consider configurations whose L/V–interfaces
are straight lines. Also drops with half filled cavities will not give new insight.

The boundary of L(t) at the solid forms the solid/liquid interface ΣS/L. The rest
of S is the solid/vapour interface ΣS/V . And the rest of the boundary of L(t) is the
liquid/vapour interface ΣL/V .

2.2. Energy and dissipation distance. The relevant free energy is the capillary
energy which consists of the energies of the three different interfaces. We consider
this energy in nondimensional form, see the discussion in [1, Section 2(c)]. In this
nondimensional formulation ΣL/V has energy per unit area equal to one. The

liquid/solid interface has energy per unit area given by − cos θY . Here θY is the
Young contact angle, i.e., the contact angle of a drop which minimizes the surface
energy on a flat solid. Finally, the solid/vapour interface has zero energy. Thus,
the energy of the system is given by

E
(

L
)

:=
(

|ΣS/L|(− cos θY ) + |ΣL/V |
)

, (2.1)

where |Σ| denotes the area of Σ. In the geometry of Figure 5, Equation (2.1) reads

E
(

L
)

=
(

|ΣS/L|(− cos θY ) + |ΣL/V ∩ RS|
)

+

√

1 +
(

X(L) − Z(L)
)2

.

To introduce an external loading we force the upper interface point to move in time
with unit speed. In fact, the choice of the velocity value is immaterial, because we
are constructing a rate-independent model. The time dependent energy is then

E
(

t, L
)

:=
(

|ΣS/L|(− cos θY ) + |ΣL/V ∩ RS|
)

+

√

1 +
(

X(L)± t
)2

.

We describe dissipation through the change in wetted solid area. This seems rea-
sonable as it is well known that dissipation occurs mostly along the moving triple
contact line. Thus, we define the energy dissipation in the time interval [t0, t1] as

Diss
(

L, [t0, t1]
)

:=

∫ R

−R

λ

∫ t1

t0

∣

∣

∣

d

dt
χ
(

L(t)
)

∣

∣

∣
dtdS (2.2)

where λ ≥ 0 is a phenomenological material parameter and χ(L) is the characteristic
function of L. The distance between two configurations is the minimal energy
dissipated along a path joining them:

dist(L0, L1) := inf
L

{

Diss
(

L, [0, 1]
) ∣

∣L(0) = L0, L(1) = L1

}

.
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The infimum is achieved for monotone L. Thus, the distance between two drops is
the length of the solid wetted by only one of them:

dist(L0, L1) = λ

∫ R

−R

∣

∣χ(L1) − χ(L0)
∣

∣ dS. (2.3)

This distance is macroscopically proportional to the usual distance between the two
triple points. Notice, however, that the term dS in the last formula makes sure
that only points belonging to the solid surface S contribute to this distance, with a
weight decided by the phenomenological dissipation coefficient λ.

2.3. Model for the stability of contact angles. We look at a single drop L0.
To model the observed hysteresis we relax the condition that a stable drop is a local
minimizer of the energy (leading to Young’s law). Instead we only require L0 to be
stable in the following sense:

E(L0) − E(L̃) ≤ dist(L0, L̃) (2.4)

for all L̃ which agree with L0 on the upper boundary of B, i.e. on ∂B\{[−R, R]×0},
but can have different contact angles. This is a global condition on the amount by
which the energy can be reduced by changing L0. Locally it says that the slope
of the energy landscape at L0 must not be too steep for L0 to be stable. In fact,
E(L0) − E(L̃) has to fit under the cone dist(L0, L̃), see Figure 6. It is crucial for
dist to be homogeneous of degree one. This leaves some freedom for the slope at a
stable point to be non zero. A quadratic polynomial for example can only lie above
the energy at points with zero slope.

E(L)

L

dist(Lu, L̃)

LsL̃L̃

E(Lu) − E(L̃)

dist(Ls, L̃)

E(Ls) − E(L̃)

Lu

Figure 6. Energy landscape and dissipation distance

Furthermore, it is now clear that it suffices to consider drops whose liquid/vapour
interfaces are straight lines. Drops with curved interfaces are unstable in the sense
of (2.4) since straightening the interface reduces the energy without creating new
distance.

2.4. Model for quasistatic evolution. External loading induces a change in the
droplet configuration, as the energy becomes time dependent. This may lead to
instabilities, and the system will jump to a new stable configuration. Following [13,
Definition 2.1], we consider time evolutions L satisfying two conditions. First, at
every time t ∈ [0,∞) the drop L(t) has to be stable, i.e.:

E
(

t, L(t)
)

− E
(

t, L̃
)

≤ dist
(

L(t), L̃
)

(2.5)

for all L̃ which agree with L(t) on the upper boundary of B.
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Second, the dissipation must balance the energy difference together with the work
done through the change in external loading:

E
(

t1, L(t1)
)

− E
(

t0, L(t0)
)

+ Diss
(

L, [t0, t1]
)

=

∫ t1

t0

∂tE
(

s, L(s)
)

ds (2.6)

for all t0, t1 ∈ [0,∞), and for Diss as defined in (2.2).

3. Results.

3.1. Stable contact angles. The model introduced in 2.3 gives four different di-
agrams for stable contact angles depending on the type of drop (Wenzel or Cassie–
Baxter) and on the state of the surface on which it is resting (dry surface or surface
with puddles). These diagrams (Figures 7–9) are plotted for the most interesting
case, namely, under the assumption that − cos θY − λ < 0 < − cos θY + λ. We use
the following notation

r∗ :=
1 − ϕ

− cos θY + λ
+ ϕ,

r∗∗ :=
1 − ϕ

cos θY + λ
+ ϕ,

which gives r∗ < r∗∗ for − cos θY > 0 (the case shown below) and vice versa.
Moreover, we write

cos θCB := −1 + ϕ + ϕ cos θY . (3.1)

Figure 7 shows the negative cosines of the stable contact angles depending on
the roughness r for the case of W–drops on a dry surface.

CB/D

P/W

D/W

W/D

0

1

− cos θ

r
−1

− cos θY + λ

− cos θY − λ

region of stability

r∗ r∗∗

Figure 7. Stable contact angles for Wenzel drops on a dry surface

The region of stability is obtained from four bounds, which come from (2.4)

by comparing with different types of test drops L̃. For the two upper bound-
aries, W/D and CB/D, the instability arises because the contact angle is too
big. Therefore it is energetically advantageous to advance along the solid, i.e.
the relevant comparison configurations L̃ in (2.4) are drops which have already
advanced. The newly wetted area can have two different types of microstructure:
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either W– or CB–type. Advancing with W–type microstructure gives instability
if − cos θ ≥ W/D := r(− cos θY + λ). Whereas advancing with CB–type implies
instability if − cos θ ≥ CB/D := ϕ(− cos θY + λ) + 1 − ϕ. The two lower bounds,
D/W and P/W , arise because the contact angle is too small. It is energetically
better to recede from some area previously wetted. There are two possibilities
to dewet area. Either the surface left behind is dry (D/W ) or there are puddles
on it (P/W ). This gives instability if − cos θ ≤ D/W := r(− cos θY − λ) and
− cos θ ≤ P/W := ϕ(− cos θY − λ) − 1 + ϕ.

Summarizing, the hysteresis interval for a Wenzel drop on a dry surface is given
by

− cos θ ∈











(

r(− cos θY − λ) , r(− cos θY + λ)
)

if r ≤ r∗ ,
(

r(− cos θY − λ) ,− cos θCB + λϕ
)

if r∗ ≤ r ≤ r∗∗ ,
(

− 1 + ϕ + ϕ(− cos θY − λ) ,− cos θCB + λϕ
)

if r∗∗ ≤ r ,

(3.2)

where we recall that − cos θCB = 1 − ϕ − ϕ cos θY , see (3.1). Notice that (3.2)
provides λ with a physical interpretation, namely, that of half the hysteresis interval
for an ideally flat (r = 1) surface.

I

CB/D

D/CB

− cos θ
1

r
−1

− cos θY
− λ

− cos θCB
− λϕ

− cos θCB + λϕ

r∗

region of stability

Figure 8. Stable contact angles for Cassie–Baxter drops on a dry surface

Our model implies a different diagram for CB–drops on a dry surface, see Fig-
ure 8. The advancing (upper) bounds are the same as for W–drops, as the mi-
crostructure under the drop does not play a role for advancing variations. The
bound for advancing with W–type microstructure is not relevant as we get a new
bound I which comes from interior variations. That is, we compare the drop L0 of
CB–type with a drop L̃ which wets the cavities underneath L0, and obtain that CB–
drops are never stable for r < r∗. For receding variations it is only relevant to recede
with a dry surface. We get instability if − cos θ ≤ D/CB := ϕ(− cos θY −λ)+1−ϕ.

Summarizing, the hysteresis interval for a Cassie–Baxter drop on a dry surface
is given by

− cos θ ∈
(

− cos θCB − λϕ ,− cos θCB + λϕ
)

for r ≥ r∗, (3.3)

which gives a narrower hysteresis interval than for the flat surface, because 2λϕ <
2λ. Notice that (3.3) predicts a linear dependence of the hysteresis interval on the
areal density ϕ of solid tops. In the limit ϕ → 1 we have r∗ → 1 and the hysteresis
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interval tends to (− cos θY −λ,− cos θY +λ) which is the interval for the flat surface
(r = 1). On the other hand in the limit ϕ → 0 of small areal density of solid tops,
− cos θCB → 1 and the width of the hysteresis interval tends to zero. The material
behaves ultra-hydrophobically. Notice that Diagram 8 and Equation (3.3) are valid
independent of the sign of cos θY (hydrophobic or hydrophilic material).

We now turn to drops on a surface with puddles. Figure 9 shows the stable
contact angles for W–drops on such a surface.

W/P

P/W

E

r

− cos θ

1

−1

− cos θY + λ

−1 + ϕ(− cos θY
− λ + 1)

−1 + ϕ(− cos θY + λ + 1)

r∗∗

region of stability

Figure 9. Stable contact angles for Wenzel drops on a surface with puddles

The bound W/P := ϕ(− cos θY +λ)− 1+ϕ comes from advancing with W–type
microstructure. For receding from wetted area we get the same bounds as for the
dry surface because the surface structure is unimportant for receding from wetted
area. The bound D/W does not play any role since there exist destabilizing exterior
variations E (i.e., removing one of the puddles on the surface) which imply that
puddles on a surface are instable for r < r∗∗.

Summarizing, the hysteresis interval for a Wenzel drop on a surface with puddles
is given by

−cos θ ∈
(

−1+ϕ(− cosθY −λ+1) ,−1+ϕ(− cosθY +λ+1)
)

for r ≥ r∗∗ . (3.4)

CB–drops on a surface with puddles are never stable because they have the ad-
vancing bounds as for W–type on a surface with puddles, i.e. W/P = ϕ(− cos θY +
λ) − 1 + ϕ. On the other hand the receding bound is as for CB–drops on a dry
surface, i.e. D/CB = ϕ(− cos θY − λ) + 1 − ϕ > W/P .

The diagrams in Figures 7–9 are plotted under the assumption − cos θY −λ < 0 <
− cos θY + λ, for which λ can be adjusted. Notice that they show the hydrophobic
case, namely, − cos θY > 0. The same diagrams hold for a hydrophilic material
but with r∗ > r∗∗. In the case − cos θY − λ > 0, W–drops become unstable for
r > ϕ−1

cos θY +λ + ϕ and puddles on the surface are never stable. For − cos θY + λ < 0,
CB–drops are never stable.

3.2. Quasistatic evolution. Our model describes the time evolution of a drop
driven by some external force. This force is represented by moving the upper in-
terface point in time, see Section 2.2. The system responds in two steps. First the
contact angle changes, with no motion of the contact line as long as the contact
angles satisfy criterion (2.5). Then the triple point jumps to the next cavity. Hereby
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it exhibits the microstructure with respect to which the contact angle became un-
stable. That is the microstructure which gives the relevant bound in Section 3.1.

Advancing and receding the drop more than once gives a hysteresis loop in the
configurations of the drop and it finally leads to configurations that are stable with
respect to further movements along the solid. The configurations shown in Figure 10
are the ones stable in this sense. To be more explicit: For fixed r, e.g. r ∈ (r∗, r∗∗)
start with any kind of configuration, e.g. W–type on a dry surface. Then force
the drop to recede. It will stay W leaving a dry surface behind. When forced to
advance, however, the advancing front will turn to CB. If the whole drop starts
moving, it will become a CB drop on a dry surface, and subsequent loading cycles
will produce a stable (and smaller) hysteresis cycle with respect to the one exhibited
during the first loading cycle.

Wenzel type drop

on dry surface

Cassie–Baxter type drop

on dry surface

or Wenzel type

1 rr∗ r∗∗

Cassie–Baxter type drop on dry surface

drop on surface with puddles

Figure 10. Stable configurations in the hydrophobic case

4. Connection with experiments. Figures 7 and 8 are in close qualitative agree-
ment with the experiments in [11], which are done on a dry surface. The authors find
a strong dependence of the stable contact angles on the type of drop: W–drops show
a much stronger contact angle hysteresis than CB–drops, which is also predicted
by our model. Figure 2 shows the separation of receding contact angles depending
on the pressure pushing the drop onto the surface. The authors conjecture that
high pressures induce W–drops, which have low receding contact angles. Whereas
low pressures lead to CB–drops with high receding contact angles. Notice that the
surface material used in [11] satisfies the condition valid for our diagrams, namely,
− cos θY +λ > 0 > − cos θY −λ, which is that the receding (resp. advancing) contact
angle for the flat surface are below (resp. above) 90◦.

Our model sees the metastability of CB–drops pointed out in [11]. Here, as well
as in the more recent studies [12] and [2], a transition from a CB–drop to a W–drop
is observed, accompanied by a decrease in the contact angle. It is by now well
known that the decrease of contact angle signals a transition from a higher to a
lower energy state (see [16], [1]). Our model can reproduce this transition in so far
as it allows for metastable drops. By defining r̄ as the roughness where W and CB
drops are of same energy, we get

r̄ :=
1 − ϕ

− cos θY
+ ϕ > r∗,

which leaves a range (r∗, r̄) where CB drops are stable but do not minimize surface
energy. Similarly for r > r̄, W drops are stable in spite of their high surface energy.

The dependence of the stable contact angles on the drop type also explains the
highly non–monotone behavior in Figure 1. The non–monotonicity comes from a
jump in the type of drop. Figure 1 can be seen as a superposition of the diagrams
in Figures 7 and 8. The choice of which diagram is valid can be done with the
same arguments leading to Figure 10. For a dry surface the valid diagram changes
at r∗, where we get a jump in the receding contact angle. This is because the
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hysteresis interval for a CB–drop, the stable one for r > r∗, is much narrower than
the hysteresis interval for a W–drop, the stable type for r < r∗.

Note that our model predicts a roughness–induced decrease of the receding con-
tact angle for W–drops only in the case − cos θY − λ < 0. This is not in agreement
with the experiments in [7], which show a reduction of the receding contact angle
with roughness also for surfaces which, when flat, exhibit contact angles slightly
above 90◦.

Our model can also reproduce the arguments in [10], that CB–drops can even be
stable on a hydrophilic surface. Figure 8 is valid independent of the sign of cos θY

hence, in particular, it applies to the hydrophilic case cos θY > 0. The surface then
behaves as ultra–hydrophobic for CB–drops with very little microscopic contact,
since − cos θCB := 1 − ϕ(1 + cos θY ) > 0 for small ϕ, see Figure 11. Multiscale
features in the surface roughness, suggested by the structure of some plants (see
[3]), are sometimes invoked to explain this phenomenon (see [10]). However, hy-
drophobicity may come just as well from metastable configurations with very little
contact with the surface, and it is possible to induce little contact through spikes
standing far apart in the surface, without multiscale asperities.

I

CB/D

D/CB

− cos θ
1

r
−1

0

− cos θY

− cos θCB
− λϕ

− cos θCB + λϕ

r∗

region of stability

Figure 11. Stable Cassie–Baxter drops with ultrahydrophobic
contact angles on a dry hydrophilic surface

5. Proofs.

5.1. Stable contact angles. We look at a fixed drop L0. Without loss of gener-
ality assume Z(L0) = 0. According to (2.4) we compare L0 to all drops L̃ which
agree with L0 on the non–solid boundary of B. Rewrite (2.4) as

0 ≤ fL0
(L̃, X(L̃)) := E(L̃) − E(L0) + dist(L̃, L0) . (5.1)

We consider drops L̃ whose microstructure agrees with L0 inside its contact area
but L̃ has advanced resp. receded. The area advanced resp. receded by L̃ contains
many cavities as we are considering macroscopic variations. Therefore

fL0
(L̃, X(L̃)) =

(

X(L̃) − X(L0)
)

C(L0, L̃) +

√

1 + (X(L̃))2 −
√

1 + (X(L0))2 ,

where C(L0, L̃) is the cost (i.e., the energy difference plus the dissipation distance)
to pay for one cavity. We estimate this cost by a suitable average, in the same



A NEW MODEL FOR CONTACT ANGLE HYSTERESIS 223

spirit of the homogenized surface tensions defined in [1], where the interfacial en-
ergy is evaluated rigorously by homogenization methods in the limit of small scale
asperities.

Look at C(L0, L̃) for advanced area. This does not depend on the drop type L0

but on the surface (with or without puddles) and the microstructure of L̃ on the
advanced area. There is the possibility to advance with:

1. W–type on a dry surface: C(L0, L̃) = r(− cos θY + λ) = W/D

2. CB–type on a dry surface: C(L0, L̃) = ϕ(− cos θY + λ) + 1 − ϕ = CB/D

3. W–type on a surface with puddles: C(L0, L̃) = −1 + ϕ + ϕ(− cos θY + λ) =
W/P .

Similarly the cost for a receded area does not depend on the surface type but on
the microstructure of L0 and the surface that is left behind:

1. W–type leave behind a dry surface: C(L0, L̃) = r(− cos θY − λ) = D/W

2. CB–type leave behind a dry surface: C(L0, L̃) = ϕ(− cos θY − λ) + 1 − ϕ =
D/CB

3. W–type leave puddles behind: C(L0, L̃) = −1 + ϕ + ϕ(− cos θY − λ) = P/W

4. CB–type leave liquid tops behind: C(L0, L̃) = 1 − 2ϕ.

These costs are the bounds for the cosines of the stable contact angles. To see this
note that fL0

(L0, X(L0)) = 0. We show that this is not a local minimum of fL0
,

if − cos θ(L0) is above resp. below C(L0, L̃). This implies instability by (2.4) and
(5.1).

d

dX(L̃)
fL0

(L̃, X(L̃)) = C(L0, L̃) +
X(L̃)

√

1 + (X(L̃))2
= C(L0, L̃) + cos θ(L̃).

But fL0
has no local minimum at L0 if the derivative for X(L̃) > X(L0), i.e.

for advancing variations, is negative. Since we take the derivative at position
X(L0) it is negative for one of the microstructures if − cos θ(L0) > min{C(L0, L̃)}.
Analogously, L0 is unstable with respect to receding variations if − cos θ(L0) <

max{C(L0, L̃)}. This gives the bounds on the regions of stability in Section 3.1.
Note that the receding bound for CB–drops which leave liquid tops behind (these
configurations were suggested in [18]) is not relevant in our model because

max{1 − ϕ − ϕ(cos θY + λ) , 1 − 2ϕ} = 1 − ϕ − ϕ(cos θY + λ).

The vertical bounds I and E in Section 3.1 come from interior and exterior vari-
ations. This means that we compare the drop L0 with a drop L̃ having the same
contact angle and microstructure as L0 but one of the cavities interior or exterior
to the contact area filled with vapor or liquid different from L0. For example, for
the I bound, the stability criterion (2.4) (applied to a cavity L0 filled with vapor,

which is compared to a water-filled cavity L̃) reduces to

0 ≤ E(L̃) − E(L0) + dist(L̃, L0)

= −r cos θY −
(

1 − ϕ − cos θY ϕ
)

+ λ(r − ϕ) .

This is satisfied if and only if

r ≥
1 − ϕ

− cos θY + λ
+ ϕ = r∗ .

The argument for the E bound is analogous, and it leads to the inequality r ≥ r∗∗

involving the second critical roughness coefficient r∗∗.
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5.2. Quasistatic evolution. To prove that the time evolution described in 3.2 is
consistent with our model we have to check (2.5) and (2.6).

Condition (2.5) is satisfied by construction. As long as the triple point does not
move no energy is dissipated, therefore Diss(L, [t0, t)) = 0. This turns (2.6) into:

E
(

t, L(t)
)

− E
(

t0, L(t0)
)

=

∫ t

t0

∂tE
(

s, L(s)
)

ds,

which is satisfied as E is t-differentiable. Now look at a jump, and let t∗ be the
jump time. At t∗ equation (2.6) turns into

E
(

t∗, L(t∗+)
)

− E
(

t∗, L(t∗−)
)

+ Diss(L, [t∗, t∗]) = 0. (5.2)

By definition,
Diss(L, [t∗, t∗]) = dist

(

L(t∗+), L(t∗−)
)

.

Therefore (5.2) is nothing but (2.5) written with equality, which is satisfied at the

boundaries of the stability region. Here L(t∗+) has the microstructure of L̃ with
respect to which L(t∗−) became unstable. Finally, notice that (2.6) is an additive
equation.
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