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Abstract: We discuss self-folding of a thin sheet by using patterned hydrogel bilayers, which act
as hinges connecting flat faces. Folding is actuated by heterogeneous swelling due to different cross-
linking densities of the polymer network in the two layers. Our analysis is based on a dimensionally
reduced plate model, obtained by applying a recently developed theory [1], which provides us with an
explicit connection between (three-dimensional) material properties and the curvatures induced at the
hinges. This connection offers a recipe for the fabrication and design of the bilayers, by providing the
values of the cross-linking density of each layer that need to be imprinted during polymerization in
order to produce a desired folded shape upon swelling.

Keywords: hydrogels; folding; bilayers; dimension reduction; Gamma-convergence; Kirchhoff plate
theory

1. Introduction

The study of shape programming and morphing of surfaces is receiving considerable attention,
especially in the field of active (or smart) materials, i.e. materials that deform in response to non-
mechanical stimuli. Of particular interest is the problem of exploiting material heterogeneities to
induce complex shape changes—for instance, to produce curved configurations from an initially flat
state [2–6]. In many natural systems, such as plants [7, 8], shape control is usually accomplished by
growth, remodelling, or swelling, in response to simple external stimuli (e.g. a uniform change in the
ambient temperature or humidity). To mimic such behaviors, synthetic soft active materials appear as
suitable candidates. Hydrogels are examples of active materials where spontaneous deformations are
induced by swelling due to the absorption of a liquid. In the form of bilayers, they can be employed to
produce curved shapes [9].

Self-folding is a widespread phenomenon that occurs in natural systems, such as in the opening
and closing of flowers. The understanding of such mechanisms offers interesting challenges and
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opportunities, not only from the point of view of biology, but also from the point of view of
applications, for instance, in the fabrication of actuation systems and origami-like structures [10].
Self-folding results from spatially heterogeneous deformations that are (in most cases) either induced
by a spatial variation of the external stimulus or by modulations of the material properties imprinted
during the fabrication process. We refer to [11–16] for some examples of the approaches to folding
and the numerical models that might be used in the study of folding mechanisms.

In this paper, we discuss self-folding of thin sheets by using hydrogel bilayers, which act as hinges
connecting flat faces. Folding is actuated by the heterogeneous swelling due to different stiffness (i.e.
cross-linking density) of the polymer network across two layers. More precisely, we will focus on the
case where the cross-linking density in the top and the bottom layers is a perturbation (of magnitude
comparable to the total thickness of the plate, which is a small parameter) of an average constant
density N, see formula (2.1). We show that this structure allows to endow a thin gel sheet with a
controlled curvature localized at the hinges (see Figure 1), which can be realized upon swelling at low
energy cost. Furthermore, such a curvature can be expressed as a function of the material parameters
of the layers. Specifically, we demonstrate the feasibility of the proposed folding mechanism with two
examples, corresponding to specific patterns of flat faces and hinges (see Figure 2).

Our approach to the analysis of hydrogel-based folding sheets exploits the two-dimensional
(nonlinear) plate model presented in Subsection 2.1, which is obtained by applying the rigorously
derived theory [1] for heterogeneous thin elastic plates based on Γ-convergence arguments. The value
of employing such a rigorously derived theory is twofold: first, we avoid inconsistencies often present
in ad hoc, formally-deduced models by performing a mathematically rigorous limit; second, the
material and geometric parameters of the reduced 2D model emerge from (i.e. are computed from)
those of the 3D one, which are the only ones that are accessible from the point of view of the sample
preparation in a laboratory, hence ensuring that the minimizers of the 2D model faithfully reproduce
the true behavior of sufficiently thin (yet, three-dimensional) bilayers. In Section 3 we study the
pointwise energy minimizers of the plate model , which describe the configurations of a plate with
bilayer-like hinges and thus provide a theoretical justification for the effectiveness of the folding
mechanism. In Section 4, with reference to an appropriate approximate variant of our
Flory-Rehner-type model, we provide the explicit relation between the target curvature and the
material parameters, see (4.25). Such relation is then used in the design of folding bilayer sheets that
morph into cubes or pyramids. We end the paper with an appendix, where we provide a detailed
analysis of Flory-Rehner-type energy densities and show how the dimension-reduction framework
studied in [1] applies to the model considered here.

2. Self-folding using bilayer gels

Let us call Ωh0 = ω × (−h0/2, h0/2) the reference configuration of our foldable structure, where
the reference thickness h0 is much smaller than the in-plane dimensions. The planar domain ω, which
represents the mid-plane of the plate, is hereafter assumed to be a union ω =

⋃n
i=1 ωi of polygons. We

denote by x = (x1, x2, x3) = (x′, x3) an arbitrary point in Ωh0 . We say that the interfaces which delimit
the polygons form a pattern on ω.

To model our system, we consider a family {Wh} of 3D free-energy densities, from which we can
derive the corresponding 2D Kirchhoff bending model (i.e. the energies scale as h3) in the vanishing
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thickness limit, by using the rigorous derivation recently provided in [1]. At the same time, Wh0

represents the actual energy density corresponding to the finite (small) thickness system. A thin sheet
with ideal small thickness h is supposed to be a heterogeneous system where the heterogeneity, both
lateral and vertical, is due to a patterned bilayer structure made of hydrogels. This structure is
engineered through an x-dependent density of cross-links in the polymer network, which in turn
determines an x-dependent density Nh(x) of polymer chains. More precisely, we suppose that

Nh(x) =


N −

h
h0

Mi, for x ∈ ωi × (−h/2, 0],

N +
h
h0

Mi, for x ∈ ωi × (0, h/2),
(2.1)

for some constants N > 0 and Mi ≥ 0, i = 1, . . . , n. Note that the average density along the thickness∫ 1/2

−1/2
Nh(x′, x3)dx3 is supposed to be constant in x′ and equal to N.

The system is a composite of flat faces (where Mi = 0) connected by hinges (where Mi > 0).
Starting from an initially dry state, folding will be accomplished by putting the gel in contact with a
solvent. Upon swelling, the difference in Nh in the two layers of the hinges will induce bending. The
prototype of this actuation mechanism is presented in Figure 1, where the larger (resp. lower) number
of dots in the hinge (red patch) corresponds to a higher (resp. lower) cross-linking density in each
layer.

Figure 1. Sketch of the proposed folding mechanism. The hydrogel bilayer acts as a hinge
that bends upon swelling. The number of red dots in each of the two layers is proportional to
the amount of cross-links in the polymer network.

For the constitutive model of the hydrogel, we use an energy density of Flory-Rehner type [17],
which takes into account both the elastic and the mixing energy contributions. Namely,

Wh(x, F) :=
vNh(x)

2
(|F|2 − 3) + Wχ

vol(detF) −
µ

kT
(detF − 1), (2.2)

where x ∈ Ωh and F, which represents a deformation gradient, belongs to the class R3×3
1 of all the 3× 3

matrices with det F ≥ 1. The last term in the above expression is the energy of the solvent within the
gel, whereas the mixing energy Wχ

vol is defined in (1,+∞) by

Wχ
vol(t) := (1 − t) log

( t
t − 1

)
−
χ

t
+ χ. (2.3)

Moreover, the parameters appearing in (2.2) are:
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• k - Boltzmann’s constant;
• T - absolute temperature of the environment;
• v - volume per solvent molecule;
• χ ∈ (0, 1/2] - dimensionless measure of the enthalpy of mixing;
• µ ≤ 0 - chemical potential of the solvent molecules within the gel.

Note that the range µ ≤ 0 corresponds to having a gel in contact with an external fluid that is either a
vapor (µ < 0) or a pure liquid in equilibrium with its own vapor (µ = 0). Finally, the range χ ∈ (0, 1/2],
which corresponds to a “good” solvent, implies in particular that Wχ

vol is a strictly decreasing function
fulfilling

lim
t→1+

Wχ
vol(t) = 0 and lim

t→+∞
Wχ

vol(t) = χ − 1 < 0.

As a consequence of the heterogeneity of Wh, which is due to the heterogeneous density of polymer
chains Nh, the energy well will in turn be x-dependent. More precisely, from the computations in
Appendix A (see (A.35) and (A.38)–(A.39)) we have that there exist two constants

α > 1 and β , 0, (2.4)

which depend on k, on the (fixed) material parameters of the gel v, χ, and average density N, and on
the environmental conditions (µ, T ), such that

argmin
R3×3

1

Wh(x, ·) = Uh(x)SO(3), (2.5)

where, for every x ∈ Ωh, Uh(x) is the scalar multiple of the identity matrix given by

Uh(x) :=


αI3 −

h
h0
βMiI3 + o(h), if x ∈ ωi × (−h/2, 0],

αI3 +
h
h0
βMiI3 + o(h), if x ∈ ωi × (0, h/2).

(2.6)

The map x 7→ Uh(x) is the spontaneous stretch field that characterizes the relaxed (zero-stress) state
the system would try to attain spontaneously, at each point x, through a deformation with gradient
Uh(x). The two constant matrices αI3 and h

h0
βMiI3 have been written separately in definition (2.6) to

stress their different contributions as stretching and bending terms, respectively (see equations (2.8)–
(2.9) defining the reduced model, where α enters the definition of the class on which such model is
constrained and β in that of the target curvature).

For every 0 < h � 1, the total energy of the system associated with a deformation vh ∈W1,2(Ωh,R
3)

in the absence of external loads is given by the quantity

Eh(vh) :=
∫

Ωh

Wh
(
x,∇vh(x)

)
dx. (2.7)

The choice of the functional space W1,2(Ωh,R
3) is natural since a finite energy Eh(vh) implies that

vh ∈W1,2(Ω,R3) (see the lower bound (A.49) in Appendix A).
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2.1. Two-dimensional model of a thin gel sheet

The 3D model presented in Section 2 falls within the general framework studied in [1] for the
derivation of the corresponding 2D Kirchhoff model, via Γ-convergence arguments. This is proved
explicitly in Appendix A. A direct consequence of this fact is that any low-energy sequence {vh}h of
the scaled 3D energies 1

h3Eh converges (in the W1,2 topology) to a deformation y that minimizes the 2D
energy defined, up to constant terms, as

E0(u) :=
1

24

∫
ω

C
(
Au(x′) − A(x′)

)
·
(
Au(x′) − A(x′)

)
dx′, u ∈W2,2

α,iso(ω), (2.8)

on the class W2,2
α,iso(ω) of all u ∈ W2,2(ω,R3) such that (∇u)T∇u = α2 I2. We recall that, up to an α-

dilation, any u ∈W2,2
α,iso(ω) is a C1-isometric immersion of ω into R3, which admits jumps of curvature.

In formula (2.8), Au is the second fundamental form associated with u and expressed in terms of the
“undeformed” in-plane variable x′. Namely, with the following choice ν(x′) of the unit normal to the
surface u(ω) at u(x′),

Au(x′) :=
(
∇u(x′)

)T
∇ν(x′), ν(x′) :=

∂1u(x′) ∧ ∂2u(x′)
|∂1u(x′) ∧ ∂2u(x′)|

,

The target curvature tensor A is a piecewise constant map, which is defined on each subdomain ωi of
ω by

A = ai I2, with ai :=
3β
h0

Mi, i = 1, . . . n. (2.9)

Moreover, the fourth-order tensor C is given by

C := 2G I2 + Λ(α)I2 ⊗ I2, (2.10)

where G and Λ(α) are non-dimensional positive Lamé constants, which can be expressed in terms of
the material parameters as

G := vN and Λ(α) :=
2Gλ(α)

2G + λ(α)
> 0, with λ(α) :=

(
−vN −

1
α2 +

α

α3 − 1
−

2χ
α5

)
> 0. (2.11)

The positivity of λ(α) is not self evident from the above formula and due to the fact that α depends in
particular on v, N, and χ (see formulas (A.35) and (A.47)–(A.48) with θ = 1 in Appendix A).

Another direct consequence of the Γ-convergence result mentioned at the beginning of this
subsection, which we now emphasize in terms of the physical quantities and the finite thickness h0

(small with respect to the in-plane characteristic size of the plate), the following asymptotic
approximate identity for the low-energy values Eh0

(
vh0

)
= inf Eh0 + o(1):

Eh0

(
vh0

)
�

h3
0

24

∫
ω

C
(
Ay(x′) − A(x′)

)
·
(
Ay(x′) − A(x′)

)
dx′ + ad.t.. (2.12)

Here, the additional term “ad.t.” is given by the formula

ad.t. =
h0β

2(G + Λ(α)
)

2

 n∑
i=1

M2
i |ωi|

 . (2.13)
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Hence, the minimizers of the 2D bending model (2.8) provide reliable estimates for the “almost
minimal” values of the 3D energy given by (2.2) and (2.7). Also, the positivity of the additional term
(due to (2.11)) tells us that the 2D energy cannot be minimized at the value zero: this fact originates in
the incompatibility of the spontaneous strain distribution and hence in the presence of residual
stresses in the 3D reference configuration.

3. Minimal energy configurations: connection between shape parameters and gel properties

In this section, we study the minimizers of the limiting bending energy E0 given by (2.8). More
precisely, we focus our attention on the class of pointwise minimizers, namely, on those deformations
y ∈ W2,2

α,iso(ω) whose second fundamental form Ay minimizes pointwise the integrand in (2.8).
Importantly, this analysis employs a simple structure from the fabrication viewpoint and provides the
theoretical basis for successful and robust actuation using the proposed folding mechanism.

Let us first operate an affine change of variable by associating to each y ∈W2,2
α,iso(ω) a corresponding

isometry ỹ ∈W2,2
1,iso(αω), via

ỹ(η′) := y
(
η′

α

)
, η′ ∈ αω. (3.14)

The second fundamental forms associated with y and ỹ are related via the formula

Aỹ(η′) =
1
α2 Ay

(
η′

α

)
, η′ ∈ αω. (3.15)

In turn, we get that

min
y∈W2,2

α,iso(ω)

∫
ω

C
(
Ay(x′) − A(x′)

)
·
(
Ay(x′) − A(x′)

)
dx′

= min
ỹ∈W2,2

1,iso(αω)

1
α2

∫
αω

C
(
α2Aỹ(η′) − A(η′/α)

)
·
(
α2Aỹ(η′) − A(η′/α)

)
dη′. (3.16)

According to (2.9) and (3.16), and recalling that each isometry ỹ is such that det Aỹ = 0 a.e. in αω, our
minimization problem reduces to finding those isometries ỹ whose second fundamental form fulfills

Aỹ(η′) ∈ Ni := argmin
A∈Sym(2)
det A=0

C
(
α2A − ai I2

)
·
(
α2A − ai I2

)
, for a.e. η′ in the i-th subdomain of αω, (3.17)

for every i = 1, . . . , n, where āi is defined as in (2.9). A necessary and sufficient condition for (3.17) to
hold is that Aỹ is actually equal to a constant Ai ∈ Ni on each i-th subdomain of αω (for the necessity
of such condition we refer the reader to [18]).

The solution of the (finite dimensional) minimization problem in (3.17), as done in [1, Lemma 3.1],
yields the following explicit representation for the set Ni:

Ni =

{
κi

α2 n ⊗ n : n ∈ R2, with |n| = 1
}
, with κi := 2 ai

G + Λ(α)
2G + Λ(α)

, i = 1, . . . , n. (3.18)

In other words, the second fundamental form Aỹ of an energy minimizing isometry ỹ, when restricted
to the i-th subdomain of αω (that we refer to as the i-th patch) with κi , 0 , corresponds to the second
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fundamental form of a cylindrical surface whose non-zero principal curvature equals κi/α
2, while the

associated principal curvature direction might be (a priori) given by any unit vector in R2. However,
the isometry constraint forces a precise choice of the principal curvature direction associated with
the non-zero principal curvature κi/α

2 – it must be orthogonal to the interfaces between i-th patch
and all the neighboring ones. Equivalently, a cylindrical surface with κi , 0 can be glued to all the
neighboring cylindrical surface patches (or even plane patches) only if its rulings are parallel to the
interface between them. It is thus clear that the existence of an isometry with the above described
properties heavily depends on the compatibility between the pattern on ω and the target curvature, as
proved in [1, Theorem 3.9].

The theoretical results that we have just discussed provide the foundations for a successful self-
folding strategy in patterned, bilayer thin sheets made of hydrogels (or other active materials). In
particular, the planar domain ω is patterned in such a way that the heterogeneity in swelling of the
gel due to variations in the cross-linking density induces piecewise constant target curvatures. Many
interesting and feasible patterns on ω along with the induced target curvatures at the hinges satisfy the
previously mentioned compatibility property, thus guaranteeing the existence of a pointwise minimizer
of the 2D bending energy. To be concrete, we now consider the pyramid-type and the cube-type
domains, sketched in the Figure 2 (A) and (B), respectively. Both of these two patterned domains
consist of two different types of patches: hinges and flat faces.

Figure 2. Cube-type domain (A) and pyramid-type domain (B) in the unfolded flat state.
Folded cube shape (C) and pyramid shape (D) obtained as images of the corresponding
patterned domains (A) and (B) under the pointwise minimizing deformation of the
corresponding 2D bending energies.
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Each hinge, denoted by ωhinge, has a nontrivial bilayer structure, characterized by

Nh(x) =


N −

h
h0

M, for x ∈ ωhinge × (−h/2, 0],

N +
h
h0

M, for x ∈ ωhinge × (0, h/2),
(3.19)

with M > 0. On each flat face, denoted by ωflat, the density of polymer chains Nh is constantly
equal to N, i.e. M = 0. Note that both in the pyramid and the cube case the interfaces between an
ωhinge and the (at most two) neighboring ωflat are mutually parallel (recall that the set of the nonzero
principal curvature directions of a pointwise minimizer restricted to ωhinge may be any unit vector of
R2, see (3.18)). Hence the existence of a pointwise minimizer of E0 is guaranteed. More in detail, such
minimizer deforms the mid-plane ω in the following way: it dilates the domain ω by the factor α and
maps each α-dilated hinge into a cylindrical surface with radius r = α2/|κ|, where

κ =
6βM

h0

vN + Λ(α)

2vN + Λ(α)
; (3.20)

the cylinder’s rulings are parallel to the interfaces which delimit the hinge from the flat faces. At the
same time, each α-dilated flat face remains flat.

Looking at the expression (3.20) for the curvature κ that arises on the hinges, it is clear that,
maintaining the other physical constants fixed, an appropriate choice of the values N and M of the
bilayer structure at the hinges (recall that Λ(α) is N- dependent as well , see formula (2.11) and the
subsequent paragraph) is needed to induce precise self-folding as in Figure 2 (C) and (D). We address
the problem of designing the structure of each bilayer to produce the desired shape upon folding in
the following section.

4. Bilayer design problem

In this section we address the “inverse” problem of finding the physical properties of a hydrogel that
allow us to realize a given target shape upon self-folding. First, we introduce an approximate variant of
the Flory-Rehner energies Wh, for which the dependence of the target curvature A on the fixed physical
parameters of the 3D system becomes explicit. Further, we restrict our attention to gels characterized
by

• µ = 0
• v, N and χ satisfying the relation N < 1−2χ

2v .

The first of these two conditions means that the gel is in contact with a pure liquid in equilibrium with
its own vapor. The second condition is always satisfied whenever a hydrogel with a large swelling ratio
is considered, as it occurs for the typical values Nv ∼ 10−3 and χ ∼ 10−1.

To present the approximate model we work with, let us go back to the general setting of a thin gel
sheet occupying the domain Ωh = ω × (−h/2, h/2), with ω =

⋃n
i=1 ωi being a general patchwork of

polygons. First of all, in the case µ = 0 the Flory-Rehner energy density (2.2) reduces to

Wh(x, F) =
vNh(x)

2
(
|F|2 − 3

)
+ Wχ

vol(det F), (x, F) ∈ Ωh × R
3×3
1 .
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Then, by Taylor’s expansion, Wχ
vol(t) =

1−2χ
2t + o

(
1
t

)
+ χ − 1, for every t � 1. Thus, when deformation

gradients with large determinants are considered, one may approximate Wh (discarding the constant
term χ − 1) by

Ŵh(x, F) :=
vNh(x)

2
(
|F|2 − 3

)
+

1 − 2χ
2 detF

, (x, F) ∈ Ωh × R
3×3
1 . (4.21)

This approximate model is adequate from the point of view of applications. It has been considered for
the first time in [17], and afterward used, for instance, in [19, 20].

The functional form (4.21) for the energy densities Ŵh allows us to determine the associated
spontaneous stretch distribution explicitly in terms of the fixed physical parameters of the model.
Indeed, from Remark 1 in Appendix A, for every x ∈ ωi × (−h/2, h/2), i = 1, . . . n, we have

argmin
R3×3

1

Ŵh(x, ·) = Ûh(x)SO(3), (4.22)

where, for every x ∈ Ωh, Ûh(x) is the scalar multiple of the identity matrix given by

Ûh(x) =


αI3 −

h
h0
βMiI3 + o(h), if x ∈ ωi × (−h/2, 0],

αI3 +
h
h0
βMiI3 + o(h), if x ∈ ωi × (0, h/2),

(4.23)

and the constants α and β are explicitly given by

α =

(
1 − 2χ

2vN

)1/5

and β = −
1

5N

(
1 − 2χ

2vN

)1/5

. (4.24)

In this case, the constant Λ(α) appearing in (2.11) can be explicitly derived, as well. Thus, by Remark
3 (in particular, formula (A.53)) in Appendix A we obtain that the tensor C in (2.8), within this
approximate 2D model, reads

C = 2vN
(
I2 +

1
3

I2 ⊗ I2

)
.

Finally, as a consequence of (4.24), the target curvature A is given on each subdomain ωi of ω by

A = ai I2, with ai := −
3

5N

(
1 − 2χ

2vN

)1/5 Mi

h0
, i = 1, . . . , n. (4.25)

Summarizing, the total energy (2.8) in this case is

E0(u) =
vN
12

n∑
i=1

∫
ωi

|Au(x′) − āiI2|
2 +

1
3

tr2(Au(x′) − āiI2
)

dx′, (4.26)

for every u ∈ W2,2
α,iso(ω). In particular, whenever a compatible pattern is considered, from the

discussion at the end of Section 3 and from formula (3.18), it follows that the isometry ỹ associated
with a pointwise minimizer y of E0 via (3.14), maps each i-th subdomain of αω into a cylindrical
surface of radius

ri :=
4α2 h0

3vMi

(
1 − 2χ

2vN

)−1/5

, (4.27)
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and with rulings parallel to the interface with each neighboring patch.
We are now ready to design a bilayer structure on each ωhinge (i.e. to determine the values of N

and M on such subdomain, see (3.19)), in order to induce precise self-folding of a pyramid and a cube
(Figure 2 (C) and (D)), at the minimum energy cost.

Pyramid The target shape that we refer to as a (precisely) folded pyramid is characterized by the
following set of parameters (see Figure 3):

• ` – initial length of the pyramid basis,
• φ ∈ (0, π/2) – vertex angle,
• H – height of the pyramid,
• α > 1 – in-plane swelling factor.

By ‘precisely folded pyramid’ we mean that the four external vertices of the unfolded pyramid meet at
a single point in the folded configuration. The above four parameters completely determine a (unique)
‘precisely folded pyramid’ shape, since from then one can derive

• r – radius of curvature of the deformed (α-dilated) hinges,
• `1 – initial hinge width,
• `2 – initial height of the pyramid side,

via the formulas

r =
sin φ

1 + sin φ

(
H −

α `

2tg φ

)
, `1 =

r
α

(
π

2
+ φ

)
, `2 =

H − r(1 + sin φ)
α cos φ

.

Figure 3. Unfolded pyramid (left) and geometry of the precisely folded pyramid (right).

By using the first formula in (4.24) and expression (4.27), we deduce that the correct material
properties (N and M) to be imprinted on the hinges in order to accomplish the desired self-folding are
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determined in terms of the swelling factor α and the curvature radius r by

N =
1 − 2χ
2vα5 and M =

4α3h0

3vr
. (4.28)

Cube We consider as the target shape the (precisely) folded cube characterized by the following
parameters (see Figure 4):

• `1 – initial width of the hinge
• α > 1 – swelling factor
• φ = π/2 – hinge closing angle

The radius r of a cylindrical surface representing a deformed hinge, which is needed to obtain the
desired folded cube from a flat, cube-type pattern, must satisfy the relation r = 2α`1

π
. As in the pyramid

case, formulas (4.24) and (4.27) allow us to design the hinges in order to get a (precisely) folded cube.
Namely, the material parameters that determine the cross-linking density in the bilayers that constitute
the hinges are

N =
1 − 2χ
2vα5 and M =

4α3h0

3vr
=

2α2πh0

3v`1
. (4.29)

Figure 4. Unfolded cube on the left, geometry of the precisely folded cube on the right.

As it is clear from the above formulas, the final “size” of a folded cube or pyramid is controlled by
the parameter N through its relation with the swelling factor α. Specifically, in order to produce larger
folded cubes or pyramids, which correspond to a bigger value of α, a smaller value of N is needed. The
curvature of the hinges 1/r is controlled by the parameter M, in such a way that, as one might expect,
the value of r increases as the value of M decreases. This means that, on one side, flat plates (seen as
cylindrical surfaces with radius r = +∞) correspond to the isometric deformation of patches with no
through-the-thickness variation of the cross linking density, i.e. M = 0. On the other side, shapes with
sharp folds (i.e. with r → 0) require large variations M in the cross-linking density along the bilayer
that constitutes the hinge. In turn, since r and `1 are proportional, manufacturing a folded structure
with a small hinge width `1 requires a large value of M.

Mathematics in Engineering Volume 1, Issue 1, 204–223



215

5. Conclusion

We have shown how patterned, thin hydrogel bilayers can be employed to realize self-folding
structures. Specifically, folding can be achieved upon swelling by inserting hydrogel bilayers with
varying cross-linking density across the thickness as hinges between flat faces, where the material is
homogeneous.

Using rigorous dimension reduction techniques, we have obtained a two-dimensional plate model
that describes the mechanics of such a system. Then, the study of the pointwise minimizers of the 2D
model has suggested a successful strategy for the realization of foldable structures with programmable
shape. In particular, folded structures arise as pointwise minimizers of the 2D energy whenever the
pattern of hinges and flat faces satisfy the compatibility conditions determined in [1]. These conditions
provide the theoretical basis for successful and robust actuation.

A major result of the dimension reduction procedure is to provide us with the connection between
material properties (a feature of the 3D model) and the induced curvature upon swelling (a feature
of the 2D model). We have then exploited such a connection as a tool for the design of the bilayer
structure able to produce target folded shapes (specifically, cubes and pyramids).

The richness of emergent shapes found in nature that one would like to mimic using synthetic
systems is, of course, not limited to configurations obtainable as pointwise minimizers. This strongly
motivates further, more general, studies of the geometry of the minimal energy configurations of the
2D bending functional (2.8), as well as the derivation of new dimensionally reduced models allowing,
for instance, for the presence of both bending and stretching contributions in the 2D energy.

A. Appendix

This section is devoted to the analysis of the Flory-Rehner-type energy density functions Wh

introduced in (2.2). Letting all the physical parameters (v, χ, µ, k and T ) be fixed and letting the
mid-plane of the plate ω be a union of polygons ωi, we recall that

Wh(x, F) :=
vNh(x)

2
(|F|2 − 3) + Wχ

vol(detF) −
µ

kT
(detF − 1), (x, F) ∈ Ωh × R

3×3
1 , (A.30)

for every small thickness parameter 0 < h � 1. We refer to (2.3) for the definition of Wχ
vol. For later use

it is convenient to introduce the following equivalent normalized expression for the density of polymer
chains:

Nh(x) = N fh(x), where fh(x) :=


1 −

h
h0

Mi

N
, for x ∈ ωi × (−h/2, 0],

1 +
h
h0

Mi

N
, for x ∈ ωi × (0, h/2).

(A.31)

Note that for every F ∈ R3×3
+ := {F ∈ R3×3 : detF > 0}, by a standard algebraic inequality we have

that
|F|2 = λ2

1 + λ2
2 + λ2

3 ≥ 3
(
λ2

1λ
2
2λ

2
3
)1/3

= 3
(
det(FTF)

)1/3
= 3(detF)2/3, (A.32)

where λ2
1, λ

2
2, λ

2
3 are the eigenvalues of the matrix FTF, and where the equality holds if and only if

λ2
1 = λ2

2 = λ2
3. In particular, we have that

Wh(x, F) ≥ p
(
fh(x), det F

)
,
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where p : (0,+∞) × [1,+∞)→ R is defined as

p(θ, t) :=
3vN

2
θ
(
t2/3 − 1

)
+ Wχ

vol(t) −
µ

kT
(t − 1). (A.33)

The above inequality, and the related rigidity characterizing the equality case, says in particular that
Fmin is a minimizer of Wh(x, ·) if and only if Fmin = t1/3

minR, for some R ∈ SO(3), where tmin is a minimizer
of p

(
fh(x), ·

)
. This argument is detailed in the proof of Lemma 3 below.

In view of the previous discussion and since fh(x) is uniformly close to 1 for every h sufficiently
small, in what follows we analyze the minimizers of p(θ, ·), for θ varying in some interval I containing
1. To do this, it is useful to recall the following sharp logarithmic estimate (which can be found in [21])

log(1 + t) ≥
t2 + 2t
2(1 + t)

, for every − 1 < t ≤ 0. (A.34)

This can be checked just observing that the function defined as the left-hand side minus the right-
hand side of (A.34) is null at zero and has a non-positive derivative. We also recall the following
1-dimensional real analysis result, which will be useful as well.

Lemma 1. Let J ⊂ R be an open interval. Let f ∈ C1(J) and assume that whenever f ′(t) = 0, for
some t ∈ J , the second derivative of f at t exists and is such that f

′′

(t) > 0. Then the function f has at
most one stationary point, which is a global minimizer .

With the following lemma we show that p(θ, ·) has a unique global minimum in [1,+∞).

Lemma 2. There exists an open interval I 3 1 and a unique smooth function ϕ : I → (1,+∞) such
that

argmin
t∈[1,+∞)

p(θ, t) = ϕ(θ), for every θ ∈ I.

Proof. Set p := p(1, ·). First, note that the derivative of p reads as

p′(t) =
vN
t1/3 +

d
dt

Wχ
vol(t) −

µ

kT
=

vN
t1/3 + log

(
1 −

1
t

)
+

1
t

+
χ

t2 −
µ

kT
, for every t > 1.

Let h(t) := log
(

t
t−1

)
− 1

t −
1

2t2 for every t ∈ (1,+∞). Note that h(t) ≥ 0 for every t ∈ (1,+∞) and that
t2h(t)→ 0 as t → +∞. It is straightforward to check that limt→1 p′(t) = −∞ and limt→+∞ p′(t) = −

µ

kT ≥

0. Moreover, one has that

p′(t) ≥ 0 ⇔ t2 p′(t) ≥ 0 ⇔ vNt5/3 − (1/2 − χ) − t2h(t) −
µ

kT
t2 ≥ 0.

Since limt→+∞ vNt5/3 − (1/2 − χ) − t2h(t) − µ

kT t2 = +∞, the existence of t ∈ (1,+∞) such that p′(t) = 0
is guaranteed. The uniqueness of such t ∈ (1,+∞) follows from the above Lemma 1. Indeed, by using
(A.34), one finds that (t2 p′(t))′ > 0 for every t ∈ (1,+∞). Since (t2 p′(t))′ = 2tp′(t)+ t2 p

′′

(t), we get that
p′(t) = 0 implies p

′′

(t) > 0. Therefore, by Lemma 1, there is a unique stationary point tmin ∈ (1,+∞),
which is also the global minimizer of p. Recall that

0 = p′(tmin) = pt(1, tmin) and 0 < p
′′

(tmin) = ptt(1, tmin).
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By applying the Implicit Function Theorem we get that there exist an open neighborhood I ⊆ (0,+∞)
of 1, an open neighborhood J ⊆ (1,+∞) of t1 and a unique smooth function ϕ : I → J , such that{(

θ, ϕ(θ)
)

: θ ∈ I
}

=
{
(θ, t) ∈ I × J : pt(θ, t) = 0

}
.

At the same time, one can check, as above, that pt
(
θ, t

)
= 0 implies ptt

(
θ, t

)
> 0, for every θ ∈ I.

Hence, again by Lemma 1, the following smooth map is well-defined

(0,+∞) ⊇ I 3 θ 7→ ϕ(θ) = argmin
[1,+∞)

p(θ, ·) ∈ (1,+∞).

This concludes the proof of the lemma. �

For the sake of brevity, we introduce the following notation. Let the interval R ⊃ I 3 1 and the
function ϕ be given by Lemma 2. For any θ ∈ I, set

αθ := 3
√
ϕ(θ) > 1, and α := α1, (A.35)

and define the function

Wθ(F) :=
vNθ

2
(
|F|2 − 3

)
+ Wχ

vol(detF) −
µ

kT
(detF − 1), for every F ∈ R3×3

1 . (A.36)

According to this notation, for every x ∈ Ωh and every h sufficiently small we have that

Wh(x, F) = W fh(x)(F). (A.37)

Properties of the family {Wh} Hereafter we gather some properties satisfied by the family of 3D
energy densities {Wh} and by its approximate variant {Ŵh} defined in (4.21).

Energy wells

Lemma 3. Let the interval R ⊃ I 3 1 and the function ϕ be given by Lemma 2. For every θ ∈ I, the
function Wθ is minimized precisely on the set αθ SO(3), with αθ defined as in (A.35).

Proof. Fix θ ∈ I and denote mθ := min[1,+∞) p(θ, ·) = p(θ, α3
θ). From inequality (A.32) and by definition

of p, we have that Wθ(F) ≥ p(θ, det F) ≥ mθ, for every F ∈ R3×3
1 . Suppose that Wθ(F) = mθ, for some

F ∈ R3×3
1 . By the definition of p given by (A.33), F must satisfy |F|2 = 3(det F)2/3. This implies

that all eigenvalues of the positive symmetric matrix FTF are equal to some λ2 ∈ R \ {0}, by (A.32),
and accordingly F ∈ λSO(3). On the other hand, it must be λ3 = det F = α3

θ (by uniqueness of the
minimizer of p(θ, ·)), implying that indeed F ∈ αSO(3).

Conversely, let F = αθR for some R ∈ SO(3). Then |F|2 = 3α2
θ = 3(α3

θ)
2/3 = 3(det F)2/3 and thus

Wθ(F) = mθ. �

Taking into account (A.37) and the above lemma, we have that

Wh(x, ·) attains its minimum precisely at α fh(x)SO(3). (A.38)
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Finally, from (A.35) and from definition (A.31) of fh(x), we have that for every x ∈ ωi × (−h/2, 0]
(similarly, for x ∈ ωi × (0, h/2)), i = 1, . . . n,

α fh(x) =
3

√
ϕ

(
1 −

h
h0

Mi

N

)
= α −

h
h0
βMi + o(h), with β :=

ϕ′(1)

3N
, (A.39)

by Taylor expansion. This gives the energy well Uh(x)SO(3) defined in (2.4)–(2.6). Let us stress the
fact that a crucial property of Uh(x) which allows us to use [1, Theorem 2.6] is that such spontaneous
stretch field has the structure Uh(x) = αI3 + hB(x), with

∫ h/2

−h/2
B(x′, x3)dx3 = 0. Note that this fact is

connected with the structure of the chosen density Nh(x) of polymer chains (see (2.1) and the
subsequent sentence).

Remark 1. The above analysis on the energy wells of Wh can be rephrased for the the variant Ŵh

introduced in Section 4, namely to

Ŵh(x, F) :=
vN fh(x)

2
(
|F|2 − 1

)
+

1 − 2χ
2 det F

. (A.40)

Indeed, defining the auxiliary function

p̂(t, θ) :=
3vNθ

2
(
t2/3 − 1

)
+

1 − 2χ
2t

,

for t ∈ [1,+∞), we have that Ŵh(x, F) ≥ p̂(det F, fh(x)), again thanks to inequality (A.32). Also, the
very same argument as in the proof of Lemma 3 give that

argmin
R3×3

1

Ŵh(x, ·) =

(
argmin

[1,+∞)
p̂
(
·, fh(x)

)) 1
3

SO(3). (A.41)

Note that in this case there is no need of the Implicit Function Theorem to determine the minimizer of
p
(
·, fh(x)

)
: a straightforward computation yields the explicit formula

argmin
[1,+∞)

p̂(·, fh(x)) =

(
1 − 2χ

2vN fh(x)

)3/5

. (A.42)

Using now definition (A.31) of fh(x) and Taylor expanding, from (A.41)–(A.42) we deduce (4.22)–
(4.24). �

Regularity The function Wθ is of class C∞ on the set {F ∈ R3×3 : det F > 1} and is continuous on
R3×3

1 . By direct computations, we have for all F ∈ R3×3 with det F > 1 and M,N ∈ R3×3 that

DWθ(F)[M] = vNθF · M +

(
1 − det F log

(
det F

det F − 1

)
+

χ

det F
−

µ

kT
det F

)
F−T · M, (A.43)

and

D2Wθ(F)[M,N] = vNθN · M +

(
−1 + det F log

(
det F

det F − 1

)
−

χ

det F
+

µ

kT
det F

)
F−TNTF−T · M

+

(
− det F log

(
det F

det F − 1

)
+

det F
det F − 1

−
χ

det F
−

µ

kT
det F

)
(F−T · N) (F−T · M). (A.44)
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Uniform convergence By the definition of Wθ, it is clear that for any sequence θn → 1 the sequence
{Wθn} uniformly converges to W = W1, as n → +∞, on any compact subset of {F ∈ R3×3 : det F > 1}.
Moreover, in light of (A.43) and (A.44), one can show that there exists an open neighborhood U of
αSO(3) such that

||Wθn −W ||C2(U) → 0, as n→ ∞.

Taking into account (A.37), this convergence implies in particular the following uniform convergence:

ess sup
x∈Ωh

||Wh(x, ·) −W ||C2(U) → 0, as h→ 0. (A.45)

Remark 2. A simple and interesting observation, which relates Wh with the limiting (homogeneous)
density W, is that Wh cannot be rewritten in the “prestretch” form

Wh(x, F) = W
(
α FU−1

h (x)
)
,

where Uh(x) minimizes Wh(x, F) at each x ∈ Ωh. This is instead the case, for instance, in [2, 3, 22, 23]
or [18]. �

Quadratic growth Let I be given by Lemma 2 and let θ ∈ I. By plugging F = αθI3 into the
expression (A.44), we get that

D2Wθ(αθI3)[M]2 = D2Wθ(αθI3)[Msym]2 = Gθ|Msym|
2 + λ(αθ)(trM)2, M ∈ R3×3, (A.46)

Gθ := 2 vNθ > 0 and λ(αθ) := −vNθ −
1
α2
θ

+
αθ

α3
θ − 1

−
2χ
α5
θ

. (A.47)

Note that λ(αθ) > 0 as well. Indeed, by definition (A.35) of αθ and by Lemma 2, we have that
pt(θ, α3

θ) = 0 (see (A.33) for the definition of p), or, equivalently, that

vNθ + αθ log
(
1 −

1
α3
θ

)
+

1
α2
θ

+
χ

α5
θ

−
αθµ

kT
= 0.

As a consequence, λ(αθ) can be rewritten as

λ(αθ) =
αθ

α3
θ − 1

+ αθ log
(
1 −

1
α3
θ

)
−
χ

α5
θ

−
µαθ
kT

.

Then (A.34) yields

λ(αθ) ≥
(1 − 2χ)α3

θ + 2χ

2α5
θ(α

3
θ − 1)

−
µαθ
kT

> 0, (A.48)

where the last strict inequality is due to the fact that 0 < χ ≤ 1/2 and µ ≤ 0.
Now, note that all the differentials of Wθ of order greater than or equal to 3 do not depend on θ.

Hence, by Taylor expansion of Wθ around αI3 and by the positivity of Gθ and λ(αθ) we have that

Wθ(F) ≥ C̃|FTF − α2
θI3|

2 ≥ Cdist2(F, αθSO(3)
)
,
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for every F in a neighborhood of αθSO(3). This fact, together with Lemma 3 and the quadratic growth
of Wθ at∞, shows in particular that

Wh(x, F) ≥ Cdist2(F,SO(3)Uh(x)
)
, for every F ∈ R3×3

1 , (A.49)

with Uh(x) given by (2.6).
The listed properties show that the family {Wh} of 3D energy densities – up to a multiplicative

factor α, which is only a matter of the appropriate change of variable (as explained below)– satisfies
the hypothesis of [1, Theorem 2.6]. We can then rigorously derive the (new) corresponding 2D model
(2.12).

The 2D model We recall that the 3D-to-2D model reduction of [1] which we aim to use is derived
therein for 3D spontaneous stretch fields I3 + hB(x), whereas in the present setting such fields are of
the form αI3 + hB(x), for some α > 1. To reduce to the setting of [1], it is sufficient to observe that,
setting Ω̃ := αω × (−1/2, 1/2),

Eh(v) :=
∫

Ωh

Wh
(
x,∇v(x)

)
dx =

h
α2

∫
Ω̃

Wh

(( x̃′

α
, hx̃3

)
, α∇αhṽ(x̃)

)
dx̃, (A.50)

where ṽ : Ω̃→ R3 and ṽ(x̃′, x̃3) := v(x̃′/α, hx̃3). Now, setting

Ñα
h (x̃) :=


N −

h
αh0

Mi, for x̃ ∈ αωi × (−1/2, 0],

N +
h
αh0

Mi, for x̃ ∈ αωi × (0, 1/2).

and, accordingly, defining

W̃α
h (x̃, F) :=

vÑα
h (x̃)
2

(α2|F|2 − 3) + Wχ
vol(α

3detF) −
µ

kT
(α3detF − 1), (x̃, F) ∈ Ω̃ × R3×3

1 ,

we have from definition (A.30) that Wh
(
(x̃′/α, hx̃3), αF) = W̃α

αh(x̃, F). In turn, we obtain from (A.50)
that

Eh(v)
h3 =

1
(αh)2

∫
Ω̃

W̃α
αh

(
x̃,∇αhṽ(x̃)

)
dx̃.

We have thus reduced to compute the Γ-limit, as ε→ 0, of (1/ε2)
∫

Ω̃
W̃α

ε (x̃,∇εṽ)dx̃, where

argmin
R3×3

1

W̃α
ε (x̃, ·) =

(
I3 + εB̃α(x̃) + o(ε)

)
SO(3),

with

B̃α(x̃) :=


−
βMi

α2h0
I3, if x̃ ∈ αωi × (−1/2, 0],

+
βMi

α2h0
I3, if x̃ ∈ αωi × (0, 1/2).
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Note also that W̃α
ε converges uniformly, as ε → 0, to W̃α, where W̃α(F) = W(αF) and W is defined as

in (A.36) with θ = 1. Hence, using [1], we can compute such Γ-limit Ẽ0, which is given by

Ẽ0(ũ) =
1

24

∫
αω

Q̃α
2
(
Aũ(x̃′) − Ãα(x̃′)

)
dx̃′ + ad.t., ũ ∈W2,2

1,iso(αω).

In this expression, the quadratic form Q̃α
2 is defined, for every F ∈ R2×2, as

Q̃α
2 (F) := min

b∈R2, a∈R
D2W̃α(I3)

[(
F b

0 0 a

)]2

= α2 min
b∈R2, a∈R

D2W(αI3)
[(

F b
0 0 a

)]2

= α2
(
2G1|F|2 + Λ(α1)tr2F

)
=: α2Q2(F),

(A.51)

where in the third equality the minimum problem has been solved by using the explicit expression
(A.46) (with θ = 1), and where Λ(α1) := 2G1λ(α1)/(2G1 + λ(α1)), with G1 and λ(α1) given by (A.47).
Moreover, in the above expression for Ẽ0, we have that

Ãα(x̃′) := 12
∫ 1/2

−1/2

tB̃α
2×2(x̃′, t)dt = 3

βMi

α2h0
I2, for every x̃′ ∈ αωi,

and

ad.t. :=
1
2

∫
αω

∫ 1/2

−1/2

Q̃α
2

(
B̃α

2×2(x̃′, t)
)

dt dx̃′ − 6
∫
αω

Q̃α
2
(
Ãα(x̃′)

)
dx̃′.

Finally, note that via the correspondence ũ(x̃′) = u(x̃′/α) between ũ ∈ W2,2
1,iso(αω) and u ∈ W2,2

α,iso(ω),
and by using that A(x′) = α2Ãα(αx′) (see (2.9) for the definition of A), we have that

Ẽ0(ũ) =
1

24

∫
ω

Q2
(
Au(x′) − A(x′)

)
dx′ + ad.t.. (A.52)

By the very definition of the tensor C in (2.10) it is straightforward to see that the quantity E0(y) in
(2.8) with the residual term (2.13) added is precisely the quantity obtained in (A.51)–(A.52).

Remark 3. We here make a couple of comments about the properties of the approximate energy
densities Ŵh given in (4.21), for we will use the equivalent expression (A.40).

We start with the simple observation that the dependence on the thickness variable x3 and the
thickness parameter h in the approximate model energies Ŵh remains unchanged with respect to the
original Wh. Thus, taking into account the energy well structure showed in Remark 1, it is
straightforward to verify that Ŵh shares the same regularity, uniform convergence and quadratic
growth properties as Wh.

In particular, the 2D model (obtained by repeating the same procedure as in the general case
provided above) will be governed by the functional Ẽ0 as in (A.52), with the corresponding quadratic
form Q2 obtained via (A.51) from the second differential of the (approximate) homogeneous density
Ŵ corresponding to Ŵh with fh ≡ 1 in (A.40). Moreover, Ŵ is minimized at αSO(3) with
α = (1−2χ

2vN
)1/5 explicitly determined in (A.41)–(A.42). A direct computation yields

D2Ŵ(αI3)[F]2 = 2vN|Fsym |
2 + vN tr2 F, F ∈ R3×3
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so that Q2 in (A.51) equals Q̂2, defined as

Q̂2(G) := 2vN
(
|Gsym |

2 +
1
3

tr2 G
)
, G ∈ R2×2. (A.53)
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