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Photonic quasi-crystal terahertz lasers
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Quasi-crystal structures do not present a full spatial periodicity but are nevertheless

constructed starting from deterministic generation rules. When made of different dielectric

materials, they often possess fascinating optical properties, which lie between those of

periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can

support extended band-like states with pseudogaps in the energy spectrum, but lacking

translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give

rise to critically localized modes confined in space, similar to Anderson modes in random

structures. If used as laser resonators, photonic quasi-crystals open up design possibilities

that are simply not possible in a conventional periodic photonic crystal. In this letter, we

exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically,

we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of

pentagonal rotational symmetry, reaching 0.1–0.2% wall-plug efficiencies and 65 mW peak

output powers with characteristic surface-emitting conical beam profiles, result of the rich

quasi-crystal Fourier spectrum.
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Lasing in two-dimensional (2D) photonic crystals has been
the object of extensive recent research1–5. Operation is
normally achieved on modes at the edges of photonic

bandgaps or on the localized states formed by suitably designed
defects within the periodic photonic lattice. When compared with
their periodic counterparts, quasi-crystalline structures6,7 show
significant richness and flexibility in engineering specific device
optical properties8,9, like in random structures10. Specifically, the
Fourier structure11 of quasi-crystalline materials, with or without
a photonic bandgap, can be exploited in a laser cavity to engineer
the mode frequency and spacing separately, or to control the
emission profile independently of the feedback conditions. The
first reports of quasi-crystal lasers made use of optically pumped
devices, exploiting either a 2D Penrose lattice12,13 or a resonator
with 12-fold symmetry14 and operated at visible frequencies.
More recently, the 1D photonic quasi-crystal concept has been
used with electrically injected THz quantum-cascade lasers
(QCLs)15, allowing surface emission at chosen angles and
wavelengths from tightly-confining double-metal waveguides,
although the wall-plug (WP) efficiency was still poor (E0.01%)15.

In general, the use of double-metal waveguides offers
considerable advantages for maximizing the operating tempera-
ture in THz QCLs, although such devices suffer from the lack of
efficient extraction and collimation of the output radiation16,17.
These problems have recently been addressed by engineering 1D
edge-emitting third-order distributed feedback lasers (DFBs)18,
1D photonic heterostructures19,20, 2D annular DFBs21 and 2D
photonic crystal lasers22–24. Using such schemes, vertical surface
emission with near zero in-plane momentum has been proposed
and demonstrated in various implementations, with extraction
efficiency values limited by the symmetry of the lasing modes that
leads to power cancellations in the far-field. In a periodic
structure, indeed, the symmetric and antisymmetric mode feature
more than an order of magnitude difference in the quality factor
computed including the vertical radiative losses (Qvertical), thereby
meaning that lasing results only on the low radiative-efficiency
(conventionally named non-radiative), high quality factor modes.

In this letter, we demonstrate that such power cancellation
issues can be elegantly circumvented using quasi-crystalline
resonators, in which the distinction between symmetric (vertically
radiative, but low quality factor, Q) and antisymmetric (non-
radiative, high Q) modes is fully overcome. In particular, we
report the development of high WP efficiency 2D photonic quasi-
crystal THz QCLs based on a Penrose P2 (kite and dart) tiling
with a five-fold rotational symmetry6.

Results
Computational model of the quality factor. The QCL active
region25 is sandwiched between two metallic cladding layers, to
create a double-metal waveguide that confines, with an almost
unitary confinement factor, the THz radiation in the direction of
growth (vertical, z axis) and allows its propagation in the x–y
plane, therefore making the device a nearly ideal 2D photonic
system. To implement the Penrose crystal, holes were opened in
the top metallization of a decagonal mesa structure, at the vertices
of the Penrose tiles (see Supplementary Fig. 1 and Supplementary
Methods), as shown in the scanning electron microscope image of
Fig. 1a. The waveguide mode is strongly modified in the hole
regions (as the upper metallic cladding layer is missing locally)
and radiation can extend outside the semiconductor. Each
opening therefore acts not only as a scatterer for the
propagating radiation, but also as an aperture through which
radiation can be out-coupled. The ratio R between the hole radius
r and the spatial length scale a, is maintained between 0.25 and
0.35 to ensure a sufficient degree of scattering/outcoupling, but

without overly increasing the waveguide losses and decreasing
confinement22. Working with vertical emission, the number of
crystal units, chosen here as the smallest one compatible with
small mode overlap with the boundaries, controls the lateral
confinement of the mode and the ‘probing’ of the absorbing
device boundaries and has no influence on the radiative
outcoupling.

A full 3D electromagnetic simulation is required to accurately
model quasi-crystal resonators. While this is possible, it is
extremely demanding in terms of computational resources, given
the absence of translational invariance and the presence of thin
sub-wavelength metallic layers that require a very fine discretiza-
tion mesh. As such, we have initially adopted a simplified 2D
model16, in which we consider the structure as invariant along the
z axis and represented by an equivalent crystal composed of two
materials with different local effective dielectric constants (one for
the regions comprising the holes, and one for the unpatterned
area). The surrounding region is then modelled as an absorbing
layer, leading to smooth boundary conditions for the guided
modes (see Supplementary Methods). A full 3D simulation was
finally performed to have access to the radiative quality factor
(Qvertical) and to validate the predictions of the 2D model (see
Supplementary Methods).

For the transverse magnetic polarization dictated by the
selection rules of intersubband transitions, the opening of
complete photonic bandgaps, in an array of low refractive index
pillars immersed in a high refractive index material, requires
much larger filling factors R than those adopted here. This is even
true for periodic crystals26, although it does not preclude lasing at
selected k-points in the lattice reciprocal space where the local
density of photonic states (and hence the net gain) is high22. In a
band picture, high densities of states are achieved at extremal
points where the band dispersion tends to zero and the modes are
described by stationary non-propagating waves. In other words,
such states are mainly the result of Bragg reflections from the
lattice, coupling counter-propagating modes of wavevectors k and
–k, and giving rise to the feedback action necessary for lasing.

Although a band description fails in a quasi crystal owing to
the lack of translation invariance, the form factor S(k), obtained
as a Fourier transform of the spatial profile of the dielectric
constant, still contains relevant information on the main Bragg
reflection processes. The Fourier spectrum S(k) of a quasi crystal
is indeed often self-similar, and, in the limit of large sample size,
singular continuous13, meaning that for every two peaks of S(k)
there is always a third peak between them. Figure 1b shows the
form factor S(k) in reciprocal space for the representative Penrose
crystal structure shown in Fig. 1a. While a periodic crystal is
characterized by a few well-defined reciprocal wavevectors (Bragg
peaks), a quasi crystal has a much richer spectrum with many
Bragg resonances (ideally, covering the whole reciprocal space)12.
In our Penrose crystal, which contains about 40 spatial units,
several main Bragg peaks are present with a characteristic 10-fold
rotational symmetry12. Standing waves form in the crystal as a
consequence of multiple diffractions on the main reciprocal
lattice points, according to the relation

X

j

k!Kj
! "

¼ 0; ð1Þ

where Kj are reciprocal lattice Bragg points and k is the optical
mode wavevector13.

The quality factor Q of the computed optical modes,
quantifying the energy lost per cycle, is plotted in Fig. 1c as a
function of radiation frequency for a prototype device with
R¼ 0.26 and a¼ 23mm; this reflects the broad spectrum of Bragg
resonances apparent in Fig. 1b, and the lack of photonic
bandgaps. A few main modes appear with Q factors significantly
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higher than the average, and amongst these we identify three
dominant modes labelled P, L and H in Fig. 1c that are well
within the gain bandwidth of the QCL25. The 2D simulations
show that the hole radius and its refractive index both have a
strong influence on the Q factor and eigenfrequency of the main
optical mode P (see Supplementary Fig. 2). It is worth mentioning
that the 2D computed Qs do not contain the radiative
contribution Qvertical. As a consequence, they mostly give
information on the lateral confinement of the optical modes.

Modes with higher Q factors can here arise only from a
reduced overlap with the outer absorbing boundary, that is, from
a spatial distribution mainly localized in the device center; these
modes are therefore the principal ones confined by the grating
feedback. The calculated 2D spatial profiles of P, L and H,
represented by the modulus of the electric field component in the
vertical (z) direction are shown in Fig. 2a–c, respectively, with
their Fourier transforms fðkÞ ¼ ~EzðkÞ

## ## in reciprocal space shown
in Fig. 2d–f (upper left); these present a 10-fold symmetry and
have peaks at specific values, kp. In the bottom-right half of the
same panels, the Fourier transform of the spatial profile of the
dielectric constant, that is, |e(k)| is also plotted.

To identify the Bragg peaks responsible for the feedback, we
can overlap the circumferences of circles corresponding to values
of nkp that would satisfy eq. (1) for a small finite number of

diffractions (for example, n¼ 2 for the simplest two-wave
coupling kp!Kj¼ ! kp, and so on). Their intersections with
the relevant points of the reciprocal space, shown in the lower
right sections of Fig. 2d–f, indicate which Bragg reflections give
rise to the feedback for each mode. The highest-Q optical mode,
labelled P in Fig. 1c is mainly composed of 10 plane waves, 5 of
which are visible in the upper left of Fig. 2d. For this P-mode, the
circumference with n¼ (1þO5)/2, shown in blue in Fig. 2d,
intersects strong resonances of S(k), indicating a five-wave
diffraction as the origin of feedback. For the lower frequency
(L; Fig. 2b) and higher frequency (H; Fig. 2c) modes, clear
intersections with the relevant points in S(k) are not found for the
main simplest values of n, indicating complex multiple diffraction
mechanisms13.

A full 3D simulation was performed to provide an estimate
of the photon loss rate due to surface emission gr (see
Supplementary Methods). The vertical radiative losses have been
indeed included in the quality factor computation (Qvertical),
therefore allowing to have quantitative information on the
emission efficiency. The radiative outcoupling efficiency Zr is
here assumed to be proportional to Qtotal/Qvertical being Qtot¼
(1/Qinplaneþ 1/Qvertical)! 1. The 3D simulations in Fig. 3 show
that only one mode, identified with the P-mode, has a total
quality factor Qtot significantly above the average, while the
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Figure 1 | Device image and quality factors. (a) Scanning electron microscope image of a prototype device. Holes of radius r¼ 6mm and a lattice
spatial length scale a¼ 23mm have been lithographically designed at each vertex of a Penrose pattern and imprinted into the top Cr/Au metallization
of the THz QCL (see inset). To implement strong absorbing boundary conditions, a thin (35 mm) Cr (7 nm) border was preliminary evaporated around the
mesa pattern. The 75-nm-thick nþ contact layer was then removed in the holes to reduce the cavity losses, and decagonal mesa structures were etched
down to the bottom metal layer to avoid lateral current spreading. (b) Form factor S(k) in reciprocal space of the Penrose quasi crystal in a. (c) Quality
factor Q of the computed optical modes as a function of the radiation frequency for a device having r¼6mm and a¼ 23mm. The dashed vertical lines
indicate the QCL gain bandwidth; the circle identifies the optical modes having the highest Q factors, labelled with P, L and H.
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relative low Qvertical of the other main modes in Fig. 1c definitely
kills their Qtot. From the 3D simulation we extract a P-mode total
quality factor QtotE147 corresponding to a total photon loss rate
gtotE21.1 GHz (see Supplementary Methods). The computed
P-mode photon loss rate due to surface emission is grE3.4 GHz,
corresponding to a QverticalE900, and consequently to ZrE16%
and to QinplaneE175, meaning that the main resonator photon
loss channel is expected to be the non-radiative in-plane one, well
supporting the simplified 2D model outcome. It is worth
mentioning that there several high frequency modes showing
larger Zr than the P-mode; however, their significantly lower Qtot
(Fig. 3) makes them unable to lase.

Terahertz laser emission in quasi-crystal resonators. To realize
our devices, the three-well resonant-phonon depopulation

THz QCL active region of ref. 25 was employed as the gain
medium—this structure has a sufficiently wide gain bandwidth so
that the main optical mode can be easily tuned by about 13%
from the central frequency; this enables the eigenfrequencies of
the predicted high-Q modes to be tailored within the gain curve.
A set of Penrose-like 2D resonators having a decagonal section
were then fabricated by fixing a¼ 23 mm and varying r in the
range 5.8–7.6 mm.

Figure 4a shows the measured current density-voltage (J–V)
and power—current density (L–J) characteristics for four
prototype devices with a¼ 23 mm. The threshold current density
(Jth) slightly varies from 600 to 640 A cm! 2 as R is changed, with
a slope efficiency of 20 mW A! 1 for the device with R¼ 0.33,
which has a peak output power of 8 mW at 10 K under pulsed
operation. Figure 4b shows the corresponding laser spectra at
J¼ 670 A cm! 2. For R¼ 0.33, the quasi crystal supports one
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Figure 2 | Simulated optical modes. (a–c) Computed 2D spatial profiles of the electric field modulus for the higher Q optical modes of Fig. 1c: (a) P,

(b) L, and (c) H. (d–f) Fourier transform fðkÞ ¼ ~EzðkÞ
## ## of the optical mode spatial profiles (upper left) in the reciprocal space for (d) P, (e) L, and

(f) H (upper left half), plotted together with the form factor ~eðkÞj j of the designed quasi crystal (bottom-right half). f(k) peaks at values kp identified by
heavy dots. To identify the Bragg peaks responsible for the feedback, one can overlap the circles of radius nkp, for each n corresponding to values that
satisfy the Bragg equation; the circumference with n¼ (1þO5)/2 is shown in blue in (d) and perfectly intersects strong resonances of SðkÞ ¼ ~eðkÞj j
indicating a five-wave diffraction as the origin of the feedback for the related optical mode P. The circle of radius kp is also plotted in pink to show
Bragg peaks of S(k) responsible for vertical extraction.
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main lasing mode at 3.29 THz with an additional smaller intensity
peak at a lower frequency (2.84 THz). The main peak red shifts by
almost 8 GHz when r is reduced by 7% (R¼ 0.31), a frequency
shift smaller than that expected if ones assume the same hole
refractive index (E16 GHz; Supplementary Fig. 2b). In addition,
a smaller mode becomes active on the high-energy side.

We attribute the main peak for both R¼ 0.33 and R¼ 0.31 to
emission from the dominant P-mode of Fig. 1c and Fig. 3, for
which a favourable matching with the peak gain of the active
material occurs. However, upon further reducing the hole radius
to R¼ 0.28 or R¼ 0.26, the P-mode (whose frequency should be
further red-shifted on the low frequency tail of the gain curve) is
no longer visible and a weaker single-mode emission is observed
at higher frequencies, associated with the lower-Q modes of
Fig. 3, for which a more favourable gain condition is now
occurring.

It is worth noticing that, as common in a double-metal THz
QCL, a large portion (around 500 A cm! 2) of the threshold
injection current is actually due to leakage before the correct band
alignment of the structure is reached. As such, threshold current
densities only marginally depend on the actual mode Q factor and
a reliable determination from the experiments is very difficult to
be achieved.

To confirm our interpretation, we fabricated another set of
samples with the goal of increasing the P-mode frequency by
about 5%. Four devices were tailored with a¼ 22 mm, and r in the
range 5.7–7mm. Figure 4c shows the I–V and L–I characteristics.
The peak output power is significantly higher than previously,
reaching 45 mW at 10 K for the device with R¼ 0.31, suggesting
that P is the main mode responsible for laser emission here. The
peak power reduces to 3 mW when the R¼ 0.31 device reaches a
heat sink temperature TH¼ 110 K (which corresponds to a lattice
temperature of about 148 K).27 Owing to the large dissipated
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electrical power, these devices were not forced to operate at
higher currents and temperatures to avoid burn-out, therefore
hindering a detailed evaluation of the maximum achievable
output power and temperatures.

The laser spectra plotted in Fig. 4d for the a¼ 22 mm devices
are consistent with our interpretation above. Comparing
Fig. 4d,b, we observe that: (i) for R¼ 0.33, the expected 5% shift
of the P-mode pushes it out of the material gain curve while a
single-mode emission (related to a lower-Q mode) at a lower
frequency on the center of the material gain curve is visible;
(ii) for R¼ 0.31, the emission is quasi single mode with the main
P-mode peak blue-shifted by almost 5% with respect to the
corresponding peak in Fig. 4b; (iii) for R¼ 0.28, the frequency of
the P-mode is now shifted towards the center of the material gain
curve and the device can now operate on the P-mode, unlike in
Fig. 4b. The recorded frequency is E120 GHz less than that
observed in the R¼ 0.31 (a¼ 22 mm) sample, a slightly bigger
shift than that expected from the 10% radius reduction (which
should lead to a 50 GHz frequency drop, see Supplementary
Fig. 2b); (iv) for R¼ 0.26, the induced frequency shift is still not
enough to induce lasing on the P-mode, which remains on the
low frequency side of the material gain curve; the device is
therefore still lasing on a lower-Q mode. A final set of devices was
fabricated to induce an additional 5% shift in the main mode
frequency while keeping the range of filling factors identical
(a¼ 21 mm; r¼ 5.4–7.0 mm). The LIV characteristics and spectra
are plotted in Fig. 4e,f, respectively. A slight variation in Jth is
recorded among the devices with different R values. From the
spectral analysis we observe that: (i) for R¼ 0.33 and R¼ 0.31, the
P-mode is not visible—this is as expected and in line with
previous observation. The P-mode is blue-shifted too far to the
high frequency side of the material gain curve, and is not
observed; instead, the device emits on a sequence of modes, blue

shifted by almost 5% with respect to the corresponding (R¼ 0.33;
0.31) devices in Fig. 4d; (ii) for R¼ 0.26, emission on the high-
efficiency P-mode is now observed, in excellent agreement with
the prediction of Fig. 3, once the correct E10% scaling of the
target frequency is taken into account.

It is worth noting that the optical power scales of Fig. 4a,c,e
have not been adjusted to take into account both the 78%
transmission coefficient of the cyclic olefin cryostat (COC)
window and the estimated 90% collection efficiency. If these were
included, maximum peak powers of E65 mW are achieved,
corresponding to a maximum WP efficiency that approaches
0.1%. This is significantly higher than that obtained from more
classical geometries such as edge-emitting or dual-slit DFB THz
QCLs based on the same active region/waveguide combination
(Supplementary Fig. 3). Such efficiency performance is also larger
than that of conventional periodic structures22. A simple physical
explanation is that in quasi-crystal resonators the optical modes
do not have a naturally defined symmetry of the fields in the
aperture.

The surface emission profiles from these devices can be
predicted from S(k) and f(k). Any Bragg peak Kl existing within
the light cone |k! kp|o2pn/c, centred on kp, allows out-of-plane
scattering, matching the quasi-crystal mode with the free-space
radiation of in-plane wavevector k||¼ kp!Kl, and frequency n.
The resulting far-field patterns are then composed of a series of
spots at given angles, also featuring a 10-fold symmetry13.
A special case is that of kp being coincident with a given Kl: this
scattering gives k||¼ 0, that is, vertical emission is obtained. This
is the case for the P-mode of Fig. 2a,d for which a well collimated
emission is expected. A full 3D simulation was performed for this
high-Q mode, and the far-field pattern was derived from the
Stratton-Chu method applied to the near-field emission.15

Figure 5a shows the simulation results: the beam is collimated
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into a 8! ring from the vertical and the 10-fold symmetry is not
apparent. This is expected since the spread of each scattering
emission is point-like only in the limit of an infinite quasi crystal
and of a fully spatially coherent optical mode13. In the present
case, the modes occupy only a few tens of spatial crystal units,
meaning that the preferred angles of emission broaden into more
homogeneous ring-like shapes. Figure 5b shows the related
experimental measurement. The emission of the quasi crystal
(R¼ 0.26, Fig. 4e,f) is well collimated into a E10! ring from the
vertical with further weaker rings at larger angles, in qualitative
agreement with the simulation. Such a ring profile can be
converted in a more regular single-lobed pattern by introducing a
defect in the central area of the pattern or by grading the hole size
across the quasi-crystal pattern, that is,. by breaking the resonator
rotational symmetry23. For sake of comparison Fig. 5c, shows the
angular emission extrapolated for a different sample in which
no P-mode emission was detected (R¼ 0.33 in Fig. 4e,f). The
emission is here spread in a concentric and more chaotic
sequence of rings covering a wider 15! angle, in agreement with
the predicted multiple diffraction mechanisms at the origin of the
feedback.

Discussion
To make our conclusions more general, we applied the same
resonator concept to a different THz QCL active region design
(diagonal resonant-photon structure)28, showing a significantly
smaller (0.1 THz) gain bandwidth and larger internal quantum
efficiency at 3.8 THz. A 0.2% maximum WP efficiency with peak
powers of 65 mW has been reached here with similar far-field
profiles compatible with P-mode emission. Such efficiency
performance is competitive with the best surface-emitting 1D
or 2D THz QCLs resonators (see Supplementary Fig. 4).

In conclusion, we have shown that a 2D photonic quasi-crystal
concept can be exploited to realize efficient injection lasers based
on a quantum-cascade active medium in the far-infrared (THz)
region of the spectrum. By fabricating a Penrose tiling with
pentagonal rotational symmetry in the QCL top metallization
layer, highly efficient vertical emission with peak output powers
of E65 mW and WP in the 0.1–0.2% range can been achieved.
Such powers/efficiencies are larger than those achieved with
conventional22 or uniformly graded 2D photonic crystal lasers23

at very low temperatures (4 K), in corresponding double-metal
devices, showing the potential of quasi-crystalline structures
for the development of more efficient photonic devices and
micro-cavity lasers, as well as for practical metrological and
spectroscopy applications across the far-infrared. Furthermore,
the described approach may be employed in other physical
problems where symmetries need to be broken yet preserving the
general order of the system.

Methods
Fabrication procedure. The QCL (sample L341) was grown by molecular beam
epitaxy on an undoped GaAs substrate and consists of a GaAs/Al0.15Ga0.85As
heterostructure based on the design reported in ref. 25. The growth sequence
started with a 250 nm undoped GaAs buffer layer, and was followed by a 300 nm
Al0.5Ga0.5As etch-stop layer, a 75 nm layer of GaAs n-doped to 5& 1018 cm! 3,
226 repetitions of the gain medium creating a 10-mm thickness active region, and a
final 50 nm GaAs layer n-doped to 5& 1018 cm! 3. The thicknesses (in nm) of the
active region layers are: 4.8/9.6/2.0/7.4/4.2/16.1, with a 5.6 nm thick portion of the
underlined GaAs well being doped to n¼ 5& 1016 cm! 3 and the Al0.15Ga0.85As
barriers being depicted in bold face. After growth, the QCL wafer was thermo-
compressively bonded with an Au–Au interface on an nþ -GaAs carrier wafer.
After selective removal of the host GaAs substrate by etching, and removing the
Al0.5Ga0.5As etch-stop layer, the active region was coated with a top Cr/Au
(5 nm/150 nm) metallization. Holes of radius r between 5.4–7.7 mm, on a lattice
spatial length scale a¼ 23–21 mm, were then lithographically patterned in the metal
at each vertex of the Penrose pattern. The 75-nm nþ contact layer was removed in
the holes by reactive-ion etching process to reduce the cavity losses. To implement
strong absorbing boundary conditions the pattern was surrounded by a pre-defined

thin Cr (7 nm) frame extending 35 mm around the Penrose pattern. This Cr border
acted as a mask during the reactive-ion etching process, preventing the nþ top
contact layer from being etched away at the periphery of the Penrose pattern where
the absorbing boundary is required. As a final processing step, decagonal mesa
structures were etched down to the bottom metal using a H2SO4:H2O2:H2O
(11:9:50) etching solution to avoid lateral current spreading. Individual devices
were indium soldered onto a copper block and symmetrically wire-bonded around
the decagon border to ensure uniform current injection through the mesa, while
avoiding any perturbative effects in the far-field.

Optical characterization. The lasers were mounted on the cold finger of a helium-
flow cryostat, and were driven with 1 ms current pulses at a 1% duty-cycle. For the
spectral characterization, laser emission was collected with a f/1 parabolic mirror,
passed through a Michelson Fourier transform interferometer, and measured in
rapid scan with a deuterated triglycine sulfate pyroelectric detector. The light–
current curves were measured with a pyroelectric detector at a distance of E2.5 cm
from the device, without any collection optics and without applying any correction
for the cryostat window transmission.

The far-field data were acquired with a pyroelectric detector, which had a
sensitive area of about 7 mm2 and was mounted at a fixed position. The device was
scanned on a x–y translation stage, driven by stepper motors with a spatial
resolution of E0.2 mm, in the plane perpendicular to the growth direction, at
distances of 8 cm and 16 cm from the sample.
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