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Abstract. Node centrality is one of the most important and widely used concepts in the study of complex
networks. Here, we extend the paradigm of node centrality in financial and economic networks to
consider the changes of node ``importance"" produced not only by the variation of the topology of
the system but also as a consequence of the external levels of risk to which the network as a whole is
subjected. Starting from the ``Susceptible-Infected"" (SI) model of epidemics and its relation to the
communicability functions of networks, we develop a series of risk-dependent centralities for nodes
in (financial and economic) networks. We analyze here some of the most important mathematical
properties of these risk-dependent centrality measures. In particular, we study the newly observed
phenomenon of ranking interlacement, by means of which two entities may interlace their ranking
positions in terms of risk in the network as a consequence of the change in the external conditions only,
i.e., without any change in the topology. We test the risk-dependent centralities by studying two real-
world systems: the network generated by collecting assets of the S\&P 100 and the corporate board
network of the U.S. top companies, according to Forbes in 1999. We found that a high position in the
ranking of the analyzed financial companies according to their risk-dependent centrality corresponds
to companies more sensitive to the external market variations during the periods of crisis.
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1. Introduction. Modern economic and financial systems are characterized by a vast col-
lection of interacting agents [1, 6, 12, 37, 47, 55]. In economic systems, for instance, the inter-
dependence among entities characterizes the trade and exchange of goods in nonanonymous
markets as well as in risk-sharing agreements in developing countries [1]. In this framework,
the agents' interaction is responsible for the nature of the relations between the individual
behavior and the aggregate behavior [55].

The human factor which underlies these economic and financial systems is also character-
ized by the interconnectivity. The existence of networks of interpersonal relations has been
empirically observed to constitute a fundamental factor in shaping the interinstitution net-
works, or in accounting for the networks of risk-sharing agreements [33, 34], the formation
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of buyer-seller networks [18, 40, 60], product adoption decisions [23, 54], diffusive processes
[41, 46, 64], industrial organization [47], trade agreements [37], and even the existence of in-
terbank networks [1]. This is not surprising as humans are responsible for the execution of
deals between the institutions to which they belong [16, 59, 71].

From a mathematical perspective all these interdependencies between economic and fi-
nancial entities can be captured by the formal concept of a network, in which nodes represent
the entities (individuals, firms, countries, etc.) and edges account for the relations between
such entities, ranging from social relations to trade agreements [29]. Hence, it is possible to
use the tools of network theory to analyze the structure and evolution of these systems as
well as the dynamic processes that take place among them. On one side, researchers have
studied the topological properties of these networks (sometimes called static analysis), which
do not assume mechanisms of transmission of effects through the economic and financial en-
tities [38, 52, 79]. Among such studies, it is frequent to find analyses of clusters formed by
groups of institutions, as well as the centrality of individual nodes in the networks [8, 13, 78].
Specifically, centrality measures (see Chapter 5 in [29] for a detailed analysis) are topological
characterizations of the nodes and their neighborhood in a network. In the analysis of financial
and economic networks, the use of centrality measures is not so effective, as the classical ones
provide a static view of the network, and even other measures based on dynamic processes,
such as random walk--based centralities [69], do not capture the changing conditions to which
these networks could be subject in relatively short periods of time. As an illustrative example,
let us consider a hypothetical interbank network for which we are interested in analyzing the
risk-dependent exposure of the various entities of the system. Any centrality measure will
point out a specific and static ranking of the nodes. However, a bank which is very central
at a low level of external risk is not necessarily central when such a level of external risk in-
creases, and vice versa. On the other hand, the propagation of shocks through these networks
is considered, and this is usually known as dynamic analysis [3, 15, 17, 25, 39, 48, 43]. In these
studies, a specific way of transmission of these shocks through the network is assumed---as in
the case of ``Susceptible-Infected"" and ``Susceptible-Infected-Recovered"" epidemiological mod-
els [63, 67, 73]---and then a systemic risk analysis is based on the contagion effects observed
through such models.

In this work we develop a mathematical model to account for the risk exposure of an entity
in a networked (economic or financial) system. This model is based on the relation between
the Susceptible-Infected epidemiological model and the so-called communicability functions of
a network [30]. Using this connection we derive new centrality indices that quantify the level
of risk at which an entity is exposed to as a function of the global external level of risk. Our
approach takes advantage of the benefits of both static and dynamic analyses. Indeed, unlike
the standard approaches followed in the literature, these risk-dependent centralities are not
static indices, as most centrality indices are, but they vary with the change of the external
global risk level the system is subject to. More importantly, the ranking of the nodes in these
networks also depends on this global external level of risk. This means that an entity---a node
in the network---which is at a low (high) level of risk under external conditions can be at a
high (low) level under different conditions.

We test our model by using two different systems, a network of assets based on the daily
returns of the components of the S\&P 100 for the period ranging from January 2001 to
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December 2017 and a network representing the interconnection between companies in the
U.S. top corporates according to Forbes in 1999. In the first case we extract the essential
information about asset correlations through the minimum spanning tree. We measure how
the centrality of the assets changes at different values of the external risk. What emerges
is a high volatility in the rankings during the financial crisis of 2007--2008, when the node
centrality proves to be more sensitive to the external risk. In the case of the corporate network
we analyze a sample of significant companies, looking for a correlation between shareholder
value creation (SVC) and behavior during and after the crisis period to which data refer. We
find that a remarkable increase in their risk-centrality ranking during a crisis corresponds to
a less resilient reaction to the external market turmoil.

The paper is structured as follows. In subsection 1.1 we recall the main literature about the
use of epidemiological models for modeling financial contagion, and we motivate the choice of
a Susceptible-Infected model. The necessary mathematical preliminaries are given in section
2. Therefore, we describe a Susceptible-Infected (SI) model on a financial network (section 3),
and we define the risk-dependent centrality proving some mathematical properties (section 4).
We perform numerical analyses of the proposed centrality for random networks (section 5), we
apply the proposed measure to real-world financial networks (section 6), and we analyze the
ranking interlacement problem (section 7). Section 8 comments on how the proposed model
could provide additional insights into the analysis of the economic and financial impacts of the
crisis related to the diffusion of the new coronavirus called SARS-CoV-2. Conclusions follow
in section 9.

1.1. Related literature and motivations. The process in which one financial institution
spreads negative effects to another institution very much resembles the propagation of epi-
demics on networks [66, 48]. The fact that such processes are known as ``financial contagion""
already captures part of these similarities. Then, it is not strange that epidemiological models
are frequently used to capture the subtleties of financial contagion processes. There are many
such compartmental models in epidemiology, but the most widely used for modeling financial
contagion are the Susceptible-Infected-Recovered (SIR) [21, 36, 74, 58, 76, 42] and Susceptible-
Infected-Susceptible (SIS) [5, 14] models. They are used not only to model financial contagion
per se but also for the propagation of rumors and innovations of interest for financial institu-
tions [70, 50]. These models are well suited to depicting financial contagion because they do
not require arbitrary assumptions on loss rates and balance sheets. As remarked by Toivanen
[80], they capture the psychological aspects of the contagion process ``by relating a bank's
relative financial strength with the perceived counterparty risk and expectations.""

The previously mentioned SIS/SIR models and their variants are mainly used in studying
the dynamics of contagion in a system in a post-mortem way. As is well known, both SIS
and SIR models are characterized by the presence of a threshold \tau , which is defined as the
reciprocal of the principal eigenvalue \lambda 1 of the adjacency matrix. The below-the-threshold
or above-the-threshold behavior of the spreading process depends on whether the effective
infection rate is less than or greater than such a threshold. Below the threshold, we have
the extinction of the contagion, and above the threshold a nonzero fraction of infected nodes
persists in the network even over a wide range of timescales. The effective infection rate
depends on both the infection rate per link \gamma and on the curing or recovering rate \delta . For
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instance, in Figure 1(a) we illustrate the evolution of a contagion dynamics for an Erd\H os--
R\'enyi (ER) graph with 100 nodes and connection probability 0.1 by using the SIS model.
The principal eigenvalue of the adjacency matrix is \lambda 1 \approx 10.71 so that the epidemic threshold
is \tau \approx 0.093. The infectivity rate per link is 0.002 for both curves, and the initial infection
probability is 0.2 (20 nodes over 100 initially infected). The curing rate is 0.001 for the dashed
red line (epidemic) and 0.04 for the solid blue line (extinction). Then, the effective infection
rate is 2 > 0.093 for the dashed red line (epidemic) and 0.05 < 0.093 for the solid blue line
(extinction).

(a) (b)

Figure 1. (a) Evolution of an SIS dynamics over an Erd\H os--R\'enyi (ER) graph. (b) Evolution of contagion
before and after the window of vulnerability. Adapted from Lee, Tenneti, and Eun [62].

In this work we are interested in the very early signals that the system can provide for
alerting us about a propagation of a financial contagion. In this case it is very important
to consider the window of vulnerability between the time the contagion phenomenon is first
recognized and the time an action is taken to face the infection. This window could be
arbitrarily wide. In any real condition, there is a nonnegligible time interval in which a
recovery tool is not available yet and the recovering rate is equal to zero. It has been recently
shown by Lee, Tenneti, and Eun [62] that, within this window, the spreading phenomenon is
better described by an SI model than by any other model with a nonnull recovering rate, e.g.,
SIR or SIS (see Figure 1(b)). In this framework, a key point is to predict the ``most at risk""
nodes in the network. Therefore, we are interested in the early times of the epidemic when it
is possible to limit or avoid the distress propagation by introducing specific measures on the
risky nodes in the network.

Moreover, in order to be effective in reducing the spreading phenomenon, the curing rate
has to be large enough. More precisely, since \lambda 1 > max

\bigl( 
\=k,
\surd 
k\mathrm{m}\mathrm{a}\mathrm{x}

\bigr) 
(\=k being the mean degree

and k\mathrm{m}\mathrm{a}\mathrm{x} the maximum degree), the curing rate has to be at least \delta > \gamma \cdot max
\bigl( 
\=k,
\surd 
k\mathrm{m}\mathrm{a}\mathrm{x}

\bigr) 
to get
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a below-the-threshold behavior. But for a big real network
\surd 
k\mathrm{m}\mathrm{a}\mathrm{x} can be very large, even if

the mean degree is small. This implies that \delta has to be significantly bigger than \gamma or, in other
words, the infection significantly weaker than the self-recovering process. This fact could be
totally unlikely in a real contagion process on a real network, and it makes the use of the SIS
or SIR model extremely unrealistic, as remarked by Lee, Tenneti, and Eun [62]. Even when \delta 
is small and the node infection process is dominant, the corresponding epidemic dynamic is
better captured by the SI model. From an application point of view, this is possibly true over
a wide range of timescales under constrained environments where applying massive action to
limit contagion is practically infeasible.

As mentioned before, the detection of risky nodes in a network could be relevant for limit-
ing the risk propagation effects (see, e.g., [44, 7]). Hence, the centrality of a given institution
as best spreader node in a contagion process has been widely explored (see, for instance,
[63]) in order to identify the most dangerous crisis epicenter. The idea of best spreader node
has also been studied in [81] in terms of topological centralities, which was previously inves-
tigated under the name ``vibrational centrality""(see, e.g., [31]). Centralities have been also
used as measures to assess contagion in the interbank market. In this framework, Dimitrios
and Vasileios [22] recommended the use of well-established centrality measures as a way to
identify the most important variables in a network. Battiston et al. [8] introduced DebtRank,
a centrality measure that accounts for distress in one or more banks, based on the possibility
of losses occurring prior to default. The concept that some banks might be too central to fail
originates from this work (see, e.g., [8]).

2. Preliminaries. Here we use the terms ``graphs"" and ``networks"" interchangeably. Most
of the network theoretic concepts defined hereafter can be found in [29]. A graph \Gamma = (V,E) is
defined by a set of n nodes (vertices) V and a set ofm edges E = \{ (u, v)| u, v \in V \} between the
nodes. (u, u) \in E is a loop starting and ending in u. The degree of a node, denoted by ku, is
the number of edges incident to u in \Gamma . The adjacency matrix of the graph A = (Auv)n\times n with
entries Auv = 1 if (u, v) \in E or zero otherwise. We consider here simple graphs, i.e., without
loops and multiedges. The theoretical model will be developed for unweighted networks; we
also recall here the definition of weighted graphs, as we consider in the paper two empirical
real examples for which the network is weighted. A weighted graph \Gamma \prime = (V,E,W ) is a graph
in which wuv \in W is a positive number assigned to the corresponding edge (u, v) \in E. In this
case the sum of the weights for all edges incident to a node is known as the weighted degree
or strength. We consider here only undirected networks, such that (u, v) \in E implies that
(v, u) \in E. In this case the matrix A can be expressed as A = U\Kappa UT , where U = [\vec{}\psi 1 \cdot \cdot \cdot \vec{}\psi n]
is an orthogonal matrix of the eigenvectors of A and \Kappa is the diagonal matrix of eigenvalues
\lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda n. The entries of \vec{}\psi j are denoted by \psi j,1, . . . , \psi j,n.

An important quantity for studying communication processes in networks is the commu-
nicability function [30], defined for a pair of nodes u and v as

Guv =
\infty \sum 
k=0

\bigl( 
Ak

\bigr) 
uv

k!
= (exp (A))uv =

n\sum 
j=1

e\lambda j\psi j,u\psi j,v.

It counts the total number of walks starting at node u and ending at node v, weighted
in decreasing order of their length by a factor of 1

k! . A walk of length k in \Gamma is a set of
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nodes i1, i2, . . . , ik, ik+1 such that for all 1 \leq l \leq k, (il, il+1) \in E. A closed walk is a walk for
which i1 = ik+1. Therefore, Guv is considering shorter walks as more influential than longer
ones. The matrix exponential is an example of a general class of matrix functions which are
expressible as

(2.1)
\bigl( 
f(A)

\bigr) 
uv

=
\infty \sum 
k=0

ck
\bigl( 
Ak

\bigr) 
uv
,

where ck are coefficients giving more weight to the shorter than to the longer walks, and making
the series convergent. The term Guu, which counts the number of closed walks starting at the
node u giving more weight to the shorter than to the longer ones, is known as the subgraph
centrality of the node u.

We also consider here a Susceptible-Infected (SI) model over an undirected network. Each
susceptible node becomes infected at the infection rate \gamma per link times the number of infected
neighboring nodes. Let t\ast be the instant in which a node i is infected. Node i remains in this
state \forall t \geq t\ast and does not come back susceptible. Let us introduce a random variable Xi(t)
denoting the state of a node i at time t:

Xi (t) =

\biggl\{ 
1
0

if t \geq t\ast ,
otherwise.

(2.2)

Then we define

(2.3) xi(t) = P [Xi(t) = 1] = \BbbE [Xi(t)] \in [0, 1],

which is the probability that node i is infected at time t. In other words, node i is healthy at
time t with probability 1 - xi(t). For the whole network, we define the vector of probabilities:

(2.4) \vec{}x(t) = [x1(t), . . . , xn(t)]
T .

3. Model. Let us consider an SI model on a financial network. The nodes of a graph \Gamma =
(V,E) represent financial institutions, and the edges connecting them represent an interaction
that can transmit a ``disease"" from one institution to another. A node can be susceptible and
then get infected from a nearest neighbor, or it is infected and can transmit the infection to
other susceptible nodes. Let \gamma be the infection rate, and let xi (t) be the probability that node
i gets infected at time t from any infected nearest neighbor. Then,

(3.1)
dxi (t)

dt
= \vec{}\.x (t) = \gamma [1 - xi (t)]

n\sum 
j=1

Aijxj (t) ,

which in matrix-vector form becomes

(3.2) \vec{}\.x (t) = \gamma [1 - diag (\vec{}x (t))]A\vec{}x (t) ,

with initial condition \vec{}x (0) = \vec{}x0.
It is well known that on a strongly connected network1[67]

1A graph \Gamma = (V,E) is strongly connected if and only if for each pair of nodes i, j \in V there is a directed
walk starting at i and ending at j, and a directed walk starting at j and ending at i.

D
ow

nl
oa

de
d 

06
/0

3/
20

 to
 1

92
.1

67
.2

04
.1

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

532 BARTESAGHI, BENZI, CLEMENTE, GRASSI, AND ESTRADA

1. if \vec{}x0 \in [0, 1]n, then \vec{}x(t) \in [0, 1]n for all t > 0;
2. \vec{}x(t) is monotonically nondecreasing in t;
3. there are two equilibrium points: \vec{}x = \vec{}0, i.e., no epidemic, and \vec{}x = \vec{}1 (the vector of all

ones), i.e., full contagion;
4. the linearization of the model around the point \vec{}0 is given by

(3.3) \vec{}\.x(t) = \gamma A\vec{}x(t),

and it is exponentially unstable; in fact, since, in a nonempty undirected graph, A
has at least one positive eigenvalue, any solution component in the direction of the
corresponding eigenvector grows unboundedly as t increases;

5. each trajectory with \vec{}x0 \not = \vec{}0 converges asymptotically to \vec{}x = \vec{}1; i.e., the epidemic
spreads monotonically to the entire network.

In particular, the linearized problem comes from the following observation. It can be checked
that

(3.4) \.xi(t) = \gamma [1 - xi(t)]

n\sum 
j=1

Aijxj(t) \leq \gamma 

n\sum 
j=1

Aijxj(t)

or

(3.5) \vec{}\.x(t) \leq \gamma A\vec{}x(t)

\forall i and \forall t. Then, we can use the linear dynamical system

(3.6) \vec{}\.x \star (t) = \gamma A\vec{}x \star (t)

as an upper bound for the original nonlinear dynamical system that has been used in the
literature (see [67]) as an approximation of the exact problem. One of its main advantages is
that it can be solved analytically and its solution \vec{}x \star (t) can be written as

(3.7) \vec{}x \star (t) = e\gamma tA\vec{}x \star 0,

which using the spectral decomposition of A can be written as

(3.8) \vec{}x \star (t) =

n\sum 
j=1

e\gamma t\lambda j \vec{}\psi j
\vec{}\psi T
j \vec{}x

 \star 
0.

This solution to the linearized model is affected by the following main problems:
1. \vec{}x \star (t) grows quickly without bound in spite of the fact that \vec{}x \star (t) is a vector of proba-

bilities which should not exceed the unit;
2. \vec{}x \star (t) is an accurate solution to the nonlinear SI problem only if t\rightarrow 0 and \vec{}x \star 0 \rightarrow 0.
The mathematical properties of the linear dynamical system (3.3) as well as of the solution

(3.7) have been extensively studied by Mugnolo in [68]. We direct the reader to this reference
for the details.
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Hereafter we will follow the recent work of Lee, Tenneti, and Eun [62], who proposed the
following change of variable to avoid the aforementioned problems with the solution of the
linearized SI model:

(3.9) yi (t) :=  - log (1 - xi (t)) ,

which is an increasing convex function. Then, as 1  - xi(t) is the probability that node i is
not infected at a given time t, the new variable yi (t) can be interpreted as the information
content of the node i or the surprise of not being infected (see, e.g., [19]). According to [62],
the SI model (3.1) can be now written as

(3.10)
dyi (t)

dt
= \.yi (t) = \gamma 

n\sum 
j=1

Aijxi (t)

or

(3.11) \vec{}\.y (t) = \gamma A\vec{}x(t).

The approximate solution to the SI model provided by [62] is then given by

(3.12) \vec{}x(t) = \vec{}1 - e - \vec{}y(t),

where e - \vec{}y(t) is the vector in which the ith entry is e - yi(t) and

\vec{}y (t) = e\gamma tA\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\vec{}1 - \vec{}x0) [ - log (1 - \vec{}x0)]

+
\infty \sum 
j=0

(\gamma t)j+1

(j + 1)!

\Bigl[ 
Adiag

\bigl( 
\vec{}1 - \vec{}x0

\bigr) \Bigr] j
A
\Bigl( 
\vec{}x0 +

\bigl( 
\vec{}1 - \vec{}x0

\bigr) 
log

\bigl( 
\vec{}1 - \vec{}x0

\bigr) \Bigr) 
.(3.13)

As stressed by [62], the interesting case of the dynamics is when \vec{}x0 < \vec{}1, in which case the
solution simplifies to

(3.14) \vec{}y(t) = \vec{}y0 +
\Bigl[ 
e\gamma tA\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\vec{}1 - \vec{}x0)  - I

\Bigr] 
\cdot diag

\Bigl( 
\vec{}1 - \vec{}x0

\Bigr)  - 1
\vec{}x0.

Now, we can make the further assumption that the initial probabilities of being infected
are equal for every node, i.e., that at the beginning every node has the same probability \beta to
be infected and to be the one from which the epidemic starts. This means that we are asking
for

(3.15) x0i = \beta =
c

n
\forall i = 1, . . . , n,

for some scalar constant c. In this case diag(\vec{}1 - \vec{}x0) =
\bigl( 
1 - c

n

\bigr) 
I = (1 - \beta )I. If we set \alpha = 1 - \beta ,

the approximate solution of the SI on the network becomes

(3.16) \vec{}y(t) = \vec{}y0 +
1 - \alpha 

\alpha 

\bigl[ 
e\alpha \gamma tA  - I

\bigr] 
\vec{}1,
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and since \vec{}y0 = ( - log\alpha )\vec{}1,

(3.17) \vec{}y(t) =

\biggl( 
1

\alpha 
 - 1

\biggr) 
e\alpha \gamma tA\vec{}1 - 

\biggl( 
log\alpha +

1 - \alpha 

\alpha 

\biggr) 
\vec{}1.

The component (e\alpha \gamma tA\vec{}1)i is called the total communicability of node i and will be denoted
by Ri. Hence, componentwise we have

(3.18) yi (t) =

\biggl( 
1

\alpha 
 - 1

\biggr) 
Ri  - 

\biggl( 
log\alpha +

1 - \alpha 

\alpha 

\biggr) 
.

Keeping in mind that  - log\alpha = yi(0) and \alpha = 1  - \beta , we can also write the previous
equation as

(3.19) \Delta yi (t) = yi (t) - yi (0) =
\beta 

\alpha 
(Ri  - 1),

which means that Ri  - 1 at time t is proportional to the variation in the information content
of node i from time 0 to time t. Finally, the probability of node i being infected at time t can
be expressed in terms of Ri as

(3.20) xi(t) = 1 - (1 - \beta )e
 - \beta 

1 - \beta 
(Ri - 1)

.

When the parameter \beta is fixed, the number of infected nodes depends only on the term
e\alpha \gamma tA\vec{}1 and then on the total communicabilities Ri. It is worth noticing that the probability
given by (3.20) for a node i represents an upper bound for the exact solution of the SI model.
Hence, in this way we do not underestimate the contagion probabilities. Let us consider, for
instance, the time evolution of an infection propagation on an ER network with 100 nodes
and edge density \delta = 0.1. Results are illustrated in Figure 2 for two different values of the
infectivity rate, \gamma = 0.001 (left) and \gamma = 0.002 (right). The dashed red lines represent the
mean probability that a node is infected at time t as given by (3.20). The solid blue lines
represent the same probability as given by the exact solution of the Kermack--McKendrick SI
model with the same mean degree. In both plots, the initial probability is \beta = 0.01.

4. Risk-dependent centrality. Let us designate \zeta = \alpha \gamma t, which determines the level of
risk to which the whole network is subject at time t. For instance, for \gamma = 0, i.e., \zeta = 0,
there is no risk of infection on the network as a node cannot transmit the disease to a nearest
neighbor. This situation corresponds to the case of isolated nodes (no edges). When \zeta \rightarrow \infty 
the risk of infection is very high due to the fact that for a fixed value of c the infectivity is
infinite. Therefore, we call Ri = (e\zeta A\vec{}1)i the risk-dependent centrality of the node i. That is,
the value of Ri reflects how central a node is in ``developing"" the epidemics on the network.
As the networks considered are undirected, this centrality accounts for both the facility with
which the node gets infected as well as the propensity of this node to infect other nodes. The
index Ri can be expressed as

(4.1) Ri =

\biggl[ \biggl( 
I + \zeta A+ \zeta 2

A2

2!
+ \zeta 3

A3

3!
+ \cdot \cdot \cdot 

\biggr) 
\vec{}1

\biggr] 
i

,
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(a) (b)

Figure 2. Simulation of the progression of an SI epidemic on an ER network with 100 nodes and edge
density \delta = 0.1. The parameters used in the model are \beta = 0.01 and \gamma = 0.001 (left) and \gamma = 0.002 (right).
Dashed (red) lines represent the upper bound given by (3.20); solid (blue) lines represent the value of the same
probability in a Kermack--McKendrick SI model with the same mean degree \=k = (n - 1)\delta .

which indicates that it counts the number of walks of different lengths, which have started

at the corresponding node, weighted by a factor \zeta k

k! . It is straightforward to realize from the
definition of the risk-dependent centrality that it can be split into two contributions. That is,
Ri is composed of a weighted sum of all closed walks that start and end at i,

\bigl( 
e\zeta A

\bigr) 
ii
, and of

the weighted sum of walks that start at the node i and end elsewhere,
\sum 

j \not =i(e
\zeta A)ij ,

(4.2) Ri =
\Bigl( 
e\zeta A

\Bigr) 
ii
+
\sum 
j \not =i

\Bigl( 
e\zeta A

\Bigr) 
ij
:= Ci + Ti,

where the first term in the right-hand side represents the circulability of the disease around
a given node and the second one represents the transmissibility of the disease from the given
node to any other in the network. The circulability is very important because it accounts for
the ways the disease has to become endemic. For instance, a large circulability for a node i
implies that the disease can infect its nearest neighbors and will keep coming back to i over
and over again in a circular way. We start now by proving some results about these risk-
dependent centralities. The following theorem is a special case of results found, for instance,
in [11].

Theorem 4.1. The node ranking given by the risk-dependent centralities Ri(\zeta ), with i =
1, . . . , n, reduces to the ranking given by the degree ki in the limit as the risk \zeta \rightarrow 0, and to
the ranking given by eigenvector centrality as \zeta \rightarrow \infty .

Proof. We begin by observing that the ranking of nodes, in terms of their risk-dependent
centrality, is unaffected if all the centralities Ri are shifted and rescaled by the same amount.
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That is, the same ranking is obtained using either Ri or the equivalent measure

\^Ri =
Ri  - 1

\zeta 
,

where \zeta > 0. Now, we have

(4.3) \^Ri =

\biggl[ \biggl( 
A+

\zeta 

2!
A2 + \cdot \cdot \cdot 

\biggr) 
\vec{}1

\biggr] 
i

= ki +
\zeta 

2!
(A2\vec{}1)i +O(\zeta 2).

Hence, in the limit of \zeta \rightarrow 0, the ranking given by Ri is identical to degree ranking.
To study the limit for \zeta large we write

(4.4) Ri =
\Bigl[ 
e\zeta A\vec{}1

\Bigr] 
i
=

n\sum 
k=1

e\zeta \lambda k(\psi T
k
\vec{}1)\psi k,i = e\zeta \lambda 1(\psi T

1
\vec{}1)\psi 1,i +

n\sum 
k=2

e\zeta \lambda k(\psi T
k
\vec{}1)\psi k,i.

We note again that for ranking purposes we can use the equivalent measure obtained by
dividing all risk-dependent centralities by the same quantity, e\zeta \lambda 1(\psi T

1
\vec{}1), which is strictly

positive. That is, we can use

(4.5) \~Ri = \psi 1,i +
1

\psi T
1
\vec{}1

n\sum 
k=2

e\zeta (\lambda k - \lambda 1)(\psi T
k
\vec{}1)\psi k,i.

Since the network is connected, the Perron--Frobenius theorem ensures that \lambda 1 > \lambda 2 \geq \cdot \cdot \cdot \geq 
\lambda n. Hence, each term e\zeta (\lambda k - \lambda 1) for k = 2, . . . , n vanishes in the limit as \zeta \rightarrow \infty , and we see
from (4.5) that the risk-dependent centrality measure gives the same ranking as eigenvector
centrality for \zeta large.

It is interesting to observe that the risk-dependent centrality of every node also depends
on the (strictly positive) quantity

\psi T
1
\vec{}1 =

n\sum 
j=1

\psi 1,j ;

see (4.4). The larger this quantity is, the higher the risk-dependent centrality of each node is.
Assuming that the dominant eigenvector is normalized so as to have Euclidean norm equal
to 1, it is well known that this quantity is always between 1 and

\surd 
n. The value 1 is never

attained for a connected graph. It can only be approached in the limit as all of the eigenvector
centrality is concentrated on one node, say node i, where it takes values arbitrarily close to 1,
with the values \psi 1,j for all j \not = i taking arbitrarily small values. An example of this would be
the star graph2 Sn for n \rightarrow \infty . The maximum value is attained in the case where all nodes
have the same eigenvector centrality: \psi 1,1 = \psi 1,2 = \cdot \cdot \cdot = \psi 1,n (i.e., in the case of regular
graphs).

Let us return to the decomposition Ri = Ci + Ti of the risk-dependent centrality of a
node into its two components, circulability and transmissibility. Similar considerations apply
to these quantities. We summarize them in the following result.

2We recall that the star graph Sn consists of n - 1 nodes v1, . . . , vn - 1, each attached to a central node vn
by an edge.
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Theorem 4.2. The node rankings given by the degree ki and the eigenvector centrality are
obtained as limiting cases of the risk-dependent circulability Ci(\zeta ) as the external level of risk \zeta 
decreases to zero or increases to infinity, respectively. The same is true for the risk-dependent
transmissibility Ti(\zeta ).

Proof. The proof for the circulability is a straightforward adaptation of that for the total
communicability; see also [11].

We give the details for the transmissibility, which has not been analyzed before. We have
for i \not = j that \Bigl( 

e\zeta A
\Bigr) 
ij
= \zeta Aij +

\zeta 2

2!
w

(2)
i,j +O(\zeta 3),

where w
(2)
i,j denotes the number of walks of length two between node i and node j. Dividing

by \zeta > 0, summing over all j \not = i, and taking the limit as \zeta \rightarrow 0, we find

\zeta  - 1Ti = \zeta  - 1
\sum 
j \not =i

\Bigl( 
e\zeta A

\Bigr) 
ij
\rightarrow 

\sum 
j \not =i

Aij = ki,

where we have used the fact that Aii = 0, for all i. Hence, transmissibility is equivalent to
node degree in the small \zeta limit. For the large \zeta limit we write

Ti =
\sum 
j \not =i

n\sum 
k=1

e\zeta \lambda k\psi k,i\psi k,j = e\zeta \lambda 1\psi 1,i

\sum 
j \not =i

\psi 1,j +

n\sum 
k=2

e\zeta \lambda k

\left[  \sum 
j \not =i

\psi k,i\psi k,j

\right]  .
Dividing by the positive constant e\zeta \lambda 1

\sum 
j \not =i \psi 1,j and taking the limit as \zeta \rightarrow \infty , the second

part of the right-hand side vanishes, and we obtain again the eigenvector centrality \psi 1,i of
node i.

Remark 4.3. A natural question is how rapidly the degree (for \zeta \rightarrow 0) and eigenvector
(for \zeta \rightarrow \infty ) centrality limits are approached if the number of nodes n in the network goes
to infinity. From the Taylor expansions (see, for example, (4.3)) we see that the degree limit
is reached more slowly if the row sums of A2 grow as n \rightarrow \infty . In this case, as n increases, \zeta 
must be taken smaller and smaller before the ranking reduces to the one given by the degree.
On the other hand, if the network grows in such a way that the maximum degree of any node
remains uniformly bounded, then the rate of convergence is independent of the number n of
nodes, at least asymptotically.

The rate of convergence to the eigenvector centrality ranking is largely determined by the
spectral gap, \lambda 1  - \lambda 2. If the gap remains bounded below by a positive constant as n \rightarrow \infty ,
the value of \zeta necessary to reach the eigenvector centrality limit is easily seen to grow at most
like O(lnn), and in practice the rate of convergence is scarcely affected by the size of the
network. If, on the other hand, the gap closes as n\rightarrow \infty , then the rate of convergence to the
eigenvector centrality will become arbitrarily slow. The faster the gap closes for n \rightarrow \infty , the
more rapidly the rate of convergence deteriorates.

We conclude this section with some comments on the measures Ri, Ci, and Ti. While
they all display the same limiting behavior and provide identical rankings in the small and
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large \zeta limits, they provide different insights into the network structure (and therefore into
node risk). For instance, it is well known that subgraph centrality (which is the same as
circulability; see [32, 29]) can discriminate between the nodes of certain regular graphs, that is,
graphs in which all the nodes have the same degree. The same holds for transmissibility. Total
communicability, on the other hand, cannot discriminate between the nodes of regular graphs
(nor can degree and eigenvector centrality, of course). These measures are also different from a
computational viewpoint. One advantage of the risk centrality based on total communicability
is that it only requires the computation of the action of the matrix exponential e\zeta A on the
vector \vec{}1. The entries of the resulting vector can be computed efficiently without having to
compute any entry of e\zeta A; see [10]. Modern Krylov-type iterative methods (like those based
on the Lanczos or Arnoldi process) can handle huge networks (with many millions of nodes)
without any difficulty. In contrast, the computation of the circulability requires the explicit
computation of the diagonal entries of e\zeta A (the node transmissibility is then easily obtained by
subtracting the circulability from the total communicability). Although there are techniques
that can handle fairly large graphs (see [9]), these calculations are much more expensive than
those for the total communicability. This limits the size of the networks that they can be
applied to. However, for most financial networks the computation of the circulability is still
feasible.

A final consideration pertains to the values assumed by the external risk parameter \zeta .
Although, in principle, it can vary between 0 and infinity, for the purposes of most of the
applications that follow, it may be sufficient to vary \zeta between 0 and 1. The rationale for
using the interval [0, 1] relies on the fact that, at \zeta = 1, the rankings given by Ri are already
stabilizing around those provided by eigenvector centrality, and therefore no more interlacings
between rankings are possible. As we will show, we typically observe a single point of inter-
lacement, and it usually occurs before reaching the value \zeta = 1. Furthermore, this choice is
equivalent to fixing t = 1 in the epidemic model solution (3.17), and, already as \zeta approaches
1, all the probabilities involved in that model become completely negligible or equal to 1.

5. Risk-dependent centrality on a random network. For the analysis of real-world (fi-
nancial and economic) networks it is necessary to investigate how informative the results
obtained are with respect to the real system under analysis. This significance is typically
addressed by comparing the results to those properties obtained from network null models.
As such null models we consider here Erd\H os--R\'enyi (ER) random networks \Gamma ER (n, p) with n
nodes and wiring probability p (see [27, 28]), for which, in this section, we provide a series
of analytical results. We start by generating a family of simulated ER graphs and discarding
simulations for which the obtained graph is not connected.

In particular, we aim at testing how the external risk \zeta and the probability p and hence
the graph density \delta affect the results. For this purpose, we generate 1000 graphs \Gamma ER(n; p)
with n = 100 at different values of p. For each graph, we compute the main measures for
alternative values of \zeta . First, we report in Figure 3 the behavior of risk-dependent centrality
Ri, circulability Ci, and transmissibility Ti as functions of the density, assuming a fixed high
level of external risk, \zeta = 1. Since the values of Ri are significantly increasing when the density
of the graph increases, we display, in Figure 3(a), the distributions of the ratio between the
risk-dependent centrality of each node Ri and its average value \BbbE (Ri).
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As might be expected, the centralities of nodes tend to be similar when \delta \rightarrow 1 and we
move towards the complete graph, i.e., we observe a lower variability of the distribution of
the ratios. Similar behaviors are also observed for Ci and Ti, with a higher volatility for the
circulability (see Figure 3(b) and Figure 3(c)).

In Figure 3(d), we show the distributions of the incidence of the circulability Ci on the
risk-dependent centrality Ri, that is, the distribution of the ratio Ci

Ri
again as a function of the

density \delta . When \zeta = 1, for all the graphs analyzed, the average value is around 1
n , implying

that the transmissibility has an average incidence of n - 1
n on Ri. It is worthwhile to look at

the variability of the distributions. When the density is extremely low, i.e., we refer to a very
sparse graph, the heterogeneity of the node's degree affects the ratio Ci

Ri
. For instance, when

\delta = 0.1, the circulability of a node ranges approximately from 0.15\% to 2.5\% of the risk-
dependent centrality for the same node. A lower variability is observed for higher densities.
For instance, for \delta = 0.5, the ratio Ci

Ri
varies between 0.6\% and 1.3\%. For \delta = 0.95, we observe

a ratio between 0.9\% and 1.15\%.
In Figure 4, we show the corresponding behaviors of risk-dependent centrality Ri, circula-

bility Ci, and transmissibility Ti as functions of the density, but assuming a fixed low level of
external risk, \zeta = 0.1. Again all figures are based on 1000 randomly generated ER networks
\Gamma ER(n; p) with \delta varying between 0.1 and 0.9.

Focusing on the risk-dependent centrality ratio Ri
\BbbE (Ri)

, we observe that the standard devi-

ation between nodes is lower in the low-risk framework (\zeta = 0.1) than in the high-risk one
(\zeta = 1). For instance, when the density is equal to 0.1, the standard deviation of the ratio
moves from 0.20 for \zeta = 0.1 to 0.37 for \zeta = 1. At a phenomenological level, this behavior can
be justified by the fact that differences between nodes tend to be enhanced when the network
is highly risk-exposed.

Furthermore, the pattern of Ci
\BbbE (Ci)

for \zeta = 0.1 is very peculiar. In this case, when the
network is very sparse, nodes show a similar circulability, while higher differences are observed
when the density is around 0.5.

Lastly, in Figure 5, we focus on the ratio Ci
Ri

, and we report the incidence of the circulability
on the risk-dependent centrality as a function of the external risk \zeta . In cases of sparse networks
(Figure 5(a)), when the external risk is low, we have that the infection remains in larger part
circulating in a loopy way around the nodes, while only a lower proportion of risk tends to be
transmitted to other nodes. This is due to the fact that, for A sparse and \zeta small, the matrix

e\zeta A = I+ \zeta A+ \zeta 2

2 A
2+O(\zeta 3) is strongly diagonally dominant. When the external risk is high,

as already observed, we have an average incidence of the circulability Ci on the risk-dependent
centrality around 1

n . On the contrary, when a very dense network is considered, the ratio Ci
Ri

is affected very little by the external risk. In this case, both Ci and Ri increase on average at
the same rate when \zeta increases. However, the decreasing behavior of Ci

Ri
is noticeable for very

low values of \zeta .
In what follows we provide an exhaustive proof of the behaviors observed so far. Let us

start with the pattern of the ratio Ci
Ri

at high density (see Figures 3(d), 4(d), and 5(b)).
The asymptotic behavior of this ratio can be explained as a consequence of Theorem A.1

in the appendix, where we derive the close expressions of the three risk-dependent centrality
measures for a complete graph. In fact, as \delta \rightarrow 1, the ER network approaches a complete
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(a) (b)

(c) (d)

Figure 3. Figure (a) displays the distributions of the ratios between the risk-dependent centrality of each
node Ri and the average risk-dependent centrality \BbbE (Ri), computed assuming \zeta = 1. Figures (b) and (c)
display the analogous distributions for circulability and transmissibility. Figure (d) shows the distributions of
the ratios between the circulability Ci and the risk-dependent centrality of each node Ri, computed assuming
\zeta = 1. All figures are based on 1000 randomly generated ER networks \Gamma ER(n; p) with a density varying between
0.1 and 0.9.

network, and, for \zeta increasing, the ratio Ci
Ri

approaches 1/n, as shown in (A.1).
Nonetheless, this result can be generalized. In fact, for an ER network which is dense

enough, the following property holds for any \zeta .
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(a) (b)

(c) (d)

Figure 4. Figures (a), (b), (c), and (d) display the distributions of ratios Ri
\BbbE (Ri)

, Ci
\BbbE (Ci)

, Ti
\BbbE (Ti)

, and Ci
Ri

,

respectively, computed in case of a low external risk (\zeta = 0.1). All figures are based on 1000 randomly generated
ER networks \Gamma ER(n; p) with a density varying between 0.1 and 0.9.

Theorem 5.1. Let \Gamma ER(n; p) be an ER random graph with n nodes and probability p. If the
edge density of the graph is \delta > (log n)6 /n and p (1 - p) > (log n) 4/n, then for any node i

(5.1) lim
n\rightarrow \infty 

nCi

Ri
= 1,
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(a) (b)

Figure 5. Figures report the distribution of the ratios between the circulability Ci and the risk-dependent
centrality of each node Ri, computed for different \zeta and by using generated ER graphs with a density equal
to 0.1 (Figure (a)) and 0.9 (Figure (b)), respectively. Both figures are based on 1000 randomly generated ER
networks \Gamma ER(n; p).

independently of \zeta .

Proof. Let us consider as usual that \lambda 1 > \lambda 2 \geq \cdot \cdot \cdot \geq \lambda n in a connected graph. It is known
that in an ER graph the spectral gap (\lambda 1  - \lambda 2) \gg 0. Indeed, as proved in [51], limn\rightarrow \infty 

\lambda 1
np = 1,

while \lambda 2 and \lambda n grow more slowly as limn\rightarrow \infty 
\lambda 2
n\varepsilon = 0 and limn\rightarrow \infty 

\lambda n
n\varepsilon = 0 for every \varepsilon > 0.5,

respectively.
Then, if np (1 - p) > (log n) 4, all but the largest eigenvalue lie with high probability in

the interval
\sqrt{} 
np (1 - p) [ - 2 + o (1) ,+2 + o (1)] (see [82] and [57]). Therefore,

(5.2) lim
n\rightarrow \infty 

Ci

Ri
= lim

n\rightarrow \infty 

\psi 2
1,ie

\zeta \lambda 1 +
\sum n

k=2 \psi 
2
k,ie

\zeta \lambda k

\psi 1,i

\Bigl( 
\vec{}\psi T
1
\vec{}1
\Bigr) 
e\zeta \lambda 1 +

\sum n
k=2 \psi k,i

\Bigl( 
\vec{}\psi T
k
\vec{}1
\Bigr) 
e\zeta \lambda k

=
\psi 1,i\sum n
j=1 \psi 1,j

.

The edge density of an ER graph is \delta = p. In [26], it was proved that for np > (log n)6,
there exists a positive constant C such that the following inequality holds:

(5.3)

\bigm\| \bigm\| \bigm\| \bigm\| \vec{}\psi 1  - 
1\surd 
n
\vec{}1

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 
< C

1\surd 
n

log n

log (np)

\sqrt{} 
log n

np
,

which in plain words means that an ER graph of density \delta > (log n)6 /n is ``almost"" regular
when n \rightarrow \infty . That is, limn\rightarrow \infty 

\surd 
n\psi 1,i = 1 for every node i. Thus, the result immediately

follows.

It is worth pointing out that, when the density of an ER network is very low, the standard
deviation of the ratio Ci

Ri
is very large with respect to that of ER networks with large densities
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(as shown in Figure 3(d)). As we have proved before, the convergence of this ratio to the
value n - 1 takes place only when the density of the graph is relatively large. Let us now
analyze what happens when the edge density is very small for large graphs. In this case, we
observe a slower decay of the ratio Ci

Ri
as a function of the external risk in the range [0, 1] (see

Figure 5(a)). This fact can be easily proven as follows. In general, both the numerator and
denominator of this ratio can be expressed as infinite series of the type

C (\zeta )i = Q (\zeta ) = 1 + a2\zeta 
2 + \cdot \cdot \cdot + ak\zeta 

k + \cdot \cdot \cdot ,

R (\zeta )i = H (\zeta ) = 1 + b1\zeta + (a2 + b2) \zeta 
2 + \cdot \cdot \cdot + (ak + bk) \zeta 

k + \cdot \cdot \cdot = Q (\zeta ) + L (\zeta ) ,

where ak counts the number of closed walks of length k starting and ending at node i and
bk counts all the open walks of length k starting at i and ending at any node j \not = i. Let us
consider

d

d\zeta 

\biggl( 
Q (\zeta )

Q (\zeta ) + L (\zeta )

\biggr) 
=
L (\zeta )Q\prime (\zeta ) - L\prime (\zeta )Q (\zeta )

[Q (\zeta ) + L (\zeta )]2

=

\bigl( 
2a2b1\zeta 

2 + \cdot \cdot \cdot + 2a2bk\zeta 
k+1 + \cdot \cdot \cdot 

\bigr) 
 - 
\bigl( 
b1 + 2b2\zeta + a2b1\zeta 

2 + \cdot \cdot \cdot + b1ak\zeta 
k + \cdot \cdot \cdot 

\bigr) 
[Q (\zeta ) + L (\zeta )]2

.

Then, for certain \zeta < 1 the numerator of the previous expression is negative, which means
that the ratio Ci(\zeta )

Ri(\zeta )
is monotonically decreasing with \zeta . For instance, let us make a second

order approximation to the polynomials Q (\zeta ) and H (\zeta ). Then, we have

Q (\zeta )

H (\zeta )
=

1 + 1
2\zeta 

2ki

1 + \zeta ki +
1
2\zeta 

2 (ki + P2,i)
,

where P2,i is the number of paths of length 2 (wedges) starting at node i. In an ER graph
\BbbE (ki) = (n - 1) p and \BbbE (P2,i) = (n - 1)2 p2  - (n - 1) p. Thus,

Q (\zeta )

H (\zeta )
\approx 

1 + 1
2\zeta 

2 (n - 1) p

1 + \zeta (n - 1) p+ 1
2\zeta 

2 (n - 1)2 p2
=

1 +
\=k

2
\zeta 2

1 + \=k\zeta +
\=k2

2
\zeta 2
,

where \=k = (n - 1) p is the mean degree. The first derivative of this rational function is

d

d\zeta 

\biggl( 
Q (\zeta )

H (\zeta )

\biggr) 
=

2\=k2\zeta 2  - 
\bigl( 
4\=k

\bigl( 
\=k  - 1

\bigr) 
\zeta + 4\=k

\bigr) \bigl( 
2 + 2\=k\zeta + \=k2\zeta 2

\bigr) 2 ,

which is always negative for any \=k \geq 1 and 0 \leq \zeta \leq 1, as can be seen in Figure 6. Moreover,
the absolute value of this derivative increases as \=k decreases, implying a slower decay in the
function Ci(\zeta )

Ri(\zeta )
for lower densities.

To conclude this section, we want to focus on the rankings produced by the two main
centrality measures Ri and Ci and on the similarities between them. In particular, we are
interested in determining if, or for what type of networks, the different centrality measures
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Figure 6. Illustration of the behavior of the derivative of the ratio Ci(\zeta )
Ri(\zeta )

for values of 0 \leq \zeta \leq 1 and for

the parameter \=k \geq 1.

provide similar rankings. To this end, we display in Table 1 the Spearman correlation coef-
ficient between the risk-dependent centrality Ri and the circulability Ci for different graph
densities and for various values of \zeta . On average, we observe a strong positive monotonic de-
pendence between the two centrality measures. As expected, the two measures tend towards
the perfect monotonicity as the density arises. The behavior with respect to \zeta is noteworthy.
The higher dependence is observed in a low-risk framework (\zeta = 0.1), while a slight reduction
is noticeable when higher risk contexts are analyzed, providing again empirical evidence of
the fact that differences between nodes are increased in stressed conditions. Furthermore,
this result is in line with the higher incidence of Ci on Ri as \zeta vanishes, which was discussed
previously. For the sake of brevity, we do not report the Spearman correlation between Ri

and Ti. However, in all cases, the coefficient is larger than 0.9999.

Table 1
Spearman correlation coefficients between Ci and Ri in ER graphs with 100 vertices at different densities

and different values of \zeta .

Density
0.1 0.3 0.5 0.7 0.9

0.1 0.9947 0.9967 0.9971 0.9994 0.9998
\zeta 0.5 0.9844 0.9950 0.9966 0.9994 0.9998

1.0 0.9813 0.9950 0.9966 0.9994 0.9998

6. Analysis of real-world financial networks. In this section, we perform some empirical
studies in order to assess the effectiveness of the proposed approaches. We consider two
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different networks. In the first one, we collected daily returns of a dataset referring to the
time period ranging from January 2001 to December 2017 that includes 102 leading U.S.
stock constituents of the S\&P 100 index at the end of 2017. Data have been downloaded from
Bloomberg. Returns have been split by using monthly stepped six-month windows. This
means that the data of the first in-sample window of width six months are used to build the
first network. The process is repeated, rolling the window one month forward until the end
of the dataset is reached, obtaining a total of 199 networks. The first network, denoted as
``1-2001""covers the period 1st of January 2001 to 30th of June 2001. The latter one (``7-2017"")
covers the period 1st of July 2017 to 31st of December 2017.

Hence, for each window, we have a network \Gamma t = (Vt, Et) (with t = 1, . . . , 199), where
assets are nodes and links are weighted by computing the correlation coefficient t\rho i,j between
the empirical returns of each couple of assets. Notice that the number of assets can vary over
time. Indeed, as mentioned, we have considered the 102 asset constituents of the S\&P 100
index at the end of 2017. Some of these assets have no information available for some specific
time periods. Therefore, in each window, we have considered only assets whose observations
are sufficiently large to ensure a significant estimation of the correlation coefficient. However,
it is not the aim of this paper to deal with the effects of alternative estimation methods. As a
consequence, the number of nodes in the 199 networks varies from 83 to 102 during the time
period.

Then, we follow the methodology proposed in [65, 72], and we use the nonlinear transfor-
mation, based on distances tdi,j : tdi,j =

\sqrt{} 
2(1 - t\rho i,j). The distance matrix Dt = [tdi,j ]i,j\in Vt ,

with elements 0 \leq tdi,j \leq 2, becomes the weighted adjacency matrix of the graph \Gamma t. As
proposed in [72], we extract the minimum spanning tree Tt. This is a simple connected graph
that connects all nt nodes of the graph with nt - 1 edges such that the sum of all edge weights\sum 

tdi,j\in Tt t
di,j is minimum. As shown in [72], this minimum spanning tree, as a strongly re-

duced representative of the whole correlation matrix, bears the essential information about
asset correlations. Furthermore, the study of the centrality of nodes and the analysis of the
evolution of the tree over time are two critical issues in portfolio selection problems (see
[72, 75, 77]).

The second dataset consists of a network of the top corporates in the U.S. in 1999 according
to Forbes magazine. The network is constructed as follows. First we consider a bipartite
network in which one set of nodes consists of companies and the other consists of Chief
Executive Officers (CEOs) of such companies. As one CEO can be in more than one company,
we make a projection of this bipartite graph into the company-company space. In this way,
the nodes represent corporations, and two corporations are joined by an edge if they share at
least one director. We consider two versions of this network. In the first we use the number
of directors shared by two companies as an edge weight, and in the second we use the binary
version of the first. We will refer to these as the weighted and the binary network, respectively.
The network has 824 nodes, made up of one giant component of 814 nodes. We selected the
giant component, with its binary and weighted adjacency matrices. For a comprehensive
description of this network see, for instance, [20].

Networks, derived by both datasets, have been studied by computing the total commu-
nicability, circulability, and transmissibility for each node with \zeta varying in (0, 1] with step
0.01.
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6.1. Network of assets. Starting from the asset trees Tt, we measure the relevance of
each node by using the risk-dependent centrality Ri and by testing different values of \zeta . We
consider in Figure 7 the rankings' distributions of each asset. Different outcomes of each
distribution have been obtained by computing the rankings based on Ri for alternative values
of \zeta in the interval (0, 1] with step 0.01. These results pertain to the first network 1-2001,
namely, the network based on data that cover the period 1st of January 2001 to 30th of June
2001. We observe that some nodes show a significant variability according to different values
of \zeta . Indeed, some assets have climbed more than 20 positions in the ranking when \zeta increases.
For instance, Amazon (node 7 in Figure 7) moved from position 66 to 41 in case of low and
high risk, respectively. Conversely, Exelon Group (node 32 in Figure 7) lowered its ranking
from 15 to 46. On the other hand, the most central nodes in the network remain very central
also when external risk is very high. We have indeed that a position within the top 6 is quite
stable for different values of \zeta . Top assets only change position a bit, preserving their central
role. For instance, United Technologies Corporation (node number 79 in Figure 7) is at the
top of the ranking, independent of \zeta .

10 20 30 40 50 60 70 80
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Figure 7. Figure reports the distribution of nodes' rankings based on Ri with respect to \zeta . For each
distribution, the set of outcomes is given by the rankings of Ri computed for alternative values of \zeta . Results
pertain to the network T1, i.e., the asset-tree in the first window 1-2001.

If we consider the period of the global financial crisis of 2007--2008 (see Figure 9 and
Figure 10), we observe an increase in the rankings' volatility. In shock periods, centrality
of nodes is more affected by the value of \zeta . In particular, to catch rankings' volatility, we
report in Figure 8 the standard deviations of rankings of each asset computed varying \zeta . In
shock periods, results confirm higher average volatility as well as positive skewed distributions
because of a greater number of assets whose ranking is highly affected by the value of \zeta . We
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also tested that differences in average volatility are significant by means of a paired t-test,
useful for comparing the same sample of assets at different time periods. When the network
1-2001 is compared with the two networks covering the period of crisis (End 2007 or End
2008), we obtain p-values around 10 - 5 and 10 - 8 that confirm strong evidence against the null
hypothesis that the average difference between the two samples is zero. As expected, the test
is not statistically significant (p-value is 0.31) when networks covering the period of the global
financial crisis are compared.

Figure 8. Figure reports the distribution of standard deviations of nodes' rankings based on Ri with respect
to \zeta . For each distribution, the set of outcomes is given by the standard deviation of rankings of Ri computed
for alternative values of \zeta . Results pertain to, respectively, the network in the first window 1-2001, at the end
of 2007, and at the end of 2008. The dotted red lines indicate the average standard deviation: Values are equal
to 2.31, 4.27, and 4.80, respectively.

Concerning the behavior of specific assets, we observe, for instance, that some assets
move down by approximately 60 positions from a low risk to a high risk framework. Two
examples are represented by Danaher Corporation and Honeywell International (assets 28
and 43, respectively, in Figure 9). Instead, Accenture PLC (node 3 in Figure 9) increased its
ranking from position 61 to 11.

Even top central nodes are affected by \zeta as the volatilities of their rankings show. The
rankings confirm the relevance of United Technologies Corporation (node number 82 in Fig-
ure 9 and 83 in Figure 10), which is again at the top of the ranking at the end of 2017,
independent of \zeta . At the end of 2008, the centrality of this asset is also confirmed, although
a bit of variability in the ranking is observed for this firm.
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Figure 9. Figure reports the distribution of nodes' rankings based on Ri with respect to \zeta . For each
distribution, the set of outcomes is given by the rankings of Ri computed for alternative values of \zeta . Results
pertain to the asset-tree at the end of 2007.
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Figure 10. Figure reports the distribution of nodes' rankings based on Ri with respect to \zeta . For each
distribution, the set of outcomes is given by the rankings of Ri computed for alternative values of \zeta . Results
pertain to the asset-tree at the end of 2008.
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6.2. U.S. corporate network. We now analyze the network of U.S. top corporates in 1999
according to Forbes magazine. Before starting our analysis, let us explain the importance
of studying spreading dynamics on this network. According to this network, the board of
directors of a given corporation is formed by a few members, some of whom are also on the
boards of other corporations. Then, such directors serving on more than one board can act
as spreaders of information between the corresponding corporations. Such information can be
about future (favorable or unfavorable) economic situations, alarms, market opportunities, or
anything that could be of interest to the companies' directors. Due to the global connectivity
of the system, such ``information"" can be spread across the whole network, ``infecting"" all the
corporations in a relatively short time. As we have mentioned before, epidemiological models
have also being used for modeling such propagation dynamics (see section 1.1.).

Hence, we devote this section to the investigation of whether a significant increase of
the risk-dependent centrality is a proxy of the vulnerability of the corporate to financial
infections propagating on the network. At first, we should note the fact that the network we
are considering here was built based on data corresponding to year 1999. At this year the
level of stress of the international economic system was relatively high due to the fact that
the East Asian financial crisis occurred in the years 1997--1998, which was also followed by
the Russian default of 1998. The two aforementioned financial crises had a ripple effect on
the U.S. market. In the literature, for instance, the so-called ``fire-sale"" FDI (Foreign Direct
Investment) phenomenon, that is, the surge of massive foreign acquisitions of domestic firms
during a financial crisis [2, 24], is well documented. Thus, the level of stress and infectability
of the system for the next few years after 1999 (we will eventually see that these correspond
to the period 2000--2002) is expected to be significantly larger than in the subsequent years
when the effects of these crises gradually relaxed. Therefore, we continue our analysis by
considering that the level of infectability in 1999 is high, and we investigate the effects of
relaxing such a condition to lower levels of stress. That is, we start by assuming that in 1999
the external market turmoil could be represented by a value of \zeta = 1, and we want to find out
how the companies change their ranking positions in term of risk-dependent centrality3 Ri

as \zeta vanishes. To this purpose, we set up different initial conditions in the contagion model
described by (3.10), assigning to each year a different value of the infectability parameter \gamma ,
according to the environmental conditions of the market. Therefore, we let \zeta factors reduce
year by year in order to reflect a reduction in the overall stress on the network. In particular,
we decrease \zeta linearly from 1 to 0 in the period 1999--2003. Therefore, rankings based on the
risk-dependent centrality computed for \zeta = 1 allow us to assess the relevance of each corporate
in 1999. Lowering \zeta , we test how the positions of firms vary over time when the external risk
reduces. It is noteworthy that the connection between this parameter and the risk could be
quite loose, but as shown in the following analysis the model seems to work quite well at
describing firms that reduce their SVC in the period.

The variation of rankings is then compared with the pattern of the shareholder value
creation (SVC) over time. According to the OECD Principles of Corporate Governance,

3The analysis has been also developed for circulability and transmissibility, but, because of the significantly
high rank correlation between Ri and Ti (with Spearman correlation coefficients larger than 0.99), we focus
here only on Ri.
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corporations should be run, first and foremost, in the interests of shareholders (OECD 1999).
Therefore, companies should work to increase their shareholder values. Increasing shareholder
value cannot be done without risk. It is known [61] that in the shareholder value model,
companies usually take more risk than needed in order to maximize SVC. As a consequence
of this additional risk, companies acquire debts which could make them unstable and more
exposed to the risk of bankruptcy. Acquiring large debts is seen as conductive to increasing
shareholder value, due to the potential of the company to increase value when it has started
from a low baseline. Thus, there is a relation between SVC and risk, because in searching for
large SVC the companies increase their risks to attract more investors and increase potential
value gain, but, at the same time, the risk also puts the company in a more vulnerable position
for bankruptcy and collapse.

To support our interpretation, we make use of SVCs of the companies4 in the S\&P 500 for
the period 1999--2003 that have been collected by Fernandez and Reinoso (see [35]). Hence,
we use SVC as a proxy for risk. Indeed, the global average of SVC reflects very well what
happens for the period 1999--2003. After the financial crisis of 1998, the world was at a higher
level of risk, which is reflected by a dramatic drop of the SVC in year 2000 from a positive
value in 1999 to a negative one in 2000. This situation remained until 2002 but eventually
recovered to positive in 2003 (see Figure 11). It is noteworthy that the data for SVC was
reported by Fernandez and Reinoso for the years 1993--2003. From this long period we select
the segment 1999--2003, which contains exactly the valley produced from the financial crisis of
1998, and also because the data used for building the corporate network is from 1999. That
is, it corresponds to a segment of time in which the world economy dropped due to a crisis
and then eventually recovered from it.
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Figure 11. Total created shareholder value (\$ billion) of firms constituting the index S\&P 500 for the period
1999--2003 (data taken from [35]).

We focus our statistical analysis on the predictability of the risk-dependent centrality

4In particular, we use a sample of 337 companies in our network whose SVCs are made available in the
dataset available in [35].
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on the evolution of the SVC. We consider the evolution of the SVC of a company for the
period 1999--2003, which is the period immediately after the network of the corporate elite
in the U.S. was built. As a proxy for the evolution of the SVC of a company we consider
the Pearson correlation coefficient \rho of the ranking position of the company based on SVC
versus the reciprocal of the year. In this case, a negative (positive) value of \rho indicates that
the corresponding company decreases (increases) its SVC from 1999 to 2003 when the global
external infectability decreases. Therefore, we apply a linear discriminant analysis (LDA) to
classify the companies into two groups: (i) those with negative trend in the SVC for this
period, and (ii) those with a positive one. The only predictor used for this classification is
the parameter \Delta Rank(Ri). This parameter is the difference between the ranking position of
the company i when \zeta = 1 and the ranking position of the same company when \zeta = 0.01.
In other words, a negative (positive) value of \Delta Rank(Ri) means that the company dropped
(increased) its exposure to risk when the infectability of the system was lower.

Before proceeding with the application of the LDA on the whole sample at our disposal,
we eliminate a few companies whose correlation coefficient between SVC and the recipro-
cal of the year is marginal (i.e., close to zero). We test empirically the effect produced by
the removal of companies for which | \rho | < a for different values of the threshold a, e.g.,
a = 0.01, 0.025, 0.05, 0.075, 0.1. The best classification of the companies into the two groups
analyzed is obtained by eliminating those companies for which | \rho | < 0.05. In this case the
total accuracy of the LDA model is 60.5\%. That is, 200 out of 332 of the companies are
classified correctly in their respective groups representing their trends in shrinking SVC or
expanding it. In particular, the fitted LDA model is \^Yi =  - 0.3177+0.0102\Delta Rank(Ri), where
\^Yi is the predicted response variable of our analysis that allows us to classify companies in
their respective group. The positive coefficient of the variable \Delta Rank(Ri) indicates that (i)
increasing the exposure to risk (\Delta Rank(Ri) > 0) tends to expand the SVC of the company,
and (ii) decreasing the exposure to risk (\Delta Rank(Ri) < 0) tends to shrink the SVC of the
company. For both groups, we report in Figure 12(a) a comparison between the predicted
value with the LDA and the observed value for each firm. Red squares below the line and blue
circles over the line are well classified, while blue circles below the line and red squares over
the line are wrongly classified. Furthermore, in Figure 12(b) we report the related confusion
plot, where the number of true negative and true positive are on the antidiagonal (lower and
upper parts, respectively) and the number of false negative and false positive are on the main
diagonal (lower and upper parts, respectively). Notice the low classification performance of
the model when only companies that expand their SVC are considered (in this regard, see in
Figure 12(b) the companies that belong to the observed class denoted with the sign ``+""). For
instance, from 147 companies in the network which increase their SVC in the period 1999--
2003, only 36 are correctly predicted by \Delta Rank(Ri) in their class. On the contrary, from
the 175 companies that shrink their SVC in the period 1999--2003, the variable \Delta Rank(Ri)
correctly predicts 157 companies in this class. That is, the risk-dependent centrality of the
companies clearly identifies about 90\% of the companies which will shrink their SVC in the
period 1999--2003, using only data referring to the year 1999. In plain words, our results
indicate that diminishing the exposure to risk when the external conditions of infectability
are low, with high probability, reduces the SVC of a company.

Let us conclude with the following remark. Even if ``good"" companies increase their risk-
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Figure 12. (a) Illustration of the linear discriminant analysis (LDA) model classifying the trend of cor-
porations into those shrinking their SVC (red squares) and those expanding it (blue circles). The black line
represents the LDA model based on the change of Ri (\zeta ) for the values of \zeta = 0.01 and \zeta = 1.0 to predict the
trend in the SVC. Red squares below the line and blue circles over the line are well classified, while blue circles
below the line and red squares over the line are wrongly classified. The LDA classifies correctly about 90\% of
all companies who shrank their SVC (red squares). (b) Plot of the confusion matrix. On the x-axis we report
the true class (Observed Class), and on the y-axis we report the predicted class (Output Class). The number
of true negative and true positive cases are on the antidiagonal (bottom and upper parts, respectively), and the
number of false negative and false positive cases are on the main diagonal of the matrix (bottom and upper
parts, respectively). In the class ``minus"" (``plus"") we consider companies with negative (positive) trend in the
SVC for the period 1999--2003.

centrality ranking as \zeta vanishes, it is worth noting that this occurs when the global stress in
the market is very low. When the infectability rate is very low, the absolute probability of
getting infected also remains very low for both ``good"" and ``bad"" companies. To show this
fact, let us consider that, according to our model, the probability that a given corporate is

not affected by a crisis propagating inside the network is given by 1  - xi(t) = \alpha e - 
\beta 
\alpha 
(Ri - 1),

where again \beta and \alpha = 1  - \beta are the initial probabilities to have infected and not-infected
nodes, respectively. Hence, the ratio between the probabilities of two nodes i and j to pass

successfully through a crisis is given by e
\beta 
\alpha 
(Rj - Ri). We compute these ratios for different

couples of corporates operating in a similar sector, a ``good"" one and a ``bad"" one (Figure 13).
As expected, at low \zeta the probability of not being infected by a crisis is the same for both

high and low risk-centrality companies. But this ratio decreases very quickly as \zeta increases,
and this means that for companies that reduced their risk (e.g., Lucent Technologies, Morgan
Stanley, Union Carbide, and American Express) the probabilities of staying safe during a crisis
are very small if compared with the analogous probabilities for companies that increased their
risk (e.g., General Electric, Bank One, Ashland, and Bank of America).

D
ow

nl
oa

de
d 

06
/0

3/
20

 to
 1

92
.1

67
.2

04
.1

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RISK-DEPENDENT CENTRALITY 553

(a) (b)

Figure 13. Figures display the ratios between the probabilities of not being infected by a crisis for two
different couples of Corporates: (a) Lucent Technologies Inc. over General Electric Co. (b) Morgan Stanley
Co. over Bank One Corp. It is noteworthy that Lucent Technologies Inc. and Morgan Stanley Co. reduced their
rankings over time, while General Electric Co. and Bank One Corp. increased their rankings.

7. Ranking interlacement. During the analysis of the two real-world networks studied
above, we have noticed that with the change of \zeta some nodes vary their ranking significantly,
to the point of changing their positions relative to each other. For instance, in Figure 14 we
illustrate six pairs of corporates that interlace their positions with the change of the global
infectability in the network. In the first pair, Figure 14(a), we see that at low levels of
infectability, i.e., \zeta \rightarrow 0, J.P. Morgan\&Co Inc. (red) occupies a position in the ranking of Ci

more at the bottom than Bank of America Corp. (blue). That is, at low global infectability
J.P. Morgan\&Co is exposed to less risk than Bank of America. However, when the global
infectability in the network increases (\zeta \rightarrow 1), Bank of America is exposed to less risk than
J.P. Morgan\&Co. A similar interlacement is observed between the other couples in Figure 14.
For instance, in Figure 14(f), the interlacement between rankings for General Motors Corp.
(red) and Boeing Co. (blue) occurs at a smaller value of \zeta than for the previous cases. Before
proceeding with the analysis of this phenomenon, we would like to remark that the existence
of ranking interlacement means that the ranking of the nodes in a network based on the
risk-dependent centralities is not unique and fixed as in the case of other classical centrality
measures, e.g., degree, eigenvector, closeness, betweenness. Here instead the ranking of nodes
depends on the global external conditions to which the network is subject.

In order to shed light on the issue of ranking interlacement, we will make use of differ-
ent representations of the risk-dependent total communicability Ri(\zeta ) and circulability Ci(\zeta )
measures (the transmissibility is obtained as the difference of these two and can be treated
accordingly). First, expanding the matrix exponential in a power series gives the representa-
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(a) (b)

(c) (d)

(e) (f)

Figure 14. Illustration of the Circulability Ranking Interlacement for (a) J.P. Morgan\&Co Inc. (red) and
Bank of America Corp. (blue), (b) Pfizer Inc. (red) and Ashland Inc. (blue), (c) Morgan Stanley \& Co. (red)
and Bank One Corp. (blue), (d) AT\&T Corp. (red) and Airtouch Communications Inc. (blue), (e) Union
Carbide Corp. New (red) and AON Corp. (blue), (f) General Motors Corp. (red) and Boeing Co. (blue).
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tion

(7.1) Ri(\zeta ) =
\Bigl( 
e\zeta A\vec{}1

\Bigr) 
i
=

\infty \sum 
k=0

\zeta k

k!
w

(k)
i ,

where w
(k)
i = (Ak\vec{}1)i denotes the number of walks of length k starting from the node i, with

w
(0)
i = 1. In particular, w

(1)
i = ki, the degree of node i. Similarly,

(7.2) Ci(\zeta ) =
\Bigl( 
e\zeta A

\Bigr) 
ii
=

\infty \sum 
k=0

\zeta k

k!
w

(k)
i,i ,

where now w
(k)
i,i =

\bigl( 
Ak

\bigr) 
ii
is the number of closed walks of length k through node i; in particular,

w
(0)
i,i = 1, w

(1)
i,i = 0, w

(2)
i,i = ki, and w

(3)
i,i = 2ti, where ti is the number of triangles node i

participates in.
Second, we recall that the spectral theorem yields the formulas

(7.3) Ri(\zeta ) =

n\sum 
k=1

e\zeta \lambda k

\Bigl( 
\psi T
k
\vec{}1
\Bigr) 
\psi k,i, \scrC i(\zeta ) =

n\sum 
k=1

e\zeta \lambda k (\psi k,i)
2 .

Using (7.1)--(7.2), we readily see that both functions of \zeta are absolutely monotonic for
\zeta > 0; i.e., they are positive and infinitely differentiable on (0,\infty ), with all the derivatives
being nonnegative. In particular, both functions are strictly increasing and strictly convex.

Definition 7.1. We say that the rankings of node i and node j based on the circulability
interlace at \zeta \ast > 0 if Ci(\zeta 

\ast ) = Cj(\zeta 
\ast ) and there exists an \varepsilon > 0 such that Ci(\zeta )  - Cj(\zeta )

changes sign exactly once in (\zeta \ast  - \varepsilon , \zeta \ast + \varepsilon ).

In other words, nodes i and j interlace at \zeta \ast > 0 if the plots of Ci(\zeta ) and Cj(\zeta ) cross for
\zeta = \zeta \ast . We note that, in principle, it is possible to have Ci(\zeta 

\ast ) = Cj(\zeta 
\ast ) for some value of

\zeta \ast without interlacing taking place. Two cases are possible: in the first one, the two curves
touch at the isolated point \zeta \ast (without crossing), and in the second one the two functions
are identical on an open neighborhood of \zeta \ast and, therefore, for all \zeta since they are analytic
functions. In practice, either scenario is very unlikely to occur, at least for real-world networks.
Note that points of tangency must satisfy the additional condition C \prime 

i (\zeta 
\ast ) = C \prime 

j(\zeta 
\ast ).

An analogous definition can be given for the ranking based on other \zeta -dependent mea-
sures, like the total communicability Ri(\zeta ). In the following we limit our discussion to the
interlacing of rankings according to the circulability, but analogous observations hold for the
total communicability and transmissibility functions.

Identifying the interlacing points (if they exist) requires finding the roots of the transcen-
dental equation Ci(\zeta ) - Cj(\zeta ) = 0, or

\Psi (\zeta ) :=
n\sum 

k=1

e\zeta \lambda k
\bigl[ 
\psi 2
k,i  - \psi 2

k,j

\bigr] 
= 0.

Even if we knew the eigenvalues and eigenvectors of A explicitly, there is no general
closed form expression for the roots of the transcendental function \Psi . Of course one could
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resort to numerical root-finding techniques, but this would be impractical for large networks.
Here and below we give a qualitative discussion followed by a heuristic approach that yields
approximations that seem to work well in practice.

We begin with the following result. It applies to both circulability and total communicability-
based rankings, and in fact to a much larger class of parameter-dependent centrality ranking
functions, including Katz centrality [53]. We remind the reader that we restrict the risk rate
\zeta to positive values.

Theorem 7.2. Let i and j be two nodes with different eigenvector centrality: \psi 1,i \not = \psi 1,j.
Then the number of interlacing points for i and j is necessarily finite (possibly zero).

Proof. Let us assume that there is at least one pair of nodes, i and j, whose rankings
interlace, so that \Psi (\zeta ) = 0 has at least one positive root. Observe that the ranking of node i
provided by Ci(\zeta ) is identical to that obtained using

\^Ci(\zeta ) = e - \zeta \lambda 1Ci(\zeta ) = \psi 2
1,i +

n\sum 
k=2

e\zeta (\lambda k - \lambda 1)\psi 2
k,i.

As this quantity tends monotonically to \psi 2
1,i for \zeta \rightarrow \infty , there exists a \=\zeta such that no rank

interlacing with node j can occur for \zeta > \=\zeta , since all the node rankings must stabilize on
the eigenvector rankings in the large \zeta limit. Hence, all interlacing points must fall within
the compact interval [0, \=\zeta ]. Suppose that the number of interlacing points is infinite. By
the Bolzano--Weierstrass theorem, this set has a point of accumulation. But since \^\Psi (\zeta ) :=
e - \zeta \lambda 1\Psi (\zeta ) is analytic, and zero on this set, it must be identically zero everywhere, which
contradicts the assumption that there is at least one interlacing point in (0,\infty ).

As a consequence we have the following corollary.

Corollary 7.3. If all nodes in the network have different eigenvector centralities, the total
number of interlacing points is finite (possibly zero).

A sufficient condition for the existence of at least one interlacing point for the pair of nodes
i and j is that ki \geq kj (or kj \geq ki) while \psi 1,i < \psi 1,j (resp., \psi 1,i > \psi 1,j). This follows from
Theorem 4.2: since Ci(\zeta ) interpolates smoothly between degree centrality and eigenvector
centrality, the only way that a node with higher degree can have lower eigenvector centrality
than another node is that the corresponding circulabilities interlace at some value \zeta \ast > 0.
If more than one interlacing point exists, this number must be odd, for otherwise the node
with higher degree would also have higher eigenvector centrality than the other node. That
the above condition is not necessary is made clear by considering the possibility of an even
number of interlacing points. A necessary condition for the existence of at least one interlacing
point is that there exist at least two values of k, say k1 and k2, for which (Ak1)ii  - (Ak1)jj
and (Ak2)ii  - (Ak2)jj have different sign. Indeed, it is obvious from (7.1)--(7.2) that if (say)
(Ak)ii \geq (Ak)jj for all k, then no rank interlacing point exists. That this condition may not
be sufficient is suggested by the fact that the series expansions contain an infinity of terms.

We mention that the same problem has been studied, for a different centrality function
(the Katz resolvent), by [56] independently of us.
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7.1. A back-of-the-envelope approach. We now consider heuristics based on truncated
series expansions. Let k0 \geq 3 be the smallest value of k such that the sequence of values
\{ (Ak)ii  - (Ak)jj\} k\geq 2 undergoes a sign change (here zero is considered positive). If no such k0
exists, then no interlacing can take place, as we already observed. We consider approximating
Ci(\zeta ) with its truncation to an order k \geq k0:

(7.4) Ci(\zeta ) \approx 1 +
1

2!
\zeta 2w

(2)
i,i +

1

3!
\zeta 3w

(3)
i,i + \cdot \cdot \cdot + 1

k!
\zeta kw

(k)
i,i = \~Ci(\zeta ),

where we recall that w
(k)
i,i = (Ak)ii. We emphasize that this polynomial approximation assumes

that \zeta is small, since the error in it is O(\zeta k+1). Alternatively we can use, as a surrogate for
Ci, the same polynomial shifted by 1 and divided by \zeta 2:

\~Ci(\zeta ) - 1

\zeta 2
=

1

2!
w

(2)
i,i +

1

3!
\zeta w

(3)
i,i + \cdot \cdot \cdot + 1

k!
\zeta k - 2w

(k)
i,i ,

where now the error is O(\zeta k - 1). We can now use these polynomial approximations to try to
locate, approximately, any interlacing points sufficiently small in magnitude. This requires
finding the (positive) roots, if any, of the polynomial equation of degree k  - 2:
(7.5)

q(\zeta ) =
(w

(k)
i,i  - w

(k)
j,j )

k!
\zeta k - 2 +

(w
(k - 1)
i,i  - w

(k - 1)
j,j )

(k  - 1)!
\zeta k - 3 + \cdot \cdot \cdot +

(w
(3)
i,i  - w

(3)
j,j )

3!
\zeta +

(w
(2)
i,i  - w

(2)
j,j )

2!
= 0.

It is well known that for degree greater than or equal to 5 there is no closed form expression
of the solutions of an algebraic equation involving only arithmetic operations and root ex-
tractions, so in general if k \geq 7, then we will have to resort to numerical methods for solving
(7.5). Evaluation of the coefficients requires computing the diagonal entries of powers of the
adjacency matrix A, which can be expensive for very large graphs and large values of k.

As the simplest possible example, we consider the case where w
(2)
i,i > w

(2)
j,j and w

(3)
i,i < w

(3)
j,j

(or vice versa), i.e., k0 = 3. Taking k = k0, (7.5) becomes the linear equation

(w
(3)
i,i  - w

(3)
j,j )

3!
\zeta +

(w
(2)
i,i  - w

(2)
j,j )

2!
= 0,

which admits the unique solution \zeta \ast =
3(w

(2)
i,i  - w

(2)
j,j )

w
(3)
i,i  - w

(3)
j,j

, which is of course positive. In terms of the

degree of the nodes and the number of triangles in which they take place, this can be written
in the form

(7.6) \zeta \ast =
3

2

\bigm| \bigm| \bigm| \bigm| ki  - kj
ti  - tj

\bigm| \bigm| \bigm| \bigm| .
In the case of weighted networks, the degree is replaced by the weighted degree or strength,

and the number of triangles is replaced by the weighted number of cycles of length 3, i.e., the
weight of a cycle of length 3 is the product of the weights at its three edges. A priori, there
is no reason to expect that this value is close to an actual interlacing point (assuming it even
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exists), since the behavior of higher order terms may more than offset the influence of the
negative term involving ti - tj . Better approximations might be obtained by considering higher
order approximations; for example, using k = 4 leads to an easily solved quadratic equation in
\zeta , k = 5 leads to a cubic, and so forth. In any case, these are heuristics whose usefulness can
only be assessed experimentally on concrete examples. We emphasize that the use of power
series truncation requires knowledge of k0, since truncating the series at orders lower than k0
would lead to an equation devoid of positive solutions and therefore to concluding that no
interlacing points exist for a given pair of nodes, even if such points do exist.

It is also worth recalling Descartes's Rule of Signs, according to which the number of
positive real roots of a polynomial (counted with their multiplicities) is equal to the number
of sign changes in the (nonzero) coefficients or less than that by an even whole number, when
the powers are ordered in descending order. If, moreover, the polynomial is known to have
only real roots (as in the case of a symmetric adjacency matrix, i.e., of undirected networks),
then the number of sign changes is exactly equal to the number of positive roots. It is then
obvious that if the power series is truncated at order k0, i.e., as soon as we observe the first
sign change in the coefficients, then there will be exactly one positive root, and therefore only
one (approximate) interlacing point can be found by this method. A polynomial truncation
of higher degree k > k0 may have more than one positive root, depending on the number of
changes in the coefficients (assuming the network is undirected). We will come back to this
case shortly.

To exemplify the previous finding, let us consider a pair of nodes with a small difference
in their degree, e.g., ki  - kj = 2; then  - (ki  - 2)2 \leq (ti  - tj) \leq k2i , such that if, for instance,
ki \leq 10 and we let \zeta vary from 0 to 0.1, we obtain the plot given in Figure 15(a). As can
be seen, there are certain values of \Delta = ti  - tj < 0 for which we can obtain positive and
negative values of Ci  - Cj . This is illustrated in Figure 15(b), where we can see that when
 - 100 \leq \Delta \leq  - 40 there are both positive and negative values of Ci  - Cj . In other words, it
is possible to find pairs of nodes for which Ci (\zeta 1) > Cj (\zeta 1) and then Ci (\zeta 2) < Cj (\zeta 2), which
means that these nodes will change their ranking position in terms of the risk-dependent
centrality when the values of \zeta change even for a relatively narrow window. Notice that if
ki  - kj = 2 and \Delta \geq  - 30, such a change is not observed for the corresponding range of \zeta 
analyzed.

If we now consider a large difference in the node degrees, e.g., ki - kj = 100, and the same
range of change for the difference in the number of triangles, e.g.,  - 100 \leq \Delta \leq 100, we do
not observe any variation in the ranking of pairs of nodes as can be seen in Figure 16(a). In
this case the range of \Delta must be increased dramatically to obtain inversions in the ranking of
pairs of nodes (see Figure 16(b)).

To illustrate how well the estimate (7.6) performs, we use it for approximating the inter-
lacement point for several pairs of corporates and compare them with the observed values in
Table 2 for the weighted version of the U.S. corporate network.

A few more general considerations on the validity of the power series truncation heuristic
can be made. The size of the interval containing any interlacing points is dictated to a large
extent by how quickly the rankings based on the measures Ci(\zeta ) (or \~Ci(\zeta )) stabilize near the
rankings obtained using eigenvector centrality. This, in turn, depends on the spectral gap
\lambda 1  - \lambda 2: the larger the gap, the faster the eigenvector centrality rankings are approached for
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Figure 15. (a) Illustration of the change in the difference in the risk-dependent centrality of nodes having
a small difference in degrees, ki  - kj = 2, as a function of the difference in the number of triangles, ti  - tj,
and of the network infectivity risk \zeta . (b) Some of the curves obtained for ki  - kj = 2 and a given value of
\Delta = ti  - tj as a function of \zeta .
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Figure 16. Illustration of the change in the difference in the risk-dependent centrality of nodes having a
small difference in degrees, ki  - kj = 100, as a function of the difference in the number of triangles,  - 100 \leq 
\Delta \leq 100 (a) and  - 5000 \leq \Delta \leq 5000 (b), and of the network infectivity (risk) \zeta .

increasing values of \zeta . Hence, in the case of relatively large gaps, we expect any interlacing
values to occur for fairly small values of \zeta . In this case, the heuristics based on polynomial
approximations may be justified, since interlacing is likely to occur already for small values of
\zeta . As is well known, however, it is not easy to determine when the spectral gap is ``sufficiently
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Table 2
Calculation of the crossing point of ranking interlacement for several pairs of corporates in the U.S. cor-

porates network of 1999 as well as the observed values at which such interlacements occur.

Plot Corporate 1 Corporate 2 \zeta \ast calculated \zeta \ast observed

(a) J.P. Morgan\&Co Inc. Bank of America Corp. 0.375 0.37

(b) Pfizer Inc. Ashland Inc. 0.441 0.41

(c) Morgan Stanley \& Co. Bank One Corp. 0.176 0.17

(d) AT\&T Corp. Airtouch Communications 0.273 0.27

(e) Union Carbide Corp. New AON Corp. 0.353 0.32

(f) General Motors Corp. Boeing Co. 0.214 0.14

large."" On the other hand, when the spectral gap is tiny, the interval [0, \=\zeta ] is going to be
larger, and therefore there is ``more room"" for the occurrence of interlacing. Unfortunately, in
this case it is not clear that polynomial truncation will be effective in approximately locating
the interlacing points. In this case, a possible solution is to expand the functions Ci(\zeta ) not
only around the value \zeta = 0 but also around a few values \zeta 0 > 0. This strategy can also be
used to find a possible second point of interlacing after having found a first such point \zeta \ast .
Expanding around \zeta \ast leads to

\Psi (\zeta \ast + \eta ) = Ci(\zeta 
\ast + \eta ) - Cj(\zeta 

\ast + \eta )

=
1

2!
(w

(2)
i,i  - w

(2)
j,j )\eta 

2 +
1

3!
(w

(3)
i,i  - w

(3)
j,j )\eta 

3 + \cdot \cdot \cdot + 1

k!
(w

(k)
i,i  - w

(k)
j,j )\eta 

k +O(\eta k+1).

Dividing by \eta 2 and setting the result equal to zero leads to an algebraic equation of degree k - 2
for \eta ; the smallest positive root \eta \ast of this equation, if there are any, leads to the approximation
\zeta \ast + \eta \ast for the next interlacing point, and so forth.

Completely analogous considerations apply to the approximation of interlacing points
when the ranking of nodes is done according to the risk-based total communicability measure
Ri(\zeta ). In this case the transcendental equation to be solved is given by

\chi (\zeta ) = Ri(\zeta ) - Rj(\zeta ) =
n\sum 

k=1

e\zeta \lambda k

\Bigl( 
\psi T
k
\vec{}1
\Bigr) 
[\psi k,i  - \psi k,j ] = 0.

Let w
(k)
i = (Ak\vec{}1)i. Then, truncating the series expansion (7.1) and dividing by \zeta > 0 leads

to the approximation

(7.7)
(w

(k)
i  - w

(k)
j )

k!
\zeta k - 1 + \cdot \cdot \cdot +

(w
(2)
i  - w

(2)
j )

2!
\zeta + (w

(2)
i,i  - w

(2)
j,j ) = 0

for the equation whose smallest positive solution approximates the first interlacement value for
the rankings of nodes i and j, assuming it exists; here again k \geq k0, where now k0 \geq 2 is the

smallest integer value for which the sequence \{ w(k)
i  - w(k)

i \} k changes sign. The simplest possible

case is when k = k0 = 2, which occurs when w
(2)
i,i  - w

(2)
j,j and w

(2)
i  - w

(2)
j = (A2\vec{}1)i  - (A2\vec{}1)j

have different sign. In this case (7.7) reduces to the linear equation

(w
(2)
i  - w

(2)
j )

2
\zeta + (w

(2)
i,i  - w

(2)
j,j ) = 0,
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with the unique root

\zeta \ast = 2
w

(2)
i,i  - w

(2)
j,j

w
(2)
j  - w

(2)
i

> 0.

8. Risk prediction and COVID-19. Since we submitted the first versions of this work,
a pandemic has been expanding from the city of Wuhan, in the Hubei province of China
[83, 84], starting in December 2019. This disease is produced by a new coronavirus named
SARS-CoV-2 [45] and has affected in about three months more than 200 countries around
the world. The main problem right now is of a medical nature, but as stated by Baldwin
and Weder di Mauro this coronavirus is ``as contagious economically as it is medically"" [4].
One of the most important characteristics of this pandemic in comparison with recent ones
is that it is hitting very strongly the most important economies in the world: China, USA,
Germany, Italy, and Spain. There are some preliminary studies about the macroeconomic
impacts of this pandemic (see, for instance, [4]). However, it is important to apply mathemat-
ical and computational techniques to forecast, at regional, national, and international levels,
the impact of this crisis on financial institutions, corporations, and small companies. All of
them are highly interconnected in a globally dependent economy, forming series of complex
networks. In this new scenario the current work represents an opportunity for modelers to
advance predictions on the potential risks different institutions are subject to in the current
situation. This modeling scenario consists of the networks of interactions between the institu-
tions under analysis assuming a high infectability in the network. Using the transmissibility
and circulability measures defined here, the modeler can understand how at risk of transmit-
ting the crisis to others or, respectively, of staying in a cycle of repeated economic difficulties,
a company is. At the same time, the current work allows modeling of how different palliative
measures taken by regional or global financial institutions in the European Union, USA, or
China can impact these companies. In this case, the modeler should drop the infectivity of
the system and analyze how the ranking of risk for the different companies changes to gain
insights about their potential recovery or bankruptcy.

9. Conclusions. In general, node centrality in networks is of either of two types: (i) node
centrality in networks of time-invariant topology [29], or (ii) node centrality in networks of
time-dependent topology (a.k.a. temporal networks) [49]. In this work we have developed
a new concept of node centrality, depending on both the topology of the network and the
external conditions to which the network as a whole is subjected. In particular, we have
focused on global risk as the external factor by which an economic and financial network is
affected. We started by considering the ``Susceptible-Infected"" model and its connection to
the communicability functions of nodes and edges in a network. Then, we developed a few
centrality measures which depend not only on the local and global topological environment
of a node but also on the level of infectivity stressing the system as a whole. In this way we
have been able to make predictions in financial and economic systems about the changes in
the risk-dependent centralities of nodes as a function of the global level of infectivity in the
system. We observe that without altering the topology of the network, i.e., without varying
any connection between the nodes, the ranking of the nodes, according to these new centrality
measures, changes significantly as the infectivity rate changes. In the real-world networks
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studied here we have been able to associate those changes in the risk-dependent centrality
of nodes with events of the real financial and economic worlds in which these networks are
embedded. In closing, we provide here theoretical, computational, and empirical evidence
that the node centrality is not a static function even when the topology of the system is not
varying at all. This new paradigm is expected to play a fundamental role in assessing the
robustness of financial and economic systems to the variation of the external conditions which
they are subjected to.

Appendix A. Risk-dependent centrality measures for complete graphs. The following
theorem provides a close expression for Ri, Ci, and Ti for a complete network.

Theorem A.1. The risk-dependency Ri for each node in a complete graph is given by

Ri = e(n - 1)\zeta ,

and the circulability and transmissibility are given by

Ci(\zeta ) =
n - 1

n

\Biggl[ 
e(n - 1)\zeta 

n - 1
+

1

e\zeta 

\Biggr] 
, Ti(\zeta ) =

n - 1

n

\biggl[ 
e(n - 1)\zeta  - 1

e\zeta 

\biggr] 
.

Proof. For a complete graph, \psi T
j \cdot \vec{}1 = 0, j \not = 1, because of the mutual orthogonality

between \psi j , j \not = 1, and the principal eigenvector \psi 1 of constant components. That is, Ri is
completely determined by the eigenvector centralities \psi 1,i, which of course are equal for every
node and equal to \psi 1,i =

1\surd 
n
. Since \lambda 1 = n - 1, we obtain

Ri = e\zeta \lambda 1

\Bigl( 
\psi T
1 \cdot \vec{}1

\Bigr) 
\psi 1,i + 0 = e(n - 1)\zeta 

\biggl( 
1\surd 
n
\cdot n

\biggr) 
1\surd 
n
= e(n - 1)\zeta .

Subgraph centrality close expression for a complete graph is provided in [32]:

Ci(1) = SC(i) =
1

n

\biggl[ 
en - 1 +

n - 1

e

\biggr] 
.

Multiplying each entry in A by \zeta and summing up the power series, we get

Ci(\zeta ) =
n - 1

n

\Biggl[ 
e(n - 1)\zeta 

n - 1
+

1

e\zeta 

\Biggr] 
.

By difference, we get Ti(\zeta ).

An important remark concerns the ratio Ci
Ri

. Indeed,

(A.1) lim
\zeta \rightarrow +\infty 

Ci

Ri
= lim

\zeta \rightarrow +\infty 

n - 1
n

\Bigl[ 
e(n - 1)\zeta 

n - 1 + 1
e\zeta 

\Bigr] 
e(n - 1)\zeta 

= lim
\zeta \rightarrow +\infty 

\biggl[ 
1

n
+
n - 1

n

1

en\zeta 

\biggr] 
=

1

n
.

Similarly,

lim
\zeta \rightarrow +\infty 

Ci

Ti
=

e(n - 1)\zeta 

n - 1 + 1
e\zeta 

e(n - 1)\zeta  - 1
e\zeta 

=
1

n - 1
.
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