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PERFORMANCE AND STABILITY OF DIRECT METHODS FOR COMPUTING
GENERALIZED INVERSES OF THE GRAPH LAPLACIAN∗

MICHELE BENZI†, PARASKEVI FIKA†, AND MARILENA MITROULI‡

Abstract. We consider the computation of generalized inverses of the graph Laplacian for both undirected and
directed graphs, with a focus on the group inverse and the closely related absorption inverse. These generalized
inverses encode valuable information about the underlying graph as well as the regular Markov process generated
by the graph Laplacian. In [Benzi et al., Linear Algebra Appl., 574 (2019), pp. 123–152], both direct and iterative
numerical methods have been developed for the efficient computation of the absorption inverse and related quantities.
In this work, we present two direct algorithms for the computation of the group inverse and the absorption inverse.
The first is based on the Gauss-Jordan elimination and the reduced row echelon form of the Laplacian matrix and the
second on the bottleneck matrix, the inverse of a submatrix of the Laplacian matrix. These algorithms can be faster
than the direct algorithms proposed in [Benzi et al., Linear Algebra Appl., 574 (2019), pp. 123–152].
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1. Introduction. Let us consider a weighted simple graph G = (V,E,w), directed or
undirected, and let A ∈ Rn×n be the adjacency matrix associated with G, whose non-zero
entries aij correspond to the weight of the edge from node j to node i, i 6= j. We caution the
reader that the convention “aij 6= 0 if there is an edge from node j to node i” differs from
that adopted in most papers and books on graph theory. Here we adopt this convention in
order to be consistent with the notation used in [5] and [18], on which this paper builds. The
convention implies that for, any graph, L has zero column sums.

We assume that all weights are positive and therefore aij ≥ 0. Also, aii = 0 since the
graph contains no loops. We consider the associated outdegree Laplacian matrix L ∈ Rn×n
specified as L = W − A, where the matrix W ∈ Rn×n is diagonal with each entry wii
given by the sum of outgoing weights from the node i, i.e., wii =

∑n
j=1 aji; the weighted

outdegree. We consider also the normalized Laplacian matrix L̃ ∈ Rn×n which is given by
L̃ = (W − A)W−1 = In − AW−1. Note that both L and L̃ are singular M-matrices. We
mention in passing that other definitions of graph Laplacians can be found in the literature;
see, e.g., [8, 9].

It holds rank(L) = rank(L̃) ≤ n−1 and equality holds if the graph is strongly connected.
When rank(L) = n − 1, the null space of L is spanned by a unique positive vector. The
algorithms in this paper apply to strongly connected graphs, corresponding to the case where
the adjacency matrix (and thus the Laplacian) is irreducible. In the general case, there exists a
permutation matrix P such that

L = P

[
L11 L12

0 L22

]
PT ,

where L11 is block triangular with irreducible, invertible diagonal blocks while L22 is block
diagonal with irreducible, singular blocks. The block L11 (and therefore L12) may be absent,
for instance if the graph is strongly connected or undirected. As described for example in [7,
Theorem 7.7.3], the group inverse of L (see the definition below) exists, and can be obtained
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from the inverse of L11, from L12, and from the group inverses of the diagonal blocks of L22.
Therefore, in what follows we assume that G is strongly connected. For an undirected graph,
this means that G is connected.

Both L and L̃ are column diagonally dominant matrices. More specifically, from the
definition of L, it holds ljj =

∑n
k=1 akj > 0 and lij = −aij for i 6= j, which implies

ljj =
∑n
k=1 akj =

∑n
k=1,k 6=j |lkj |. Similarly, from the definition of L̃ it holds l̃jj = 1 and

l̃ij =
−aij∑n
k=1 akj

for i 6= j, which implies
∑n
i=1,i6=j |l̃ij | =

∑n
i=1 aij∑n
k=1 akj

= 1 = l̃jj . The group

generalized inverse of a square matrix A of index one is the unique matrix A# such that
AA#A = A, A#AA# = A#, and AA# = A#A [7]. The group inverse of the Laplacian
matrix encodes valuable information about the graph such as the distance in weighted trees
[20], as well as the regular Markov process generated by the graph Laplacian. In particular,
for a regular Markov process the ijth entry of L# can be interpreted as the deviation from the
expected time spent in vertex i due to starting from vertex j [18].

Let us now consider a graph G = (V,E,w), directed or undirected, with a notion of
absorption on its nodes, i.e., each node of the graph represents a transient state in a Markov
process, and assume that each transient state comes with a transition rate di > 0 to an
absorbing state, labeled n + 1 if n is the number of nodes in G. If we consider a vector
d = [d1, d2, . . . , dn]T with the absorption rates as entries, a graph with absorption is denoted
as the pair (G, d). Such graphs arise naturally in many applications, for example in the
modeling of disease spreading in community networks [26]. Further discussion on absorption
graphs and useful properties can be found in [18].

We consider a generalized inverse of the graph LaplacianL, denoted asLd, first introduced
in [18], which captures much valuable information about transient random walks on the
graph by combining the known node absorption rates di with the structural properties of the
underlying graph G encoded in the Laplacian matrix L.

We recall that a matrix X− is said to be a {1}-inverse of a matrix X if it satisfies the
condition XX−X = X. If X− satisfies additionally the condition X−XX− = X− then it is
called a {1, 2}-inverse of the matrix X [7].

The matrix Ld is a {1, 2}-inverse X of L which satisfies the conditions

XLy = y, for y ∈ N1,0, and
Xy = 0, for y ∈ R1,0,

where

N1,0 = {x ∈ Rn : Dx ∈ Range(L)},
R1,0 = {Dx : x ∈ Ker(L)},

and D is the diagonal matrix with the absorption rates d1, d2, . . . , dn as entries. This general-
ized inverse is called the absorption inverse of L with respect to d. It was proved in [18] that
for strongly connected graphs with positive absorption vector d the absorption inverse exists
and is unique. In fact, the absorption inverse can be considered as a generalization of the group
inverse for graphs with absorption. It is of interest to compute the absorption inverse Ld, which
provides a wealth of information on the structure of the underlying graph. For instance, the
absorption inverse can be used to define a notion of distance for graph partitioning purposes,
and provides centrality measures for ranking the nodes in an absorption graph [5, 18].

In [5] we addressed the efficient computation of the absorption inverse and of useful
quantities related to it such as its action on a vector, its entries, and centrality measures
associated with it. We also addressed other computational aspects including the problem of
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how to perform cheap updates of the quantities of interest when the underlying absorption
graph undergoes a low-rank modification such as the addition/deletion of an edge. We
considered direct and iterative numerical methods for the computation of the absorption
inverse and related quantities; the direct algorithms employ the LU decomposition of the graph
Laplacian and the iterative ones utilize the preconditioned conjugate gradient method or the
preconditioned GMRES method.

In this work we revisit the direct computation of the absorption and group inverse matrices
and study an alternative computational method that uses the reduced row echelon form of
the Laplacian matrix L instead of its LU decomposition, employing a modified form of the
Gauss-Jordan method. Moreover, we propose an additional approach that is based on the
bottleneck matrix of the graph Laplacian; see Section 3. These approaches can be faster
in some “difficult” cases where the direct algorithm proposed in [5] becomes slow, such
as networks whose adjacency matrix is relatively dense. Furthermore, we present an error
analysis of our variant of the Gauss-Jordan algorithm for Laplacian matrices.

We mention that a survey of a variety of computational procedures for finding the mean
first passage times in Markov chains is presented in [17], from which the corresponding group
inverse can be computed; cf., for instance, [17, Proc. 5, Proc. 11].

A variety of numerical methods for the computation of the group inverse for singular
M-matrices, and therefore for Laplacian matrices, have been proposed in the literature and are
surveyed in [19]. Most of them can be classified in the following categories: Cholesky-based
methods in the symmetric case, techniques based on the QR factorization, and some other
methods based on LU and Gauss-Jordan algorithms. Not all of these methods are guaranteed
to yield accurate results; see [4] for examples on which methods based on the QR and LU
factorization produce inaccurate solutions. We note that some of these methods proceed by
computing the bottleneck matrix of the Laplacian; we also consider such an approach in this
paper. For all of these methods, the dominant term of their complexity is of order O(n3) for
dense n × n matrices and is similar to the complexity of the algorithms investigated here.
In this work we include additionally a treatment of numerical stability issues and present a
detailed forward error analysis based on Wilkinson’s approach [28].

Throughout the manuscript, the superscript T denotes the transpose and In stands for the
identity matrix of dimension n. We denote by 1 and 0 the column vectors of length n of all
ones and of all zeros, respectively. The m× n matrix with all zeros is denoted by 0m,n. In
the floating point analysis, fl(x) denotes the floating point representation of a real number
x, t and β are the number of significant digits and the base of the floating point arithmetic
respectively, u = 1

2β
1−t is the unit round off error, t1 = t− logβ(1.01), and u1 = 1

2β
1−t1 .

2. Gauss-Jordan-based algorithms.

2.1. Preliminaries. For the group inverse matrix it holds [4, Proposition 2]

(2.1) L# = (In − v1T )Y (In − v1T ),

where Y is any {1}-inverse of the Laplacian matrix L and v is a positive vector in Ker(L)
with

∑n
i=1 vi = 1. With L# as in (2.1) it can be easily seen that LL#L = L, L#LL# = L#,

and LL# = L#L. For the absorption inverse matrix it holds [18, Theorem 3]

(2.2) Ld = (In − V D)Y (In −DV ),

where Y is any {1}-inverse of the Laplacian matrix L, V = v1T /d̃, and d̃ = dT v. Of
course, since L# and Ld are unique, they do not depend on the choice of the {1}-inverse Y in
formulae (2.1) and (2.2), which form the basis for computational methods for the group and
the absorption generalized inverses.
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In [5], the generalized inverse L− obtained by means of the LDU factorization is assumed
as Y in formula (2.2). In particular, let us consider the triangular factorization

L = LDU ,

where L and U are unit lower and upper triangular matrices, respectively, and D is a diagonal
matrix of the form D = diag(δ1, δ2, . . . , δn−1, 0), with δi > 0 for 1 ≤ i ≤ n − 1. For
undirected graphs, L = LT and thus U = LT .We further note that any symmetric permutation
PLPT (with P a permutation matrix) admits a similar factorization.

Then, the following {1, 2}-inverse of L is taken as Y in (2.2):

L− = U−1D−L−1,

where D− = diag(δ−11 , δ−12 , . . . , δ−1n−1, 0). Concerning the computation of a normalized
vector v in the kernel of the Laplacian matrix, which is required in formula (2.2), we have
v = (1/n)1 ∈ Ker(L) if the graph is balanced (for each node in the graph the indegree
coincides with the outdegree) since in this case L1 = 0. In case of unbalanced graphs,
when looking for a nonzero solution to Lv = 0, we factor L (or, in practice, a symmetric
permutation PLPT of it) as L = LDU and solve the equivalent system DUv = 0. Since the
last equation of this system is the identity 0 = 0, this is actually an underdetermined system
of n − 1 linear equations in n unknowns. Fixing the value of vn = 1 yields the equivalent
upper triangular system Uv = en which is easily solved by backsubstitution. Since U−1 is a
nonnegative matrix, so is v. Normalization of v in the 1-norm produces the desired vector in
Ker(L). In what follows, we will refer to the method described above (cf. [5, Algorithm 1])
as the LDU-Ld Algorithm.

2.2. The Gauss-Jordan algorithm for computing a {1}-inverse. In this section, we
study an alternative way for obtaining a generalized inverse Y in formulae (2.2) and (2.1) by
considering the Gauss-Jordan elimination of the graph Laplacian L applied to the augmented
matrix [L In]. The employment of the Gauss-Jordan algorithm for the computation of general-
ized inverses has been also studied in [7, Ch.12], [27, Ch.5]; see also [2, 21, 22] and references
therein. We have the following result.

PROPOSITION 2.1. Let L ∈ Rn×n be the Laplacian matrix. By applying row operations
to the augmented matrix [L In] we obtain the form [R F ], where R ∈ Rn×n is the reduced
row echelon form of the Laplacian matrix which is partitioned as

R =

[
In−1 u
0T 0

]
,

u ∈ Rn. Furthermore, it holds that [−uT , 1]T ∈ Ker(L) and F is a {1}-inverse of L.
Proof. Let v be the unique positive vector in the null space of L with entries adding up

to 1, i.e., Lv = 0, and let R be the reduced row echelon form of the Laplacian matrix L.
Therefore Rv = 0, which implies


v1
v2
...

vn−1

 = −vn


u1
u2
...

un−1

 and hence


v1
v2
...

vn−1
vn

 = vn


−u1
−u2

...
−un−1

1

 .

Thus [−uT , 1]T ∈ Ker(L), and its normalization in the 1-norm gives the desired vector
v ∈ Ker(L) with the normalization factor vn.
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Performing row operations on [L In], we obtain the equivalent form [R F ]. Therefore
it is FL = R which implies LFL = LR. It holds LR = L as we see below. Suppose the
Laplacian matrix L is partitioned as

L =

[
Ln−1 z
wT ln,n

]
,

where Ln−1 is (n− 1)× (n− 1). Thus

LR =

[
Ln−1 Ln−1u
wT wTu

]
.

Furthermore, since [−uT , 1]T ∈ Ker(L), it holds

L

[
−u
1

]
=

[
Ln−1 z
wT ln,n

] [
−u
1

]
=

[
0
0

]
and hence Ln−1u = z. Moreover, from the (unique) block LU factorization of L,

L =

[
Ln−1 z
wT ln,n

]
=

[
In−1 0n−1,1

wTL−1n−1 1

] [
Ln−1 z
01,n−1 0

]
,

we obtain ln,n = wTL−1n−1z, i.e., ln,n = wTu. Therefore, we have

LR =

[
Ln−1 Ln−1u
wT wTu

]
=

[
Ln−1 z
wT ln,n

]
= L.

Then, since LR = L, we have LFL = L and hence the matrix F is a {1}-inverse of L.
REMARK 2.2. The same result holds if we consider the normalized Laplacian L̃ instead

of L as defined in Section 1. In what follows in this section, we refer to L as either of the
Laplacian matrices L or L̃.

2.3. The algorithms. Let us consider a column diagonally dominant M-matrix L = [lij ],
with lij ≤ 0 if i 6= j and lii > 0 where lii =

∑n
k=1,k 6=i |lki|. We apply the Gauss-Jordan

elimination process to this matrix and observe that the multipliers mik =
l
(k)
ik

l
(k)
kk

≤ 0, since l(k)ik

is negative and l(k)kk is positive. Also, for i 6= j, the relation l(k+1)
ij = l

(k)
ij −mikl

(k)
kj implies

that the element l(k+1)
ij remains negative as addition of negative quantities. Furthermore, if

l
(k)
ij is the element lij at step k then l(k+1)

ij ≤ l(k)ij for i 6= j.
Because the property “the active (n− k)× (n− k) submatrix is an M-matrix with zero

column sums” is preserved at each step of the row reduction process, for the diagonal elements
we can compute the ith pivot as l(k+1)

ii = −
∑n
t=k+1,t6=i l

(k+1)
ti , i = k + 1, . . . , n, adding in

this way only numbers with the same sign (cf. [24]), which leads to a stable computation as
proved in Section 2.5. This way of computing the diagonal elements is the one used in the
well-known GTH algorithm [15].

The Laplacian matrix L possesses the property that no row interchanges are necessary at
any step during the Gauss-Jordan elimination process. This is again due to the fact that at each
step k of the process, the property of being an M-matrix with zero column sums is preserved
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in the active (n− k)× (n− k) submatrix. Indeed, in the first n− 1 steps no pivots become
zero and thus we conclude that pivoting is not needed. Next, the steps of the algorithms for
computing the matrices L# and Ld are presented. In what follows, the augmented matrix
B = [L In] is overwritten with the row transformed matrix [R F ].

Algorithm 1: Gauss-Jordan - L#.

Input: L ∈ Rn×n, a Laplacian matrix.
Output: L#.

Set B = [L In], the augmented matrix.
For k = 1 : n− 1
mik = bik/bkk, i = 1, . . . , n, i 6= k.
bij = bij −mikbkj , i = 1, . . . , n, i 6= k, j = k, . . . , n+ k, i 6= j.
bii = −

∑n
t=k+1,t6=i bti, i = k + 1, . . . , n.

bkj = bkj/bkk, j = k, . . . , n+ k.
end
F = B(1 : n, n+ 1 : 2n), a generalized inverse of the graph Laplacian.
v1 = [B(1 : n− 1, n); 1], a vector in Ker(L).
Set v = v1/‖v1‖1.
Compute Y1 = v1TF, Y2 = Fv1T , and Y3 = Y1v1

T .

L# = F − Y1 − Y2 + Y3, the group inverse of L.

Algorithm 2: Gauss-Jordan - Ld.
Input: L ∈ Rn×n, a Laplacian matrix and d ∈ Rn, a vector of absorption rates.
Output: Ld.

Set B = [L In], the augmented matrix.
For k = 1 : n− 1
mik = bik/bkk, i = 1, . . . , n, i 6= k.
bij = bij −mikbkj , i = 1, . . . , n, i 6= k, j = k, . . . , n+ k, i 6= j.
bii = −

∑n
t=k+1,t6=i bti, i = k + 1, . . . , n.

bkj = bkj/bkk, j = k, . . . , n+ k.
end
F = B(1 : n, n+ 1 : 2n), a generalized inverse of the graph Laplacian.
v1 = [B(1 : n− 1, n); 1], a vector in Ker(L).
Set v = v1/‖v1‖1.
Compute d̃ = dT v, V = v1T /d̃, D = diag(d),
Y1 = V DF, Y2 = FDV , and Y3 = Y1DV.

Ld = F − Y1 − Y2 + Y3, the absorption inverse of L.

2.4. The implementation of the algorithms and computational complexity. Algo-
rithms 1 and 2 are implemented in MATLAB. The part of the algorithms concerning the
Gauss-Jordan elimination is implemented in binary format, using LAPACK routines from
Intel’s MKL, because the internal function rref of MATLAB is quite slow. The matrices V
and D in Algorithm 2 are not formed explicitly and the computations are done by performing
successive matrix-vector products and diagonal scalings as follows, where .∗ stands for the
element-wise multiplication.

1. Let F and v be the quantities as described in Algorithm 2.
2. Set Dv = d. ∗ v, d̃ = dT ∗ v, and Y2 = (F ∗Dv) ∗ 1T /d̃.
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3. Evaluate the quantities Ỹ2 = dT ∗ Y2 and Y3 = v ∗ Ỹ2/d̃.
4. Obtain the quantities Ỹ1 = dT ∗ F and Y1 = v ∗ Ỹ1/d̃.
5. Set Ld = F − Y1 − Y2 + Y3, the absorption inverse.

It is worth observing that the computations bij = bij − mikbkj , i = 1, . . . , n, i 6= k,
i 6= j, j ≥ k, needed to update the entries of the n× 2n augmented matrix, can be limited to
j = 1, . . . , n+ k instead of j = 1, . . . , 2n, resulting in a lower computational complexity.

The main computational task of Algorithms 1 and 2 is governed by the Gauss-Jordan
elimination of L ∈ Rn×n applied to the augmented matrix [L In]. This computation requires
n− 1 flops for the multipliers, (n− 1)(n+ 1)− (n− k) for the update of the nondiagonal
elements of the matrix, (n− k)(n− k − 1) for the separate update of the diagonal elements,
and finally (n+ 1) flops for the division of the pivot row by the pivot element. Thus, the total
complexity is

∑n−1
k=1{(n−1)+(n−1)(n+1)−(n−k)+(n−k−1)(n−k)+(n+1)} flops.

The dominant term in this summation is 4n3/3, therefore O(4n3/3) arithmetic operations
are required. For the evaluation of the remaining part of the algorithm, i.e., steps 2-4, O(n2)
arithmetic operations are required.

REMARK 2.3. We remark that performing the computation of the diagonal (pivot) terms
as described leads to a slight increase of the computational complexity of the algorithm, from
O(n3) toO

(
4
3n

3
)
. However, this ensures that the subtraction of almost equal terms is avoided

and yields highly accurate results.

2.5. Numerical stability. In this section we will discuss the stability of the proposed
algorithms. We will focus on the stability of the Gauss-Jordan process applied to the Laplacian
matrixL,which is a singular M-matrix [6]. We recall (see [12]) that in the Gaussian elimination
of an irreducible M-matrix, singular or nonsingular, no pivoting is necessary.

Concerning the stability of the Gauss-Jordan approach, in [16, Corollary 14.7] it is proved
that for row diagonally dominant matrices the Gauss-Jordan elimination without pivoting
is both forward stable and row-wise backward stable. Concerning the column diagonally
dominant matrices, which is our case, the Gauss-Jordan reduction for these matrices is forward
stable but in general not backward stable [23].

REMARK 2.4. We note that by applying the Gauss-Jordan approach to LT , which is row
diagonally dominant with row sums equal to zero, the backward stability is preserved. However,
in this case the Algorithms 1 and 2 must be modified. In particular, setting B̂ = [LT In] and
applying the Gauss-Jordan reduction to the augmented matrix B̂, we obtain a generalized
inverse of L by computing B̂(1 : n, n + 1 : 2n)T . A vector in Ker(L) is then given by
B̂(n, n+ 1 : 2n)T .

Next, we study the forward error analysis of the Gauss-Jordan elimination for Laplacian
matrices as presented in Algorithms 1 and 2. We adopt the forward error analysis approach as
it was introduced by Wilkinson in [28].

The following floating point computations fl(·) are performed:

For k = 1 : n− 1
mik = fl(bik/bkk), i = 1, . . . , n, i 6= k.
bij = fl(bij −mikbkj), i = 1, . . . , n, i 6= k i 6= j, j = k, . . . , n+ k.
bii = −fl(

∑n
t=k+1,t6=i bti), i = k + 1, . . . , n.

end

At step k of the algorithm, the matrix B(k) will have elements b(k)ij . In floating point
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arithmetic with unit round off u, the elements b(k+1)
ij are specified from the relations

mik = fl(b
(k)
ik /b

(k)
kk ), i = 1, . . . , n, i 6= k,

b
(k+1)
ij =


0 i = 1, . . . , n, i 6= k, j = k,

fl(b
(k)
ij −mikb

(k)
kj ) i = 1, . . . , n, i 6= k, i 6= j, j = k, . . . , n+ k,

−fl(
∑n
t=k+1,t6=i b

(k+1)
ti ) i = k + 1, . . . , n, j = i,

b
(k)
ij elsewhere.

THEOREM 2.5 (Forward stability). At step k of the row transformation process, the matrix
B̃(k) computed using floating point arithmetic with unit round off u satisfies the relation

B̃(k) = B(k) + E(k),

where E(k) is the error matrix with ‖E(k)‖1 ≤ (n − 1)u1‖B(k)‖1, u1 = 1.01u. Therefore,
the normwise relative error bound

Rel =
‖B̃(k) −B(k)‖1
‖B(k)‖1

≤ (n− 1)u1

holds. Thus, each step of the process is forward stable.
Proof. Assume the first k steps of the algorithm have been completed. Firstly, for the

multiplier mik we have mik = fl(b
(k)
ik /b

(k)
kk ) = (b

(k)
ik /b

(k)
kk )(1 + ε), |ε| ≤ u, which implies

mikb
(k)
kk = b

(k)
ik + b

(k)
ik ε. Therefore, ε(k)ik = b

(k)
ik ε is the error due to the multiplier, and

b
(k+1)
ij = fl(b

(k)
ij − fl(mikb

(k)
kj ))

= fl(b
(k)
ij −mikb

(k)
kj (1 + ε)(1 + ε1))

= (b
(k)
ij −mikb

(k)
kj (1 + ε)(1 + ε1))(1 + ε2), |ε1| ≤ u, |ε2| ≤ u.

Set (1 + ε)(1 + ε1)(1 + ε2) = 1 + ξ1, |ξ1| ≤ 3u1, u1 = 1.01u. Then

b
(k+1)
ij = b

(k)
ij (1 + ε2)−mikb

(k)
kj (1 + ξ1).

Therefore,

b
(k+1)
ij = b

(k)
ij −mikb

(k)
kj + b

(k)
ij ε2 −mikb

(k)
kj ξ1

and thus the errors at the generic step k satisfy

E
(k)
ij = b

(k)
ij ε2 −mikb

(k)
kj ξ1, |ε2| ≤ u, |ξ1| ≤ 3u1.

For i = j, i = k + 1, . . . , n the diagonal entries b(k+1)
ii are computed as off-diagonal column

sums b(k+1)
ii = −fl(

∑n
t=k+1,t6=i b

(k+1)
ti ). In particular, we have

b
(k+1)
ii = −

n∑
t=k+1,t6=i

b
(k+1)
ti (1 + ηt),
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where (1− u)n+1−t ≤ 1 + ηt ≤ (1 + u)n+1−t, which is replaced by |ηt| ≤ (n+ 1− t)u1,
u1 = 1.01u. Hence∣∣∣∣∣∣fl

 n∑
t=k+1,t6=i

b
(k+1)
ti

− n∑
t=k+1,t6=i

b
(k+1)
ti

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

t=k+1,t6=i

b
(k+1)
ti (1 + ηt)−

n∑
t=k+1,t6=i

b
(k+1)
ti

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

t=k+1,t6=i

b
(k+1)
ti ηt

∣∣∣∣∣∣ .
Therefore,

E
(k)
ii =

n∑
t=k+1,t6=i

b
(k+1)
ti ηt, |ηt| ≤ (n+ 1− t)u1 ≤ (n− k)u1 ≤ (n− 1)u1.

Thus, we see that after step k of the elimination procedure we have computed

B̃(k) = B(k) + E(k),

where for the error matrix E(k) it is

E
(k)
ij =


b
(k)
ij ε2 −mikb

(k)
kj ξ1 i = 1, . . . , n, i 6= k, i 6= j, j = k, . . . , n+ k,∑n

t=k+1,t6=i b
(k)
ti ηt i = k + 1, . . . , n, j = i,

0 elsewhere.

Setting δ = max{ηt, ξ1, ε2} we have |δ| ≤ (n− 1)u1 for n ≥ 4, and for the error matrix E(k)

we obtain

‖E(k)‖1 ≤ ‖B(k)‖1|δ| ≤ ‖B(k)‖1(n− 1)u1.

For the relative error it holds

Rel =
‖B̃(k) −B(k)‖1
‖B(k)‖1

=
‖E(k)‖1
‖B(k)‖1

≤ (n− 1)u1‖B(k)‖1
‖B(k)‖1

= (n− 1)u1.

In the case n ≤ 3 we have |δ| ≤ 3u1. Therefore the bound for ‖E(k)‖1 takes the form
‖E(k)‖1 ≤ ‖B(k)‖13u1 and the relative error satisfies Rel = ‖E(k)‖1/‖B(k)‖1 ≤ 3u1. As
the upper bound for the relative error depends linearly on n, each step is forward stable.

Next, we demonstrate an element-wise forward error analysis for each entry of the
computed matrix B(k), which reveals why the diagonal elements of the matrix must be
computed as off-diagonal column sums b(k+1)

ii = −fl(
∑n
t=k+1,t6=i b

(k+1)
ti ), i = k+ 1, . . . , n.

COROLLARY 2.6. The relative error for b(k+1)
ij = fl(b

(k+1)
ij − mikb

(k+1)
kj ), i 6= j,

computed using floating point arithmetic with unit round off u, is bounded by

Rel ≤ 4u1, u1 = 1.01u.

Proof. We have (cf. Theorem 2.5)

b
(k+1)
ij = fl(b

(k)
ij −mikb

(k)
kj ) = b

(k)
ij (1 + ε2)−mikb

(k)
kj (1 + ξ1)
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with |ε2| ≤ u, |ξ1| ≤ 3u1, and u1 = 1.01u. Therefore, for the relative error we have

Rel =
|fl(b(k)ij −mikb

(k)
kj )− (b

(k)
ij −mikb

(k)
kj )|

|b(k)ij −mikb
(k)
kj |

=
|b(k)ij (1 + ε2)−mikb

(k)
kj (1 + ξ1)− (b

(k)
ij −mikb

(k)
kj )|

|b(k)ij −mikb
(k)
kj |

=
|b(k)ij ε2 −mikb

(k)
kj ξ1|

|b(k)ij −mikb
(k)
kj |

≤
|b(k)ij ||ε2|+ |mikb

(k)
kj ||ξ1|

|b(k)ij −mikb
(k)
kj |

≤
|b(k)ij |u+ |mikb

(k)
kj |3u1

|b(k)ij −mikb
(k)
kj |

(2.3)

which can be bounded since b(k)ij and −mikb
(k)
kj have both the same sign for i 6= j and we

avoid the cancellation error. In particular, concerning the left n × n part of the matrix B,
i.e., the matrix L, in a previous discussion we remarked that both b(k)ij and −mikb

(k)
kj are

negative since mik and b(k)kj are both negative quantities. Concerning the right n× n part of
the matrix B, i.e., the identity matrix In, we can see that at each step of the row reduction
process its elements remain positive or zero. For instance, in the first step of the process, we
have that any b(1)ij = bij −mikbkj is nonnegative since −mik is positive and bij , bkj ≥ 0,
i = 1, . . . , n, j = n+1, . . . , 2n. Hence, at any step we will have addition of positive numbers.
Thus, we have

Rel ≤
|b(k)ij |u+ |mikb

(k)
kj |3u1

|b(k)ij −mikb
(k)
kj |

≤ αu+ 3βu1,

where

α =
|b(k)kj |

|b(k)ij −mikb
(k)
kj |
≤ 1 and β =

|mikb
(k)
kj |

|b(k)ij −mikb
(k)
kj |
≤ 1.

Therefore,

Rel ≤ αu+ 3βu1 ≤ 4u1.

REMARK 2.7. From Corollary 2.6 we can see that for i = j the denominator of (2.3) can
take small values since the formula b(k+1)

ii = b
(k)
ii −mikb

(k)
ki involves subtraction of positive

numbers and thus may lead to loss of accuracy due to cancellation of significant digits. In
order to avoid this cancellation error, the update formula b(k+1)

ii = b
(k)
ii − mikb

(k)
ki is not

employed for i = j and the diagonal entries b(k+1)
ii are computed as off-diagonal column

sums as b(k+1)
ii = −fl(

∑n
t=k+1,t6=i b

(k+1)
ti ), i = k + 1, . . . , n. In particular, we have (cf.

Theorem 2.5)

b
(k+1)
ii = −

n∑
t=k+1,t6=i

b
(k+1)
ti (1 + ηt),

where |ηt| ≤ (n+ 1− t)u1, u1 = 1.01u. This formula leads to the following error bound.
COROLLARY 2.8. At step k, the relative error for the computation of

b
(k+1)
ii = −fl(

n∑
t=k+1,t6=i

b
(k+1)
ti ), i = k + 1, . . . , n,
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computed using floating point arithmetic with unit round off u satisfies

Rel ≤ (n− k)u1, u1 = 1.01u.

Proof.

Rel =
|fl(
∑n
t=k+1,t6=i b

(k+1)
ti )−

∑n
t=k+1,t6=i b

(k+1)
ti |

|
∑n
t=k+1,t6=i b

(k+1)
ti |

=
|
∑n
t=k+1,t6=i b

(k+1)
ti (1 + ηt)−

∑n
t=k+1,t6=i b

(k+1)
ti |

|
∑n
t=k+1,t6=i b

(k+1)
ti |

≤ (n− k)u1

∑n
t=k+1,t6=i |b

(k+1)
ti |

|
∑n
t=k+1,t6=i b

(k+1)
ti |

.(2.4)

Therefore, as every b(k+1)
ti is negative,

∑n
t=k+1,t6=i |b

(k+1)
ti |

|
∑n
t=k+1,t6=i b

(k+1)
ti |

= 1, which yields

Rel ≤ (n− k)u1.

REMARK 2.9. We see that formula (2.4) guarantees the stability of the computation of the
diagonal elements, whereas formula (2.3) may lead to numerical instability in case of i = j.

3. The bottleneck approach . In this section, an alternative approach is presented for
the computation of the generalized inverse Y to be used in formulae (2.1) and (2.2). This is
based on the bottleneck matrix of the graph Laplacian as described below; see also [5, 18].

LEMMA 3.1 ([5]). Suppose the Laplacian matrix L is partitioned as

L =

[
Ln−1 z
wT ln,n

]
,

where Ln−1 is (n− 1)× (n− 1). Then

L− =

[
L−1n−1 0n−1,1
01,n−1 0

]

is a {1,2}-inverse of the graph Laplacian L.

REMARK 3.2. The positive matrix L−1n−1 is called the bottleneck matrix of L based at
vertex n in [18, p. 129]; see also [20]. Note that L− coincides with the matrix M in [18,
Proposition 3].
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This approach leads to Algorithm 3 below.

Algorithm 3: Bottleneck Algorithm.
Input: L ∈ Rn×n a Laplacian matrix.
Output: L# or Ld.

Partition L =

[
Ln−1 z
wT ln,n

]
and compute the inverse of Ln−1.

Consider the vector
[
−L−1n−1z

1

]
which gives a vector v ∈ Ker(L), which is then

normalized in 1-norm.

Compute the generalized inverse L− =

[
L−1n−1 0n−1,1
01,n−1 0

]
.

-For the group inverse matrix:
Compute the matrices
Y1 = v1TL−, Y2 = L−v1T , and Y3 = Y1v1

T .
Return L# = L− − Y1 − Y2 + Y3.

-For the absorption inverse matrix:
Compute the matrices V = v1T /d̃, D = diag(d) where d̃ = dT v, and the matrices
Y1 = V DL−, Y2 = L−DV , and Y3 = Y1DV .

Return Ld = L− − Y1 − Y2 + Y3.

REMARK 3.3. For an irreducible Laplacian matrix of order n there are n principal
submatrices of order n − 1, hence n different possible choices of a bottleneck matrix to
work with. These are all nonsingular M-matrices, but some may be better conditioned than
others. Therefore, in principle, care should be exercised as to the choice of a well-conditioned
submatrix. For this purpose, some methods have been proposed in the literature; see, for
instance, [14]. A simple rule could be to use Gerschgorin disks to find the “most diagonally
dominant” submatrix of L, if any. Obviously, these heuristics add to the overall computational
cost. In the context of the present work, for simplicity we always choose the leading principal
submatrix of order n− 1.

Implementation. Algorithm 3 is implemented in the MATLAB environment. For the
matrix inverse computation the internal function inv of MATLAB was applied. The function
inv performs an LU decomposition of the input matrix or an LDL decomposition if the input
matrix is Hermitian. It then uses the results to form a linear system whose solution is the matrix
inverse X−1 [25]. In particular, if Ln−1 = L̂Û , first the matrix inverse Û−1 is computed and
then the equation XL̂ = Û−1 is solved for X [16]. Let X̃ be the computed solution of the
equation. Then, the following residual bound holds (cf. [16, Ch.14])

|X̃Ln−1 − In−1| ≤ cnu|X̃||L̂||Û |,

which gives the forward error bound

|X̃ − L−1n−1| ≤ cnu|X̃||L̂||Û ||L
−1
n−1|,

where cn is a function of n. The evaluation of the inverse of the (n−1)×(n−1) matrix Ln−1,
which is the main computational task of Algorithm 3, requires O(n3) arithmetic operations.
In particular, the LU decomposition requires n3/3 +O(n2) flops. The computation of Û−1

(cf. [16, Ch.14]) requires (n− 1)3/6 + (n− 1)2/2 + (n− 1)/3 = n3/6 +O(n2) flops and
finally, assuming that the triangular solve from the right with L is done by back substitution,
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((n−1)2(n−2))/2 = n3/2+O(n2) flops are required for the solution of equationXL̂ = Û−1.
Thus, n3 +O(n2) flops are needed. For the evaluation of the remaining part of the algorithm,
O(n2) arithmetic operations are required.

4. Numerical examples. In this section numerical experiments are presented for the
computation of the absorption inverse matrix Ld via the direct methods of Algorithms 2 and 3.
We include a comparison with the direct LDU-Ld Algorithm proposed in [5, Algorithm 1].
For the sake of brevity we only show results for the absorption inverse. The results are very
similar for the group inverse. In cases that the given graph is not strongly connected, i.e.,
rank(L) < n− 1, we consider the largest connected graph component. In the experiments
for the absorption inverse, random absorption rates are considered. The computations are
performed in MATLAB R2015a, 64-bit, on an Intel Core i7 computer with 16 Gb DDR4 RAM.

In many cases, the Laplacian matrix L is sparse. In [5], in the implementation of the
direct algorithms for the computation of Ld, a fill-reducing ordering is used when computing
the triangular factorization L = LDU . Hence, the matrix L is first permuted symmetrically
and then factored. If P is the permutation matrix corresponding to the chosen ordering, then
we compute the factorization PLPT = LDU . In practice, we made use of the colamd
and symamd functions in MATLAB, for directed and undirected graphs respectively, as
permutations.

Exploiting sparsity is crucial for the efficient implementation of the proposed algorithms in
[5]. Nevertheless, in cases of a Laplacian matrix with sufficient density, the method proposed
in [5] becomes slow. On the other hand, the methods proposed in the present manuscript
provide faster algorithms for handling dense problems and constitute alternative methods even
for sparse networks.

In the numerical experiments that follow, in test problems 1-3 we present the execution
time in seconds for the computation of the absorption inverse matrix through the LDU-Ld

method presented in [5, Algorithm 1] and through the Gauss-Jordan -Ld Algorithm (Algorithm
2) and the Bottleneck Algorithm (Algorithm 3) averaged over 5 runs. The comparison of these
two algorithms is fair if they are both applied to the Laplacian matrix stored in dense format.
However, for completeness, the results of [5, Algorithm 1] applied to the Laplacian matrix
stored in sparse format and those obtained by using sparse matrix reorderings are also included.
In test problems 4-5 we present some numerical experiments that show the numerical stability
of the algorithms introduced in this paper.

Test problem 1: The Twitter network. Let us consider the Twittercrawl network (with
3656 nodes and 188712 edges), which is a real world unweighted directed network; see
[3]. The Twittercrawl network is part of the Twitter network [13]; the nodes are users and
the directed edges are mentions and re-tweets between users. This network is not strongly
connected and hence we consider its largest connected component, which consists of 3485
nodes and 184517 edges. Figure 4.1 depicts the sparsity pattern of the largest connected
component of the network and those obtained by using the colamd, symamd, and amd
functions as permutations.

In Table 4.1 we present the execution time in seconds for the computation of the absorption
inverse considering random absorption rates. We also report the part of the execution time
required for the Gauss-Jordan or LU part of the algorithm. Note that despite the fact that the
LU method is faster than Gauss-Jordan one, the remaining part of the algorithm (cf. Algorithm
2) requires less computational effort than those of [5, Algorithm 1], leading to a faster total
execution time. For this test problem, the bottleneck matrix approach slightly outperforms the
one based on the Gauss-Jordan algorithm.
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FIG. 4.1. The sparsity pattern of the largest connected component of the Twittercrawl network without
permutations (upper-left) and by using the colamd function (upper-right), the symamd function (down-left), and the
amd function (down-right) as permutations.

TABLE 4.1
Execution time in seconds for the computation of the absorption inverse of the Twittercrawl network.

Method Time
Gauss-Jordan - Ld 1.04e0 sec [GJ: 8.88e-1 sec]

Bottleneck Algorithm 9.55e-1 sec [inv: 7.04e-1 sec]
LDU - Ld 2.11e0 sec [LU: 2.52e-1 sec]

LDU-Ld sparse - no permut 2.19e0 sec [LU: 2.41e-1 sec]
colamd 2.68e0 sec [LU: 5.39e-1 sec]
symamd 2.39e0 sec [LU: 4.79e-1 sec]
amd 2.50e0 sec [LU: 4.04e-1 sec]

Test problem 2: The Cage network. Let us consider the Cage 9 network (with 3534
nodes and 41594 edges), which is a real world unweighted directed network; see [10]. This
is a biological network associated with DNA electrophoresis with 9 monomers in a polymer,
and it is strongly connected. Figure 4.2 shows the sparsity pattern of the network and those
obtained by using the colamd, symamd, and amd functions as permutations.

In Table 4.2 we present the execution time in seconds for the computation of the absorption
inverse considering random absorption rates. Again, the newly proposed algorithms clearly
outperform the previous ones, with the bottleneck approach having a slight edge over the one
based on the Gauss-Jordan method.
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FIG. 4.2. The sparsity pattern of the Cage 9 network without permutations (upper-left) and by using the colamd
function (upper-right), the symamd function (down-left), and the amd function (down-right) as permutations.

TABLE 4.2
Execution time in seconds for the computation of the absorption inverse of the Cage 9 network.

Method Time
Gauss-Jordan - Ld 1.04e0 sec [GJ: 8.91e-1 sec]

Bottleneck Algorithm 9.56e-1 sec [inv: 6.87e-1 sec]
LDU - Ld 2.15e0 sec [LU: 2.77e-1 sec]

LDU-Ld sparse - no permut 2.16e0 sec [LU: 2.51e-1 sec]
colamd 2.47e0 sec [LU: 4.42e-1 sec]
symamd 2.46e0 sec [LU: 3.90e-1 sec]
amd 2.21e0 sec [LU: 3.54e-1 sec]

Test problem 3: Miscellaneous networks. Next, we examine the behaviour of the
algorithms on further numerical examples. These test networks are a representative collection
of directed and undirected graphs of moderate size and various degrees of sparsity, and except
for twittercrawl and autobahn they are obtained from the SuiteSparse matrix collection [10].
Autobahn network is available from [1].

In the first column of Table 4.3, we report the employed network. If it is undirected,
it is marked with an asterisk *. The two next columns display the size of the test network
n (or the size of its largest connected component in case that the network is not strongly
connected) and the ratio of the number of nonzero elements nnz over the size of the network,
i.e., nnz/n. In columns 4-10 we record the execution time in seconds for the computation
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of the absorption inverse matrix through the LDU-Ld method presented in [5, Algorithm
1], through the Gauss-Jordan - Ld Algorithm (Algorithm 2), and the Bottleneck Algorithm
(Algorithm 3). In the last column of Table 4.3, the speedup factor (SPF): ‘time with dense
LDU’ divided by ‘time with dense G-J’ is reported.

TABLE 4.3
Execution time in seconds for the computation of the absorption inverse.

Network n nnz/n G-J Bottl LDU LDU sparse SPF
dense no perm col sym amd

email* 1133 9.62e0 8.02e-2 8.21e-2 1.42e-1 1.52e-1 1.80e-1 1.68e-1 1.57e-1 1.77
data* 2851 1.06e1 6.78e-1 7.08e-1 1.97e0 1.92e0 2.03e0 1.41e0 1.37e0 2.91
uk* 4824 2.83e0 2.34e0 2.25e0 4.24e0 4.25e0 4.62e0 4.59e0 4.66e0 1.81

yeast* 1458 2.70e0 1.48e-1 1.38e-1 2.59e-1 2.39e-1 2.91e-1 3.06e-1 2.89e-1 1.75
power* 4941 2.67e0 2.39e0 2.33e0 4.67e0 4.68e0 4.92e0 5.00e0 5.14e0 1.95
Roget 904 5.34e0 4.90e-2 4.59e-2 8.97e-2 9.18e-2 1.05e-1 1.03e-1 1.00e-1 1.83

autobahn* 1168 2.13e0 8.06e-2 7.67e-2 1.49e-1 1.51e-1 1.65e-1 1.80e-1 1.68e-1 1.86
ca-GrQc* 4158 6.46e0 1.71e0 1.54e0 2.99e0 3.03e0 4.75e0 3.36e0 3.24e0 1.75
Erdos972* 4680 3.00e0 2.10e0 2.23e0 4.19e0 4.21e0 4.44e0 4.58e0 4.63e0 1.99
Erdos02* 5534 3.06e0 3.30e0 3.21e0 6.46e0 6.13e0 6.58e0 6.90e0 7.00e0 1.95

wing_nodal* 10937 1.38e1 1.83e1 1.86e1 4.30e1 4.20e1 4.33e1 4.52e1 4.38e1 2.35
Twittercrawl 3485 5.29e1 1.04e0 9.55e-1 2.11e0 2.19e0 2.68e0 2.39e0 2.50e0 2.03

cage9 3534 1.18e1 1.04e0 9.56e-1 2.15e0 2.16e0 2.47e0 2.46e0 2.21e0 2.06
wiki-Vote 1300 3.04e1 1.23e-1 1.05e-1 3.07e-1 3.17e-1 3.36e-1 3.46e-1 2.42e-1 2.50
hep-Th* 5835 4.74e0 3.70e0 3.49e0 7.39e0 7.57e0 1.21e1 1.25e1 1.20e1 2.00
Gnutella 3226 4.21e0 8.78e-1 7.88e-1 1.67e0 1.72e0 1.89e0 1.85e0 1.77e0 1.90

FA 4845 1.27e1 2.36e0 2.00e0 4.36e0 4.41e0 4.98e0 4.89e0 4.66e0 1.85
wiki-RfA 2449 4.22e1 4.43e-1 4.22e-1 8.47e-1 8.30e-1 9.79e-1 9.56e-1 9.35e-1 1.91

ca-HepTh* 8638 5.75e0 9.57e0 9.80e0 2.04e1 2.02e1 3.51e1 3.52e1 3.49e1 2.14

In Table 4.3 we notice that the Gauss-Jordan - Ld Algorithm (Algorithm 2) and the
Bottleneck Algorithm (Algorithm 3) have comparable execution times and are faster than the
LDU-Ld method presented in [5, Algorithm 1]. Again, the bottleneck approach has a slight
edge on a majority of test cases.

Now we present some tests aimed at assessing the numerical stability of the methods
introduced in this paper; see [4]. We consider the computation of the stationary distribution of
irreducible Markov chains with transition matrix P . This is the unique positive row vector with
‖u‖1 = 1 such that u = uP. While the matrix In − PT is not strictly speaking a (normalized)
graph Laplacian, it is a singular M-matrix of rank n− 1.

Test problem 4. Next, we examine the second test problem tested in [4], which is taken
from [11]. This is a parameterized family of 10× 10 matrices with varying degree of coupling.
Let

T =



0.1 0.3 0.1 0.2 0.3 β 0 0 0 0
0.2 0.1 0.1 0.2 0.4 0 0 0 0 0
0.1 0.2 0.2 0.4 0.1 0 0 0 0 0
0.4 0.2 0.1 0.2 0.1 0 0 0 0 0
0.6 0.3 0 0 0.1 0 0 0 0 0
β 0 0 0 0 0.1 0.2 0.2 0.4 0.1
0 0 0 0 0 0.2 0.2 0.1 0.3 0.2
0 0 0 0 0 0.1 0.3 0.2 0.2 0.2
0 0 0 0 0 0.2 0.2 0.1 0.3 0.2
0 0 0 0 0 0.1 0.7 0 0 0.2


.
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If ∆ = diag ( 1
1+β , 1, 1, 1, 1,

1
1+β , 1, 1, 1, 1), then P = ∆T is a nearly uncoupled stochastic

matrix with degree of coupling γ = β
1+β . Let u be the stationary vector, i.e., a vector in

Ker(I10−PT ). Let ũ be the computed stationary vector by using the Gauss-Jordan Algorithm
or the Bottleneck Algorithm. Two values of β are used.
(a) For β = 10−7 the exact stationary vector is given by (see [4])

u =



0.1008045195787271e+0
0.8012666139606563e-1
0.3015519514905696e-1
0.6031039029811392e-1
0.7926508439180686e-1
0.1008045195787271e+0
0.1967651659427390e+0
0.7003949685919185e-1
0.1619417899342436e+0
0.1197871768713281e+0


.

(b) For β = 10−14 the exact stationary vector is given by

u =



0.1008045115305868e+0
0.8012666301149126e-1
0.3015519575701284e-1
0.6031039151402568e-1
0.7926508598986232e-1
0.1008045115305868e+0
0.1967651699097019e+0
0.7003949827125116e-1
0.1619417931991359e+0
0.1197871792863454e+0


.

In Table 4.4 we can see the residual ‖ũT − ũTP‖1 and the absolute error ‖u− ũ‖1 for
β = 10−7 and β = 10−14.

TABLE 4.4
Results for test problem 4.

Method Residual Error
β = 10−7 Gauss-Jordan 1.2490e-16 2.0817e-16

Bottleneck 1.1796e-16 3.6826e-10
β = 10−14 Gauss-Jordan 1.1796e-16 2.0470e-16

Bottleneck 6.9389e-17 3.7641e-3

Note that the errors using the Bottleneck Algorithm are large compared to those given by
the Gauss-Jordan method proposed in this work. This is due to the fact that the inv function
in the Bottleneck Algorithm employs the LU factorization of the explicitly computed matrix
I10 − PT , which is not accurate enough for this problem [4]. High accuracy cannot easily be
attained with this approach, since it is not possible to compute the pivots using the off-diagonal
entries in the active submatrix at each step.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

456 M. BENZI, P. FIKA, AND M. MITROULI

Test problem 5. Next, we examine the third test problem of [4], which is taken from
[24]. We consider the tridiagonal stochastic matrix P determined (uniquely) by

pi+1,i = 0.8 and pi,i+1 = 0.1, for i = 1, 2, . . . , n− 1.

Thus pii = 0.1 for all i except for p11 = 0.9 and pnn = 0.2. The exact stationary vector u is
considered as the vector with analytically computed entries ui = 23(n−i).

In Table 4.5 we see the residual ‖ũT − ũTP‖1 and the absolute error ‖u− ũ‖1, where ũ
is computed by using the Gauss-Jordan Algorithm or the Bottleneck Algorithm.

TABLE 4.5
Results for test problem 5.

Method Residual Error
Gauss-Jordan 4.3616e-17 1.2688e-16

Bottleneck 2.4537e-17 1.2091e-15

In Table 4.5 we notice that the (absolute) normwise error using the Bottleneck Algorithm
is small enough. However, in fact, through this algorithm the last components of the computed
stationary vector are affected by large relative componentwise errors. In particular, the last
entry of the computed stationary vector is negative, with no significant digit computed correctly.
On the other hand, the components of the computed stationary vector via the Gauss-Jordan
method are exact to working precision. In Table 4.6 we report the six last entries of the exact
stationary vector and the computed ones via the Gauss-Jordan method and the Bottleneck
Algorithm.

TABLE 4.6
The six last entries of the stationary vector for test problem 5.

Exact u ũ via G-J ũ via Bottl.
0.198951966012828e-12 0.198951966012828e-12 0.198917271543309e-12
0.024868995751604e-12 0.024868995751604e-12 0.024834301282084e-12
0.003108624468950e-12 0.003108624468950e-12 0.003073929999431e-12
0.000388578058619e-12 0.000388578058619e-12 0.000353883589099e-12
0.000048572257327e-12 0.000048572257327e-12 0.000013877787808e-12
0.000006071532166e-12 0.000006071532166e-12 -0.000028622937354e-12

5. Concluding remarks. In this paper, we focused on two direct numerical methods for
the computation of the group inverse and the absorption inverse of the Laplacian matrix. First,
we studied a method based on a modification of the Gauss-Jordan algorithm adjusted to the
case of the Laplacian matrix. This GTH-like variant is forward stable and results in computed
solutions with high relative componentwise accuracy. In particular, using the fact that the
M-matrix property is preserved throughout the steps of the algorithm, at each step the diagonal
entries of the matrix are computed by adding the nondiagonal entries in the same column of
the active submatrix and then changing the sign, avoiding in this way any cancellation error
that may occur. Also, a second approach was proposed, which employs the bottleneck matrix.
Forward error bounds were presented for each of these two approaches.

The developed methods exhibit comparable complexity with that of standard algorithms
existing in the literature; furthermore, all the stability issues concerning the implementation of
these algorithms are well understood.
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The proposed methods have been compared in terms of their execution time with the
algorithm presented in [5] on various networks, directed and undirected. We notice that
the proposed algorithms display comparable execution times, which are better than those
attained using the LU factorization. Comparing the Gauss-Jordan-based algorithm and the
algorithm presented in [5], which is based on the LU factorization of the Laplacian matrix,
we note that despite the fact that the computation of the LU factorization is faster than the
Gauss-Jordan elimination process, the remaining part of the algorithm (Algorithm 2) requires
less computational effort than those of [5, Algorithm 1], leading to a faster total execution
time.

The numerical stability of the proposed algorithms was also studied experimentally and
it was illustrated in several numerical examples. We conclude that the Gauss-Jordan-based
algorithm is able to attain high relative componentwise accuracy, while the bottleneck matrix
approach is not.
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