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Preface

This volume originates from the “School on Birational Geometry of Hypersurfaces,”
which took place in the Palazzo Feltrinelli in Gargnano del Garda in March 2018.

The school was about a large number of open questions, techniques, and
spectacular results, all surrounding the notion of (stable) rationality of projective
varieties and, more specifically, hypersurfaces in projective spaces. Many of these
questions look easy to formulate, for example, the (ir)rationality of cubic fourfolds.
But after many attempts to address these questions, they proved to be so hard and
striking to become among the most challenging open problems in the mainstream
of algebraic geometry.

The school aimed at shedding some light on this vast research area by focusing
on the two main aspects:

1. Approaches focusing on the (stable) rationality using deformation theory and
Chow-theoretic tools like decomposition of the diagonal

2. The connection between K3 surfaces, hyperkähler geometry, and cubic fourfolds,
which has a Hodge-theoretic and a homological side

This volume entirely reflects this twofold approach to the subject.
The school has benefitted from the beautiful lectures of Jean-Louis Colliot-

Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin. The contents of
their talks appear now in the contributions, forming this volume with the addition of
lecture notes by János Kollár and an appendix by Andreas Hochenegger.

We should finally point out that the school (and thus this volume) was made
possible by the generous financial support of various institutions and research grants
among them the Dipartimento di Matematica “Federigo Enriques” of the Università
degli Studi di Milano, and the Foundation Compositio Mathematica, the GNSAGA
Indam group, and research projects, namely, ERC-2017-CoG-771507 StabCondEn,
FIRB 2012 “Moduli Spaces and Their Applications”, PRIN 2015 “Geometria delle
Varietà Algebriche,” and Sonderforschungsbereich/Transregio 45 “Periods, Moduli
Spaces and Arithmetic of Algebraic Varieties.”

v
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vi Preface

Finally, it is our great pleasure to thank all the participants of the school. Their
intriguing questions and active participation created the stimulating atmosphere that
gave origin to the idea of writing this volume.

Milano, Italy Andreas Hochenegger
Mainz, Germany Manfred Lehn
Milano, Italy Paolo Stellari
24 January 2019
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Birational Invariants and Decomposition
of the Diagonal

Claire Voisin

Abstract We give a rather detailed account of cohomological and Chow-theoretic
methods in the study of the stable version of the Lüroth problem, which ask how to
distinguish (stably) rational varieties from general unirational varieties. In particular,
we study the notion of Chow or cohomological decomposition of the diagonal,
which is a necessary criterion for stable rationality. Having better stability properties
than the previously known obstructions under specialization with mildly singular
central fibers, it has been very useful in the recent study of rationality questions.

1 Introduction

This paper is a set of expanded notes for lectures I gave in Miami, Sienne, Udine and
Gargnano. The Lüroth problem is very simple to state, namely can one distinguish
rational varieties from unirational ones? Here the definitions are the following:

Definition 1.1 A smooth projective variety X over a field K is unirational if there
exist an integer N and a dominant rational map � : PNK ��� X.

Note that one can always (at least ifK is infinite) reduce to the caseN = n = dimX
by restricting� to a general linear subspace PnK ⊂ P

N
K .

Definition 1.2 A smooth projective variety X over a field K is rational if there
exists a birational map P

n
K ��� X. The variety X is stably rational if X × P

r is
rational for some integer r .

More generally, we will say thatX and Y are stably birational ifX×P
r
birat∼= Y ×P

s

for some integers r, s. This is an equivalence relation on the set of irreducible
algebraic varieties over K . Of course, all these notions can be reformulated using

C. Voisin (�)
Collège de France, Paris, France
e-mail: claire.voisin@imj-prg.fr

© Springer Nature Switzerland AG 2019
A. Hochenegger et al. (eds.), Birational Geometry of Hypersurfaces,
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4 C. Voisin

only the function field K(X) of X, so that the smoothness or projectivity of X is
not important here. However, it is very important in practice to work with smooth
projective models in order to exhibit stable birational invariants. The simplest
example is the case of algebraic differential forms (see Sect. 2.1): For the space of
algebraic differential forms onX of a given degree to be a stable birational invariant
of X, one needs to take X to be smooth and projective (or at least complete).

The above mentioned problem had a classical satisfactory solution for curves
and surfaces over an algebraically closed field of characteristic 0, namely they are
rational once they are rationally connected, that is contain plenty of rational curves.
However, after some delicate episodes (we refer to [9] for a precise history of
the subject), it was found that in dimension 3, these two notions do not coincide.
The three contributions leading to this conclusion were very different. We refer
to Kollár’s paper in this book for an account of one of the methods, namely
“birational rigidity” which in its simple form proposed by Iskovskikh and Manin
[28], consisted in proving that the considered variety (they were considering smooth
quartic hypersurfaces in P

4) has a very small birational automorphisms group,
unlike projective space which has a huge group of birational automorphisms, called
the Cremona group. The other approach, proposed by Clemens and Griffiths, has
been extremely efficient in dimension 3, starting with the celebrated example of
the cubic threefold hypersurface that they had solved. It involves the geometry of
the intermediate Jacobian and its theta divisor. The relationships with birational
geometry in dimension 3 is the fact that under the blow-up of a smooth curve, this
Jacobian gets an extra summand added, which is the Jacobian of a curve.

The Clemens–Griffiths method works a priori only in dimension 3, although the
developments of categorical methods might lead to higher dimensional variants.
We refer for such developments to the notes of Macrì and Stellari in this volume.
Both the Iskovskikh–Manin method and the Clemens–Griffiths method deal with
rationality but not stable rationality for which we need to analyze the rationality not
only of X but also of all the products X × P

r . For the Clemens–Griffiths method,
this limitation is due to the fact that the rationality criterion they use works only in
dimension 3. For the Iskovskikh–Manin method, the limitation is due to the fact that
analyzing the birational automorphisms of X × P

r seems to be very hard.
The third method due to Artin and Mumford not only works in any dimension,

but also it rests on the introduction of invariants that have higher degree versions
which are more and more subtle as the degree increases. A last crucial point is the
fact that these invariants are stable birational invariants. They were the first to prove
the following result:

Theorem 1.3 ([3]) There exist unirational threefolds X which are not stably
rational.

The invariant used by Artin–Mumford is the torsion in Betti cohomology of degree
3 of a smooth projective model of X. We will describe this example in Sect. 2.1.1.
The Artin–Mumford method has been further developed by Colliot-Thélène and
Ojanguren [16] who used higher degree unramified cohomology groups with torsion
coefficients as stable birational invariants in order to construct new examples of

andreas.hochenegger@unimi.it



Birational Invariants and Decomposition of the Diagonal 5

this phenomenon but having trivial Artin–Mumford invariants. We will introduce
unramified cohomology in Sect. 2.2.2. We will also describe its main properties,
and compute it in small degree. The degree 2 case is in fact the Brauer group and
it is immediately related to the Artin–Mumford invariant which is the topological
version of it. The degree 3 case was shown in [18] to measure the defect of the
Hodge conjecture in degree 4 with integral coefficients. These developments build
on one hand on Bloch–Ogus theory [11] that we will survey in Sect. 2.2.1, and on
the other hand on the Bloch–Kato conjecture proved by Voevodsky [53], that is the
main recent new ingredient in the theory of unramified cohomology, together with
Kerz’ work [30].

We now explain our input to the subject. The theory of algebraic cycles of com-
plex algebraic varieties received a great impulse from Bloch–Srinivas contribution
[11] who gave an elegant proof and various generalizations of Mumford’s theorem
[41] saying that a smooth projective complex variety with trivial CH0 group (in the
sense that all points are rationally equivalent) has no nonzero algebraic differential
form of degree> 0. Their approach used the “decomposition of the diagonal” which
we will describe in Sect. 3.1. The decomposition of the diagonal is the beginning
of a Künneth decomposition. It says that after removing the first term X × x of
the diagonal �X, the remaining cycle is supported on D × X, where D ⊂ X

is a proper closed algebraic subset. We will show that for quantities with enough
functoriality under correspondences, such a decomposition allows to show that they
are supported on D in a strong sense. The first instance of this phenomenon was
of course the Bloch–Srinivas improvement of Mumford’s theorem saying that if X
has CH0(X) = Z, the positive degree rational cohomology of X has coniveau ≥ 1:
more precisely, it is supported on the divisor D appearing in the decomposition of
the diagonal.

The Bloch–Srinivas decomposition of the diagonal is with Q-coefficients, and
as we will see, there are many further obstructions to get a decomposition of the
diagonal (Chow-theoretic or cohomological) with integral coefficients. We will
discuss many of them in Sects. 3.3.2 and 3.3. Actually, in the cohomological setting,
we have a complete understanding of this condition at least in dimension 3. The
relevance of this study for rationality questions is the fact that the existence of such
a decomposition is a necessary criterion for stable rationality. In the Chow setting,
this property governs all the invariants of a Chow-theoretic/cohomological nature
that we mentioned previously, including unramified cohomology (see Sect. 3.3.2),
in the sense that they vanish if the variety has a Chow decomposition of the diagonal
with integral coefficients.

What we realized in [60] is the fact that the existence of a Chow decomposition
(and with some care, also of a cohomological decomposition) is stable under the
following operation: degenerate (or specialize) a smooth general fiberXt to a mildly
singular special fiber X0 and then desingularize X0 to ˜X0. (This statement is the
degeneration theorem 4.4.) The paper [60] had considered only the simplest such
mild singularities, namely nodal singularities in dimension at least 2. This already
led us to the following conclusion:
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6 C. Voisin

Theorem 1.4 There exist unirational threefolds which are not stably rational
although all their unramified cohomology groups are trivial. The very general
quartic double solids are such examples.

Note that the only possibly nontrivial unramified cohomology groups for rationally
connected threefolds are in fact the groupH 2

nr (X,Q/Z), that is, the Artin–Mumford
invariant. The gain over Theorem 1.3 is the fact that these varieties are very simple
to construct and exhibit (in fact they are general hypersurfaces in a toric fourfold),
while Fano threefolds with a nontrivial Artin–Mumford invariant as exhibited in [3]
are hard to construct.

The quartic double solids appearing in Theorem 1.4 are Fano threefolds which
specialize to Artin–Mumford double solids X0, which are nodal. The situation
is thus the following: The desingularized Artin–Mumford double solid ˜X0 does
not admit a decomposition of the diagonal because it has a nontrivial Artin–
Mumford invariant. This implies that a general deformationXt ofX0 neither admits
a decomposition of the diagonal by the specialization theorem mentioned above.
However for all deformations smoothifying a node, the Artin–Mumford invariant
disappears. One can summarize the above argument in the following statement
which does not involve explicitly the decomposition of the diagonal:

Proposition 1.5 Let π : X → C be a flat projective morphism of relative
dimension n ≥ 2, where C is a smooth curve. Assume that the fiber Xt is smooth
for t �= 0, and has at worst ordinary quadratic singularities for t = 0. Then if
TorsH 3

B(
˜X0,Z) �= 0, the general fiber Xt is not stably rational.

The paper [17] describes the exact conditions on the singularities which make the
specialization theorem (hence Proposition 1.5) work. Colliot-Thélène and Pirutka
applied their method to the case of the general quartic hypersurface in P

4 for which
they proved the analogue of Theorem 1.4. Although the precise nature of the allowed
singularities is not known because it is related to the rationality of the exceptional
divisors, their criterion was explicit enough to allow many other applications that
we will try to survey in Sect. 4.3. The most striking and important consequence is
the following result obtained in [26]:

Theorem 1.6 Stable rationality is not deformation invariant. There exist families
of smooth projective varieties such that the fiber Xt is rational over a dense set (a
countable union of algebraic subsets) of the base, but the very general fiber is not
stably rational.

We will also describe in that section the Totaro method [51], which combines
the specialization method with the Kollár argument in [31] of reduction to nonzero
characteristic and analysis of algebraic differential forms on the central fiber. Finally
we will explain Schreieder’s further improvement (see [45, 46]) of Proposition 1.5.
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Birational Invariants and Decomposition of the Diagonal 7

2 Birational Invariants

We will say that a property or a quantity is birationally invariant, resp. stably
birationally invariant, if it is constant on any birational equivalence class of varieties,
resp. on any stable birational equivalence class of varieties.

2.1 Classical Birational Invariants and Functoriality

The following obvious lemma allows to produce stable birational invariants:

Lemma 2.1 Let X �→ I (X) be a group defined for smooth varieties over a given
field K . Assume that I (X) is covariant for morphisms of K-varieties and has the
property that:

(i) I (U)→ I (X) is surjective for U ⊂ X a dense Zariski open set, and
(ii) it is an isomorphism if codim (X \ U ⊂ X) ≥ 2.

Then:

(a) I (X) is a birational invariant for smooth projective varieties over K .
(b) If furthermore

(iii) I (X) ∼= I (X × A
1) (by push-forward) for any X, then I (X) is a stable

birational invariant for smooth projective varieties X over K .

Proof Let φ : X ��� Y be a birational map between smooth and projective varieties
overK . Then there is an open set U ⊂ X such that codim (X\U ⊂ X) ≥ 2 and φ|U
is a morphism. Then we have I (X) ∼= I (U) by (ii) and by covariant functoriality a
morphism φU∗ : I (U)→ I (Y ), hence a morphism φ∗ : I (X) → I (Y ). It remains
to see that φ∗ is an isomorphism. Replacing φ by φ−1, we get φ−1

V ∗ : I (V )→ I (X)

for some Zariski open set V of Y such that I (V ) ∼= I (Y ). Let U ′ ⊂ U be defined as
φ−1(V ). Then φ−1 ◦ φ is the identity on U ′, hence (φ−1)∗ ◦ φ∗ : I (U ′)→ I (U ′) is
the identity. As I (U ′) → I (X) is surjective by (i), we conclude that (φ−1)∗ ◦ φ∗ :
I (X) → I (X) is the identity which proves the first statement after exchanging φ
and φ−1. This proves (a).

For statement (b), we observe that (iii) implies that I (X) ∼= I (X × A
l ) for any

X and any l, and then that I (X) ∼= I (X × P
l ) for any X and any l. Indeed we have

I (X) ∼= I (X × A
l )� I (X × P

l )→ I (X),

where the second arrow is surjective by (i) and the composite is the identity.
Together with (a) (proved for smooth projective varieties), this implies (b). ��
The obvious application is the case of the fundamental groupπ1(Xan)whenK = C,
where Xan is X(C) endowed with the Euclidean topology. It clearly satisfies
properties (i) and (ii). Unfortunately, the birational invariant so constructed is trivial
for rationally connected varieties by the following result which is due to Serre [47]
in the case of unirational varieties.
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8 C. Voisin

Theorem 2.2 Let X be a smooth projective rationally connected variety over the
complex numbers. Then π1(Xan) = {e}.
Proof As X is rationally connected, there exist a smooth projective variety B, and
a rational map

φ : B × P
1 ��� X (2.1)

which has the property that

(i) φ(B × 0) = {x} for a fixed point x ∈ X(C) and
(ii) φ∞ := φ|B×∞ : B ��� X is dominant (say generically finite).

Using the same arguments as above, there is an induced morphism φ∗ : π1(Ban×
CP

1) → π1(Xan). This morphism is trivial by (i) and its image is of finite index
by (ii). This implies that π1(Xan) is finite. The end of the proof is an argument
of Serre : Consider the universal cover ˜Xan → Xan. Then ˜Xan is the analytic
space of an algebraic variety ˜X which is rationally connected because all rational
curves contained in X lift to ˜X. This implies that the degree of the covering map
˜X → X is 1 (and thus that X is in fact simply connected) by the following Euler-
Poincaré characteristic argument: When X is rationally connected over a field of
characteristic 0, one has Hi(X,OX) = 0 for i > 0 (see Proposition 2.4 below).
This implies that χ(X,OX) = 1. This equality has to hold for bothX and ˜X, giving

χ(X,OX) = 1, χ(˜X,O
˜X) = 1. (2.2)

However, for a proper étale cover, one has

χ(X,OX) = deg(˜X/X)χ(˜X,O
˜X).

Comparing with (2.2), we get that deg(˜X/X) = 1. ��
The contravariant version of Lemma 2.1 is the following:

Lemma 2.3 Let X �→ I (X) be a group defined for smooth varieties over a given
field k. Assume that I (X) is contravariant and has the property that:

(i) I (X)→ I (U) is injective for U ⊂ X a Zariski open set, and
(ii) it is an isomorphism if codim (X \ U ⊂ X) ≥ 2.

Then:

(a) I (X) is a birational invariant for smooth projective varieties over K .
(b) If furthermore (iii) I (X) = I (X×A

1) (by pull-back) for anyX, then I (X) is a
stable birational invariant for smooth projective varieties overK .

This lemma applies to closed differential forms of fixed positive degree. In
characteristic 0, algebraic differential forms on smooth projective varieties are
closed, but of course this is not true on nonprojective varieties and in fact condition
(b) is not satisfied for algebraic differential forms, while it is for closed differential
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Birational Invariants and Decomposition of the Diagonal 9

forms. The stable birational invariant that we get is trivial for rationally connected
varieties in characteristic 0 by the following proposition:

Proposition 2.4 Let X be smooth projective rationally connected over a field of
characteristic 0. Then H 0(X,�⊗lX ) = 0 and Hl(X,OX) = 0 for any l > 0.

Proof The second statement is a consequence of the first by Hodge symmetry,
which gives that over C, Hl(X,OX) is canonically isomorphic to the complex
conjugate of H 0(X,�lX), which is naturally a subspace of H 0(X,�⊗lX ). Consider
a rational map φ : B × P

1 ��� X as in (2.1). As X is projective, φ is well defined
along a generic fiber P1

b := b× P
1. As φB×∞ is dominant, we can assume that φ is

a submersion at (b,∞). The differential φb∗ of φ along P
1
b gives a morphism

φb∗ : TP1
b
⊕ TB,b ⊗O

P
1
b
→ φ∗bTX

of vector bundles along P
1
b. As φ(B × 0) reduces to one point, φb∗ vanishes at 0.

On the other hand, φb∗ is by assumption surjective at ∞. We thus conclude that
the vector bundle (φ∗TX)|P1

b
(−0) is generically generated by sections, hence that

it is a direct sum of line bundles O
P

1
b
(ai) with ai ≥ 0 on P

1
b. Hence (φ∗TX)|P1

b
is

a direct sum of line bundles O
P

1
b
(bi) with bi > 0. It follows that for any l > 0,

H 0(P1
b, (φ

∗�⊗lX )|P1
b
) = 0. As b ∈ B is generic, this implies that H 0(X,�⊗lX ) = 0

for l > 0. ��
Proposition 2.4 is not true in nonzero characteristic. The problem is that

the dominant map φ could be nonseparable, hence nowhere submersive. Kollár
[31] exhibited such a phenomenon for some mildly singular double covers of a
hypersurfaces in projective space.

Theorem 2.5 ([31]) Let X ⊂ P
n be a hypersurface of degree 2d . Then X

specializes to a double cover X0 of a hypersurface of degree d branched along
a hypersurface Y0 ⊂ X0 of degree 2d . Assume charK = 2 and 3d > n + 2. Then
X0 has a desingularization ˜X0 admitting a nonzero section of �n−2

˜X0
⊗ L−1, where

the line bundle L is big and effective.

We will see in Sect. 4.3 how Totaro uses this construction. Totaro only uses the
effectivity of L, while Kollár needs the bigness of L, in order to apply the following
result:

Proposition 2.6 A separably uniruled (in particular, a ruled) variety Y does not
admit a nonzero section of �lY ⊗ L−1 for some l ≤ dimY , where the line bundle L
is big.

Proof If there is a variety Z admitting a morphism f : Z → B with general fiber
P

1 and a separable dominant map φ : Z ��� Y not mapping the fibers of f to
points, then we may assume φ is generically finite separable and dominant. If there
is a nonzero section of �n−2

Y ⊗ L−1, there is a nonzero section of �lZ ⊗ φ∗L−1,
where the line bundle φ∗L is also big, and in particular has positive degree along
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10 C. Voisin

the fibers of f . But this is clearly impossible as�Z|Zb = f ∗�B ⊕�Zb , and the first
term is a trivial vector bundle along the fiber Zb while the second term is a negative
line bundle along the fibers Zb ∼= P

1. ��
One major application obtained by Kollár is:

Theorem 2.7 ([31]) If X ⊂ P
n
C
is a very general hypersurface of degree d ≥

2� n+3
3 �, X is not ruled, hence not rational.

Proof (We give the argument only for even d) It suffices to exhibit one hypersurface
in the above range of degree and dimension which is not ruled. The crucial point is
that ruledness is stable under specialization. This result is due to Matsusaka [38].
Consider a hypersurface X defined over Z, which admits a reduction modulo 2 of
the form described in Theorem 2.5. If X is ruled, so is the specialization X0 or
rather its desingularization ˜X0. But Proposition 2.6 precisely says that ˜X0 is not
ruled. ��
Remark 2.8 It is not true that (separable) rational connectedness is stable under
specialization. Under specialization to nonzero characteristic, a family of rational
curves sweeping-out X can specialize to a family of rational curves sweeping-out
X0 but nonseparably. This problem does not appear for ruledness because in this
case the morphism from the family of curves to X has degree 1, hence also its
specialization. Hence the specialized morphism is separable.

2.1.1 The Artin–Mumford Invariant

Our last examples of classical birational invariants will need functoriality properties
slightly different from what we used in Lemmas 2.1 and 2.3, namely functoriality
under correspondences. Let X �→ I (X) be an invariant of smooth projective
varieties. Assume that any correspondence � ⊂ X × Y with dim� = dimX =
dimY induces �∗ : I (Y ) → I (X) and that this action is compatible with
composition of correspondences. In particular a morphism φ : X → Y between
smooth projective varieties of the same dimensions induces φ∗ : I (Y )→ I (X) and
φ∗ : I (X)→ I (Y ). Assume also that the projection formula φ∗ ◦φ∗ = (degφ) Id :
I (Y ) → I (Y ) holds. Assume the characteristic is 0 or resolution of singularities
holds in the following sense: for any rational map φ : X ��� Y , with Y projective,
there exists a smooth variety τ : ˜X → X, obtained from X by a sequence of blow-
ups along smooth centers, such that φ ◦ τ gives a morphism ˜X→ Y .

Lemma 2.9 Let X �→ I (X) be an invariant of smooth projective varieties satisfy-
ing the functoriality properties above. Then I (X) is invariant under birational maps
of smooth projective varieties if and only if it is invariant under blow-up.
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Proof Let φ : X ��� Y be a birational map. The graph �φ ⊂ X × Y induces a
morphism �∗φ : I (Y )→ I (X). If

φ̃ : ˜X→ Y, τ : ˜X→ X

is a resolution of indeterminacies of φ (or singularities of �φ), with τ a composition
of blow-ups, one has

�∗φ = τ∗ ◦ φ∗ (2.3)

because �φ = (τ, IdY )(�φ̃) or equivalently �φ = t�τ ◦ �φ̃ . Invariance of I under

blow-ups guarantees that τ∗ : I (˜X)→ I (X) is an isomorphism. But φ∗ is injective
on I (Y ) because φ∗ ◦ φ∗ = Id on I (Y ). Hence by (2.3), �∗φ is injective. In order

to prove surjectivity, we now use resolution of singularities for φ−1. We thus have a
diagram

φ̃−1 : ˜Y → X, τ ′ : ˜Y → Y

where τ ′ is a composition of blow-ups.
As before we have �∗φ = φ̃−1∗ ◦ τ ′∗, where now τ ′∗ is an isomorphism by

assumption while φ̃−1∗ is surjective by the projection formula φ̃−1∗ ◦ (φ̃−1)∗ =
IdI (X). Thus �∗φ is surjective. ��
Remark 2.10 The proposition above becomes a triviality if we use the weak
factorization instead of resolutions of singularities.

Let us now introduce the Artin–Mumford invariant which was used in [3]. It will be
generalized in the next section but the simplest version of it is the following: X is
defined over the complex numbers and

I (X) = TorsH 3
B(X,Z), (2.4)

whereHiB(X,A) denotes the Betti cohomology group Hi(Xan,A).

Proposition 2.11 The Artin–Mumford invariant is a stable birational invariant of
smooth projective varieties.

Proof As all the Betti cohomology groups with integral coefficients have functori-
ality under correspondences, the same holds for their torsion subgroups. Similarly
for the projection formula. By Lemma 2.9, in order to show birational invariance of
TorsH 3

B(X,Z), it thus suffices to show its invariance under blow-up. We now use
the blow-up formula

HiB(
˜X,Z) = HiB(X,Z)⊕Hi−2

B (Z,Z)⊕Hi−4
B (Z,Z)⊕ . . . ,
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12 C. Voisin

where τ : ˜X → X is the blow-up of X along the smooth locus Z with exceptional
divisor τE : E→ Z and the first map is τ ∗ while the other maps are j∗ ◦ (es∪)◦ τ ∗E ,
with e = [E]|E ∈ H 2

B(E,Z). The end of the proof follows from the observation that
the blow-up formula remains true if we replace integral cohomology by its torsion
and that TorsH 1

B(W,Z) = 0 for any topological space W . This last fact follows
indeed from the cohomology long exact sequence associated with the short exact
sequence of constant sheaves

0→ Z
m→ Z→ Z/mZ→ 0

onW . The blow-up formula then gives

TorsH 3
B(

˜X,Z) = TorsH 3
B(X,Z).

In order to get stable birational invariance, it remains to see invariance under
X �→ X × P

r . This follows from Künneth formula which gives H 3
B(X × P

r ,Z) =
H 3
B(X,Z)⊕H 1

B(X,Z), hence

TorsH 3
B(X × P

r ,Z) = TorsH 3
B(X,Z)⊕ TorsH 1

B(X,Z) = TorsH 3
B(X,Z).

��
Remark 2.12 The same proof shows as well that TorsH 2

B(X,Z) is also a birational
invariant. However, this invariant is trivial for rationally connected varieties, because
they are simply connected by Theorem 2.2.

The Artin–Mumford invariant of X has an important interpretation as the topologi-
cal part of the Brauer group ofX, which detects Brauer–Severi varieties onX. These
varieties are fibered over X into projective spaces, but are not projective bundles
P(E) for some vector bundle E on X. Given such a fibration π : Z → X with
fibers Zx isomorphic to P

r , Z ∼= P(E) for some vector bundle of rank r + 1 if and
only if there exists a line bundle L on Z which restricts to O(1) on each fiber. The
topological part of the obstruction to the existence of L is the obstruction to the
existence of α ∈ H 2

B(Z,Z) which restricts to hx := c1(OZx (1)) ∈ H 2
B(Zx,Z). The

relevant piece of the Leray spectral sequence of π gives the exact sequence

H 2
B(Z,Z)→ H 0(X,R2π∗Z)

d2→ H 3(X,R0π∗Z) = H 3
B(Z,Z),

where the second map is 0 with Q-coefficients by the degeneration at E2 of the
Leray spectral sequence (or because there is a line bundle on Z whose restriction to
the fibers is OZx (−r − 1), namely the canonical bundle KZ). The image d2(h) is
thus a torsion class in H 3

B(Z,Z), called the Brauer class. The same argument shows
that the order of the Brauer class divides r + 1.

The Artin–Mumford invariant was used by Artin and Mumford to exhibit
unirational threefolds which are not stably rational. Let Sf ⊂ P

3 be a quartic surface
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defined by a degree 4 homogeneous polynomial f . Let Xf → P
3 be the double

cover of P3 ramified along Sf . It is defined as Spec (OP3 ⊕ OP3(−2)) , where the
algebra structure A⊗A→ A on A = OP3⊕OP3(−2)) is natural on the summands
OP3 ⊗ OP3 and OP3 ⊗ OP3(−2) and sends OP3(−2) ⊗ OP3(−2) to OP3 via the
composition

OP3(−2)⊗OP3(−2)→ OP3(−4)
f→ OP3 .

The local equation for Xf ⊂ Spec (⊕l≥0OP3(−2l)) is thus u2 = f , from which
we conclude that Xf has ordinary quadratic singularities if Sf does. When Sf
is smooth, Xf has trivial Artin–Mumford invariant. This follows from Lefschetz
theorem on hyperplane sections as Xf can be seen as a hypersurface (not ample
but positive) in the P

1-bundle Proj (Sym (OP3 ⊕ OP3(−2))) over P3. Assume now
that Sf has ordinary quadratic singularities and let ˜Xf be the desingularization of
Xf by blow-up of the nodes. Note that ˜Xf is unirational. This is true for all quartic
double solids but becomes particularly easy once Sf has a node. Indeed, choose a
node O ∈ Sf . The lines in P

3 passing through O intersect Sf in the point O with
multiplicity 2 and two other points. The inverse image of such a line � in Xf has a
singular point at O (that we see now as a point of Xf ), and its proper transform C�
in ˜Xf is the double cover of � ∼= P

1 ramified over the two remaining intersection
points of � and Sf . It follows that C� is rational and we thus constructed a conic
bundle structure a : ˜Xf → P

2 on ˜Xf . On the other hand, if we choose a generic
plane P in P

3, its inverse image�f,P inXf is a del Pezzo surface, hence is rational,
and via a, it is a double cover of P ∼= P

2. The double cover ˜Xf ×P �f,P of Xf
is then rational, being rational over the function field of �f,P since it is a conic
bundle over �f,P which has a section. We thus constructed a degree 2 unirational
parametrization of Xf :

˜Xf ×P �f,P
birat∼= P

3 ��� Xf .

Artin and Mumford construct f in such a way that Xf is nodal and ˜Xf has a
nontrivial Artin–Mumford invariant. Their construction is as follows: Project Sf
from one of its nodes O . Then this projection makes the blow-up ˜Sf of Sf at O a
double cover of P2 ramified along a sextic curve. This sextic curveD is not arbitrary:
it has to be tangent to a conic C ⊂ P

2 at any of their intersection points. This conic
indeed corresponds to the exceptional curve of ˜Sf . Another way to see it is to write
the equation f as X2

0q + X0t + s, where q, t, s are homogeneous of respective
degrees 2, 3, 4 in three variables X1, X2, X3. The ramification curve of the 2:1
map ˜Sf → P

2 is defined by the discriminant of f seen as a quadratic polynomial in
X0, that is,

g = t2 − 4qs. (2.5)
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The conic C is defined by q = 0 and (2.5) shows that g|C is a square, and g is
otherwise arbitrary. Artin and Mumford choose g to be a product of two degree 3
polynomials, each of which satisfies the tangency condition along C. Note that Sf
has then 9 extra nodes coming from the intersection of the two cubics.

Theorem 2.13 ([3]) If the ramification curve D is the union of two smooth cubics
E, F meeting transversally and tangent to C at each of their intersection points,
the desingularized quartic double solid ˜Xf has TorsH 3

B(
˜Xf ,Z) �= 0.

Rather than giving the complete proof of this statement, we describe Beauville’s
construction [9] of the Brauer-Severi variety Z → ˜Xf providing a Brauer class
which is a 2-torsion class in H 3

B(
˜Xf ,Z) as described previously. The Artin–

Mumford condition implies that the polynomial f is the discriminant of a (4, 4)-
symmetric matrix M whose entries are linear forms in four variables (the quartic
surface Sf is then called a quartic symmetroid). This defines a family of quadric
surfaces Q over P

3 if we see M as an equation of type (2, 1) on P
3
1 × P

3
2, and

the associated double cover of P
3
2 parameterizes the choice of a ruling in the

corresponding quadric Qt ⊂ P
3
1. The family of lines in a given ruling on a given

fiber is a curve � ∼= P
1 but the natural embedding of � in G(2, 4) gives � as a

conic. This way we get a family of rational curves over ˜Xf , smooth away from the
surface Sf parameterizing singular quadrics. We refer to [9] and also to [34] for the
local analysis which shows how to actually construct a P1-fibration on the whole of
˜Xf .

The last, less classical, birational invariant that we will mention is defined as
follows. For a smooth complex variety X, one has the cycle class map

cl : Z2(X)→ H 4
B(X,Z)

and we will denote by H 4
B(X,Z)alg ⊂ H 4

B(X,Z) the image of cl. The group
H 4
B(X,Z)alg is contained in the group Hdg4(X,Z) of integral Hodge classes of

degree 4 on X.

Lemma 2.14 The groups Tors (H 4
B(X,Z)/H

4
B(X,Z)alg) and Hdg4(X,Z)/

H 4
B(X,Z)alg are birational invariants of the smooth projective variety X.

Proof The two groups satisfy the functoriality conditions needed to apply
Lemma 2.9, hence in order to show birational invariance, it suffices to show their
invariance under blow-up. However, for the blow-up ˜X→ X of Z ⊂ X, one has

H 4
B(

˜X,Z) = H 4
B(X,Z)⊕H 2

B(Z,Z)⊕H 0
B(Z,Z),

where the last term appears only if codimZ ≥ 3. In this decomposition, all the
maps are natural and induced by algebraic correspondences. In particular this is
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a decomposition into a direct sum of Hodge structures. This decomposition thus
induces

H 4
B(

˜X,Z)alg = H 4
B(X,Z)alg ⊕H 2

B(Z,Z)alg ⊕H 0
B(Z,Z)alg,

and

Hdg4(˜X,Z) = Hdg4(X,Z)⊕ Hdg2(Z,Z)⊕Hdg0(Z,Z).

Using the facts that H 2
B(Z,Z)/H

2
B(Z,Z)alg has no torsion and Hdg2(Z,Z) =

H 2
B(Z,Z)alg, which both follow from the integral Hodge conjecture in degree 2 (or

Lefschetz theorem on (1, 1)-classes), we conclude that

Tors (H 4
B(

˜X,Z)/H 4
B(

˜X,Z)alg) = Tors (H 4
B(X,Z)/H

4
B(X,Z)alg),

Hdg4(˜X,Z)/H 4
B(

˜X,Z)alg = Hdg4(X,Z)/H 4
B(X,Z)alg,

which proves the desired result.
The invariance of these groups under X �→ X × P

r is proved similarly. ��
Note that if the rational Hodge conjecture holds for degree 4 Hodge classes on

X, these two groups are naturally isomorphic:

Lemma 2.15 For any smooth projective variety X,

Tors (H 4
B(X,Z)/H

4
B(X,Z)alg) = Tors (Hdg4(X,Z)/H 4

B(X,Z)alg).

If X satisfies the rational Hodge conjecture in degree 4, the group Tors (H 4
B(X,Z)/

H 4
B(X,Z)alg)) identifies with the group Hdg4(X,Z)/H 4

B(X,Z)alg which measures
the defect of the Hodge conjecture for integral Hodge classes of degree 4 on X.

Proof Indeed, a torsion element in H 4
B(X,Z)/H

4
B(X,Z)alg is given by a class α on

X such that Nα is algebraic on X. Then α is an integral Hodge class on X, which
proves the first statement. Finally, the rational Hodge conjecture in degree 4 forX is
equivalent to the fact that the group Hdg4(X,Z)/H 4

B(X,Z)alg is of torsion, which
proves the second statement. ��

2.2 Unramified Cohomology

2.2.1 The Bloch–Ogus Spectral Sequence

Let X be an algebraic variety (in particular, it is irreducible and we can speak of its
function field). If X is defined over C, we can consider two topologies on X(C),
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16 C. Voisin

namely the Euclidean (or analytic) topology and the Zariski topology. We will
denote Xan, resp. XZar , the topological space X(C) equipped with the Euclidean
topology, resp. the Zariski topology. As Zariski open sets are open for the Euclidean
topology, the identity of X(C) is a continuous map

f : Xan→ XZar .

Given any abelian group A, the Bloch–Ogus spectral sequence is the Leray spectral
sequence of f , abutting to the cohomologyHiB(X,A) := Hi(Xan,A). It starts with

E
p,q
2 (A) = Hp(XZar,Hq(A)),

where Hq(A) is the sheaf on XZar associated with the presheaf U �→ H
q

B(U,A).
The Betti cohomology groups HnB(X,A) = Hn(Xan,A) thus have a filtration,
(which is in fact when X is smooth the coniveau filtration) namely the Leray
filtration for whichGrpLH

p+q
B (Xan,A) = Ep,q∞ , the latter group being a subquotient

of Ep,q2 .
A fundamental result of Bloch–Ogus [11] is the Gersten-Quillen resolution for

the sheaves Hq(A). It is constructed as follows: For any variety Y , we denote by
Hi(C(Y ),A) the direct limit over all dense Zariski open sets U ⊂ Y of the groups
HiB(U,A):

Hi(C(Y ),A) = lim→∅�=U⊂Y,open

HiB(U,A). (2.6)

Let now Z be a normal irreducible closed algebraic subset of X, and let Z′ be an
irreducible reduced divisor of Z. At the generic point of Z′, both Z′ and Z are
smooth. There is thus a residue map ∂ : Hi(C(Z),A) → Hi−1(C(Z′), A). It is
defined as the limit over all pairs of dense Zariski open sets V ⊂ Zreg, U ⊂ Z′reg
such that U ⊂ V ∩ Z′reg, of the residue maps

ResZ,Z′ : Hi((V \ V ∩ Z′)an,A)→ Hi−1(Uan,A).

If nowZ′ ⊂ Z is a divisor, withZ not necessarily normal alongZ′, we can introduce
the normalization n : ˜Z → Z with restriction n′ : Z′′ → Z′, where Z′′ = n−1(Z′),
and then define ∂ : Hi(C(Z),A)→ Hi−1(C(Z′), A) as the composite

Hi(C(Z),A) ∼= Hi(C(˜Z),A) ∂→ Hi−1(C(Z′′), A)
n′∗→ Hi−1(C(Z′), A). (2.7)

In (2.7), the pushforward morphism

n′∗ : Hi−1(C(Z′′), A)→Hi−1(C(Z′), A)
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is defined by restricting to pairs of Zariski open sets U ⊂ Z′′reg, V ⊂ Z′reg such that
n′ restricts to a proper (in fact, finite) morphism U → V . More precisely, as Z′′ is
not necessarily irreducible, we should in the above definition write Z′′ = ∪jZ′′j as
a union of irreducible components, and take the sum over j of the morphisms (2.7)
defined for each Z′′j .

For each subvariety j : Z ↪→ X, we consider the group Hi(C(Z),A) as a
constant sheaf supported on Z and we get the corresponding sheaf j∗Hi(C(Z),A)
on XZar . Finally, we observe that we have a natural sheaf morphism

Hi (A)→ Hi(C(X),A)

where we recall that the second object is a constant sheaf on XZar . This sheaf
morphism is simply induced by the natural maps Hi(Uan,A)→ Hi(C(X),A) for
any Zariski open set U ⊂ X, given by (2.6). The residue maps have the following
property: Let D1, D2 ⊂ Y be two smooth divisors in a smooth variety, let Z be a
smooth reduced irreducible component of D1 ∩ D2 and let α ∈ HiB(U,A), where
U : Y \ (D1 ∪D2). Then

ResZ(ResD1(α)) = −ResZ(ResD2(α)), (2.8)

where on the left Z is seen as a divisor in D1, and on the right it is seen as a divisor
of D2. Considering the case where Y ⊂ X is the regular locus of any subvariety of
codimension k of X, D, D′ ⊂ Y are of codimension k + 1, and Z ⊂ D ∩D′ ⊂ Y
is of codimension k + 2 in X, we conclude from (2.8) that for any i, the two sheaf
maps

∂ : ⊕codimY=kH i(C(Y ),A)→⊕codimD=k+1H
i−1(C(D),A)

and

∂ : ⊕codimD=k+1H
i−1(C(D),A)→⊕codimZ=k+2H

i−2(C(Z),A)

satisfy ∂ ◦ ∂ = 0.

Theorem 2.16 (Bloch–Ogus, [11]) Let X be smooth. The complex

0→Hi (A)→ Hi(C(X),A)→⊕ D irred
codimD=1

Hi−1(C(D),A)→ . . .→⊕ Z irred
codimZ=i

H 0(C(Z),A)→ 0

(2.9)

is exact, hence provides an acyclic resolution ofHi (A).

It is clear that this resolution is acyclic. Indeed, all the sheaves appearing in the
resolution are acyclic, being constant sheaves for the Zariski topology on algebraic
subvarieties of X. Note that the codimension i subvarieties Z of X appearing above
are all irreducible, so that H 0(C(Z),A) = A and the global sections of the last
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18 C. Voisin

sheaf appearing in this resolution is the group Z i (X) ⊗ A of codimension i cycles
with coefficients in A.

Theorem 2.16 says first that the sheaf map Hi (A)→ Hi(C(X),A) is injective,
which is by no means obvious. The meaning of this assertion is that if a class α ∈
HiB(U,A) vanishes on a dense Zariski open set V ⊂ U , then U can be covered by
Zariski open sets Vi such that α|Vi = 0. This is a moving lemma for the support of
cohomology.

We now come back to the Bloch–Ogus spectral sequence and describe the
consequences of this theorem, following [11].

Theorem 2.17

(i) For any two integers p > q , one has Ep,q2 (A) = Hp(XZar,Hq(A)) = 0.
(ii) For p ≤ q , one has

Hp(XZar ,Hq(A)) =
Ker (∂ : ⊕codimZ=pHq−p(C(Z),A)→ ⊕codimZ=p+1H

q−p−1(C(Z),A))

Im (∂ : ⊕codimZ=p−1H
q−p+1(C(Z),A)→⊕codimZ=pHq−p(C(Z),A))

.

(2.10)

(iii) The group Hp(X,Hp(Z)) is isomorphic to the group Zp(X)/alg of codimen-
sion p cycles of X modulo algebraic equivalence.

Proof

(i) Indeed, Theorem 2.16 says that Hq(A) has an acyclic resolution of length q .
(ii) As (2.9) is an acyclic resolution of Hq(A), the complex of global sections of

(2.9) has degree p cohomology equal toHp(XZar,Hq (A)).This is exactly the
contents of (2.10).

(iii) We use (ii), which gives in this case

Hp(XZar ,Hp(Z)) = ⊕codimZ=pH 0(C(Z),Z)

Im (∂ : ⊕codimZ=p−1H
1(C(Z),Z)→⊕codimZ=pH 0(C(Z),Z))

.

We already mentioned that the numerator is the group Zp(X). The proof is
concluded by recalling the following two facts :

(1) A cycle Z of codimension p on X is algebraically equivalent to 0 if
it belongs to the group generated by divisors homologous to 0 in the
(desingularization of a) subvarieties of codimension p − 1 of X.

(2) A divisor D in a smooth complex manifold is cohomologous to 0 if and
only if there exists a degree 1 integral Betti cohomology class α onX\|D|
such that Resα = D. Here we denote by |D| the support of D.

��
The vanishing (i) in Theorem 2.17 is very important. Let us give some appli-

cations taken from [11]. We will give further applications in Sect. 2.2.3. First of
all, by the vanishing (i), we conclude that there is no nonzero Leray differential
dr , r ≥ 2 starting from E

p,p

2 (Z) = Hp(XZar,Hp(Z)). It follows that Ep,p∞ (Z) is
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a quotient of the group Hp(XZar,Hp(Z)). Furthermore, by the same vanishing
(i) above, the Bloch–Ogus filtration on H 2p

B (X,Z) has Lp+1 = 0, and thus

LpH
2p
B (X,Z) = GrpLH 2p

B (X,Z) = Ep,p∞ (Z). We conclude that there is a natural
composite map

Hp(XZar,Hp(Z))→ E
p,p∞ (Z) ↪→ H

2p
B (X,Z). (2.11)

It is proved in [11] that, via the identification given by Theorem 2.17(iii), this map
is the cycle class map in Betti cohomology. Note that by definition, the kernel of
the cycle class map Zp(X)/alg → H

2p
B (X,Z) is the Griffiths group Griffp(X).

We finally have the following result for codimension 2 cycles which describes the
kernel of the cycle class map.:

Theorem 2.18 ([11]) Let X be a smooth variety over C. There is a natural exact
sequence

H 3
B(X,Z)→ H 0(XZar,H3(Z))→ H 2(XZar,H2(Z))→ H 4

B(X,Z).

Proof The maps are the natural ones. The first map is given by restriction to Zariski
open sets. The second map is the differential d2 of the Bloch–Ogus spectral sequence
and the last map is the one appearing in (2.11) and just identified with the cycle class
map. The proof of the exactness follows from inspection of the Bloch–Ogus spectral
sequence. The kernel of the map H 2(XZar,H2(Z)) = E2,2∞ → H 4

B(X,Z) must be
in the image of some dr and obviously only r = 2 is possible. This shows exactness
in the third term. Finally, by the vanishing of Theorem 2.17(i), the only nonzero dr
starting from H 0(XZar,H3(Z)) is d2. It follows that Ker d2 = E0,3∞ , and this is a
quotient of H 3

B(X,Z). This shows exactness in the second term. ��

2.2.2 Unramified Cohomology

The following definition was first introduced in [16] in the setting of étale
cohomology.

Definition 2.19 LetX be an algebraic variety over C and letA be an abelian group.
Then Hinr (X,A) = H 0(XZar,Hi (A)).

This definition can be made in fact over other fields, with Betti cohomology replaced
by étale cohomology. If A is finite, and X is over C, étale and Betti cohomology
compare naturally. The advantage of Betti cohomology is that we can consider
integral coefficients, while étale cohomology needs coefficients like Z� which are
projective limits of Z/lnZ. However a big advantage of étale cohomology is that it
fits naturally with Galois cohomology. In fact, we have a natural isomorphism

lim→
U⊂X,open

Hiet (U,A) = HiGal(C(X),A), (2.12)
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where A is finite, and the direct limit is over the dense Zariski open sets of X. The
term on the right is the cohomology of the Galois group of the field C(X) with
coefficients in A. The term on the left is the analogue in the étale setting of what we
defined to be Hi(C(X),A) in the Betti context. If A is finite, then

Hiet (U,A)
∼= HiB(U,A)

henceHi(C(X),A) = HiGal(C(X),A).
One consequence of Theorem 2.16 is the following formula for unramified

cohomology: this is actually cohomology without residues.

Proposition 2.20 Assuming X smooth over C, one has

Hinr(X,A) = Ker (H i(C(X),A)
∂→⊕codimZ=1H

i−1(C(Z),A)). (2.13)

In particular, the restriction map Hinr (X,A) → Hinr (U,A) is injective for any
Zariski dense open set U of X.

Proof Looking at Definition 2.19, this is a particular case of formula (2.10). ��
We now get the following important consequence:

Theorem 2.21 Unramified cohomology groups Hinr(X,A) are birational invari-
ants of smooth projective varieties.

We should make precise here that we consider complex varieties over C if we want
to work with Betti cohomology and any coefficients, and that for more general fields,
we use étale cohomology and have to restrict coefficients as mentioned above.

Proof of Theorem 2.21 This is an immediate application of Propositions 2.20
and 2.3, because formula (2.13) shows that the natural restriction mapHinr (X,A)→
Hinr(U,A) is injective when U is a dense Zariski open set of X, and that it is
an isomorphism if codim (X \ U ⊂ X) ≥ 2. One uses of course the obvious
contravariant functoriality of unramified cohomology. ��

We refer to Sect. 3.3.2 for the proof that unramified cohomology is in fact a stable
birational invariant. The following example shows that unramified cohomology
generalizes Artin–Mumford invariant to higher degree.

Proposition 2.22 Let X be a smooth projective complex variety. Then

H 2
nr(X,Q/Z) = TorsH 2(Xan,O∗Xan), (2.14)

where O∗Xan is the sheaf of invertible holomorphic functions on Xan, is the

Brauer group of X. In particular, if X is rationally connected, H 2
nr(X,Q/Z)

∼=
TorsH 3

B(X,Z) is the Artin–Mumford group of X.
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Proof Let us show the following precise version of (2.14):

H 2
nr (X,Z/nZ) = n− Tors (H 2(Xan,O∗Xan)). (2.15)

Consider the exact sequence

0→ Z/nZ→ O∗Xan → O∗Xan → 1,

where the second map is x �→ xn and Z/nZ is identified with the group of n-th
roots of unity. The associated long exact sequence shows that

n− TorsH 2(Xan,O∗Xan) ∼= H 2(Xan,Z/nZ)/Im cln,

where

cln : H 1(Xan,O∗Xan) = H 1(X,O∗X) = CH1(X)→ H 2(Xan,Z/nZ)

is the cycle class modulo n. We consider the Bloch–Ogus exact sequence for the
sheaf Z/nZ on Xan. The Ep,q2 -terms in degree 2 are, by Theorem 2.17(i)

E
0,2
2 = H 0(XZar,H2(Z/nZ)) = H 2

nr (X,Z/nZ), E
1,1
2 = H 1(XZar,H1(Z/nZ)).

The last term maps to H 2(Xan,Z/nZ) as all the higher dr vanish on it, again by
Theorem 2.17(i), and one proves that the map is the cycle class cln. No dr for r ≥ 2
starts from or arrives to E0,2

2 , by Theorem 2.17(i) again. Hence E0,2
2 = E0,2∞ is the

quotient of H 2(Xan,Z/nZ) by the image of E1,1
2 . ��

2.2.3 Bloch–Kato Conjecture and Applications

Define the Milnor K-theory groups of a field K (or a ring R) as follows

KMi (K) = (K∗)⊗i/I,

where I is the ideal generated by x⊗ (1−x) for x ∈ K∗, 1−x ∈ K∗. In particular,
we haveKM1 (K) = K∗. Fix an integer n prime to the characteristic ofK . The exact
sequence of Galois modules

0→ μn → K
∗ → K

∗ → 1,

where μn ⊂ K∗ is the group of n-th roots of unity, gives a map

∂ : K∗/n→ H 1(K,μn) := H 1(GK,μn), (2.16)
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where GK = Gal (K/K), which is known by Hilbert’s Theorem 90 to be an
isomorphism (this is equivalent to the vanishingH 1(GK,K

∗
) = 0). More generally,

one has a morphism (called the Galois symbol or norm residue map)

∂i : KMi (K)/n→ Hi(GK,μ
⊗i
n ) (2.17)

which to (x1, . . . , xi) associates α(x1) ∪ . . . ∪ α(xi). The following fundamental
result generalizing the isomorphism (2.16) is the Bloch–Kato conjecture solved by
Voevodsky [53].

Theorem 2.23 The map ∂i is an isomorphism for any i and n prime to charK .

This result was known for i = 2 as the Merkur’ev-Suslin theorem [39]. The
following result is proved in [18], and [6] (see also [7]) to be a consequence of
the Bloch–Kato conjecture (now Voevodsky’s theorem).

Theorem 2.24 Let X be a smooth complex variety. Then the sheaves Hi (Z) on
XZar have no torsion.

In other words, if an integral Betti cohomology class α defined on a Zariski open set
U of X is of n-torsion for some integer n, then U is covered by Zariski open sets V
such that α|V = 0.

Proof of Theorem 2.24 The exact sequence of sheaves on Xan

0→ Z
n→ Z→ Z/nZ→ 0

provides an associated long exact sequence of sheaves on XZar

. . .Hi (Z)→ Hi (Z/nZ)→ Hi+1(Z)
n→ Hi+1(Z) . . .

from which one concludes that the sheaves Hi (Z) have no n-torsion (for any n, i) if
and only the natural sheaf maps

Hi (Z)→ Hi (Z/nZ) (2.18)

are surjective for all i, n. This is however implied by Voevodsky’s theorem as
follows: Voevodsky gives the isomorphisms

KMj (C(D))/n
∼= HjGal(C(D),Z/nZ)

for all j, n and closed algebraic subsets D of X. If one combines these iso-
morphisms with the Bloch–Ogus resolution of Hi (Z/nZ) on one hand and the
Gersten-Quillen resolution of the sheaves KMi (OX) established by Kerz [30] on
the other hand, one concludes that the natural maps

KMi (OX)→ Hi (Z/nZ) (2.19)
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are sheaf isomorphisms. On the other hand, we note that for a Zariski open set
U ⊂ X, we have the inclusion

�(O∗U ) ⊂ �(O∗Uan)

where on the right we consider the invertible holomorphic functions on U . There
are natural maps given by the exponential exact sequence on Uan

c : KM1 (�(OUan)) = �(O∗Uan)→ H 1(Uan,Z), c : KMi (�(OUan))→ Hi(Uan,Z)

and the maps KMi (�(OU )) → Hi(Uan,Z/nZ) appearing in (2.19) fit in a
commutative diagram

KM
i OU ))

f

KM
i OUan))

c

fan

H i(Uan,Z)

g

KM
i OU))/n KM

i OUan))/n
cn

H i(Uan,Z/nZ) (2.20)

where the first vertical maps f and fan given by reduction mod n are obviously
surjective and the vertical map g is the map (2.18), or rather its global sections
version overU . Voevodsky’s theorem implies a fortiori the surjectivity of the bottom
horizontal map cn at the sheaf level, so by surjectivity of fan, we conclude that
cn ◦ fan = g ◦ c is surjective at the sheaf level. A fortiori g is surjective at the sheaf
level, that is, the sheaf maps (2.18) are surjective. ��
Corollary 2.25 The groups Hinr(X,Z) have no torsion, for any smooth algebraic
variety over C.

We will however also see that these groups are trivial forX unirational. (We refer to
Theorem 3.22 in Sect. 3.3.2 for details of proof and for a more general statement.)
The unirationality assumption guarantees by functoriality considerations that the
groupsHinr (X,Z) are torsion for i > 0. The torsion freeness statement then implies
that they are trivial. It follows that we cannot use the unramified cohomology groups
with integral coefficients to distinguish rational varieties from unirational ones. In
fact, unramified cohomology with torsion coefficients are the right invariant to use,
as it already appeared in Proposition 2.22. The following result proved in [18] uses
Theorem 2.24 to describe the next group H 3

nr (X,Q/Z) (or H 3
nr (X,Z/nZ)). In fact

we relate it to the birationally invariant group we introduced in Lemma 2.14.

Theorem 2.26 ([18])

(i) For any smooth algebraic variety X over C, there is an exact sequence

0→ H 3
nr (X,Z)⊗ Z/nZ→ H 3

nr (X,Z/nZ)→ n− Tors (H 4
B(X,Z)/H

4
B(X,Z)alg)→ 0

(2.21)
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(ii) If X is rationally connected, then H 4
nr (X,Z/nZ)

∼= n − Tors (H 4
B(X,Z)/

H 4
B(X,Z)alg) and H

4
nr (X,Q/Z) measures the defect of the Hodge conjecture

for degree 4 integral Hodge classes on X.

Proof The second statement follows from the first by Theorem 3.22(ii), using
Lemma 2.15 and the fact that if X is rationally connected, the Hodge conjecture
holds for rational Hodge classes of degree 4 on X (see [12, 19], and Sect. 3.3.1).

We now prove (i). The result is obtained by examining the Bloch–Ogus spectral
sequence for degree 4 integral cohomology. Recall from Sect. 2.2.1 that we have
E
p,q

2 -terms Hp(XZar,Hq (Z)) with p + q = 2 converging to H 4
B(X,Z). By

Theorem 2.17(i), only

H 0(XZar,H4(Z)), H 1(XZar,H3(Z)), H 2(XZar,H2(Z))

appear. Furthermore, as we already saw, the groupH 2(XZar,H2(Z)) maps onto its
image E2,2∞ in H 4

B(X,Z), which identifies with H 4
B(X,Z)alg. We conclude that the

Bloch–Ogus filtration on H 4
B(X,Z) induces a filtration on H 4

B(X,Z)/H
4
B(X,Z)alg

with two successive quotients, namely E1,3∞ and E0,4∞ . The space E0,4∞ is a subspace
of E0,4

2 = H 0(XZar,H4(Z)), hence it has no torsion by Theorem 2.24. It thus
follows that

Tors (H 4
B(X,Z)/H

4
B(X,Z)alg) = TorsE1,3∞ .

Finally, applying again Theorem 2.17(i), we see that no dr can start from E
1,3∞ , so

that E1,3∞ = E1,3
2 = H 1(XZar,H3(Z)). Finally we have to compute the n-torsion

of the last group and for this we use the short exact sequence of sheaves on XZar
given by Theorem 2.24:

0→ H3(Z)
n→ H3(Z)→ H3(Z/nZ)→ 0.

Taking the long exact sequence associated to it, we get

0→ H 3
nr(X,Z)⊗Z/nZ→ H 3

nr (X,Z/nZ)→ n−Tors (H 1(XZar,H3(Z)))→ 0,

that is (2.21). ��
It is well-known that the integral Hodge conjecture is not true in general in degree
4. This was first observed by Atiyah and Hirzebruch [4]; further examples were
found by Kollár [32], and we refer to [48] for a development of Kollár’s method.
One question which remained open was whether there are such counterexamples to
the integral Hodge conjecture for degree 4 Hodge classes on a rationally connected
variety (such a variety is then stably irrational by Lemma 2.14). That such examples
exist follows from Theorem 2.26 and earlier work of Colliot-Thélène-Ojanguren
[16].
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Theorem 2.27 ([16]) There exist unirational six-folds X, which satisfy
H 3
nr(X,Z/2Z) �= 0.

The varieties X are constructed as quadric bundles over P3. No smooth model is
provided in [16] but in fact, although the formulas we gave above need a smooth
projective model, it is not actually needed to compute unramified cohomology, as
this is a birational invariant, hence can be computed using only the function field,
which is what the authors do in [16]. By Theorem 2.26 (ii), any smooth projective
model of such a variety X has an integral Hodge class of degree 4 which is not
algebraic, but it is not obvious to see it geometrically.

2.3 Further Stable Birational Invariants

We work over the complex numbers. We describe in this section a number of
interesting birational invariants constructed from the group of 1-cycles. It is not clear
whether these invariants can be nontrivial for some rationally connected varieties.

2.3.1 Curve Classes

LetX be a smooth projective rationally connected variety of dimension n overC. As
H 2(X,OX) = 0, the Hodge structure on H 2n−2

B (X,Z) ∼= HB2 (X,Z) is trivial, that
is, purely of type (n− 1, n− 1). For any smooth projective variety X as above, the
cycle class map Z1(X) ⊗ Q → Hdg2n−2(X,Q) := H 2n−2

B (X,Q) ∩ Hn−1,n−1(X)

is surjective, as follows from the Lefschetz theorem on (1, 1)-classes and the hard
Lefschetz theorem in degree 2, which provides an isomorphism

ln−2 : Hdg2(X,Q) ∼= Hdg2n−2(X,Q).

The following was observed in [48]:

Proposition 2.28 The quotient group

Hdg2n−2(X,Z)/H 2n−2(X,Z)alg, (2.22)

where H 2n−2(X,Z)alg denotes the image of the cycle class map Z1(X) →
Hdg2n−2(X,Z), is a stable birational invariant.

Proof Using Lemma 2.9, we only have to prove invariance under blow-up and under
X �→ X × P

r . When we blow-up X along a smooth subvariety Z ⊂ X, the extra
(Hodge) classes of degree 2n − 2 are generated by the classes of vertical lines of
the exceptional divisor EZ → Z. They are all algebraic so that the quotient (2.22)
remains unchanged. When taking the product with P

r , the extra Hodge homology
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classes of degree 2 are generated by the class of a line in P
r , hence are algebraic, so

that the quotient (2.22) remains unchanged. ��
We conjectured in [59] that the group (2.22) is trivial for rationally connected
varieties. This conjecture is proved in [56] in the case of threefolds. More generally,
we prove the following:

Theorem 2.29 ([56]) Let X be a smooth projective threefold which is uniruled or
has trivial canonical bundle. Then the integral Hodge classes of degree 4 on X are
algebraic.

The conjecture is also proved in [27] for Fano fourfolds, building on the K-trivial
case in Theorem 2.29. In the paper [56], we also proved that the conjecture would
be a consequence of the Tate conjecture for divisor classes on surfaces defined over
a finite field.

2.3.2 Griffiths Group

Here is a more refined birational invariant that one can define using 1-cycles. Recall
that the Griffiths group Griffk(X) (see [24]) is defined as the group of k-cycles of X
homologous to 0 modulo algebraic equivalence.

Proposition 2.30 The groupGriff1(X) is a stable birational invariant of the smooth
projective variety X.

Proof Using Lemma 2.9, we only have to prove invariance under blow-up and under
X �→ X×P

r . When we blow-upX along a smooth subvariety Z ⊂ X, the blow-up
formulas show that the extra elements in the group Griff1(˜X) come from Griff0(Z)

which is 0 as 0-cycles homologous to 0 are algebraically equivalent to 0. When we
take the product ofX with P

r , the extra 1-cycles inX×Pr are coming from 0-cycles
of X, and the extra 1-cycles homologous to 0 from 0-cycles homologous to 0 on X,
which are algebraically equivalent to 0. ��
It is not known if the group Griff1(X) can be nonzero for a rationally connected
variety. It is tempting to conjecture that it is always trivial for X rationally
connected. This has been proved by Tian and Zong [50] for Fano complete
intersections of index at least 2. For such a variety X, they prove that all rational
curves deform to a union of lines.

Remark 2.31 If dimX = 3, then Griff1(X) = Griff2(X). If furthermore X is
rationally connected, then Griff2(X) = 0 by Theorem 3.21.
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2.3.3 Torsion 1-Cycles with Trivial Abel–Jacobi Invariant

It is an important and classical result due to Roitman [44] that the kernel of the
Albanese map

albX : CH0(X)hom→ Alb(X)

has no torsion ifX is a smooth projective variety over C (or any algebraically closed
field of characteristic 0). Let J3(X) = J 2n−3(X) be the intermediate Jacobian
built from the Hodge structure on H 2n−3

B (X,Z) ∼= HB3 (X,Z). If X is rationally
connected,H 3,0(X) = 0 = Hn,n−3(X) and J3(X) is an abelian variety which is the
target of the Abel–Jacobi map

φn−1
X : CH1(X)hom→ J3(X). (2.23)

The Abel–Jacobi map for three-dimensional varieties played an important role in
the study of the rationality problem, thanks to Clemens–Griffiths criterion that we
will revisit in Sect. 5.2. The following provides another birationally invariant group:

Proposition 2.32 The group Tors (Kerφn−1
X ) is a stable birational invariant of the

smooth projective variety X.

Proof Using Lemma 2.9, we only have to prove invariance under blow-up and under
X �→ X×P

r . When we blow-upX along a smooth subvariety Z ⊂ X, the blow-up
formulas for Chow groups and cohomology give

CH1(˜X) = CH1(X)⊕ CH0(Z)

HB2 (
˜X,Z) = HB2 (X,Z)⊕H0(Z,Z),

hence

CH1(˜X)hom = CH1(X)hom ⊕ CH0(Z)hom

and similarly J3(˜X) = J3(X) ⊕ J1(Z) where J1(Z) = Alb(Z). The Abel–Jacobi
map φn−1

˜X
is the direct sum of the Abel–Jacobi map φn−1

X and the Albanese map of
Z. It follows that

Tors (Kerφn−1
˜X
) = Tors (Kerφn−1

X )⊕ Tors (Ker albZ)

and the second group on the right is trivial by Roitman’s theorem.
Similarly, for any r ≥ 1, we have

CH1(X × P
r )hom = CH1(X)hom ⊕ CH0(X)hom
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and J3(X × P
r ) = J3(X) ⊕ J1(X) where J1(X) = Alb(X). The Abel–Jacobi map

φn−1+r
X×Pr is the direct sum of the Abel–Jacobi map φn−1

X and the Albanese map of X.
It follows that

Tors (Kerφn−1+r
X×Pr ) = Tors (Kerφn−1

X )⊕ Tors (Ker albX)

and the second group on the right is trivial by Roitman’s theorem. ��
It is again an open question whether a smooth projective rationally connected variety
over C can have some nonzero torsion in Kerφn−1

X .

Remark 2.33 If dimX = 3, then the 1-cycles are codimension 2 cycles and a
difficult theorem of Bloch (see Theorem 3.19) thus applies and says that Kerφn−1

X =
Kerφ2

X has no torsion in this case.

3 0-Cycles

3.1 Bloch–Srinivas Principle

The Bloch–Srinivas principle [12] says the following:

Theorem 3.1 Let Y → B be a flat morphism of varieties defined over a field k, with
B smooth, and let Z be a cycle on Y . Assume thatK ⊇ k is an algebraically closed
field of infinite transcendence degree over k and that for any point b ∈ B(K), the
restricted cycle Z|Yb is rationally equivalent to 0. Then there exist an integer N > 0
and a dense Zariski open set U ⊂ B such that NZ|YU = 0 in CH(YU ), where
YU := φ−1(U) ⊂ Y .

The condition on K guarantees that it contains any finitely generated extension
of k. The assumptions we imposed on B and φ are used to give a meaning to the
restricted cycles Z|Yb . As the conclusion concerns only a dense Zariski open set
of B, smoothness of B is not restrictive. The theorem is obtained by embedding
k(B) into K and by applying the assumption to the generic point η of B, which is
defined over k(B) but can be seen as defined overK via k(B) ⊂ K . As Z vanishes
in CH(YηK ), one easily concludes by a trace argument that it is torsion in CH(Yη).
Finally, as η is the generic point of B, the vanishing of NZ in CH(Yη) implies the
vanishing of NZ in CH(YU ) for some dense Zariski open set U of B, which proves
the theorem. Note that the same argument proves as well the following statement:

Proposition 3.2 Under the same assumptions as in Theorem 3.1, there exist a dense
Zariski open set U ⊂ Breg and a finite cover U ′ → U such that ZU ′ = 0 in
CH(YU ′), where YU ′ := U ′ ×U YU and ZU ′ is the pull-back of Z|YU to YU ′ .
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If X is a complex variety, then X is defined over a field k which has finite
transcendence degree over Q and C satisfies the desired properties with respect to
k. We then conclude:

Theorem 3.3 Let φ : Y → B be a morphism of complex varieties and let Z be a
cycle on Y . Assume that for any complex point b ∈ B(C), the restricted cycle Z|Yb
is rationally equivalent to 0. Then there exist an integer N > 0 and a dense Zariski
open set U ⊂ B such that NZ|YU = 0 in CH(YU ), where YU := φ−1(U) ⊂ Y .
This theorem leads us to the “decomposition of the diagonal” first introduced by
Bloch and Srinivas, some applications of which we will describe below:

Theorem 3.4 ([12]) Let X be a variety of dimension n over C and assume that
there exists a closed algebraic subset W ⊂ X such that CH0(W) → CH0(X) is
surjective. Then for some integer N > 0, one has a decomposition

N�X = ZW + Z in CHn(X ×X), (3.24)

where �X is the diagonal of X, ZW is supported on X ×W and Z is supported on
D ×X for some proper closed algebraic subsetD ⊂ X.
Proof The assumption is equivalent, by the localization exact sequence, to the
vanishing of CH0(X \ W). We can then apply Theorem 3.3 to Z = ΔX|X×(X\W)
and conclude that for some Zariski open set U ⊂ X, and for some integer N > 0,

N�X |U×(X\W) = 0 in CHn(U × (X \W)).

By the localization exact sequence, letting D := X \ U , this is equivalent to the
decomposition (3.24). ��
In these notes, we are interested in rationally connected varieties X, which have
“trivial” CH0 group over an algebraically closed field, as all points of X are
rationally equivalent in X. We are thus in the situation of Theorem 3.4, where we
can take forW any point x ∈ X. One then gets:

Theorem 3.5 Let X be a complex algebraic variety of dimension n, such that all
points of X are rationally equivalent to any given point x ∈ X. Then there is a
divisorD ⊂ X and an integer N such that

N�X = N(X × x)+ Z in CHn(X ×X) (3.25)

where Z is supported on D ×X.
The decomposition (3.25) is a Chow decomposition of the diagonal with rational
coefficients, due to the presence of the coefficient N . It was used by Bloch and
Srinivas to give a new proof and a generalization of Mumford’s theorem [41]. Note
conversely that, if X is smooth projective, and admits a decomposition as in (3.25),
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then CH0(X) = Z. Indeed, for any y ∈ X, we get by letting act the correspondences
appearing in (3.25) on any 0-cycle z (see (3.27)):

Nz = N(deg z)x in CH0(X),

This shows that up to torsion, CH0(X) = Z, and in particular that AlbX = 0. On
the other hand Roitman’s theorem [44] says that the kernel of the Albanese map has
no torsion, hence finally CH0(X) = Z.

3.2 Universal Chow Group of 0-Cycles

The universal CH0 group of X is not a group but a functor. If X is a variety defined
over a fieldK , this functor, from the category of fields containingK to the category
of abelian groups, associates to any field L � K the group CH0(XL). The crucial
point is that it provides much more information on X than the group CH0(X), even
ifK is very big like C, because the considered fields L are not algebraically closed.
The interest of this notion for rationality questions comes from the following facts:

Lemma 3.6 One has CH0(P
n
K) = Z for any field K . One can take for generator

the class of any K-point of PnK .

Proof (See also [21, 1.9].) This follows indeed by induction from the localization
exact sequence

CH0(P
n−1
K )→ CH0(P

n
K)→ CH0(A

n
K)→ 0,

where P
n−1
K ⊂ P

n
K is any hyperplane, and from CH0(A

n
K) = 0 which is almost

trivial: any effective 0-cycle of A1
K is the divisor of a polynomial P ∈ K[X]. ��

Note that the same proof shows that CH0(X × P
n
K)
∼= CH0(X), see [21, 3.1].

The following definition appears in [5]:

Definition 3.7 A variety X over K has universally trivial CH0-group if X has a
0-cycle z of degree 1 and CH0(XL) = Zz for any field L � K .

We then have

Proposition 3.8 IfX and Y are smooth projective overK and are stably birational
over K , then X has universally trivial CH0-group if and only Y does.

In particular, if X is stably rational over K , X has universally trivially trivial
CH0-group.

Let us first recall the following basic facts that will be used many times in the sequel.
Let X be a smooth projective variety of dimension n. Any cycle � ∈ CHn(X ×X)
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(also called a self-correspondence) acts on Chow groups ofX in the following way:
the upper-star action �∗ : CH(X)→ CH(X) is defined by

�∗(z) = pr1∗(pr∗2 z · �), (3.26)

where pri : X × X → X are the two projections, and the lower-star action �∗ :
CH(X)→ CH(X) is defined by

�∗(z) = pr2∗(pr∗1 z · �). (3.27)

Obviously �∗ = t�
∗ where t� is the image of � under the involution of X × X

exchanging the factors, but it is important for us in this section to use the two actions.

Proof of Proposition 3.8 The CH0-group has the functoriality properties needed to
apply Lemma 2.9. Hence assuming resolution of singularities, it suffices to show
invariance under blow-up and invariance under X �→ X × P

r . The former follows
more generally from the blow-up formulas for Chow groups, and the later was noted
above. An alternative proof which does not use resolution of singularities is as
follows: Let φ : X ��� Y be a birational map. Then the graphs �φ ⊂ X × Y
and �φ−1 ⊂ Y ×X are correspondences which satisfy

�φ−1 ◦ �φ = �X + Z in CHn(X ×X) (3.28)

�φ ◦ �φ−1 = �Y + Z′ in CHn(Y × Y )

where the self-correspondences Z (resp. Z′) have the property of being supported
on D × X (resp. D′ × Y ) for some proper closed algebraic subset D of X (resp.
D′ of Y ). But a correspondenceZ satisfying this property acts trivially on CH0(X),
and similarly for Z′. Thus we conclude that

(�φ−1)∗ ◦ (�φ)∗ = IdCH0(X), (�φ)∗ ◦ (�φ−1)∗ = IdCH0(Y ).

��
We now consider the previous situation where X is a smooth complex projective

variety. The precise relationship between CH0-triviality and universal CH0-triviality
is described by the Bloch–Srinivas Theorem 3.5:

Proposition 3.9 If CH0(X) = Z, the universal CH0 group of X is trivial modulo
torsion; more precisely, there is an integer N > 0 such that NCH0(XL)0 = 0 for
any field L � C.

Here CH0(XL)0 is the Chow group of 0-cycles of degree 0.

Proof We use Bloch–Srinivas decomposition of the diagonal of X/C

N�X = N(X × x)+ Z in CHn(X ×X) (3.29)
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with Z supported on D ×X. It clearly remains true for XL, which gives

N�XL = N(XL × x)+ ZL in CHn(XL ×XL), (3.30)

with ZL supported on DL ×XL. Both sides of this equality act on CH0(XL)0. The
action of ZL∗ and N(XL × x)∗ are clearly 0 on CH0(XL)0, while (N�XL)∗ =
N IdCH0(XL)0 . ��
The next question (and the central subject of these notes) is whether one can get
rid of the coefficient N , that is whether X has universally trivial CH0 and we
will see in the next sections that there are many obstructions to that, which all
provide interesting obstructions to stable rationality. We will shift to the language
of decomposition of the diagonal, that was studied first in [58] in relation with
rationality questions.

Definition 3.10 A n-dimensional variety X over K admitting a K-point x (or a
0-cycle of degree 1) has a Chow decomposition of the diagonal if one can write

�X = X × x + Z in CHn(X ×X), (3.31)

whereZ is a cycle ofX×X which is supported onD×X, whereD ⊂ X is a proper
closed algebraic subset.

It is immediate to see that the definition is independent of the choice of x. The
equivalence of the two definitions is contained in the following result proved in [5]:

Proposition 3.11 A varietyX overK admitting aK-point x (or a 0-cycle of degree
1) has a Chow decomposition of the diagonal if and only if X has universally trivial
CH0 group.

Proof If we look at the proof of Proposition 3.9, and put N = 1, we see that it
proves the “iff” direction. Conversely, assume X has universally trivial CH0 group
and let L = K(X). The diagonal of X provides a L-point ηX of XL (namely the
generic point). By assumption, we get that

ηX = xL in CH0(XL). (3.32)

Now we use the fact that

CH0(XL) = CHn(XL) = lim→
U⊂X

CHn(U ×X), n = dimX,

where the direct limit is over all the dense Zariski open sets ofX. The points ηX and
xL are the limits of the cycles (�X)|U×X and U × x respectively. Formula (3.32)
thus says that there exists a Zariski open set U ⊂ X such that

(�X)|U×X − U × x = 0 in CHn(U ×X),
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which is equivalent to a decomposition of the diagonal (3.31) with D = X \ U by
the localization exact sequence. ��
The study of the decomposition (3.31) and its consequences will allow us in next
section to exhibit many obstructions, some topological, to the universal triviality of
CH0.

3.3 Decomposition of the Diagonal: Consequences

Here we will work over C and use integral Betti cohomology classes, but of course
Z�-étale cohomology classes could be used in general. A cohomology class α ∈
H 2n
B (X ×X) acts on integral cohomology of X by the same formulas as (3.26) and

(3.27). We will denote by α∗ and α∗ these actions. When α is an integral Hodge
class, in particular when α = [�] is algebraic, the two maps α∗ : HlB(X,Z) →
HlB(X,Z) are morphisms of Hodge structures. In particular, when l = 2j+1 is odd,
there are corresponding endomorphisms α∗, α∗ of the associated Jacobian J l(X) =
HlB(X,C)/(F

iH lB(X)⊕HlB(X,Z)tf ).
We will use freely the fact that the actions of �∗, resp. �∗ on Chow groups are

compatible via the cycle class map and Abel–Jacobi map with the action of [�]∗,
resp. [�]∗, on cohomology and Jacobians, see [55, 9.2].

3.3.1 Consequences of a Cohomological Decomposition of the Diagonal

Let X be smooth projective of dimension n over C. We will say that X has a
cohomological decomposition of the diagonal if one can write

[�X] = [X × x] + [Z] in H 2n
B (X ×X,Z), (3.33)

where Z is a cycle of X × X which is supported over D × X, with D ⊂ X a
proper closed algebraic subset, that we can assume to be a divisor. Clearly, if X has
a Chow decomposition of the diagonal as in (3.31), then it has a cohomological
decomposition of the diagonal by taking cohomology classes. Note that (3.33)
implies that ([�X] − [X × x])|U×X = 0 in H 2n

B (U × X,Z) but that this is a
priori a stronger statement, because the latter is just saying that the homology class
[�X] − [X × x] comes from an integral homology class β supported on D × X
for some proper closed algebraic subset D, but it is not saying that this β can be
taken algebraic on D × X. In order to draw consequences of (3.33), we use it in
the following form: We observe that we can choose D to be smooth generically
along each component of pr1(SuppZ). It then follows that the cycle Z lifts to a
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codimension n − 1 cycle ˜Z of ˜D × X, where j̃ : ˜D → X is a desingularization of
D ⊂ X. Then (3.33) rewrites as

[�X] − [X × x] = (j̃ , IdX)∗([˜Z]) in H 2n
B (X ×X,Z). (3.34)

We now get the following consequence:

Lemma 3.12 IfX has a cohomological decomposition of the diagonal as in (3.34),
then for any α ∈ H ∗B(X,Z) of degree ∗ > 0, one has

α = j̃∗([˜Z]∗α) in H ∗B(X,Z). (3.35)

Similarly, for any α ∈ H ∗(X,Z) of degree ∗ < 2n, one has

α = [˜Z]∗(j̃∗α) in H ∗B(X,Z). (3.36)

Proof For (3.35), we let both sides of (3.34) act on H ∗B(X,Z) by the upper-star
action. We observe that [X × x]∗α = 0 if ∗ = degα > 0 and [�X]∗α = α. Finally
we have

((j̃ , IdX)∗([˜Z]))∗(α) = j̃∗([˜Z]∗α) in H ∗B(X,Z),

which proves (3.35).
For (3.36), we argue similarly but use the lower-star action. We observe that

[X × x]∗α = 0 if ∗ = degα < 2n and [�X]∗α = α. Finally we have

((j̃ , IdX)∗([˜Z]))∗α = [˜Z]∗(j̃∗α) in H ∗B(X,Z),

which proves (3.36). ��
We now get the following:

Theorem 3.13 If X has a cohomological decomposition of the diagonal, then the
following hold:

1. Hi,0(X) = 0 (hence also H 0,i(X) = 0 for i > 0).
2. TorsHiB(X,Z) = 0 for i ≤ 3. Dually TorsHiB(X,Z) = 0 for i ≥ 2n− 2.
3. Integral Hodge classes of degree 4 on X are algebraic.
4. Integral cohomology classes of degree 2n− 2 on X are algebraic.

Remark 3.14 Statement 1 is due to Bloch and Srinivas [12] and uses only the
cohomological decomposition of the diagonal with Q-coefficients. Statement 3 is
proved by Bloch and Srinivas in [12] with Q-coefficients. Statements 2 and 3 appear
in [18] and statement 4 in [58].

Remark 3.15 If X is rationally connected of dimension 3 over C, the only prop-
erty, among these four properties, which can be violated is the vanishing of
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TorsH 3
B(X,Z) and of TorsH 4

B(X,Z). Indeed, by Theorem 2.2, the other cohomol-
ogy groups have no torsion. Furthermore, by Theorem 2.29, properties 3 and 4,
which coincide in this case, are satisfied.

Proof of Theorem 3.13 We use formula (3.35). If α ∈ Hi,0(X) with i > 0, then
j̃∗([˜Z]∗α) = 0 in Hi,0(X) as this is a holomorphic form on X which vanishes on
the dense Zariski open set X \D. Thus (3.35) gives α = 0, proving 1.

Remark 3.16 To make this argument totally rigorous, we should use the action of
classes of correspondences on Dolbeault cohomology, rather than Betti cohomology
(they coincide on X but not on U ). We refer to the discussion starting the proof of
Theorem 3.20 for more detail.

If α is torsion and of degree ∗ ≤ 3, then [˜Z]∗α is torsion and of degree ∗−2 ≤ 1,
hence vanishes in H ∗−2(˜D,Z). Hence (3.35) gives α = j̃∗([˜Z]∗α) = 0. The other
statements are obtained by duality or can be obtained directly by using formula
(3.36). This proves 2.

If α is an integral Hodge class of degree 4, then [˜Z]∗α is an integral Hodge
class of degree 2 on ˜D, hence is algebraic by the Lefschetz (1, 1)-theorem. Thus
α = j̃∗([˜Z]∗α) is algebraic and 3 holds.

For the remaining statement, we use (3.36). If α is an integral cohomology class
of degree 2n−2 onX, then j̃∗α ∈ H 2n−2(˜D,Z) is algebraic on ˜D which is smooth
of dimension n− 1. Thus α = [˜Z]∗(j̃∗α) is algebraic on X. ��

3.3.2 Consequences of a Chow Decomposition of the Diagonal

We now describe consequences of a Chow decomposition of the diagonal that a
priori cannot be obtained from a cohomological decomposition of the diagonal, for
which we refer to Theorem 3.13 .

Theorem 3.17 If X has a Chow decomposition of the diagonal, then

1. The Griffiths group Griff1(X) is trivial.
2. The kernel of the Abel–Jacobi map φ2n−3

X : CHn−1(X)hom → J 2n−3(X) has no
torsion.

3. The kernel of the Abel–Jacobi map φ3
X : CH3(X)hom→ J 5(X) has no torsion.

We start the proof by redoing in the Chow setting the analysis done previously in
the cohomological setting. A Chow decomposition of the diagonal�X = X×x+Z
in CHn(X ×X) rewrites by desingularization in the form

�X −X × x = (j̃ , IdX)∗(˜Z) in CHn(X ×X) (3.37)
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where ˜D is smooth of dimension n − 1 and maps to X via j̃ . We get the following
consequence by letting both sides of (3.37) act on CH(X), either by the lower star
or by the upper star action:

Lemma 3.18 If X has a Chow decomposition of the diagonal, then for any z ∈
CH∗(X) of codimension ∗ > 0, one has

z = j̃∗(˜Z∗z) in CH∗(X). (3.38)

Similarly, for any z ∈ CH∗(X) of codimension ∗ < n, one has
z = ˜Z∗(j̃∗z) in CH∗(X). (3.39)

Proof of Theorem 3.17 By assumption, X has a Chow decomposition of the diag-
onal that we write as in (3.37). If z ∈ CH1(X), we get z = j̃∗(˜Z∗z) in CH1(X)

by Lemma 3.18, and if z is homologous to 0, ˜Z∗z is a 0-cycle homologous to 0 on
˜D. It is thus algebraically equivalent to 0 and so z = j̃∗(˜Z∗z) is also algebraically
equivalent to 0. This proves 1.

Assume now that z is of torsion and annihilated by the Abel–Jacobi map. Then
˜Z∗z is a torsion 0-cycle on ˜D which is annihilated by the Albanese map and
Roitman’s theorem gives that ˜Z∗z = 0. Thus z = 0, which proves 2.

If dimX ≥ 4 and z ∈ CH3(X), we have by Lemma 3.18, z =
j̃∗(˜Z∗z) in CH3(X), where ˜Z∗z is a codimension 2 cycle on ˜D. If now z is of
torsion and annihilated by the Abel–Jacobi map, ˜Z∗z is of torsion and annihilated
by the Abel–Jacobi map, hence it vanishes in CH2(˜D) by the following result of
Bloch:

Theorem 3.19 (Bloch) The kernel of the Abel–Jacobi map for codimension 2
cycles homologous to zero on complex projective manifolds has no torsion.

It then follows that z = j̃∗(˜Z∗z) = 0, which proves 3. ��
We conclude this section with an implication of cohomological type which is due to
Totaro [51] and will be used in Sect. 4.3. The statement is due to Bloch and Srinivas
when charK = 0.

Theorem 3.20 Let X be a smooth projective variety of dimension n defined over a
fieldK of any characteristic. AssumeX has a Chow decomposition of the diagonal.
Then H 0(X,�iX) = 0 for i > 0.

Proof We use the algebraic de Rham cycle class for cycles in any smooth variety Y
overK . For any cycle Z ∈ CHk(Y ), we get a class [Z] ∈ Hk(Y,�kY ). Furthermore,
if X is smooth projective of dimension n, a class α ∈ Hn(Y × X,�nY×X), with Y
smooth but not necessarily projective, induces a morphism

α∗ : Hp(X,�qX)→ Hp(Y,�
q
Y )

α∗(a) = pr1∗(α ∪ pr∗2a).
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We now start from our Chow decomposition of the diagonal in the form

(�X)|U×X = U × x in CHn(U ×X) (3.40)

for some Zariski dense open set of X. Taking de Rham cycle classes, we get

[�X]|U×X = [U × x] in Hn(U ×X,�nU×X). (3.41)

We let both sides act on elements a ∈ Hi,0(X) for i > 0 . The right hand side acts
by 0 and the left hand side acts by restriction of forms to U . We thus conclude that
for any a ∈ H 0(X,�iX) with i > 0, a|U = 0, hence a = 0 because U ⊂ X is a
dense Zariski open set. ��
We finish this section with an important result due to Bloch and Srinivas [12] and
uses in fact only the Chow decomposition of the diagonal with Q-coefficients.

Theorem 3.21 Let X be a smooth projective complex variety admitting a Chow
decomposition of the diagonal with Q-coefficients (equivalently, by Theorem 3.4,
CH0(X) = Z). Then the Griffiths group Griff2(X) is trivial and the Abel–Jacobi
map

φ2
X : CH2(X)hom→ J 3(X)

is an isomorphism.

Proof We write the decomposition of the diagonal as

N�X = N(X × x)+ (j̃ , IdX)∗(˜Z) in CHn(X ×X), (3.42)

where j̃ : ˜D → X s a morphism from a smooth variety of dimension n − 1. This
provides for any z ∈ CH2(X) the equality

Nz = j̃∗(˜Z∗z), (3.43)

where ˜Z∗z is a codimension 1 cycle on ˜D. If z is cohomologous to 0, so is ˜Z∗z,
hence ˜Z∗z is algebraically equivalent to 0 and Nz is algebraically equivalent to 0
by (3.43). We thus proved that Griff2(X) is a torsion group. On the other hand,
using the cohomological version of (3.42), we conclude that for any α ∈ H 3(X,Z),
Nα = j̃∗(˜Z∗ ∗ α), hence vanishes on U = X \ D. Using notation of Sect. 2.2,
this implies that the map H 3(X,Z)→ H 0(XZar,H3(Z)) is of N-torsion, hence is
trivial as the second group has no torsion by Theorem 2.24. Recalling the Bloch–
Ogus exact sequence

H 3
B(X,Z)→ H 0(XZar,H3(Z))→ Griff2(X)→ 0
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from Theorem 2.18, we conclude that in this case Griff2(X) = H 0(XZar,H3(Z))

has no torsion. Hence it is in fact trivial, which proves the first statement.
The second statement is obtained as follows: we use again (3.43). If now z is

homologous to 0 and annihilated by φ2
X, then ˜Z∗z is a codimension 1 cycle on ˜D

which is homologous to 0 and annihilated by φ1
˜D

, hence is trivial. Thus Nz = 0 in

CH2(X) by (3.43). We then conclude that z = 0 using Theorem 3.19. ��
We finally turn to unramified cohomology. The following result was proved in [18]:

Theorem 3.22 Let X be a smooth projective complex variety. (i) If N�X decom-
poses as in (3.25), Hinr (X,A) is of N-torsion for any i > 0 and any coefficients
A. In particular, if X has a Chow decomposition of the diagonal, the unramified
cohomology groupsHinr (X,A) vanish for any i > 0 and any coefficientsA.

(ii) If X satisfies CH0(X) = Z, Hinr (X,Z) vanishes for any i > 0.

Proof Statement (ii) follows from (i), using Theorem 3.5, which guarantees the
existence of a decomposition of N�X assuming CH0(X) = Z, and Corollary 2.25,
which tells that Hinr (X,Z) has no torsion.

The proof of (i) uses the fact that Chow correspondences � ∈ CHn(X × Y )
with X, Y smooth and Y projective of dimension n act on unramified cohomology
providing

�∗ : Hlnr(Y,A)→ Hlnr (X,A). (3.44)

We refer to the appendix of [18] for a precise construction of this action. It factors
through the cycle class [�]mot ∈ Hn((X × Y )Zar,Hn(Z)) = Zn(X × Y )/alg
introduced in Theorem 2.17(iii). The construction of the action then rests on the
basic functoriality properties of the groupsHp(WZar,Hq(A), forW smooth, under
pullback, and push-forward under proper maps and the existence of a cup-product.
Having this action, we simply let act on Hinr(X,A) both sides of the decomposition

N[�X]mot = N[X × x]mot + [Z]mot
with Z supported on D × X for some proper closed algebraic subset D ⊂ X. The
left hand side acts as NId . The term N[X × x]mot acts trivially on Hinr(X,A) for
i > 0. The fact that [Z]∗mot = 0 on Hinr(X,A) follows from the fact that, denoting
U := X \D and jU : U → X the inclusion, we clearly have

j∗U ◦ [Z]∗mot = 0 : Hinr(X,A)→ Hinr (U,A)

for any i since Z is supported on D ×X. On the other hand, the restriction map j∗U
is injective on Hinr (X,A) by Proposition 2.20. ��
Corollary 3.23

(i) The unramified cohomology of Pn with any coefficients vanishes in degree> 0.
(ii) Unramified cohomology with any coefficients is a stable birational invariant.

andreas.hochenegger@unimi.it



Birational Invariants and Decomposition of the Diagonal 39

Proof Clearly P
n admits a decomposition of the diagonal. This follows from the

computation of CH(Pn × P
n) as the free abelian group with basis hi1 · hj2, 0 ≤

i, j ≤ n, where h1 = pr∗1 c1(OPn(1)), h2 = pr∗2 c1(OPn(1)) ∈ CH1(Pn × P
n).

Thus (i) follows from Theorem 3.22(i).
For the proof of (ii), as we already proved birational invariance of unramified

cohomology in Theorem 2.21, it suffices to show invariance under X �→ X × P
r .

We use for this the following partial or relative decomposition of the diagonal of
X × P

r :

�X×Pr =
r

∑

i=0

p∗13�X · p∗24(h
i
1 · hr−i2 ), (3.45)

where p13 : X×Pr×X×Pr → X×X and p24 : X×Pr×X×Pr → P
r×Pr are the

obvious projections, and the h1, h2 are as above codimension 1 cycles on P
r × P

r .
We let act both sides of the decomposition above on Hinr (X × P

r , A), say by the
upper-star action. The left hand side acts trivially, and a term p∗13�X ·p∗24(h

i
1 ·hr−i2 )

acts nontrivially on Hinr (X × P
r , A) only if it dominates X × P

r by the projection
p12, as follows from the argument already given above and using the injectivity of
the restriction map to an open set. The only term which dominates X × P

r by the
projection p12 is

W := p∗13�X · p∗4(hr2),

which acts on Hinr (X × P
r , A) by the composite map:

Hinr (X × P
r , A)

rest→ Hinr (X × pt,A) = Hinr (X,A)
p∗X→ Hinr (X × P

r , A).

It follows from the above arguments that W∗ = Id on Hinr(X × P
r , A), from

which we conclude immediately that the pull-back map p∗X : Hinr (X,A)→Hinr (X×
P
r , A) is an isomorphism. ��

3.3.3 Cohomological Versus Chow Decomposition

We explained above that the existence of a Chow decomposition of the diagonal has
a priori stronger consequences than the existence of a cohomological decomposition
of the diagonal. We are going to discuss here how the two properties relate.

Note first that, by Theorem 3.13, 1, a smooth complex projective variety
admitting a cohomological decomposition of the diagonal has hi,0(X) = 0 for
i > 0, hence Bloch’s conjecture predicts that CH0(X) = Z. The Bloch–Srinivas
theorem 3.5 then shows that X admits a Chow decomposition of the diagonal
with Q-coefficients. In conclusion, when working with Q-coefficients, having a
cohomological and a Chow decomposition of the diagonal should be equivalent.
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Turning to integral coefficients, the following result appears in [61].

Proposition 3.24 A smooth projective variety defined over an algebraically closed
field admits a Chow decomposition of the diagonal if and only if it admits a
decomposition of the diagonal modulo algebraic equivalence.

Proof We use the following result of [52] and [54].

Theorem 3.25 Let � ∈ CH∗(X × X) be a self-correspondence which is alge-
braically equivalent to 0. Then � is nilpotent in the ring CH∗(X × X) of
self-correspondences of X.

Starting from our decomposition

�X = X × x + Z

modulo algebraic equivalence, with Z supported on D × X, let � = �X − X ×
x − Z ∈ CHn(X × X). Theorem 3.25 implies that �◦N = 0 in CHn(X × X) for
some N > 0. We finally observe that �◦N = �X − X × x − Z′ in CHn(X × X)
for some Z′ supported onD′ ×X, for some proper closed algebraic subsetD′ ⊂ X.
The equality

�◦N = 0 = �X −X × x − Z′ in CHn(X ×X)

thus gives a Chow decomposition of the diagonal forX. ��
In the surface case, we have the following result (proved in [61], and reproved in

[29]).

Theorem 3.26 Let X be a smooth complex projective surface with CH0(X) = Z.
Then the following are equivalent:

1. X admits a Chow decomposition of the diagonal.
2. X admits a cohomological decomposition of the diagonal.
3. TorsH ∗B(X,Z) = 0.

Proof The implications 1⇒ 2⇒ 3 are clear (the second one is Theorem 3.13, 2).
Let us prove 3⇒ 1. The condition TorsH ∗(X,Z) = 0 implies that X admits a
Künneth decomposition with integral coefficients, so that we can write

[�X] =
∑

i

αi ⊗ βi in H 4
B(X ×X,Z) (3.46)

for some integral cohomology classes αi, βi . As CH0(X) = Z we have by
Mumford’s theorem [41] or Bloch–Srinivas that Hi,0(X) = 0 for i > 0, which
in our case implies that the whole cohomology of X is algebraic. (In particular X
has no odd degree cohomology.) In formula (3.46), the classes αi , βi are classes
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of algebraic cycles (points, curves, or X itself), which gives a cohomological
decomposition of the diagonal that takes the form

[�X −X × x − Z] = 0, (3.47)

where Z is a cycle supported on D × X for some curve D ⊂ X. We then apply
Theorem 3.21 to Y = X×X which has CH0(Y ) = Z. This theorem tells us that the
group Griff2(Y ) is trivial. It follows that the cycle �X − X × x − Z homologous
to 0 is algebraically equivalent to 0. We conclude that X has a decomposition of the
diagonal modulo algebraic equivalence, hence admits a Chow decomposition of the
diagonal by Proposition 3.24. ��
The following question is open:

Question 3.27 Do there exist smooth projective complex varieties which admit a
cohomological decomposition of the diagonal, but no Chow decomposition of the
diagonal?

The answer might be affirmative in view of the discussion made in the previous
sections concerning what is controlled by the Chow, resp. cohomological decom-
positions of the diagonal. If we look at the proof of Proposition 3.24, we see that
the key point is the nilpotence of self-correspondences algebraically equivalent to 0
(Theorem 3.25). A big conjecture in the theory of algebraic cycles is the following
nilpotence conjecture:

Conjecture 3.28 For any smooth projective varietyX overC, self-correspondences
� ∈ CH(X × X)Q with Q-coefficients and homologous to 0 are nilpotent, that is,
�◦N = 0 in CH(X ×X)Q for some N > 0.

This conjecture is not formulated for self-correspondences � ∈ CH(X × X), that
is with Z-coefficients, and is presumably false, although we are not aware of an
explicit counterexample. In fact, there is a different and more general nilpotence
conjecture by Voevodsky [52] which predicts the following:

Conjecture 3.29 For any smooth projective variety Y , any cycle Z ∈ CH(Y )Q
with Q-coefficients and homologous to 0 is smash-nilpotent, namely ZN = 0 in
CH(XN)Q for some N > 0.

This conjecture implies Conjecture 3.28 by putting Y = X × X and realizing that
�◦N is obtained from�N ∈ CH((X×X)N)Q by a natural correspondence. However,
Conjecture 3.29 is shown not to be true with integral coefficients in [48, Theorem 5].
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4 The Degeneration Method

4.1 A Specialization Result

First of all, let us explain a version of Fulton’s specialization map [21, 20.3].

Proposition 4.1 Let π : Y → C be a flat morphism to a smooth curve over C.
Let Z be a cycle on Y such that for the very general complex point t ∈ C, Z|Yt is
rationally equivalent to 0, where Yt := π−1(t) ⊂ Y . Then for any t ∈ C, Z|Yt is
rationally equivalent to 0.

Remark 4.2 There is no smoothness assumption in this statement, neither for Y , nor
for the morphism π . Indeed, by flatness of π and smoothness of C, the fibers Yt are
Cartier divisors, so the restricted cycle Z|Yt is well-defined.

Proof We apply Proposition 3.2. It says that there exist a base change C′ → C,
where we obviously can assume that C′ is smooth, and a Zariski open set U ′ ⊂ C′,
such that ZU ′ = 0 in CH(YU ′). The cycle ZC ′ ∈ CH(YC ′) thus vanishes on the
Zariski open set YU ′ ⊂ YC ′ , and it follows from the localization exact sequence that
there are finitely many fibers Yt ′i ⊂ YC ′ such that ZC ′ is supported on the union of
the Yt ′i ’s. Clearly the restriction Z|Yt ′ vanishes for any t �= t ′i for all i, but in fact
this is also true for t ′ = t ′i . Indeed, let ji : Yt ′i → YC ′ be the inclusion. Then Yt ′i
is a Cartier divisor, which furthermore has the property that OYt ′

i

(Yt ′i ) is trivial. It

follows that j∗i ◦ ji∗ : CH(Yt ′i ) → CH(Yt ′i ) is 0. This proves the result also for the
special points t ′i since we know that ZC ′ =∑

i ji∗(Zi). (One uses here the fact that
the fibers of YC ′ → C′ and Y → C are the same.) ��
Corollary 4.3 Let X → C be a flat morphism over C where C is a smooth curve
and X is irreducible. Assume that for a very general point t ∈ C, the fiber Xt has a
Chow decomposition of the diagonal. Then any fiberXt has a Chow decomposition
of the diagonal.

Proof Consider the flat morphism Y := X ×C X → C. By assumption, for a very
general point t ∈ C, there exist a divisorDt ⊂ Xt and a point xt ∈ Xt such that

�Xt = Xt × xt + Zt in CH(Xt ×Xt),

where the cycle Zt is supported on Dt × Xt . The data such as Dt , Zt or xt are
parameterized by a countable union of Chow varieties which are proper over C′,
and we conclude that, after base change C′ → C, there exists a divisor D ⊂ XC ′
which does not contain any fiber, there exist a section σ : C′ → XC ′ and a cycle Z
supported on D ×C ′ XC ′ such that the cycle

� := �X′/C ′ −X′ ×C ′ σ(C′)− Z ∈ CH(YC ′) (4.48)
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has the property that for a very general point t ∈ C′, �|Yt = 0. Note that we can
assume thatD is the Zariski closure of its generic fiber overC′, as the only constraint
it has to satisfy, namely (4.48), concerns its generic fiber. By Proposition 4.1, this
remains true for any t ∈ C′. As X is irreducible and flat over C, the fibers of
X → C are equidimensional of dimension n, hence we can assume that D does
not contain any component of any fiber of XC ′ → C′ (such a fiber would form an
irreducible component of D that does not dominate C′, hence would not be in the
Zariski closure of the generic fiber of D). Thus D ∩ Xt is a proper divisor for any
point t ∈ C′, and the condition �|Yt = 0 for any t thus says that Xt has a Chow
decomposition of the diagonal. ��

The following result is proved in [60].

Theorem 4.4 Let π : X → C be a flat projective morphism of relative dimension
n ≥ 2, where C is a smooth curve. Assume that the fiber Xt is smooth for t �= 0,
and has at worst isolated ordinary quadratic singularities for t = 0. Then

(i) If for general t ∈ B, Xt admits a Chow theoretic decomposition of the diagonal
(equivalently, CH0(Xt) is universally trivial), the same is true for any smooth
projective model ˜X0 of X0.

(ii) If for general t ∈ B,Xt admits a cohomological decomposition of the diagonal,
and the even degree integral homology of a smooth projective model ˜X0 of X0
is algebraic (i.e. generated over Z by classes of subvarieties), ˜X0 also admits a
cohomological decomposition of the diagonal.

In order to prove (ii), we will need an intermediate step involving the notion of a
homological decomposition of the diagonal for singular projective varieties: to make
sense of this, we just need to know that cycles Z have a homology class [Z]hom in
Betti integral homology, which is standard. Then a homological decomposition of
the diagonal of a singular but projectiveX of pure dimension n is an equality

[�X]hom = [X × x]hom + [Z]hom in H2n(X ×X,Z),

where as usual Z is a cycle supported on D × X for some nowhere dense closed
algebraic subset D of X.

Proof of Theorem 4.4 By Corollary 4.3 and under the assumptions made on the
general fibers in (i), the central fiber admits a Chow decomposition of the diagonal.
This step does not need any assumption on the singularities of the fibers. Similarly,
under the assumptions made on the general fibers in (ii), the central fiber admits
a homological decomposition of the diagonal. The proof here uses the fact that as
we are over C, for any proper flat analytic morphism X′ → �, after shrinking
� if necessary, there is a continuous retraction X′ → X0. Passing to X′ ×� X′,
this retraction maps the diagonal �X′t to the diagonal �X′0 . This implies that a
homological relation [�t ] = 0 in H2n(X

′
t ×X′t ,Z), where �t is as in (4.48) implies

a homological relation [�0] = 0 inH2n(X
′
0×X′0,Z), which provides a homological

decomposition of the diagonal for X′0 = X0.
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The second step is passing from X0 to ˜X0 and this is here that we use
the assumption on the singularities. Let us first concentrate on (i). From the
decomposition

�X0 = X0 × x + Z in CHn(X0 ×X0),

where Z is supported on D ×X0, we deduce by restriction to

U × U, U := X0 \ SingX0 = ˜X0 \ E,

where E is the exceptional divisor of the resolution of singularities of X0 obtained
by blowing-up the singular points:

�U = U × x + Z|U×U in CHn(U × U).

By the localization exact sequence, we get a decomposition on ˜X0 which takes the
following form:

�
˜X0
= ˜X0 × x0 + ˜Z + �1 + �2 in CHn(˜X0 × ˜X0),

where ˜Z is supported on D′ × ˜X0 for some D′ � ˜X0, and �1 is supported on
E × ˜X0, �2 is supported on ˜X0 × E. Of course the cycle �1 does not dominate ˜X0
by the first projection, so we need only to understand�2. ButE is a disjoint union of
smooth quadricsQi of dimension ≥ 1, and for each of them, n-dimensional cycles
in ˜X0 ×Qi decompose as ni˜X0 × xi + Zi , where Zi does not dominate ˜X0 by the
first projection, ni is an integer, and xi is any point ofQi . At this point, we obtained
a decomposition of the form

�
˜X0
= ˜X0 × x0 +

∑

i

ni˜X0 × xi + Z in CH(˜X0 × ˜X0). (4.49)

In order to conclude, we have to use the assumption n ≥ 2. It implies that ˜X0
is irreducible or equivalently, connected. Indeed the general fiber Xt is connected
as this is a consequence of the existence of a decomposition of the diagonal for
Xt . Formula (4.49) tells us by letting both sides act on CH0(˜X0) that CH0(˜X0) is
generated over Z by x0 and the xi . By Roitman’s theorem [44], this implies that
CH0(˜X0) = Z, so that all the xi’s are rationally equivalent to x0 in ˜X0. Then (4.49)
gives a Chow decomposition of the diagonal for ˜X0.

The proof of (ii) is quite similar although the tools are slightly different. It is
important here to realize that homology and algebraic cycles do not work completely
in the same way. For example, we do not have in homology the localization exact
sequence.

We know that the central fiber has a homological decomposition of the diagonal
in H∗(X0 × X0,Z). A fortiori it has a homological decomposition in the relative

andreas.hochenegger@unimi.it



Birational Invariants and Decomposition of the Diagonal 45

homology H∗(X0 × X0, B,Z) where B = Sing(X0) × X0 ∪ X0 × Sing(X0) As
˜X0 \E ∼= X0 \ SingX0, it follows that we get for ˜X0 a homological decomposition
of the diagonal modulo E × ˜X0 ∪ ˜X0 × E. This shows that we have a relation

[�
˜X0
]hom = [˜X0 × x0] + [˜Z] + α in H2n(˜X0 × ˜X0,Z), (4.50)

where α ∈ H2n(E×˜X0∪˜X0×E,Z). We use now the fact thatE = �Qi so that the
union above is the union of theQi × ˜X0 and ˜X0 ×Qj intersecting along the union
of the Qi × Qj . As Qi × Qj has trivial odd degree cohomology, it follows that
H2n(E × ˜X0 ∪ ˜X0 × E,Z) is generated by the subgroups H2n(Qi × ˜X0,Z) and
H2n(˜X0 × Qi,Z). Hence α = ∑

i αi + βi with αi ∈ H2n(Qi × ˜X0,Z), βi ∈
H2n(˜X0 ×Qi,Z).

We assume for simplicity that H 2∗(˜X0,Z) is algebraic (we only assumed that
this assumption holds for some variety birationally equivalent to ˜X0). We then get
using the Künneth decomposition of the even degree cohomology (or homology)
of ˜X0 × Qi and Qi × ˜X0 that each αi is algebraic and each βi is algebraically
decomposable, that is of the form

∑

l[Zl × Z′l] for some algebraic cycles on each
summand. Clearly αi is then the class of a cycle zi in ˜X0 × ˜X0 which does not
dominate ˜X0 by the first projection. For the βi = ∑

l[Zl × Z′l], if dimZ′l > 0,
then dimZl < n and Zl does not dominate ˜X0 by the first projection. Finally, if
dimZ′l = 0, then one gets a contribution [˜X0 × xi]. Putting this decomposition
in (4.50) and using the fact that [xi] = [x0] in H 2n(˜X0,Z), this clearly provides
a homological (or equivalently cohomological as ˜X0 is smooth) decomposition of
the diagonal of ˜X0. We used in the last step the fact that n ≥ 2 to guarantee that
H 2n
B (

˜X0,Z) = Z is generated by the class of the point x0. ��
Remark 4.5 The assumptions on the singularities in Theorem 4.4 are too strong and
this will be discussed in next section, but some assumptions on the singularities are
necessary. Consider the case of the cubic surface degenerating to a cone over an
elliptic curve. The general fiber is rational hence has a Chow decomposition of the
diagonal, but the desingularization ˜S0 of the central fiber has nonzero holomorphic
forms, so it does not admit a decomposition of the diagonal by Theorem 3.13.

As a first application, let us prove Proposition 1.5 stated in the introduction:

Proof of Proposition 1.5 Indeed, if Xt was stably rational, it would admit a Chow
decomposition of the diagonal. Then ˜X0 would also admit a Chow decomposition
of the diagonal by Theorem 4.4, because clearly the fiber dimension has to be ≥ 2.
By Theorem 3.13, this contradicts the fact that TorsH 3(˜X0,Z) �= 0. ��

4.1.1 The Very General Quartic Double Solid Is Not Stably Rational

Recall that a quartic double solid is a hypersurfaceX in L := Spec (SymOP3(−2))
π→ P

3 defined by the equation u2 = p∗f , where u is the canonical extra
section of π∗OP3(2) on L and f ∈ H 0(P3,OP3(4)). Thus quartic double solids
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are parameterized by P(H 0(P3,OP3(4))). We described in Sect. 2.1.1 the Artin–
Mumford double solid X0 which is nodal, with the property that ˜X0 has a nontrivial
Artin–Mumford invariant.

Theorem 4.6 The very general quartic double solid X does not admit a cohomo-
logical (hence a fortiori Chow-theoretic) decomposition of the diagonal. Similarly,
the desingularization of the very general quartic double solid X with k ≤ 7 nodes
in general position does not admit a cohomological decomposition of the diagonal.

Here we observe that given k ≤ 7 general points in P
3, there is a linear space

of dimension 34 − 4k > 0 of quartic homogeneous polynomials f having
multiplicity≥ 2 at these k points. There is thus an irreducible variety parameterizing
quartic double solids with k nodes in general position. As usual, “very general” in
Theorem 4.6 means that the statement is true for a parameter f in the complement
of a countable union of proper closed algebraic subsets of this variety.

Theorem 4.6 immediately follows from Theorem 4.4 by degeneration to the
Artin–Mumford double solid. Indeed, if X0 is the Artin–Mumford double solid, ˜X0
does not admit a cohomological decomposition of the diagonal by Theorem 3.13,
because the Artin–Mumford invariant of ˜X0 is not trivial. Furthermore, the even
degree integral Betti cohomology of ˜X0 is algebraic by Theorem 2.29 because ˜X0 is
a rationally connected threefold. For the nodal case, one needs to check that the
Artin–Mumford double solid smoothifies partially to the k-nodal quartic double
solid with k nodes in general position, for k ≤ 7.

As a consequence of Theorem 4.6, one gets the following

Corollary 4.7 The desingularization of the very general quartic double solid with
k ≤ 7 nodes in general position is not stably rational.

Note that by Endrass [20], if ˜X is as in Theorem 4.7, ˜X has trivial Artin–Mumford
invariant. In fact Endrass proves that the desingularization of a quartic double
solid with less than 10 points has no torsion in its third Betti cohomology. To
our knowledge, the only criterion for stable irrationality of rationally connected
threefolds used previously was the Artin–Mumford invariant.

4.2 Colliot-Thélène-Pirutka and Schreieder’s Work

It was noticed in [60] that the assumptions on the singularities in Theorem 4.4 were
too strong, even if, according to Remark 4.5, some assumptions are necessary. The
paper by Colliot-Thélène and Pirutka [17], written in the equivalent language of
universally CH0-trivial varieties (see Sect. 3.2), provides a similar specialization
result under weaker assumptions. They prove the following theorem that we in turn
reformulate below in the language of decomposition of the diagonal. We will state
the result over any algebraically closed field k. The only difference when working
over C is the fact that, C being a large field, we can use the assumption on the
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very general fiber of a morphism as being equivalent to the similar assumption on
the geometric generic fiber (see the discussion in Sect. 3.1). Note however that the
setting of Colliot-Thélène-Pirutka’s work is that of a scheme over a DVR, which
includes specialization from varieties defined over a number field to varieties defined
over a finite field. This is very important in Totaro’s work (Theorem 4.15) that we
will review later on.

The Colliot-Thélène and Pirutka’s condition in [17] asks that the resolution map
τ : ˜X0 → X0 is universally Chow-trivial, which means that for any field L
containing the base field k, the morphism τ∗ : CH0(˜X0,L) → CH0(X0,L) is an
isomorphism. This condition is rather strong and needs to be carefully checked
geometrically. It says that for each subvariety M ⊂ X0, the generic fiber ˜X0,M
of the induced morphism τ−1(M) → M , which is a variety over k(M), has CH0
universally trivial.

Let us first consider the following condition (*) that is slightly stronger than the
Colliot-Thélène-Pirutka condition but is explicit geometrically:

(*) For any irreducible subvariety Y ⊂ X0, the map τY : EY := τ−1(Y ) → Y

has a rational section (or a 0-cycle of degree 1) and its generic fiber is smooth
geometrically irreducible and has a decomposition of the diagonal over k(Y ).

Remark 4.8 In practice, condition (*) is proved by checking that each generic fiber
EY,η is smooth rational over k(Y ).

Here the decomposition of the diagonal forEY,η is supposed to hold with respect
to the given point or 0-cycle yη ∈ EY,η(k(Y )). Note that we use here the Chow
decomposition of the diagonal for any variety defined over any field, in particular
not algebraically closed.

Theorem 4.9 Let X → C be a flat morphism, where C is a smooth curve over C.
Assume the very general fiber Xt is smooth and has a Chow decomposition of the
diagonal. Then if the central fiber has a desingularization τ : ˜X0 → X0 satisfying
(*), ˜X0 has a Chow decomposition of the diagonal.

Remark 4.10 We recover the case of nodal singularities by considering the standard
resolution by blow-up. The condition that the fibers have dimension at least 2
is hidden in condition (*), because in dimension 2, the exceptional fiber of the
resolution over a singular point consists of two points, which does not satisfy (*).

Proof of Theorem 4.9 The proof starts as the proof of Theorem 4.4: we thus
conclude that X0 has a Chow decomposition of the diagonal and we want to deduce
that ˜X0 also has one, so that we get by lifting the cycles to ˜X0 × ˜X0:

�
˜X0
= ˜X0 × x0 + ˜Z + � in CHn(˜X0 × ˜X0), (4.51)

where ˜Z is supported onD′ ×˜X0 for some proper closed algebraic subsetD′ ⊂ ˜X0,
and � is supported on E × ˜X0 ∪ ˜X0 × E. Here E is the exceptional locus of the
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considered desingularization of X0. A key point observed by Colliot-Thélène and
Pirutka is the fact that for some dense Zariski open set U ofX0, the cycle � satisfies

(τ, τ )∗�|U×X0 = 0 in CHn(U ×X0).

The end of the proof then rests on the following statement:

Lemma 4.11 Let φ : W → V be a proper dominant morphism with irreducible
smooth generic fiber. Assume there is a generic relative decomposition of the
diagonal for φ, namely there exist a rational section ψ of φ with image S ⊂ W ,
a proper closed algebraic subset W1 ⊂ W and a cycle T ⊂ W ×V W → V which
is supported overW1 ⊂ W , such that

�W = W ×V S + T in CH(W ×V W). (4.52)

Then for any smooth projective variety Y of dimension n and any cycle �1 ∈
CHn(Y ×W) such that (IdY , φ)∗�1 vanishes in CH(U ×V ) for some dense Zariski
open set U of Y , there exist a proper closed algebraic subset V ′ ⊂ V and a cycle
�′1 ∈ CHn(Y ×W ′), where W ′ := φ−1(V ′), such that φ′∗�′1 = 0 in CHn(U × V ′)
and �′1 = �1 in CHn(U ×W) for some dense Zariski open set U of Y .

Proof As (IdY , φ)∗�1 vanishes in CH(U × V ) for some dense Zariski open set U
of Y , and there is a rational section of φ, we can assume that (IdY , φ)∗�1 actually
vanishes as a n-cycle of U × V by replacing the cycle �1 ∈ Zn(Y ×W) by �1 −
(Id,ψ)∗(Id, φ)∗(�1) which is rationally equivalent to it. Moving cycles, we can
assume that the support Supp�1 of �1 does not have its image in W contained
in W1. As dim Supp�1 = n = dimY , there exists a dense Zariski open set of
Y (that we can assume to be U ), such that, over U , Supp�1 and pr−1

W (W1) do
not intersect. Let m = dimW and let V 0 be a dense Zariski open set over which
φ : W → V is smooth and letW 0 := φ−1(V 0). The group CHm(W 0 ×V 0 W 0) acts
on CHn(Y ×W 0) by composition over V 0. The diagonal �W 0 acts as the identity
andW 0 ×V 0 S acts as (Id,ψ)∗ ◦ (Id, φ)∗. It thus follows from (4.52) and from the
vanishing of (Id, φ)∗�1 in CHn(U × V ), that

�1|U×W 0 = T ◦ �1 in CHn(U ×W 0). (4.53)

As T is supported overW1 and Supp�1 does not meet pr−1
W (W1) over U , the cycle

T ◦ �1 vanishes over the Zariski open set U × W 0 of Y × W . By (4.53) and the
localization exact sequence, �1|U×W is rationally equivalent to a cycle �′1 supported
over a proper closed algebraic subset V ′ ⊂ V . Denoting by φ′ : W ′ := φ−1(V ′)→
V , it remains to see that (Id, φ′)∗(�′1) = 0 in CH(U × V ′) if U is small enough.
This is because, taking the limit over the Zariski open sets U of Y , �1 can be seen
as a 0-cycle ofWK , withK = k(Y ), which vanishes in Z0(VK). When we apply the
map T∗, to it, the resulting cycle also vanishes as a 0-cycle of VK , and at the same
time it is supported on V ′K . Hence it vanishes in Z0(V

′
K). ��
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We apply Lemma 4.11 in an iterated way, with Y = ˜X0, starting from the situation
whereW = ˜X0, V = X0, φ = τ and �1 is the component of the cycle � appearing
in (4.51) which is supported on ˜X0 × E. (We do not care about the component
supported on E × ˜X0 as it does not dominate Y = ˜X0 by the first projection.)
We then conclude using the condition (*) and Lemma 4.11 that we can decrease
step by step the dimension of τ (Supp�k(Y )) until finally we conclude that the cycle
�1 vanishes in U × ˜X0, for a small enough dense Zariski open set U ⊂ ˜X0, and
equivalently, �1 is supported onD × ˜X0 for some proper closed algebraic subset D
of ˜X0. Formula (4.51) then provides a Chow decomposition of the diagonal for ˜X0.
The proof of the theorem is thus finished. ��

Combining Theorems 4.9, 3.22 and Remark 4.8, one gets the following improve-
ment of Proposition 1.5:

Proposition 4.12 Let φ : X → C be a flat morphism, where C is a smooth curve
over an algebraically closed field k. Then if the central fiber has a desingularization
τ : ˜X0 → X0 satisfying assumption (*) (for example, if τ has rational generic
fibers EYη over k(Y ) for any Y ⊂ ˜X0), and ˜X0 has a nontrivial Brauer group, the
geometric generic fiber XηC of φ is not stably rational. If k = C, the very general
fiber Xt is not stably rational.

We now come to Schreieder’s improvement of Propositions 1.5 and 4.12. This is
a very simple observation but it is very useful in practice because it does not need
any control of the singularities of the special fiber X0. The statement is as follows:

Theorem 4.13 (See [46, Proposition 26], [45, Proposition 3.1]) Let φ : X → C

be a flat morphism where C is a smooth curve over an algebraically closed field
k. Assume that the central fiber has a desingularization τ : ˜X0 → X0 satisfying
the following property: There exists a nontrivial unramified cohomology class η
of positive degree on ˜X0 such that any component Ei of the exceptional divisor is
smooth and satisfies η|Ei = 0. Then the geometric generic fiber XηC of φ is not
stably rational. If k = C, the very general fiber Xt is not stably rational.

Proof By the first step in the proofs of Theorems 4.4 and 4.9, it suffices to show
that the central fiberX0 itself does not admit a Chow decomposition of the diagonal.
Lifting such a decomposition to ˜X0 would provide as before an equality

�
˜X0
= ˜X0 × x0 + Z + � in CHn(˜X0 × ˜X0), (4.54)

whereZ is supported onD×˜X0 for someD � ˜X0, and � is supported onE×˜X0∪
˜X0×E. Here E = ∪iEi is the exceptional locus of the considered desingularization
of X0.

Now we write � = ∑

i �i +
∑

i �
′
i where �i is supported on Ei × ˜X0 ∪ ˜X0 ×

Ei , and we let both sides of the equality (4.54) act on η by the upper-star action.
We observe here that �∗i η = 0 by Proposition 2.20, because this is a unramified
cohomology class which vanishes on the dense Zariski open set ˜X0 \ ∪iEi . Next
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(�′i )∗η = 0, because η|Ei = 0. As degη > 0, ˜X0 × x0 acts trivially on η, and thus
(4.54) provides

η = Z∗η

where the right hand side is 0 again by Proposition 2.20 because Z∗η vanishes on
˜X0 \D. ��
Remark 4.14 We used here unramified cohomology but other invariants as dis-
cussed in Sect. 2 can be used as well, for example the differential forms in nonzero
characteristic.

4.3 Further Developments and Consequences

In this section, we will describe further variants of Proposition 4.12, and some
applications. In the paper [51], Totaro uses a version of the specialization theorem
where the geometric degeneration is replaced by specialization mod p of a variety
defined over a number field. This generalization is already present in Colliot-
Thélène-Pirutka’s paper. The second important ingredient is the fact that he uses
as an obstruction to the Chow decomposition of the diagonal (or universal triviality
of CH0) for the desingularized central fiber ˜X0 the space of algebraic differential
forms of positive degree as discussed in Sect. 3.3.2 (Theorem 3.20).

Finally, the specialization he uses is the same as in [31], although the degree
range in the final statement is slightly different. Kollár’s specialization produces in
characteristic 2 limits of hypersurfaces in P

n+1, of any even degree ≥ 2�( n+2
3 )�

which admit nonzero algebraic differential forms of degree n − 1. The important
point to be discussed here is the nature of the singularities : not only the forms have
to extend on the desingularization, a point which is discussed in Kollár’s paper, but
the singularities have to satisfy the condition (*) of Colliot-Thélène and Pirutka.
This is done in [51].

Combining all these ingredients, Totaro finally proves the following theorem,
where the ground field is assumed to be uncountable of characteristic 0 or 2:

Theorem 4.15 ([51]) A very general hypersurface of degree ≥ 2�( n+2
3 )� in P

n+1,
n ≥ 3, is not stably rational.

The method of the proof actually shows that such hypersurfaces defined over a
number field exist, and not only they are not stably rational, but they in fact do not
have universally trivial CH0 group.

Let us finally state the following spectacular asymptotic improvement of Totaro’s
Theorem. This result by Schreieder [45] uses in an essential way Theorem 4.13.

Theorem 4.16 (Schreieder [45]) A very general complex projective hypersurface
of dimension n and degree at least log2n+ 2, n ≥ 3, is not stably rational.
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We conclude this section with some hints on the following theorem solving a
longstanding question:

Theorem 4.17 ([26]) Let Y ⊂ P
2 × P

3 be a very general hypersurface of bidegree
(2, 2). Then Y is not stably rational.

On the other hand, there is a dense set of points b in the parameter space for
these Y ’s, such that Yb is rational. In particular, rationality and stable rationality
are not invariant under deformation.

The proof uses the specialization method described above. Let us give a complete
proof for the density statement which is not hard but useful. We will use the
following fact from [15, Section 3] (see also [18, Section 8]):

Proposition 4.18 Let Y be a smooth fourfold fibered in two-dimensional quadrics
over a surface. Then integral Hodge classes of degree 4 on Y are algebraic.

We also have the following standard lemma due to Springer [49] (it is in fact true
in any dimension and over any field).

Lemma 4.19 LetQ be a smooth quadric surface over a field k of characteristic 0.
Then Q has a k-point, hence is rational over k, if and only if Q has a 0-cycle z of
odd degree.

Proof Indeed, let C be the family of lines in Q. The curve Ck is the disjoint union
of two copies of P

1
k
. Let k ⊂ k′ be the degree 2 (or 1) extension on which the

two geometric components of Ck are defined. Then Ck′ is the disjoint union of two
curves C1, C2 which become isomorphic to P

1
k′ over k′. But each of these curves

Ci has a divisor of odd degree defined over k′, namely the incidence divisor P ∗z ∈
CH1(Ci), where P ⊂ Ci ×Q is the universal correspondence. It follows that each
component Ci is isomorphic to P

1
k′ , and has a k′-point l, providing a line l ⊂ Q

defined over k′. Let i be the Galois involution acting on C(k′). Then if i(l) = l, (so
that in fact k = k′ and i = Id), l is defined over k and Q has a k-point. Otherwise
we get two different conjugate lines l and i(l) inQwhich belong to different rulings
ofQ, and their intersection point is defined over k. ��
Corollary 4.20 Let Y be a fourfold as in Theorem 4.17. Then Y is rational if Y has
an integral Hodge class α of degree 4 which has odd intersection number with the
fibersQs of the morphism pr1 : Y → P

2.

Proof Indeed, Y is fibered via pr1 into quadric surfaces over P2. Proposition 4.18
thus applies to Y and α is the class of a codimension algebraic cycle Z on Y .
Restricting Z to the generic fiber Yη of pr1, we get a 0-cycle of odd degree on
Yη defined over the function field C(η) of P2 and Lemma 4.19 then tells that Yη is
rational over C(η). A fortiori, Y is rational. ��
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Corollary 4.20 reduces the proof of the density statement to the following
proposition:

Proposition 4.21 Let B be the family of all smooth fourfolds Y described in
Theorem 4.17. Then the set of points b ∈ B such that Yb has an integral Hodge
class α of degree 4 which has odd intersection number with the fibers of pr1 is
dense in B for the usual topology.

Proof This will follow by applying the following infinitesimal criterion (Proposi-
tion 4.22) below: Consider our family of fourfolds Y → B. We have an associated
infinitesimal variation of Hodge structures (see [55, 5.1.2]) at any point t ∈ B

H 2,2(Yt )→ Hom (TB,t ,H 1,3(Yt )),

α �→ ∇(α) : TB,t → H 1,3(Yt ).

Using the fact that the Hodge structure on H 4(Yt ,Q) is of Hodge niveau 2, that is,
H 4,0(Yt ) = 0, we have (see [55, 5.3.4]):

Proposition 4.22 If there exist t0 ∈ B and α ∈ H 2,2(Yt0) such that∇(α) : TB,t0 →
H 1,3(Yt0) is surjective, then for any Euclidean open set U ⊂ B containing t0, the
image of the natural map

Tt0 : H2,2
YU ,R→ H 4(Yt0,R)

defined by composing the inclusion H2,2
Y,R → H4

Y,R with a local flat trivialization

over U ofH4
Y,R, contains an open subset VU of H 4(Yt0,R).

Here H4
Y,R is the flat real vector bundle with fiber H 4(Yb,R) over any b ∈ B and

H2,2
Y,R is the real vector bundle over B with fiber over t ∈ B the space H 2,2(Yt )R

of real cohomology classes of type (2, 2) on Yt . Note that the image of Tt0 is by
definition the set of real degree 4 cohomology classes on Yt which are of type (2, 2)
at some point t ′ ∈ U .

Corollary 4.23 Under the same assumption, for any t ∈ B, and any Euclidean
open set U ⊂ B containing t , there exists t ′ ∈ U and αt ′ ∈ H 2,2(Yt ′) ∩H 4(Yt ′,Z)
such that the degree of α on the fibersQs of pr1 : Yt ′ ��� P

2 is odd.

Proof We observe first that the condition on t0 in Proposition 4.22 is Zariski open,
hence is satisfied on a dense open set. We also note that the open subset VU of
H 4(Yt0,R) appearing in Proposition 4.22 is in fact a subcone. It is then immediate
to prove that a non-empty open subcone of H 4(Yt0,R) = H 4(Yt0 ,Z) ⊗ R has to
contain an integral class which has odd degree on the fibersQs . ��

What remains to be done is to check the infinitesimal criterion, which is
quite well-understood thanks to the Carlson-Griffiths theory of variation of Hodge
structures of hypersurfaces (see [55, 5.3.4]). ��

andreas.hochenegger@unimi.it



Birational Invariants and Decomposition of the Diagonal 53

5 Cohomological Decomposition of the Diagonal
and the Abel–Jacobi Map

5.1 Intermediate Jacobians, Abel–Jacobi Map and Universal
Cycle

We already encountered in the previous sections the Abel–Jacobi map

φ2
X : CH2(X)hom→ J 3(X) (5.55)

which is an isomorphism by Theorem 3.21 when X is a smooth projective complex
manifold with CH0(X) = Z. The right hand side is an abelian variety but the left
hand side is not an algebraic variety, even if it is more than an abstract group.
Namely, we can use the families of codimension 2 algebraic cycles on X given
by codimension 2 cycles Z ∈ CH2(B × X) parameterized by smooth connected
varieties B and the associated maps Z∗ : B → CH2(X)alg, b �→ Zb − Zb0 , where
b0 ∈ B is a fixed reference point, to say that φ2

X is a “regular homomorphism”. This
notion was introduced by Murre [43] and it says that for any cycle Z as above, the
map

φZ := φ2
X ◦ Z∗ : B → J 3(X)

is a morphism of algebraic varieties.
The question left open concerning the isomorphism (5.55) is the existence of a

universal codimension 2 cycle, which was first asked in [58]:

Definition 5.1 A universal codimension 2 cycle for X is a codimension 2 cycle
Z ∈ CH2(J 3(X)×X) such that Z0 = 0 and the associated map

φZ : J 3(X)→ J 3(X)

is the identity.

For codimension 1 cycles, the universal cycle exists and is called the Poincaré
divisor. Its existence in this case can be proved using the fact that the complete
family of sufficiently ample divisors of given cohomology class on X is via φ1

X

a honest projective bundle on J 1(X). Indeed, the fiber over a divisor class L is
the projective space |L| and a point x ∈ X determines for any L the hyperplane
|L|x ⊂ |L| of divisors in |L| passing through x.

We will see in next section (see Corollary 5.9) that, as a consequence of the
degeneration method, there are Fano threefolds which do not admit a universal
codimension 2 cycle. Note that, once one knows that the Abel–Jacobi map φ2

X is
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surjective, there exists a codimension 2 cycle Z ∈ CH2(J 3(X) × X) such that
Z0 = 0 and the associated map

φZ : J 3(X)→ J 3(X)

is N times the identity for a certain integer N > 0. Indeed, we use for this the fact
that φ2

X is regular. There are countably many complete families of codimension 2
algebraic cycles on X, so the surjectivity of the Abel–Jacobi map implies that there
exist a smooth projective variety B and a cycle Z ∈ CH2(B × X), such that the
morphism

φZ : B → J 3(X)

is surjective. We can replace B by a subvariety B ′ containing the reference point b0
such that the restriction φ′ of φZ to B ′ is a generically finite map. Then we consider
the cycle

ZJ = (φ′, IdX)∗(Z ′) ∈ CH2(J 3(X)×X),

where Z ′ := Z ′|B ′×X . The integer N obtained by this construction is degφ′.
The existence of a universal cycle for codimension 1 cycles allows us to prove

the following result:

Proposition 5.2 ([58]) IfX has a cohomological decomposition of the diagonal,X
has a universal codimension 2 cycle.

Proof We write the decomposition in the form

[�X] = [X × x] + (j̃ , IdX)∗[˜Z] in H 2n
B (X ×X,Z), (5.56)

where j̃ : ˜D → X is a morphism from a smooth projective variety of dimension
n− 1. As we used several times, this implies that for any α ∈ H 3

B(X,Z)

α = j̃∗([˜Z]∗α). (5.57)

The considered morphisms are morphisms of Hodge structures of odd weight and
they induce as well morphisms between the associated intermediate Jacobians.
Equation (5.57) then says that

j̃∗ ◦ [˜Z]∗ = IdJ 3(X) : J 3(X)→ J 3(X). (5.58)
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Let now D ∈ CH1(J 1(˜D) × ˜D) be a universal codimension 1-cycle. By pull-back
to J 3(X) it provides a codimension 1-cycle on J 3(X) × ˜D and by push-forward to
X, we get finally a codimension 2 cycle on J 3(X)×X defined by the formula

Z = (IdJ 3(X), j̃ )∗(([˜Z]∗, Id˜D)∗D).

The map φZ : J 3(X) → J 3(X) equals by construction j̃∗ ◦ [˜Z]∗, hence it is the
identity of J 3(X) by (5.58). ��

5.2 Extending Clemens–Griffiths Criterion

The discussion in this section is specific to dimension 3, although it concerns stable
rationality for them. The stable rationality ofX says thatX×P

r is rational for some
r , hence it involves birational geometry of higher dimensional varieties. Because of
this, the Clemens–Griffiths criterion that we now describe concerns only rationality
of threefolds and not stable rationality.

LetX be a smooth complex projective threefold. Let us assume thatH 1
B(X,Z) =

0 andH 3,0(X) = 0, which will be the case ifX is rationally connected. Consider the
intermediate Jacobian J 3(X) = H 3

B(X,C)/(F
2H 3

B(X,C)⊕H 3
B(X,Z)tf ), which in

this case equalsH 1,2(X)/H 3
B(X,Z)tf . Here H 3

B(X,Z)tf denotes the abelian group
H 3
B(X,Z) modulo torsion. By definition, one has a canonical isomorphism

HB1 (J
3(X),Z) ∼= H 3

B(X,Z)tf . (5.59)

The unimodular intersection pairing 〈 , 〉X on H 3
B(X,Z)tf provides, thanks to

the Hodge-Riemann relations, a principal polarization on J 3(X) of class θX ∈
H 2
B(J

3(X),Z). If g = dim J 3(X), the integral degree 2g − 2 cohomology class

(or degree 2 homology class)
θ
g−1
X

(g−1)! on J 3(X) is called the minimal class. It is not
known if it is algebraic for a general principally polarized abelian variety (A, θA),
although it is when (A, θA) = (J 1(C), θC) is the Jacobian of a smooth projective
curve, or a product of them. The celebrated Clemens–Griffiths criterion [14] says
the following:

Theorem 5.3 If a smooth projective threefoldX is rational, then (J 3(X), θX) is the
direct product of Jacobians (J 1(Ci), θCi ) of curves.

This theorem follows indeed from the fact that a principally polarized abelian variety
splits uniquely into a direct sum of simple principally polarized abelian varieties.
Furthermore the Jacobian of a smooth projective curve is indecomposable as a
ppav, by Riemann’s theorem which implies that its Theta divisor is irreducible. This
decomposition of (J 3(X), θX) changes under blow-up of a curve C ⊂ X by the
addition of an orthogonal direct summand which is the Jacobian of C. We then
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conclude that the Griffiths component of X, namely the sum in the decomposition
above of all summands not isomorphic as ppav’s to Jacobians of curves, does not
change under blow-up and thus is a birational invariant (one also uses the fact that
if φ : X→ Y is a morphism which is birational, that is, of degree 1, the morphism
φ∗ : H 3

B(Y,Z) → H 3
B(X,Z) is compatible with polarizations and thus makes

H 3(Y,Z) an orthogonal direct summand of H 3
B(X,Z)).

In the Jacobian J 1(C) of a curve C, the image of C by the Albanese map gives
an effective 1-cycle Z whose class is the minimal class. The Matsusaka criterion
[37] says the following:

Theorem 5.4 A principally polarized abelian variety (A, θA) is a product of
Jacobians of curves if and only if it carries an effective 1-cycle Z =∑

i niCi, ni >

0 whose class [Z] ∈ HB2 (A,Z) is the minimal class.
The following result proved in [61] is thus a version of Clemens–Griffiths theorem
for stable rationality.

Theorem 5.5 Let X be a smooth projective threefold. If X has a cohomological

decomposition of the diagonal, the minimal class
θ
g−1
X

(g−1)! of J
3(X) is algebraic. In

particular, if X is stably rational, the minimal class
θ
g−1
X

(g−1)! of J
3(X) is algebraic.

This condition says that there is a 1-cycle Z = ∑

i niCi whose class [Z] ∈
HB2 (J

3(X),Z) is the minimal class. The difference with Clemens–Griffiths crite-
rion is that we do not ask it to be effective.

Proof of Theorem 5.5 Recalling the isomorphism (5.59), or rather its dual

i : H 1
B(J

3(X),Z) ∼= H 3
B(X,Z)tf , (5.60)

the minimal class γ ∈ HB2 (J 3(X),Z) is characterized by the fact that

∫

γ

α ∪ β = 〈i(α), i(β)〉X (5.61)

for any α, β ∈ H 1
B(J

3(X),Z). We now assume that X has a cohomological
decomposition of the diagonal

[�X] = ˜j∗([˜Z])+ [X × x] in H 6
B(X ×X,Z) (5.62)

for some cycle ˜Z ∈ CH2(˜D × X). Recalling that ˜D is the desingularization of
a divisor in X, we can assume after blowing-up X that ˜D = �Di , where each
ji = j̃|Di is an embedding and that ˜j(˜D) has normal crossings. We denote by Zi the
restriction of ˜Z toDi ×X, and we denote byWil the curve which is the intersection
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ji(Di) ∩ jl(Dl), that we can see as a divisor in either surface Di or Dl . Formula
(5.62) gives for any α ∈ H 3

B(X,Z)tf

α =
∑

i

ji∗([Zi]∗α).

It follows that, for any α ∈ H 3
B(X,Z)tf ,

〈α, β〉X =
∑

il

〈ji∗([Zi ]∗α), jl∗([Zl ]∗β)〉X (5.63)

=
∑

i �=l

∫

Wil

[Zi ]∗α ∪ [Zl ]∗β +
∑

i

〈ji∗([Zi ]∗α), ji∗([Zi ]∗β)〉X

=
∑

i<l

∫

Wil

([Zi ]∗α ∪ [Zl ]∗β + [Zl ]∗α ∪ [Zi ]∗β)+
∑

i

∫

Di

j∗i [Di ] ∪ [Zi ]∗α ∪ [Zi ]∗β

=
∑

i<l

∫

Wil

([Zi ] + [Zl ])∗α ∪ ([Zi ] + [Zl ])∗β

−
∑

i<l

∫

Wil

([Zi ]∗α ∪ [Zi ]∗β + [Zl ]∗α ∪ [Zl ]∗β)+
∑

i

∫

Wi

[Zi ]∗α ∪ [Zi ]∗β,

where in the last term Wi is the 1-cycle j∗i Di of Di . The conclusion of (5.63) is
that we found smooth projective curves Cs (namely the Wil ’s and the supports of
the Wi ’s), integers ns (namely the coefficients of the 1-cycle Wi ) and codimension
2 cycles Z′s ∈ CH2(Cs ×X), such that

〈α, β〉X =
∑

s

ns〈[Z′s]∗α), [Z′s]∗β〉Cs . (5.64)

Let φZ′s : Cs → J 3(X) be the associated Abel–Jacobi map. For any class η ∈
H 1
B(J

3(X),Z) the class α = i(η) satisfies by definition of the isomorphism i:

φ∗Z′s η = [Z
′
s]∗α in H 1

B(Cs,Z). (5.65)

Thus (5.64) rewrites as

〈α, α′〉X =
∑

s

ns

∫

Cs

φ∗Z′s η ∪ φ
∗
Z′s η
′ (5.66)

for any η, η′ ∈ H 1
B(J

3(X),Z). Comparing with (5.61), we conclude that
∑

s ns [φZ′s (Cs)] = γ is the minimal class. ��
We now give a necessary and sufficient set of conditions for a smooth projective

threefold to admit a cohomological decomposition of the diagonal. Part of these
results were obtained in [58], and they were finally completed in [61]. We assume
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thatX hasH 3,0(X) = 0 andH 1
B(X,Z) = 0 because this is necessary forX to have a

cohomological decomposition with rational coefficients. These vanishing conditions
allow us to speak of the ppav (J 3(X), θX).

Theorem 5.6 A smooth complex projective threefold with H 3,0(X) = 0 and
H 1
B(X,Z) = 0 admits a cohomological decomposition of the diagonal if and only if

the following conditions are satisfied:

1. H ∗B(X,Z) has no torsion.
2. H 4

B(X,Z) is algebraic.
3. X admits a universal codimension 2 cycle.
4. The minimal class of (J 3(X), θX) is algebraic.

Proof We already proved that these conditions are necessary: 1 and 2 were proved
to be necessary in Theorem 3.13. Condition 3 is necessary by Proposition 5.2 and 4
is necessary by Proposition 5.5.

We now prove that these conditions are sufficient. If X satisfies these conditions,
then by 1, X has a Künneth decomposition of the diagonal

[�X] = δ6,0 + δ5,1 + δ4,2 + δ3,3 + δ2,4 + δ1,5 + δ0,6

where δi,j ∈ HiB(X,Z)⊗HjB(X,Z) and acts as the projector on HjB(X,Z).
As we assumed H 1

B(X,Z) = 0, δ1,5 and δ5,1 are zero. Assuming 2, the even
degree cohomology of X is algebraic, since this implies H 2,0(X) = 0, so that
H 2
B(X,Z) is also algebraic by Lefschetz. It follows that the terms δ6,0, δ4,2, δ2,4

can be written as
∑

i ni [Zi × Z′i], where codimZi > 0. They are thus contained in
D ×X for some closed proper algebraic subset D of X. Finally the term δ0,6 is the
class of X × x.

It thus remains to show that the class δ3,3 is the class of a cycle supported on
D×X for some closed proper algebraic subsetD ofX, and by the previous analysis
of the other Künneth terms, it suffices in fact that there is a cycle supported onD×X
for some closed proper algebraic subset D of X whose Künneth component of type
(3, 3) is δ3,3.

Let � = ∑

i niCi be a 1-cycle of J 3(X) representing the minimal class. Let
Z ∈ CH2(J 3(X)×X) be a universal codimension 2 cycle and letZi ∈ CH2(˜Ci×X)
be its pull-back to ˜Ci × X, where ˜Ci is the normalization of Ci . We consider the
following cycle

T :=
∑

i

ni (Zi, Zi)∗�˜Ci
in CH3(X ×X), (5.67)

where as usual�
˜Ci

is the diagonal of ˜Ci and

(Zi, Zi) := pr∗13Zi · pr∗24Zi ∈ CH4(˜Ci × ˜Ci ×X ×X).
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Observe that each Zi is of dimension 2, so that the support of Zi does not dominate
X by the second projection. It follows that T is supported onD×X for some closed
proper algebraic subset D of X. We now have:

Lemma 5.7 The (3, 3)-Künneth component of T is equal to δ3,3.

Proof We have to show that for any α, β ∈ H 3
B(X,Z)

〈[T ]∗α, β〉X = 〈α, β〉X. (5.68)

We claim that for any curve C and any codimension 2 cycle Z in C × X, one has,
denoting Z′ := (Z,Z)∗�C ,

〈[Z′]∗α, β〉X = 〈[Z]∗α, [Z]∗β〉C. (5.69)

Assuming this equality, we get

〈[T ]∗α, β〉X =
∑

i

ni〈[Zi]∗α, [Zi]∗β〉˜Ci

=
∑

i

ni〈j∗i ([Z]∗α), j∗i ([Z]∗β)〉˜Ci ,

where ji : ˜Ci → J 3(X) is the natural map. As Z is a universal cycle, one has
[Z]∗ = i−1 and thus, as

∑

i niji∗([˜Ci ]) is the minimal class, the last term is 〈α, β〉X
by (5.61).

It remains to prove (5.69). This follows from the fact that

[Z,Z]∗(α ⊗ β) = [Z]∗α ⊗ [Z]∗β in H 1
B(C × C,Z), (5.70)

where α ⊗ β := pr∗1α ∪ pr∗2β for both X and C.
It follows from (5.70) that

〈[�C], [Z]∗α ⊗ [Z]∗β〉C×C = 〈[�C], [Z,Z]∗(α ⊗ β)〉C×C
= 〈[Z,Z]∗([�C]), α ⊗ β〉X×X = 〈[Z′], α ⊗ β〉X×X.

The last term is easily seen to be 〈[Z′]∗α, β〉X . ��
The proof of Theorem 5.6 is finished. ��

In the case of rationally connected threefolds, we know that H 2
B(X,Z) and

H 5
B(X,Z) have no torsion by Theorem 2.2. We also know thatH 4

B(X,Z) is algebraic
by Theorem 2.29. We thus get in this case
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Theorem 5.8 A smooth complex projective rationally connected threefold admits a
cohomological decomposition of the diagonal if and only if the following conditions
are satisfied:

1. H 3
B(X,Z) has no torsion.

2. X admits a universal codimension 2 cycle.
3. The minimal class of (J 3(X), θX) is algebraic.

It is interesting to note that 1 is the Artin–Mumford invariant, while 3 is our
generalization of Clemens–Griffiths criterion that works for stable rationality. The
condition 2 has no obvious classical analogue but in [60], we compute it as
“universal degree 3 unramified cohomology” ofX. In fact this condition is related to
the integral Hodge conjecture forX×J 3(X) or rather its (3, 1)-Künneth component.

We now deduce the following consequence:

Corollary 5.9 There are rationally connected threefolds not admitting a universal
codimension 2 cycle.

Proof The example is the desingularization of a very general quartic double solid
with 7 nodes. It does not admit a cohomological decomposition of the diagonal by
Theorem 4.6. On the other hand, its intermediate Jacobian has dimension 3, so it is
a Jacobian and the minimal class is algebraic. Finally it has trivial Artin–Mumford
invariant by work of Endrass [20]. The condition that fails in Theorem 5.8 must thus
be Condition 2. ��

5.3 The Case of Cubic Hypersurfaces

The rationality or stable rationality of cubic hypersurfaces is an almost completely
open problem. The results available are:

• A smooth plane cubic is not rational as it has H 1,0 �= 0.
• A smooth cubic surface X over an algebraically closed field is rational: This is

a particular case of Castelnuovo theorem but it can be proved explicitly in this
case: take any two not intersecting lines �, �′ in X. Then for x ∈ �, x ′ ∈ �′,
the line 〈x, x ′〉 in P

3 meets X in a third point φ(x, x ′). This defines a birational
map

φ : �×�′ ��� X.

The inverse map is constructed as follows: start from a general point y ∈ X, and
let Qy := 〈y,�〉, Q′y := 〈y,�′〉. Then Qy ∩ �′ = {x ′}, Q′y ∩ � = {x} and
φ(x, x ′) = y. This construction shows more generally:

• Any smooth cubic hypersurface of dimension 2m containing twom-planes P, P ′
which do not meet is rational.
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• A smooth cubic threefold is not rational. This is the celebrated Clemens–Griffiths
theorem, proved in [14] for cubics defined over C, and by Murre (see [42]) in any
nonzero characteristic different from 2.

This is essentially all that we know about cubic hypersurfaces. Let us state a few
open questions:

Question 5.10 Does there exist a smooth cubic hypersurface of odd dimension
which is rational or stably rational?

Question 5.11 Is a smooth cubic threefold stably irrational? Does there exist a
stably rational smooth cubic threefold?

Question 5.12 Is a very general smooth cubic hypersurface of even dimension≥ 4
irrational?

In this section, we are going to study the weaker question whether a smooth cubic
hypersurface has a decomposition of the diagonal. We will see that even for cubic
threefolds, this already rises serious difficulties.

5.3.1 General Cubic Hypersurfaces

The following construction is certainly classical. In dimension 1, it allows to
construct the group structure on a plane cubic curve. Let X be a smooth cubic
hypersurface in P

n. The variety F(X) of lines in X is smooth of dimension 2n− 6.
If x ∈ X and l is a line in P

n passing through x, then l ∩ X contains x and two
residual points y, z ∈ X. Conversely, starting from two points y, z in X, the line
ly,z := 〈y, z〉 intersectsX in a third point x ∈ X. This shows that there is a birational
map

� : X[2] ��� QX,

whereQX → X is the projective bundle with fiber over x the P
n−1 parameterizing

lines in P
n passing through x. The following is proved in [61], see also [22]:

Proposition 5.13 The map� induces an isomorphism between the blow-up ofX[2]
along C(X) and the blow-up ofQX alongQXX.

Here the loci C(X) andQXX are defined as follows:

– C(X) ⊂ X[2] is the locus of length 2 subschemes of X that are contained in a
line contained in X. Thus C(X) is a P

2-bundle over F(X).
– The locus QXX ⊂ QX is the set of pairs (x, [l]), such that x ∈ l and the line l

is contained in X. It is thus naturally isomorphic to the universal P1-bundle over
F(X).

We now explain two consequences of this proposition. The first one is due to Galkin
and Shinder [22] and gives a beautiful evidence for the link between rationality of

andreas.hochenegger@unimi.it



62 C. Voisin

cubic fourfolds and existence of associated K3 surfaces which has been proposed
and studied in [25] and more recently explicitly conjectured and studied in [1, 2, 33].
Let K0(VarK) be the Grothendieck ring whose generators are isomorphism classes
of algebraic varieties defined overK , with relation

[U ] + [Z] = [X] (5.71)

wheneverX = U�Z, withZ closed,U open. The ring structure is given by product.
Denote by L ∈ K0(VarK) the class of the affine line and 〈L〉 the ideal of K0(VarK)
generated by L. The following result is proved in [35].

Theorem 5.14 ([35]) Let K be a field of characteristic zero. The quotient-ring
K0(VarK)/〈L〉 is naturally isomorphic to the free abelian group generated by stable
birational equivalence classes of smooth projective connected varieties over K
together with its natural ring structure. In particular, if X and Y1, . . . , Ym are
smooth projective connected varieties and

[X] =
∑

i

ni [Yi] in K0(VarK)/〈L〉

for some ni ∈ Z, then X is stably birationally equivalent to one of the Yi’s.

The class of Pn is equal to
∑n
i=0 L

i , as one argue by induction using (5.71) and

P
n \ Pn−1 = A

n = (A1)n.

Similarly, one gets that the class of a projective bundle P(E)→ X with rankE = r
is given by

[P(E)] = [Pr−1][X] = (
r−1
∑

i=0

L
i )[X]. (5.72)

For the blow-up ˜X of a smooth variety X along a smooth subvariety Z of
codimension r , the isomorphism ˜X \ E ∼= X \ Z gives by (5.71)

[˜X] − (
r−1
∑

i=0

L
i )[Z] = [X] − [Z]

or equivalently

[˜X] = [X] + (
r−1
∑

i=1

L
i )[Z]. (5.73)

The following result is due to Galkin and Shinder [22].
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Theorem 5.15 Let X be a smooth cubic hypersurface in P
n
K . Then the following

equality holds in K0(VarK):

[X(2)] − L
2[F(X)] = [X](1+ L

n−1). (5.74)

If charK =, andX is rational of dimension 4, then either there is an explicit nonzero
element in K0(VarK) annihilated by L2, or the Fano variety of lines is birational to
S[2], where S is a K3 surface.

Proof Applying Proposition 5.13 and the projective bundle and blow-up formulas
(5.72) and (5.73), we get

[X[2]] + L(1+ L+ L
2)[F(X)] = [X](

n−1
∑

i=0

L
i )+ (L+ L

2)(1 + L)[F(X)]. (5.75)

Now we notice that the difference X[2]\EX is isomorphic to X(2)\X, where X ⊂
X(2) is the diagonal and EX → X, EX ⊂ X[2], is the exceptional divisor over the
diagonal. Plugging again (5.71) and the projective bundle formula forEX in formula
(5.75), we get (5.74).

We now turn to the proof of the second statement. We observe that the symmetric
product operation s(2) : [Y ] �→ [Y (2)] satisfies the following property

s(2)([Y ] + [Y ′]) = s(2)([Y ])+ s(2)([Y ′])+ [Y ] · [Y ′], (5.76)

as this is the case for disjoint unions. We also have s(2)(L[Y ]) = L
2s(2)([Y ]) as

follows from the fact that A(2) = A
2 in K0(VarK).

Suppose now that a smooth cubic fourfold X is rational. Then by a sequence of
smooth blow-ups starting from X, one gets something isomorphic to a variety Y
which is also obtained from P

4 by a sequence of smooth blow-ups. Let us assume
for simplicity that we blew-up only surfaces Si on the X side and Tj on the P4 side.
Then in K0(VarK), we get using (5.73)

[X] +
∑

i

L[Si ] = [P4] +
∑

j

L[Tj ]. (5.77)

Taking symmetric products and applying (5.76), we get

[X(2)] +
∑

i

L
2[S(2)i ] +

∑

i �=i′
L

2[Si ][Si′ ] +
∑

i

L[X][Si ]

= [(P4)(2)] +
∑

j

L
2[T (2)j ] +

∑

j �=j ′
L

2[Tj ][Tj ′ ] +
∑

j

L[P4][Tj ].
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We now replace in this formula [X(2)] by its expression given in formula (5.74) and
get

L
2[F(X)] + [X](1+ L

4)+
∑

i

L
2[S(2)i ] +

∑

i �=i′
L

2[Si][Si′ ] +
∑

i

L[X][Si]

= [(P4)(2)] +
∑

j

L
2[T (2)j ] +

∑

j �=j ′
L

2[Tj ][Tj ′ ] +
∑

j

L[P4][Tj ].

Using again (5.77) in the form

[X] = 1+ L+
∑

i

L[Si ] −
∑

j

L[Tj ] modulo L
2,

and the relation

[(P4)(2)] = [P4] + L
2 modulo L

3,

we get after simplification

L
2([F(X)] −

∑

i<i′
[Si][Si′ ] −

∑

j

[T (2)j ] −
∑

j �=j ′
[Tj ][Tj ′ ] − 1 (5.78)

−
∑

i

[Si ] +
∑

i,j

[Si][Tj ] −
∑

j

[Tj ] + Lα) = 0

for some α ∈ K0(VarK). We thus conclude that either the class [F(X)] −
∑

i<i′ [Si][Si′ ]−
∑

j [T (2)j ]−
∑

j �=j ′ [Tj ][Tj ′ ]−1−∑i [Si]+
∑

i,j [Si ][Tj ]−
∑

j [Tj ]+
Lα is nonzero in K0(V ar) but annihilated by L

2, or the following relation holds in
K0(VarK)/〈L〉:

[F(X)] −
∑

i<i′
[Si][Si′ ] −

∑

j

[T (2)j ] −
∑

j �=j ′
[Tj ][Tj ′ ] − 1 (5.79)

−
∑

i

[Si ] +
∑

i,j

[Si][Tj ] −
∑

j

[Tj ] = 0.

In the latter case, as this provides an equality

[F(X)] =
∑

i<i ′
[Si ][Si ′ ]+

∑

j

[T (2)j ]+
∑

j �=j ′
[Tj ][Tj ′ ]+[P4]+

∑

i

[Si×P2]−
∑

i,j

[Si ][Tj ]+
∑

j

[Tj×P2]

in K0(V ar)/〈L〉 of combinations of classes of four-dimensional varieties, and that
F(X) is irreducible, we conclude by Theorem 5.14 that F(X) is stably birational
to one of the terms appearing on the right. Using the fact that F(X) has a unique
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nondegenerate holomorphic 2-form (see [10]), hence is not rationally connected,
we easily conclude that F(X) is in fact birational to [T (2)j ] for some smooth surface

Tj with h2,0(Tj ) = 1. Finally one concludes by surface classification that Tj is
birational to a K3 surface. ��
Theorem 5.15 does not allow to conclude that a very general smooth cubic fourfold
is not rational because multiplication by L is not injective on K0(VarK) as shown
by Borisov [13]. Still it gives a beautiful evidence for the relationship between
rationality and the existence of an associated K3 surface.

We now turn to another application of Proposition 5.13, which can be found in
[61].

Theorem 5.16 Let X be a smooth cubic hypersurface. Assume that X satisfies
the Hodge conjecture for integral Hodge classes modulo 2. Then X has a Chow
decomposition of the diagonal if and only if it has a cohomological decomposition
of the diagonal.

Note that the assumption is satisfied by odd dimensional cubic hypersurfaces,
because three times their even degree cohomology comes from projective space
by Lefschetz theorem on hyperplane sections, hence is algebraic. It is also true for
cubic fourfolds by [57] (the later result has been reproved recently by Mongardi and
Ottem in [40]).

Sketch of Proof of Theorem 5.16 First of all we show the following result, which
uses our assumption on integral Hodge classes and also the fact that the integral
cohomology of X has no torsion. We will denote by � ⊂ X × X × X[2] the graph
of the natural rational map X2 ��� X[2].
Proposition 5.17 If a smooth cubic hypersurface X has a cohomological decom-
position of the diagonal, there exists a cycle W cohomologous to 0 in X[2] such
that

�X − X × x − Z = �∗W in CH(X ×X), (5.80)

where as usual Z is supported on D ×X, with D ⊂ X proper closed algebraic.

The difficulty to achieve (5.80) is the following: our assumption is that �X − X ×
x−Z is cohomologous to 0, and we can also arrange to make this cycle symmetric,
hence coming from a cycle on X[2]. The point of (5.80) is that we want it to come
from a cycle which is also cohomologous to 0 on X[2].

Having Proposition 5.17, we now use Proposition 5.13 which allows us to
analyze the cycle W . In the case of the cubic threefold, the proof is very short and
as follows: We know that after blow-up, X[2] becomes isomorphic to the blow-up
of a projective bundle over X along a subvariety which is a projective bundle over
the surface F(X). Both X and F(X) have trivial Griffiths groups in all dimensions,
hence it follows from the blow-up formulas thatX[2] also has trivial Griffiths groups.
Hence the cycleW which is given by Proposition 5.80 is algebraically equivalent to
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0 onX[2]. This means that the equality�X−X×x−Z = 0 holds modulo algebraic
equivalence. We can then apply Proposition 3.24 and conclude that X has a Chow
decomposition of the diagonal. ��

Let us mention the following application of Theorem 5.16 (see [61] for the
proof).

Proposition 5.18 A cubic fourfold X such that Hdg4(X,Z) has rank 2 and
discriminant not divisible by 4 has universally trivial CH0-group.

Here the discriminant is the discriminant of the restricted intersection pairing 〈 , 〉X
on the rank 2 lattice Hdg4(X,Z). Such cubics are said special and were studied first
by Hassett [25].

5.3.2 The Case of the Cubic Threefold

Recall from Sect. 5.2 that a smooth projective threefold X with h1,0(X) =
h3,0(X) = 0 has an associated principally polarized abelian variety (J 3(X), θX) of
dimension g = b3(X)/2. The minimal class θg−1

X /(g − 1)! ∈ Hdg2g−2(J 3(X),Z)

is an integral Hodge class of degree 2g − 2 (or homology class of degree 2). For
g ≥ 4, it is not known to be algebraic. Note that Mongardi and Ottem made recent
progress [40] on the similar problem for hyper-Kähler manifolds, which in some
sense are close to abelian varieties.

In the case where g = 4, 5, it is known that the generic principally polarized
abelian variety (A, θA) is a Prym variety P(˜C/C), and there is then a copy of the
curve ˜C in A, whose class is twice the minimal class. Many interesting rationally
connected threefolds appear as conic bundles over a rational surface, for which the
intermediate Jacobian is a Prym variety (see [8]). This applies particularly to cubic
threefolds, whose intermediate Jacobian is well-known to be a Prym variety, thanks
to the representation of X as a conic bundle.

Theorem 5.19 ([61]) A smooth cubic threefold X has a decomposition of the
diagonal (or has universally trivial CH0 group) if and only if the minimal class
of J 3(X) is algebraic.

Proof By Theorem 5.16, it suffices to prove the result for “cohomological decom-
position” instead of “Chow decomposition”. We now use Theorem 5.6. It says in
particular that the algebraicity of the minimal class is a necessary condition for the
existence of a cohomological decomposition of the diagonal. It remains to show
that it is also sufficient. We know that H ∗B(X,Z) has no torsion and that H 4

B(X,Z)

is algebraic, being generated by the class of a line, so the only condition to check
is the existence of a universal codimension 2 cycle on X. This follows from the
following statement which is taken from [58]:

Proposition 5.20 Let X be a smooth projective threefold with h1,0(X) =
h2,0(X) = 0 and such that the minimal class of J 3(X) is algebraic. Then if

andreas.hochenegger@unimi.it



Birational Invariants and Decomposition of the Diagonal 67

furthermore there exist a smooth projective variety B and a codimension 2 cycle
Z ∈ CH2(B ×X) such that

φZ : B → J 3(X)

is surjective with rationally connected fibers,X has a universal codimension 2 cycle.

Proof Let � = ∑

i niCi be a 1-cycle in the minimal class, where Ci ⊂ J 3(X) are
curves, that we can even assume to be smooth. By the Graber-Harris-Starr theorem
[23], the map φZ with rationally connected fibers has sections over each Ci (or a
general translate of it). This provides lift si : Ci → B, and thus for each Ci , we get
a codimension 2 cycle Zi ∈ CH2(Ci ×X) with the property that

φZi : Ci → J 3(X) (5.81)

is the natural inclusion of Ci into J 3(X).
Let g := dim J 3(X). As a consequence of the fact that the class of � =∑

i niCi
is the minimal class, we have

�∗g = g!J 3(X). (5.82)

Here ∗ is the Pontryagin product on cycles of J 3(X), which is defined by

γ ∗ γ ′ = μ∗(γ × γ ′),

where μ : J 3(X)× J 3(X)→ J 3(X) is the sum map.
The meaning of Eq. (5.82) is clear if we assume that � = Ci is a single curve : it

says then that the sum map induces a birational map

jg : C(g)i → J 3(X)

is birational. In this case, constructing a universal codimension 2 cycle on J 3(X)

is easy: namely, starting from Zi , we construct a codimension 2-cycle on Cgi ×
X defined as

∑g
i=1((pi, pX)

∗Zi , which is clearly symmetric, hence descend to a

codimension 2 cycle Z(g)i on C(g)i ×X. One has

φ
Z
(g)

i

= jg

which is birational by assumption, so that via (jg, IdX),Z
(g)
i descends to a universal

codimension 2 cycle on J 3(X)×X.
The general case works similarly, using the curve C = �iCi , the cycle Z which

is Zi on the componentCi , and viewing � as a 1-cycle on C. ��
The cubic threefold satisfies the assumptions of the proposition by work of
Markushevich–Tikhomirov [36]. Indeed they show that the Abel–Jacobi map on
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the family of elliptic curves of degree 5 in X has rationally connected fibers. What
they prove is that a general such elliptic curve E ⊂ X determines a rank 2 vector
bundle E on X with 6 sections. The fiber of the Abel–Jacobi map passing through
[E] identifies to P(H 0(X, E)). Proposition 5.20 thus applies and the theorem is
proved. ��

Let us mention the following consequence: We already mentioned that twice the
minimal class is algebraic on J 3(X). So if (J 3(X), θX) has an odd degree isogeny to
(J (C), θC) for some genus 5 curveC, an odd multiple of the minimal class of J 3(X)

is algebraic, hence the minimal class itself is algebraic. This condition happens
along a sublocus of codimension ≤ 3 in the moduli space of cubic threefolds,
because the locus of Jacobians in A5 has codimension 3. Playing on this observation,
we get the following:

Theorem 5.21 There is a non-empty codimension≤ 3 locus in the moduli space of
cubic threefolds parameterizing cubic threefolds with universally trivial CH0-group.

The following questions remain open:

Question 5.22 Does a general cubic threefold admit a universal codimension 2-
cycle?

This problem has been rephrased in [60] as computing universal unramified degree
3 cohomology of X with torsion coefficients.

Remark 5.23 The Markushevich–Tikhomirov parameterization of J 3(X) with
generic fiber isomorphic to P(H 0(X, E)) does not solve this problem because the
fibration into projective spaces over a Zariski open set of J 3(X) so constructed
is a nontrivial Brauer–Severi variety over C(J 3(X)). It does not admit a rational
section.

Question 5.24 Is the minimal class of the intermediate Jacobian J 3(X) algebraic
for a general cubic threefold X? Is the minimal class of a general principally
polarized abelian variety of dimension 5 algebraic?

Note that the question whether a smooth cubic of large dimension has universally
trivial Chow group of zero-cycles is also completely open.
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Non rationalité stable sur les corps
quelconques

Jean-Louis Colliot-Thélène

Abstract This is a survey on (lack of) stable rationality over arbitrary fields
(including algebraically closed fields). Topics addressed include: Rationality and
unirationality, R-equivalence on rational points, Chow groups of zero-cycles, Galois
action on the Picard group, Brauer group, higher unramified cohomology, global
differentials, specialisation method (via R-equivalence), geometrically rational
surfaces, cubic hypersurfaces.

À la mémoire de Peter Swinnerton-Dyer

1 Introduction

Le présent rapport de synthèse est une version révisée des notes produites à
l’occasion de l’École de printemps “Birational geometry of hypersurfaces”, Palazzo
Feltrinelli, Gargnano del Garda, 19–23 mars 2018.

Après les articles initiaux de C. Voisin [50] et de Colliot-Thélène et Pirutka [19],
les divers articles qui ont établi la non rationalité stable de divers types de variétés
classiques ont utilisé la spécialisation de Fulton du groupe de Chow des zéro-cycles.
Je développe dans ce texte une remarque de [19] : on peut remplacer la spécialisation
du groupe de Chow des zéro-cycles par la spécialisation de la R-équivalence.

Il y a quelques résultats nouveaux. On comparera les propositions 3.30 et 3.31
et le théorème 6.8 (ii) du présent texte avec les résultats de Totaro [49]. Signalons
aussi les propositions 3.21 (c) et 7.2. La proposition 5.1 améliore un énoncé publié
dans [12].
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Un schéma séparé de type fini sur un corps k est appelé une k-variété. Soit k une
clôture algébrique de k. Étant donné un k-schéma X et F un corps contenant k, on
note XF = X ×k F .

Une k-variété X est dite géométriquement intègre si le schéma Xk est intègre.
Une k-variété X est dite géométriquement rationnelle si elle est géométriquement
intègre et la k-variétéXk est rationnelle, i.e. de corps des fonctions transcendant pur
sur k.

2 Entre rationalité et unirationalité

Lemme 2.1 Soit k un corps. Soit X une k-variété géométriquement intègre de
dimension d . Considérons les propriétés suivantes.

(i) La k-variété X est k-rationnelle, i.e. k-birationnelle à Pdk .
(ii) La k-variété X est stablement k-rationnelle, i.e. il existe un entier n ≥ 0 tel

que X ×k Pnk est k-birationnelle à Pn+dk .
(iii) La k-variété X est facteur direct d’une variété k-rationnelle, c’est-à-dire

qu’il existe une k-variété Y géométriquement intègre telle que X ×k Y est
k-birationnelle à un espace projectif Pmk .

(iv) La k-variété X est rétractilement k-rationnelle, c’est-à-dire qu’il existe un
ouvert de Zariski non vide U ⊂ X, un ouvert de Zariski V ⊂ Pnk , et des
k-morphismes f : U → V et g : V → U dont le composé g ◦ f est l’identité
de U .

(v) La k-variété X est k-unirationnelle, c’est-à-dire qu’il existe n ≥ d et une
k-application rationnelle dominante de Pnk vers X.

On a : (i) implique (ii) qui implique (iii), et (iv) implique (v). Si k est infini, (iii)
implique (iv).

Démonstration. Expliquons ce dernier point, purement ensembliste. Par hypothèse,
il existe un entier n ≥ 1 et un ouvert non vide U0 ⊂ X ×k Y qui est k-isomorphe à
un ouvert U1 de Pnk . Comme k est infini, il existe un k-point dans U1(k) et donc un
point (A,B) ∈ U0(k) ⊂ X(k)× Y (k). Soit X0 ⊂ X l’intersection de X ×k B � X
et de U0 dans X ×k Y . La composition X0 = X0 × B ⊂ U0 ⊂ X × Y → X, où
la dernière flèche est la projection sur X, est l’inclusion naturelle X0 ⊂ X. Soit U
l’image réciproque deX0 ⊂ X dansU0. On a alors la factorisationX0 → U → X0,
et U est isomorphe à un ouvert non vide de Pnk . ��

L’hypothèse de (v) implique la même hypothèse avec m = d . C’est facile à
établir pour k infini. Pour k quelconque, voir [41, Prop. 1.1].
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On sait que (ii) n’implique pas (i), même sur k = C (Beauville, CT, Sansuc,
Swinnerton-Dyer [4]). Sur un corps k non algébriquement clos convenable, on sait
montrer que (iii) n’implique pas (ii). On ne sait pas ce qu’il en est sur k = C. On
ne sait pas si une variété rétractilement k-rationnelle est facteur direct d’une variété
k-rationnelle, même si k est le corps des complexes. Pour p un nombre premier,
et PGLp ⊂ GLN un plongement de groupes, Saltman a montré que le quotient
GLN/PGLp est rétractilement rationnel. On ne sait pas si cette variété est facteur
direct d’une variété k-rationnelle. Pour H ⊂ G des groupes réductifs connexes sur
C, on ne sait pas si G/H est rétractilement rationnel.

Remarque 2.2 Supposons le corps k algébriquement clos de caractéristique quel-
conque. Une k-variété projective et lisseX rétractilement rationnelle est rationnelle-
ment connexe par chaînes, comme est d’ailleurs toute k-variété unirationnelle. En
caractéristique zéro, elle est donc séparablement rationnellement connexe, i.e. il
existe un k-morphisme f : P1 → X tel que f ∗TX soit un fibré vectoriel ample.
Pour ces notions, voir [34].

3 Invariants birationnels stables

3.1 R-équivalence

Définition 3.1 (Manin [37]) Soient k un corps et X une k-variété. On dit que
deux k-points A,B ∈ X(k) sont élémentairement R-liés s’il existe un ouvert
U ⊂ P1

k et un k-morphisme h : U → X tels que A,B soient dans h(U(k)).
On dit que deux points A,B ∈ X(k) sont R-équivalents s’il existe une chaîne
A = A1, A2, . . . , An = B de k-points avec Ai et Ai+1 élémentairement R-liés.
On note X(k)/R le quotient de X(k) par cette relation d’équivalence.

Si X est propre sur k, dans la définition ci-dessus, on peut prendre simplement
U = P1

k.
Si f : X→ Y est un k-morphisme, on a une application induite

X(k)/R→ Y (k)/R.

SiX est un ouvert d’un espace projectif Pnk , comme par deux k-points il passe une
droite P1

k, deux k-points quelconques de X sont élémentairement R-liés, et X(k)/R
a au plus un élément et a exactement un élément si k est infini.

Définition 3.2 Soient k un corps et X une k-variété intègre.

(i) On dit que X est R-triviale si, pour tout corps F contenant k, le quotient
X(F)/R est d’ordre 1.

(ii) On dit queX est presque R-triviale s’il existe un ouvert de Zariski denseU ⊂ X
tel que, pour tout corps F contenant k, l’image de U(F) dans X(F)/R est
d’ordre 1.
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Remarque 3.3

(a) Chacune de ces définitions implique que X possède un point k-rationnel.
(b) La condition (ii) n’implique pas la condition (i). Soit X ⊂ P2

R
la cubique plane

singulière d’équation homogène

y2t − x2(x − t) = 0.

Soit U ⊂ X le complémentaire du point singulier réel isolé M donné par
(x, y, t) = (0, 0, 1). On a une désingularisation évidente f : P1

R
→ X qui est

un isomorphisme au-dessus de U , et M n’est pas dans f (P1(R)). On voit ainsi
que U(F)/R a un élément pour tout corps F contenant R, et donc que X est
presque R-triviale, mais X(R)/R a deux éléments, donc X n’est pas R-triviale.
Dans cet exemple,X et U sont des variétés R-rationnelles.

(c) Dans la suite de ce texte on sera intéressé à la notion de presque
R-trivialité dans une situation où U est lisse connexe mais où X n’est pas
nécessairement lisse. On prendra garde qu’en l’absence de lissité de X la
condition de presque R-trivialité n’est a priori pas très forte. Soit Y ⊂ Pnk
une k-variété quelconque et X ⊂ Pn+1

k le cône sur Y . Alors X(k)/R = 1 car
tout k-point de X est élémentairement R-lié au sommet O ∈ X(k) du cône.
Soit U ⊂ X le complémentaire du sommet du cône. Si par exemple k = C,
Y ⊂ P2

C
est une courbe elliptique E, alors U(C)/R est en bijection avec

E(C)/R = E(C), mais l’application U(C)→ X(C)/R a pour image un point.
Les C-variétés U et X ne sont pas rétractilement rationnelles.

(d) Si l’on suppose la k-variété X projective, lisse, géométriquement connexe et
presque R-triviale, je ne sais pas si X est R-triviale.

Proposition 3.4 Soient k un corps etX une k-variété intègre, de corps des fonctions
F = k(X) et de point générique η. Si X est presque R-triviale, alors il existe un
k-point m ∈ X(k) tel que, sur XF , le point générique η ∈ X(F) et le point
mF ∈ X(F) soient R-équivalents. ��
Définition 3.5 Soient k un corps et f : X → Y un k-morphisme. On dit que le
morphisme f est R-trivial si, pour tout corps F contenant k, l’application induite
XF (F)/R→ YF (F )/R est une bijection.

Un exemple est fourni par l’éclatement X → Y d’une sous-k-variété fermée lisse
dans une k-variété lisse Y .

On a l’énoncé simple mais efficace suivant.

Proposition 3.6 Soient k un corps et X une k-variété intègre. Si X est rétractile-
ment k-rationnelle, alors il existe un ouvert non videU ⊂ X tel que, pour tout corps
F contenant k, tout couple de points A,B ∈ U(F) est élémentairement R-lié dans
U(F), et a fortiori dansX(F). Si de plus k est infini, alorsX est presque R-triviale.

��
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Démonstration. Pour établir le premier énoncé, il suffit de prendre un ouvert non
videU comme dans la définition de la k-rétractibilité rationnelle (Lemme 2.1). Pour
établir le second énoncé, selon la définition 3.2, on veut U(k) �= ∅. Pour V ⊂ Pnk
comme au (iv) du lemme 2.1, ceci résulte de V (k) �= ∅, ce qui vaut dès que le corps
k est infini. ��
Théorème 3.7 Soit k un corps de caractéristique zéro. Soient Y et X deux k-
variétés projectives et lisses géométriquement intègres. S’il existe un ouvert Y ′ ⊂ Y ,
un k-morphisme dominant Y ′ → X et une k-section rationnelle de Y ′ → X, alors
il existe une application surjective Y (k)/R → X(k)/R. En particulier, si X est
rétractilement k-rationnelle, par exemple si X est stablement k-rationnelle, alors X
est R-triviale.

Démonstration. On commence par établir que, si Y → X est l’éclaté d’une sous-
k-variété lisse Z fermée dans une k-variété projective et lisse X, alors l’application
induite Y (k)/R→ X(k)/R est une bijection.

Soit Y ��� X une k-application rationnelle dominante possédant une section
rationnelle. D’après Hironaka, par éclatements successifs au-dessus de Y le long de
sous-k-variétés fermées lisses, on peut obtenir un k-morphismeW → X qui couvre
l’application rationnelle Y ��� X. L’application induiteW(k)/R→ Y (k)/R est une
bijection. Le k-morphismeW → X admet une section k-rationnelle. Appliquant le
théorème de Hironaka à cette section, par éclatements successifs au-dessus de X
le long de sous-k-variétés fermées lisses, on obtient une k-variété Z muni d’une
application k-birationnelle f : Z → X et d’un k-morphisme Z → W tel que
le composé Z → W → X soit f . L’application composée induite Z(k)/R →
W(k)/R→ X(k)/R est surjective, donc aussiW(k)/R→ X(k)/R, et l’application
W(k)/R→ Y (k)/R est une bijection. ��

Le résultat ci-dessus est une variante de [21, Prop. 10]. Voir aussi [33, Cor. 8.6.3].
Kahn et Sujatha [33, Cor. 6.6.6, Thm. 7.3.1] obtiennent aussi des résultats au-dessus
d’un corps k de caractéristique quelconque [33, Cor. 6.6.6, Thm. 7.3.1]. Voir aussi
[33, §8.5, §8.6] pour une discussion du lien entre rationalité rétractile et R-trivialité.

Remarque 3.8 C’est une question ouverte si une k-variété projective, lisse, connexe,
qui est R-triviale est rétractilement k-rationnelle, et même si elle est facteur direct
d’une k-variété k-rationnelle.

Le cas particulier suivant est déjà très intéressant. SoitG un k-groupe algébrique
(linéaire) réductif connexe. L’ensembleG(k)/R est alors naturellement muni d’une
structure de groupe. Si k est algébriquement clos, G est une variété rationnelle.
Sur un corps k quelconque, un k-groupe algébrique réductif connexe G est
k-unirationnel.

Pour un tel k-groupe G, les questions suivantes sont ouvertes. Sous des
hypothèses particulières sur k ou sur G, elles ont fait l’objet de nombreux
travaux [27].

(a) Le groupeG(k)/R est-il commutatif ?
(b) Si G est R-trivial, G est-il rétractilement k-rationnel ?
(c) Si k est un corps de type fini sur le corps premier, le groupeG(k)/R est-il fini ?
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Remarque 3.9 Une k-variété X propre, lisse, connexe, presque R-triviale est
géométriquement rationnellement connexe par chaînes (au sens de Kollár, Miyaoka,
Mori [34]). Si k est de caractéristique zéro, elle est donc géométriquement
séparablement rationnellement connexe : après extension du corps de base, il
existe un morphisme f : P1 → X tel que f ∗TX soit un fibré vectoriel ample.

3.2 Groupe de Chow des zéro-cycles

SoitX une k-variété algébrique. On noteZ0(X) le groupe abélien libre sur les points
fermés deX. Pour P un tel point, de corps résiduel k(P ), on note [k(P ) : k] le degré
de l’exension finie k(P )/k. Par linéarité, on obtient l’application degré

degk : Z0(X)→ Z

envoyant
∑

i niPi sur
∑

i ni [k(Pi) : k]. Pour tout k-morphisme f : Y → X de
k-variétés, on dispose d’une application induite f∗ : Z0(X) → Z0(Y ) qui est
additive et envoie le point fermé P ∈ X d’image le point fermé Q de Y sur
[k(P ) : k(Q)]Q. Cette application préserve le degré.

Si f : C → X est un k-morphisme propre de source une k-courbe normale
intègre C, et si g ∈ k(C)∗ est une fonction rationnelle sur C, on dispose du zéro-
cycle f∗(divC(g)). On définit CH0(X) comme le quotient de Z0(X) par le sous-
groupe engendré par tous les f∗(divC(g)) pour tous les C, g, f comme ci-dessus.

Si la k-variété X est propre, le degré degk : Z0(X) → Z, induit un homomor-
phisme degk : CH0(X) → Z, car le degré du diviseur des zéros d’une fonction
rationnelle sur une courbe propre est zéro. Plus généralement, pour f : Y → X

un k-morphisme propre, l’application f∗ : Z0(Y )→ Z0(X) induit une application
f∗ : CH0(Y )→ CH0(X). Pour X/k propre, on note

A0(X) := Ker [degk : CH0(X)→ Z].

Définition 3.10 Soit X une k-variété propre. On dit que X est (universellement)
CH0-triviale si pour tout corps F contenant k, le degré

degF : CH0(XF )→ Z

est un isomorphisme.

Proposition 3.11 [Merkurjev [39, Thm. 2.11]] Soit X une k-variété propre, lisse,
géométriquement intègre. Les propriétés suivantes sont équivalentes :

(i) La k-variété X est CH0-triviale.
(ii) X possède un zéro-cycle de degré 1 et, pour F = k(X) le corps des fonctions

de X, l’application degF : CH0(XF )→ Z est un isomorphisme.
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(iii) La classe du point générique de X dans CH0(Xk(X)) est dans l’image de
l’application image réciproque CH0(X)→ CH0(Xk(X)).

��
Voir aussi [2, Lemma 1.3].

Définition 3.12 Soit f : Y → X un k-morphisme propre de k-variétés. On dit
que f est un CH0-isomorphisme (universel) si, pour tout corps F contenant k,
l’application induite

fF∗ : CH0(YF )→ CH0(XF )

est un isomorphisme.

Lemme 3.13 ([10, p. 599] [26, Cor. 6.7]) Soit X une variété quasi-projective
régulière connexe sur un corps k. Étant donné un zéro-cycle z sur X et un ouvert de
Zariski non vide U ⊂ X, il existe un zéro-cycle z′ sur X dont le support est dans U
et qui est rationnellement équivalent à z sur X. ��
Lemme 3.14 Soient k un corps et X une k-variété projective, lisse, géométrique-
ment intègre. Si X est presque R-triviale, alors X est CH0-triviale.

Démonstration. Ceci résulte du lemme 3.13 (voir la démonstration de [19, Lemme
1.5]). ��
Proposition 3.15 ([19, Lemme 1.5]) Soit k un corps. Soit X une k-variété projec-
tive et lisse géométriquement intègre. Si X est rétractilement k-rationnelle, alors X
est CH0-triviale.

Démonstration. Pour k un corps infini, ceci résulte immédiatement de la proposi-
tion 3.6 et du lemme 3.14.

Le cas d’un corps fini k = F s’établit par l’argument de normes bien connu
suivant. Le groupe de Galois absolu de F est Ẑ = ∏

� Z� où � parcourt tous les
nombres premiers et Z� est le groupe des entiers �-adiques. Fixons deux nombres
premiers distincts p et q . Il existe des extensions infinies Fp et Fq de F telles que
Gal(Fp/F) = Zp et Gal(Fq/F) = Zq . Soit z un zéro-cycle sur X, de degré zéro.
Le résultat sur un corps infini donne zFp = 0 ∈ CH0(XFp ) et zFq = 0 ∈ CH0(XFq ).
Il existe donc une extension finie F1/F de degré une puissance de p et une extension
finie F2/F de degré une puissance de q telles que zF1 = 0 ∈ CH0(XF1) et
zF2 = 0 ∈ CH0(XF2). Pour un morphisme fini, on dispose d’une application
norme sur les groupes de Chow, qui satisfait une propriété évidente par rapport à
la restriction. Il existe donc des entiers r et s tels que pr .z = 0 ∈ CH0(X) et
qs.z = 0 ∈ CH0(X). Par Bezout, on conclut z = 0 ∈ CH0(X). Pour conclure,
il convient de rappeler que les estimations de Lang-Weil montrent que sur toute
F-variété géométriquement intègre, il existe un zéro-cycle de degré 1. Le degré
degF : CH0(X)→ Z est donc un isomorphisme. ��

andreas.hochenegger@unimi.it



80 J.-L. Colliot-Thélène

Remarque 3.16 On prendra garde qu’il existe des surfaces connexes projectives
et lisses sur C qui sont CH0-triviales mais sont de type général, et donc ne sont
pas rationnellement connexes, et donc pas R-triviales (Voisin, [51, Cor. 2.2]; [2,
Prop. 1.9]; voir déjà [5, p. 1252]). De telles surfaces satisfont H 0(X,�i) = 0 pour
i = 1, 2 (Prop. 3.29 ci-dessous) mais ne satisfont pas H 0(X, (�2)⊗2) = 0.

3.3 Action du groupe de Galois sur le groupe de Picard

Soit X une variété projective lisse, connexe, géométriquement rationnellement
connexe sur un corps k. Si k est algébriquement clos de caractéristique zéro,
tout revêtement fini galoisien étale connexe est trivial (Kollár, Miyaoka, Mori;
Campana). Le groupe Pic(X) = H 1

Zar(X,Gm) = H 1
ét(X,Gm) est donc un groupe

abélien libre de type fini. Il n’y a pas là d’invariant qui détecterait la non rationalité.
Si k n’est pas algébriquement clos, la situation change. On note ks une clôture
séparable de k, et g = Gal(ks/k) le groupe de Galois de k. Étant donné un module
galoisien (i.e. un g-module continu discret) M , on note indifféremment Hi(k,M)
ou Hi(g,M) (avec i ∈ N) ses groupes de cohomologie.

Les invariants suivants ont tout d’abord été étudiés par Shafarevich, Manin [37],
Iskovskikh, Voskresenskiı̆.

Théorème 3.17 Soient k un corps, ks une clôture séparable, et g = Gal(ks/k). On
noteXs = X×k ks . SoientX et Y deux k-variétés propres, lisses, géométriquement
intègres.

(a) Si X est k-birationnelle à Y , alors il existe des g-modules de permutation de
type fini P1 et P2 et un isomorphisme de modules galoisiens

Pic(Xs)⊕ P1 � Pic(Y s)⊕ P2,

et l’on a H 1(k,Pic(Xs)) � H 1(k,Pic(Y s)).
(b) Supposons car.(k) = 0. Si X est CH0-triviale, alors le module galoisien

Pic(Xs) est un facteur direct d’un g-module de permutation de type fini, et,
pour tout corps F contenant k, on a H 1(F,Pic(X ×F F s)) = 0.

(c) Supposons car.(k) = 0. Si X est rétractilement k-rationnelle, alors le module
galoisien Pic(Xs) est un facteur direct d’un g-module de permutation de type
fini, et, pour tout corps F contenant k, on a H 1(F,Pic(X ×F F s)) = 0.

Démonstration. Un g-module de permutation de type fini est un g-module qui
est libre sur Z et admet une Z-base globalement respectée par g. Pour l’élégante
démonstration de (a) due à L. Moret-Bailly, voir [22, Prop. 2A1, p. 461]. Pour (b),
voir l’appendice de [28]. La proposition 3.15 et (b) donnent (c). ��
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Voici un exemple d’application.

Proposition 3.18 Soit k un corps de caractéristique différente de 3. Soient
a, b, c, d ∈ k∗. Si aucun des quotients ab/cd, ac/bd, ad/bc n’est un cube dans k∗,
alors la k-surface cubique lisse X ⊂ P3

k d’équation

ax3 + by3 + cz3 + dt3 = 0

n’est pas stablement k-rationnelle, et si de plus k est de caractéristique zéro, elle
n’est pas rétractilement k-rationnelle.

Le cas a = b = c = 1 est traité dans le livre de Manin [37] et dans [22]. Le
cas général est fait dans un article de CT-Kanevsky-Sansuc. On a une réciproque :
si ab/cd est un cube, et X possède un k-point, alors X est k-birationnelle à P2

k.
Ceci est un cas particulier du théorème suivant de Swinnerton-Dyer, complétant

un travail de B. Segre.

Théorème 3.19 ([48]) Soient k un corps et X ⊂ P3
k une surface cubique lisse. Les

conditions suivantes sont équivalentes :

(i) La k-surface X est k-rationnelle.
(ii) La k-surface X contient un k-point et contient un S2, ou un S3 ou un S6.

Un Sn dans une telle surface est un ensemble de n droites contenues dans
Xs = X ×k ks ⊂ P3

ks gauches deux à deux, globalement invariant sous l’action du
groupe de Galois Gal(ks/k). La démonstration de ce théorème utilise la théorie des
systèmes linéaires à points bases, un ancêtre des méthodes de rigidité en géométrie
complexe.

L’invariant Pic(Xs) est très intéressant pour les surfaces géométriquement
rationnelles. Mais si X est une hypersurface lisse de degré d ≤ n dans Pnk avec

n ≥ 4, alors Z = Pic(Pnks )
�→ Pic(Xs) et ceci ne donne aucune information sur

l’éventuelle non k-rationalité de X.

3.4 Groupe de Brauer

Soit F un corps, Fs une clôture séparable, gF = Gal(F s/F ). On note Br(F ) =
H 2(gF , F

∗
s ) le groupe de Brauer de F . Soient k un corps et X une k-variété. On

note Br(X) = H 2
ét(X,Gm) le groupe de Brauer de X [30]. Si X est lisse et intègre,

de corps des fonctions k(X), on a une injection Br(X) ↪→ Br(k(X)) (Auslander-
Goldman, Grothendieck).

Le groupe Br(X) est un invariant k-birationnel des k-variétés propres et lisses,
réduit à Br(k) pour X = Pnk (Grothendieck [30] pour la torsion première à la
caractéristique; Hoobler, Gabber, Česnavičius en général).
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Rappelons l’énoncé bien connu [22, (1.5.0)] :

Proposition 3.20 Soient k un corps, ks une clôture séparable, et g = Gal(ks/k).
Pour toute k-variété projective, lisse, géométriquement connexe X on a une suite
exacte

0→ Pic(X)→ Pic(Xs)g → Br(k)→ Ker[Br(X)→ Br(Xs)] → H 1(k,Pic(Xs))

→ H 3(k, k∗s ).

Si X(k) �= ∅, on a un isomorphisme Pic(X)
�→ Pic(Xs)g et on a la suite exacte

0→ Br(k)→ Ker[Br(X)→ Br(Xs)] → H 1(k,Pic(Xs))→ 0.

On voit donc que l’invariant “module galoisien Pic(Xs) à addition près de
module de permutation” du théorème 3.17 raffine le sous-groupe “algébrique”
Ker[Br(X)→ Br(Xs)] du groupe de Brauer de X.

La question du calcul de l’image de Br(X) → Br(Xs), qui est dans le groupe
des invariants Br(Xs)g , et déjà de ce groupe des invariants, est délicate, c’est un
problème “arithmétique”, nous n’en parlerons pas ici.

Soit k un corps algébriquement clos de caractéristique zéro. Soit X une
k-variété projective, lisse, connexe, de dimension d . Si X est rationnellement
connexe, on a H 1

ét(X,μ�
n) = Pic(X)[�n] = 0 pour tout entier n > 0. On a donc

H 1
ét(X,Z�(1)) = 0. Comme le groupe Pic(X) est sans torsion, il est égal au groupe

de Néron-Severi NS(X), qui est donc lui-même sans torsion. La suite de Kummer
en cohomologie étale (où Gm→ Gm est donné par x �→ x�

n
) :

1→ μ�n → Gm→ Gm→ 1

donne des suites exactes courtes compatibles (en n) :

0→ Pic(X)/�n → H 2
ét(X,μ�n)→ Br(X)[�n] → 0.

En passant à la limite projective, on obtient une suite exacte

0→ NS(X)⊗ Z� → H 2
ét(X,Z�(1))→ T�(Br(X))→ 0.

Un module de Tate T�(A) = limprojnA[�n] est toujours sans torsion. Ainsi, pour X
comme ci-dessus, le groupeH 2

ét(X,Z�(1)) est sans torsion. Si k = C, les théorèmes
de comparaison entre cohomologie étale et cohomologie de Betti donnent alors
H 1
Bett i(X,Z) = 0 et H 2

Bett i(X,Z)tors = 0.
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Proposition 3.21 Soit k un corps algébriquement clos de caractéristique zéro, et
soit X une k-variété projective et lisse rationnellement connexe.

(a) Si k = C, alors Br(X)
�→ H 3

Bett i(X(C),Z)tors .
(b) En général, Br(X) est un groupe fini isomorphe à

⊕

� H
3
ét(X,Z�(1))tors.

(c) Si F est un corps qui contient k, l’application naturelle Br(X) →
Br(XF )/Br(F ) est un isomorphisme.

Démonstration. Par passage à la limite inductive dans les suites exactes

0→ Pic(X)/�n → H 2
ét(X,μ�n)→ Br(X)[�n] → 0,

on obtient les suites exactes

0→ Pic(X)⊗Q�/Z� → H 2
ét(X,Q�/Z�(1))→ Br(X){�} → 0.

Le groupe H 2
ét(X,Q�/Z�(1)) est extension du groupe fini H 3

ét(X,Z�(1))tors par
un quotient du groupe divisible H 2

ét(X,Q�(1)). Pour presque tout premier �, on
a H 3

ét(X,Z�(1))tors = 0. Ainsi le groupe de Brauer de X est une extension du
groupe fini

⊕

� H
3
ét(X,Z�(1))tors par un groupe divisible. Si X est rationnellement

connexe, d’après [10, Prop. 11] il existe un entier N > 0 qui annule A0(XF ) pour
tout corps F contenant k. Ceci implique que le groupe divisible est annulé par N ,
donc est nul. Ceci établit (a) et (b). Pour (c), considérons les inclusions k ⊂ F ⊂ F .
On a les applications naturelles

Br(X)→ Br(XF )→ Br(XF ).

Fixons un k-point P de X(k), et considérons les sous-groupes de ces divers groupes
formés des éléments nuls en P . On a alors les applications

BrP (X)→ BrP (XF )→ BrP (XF ).

D’après (b), la composée est un isomorphisme.
Sur un corps algébriquement clos k de caractéristique zéro, le k-schéma de Picard

d’une k-variété projective, lisse, connexe X est extension du k-groupe constant de
type fini NSX/k (groupe de Néron-Severi) par la k-variété abélienne Pic0

X/k (variété

de Picard). PourX/k projective, lisse, rationnellement connexe, on a Pic0
X/k = 0 car

l’espace tangent à l’origine est H 1(X,OX) = 0. Comme en outre on a X(k) �= ∅,
pour tout corps L contenant k, on a Pic(XL) = PicX/k(L). On a donc Pic(X) =
Pic(XF ) = Pic(XF ), et la proposition 3.20 donne

Br(F ) = Ker[Br(XF )→ Br(XF )]

et donc BrP (XF ) ↪→ BrP (XF ). On a donc BrP (X) = BrP (XF ). ��
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Remarque 3.22 Soit X/C une variété projective et lisse de dimension d . Si X est
rétractilement rationnelle ou R-triviale, on a Br(X) = 0. Comme on va voir au
paragraphe 3.5, ceci vaut sous l’hypothèse plus générale que X est CH0-triviale.
Pour une telle variété, on a donc H 1

Bett i(X,Z) = 0, H 2
Bett i(X,Z)tors = 0 et

H 3
Bett i(X,Z)tors = 0. Par diverses dualités, ceci implique H 2d−1

Bett i (X,Z) = 0.
En utilisant la décomposition de la diagonale, un argument de correspondance
et des désingularisations, C. Voisin établit ces résultats. Elle établit aussi
H 2d−2
Bett i (X,Z)tors = 0.

3.5 Cohomologie non ramifiée

Références : [9, 17, 29, 44].
Soit A un anneau de valuation discrète, K son corps des fractions, κA son corps

résiduel. Soit n > 1 un entier inversible dans κA. Pour tous entiers j ∈ Z et i ≥ 1,
on dispose d’une application résidu entre groupes de cohomologie galoisienne

∂A : Hi(K,μ⊗jn )→ Hi−1(κA,μ
⊗j−1
n ).

Pour k un corps,X une k-variété lisse connexe de corps des fonctions k(X) et n > 0
entier premier à la caractéristique de k, on définit

Hinr(X/k,μ
⊗j
n ) :=

⋂

x∈X(1)
Ker[∂x : Hi(k(X),μ⊗jn )→ Hi−1(k(x), μ

⊗j−1
n )].

Ici x parcourt les points de codimension 1 de X et k(x) est le corps résiduel de
l’anneau de valuation discrète OX,x , anneau local de X au point x.

Soit HiX(μ
⊗j
n ) le faisceau Zariski sur X associé au préfaisceau U �→

Hiét(U,μ
⊗j
n ).

La conjecture de Gersten pour la cohomologie étale (théorème de Bloch-Ogus–
Gabber, voir [24]) implique :

• Le faisceau Zariski HiX(μ
⊗j
n ) est un sous-faisceau du faisceau constant défini par

Hi(k(X),μ
⊗j
n ).

• Pour X/k lisse connexe, on a H 0(X,HiX(μ
⊗j
n )) = Hinr (X/k,μ⊗jn ).

• Si X est propre, lisse, connexe, ce groupe coïncide avec

Hinr (k(X)/k,μ
⊗j
n ) :=

⋂

A

Ker[∂A : Hi(k(X),μ⊗jn )→ Hi−1(κA,μ
⊗j−1
n )],
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où A parcourt tous les anneaux de valuation discrète contenant k et de corps des
fractions k(X). Ceci peut aussi s’écrire :

Hinr(k(X)/k,μ
⊗j
n ) :=

⋂

A

H iét(A,μ
⊗j
n ) ⊂ Hi(k(X),μ⊗jn ).

Sans restriction sur la caractéristique de k, on définit aussi

Brnr (k(X)/k) :=
⋂

A

Br(A) ⊂ Br(k(X))

où A parcourt tous les anneaux de valuation discrète contenant k et de corps des
fractions k(X). Pour X/k connexe, propre et lisse, un résultat de pureté assure
Br(X) = Brnr (k(X)/k) ⊂ Br(k(X)).

• Pour tout entier m ≥ 1, on montre :

Hi(k, μ
⊗j
n )

�→ Hinr (k(P
m
k )/k, μ

⊗j
n ).

Pour X/k connexe, propre et lisse, on a les propriétés suivantes :

H 1
nr (k(X)/k,Z/n) = H 1

ét(X,Z/n) ⊂ H 1(k(X),Z/n)

H 2
nr (k(X)/k, μn) = Br(X][n] ⊂ Br(k(X))[n],

où Br(X)[n] est le sous-groupe de n-torsion du groupe de Brauer de X.
Les groupes Hinr(X/k,μ

⊗j
n ) sont fonctoriels contravariants pour les k-

morphismes quelconques de k-variétés lisses, connexes. Ceci résulte de la formule

Hinr (X/k,μ
⊗j
n ) = H 0(X,HiX(μ

⊗j
n )).

En particulier pour toute k-variété X propre, lisse, géométriquement connexe,
pour tout corps F contenant k on dispose d’accouplements

X(F)×Hinr (XF /F,μ⊗jn )→ Hi(F,μ
⊗j
n )

qui, par fonctorialité et utilisation deHi(F,μ⊗jn )
�→ Hinr (F (P

1
F )/F,μ

⊗j
n ), passent

au quotient par la R-équivalence :

XF (F)/R×Hinr (XF /F,μ⊗jn )→ Hi(F,μ
⊗j
n ).

Pour toute F -variété propre, lisse, connexeX, on dispose d’accouplements

CH0(XF )×Hinr (XF /F,μ⊗jn )→ Hi(F,μ
⊗j
n ).
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Ceci vaut plus généralement dans le cadre des modules de cycles de Rost [39,
Cor. 2.9]. Pour l’énoncé analogue pour l’accouplement avec le groupe de Brauer,
y compris sa p-torsion en caractéristique p, voir [3].

La proposition 3.6 donne alors :

Proposition 3.23 Soit X une k-variété propre, lisse, géométriquement connexe. Si
X est presque R-triviale, pour tous i, j , n > 1 premier à la caractéristique de k et
tout corps F contenant k, on a

Hi(F,μ
⊗j
n )

�→ Hinr (XF /F,μ
⊗j
n )

et Br(F ) = Br(XF ).

Démonstration. Il suffit de considérer le cas F = k. Pour le voir, il suffit de monter
sur le corps K = k(X) est d’utiliser le fait (Prop. 3.4) que le point générique est
R-équivalent à un point de X(k) ⊂ X(k(X)). ��
Corollaire 3.24 SoitX une k-variété propre, lisse, géométriquement connexe. SiX
est rétractilement k-rationnelle, alors, pour tous i, j , et tout corps F contenant k,
on a

Hi(F,μ
⊗j
n )

�→ Hinr (XF /F,μ
⊗j
n )

�→ Hinr (F (X)/F,μ
⊗j
n )

et Br(F ) = Br(XF ) = Brnr (F (X)/F).

Démonstration. Via la proposition 3.6, ceci résulte de l’énoncé précédent, sauf
dans le cas d’un corps k fini. Dans ce cas on monte sur des extensions finies de
k suffisamment grosses et on utilise un argument de norme. ��
Proposition 3.25 Si une k-variété propre, lisse et géométriquement connexe X est
CH0-triviale, alors, pour tous i, j , et tout corps F contenant k, on a

Hi(F,μ
⊗j
n )

�→ Hinr (XF /F,μ
⊗j
n )

�→ Hinr (F (X)/F,μ
⊗j
n )

et Br(F ) = Br(XF ) = Brnr (F (X)/F).

Via la Proposition 3.15, cet énoncé implique le précédent, mais sa démonstration
est un peu plus élaborée, car elle passe par l’accouplement avec le groupe de Chow.

On a des énoncés analogues aux précédents en remplaçant les groupes de
cohomologie galoisienne H •(F,μ⊗•n ) des corps F par les modules de cycles de
Rost des corps F , par exemples par les groupes KMi (F ) (i ∈ N) de K-théorie
de Milnor des corps. Voir à ce sujet l’article de Merkurjev [39], qui montre que la
trivialité universelle de tous les invariants non ramifiés de tous les modules de cycles
de Rost pour une k-variété propre, lisse, connexe donnée X est équivalente au fait
que cette variété est CH0-triviale [39, Thm. 2.11].
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3.6 Calcul du groupe de Brauer non ramifié

Pour X une C-variété propre, lisse, rationnellement connexe, la formule

Br(X)
�→ H 3

Bett i(X(C),Z)tors

donnée ci-dessus est théoriquement satisfaisante. Mais en pratique, quand on
se donne une variété concrète, elle a tendance à être singulière. ll faudrait la
désingulariser, ce qui en grande dimension est difficile, en outre il faut ensuite
calculer sur un modèle projectif et lisse le groupe H 3

Bett i(X(C),Z)tors . C’est ce
qu’avaient fait Artin et Mumford [1] pour une variété de dimension 3 fibrée en
coniques sur le plan projectif complexe.

Dans [17], avec M. Ojanguren, on a donné une autre façon d’établir
Brnr (C(X)/C) �= 0 pour des fibrations en coniquesX sur le plan complexe.

Si X est une conique lisse C sur un corps k, sans k-point rationnel, de corps
des fonctions k(C), la suite exacte de la Proposition 3.20 se spécialise en une suite
exacte

0→ Z/2→ Br(k)→ Br(C)→ 0.

Si car.(k) �= 2 et C est donnée par l’équation homogène x2 − ay2 − bz2 = 0,
le noyau de Br(k) → Br(C)—qui est aussi le noyau de Br(k) → Br(k(C)) car
Br(C) s’injecte dans Br(k(C)) puisque C est lisse—est engendré par la classe de
l’algèbre de quaternions (a, b). Ce résultat remonte à Witt, et fut étendu aux variétés
de Severi-Brauer par F. Châtelet.

Le point de vue “birationnel” adopté par Ojanguren et moi dans [17] est dans
ses grandes lignes le suivant. On a une variété projective et lisse (non explicite)
X sur C munie d’une fibration p : X → S = P2

C
dont la fibre générique est une

coniqueC/C(S) sans point rationnel (i.e. la fibration n’a pas de section rationnelle).
La fibration dégénère le long d’une union finie de courbes intègres Di ⊂ S. On
dispose de la classe α ∈ Br(C(S)) de la conique générique, d’ordre 2, non nulle, qui
engendre le noyau de l’application

Br(C(S))→ Br(C(X)).

Comme S = P2
C

, on a Br(S) = 0, et l’application résidu en tous les points de
codimension 1 de S et le théorème de purété pour le groupe de Brauer d’une variété
lisse donnent une injection

δ : Br(C(S)) ↪→ ⊕x∈S(1)H 1(C(x),Q/Z).

La classe α a un nombre fini de résidus non triviaux, correspondant aux points où
la fibration dégénère. Sous des hypothèses sur la dégénérescence, on exhibe une
autre classe β ∈ Br(C(S)) dont le résidu total δ(β) est non nul et formé d’un
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sous-ensemble propre des δx(α). Par comparaison avec les résidus aux points de
codimension 1 de X, qui implique une discussion précise de la situation aux points
de codimension 2 de S, mais ne requiert pas la connaissance d’un modèle projectif
et lisse explicite de X, ceci assure que β devient non ramifié dans Br(C(X)), et
assure par ailleurs que β n’est pas dans Z/2 = Ker[Br(C(S) → Br(C(X))]. Ainsi
Brnr (C(X)) �= 0, et la variété X n’est pas rétractilement rationnelle, ni même CH0-
triviale.

3.7 Calcul de la cohomologie non ramifiée de degré supérieur

Pour X une variété propre, lisse, rationnellement connexe sur C, on ne dispose pas
pour les invariants cohomologiques supérieurs Hinr(C(X)/C,Q/Z), i ≥ 3, d’un
analogue des différents énoncés de la proposition 3.21. De fait il est peu probable
que ces invariants soient constants dans une famille projective et lisse de telles
variétés (voir [23] pour une discussion).

Pour X comme ci-dessus, on a un certain nombre de résultats intéressants en
degré i = 3, et quelques résultats en degré i > 3. Je renvoie ici le lecteur
aux travaux [23], [50] et [11]. Dans [23], avec C. Voisin, on établit un lien
entre H 3

nr(C(X)/C,Q/Z) et la conjecture de Hodge entière pour les cycles de
codimension 2.

Le cas des hypersurfaces cubiques dans Pn
C

, n ≥ 4, a été particulièrement étudié,
en particulier par C. Voisin [50], voir aussi [11]. Pour de telles hypersurfaces, on a
H 3
nr(C(X)/C,Q/Z) = 0. Pour F un corps contenant C, on sait que l’application

H 3(F,Q/Z)→ H 3
nr (F (X)/F,Q/Z)

est un isomorphisme pour n ≥ 5. Pour n = 4, la question est ouverte et importante
(voir le corollaire 3.24 et la proposition 3.25).

Comme on a vu ci-dessus, le point de vue birationnel adopté dans [17] pour
revisiter l’exemple d’Artin et Mumford repose sur le fait que sur un corps k de
caractéristique différente de 2, et pour une conique C sur k d’équation homogène
x2 − ay2 − bz2 = 0, avec a, b ∈ k∗, le noyau de l’application H 2(k,Z/2) →
H 2(k(C),Z/2) est d’ordre au plus 2, engendré par la classe de l’algèbre de
quaternions (a, b), qui est aussi la classe du cup produit de la classe a ∈ k∗/k∗2 =
H 1(k,Z/2) et de la classe b ∈ k∗/k∗2 = H 1(k,Z/2). Sur un corps k de
caractéristique différente de 2, pour tout entier n ≥ 1, et pour a1, . . . , an ∈ k∗,
la n-forme de Pfister << a1, . . . , an >> est la forme quadratique en 2n variables
définie par < 1,−a1 > ⊗ · · ·⊗ < 1,−an >. De telles formes ont la propriété
qu’elles sont hyperboliques dès qu’elles sont isotropes. On appelle voisine de Pfister
d’une n-forme de Pfister ψ une sous-forme φ de ψ de rang strictement plus grand
que 2n−1. Les quadriques définies par une forme de Pfister et par une voisine de
cette forme sont stablement k-birationnellement équivalentes. C’est ainsi le cas de
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la conique d’équation x2 − ay2 − bz2 = 0 et de la quadrique de P3
k d’équation

x2 − ay2 − bz2 + abt2 = 0.
Une généralisation de la propriété remarquable des coniques décrites ci-dessus

est le théorème suivant.

Théorème 3.26 Soit k un corps de caractéristique différente de 2. Soit
<< a1, . . . , an >> une n-forme de Pfister. Soit Q ⊂ P2n−1 la quadrique lisse
qu’elle définit. Le noyau de l’application naturelle de groupes de cohomologie
galoisienne

Hn(k,Z/2)→ Hn(k(Q),Z/2)

est engendré par le cup-produit (a1) ∪ · · · ∪ (an), et il est non nul si et seulement si
la forme de Pfister est anisotrope, i.e. si la quadriqueQ n’a pas de k-point.

Ce théorème fut établi pour n = 3 en 1974 par Arason, avant les résultats
spectaculaires de Merkurjev et Suslin en 1982. Il fut établi pour n = 4 par Jacob et
Rost en 1989, et obtenu pour tout n par Orlov, Vishik et Voevodsky [42] en 2007
comme conséquence des travaux de Voevodsky sur la conjecture de Milnor.

Remarque 3.27 Le résultat d’Arason avait été précédé par un résultat analogue
d’Arason et Pfister (voir [17, Thm. 1.7]) pour les groupes de Witt du corps des
fonctions d’une quadrique (voisine) de Pfister, résultat fin mais nettement plus
élémentaire qu’on peut aussi utiliser pour établir beaucoup des énoncés de non
rationalité (voir l’appendice de [17] et le livre [41]).

Une fois le point de vue birationnel adopté dans [17], il est devenu clair comment
étendre les résultats de non rationalité en dimension supérieure. Dans [17], avec
Ojanguren, nous construisons des variétés a priori singulières Y munies d’une
fibration sur P3

C
dont la fibre générique est définie par une voisine d’une 3-forme

de Pfister anisotrope << a1, a2, b3c3 >> sur le corps C(P3), telle que la classe
β = (a1, a2, b3) ∈ H 3(C(P3),Z/2) soit non nulle, car ramifiée sur P3

C
, différente

de α = (a1, a2, b3c3) ∈ H 3(C(P3),Z/2), car les ramifications sur P3
C

diffèrent,
et dont l’image βC(X) est dans H 3

nr (C(X)/C,Z/2) car la ramification de β est
“mangée” par celle de α. Comme on a

β /∈ {0, α} ⊂ H 3(C(P3),Z/2),

le théorème 3.26, dans le cas n = 3 (Arason) assure alors βC(X) �= 0.
Pour accomplir le programme, il faut trouver les éléments a1, a2, b3, c3 ∈ C(P3).

On les obtient dans [17] comme des produits d’un nombre assez grand de formes
linéaires.

Dans [46], Schreieder a réussi à faire des constructions analogues sur Pn
C

pour
tout n (les ai , bj , cj faisant ici intervenir des formes homogènes de degré 2 sur
Pn). Le théorème 3.26 donne alors des variétés X munies d’une fibration sur Pn

C

dont la fibre générique est une (voisine d’une) n-quadrique de Pfister et qui satisfont
Hnnr(C(X),Z/2) �= 0, et qui donc ne sont pas rétractilement rationnelles.

andreas.hochenegger@unimi.it



90 J.-L. Colliot-Thélène

On trouve d’autres utilisations de ces idées dans des travaux d’E. Peyre et de A.
Asok.

Remarque 3.28 Soit k un corps. Soit Q ⊂ Pnk , n ≥ 2 une quadrique lisse.
L’application Br(k) → Br(Q) = Brnr (k(Q)/k) est surjective. Pour i ≥ 3, et
car.(k) �= 2, le conoyau de

Hi(k,Q2/Z2(i − 1))→ Hinr (k(Q)/k,Q2/Z2(i − 1))

a été étudié par Kahn, Rost, Sujatha. Pour i = 3, ils ont montré que
l’application est surjective, sauf peut-être si Q est définie par une forme d’Albert
< −a,−b, ab, c, d,−cd >.

3.8 Différentielles

L’énoncé suivant est établi par Totaro dans [49].

Proposition 3.29 Soit X une k-variété projective et lisse connexe sur un corps k.
Si X est CH0-triviale, alors H 0(X,�i) = 0 pour tout entier i > 0.

La démonstration utilise des applications cycles à valeurs dans diverses théories
cohomologiques, et des arguments de correspondances. ��
Proposition 3.30 Soit k un corps. Soit� un foncteur contravariant de la catégorie
des k-schémas vers la catégorie des ensembles. Supposons que, pour toute k-variété
lisse intègre U , la flèche �(U) → �(P1

U) induite par la projection P1
U → U soit

une bijection. Soit X une k-variété propre, intègre, génériquement lisse. Si X est
presque R-triviale, alors il existe un ouvert lisse non vide U ⊂ X tel que

Im(�(X)→ �(U)) = Im(�(k)→ �(U)),

la flèche�(k)→ �(U) étant donnée par la projection U → Spec(k).

Démonstration. Soit U ⊂ X un ouvert lisse, et soit g : P1 ×k U → X un k-
morphisme. Soient f1, f2 deux sections de la projectionp : P1×kU → U . Alors les
applications�(X)→ �(U) définies par (g ◦ f1)

∗ et (g ◦ f2)
∗ coïncident. En effet,

pour tout α ∈ �(X), on a g∗(α) = p∗(β), et donc f ∗i ◦ g∗(α) = f ∗i ◦ p∗(β) = β
pour i = 1, 2.

Soit F = k(X) le corps des fonctions de X et soit η ∈ X le point générique.
Comme X est presque R-triviale, il existe n ∈ X(k) tel que, sur XF , les points
η ∈ XF (F) et nF ∈ XF (F) sont R-équivalents. Comme X est propre sur k, ceci
implique qu’il existe un ouvert lisse non vide U ⊂ X et une famille finie de k-
morphismes fi : P1 × U → X, i = 0, . . . , s, tels que f0(0, u) = u, que fs(1, u) =
n, et que fi(1, u) = fi+1(0, u) pour 0 ≤ i < s. L’énoncé résulte alors de ce qui
précède. ��
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Proposition 3.31 Soient k un corps infini et X une k-variété propre et lisse,
géométriquement connexe. Si X est presque R-triviale, alors H 0(X, (�i)⊗m) = 0
pour tout i > 0 et tout m > 0.

Démonstration. Pour toute k-variété lisse intègre U , tout entier i > 0, tout entier
m > 0, la flèche de restriction

H 0(U, (�i)⊗m)→ H 0(P1
U, (�

i)⊗m)

est un isomorphisme, comme on voit en utilisant la formule donnant le faisceau
des différentielles sur un produit de k-variétés, et en utilisant le fait que sur la
droite projective, on a �1

P1 = OP1(−2), et donc, pour tout m > 0, toute section

de (�1
P1)
⊗m est nulle. On applique alors la proposition précédente au foncteurU �→

H 0(U, (�i)⊗m), et on utilise le fait que, pour la k-variété lisse X, l’application de
restriction H 0(X, (�i)⊗m)→ H 0(U, (�i)⊗m) est injective. ��

3.9 Composantes connexes réelles

Théorème 3.32 Soit R le corps des réels. Soit X une R-variété projective, lisse,
géométriquement connexe, de dimension d . Soit s ≥ 0 le nombre de composantes
connexes de X(R).

(a) L’entier s est un invariant birationnel stable.
(b) Si X est rétractilement R-rationnelle, alors s = 1.
(c1) Pour s ≥ 1, on a CH0(X)/2 = (Z/2)s .
(c2) Si deux points de X(R) sont rationnellement équivalents sur X, alors ils

appartiennent à la même composante connexe de X(R).
(d1) Si s = 0, pour tout entier m ≥ d + 1, on a Hmnr(R(X)/R,Z/2) = 0.
(d2) Si s ≥ 1, pour tout entier m ≥ d + 1, on a Hmnr(R(X)/R,Z/2) = (Z/2)s .
(e) SiX est géométriquement rationnellement connexe, deux points de X(R) sont

R-équivalents si et seulement si ils sont dans la même composante connexe.

Démonstration. Pour (a), il suffit de voir que si U ⊂ X est un ouvert de Zariski dont
le complémentaire est de codimension au moins 2 dans X, alors U(R) ⊂ X(R)

induit une bijection sur les composantes connexes. On utilise alors le fait qu’une
k-application rationnelle d’une k-variété lisse dans une k-variété propre est définie
en dehors d’un fermé de codimension au moins 2. Sous l’hypothèse de (b), il existe
un ouvert de Zariski U ⊂ X tel que l’image de U(R) dans X(R) soit formée de
points directement R-liés sur X, donc dans la même composante connexe de X(R).
Comme pour la R-variété lisse X tout point de X(R) est limite de points de U(R),
ceci suffit à conclure que X(R) est connexe. Pour (c), voir CT-Ischebeck [16]. Pour
(d), voir CT-Parimala [18]. L’énoncé (e) fut établi par Kollár [35]. ��
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En dimension d = 1, tous ces énoncés remontent à Witt. C’est B. Segre [47]
qui le premier remarqua que les surfaces cubiques lisses X sur R, qui sont toutes
R-unirationnelles, ne sont pas R-rationnelles si X(R) n’est pas connexe.

4 Surfaces géométriquement rationnelles

Théorème 4.1 (Enriques, Manin, Iskovskikh, Mori) Soient k un corps et X une
k-surface projective, lisse, géométriquement rationnelle. AlorsX est k-birationnelle
à une telle k-surface de l’un des deux types suivants :

(i) Surface de del Pezzo de degré d , avec 1 ≤ d ≤ 9.
(ii) Surface X munie d’une fibration relativement minimale X → D, où D est une

conique lisse, la fibre générique est une conique lisse, et toutes les fibres sont
des coniques avec au plus un point singulier.

Rappelons que les surfaces de del Pezzo de degré 3 sont les surfaces cubiques
lisses.

C’est une question ouverte depuis longtemps si une k-surface comme dans le
théorème, dès qu’elle possède un k-point, est k-unirationnelle. C’est connu pour les
surfaces cubiques. Une réponse affirmative impliquerait que les variétés complexes
de dimension 3 fibrées en coniques sur le plan P2

C
sont unirationnelles, ce qui est

une question ouverte encore plus connue.
Une question générale (Sansuc et l’auteur) sur les surfaces du type ci-dessus est :

dans quelle mesure le module galoisien Pic(Xs) (qui est un groupe abélien de type
fini) et les objets qui lui sont attachés contrôlent-ils la géométrie et l’arithmétique
de X ? En particulier, a-t-on la réciproque du théorème 3.17 (c) :

Question 1 (CT-Sansuc 1977) : Si X(k) �= ∅ et le module galoisien Pic(Xs) est
un facteur direct d’un module de permutation, la k-surface X est-elle facteur direct
birationnel d’un espace projectif Pnk ?

La K-théorie algébrique (idées de S. Bloch, théorème de Merkurjev-Suslin)
a permis d’établir pour ces surfaces, sans analyse cas par cas, la réciproque du
Théorème 3.17 (b).

Théorème 4.2 ([8]) Soit X une k-surface projective, lisse, géométriquement
rationnelle, possédant un zéro-cycle de degré 1. Si le module galoisien Pic(Xs)
est un facteur direct d’un module de permutation, alors X est CH0-triviale.

Voici quelques rappels de CT-Sansuc [22]. SoitX une k-surface projective, lisse,
géométriquement rationnelle. Soit Pic(Xs) le module galoisien défini par le groupe
de Picard. C’est le groupe des caractères Ŝ d’un k-tore S. Pour tout k-tore T , on a
une suite exacte de groupes abéliens

0→ H 1(k, T )→ H 1
ét(X, T )→ Homg(T̂ , Ŝ)→ H 2(k, T )→ H 2

ét(X, T ),
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où la cohomologie est la cohomologie étale. Si X possède un k-point, la flèche
H 2(k, T )→ H 2

ét(X, T ) a une rétraction, donc on a une suite exacte

0→ H 1(k, T )→ H 1
ét(X, T )→ Homg(T̂ , Ŝ)→ 0.

On appelle torseur universel surX un torseur T → X sous le k-tore S dont la classe
dans H 1

ét(X, S) a pour image l’identité dans Homg(Ŝ, Ŝ). Si X possède un k-point
P ∈ X(k), il existe un torseur universel, et on peut le fixer (à automorphisme de
S-torseur près) en demandant que sa fibre en P soit triviale, ce qui équivaut au fait
qu’il existe un k-point de T d’image P dans X.

Un torseur universel T sur une k-surface projective, lisse, géométriquement
rationnelle est une k-variété géométriquement rationnelle (ouverte) de dimension
2+ rang(Pic(Xs)).

La question 1 aurait une réponse affirmative s’il en était ainsi de la question
suivante :

Question 2 (CT-Sansuc 1977). Sur une k-surface projective et lisse
géométriquement rationnelle X, les torseurs universels T avec un k-point sont-ils
k-rationnels ?

Ceci a été établi pour les surfaces fibrées en coniques au-dessus de P1
k avec au

plus 4 fibres géométriques non lisses. C’est d’ailleurs ce qui a mené aux exemples
de variétés stablement k-rationnelles non k-rationnelles ([4], voir ci-dessous). La
question est déjà ouverte pour les k-surfaces cubiquesX ⊂ P3

k d’équation

x3 + y3 + z3 + at3 = 0

avec a /∈ k∗3.
En 1977, Sansuc et moi avons établi que si Y est une compactification lisse

d’un k-torseur universel T alors Pic(Y ) est un g-module de permutation, et
Br(Y )/Br(k) = 0. Pour tester l’éventuelle non rationalité des torseurs universels sur
les surfaces géométriquement rationnelles, on peut essayer de calculer les invariants
cohomologiques supérieurs Hinr(k(T )/k,Q/Z(i − 1)). Dans sa thèse, Yang Cao
a établi le théorème suivant, qui s’applique en particulier aux k-surfaces cubiques
lisses, et donne H 3(k,Q/Z(2) = H 3

nr (k(T )/k,Q/Z(2)) pour T torseur universel
avec un k-point au-dessus de X ⊂ P3

k surface cubique d’équation

x3 + y3 + z3 + at3 = 0.

Théorème 4.3 [6] Soit X une surface projective, lisse connexe, géométriquement
rationnelle sur un corps k. SiX n’est pas k-birationnelle à une surface de del Pezzo
k-minimale de degré 1, et si T est un torseur universel sur X avec un k-point,
H 3
nr(k(T )/k,Q/Z(2))/H 3(k,Q/Z(2)) est un groupe de torsion 2-primaire.

Soit k un corps de caractéristique différente de 2 possédant une extension finie
L = k[t]/P (t) de degré 3, de clôture galoisienneK/k de groupe S3, et soit k(

√
a)

l’extension discriminant. Dans [4], on a montré que la surface géométriquement
rationnelle d’équation affine y2 − az2 = P(x) est stablement k-rationnelle mais
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non k-rationnelle. Ceci fut utilisé dans [4] pour donner des exemples de variétés de
dimension 3 sur C qui sont stablement rationnelles mais non rationnelles.

Hassett avait soulevé la question si de tels exemples de k-surfaces stablement
k-rationnelles non k-rationnelles existent sur un corps k parfait dont la clôture
algébrique est procyclique, par exemple sur un corps fini.

Le théorème suivant, qu’on confrontera avec la question 1 ci-dessus, n’admet
pour l’instant qu’une démonstration extrêmement calculatoire, passant par l’analyse
(résultat du travail de plusieurs auteurs sur une grande période de temps) de toutes
les actions possibles du groupe de Galois absolu sur le groupe de Picard géométrique
des surfaces de del Pezzo de degré 3, 2, 1, ce qui implique des groupes de Weyl de
type E6, E7, E8.

Théorème 4.4 ([14]) Soient k un corps et X une k-surface projective, lisse,
géométriquement rationnelle. Supposons que X possède un point k-rationnel et
que X soit déployée par une extension cyclique de k. Si X n’est pas k-rationnelle,
alors il existe une extension finie séparable k′/k telle que Br(Xk′)/Br(k′) =
H 1(k′,Pic(Xs)) �= 0, et alors X n’est pas stablement k-rationnelle, ni même
rétractilement k-rationnelle.

Soit X déployée par une extension cyclique de k. Si l’on suppose
Br(Xk′)/Br(k′) = H 1(k′,Pic(Xs)) = 0 pour toute extension séparable k′ de k,
on peut montrer (Endo-Miyata) que Pic(Xs) est un facteur direct d’un module
de permutation. Tout torseur universel T avec un k-point est alors k-birationnel à
X×k S. Si de tels torseurs universels étaient automatiquement k-rationnels (question
2 ci-dessus), l’hypothèse Br(Xk′)/Br(k′) = 0 pour tout k′/k fini impliquerait que
X est facteur direct d’une k-variété k-rationnelle.

5 Hypersurfaces cubiques

5.1 Rationalité, unirationalité, CH0-trivialité

SoitX ⊂ Pnk avec n ≥ 3 une hypersurface cubique lisse avecX(k) �= ∅. On sait que
X est k-unirationnelle (B. Segre, Manin, Kollár). Si X contient une k-droite, alors
X est k-unirationnelle de degré 2. Pour car.(k) �= 3, il en est ainsi de l’hypersurface
cubique de Fermat Xn ⊂ Pnk définie par l’équation :

n
∑

i=0

x3
i = 0.

Je renvoie à [2] pour plus de rappels et des références à la littérature.
Pour tout n = 2m + 1 ≥ 3 impair, il existe des hypersurfaces cubiques lisses

X ⊂ Pnk qui sont k-rationnelles. C’est le cas de celles qui contiennent une paire
globalement k-rationnelle d’espaces linéaires �1, �2, de dimension m, chacun
défini sur une extension au plus quadratique séparable de k, et sans point commun.

andreas.hochenegger@unimi.it



Non rationalité stable 95

Il en est ainsi de l’hypersurface cubique de Fermat X2m+1. Elle possède une paire
globalement k-rationnelle de sous-espaces linéaires de dimensionm gauches l’un à
l’autre, à savoir

x0 + jx1 = x2 + jx3 = · · · = x2m + jx2m+1 = 0

et son conjugué (j est une racine primitive cubique de 1).
Pour simplifier, supposons dans la suite de ce paragraphe k = C, et considérons

des hypersurfaces cubiques lisses X ⊂ Pn
C

, n ≥ 3.
Toute hypersurface cubique X ⊂ Pn

C
, n ≥ 3 contient une droite, et est donc est

unirationnelle de degré 2.
Si une hypersurface cubique est aussi unirationnelle de degré impair, alors

elle est CH0-triviale et tous les invariants de type cohomologie non ramifiée sont
universellement triviaux. On ne sait pas si X est alors rétractilement rationnelle.

Un théorème fameux de Clemens et Griffiths dit qu’aucune X dans P4
C

n’est
rationnelle. Pour n = 2m pair quelconque on ne connaît aucune X dans P2m

C
qui

soit rationnelle, ou même rétractilement rationnelle. Mais par ailleurs il n’en existe
à ce jour aucune dont on sache qu’elle n’est pas rétractilement rationnelle.

C. Voisin a montré que sur une union dénombrable de fermés de codimension
3 de leur espace de modules, les hypersurfaces cubiques X ⊂ P4

C
correspondantes

sont CH0-triviales.
On connaît des classes d’hypersurfaces cubiques de P5

C
qui sont unirationnelles

de degré impair (voir [31, Cor. 40]). Dans [12] on en donne dans Pn
C

pour tout n
de la forme 6m − 1, 6m + 1, 6m + 3. Elles sont “presque diagonales” mais plus
générales que l’hypersurface de Fermat.

Hassett, et d’autres, ont décrit des sous-variétés de l’espace de modules
des hypersurfaces cubiques de P5

C
dont les hypersurfaces correspondantes sont

rationnelles (outre celles contenant deux plans gauches congugués). Ces sous-
variétés sont contenues dans une union dénombrable de diviseurs “spéciaux” de
l’espace de modules.

C. Voisin [51] a montré que sur beaucoup de ces diviseurs spéciaux, les
hypersurfaces cubiques correspondantes de P5

C
sont CH0-triviales.

Soit X une k-variété projective, lisse, connexe. Suivant [51], on définit la CH0-
dimension essentielle δ(X) deX comme la plus petite dimension d’une C-variété Y
projective, lisse, connexe munie d’un morphisme Y → X tel que pout tout corps F
contenant C, l’application induite CH0(YF )→ CH0(XF ) soit surjective.

C. Voisin [51] a montré que pour les hypersurfaces cubiques lisses X ⊂ Pn
C
très

générales avec n = 5 ou n ≥ 4 pair, si δ(X) < dim(X), alors δ(X) = 0, i.e. X est
CH0-triviale.

5.2 Hypersurfaces cubiques presque diagonales

Dans [12] je donne en toute dimension des classes explicites d’hypersurfaces
cubiques lisses complexes qui sont CH0-triviales. Certains des résultats valent sur
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un corps non algébriquement clos, comme on va le voir. Voici une variation sur la
proposition 3.5 de l’article [12].

Proposition 5.1 Soient k un corps et X une k-variété projective et lisse telle que
H 1(X,OX) = 0, possédant un k-point. S’il existe une courbe �/k projective, lisse,
connexe, avec un k-point, et un k-morphisme � → X tels que, pour tout corps F ,
l’application induite CH0(�F )→ CH0(XF ) soit surjective, alors, pour tout corps
F , l’application degF : CH0(XF )→ Z est un isomorphisme, en d’autres termes la
k-variété X est CH0-triviale.

Démonstration. Soit J la jacobienne de�. Pour tout corpsF , on aA0(�F ) = J (F ).
Notons K = k(X) le corps des fonctions de X. L’hypothèse H 1(X,OX) = 0
implique que la variété d’Albanese de X est triviale. Un point de J (k(X)) définit
une k-application rationnelle de X dans J , donc un k-morphisme de X dans J
car une application rationnelle d’une variété lisse dans une variété abélienne est
partout définie (A. Weil). Mais comme la variété d’Albanese de X est triviale, tout
tel morphisme est constant. On a donc J (k) = J (k(X)). Ainsi l’image de A0(�K)

dans A0(XK) est dans l’image de l’application composée

J (k) = A0(�)→ A0(X)→ A0(XK).

Par hypothèse, l’application A0(�K)→ A0(XK) est surjective. Ainsi la restriction
CH0(X)→ CH0(XK) est surjective, et en particulier la classe du point générique η
deX, qui définit un point deX(K), a une classe dans CH0(XK) qui est dans l’image
de CH0(X). D’après la proposition 3.11 (Merkurjev), ceci assure que la k-variétéX
est CH0-triviale. ��
Remarque 5.2 Soit k = C. L’énoncé ci-dessus implique que si CH0(X) = Z, alors
δ(X) ≤ 1 implique δ(X) = 0. R. Mboro [38] a établi l’énoncé suivant. Supposons
CH0(X) = Z, H 2

Bett i(X,Z)tors = 0 et H 3
Bett i(X,Z) = 0. Alors δ(X) ≤ 2 implique

δ(X) = 0.

Théorème 5.3 Soit k un corps infini, de caractéristique différente de 3. Soient
f (x, y, z) ∈ k[x, y, z] et g(u, v) ∈ k[u, v] des formes cubiques non singulières.
Soit X ⊂ P4

k l’hypersurface cubique lisse d’équation

f (x, y, z)− g(u, v) = 0.

Faisons les hypothèses suivantes, qui sont satisfaites si k est un corps algébrique-
ment clos :

(a) Il existe a ∈ k∗ tel que la surface cubique S de P3
k donnée par l’équation

f (x, y, z) − at3 = 0 soit une surface k-rationnelle et que la courbe � de P2
k

d’équation g(u, v) − at3 = 0 possède un k-point.
(b) L’hypersurface X contient une k-droite.

Alors l’hypersurface X est CH0-triviale.
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Démonstration. L’hypothèse (b) implique que X est k-unirationnelle de degré 2,
ce qui implique 2A0(XF ) = 0 pour tout corps F contenant k. On a une application
rationnelle dominante, de degré 3, de S×� versX, qui envoie le produit des variétés
affines f (x, y, z)−a = 0 et g(u, v)−a = 0 vers le point de coordonnées homogènes
(x, y, z, u, v) ∈ X ⊂ P4

k . En utilisant le fait que S est k-rationnelle, on montre
que pour tout corps F contenant k, il existe un k-morphisme f : � → X tel que
pour tout corps F contenant k, on ait 3CH0(XF ) ⊂ f∗(CH0(�F )). Comme on a
2A0(XF ) = 0, on en déduit CH0(XF ) ⊂ f∗(CH0(�F )). La proposition 5.1 donne
alors que X est CH0-triviale. ��

L’énoncé ci-dessus se généralise en dimension supérieure [12, Prop. 3.7]. Les
arguments de [12, Prop. 3.7 (i)] et la proposition ci-dessus permettent d’établir que,
sur tout corps k de caractéristique différente de 3, pour tout entier n ≥ 3, impair ou
non, l’hypersurface cubique de Fermat X ⊂ Pnk , n ≥ 3, est CH0-triviale. Pour tout
n = 2m ≥ 4, et k = Q, c’est ainsi une question ouverte si cette hypersurface est
rétractilement Q-rationnelle, ou même stablement Q-rationnelle.

Sur le corps k = C, la méthode ci-dessus et des énoncés d’unirationalité plus ou
moins classiques permettent d’établir l’énoncé général suivant.

Théorème 5.4 ([12, Thm. 3.8]) Toute hypersurface cubique lisse X ⊂ Pn
C

de
dimension au moins 2 dont l’équation est donnée par une forme

∑

i �i , où les �i
sont à variables séparées et chacune a au plus 3 variables, est CH0-triviale.

6 Spécialisation

6.1 Spécialisation de la R-équivalence et de l’équivalence
rationnelle sur les zéro-cycles

L’énoncé suivant est “bien connu”. Pour une démonstration détaillée pour X /A
projectif, on consultera la note de D. Madore [36]. Voir aussi [33, Cor. 6.7.2].

Théorème 6.1 Soit A un anneau de valuation discrète, K son corps des fractions,
k son corps résiduel. Soit X un A-schéma propre, X = X ×A K la fibre générique
et Y = X×Ak la fibre spéciale. L’application de réductionX(K) = X (A)→ Y (k)

induit une applicationX(K)/R→ Y (k)/R.

Démonstration. (Esquisse) Soit P1
K → X un K-morphisme. Par éclatements

successifs de points fermés sur P1
A, on obtientZ→ P1

A et unA-morphismeZ→ X
étendant l’application rationnelle. La fibre Zk est géométriquement un arbre, dont
les composantes sont des droites projectives. Comme on voit par récurrence sur le
nombre d’éclatements, la réunion T des composantes deZk obtenues par éclatement
de k-points forme elle-même un arbre formé de droites projectives P1

k, dont les
intersections deux à deux sont égales à un unique k-point, et tout k-point de Zk
est contenu dans T . Les points 0 et∞ de P1(K) = Z(K) s’étendent en des sections
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s0 et s∞ de Z→ Spec(A). Les spécialisations de ces sections au-dessus de Spec(k)
sont des k-points de Zk, qui sont dans le sous-arbre T . Les images de 0K et ∞K

dans Y (k) sont donc des points R-équivalents sur Y . ��
Soient A un anneau de valuation discrète et π ∈ A une uniformisante. Soient X

un A-schéma projectif et plat, XK la fibre générique et Xk la fibre spéciale.
Étant donné un point fermé P ∈ XK , notons P̃ son adhérence dans X . C’est un

A-schéma fini. On a une immersion fermée P̃ ×A Spec(k) ↪→ Xk . On associe à ce
A-schéma fini une combinaison linéaire à coefficients entiers de points fermés de
Xk . Les coefficients sont définis par les longueurs évidentes. Le zéro-cycle obtenu
sur Xk peut aussi être vu comme le zéro-cycle associé au k-schéma découpé par
π = 0 sur P̃ .

Ceci définit une application linéaire Z0(XK) → Z0(Xk). On vérifie que ce
processus est fonctoriel covariant en les morphismes (propres) de A-schémas
projectifs et plats.

Le théorème suivant est un cas particulier d’un théorème de Fulton pour les
groupes de Chow de cycles de dimension quelconque.

Théorème 6.2 (Fulton) Soit A un anneau de valuation discrète, K son corps des
fractions, k son corps résiduel, π une uniformisante. Soit X un A-schéma projectif
et plat, X = X ×A K la fibre générique et Y = X ×A k la fibre spéciale. Il existe
un unique homomorphisme de spécialisation

CH0(X)→ CH0(Y )

qui associe à la classe d’un point fermé P de X d’adhérence P̃ ⊂ X la classe du
zéro-cycle associé au diviseur de Cartier découpé par π = 0 sur P̃ .

C’est énoncé au début du §20.3 de [25], avec référence au §6.2 et au théorème
6.3. On part d’une suite exacte facile

CH1(Y )→ CH1(X /A)→ CH0(X)→ 0

établie au §1.8.
On utilise ensuite un homomorphisme de Gysin i ! : CH1(X /A) → CH0(Y )

introduit au §6.2. Il est démontré au Théorème 6.3 que le composé des applications
CH1(Y ) → CH1(X /A) → CH0(Y ) est nul, en utilisant le fait que Y est un
diviseur de Cartier principal sur X . Ceci induit un homomorphisme de spécialisation
CH0(X)→ CH0(Y ).

Autant que je puisse voir, le §2, et la Proposition 2.6 de [25], qui utilisent un
homomorphisme de Gysin i∗ : CH1(X /A) → CH0(Y ), suffisent pour établir
ces résultats. Ceci utilise un théorème fondamental, le Théorème 2.4 de [25]. La
Définition 2.3 de [25] donne précisément la description de l’homomorphisme de
spécialisation donnée dans l’énoncé ci-dessus.

Remarque 6.3 On peut facilement ramener la démonstration de l’énoncé ci-desssus
au cas où X est une A-courbe plate, projective, connexe, régulière. Mais ce cas-là
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ne semble pas plus facile que le cas général, si la A-courbe n’est pas lisse. Or c’est
tout le point : si la fibre spéciale Y = Xk est une union de diviseurs lisses Yi/k (non
principaux), on n’a pas en général de flèches CH0(X) → CH0(Yi) qui par somme
donneraient la flèche CH0(X) → CH0(Y ). Par ailleurs, si Y/k n’est pas lisse, la
flèche naturelle Pic(Y )→ CH0(Y ) n’est a priori ni injective ni surjective.

6.2 Non rationalité stable par spécialisation singulière

Les deux théorèmes suivants, qui généralisent un argument de C. Voisin [50], sont
établis dans [19] en utilisant la spécialisation de Fulton des groupes de Chow (des
zéro-cycles). Ils ont déjà été discutés dans divers textes, en particulier dans [43] et
[44]. On développe ici la remarque 1.19 de [19] : on donne une démonstration qui
utilise la spécialisation de la R-équivalence, plus simple à établir que celle du groupe
de Chow des zéro-cycles. On comparera l’énoncé suivant avec [19, Thm. 1.12].

Théorème 6.4 Soient A un anneau de valuation discrète, K son corps des frac-
tions, et k son corps résiduel. SoientX un A-schéma projectif et plat,X = X ×A K
la fibre générique et Y = X ×A k la fibre spéciale. Supposons X/K lisse et
géométriquement intègre et Y/k géométriquement intègre. Supposons que Y (k)
est Zariski dense dans Y et qu’il existe une résolution des singularités projective
f : Z→ Y qui est un CH0-isomorphisme. Sous l’une des hypothèses suivantes :

(a) la K-variété X est R-triviale,
(b) la K-variété X est rétractilement K-rationnelle,

la k-variété Z est CH0-triviale.

Démonstration. On procède au début comme dans [19, Thm. 1.12]. L’anneau local
de X au point générique η de Y est un anneau de valuation discrète. On note B son
hensélisé (ou son complété). Soit F son corps des fractions. La flèche A → B est
un homomorphisme local, induisant k → k(Y ) sur les corps résiduels et K → F

sur les corps de fractions. On considère le B-schéma X ×A B. Sa fibre spéciale
est Y ×k k(Y ), qui admet la désingularisation Z ×k k(Y )→ Y ×k k(Y ). Le k(Y )-
morphisme Z ×k k(Y ) → Y ×k k(Y ) est CH0-trivial. Soit U ⊂ Ylisse un ouvert
tel que f−1(U) → U soit un isomorphisme. Soit P ∈ U(k). Soit M ∈ Z(k) son
image réciproque sur f−1(U). Par Hensel, le point générique η ∈ Y (k(Y )) et le
point Pk(Y ) se relèvent en des F -points de X ×K F . Sous l’hypothèse (a), deux tels
points sont R-équivalents sur X ×K F = X ×A F . Pour K de caractéristique zéro,
le théorème 3.7 (qui utilise le théorème de Hironaka) montre que l’hypothèse (b)
implique l’hypothèse (a). Sans restriction sur la caractéristique, sous l’hypothèse
(b), d’après la Proposition 3.6, il existe W ⊂ X un ouvert Zariski de X tel
que l’image de W(F) dans XK(F)/R est réduite à un élément. Soit T ⊂ X

le complémentaire de W dans X. L’adhérence de T dans X ne contient pas Y .
Comme Y (k) est Zariski dense dans Y on peut choisir P ∈ U(k) ⊂ Y (k) hors
de cette adhérence. Le point η ∈ Y (k(Y )) et le point Pk(Y ) se relèvent alors en des
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F -points de W , qui donc sont R-équivalents sur X ×K F . Par spécialisation de la
R-équivalence (Théorème 6.1), les points η et Pk(Y ) sont R-équivalents sur Yk(Y ).
Ils sont donc rationnellement équivalents sur Yk(Y ). Soit ξ le point générique de Z
d’image η ∈ Y . L’hypothèse que f est un CH0-isomorphisme implique que ξk(Z)
est rationnellement équivalent à Mk(Z) sur Zk(Z). D’après la proposition 3.11, ceci
implique que la k-variété projective et lisse Z est CH0-triviale. ��

On en déduit une démonstration alternative de [19, Thm. 1.14] :

Théorème 6.5 Soit A un anneau de valuation discrète, K son corps des fractions,
k son corps résiduel supposé algébriquement clos. Soit K une clôture algébrique
de K . Soit X un A-schéma projectif et plat, X = X ×A K la fibre générique
et Y = X ×A k la fibre spéciale. Supposons X/K lisse et géométriquement
intègre et Y/k géométriquement intègre. Supposons qu’il existe une résolution des
singularités projective f : Z → Y qui est un CH0-isomorphisme. Si la K-variété
X ×K K est rétractilement rationnelle, alors la k-variété Z est CH0-triviale.

Démonstration. On commence par remplacer A et K par leurs complétés. Il existe
une extension finie E/K sur laquelle X ×K E est rétractilement E-rationnelle. On
remplace K par E et A par la clôture intégrale de A dans E, qui est un anneau
de valuation discrète car A est complet. On applique alors le théorème 6.4, dont
la démonstration utilise la spécialisation de la R-équivalence mais pas celle de
l’équivalence rationnelle. ��

Pour ce qui concerne l’hypothèse que la résolution des singularités est CH0-
triviale, rappelons le résultat facile suivant :

Proposition 6.6 [19, Prop. 1.8] Soit f : Z → Y un morphisme propre de
k-variétés. Pour établir que, sur tout corps F contenant k, l’homomorphisme
f∗ : CH0(ZF ) → CH0(YF ) est un isomorphisme, il suffit de montrer que, pour
tout pointM du schéma Y , le k(M)-schéma fibre ZM est CH0-trivial. ��

Dans [44, §2.4], A. Pirutka développe une autre variante de la remarque 1.19 de
[19].

Théorème 6.7 Soit A un anneau de valuation discrète, de corps des fractions K et
de corps résiduel k. Soit X un A-schéma projectif et plat, X = X ×A K la fibre
générique et Y = X×Ak la fibre spéciale. SupposonsX/K et Y/k géométriquement
intègres, et Y (k) Zariski dense dans Y . Supposons qu’il existe une résolution des
singularités projective f : Z → Y qui soit R-triviale (au sens de la définition 3.5).
SiX est rétractilementK-rationnelle, alors Z est presque R-triviale. En particulier,
il existe un point M ∈ Z(k) tel que le point générique de Z est, sur Zk(Z),
R-équivalent àMk(Z). ��

Ceci nous permet d’établir un énoncé à comparer avec la méthode de Totaro [49],
qui ne donne que H 0(Z,�i) = 0.

Théorème 6.8 Soit A un anneau de valuation discrète, de corps des fractions K
et de corps résiduel k algébriquement clos. Soit X un A-schéma projectif et plat,
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X = X ×A K la fibre générique et Y = X ×A k la fibre spéciale. Supposons
X/K et Y/k géométriquement intègres. Supposons qu’il existe une résolution des
singularités projective f : Z → Y qui soit R-triviale (au sens de la définition 3.5).
Supposons la K-variété X géométriquement rétractilement rationnelle. Alors :

(i) La k-variétéZ est presqueR-triviale. En particulier il existe un pointM ∈ Z(k)
tel que le point générique de Z est, sur Zk(Z), R-équivalent àMk(Z).

(ii) Pour tous entiers i > 0 et m > 0, on a

H 0(Z, (�i)⊗m) = 0.

Démonstration. Pour établir le point (i) à partir du théorème 6.7, on procède comme
dans [19, Thm. 1.14], [44, Thm. 2.14] (où l’on s’est restreint à car(k) = 0) et dans
les théorèmes 6.4 et 6.5 ci-dessus. La proposition 3.31 ci-dessus (appliquée à Z)
donne alors le point (ii). ��

Pour établir dans des cas concrets qu’une résolution f : Z → Y est R-triviale,
on peut utiliser l’énoncé suivant.

Proposition 6.9 Soit f : Z → Y un k-morphisme propre. Si pour tout corps F
contenant k et tout point M ∈ Y (F ), la F -variété fibre ZM est R-triviale, alors le
morphisme f est R-trivial. ��

La démonstration de cet énoncé est facile, car les hypothèses impliquent que tout
F -morphisme d’un ouvert de P1

F vers YF se relève en un F -morphisme de cet ouvert
vers ZF . Mais, dans la pratique, établir que l’hypothèse sur les fibres ZM vaut est
l’une des principales difficultés.

6.3 Applications aux variétés algébriques complexes

Elles sont nombreuses. Certaines ont été décrites dans les rapports [43], [44].
Pour des familles projectives et lisses X → S de variétés algébriques d’un “type

donné”, paramétrées par une variété algébrique complexe, on établit des théorèmes
du type :

L’ensemble des points s ∈ S(C) tels que la fibre Xs ne soit pas rétractilement
rationnel est Zariski dense dans S.

On montre en fait que l’ensemble des points s où Xs est rétractilement rationnel
est contenu dans une union dénombrable de fermés propres de S.

On s’intéresse bien sûr à des variétés projectives et lisses X/C qui sont “proches
d’être rationnelles”, en particulier qui sont rationnellement connexes (i.e. telles que
X(C)/R soit réduit à un point). C’est le cas des variétés de Fano.

On a étudié :

• les hypersurfaces lisses dans Pn
C

(de degré d ≤ n)
• les revêtements cycliques ramifiés de Pn

C
(avec des conditions sur le degré du

revêtement et le degré de l’hypersurface de ramification)
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• des familles de quadriques de dimension relative d au moins 1 au-dessus de Pn
C

• des familles de surfaces de del Pezzo, et plus généralement de variétés de Fano,
au-dessus de Pn

C

On procède par dégénérescence de ces variétés sur des variétés singulières Y/k,
avec k éventuellement de caractéristique positive, pour lesquelles on trouve une
résolution des singularités Z → Y qui soit un morphisme CH0-trivial, et l’on
montre que Z n’est pas CH0-triviale, ou que Z n’est pas presque R-triviale en
utilisant le groupe de Brauer ou la cohomologie non ramifiée ou bien, si le corps
résiduel k est de caractéristique positive, l’invariantH 0(Z,�i).

Il y a ici deux points qui demandent beaucoup de travail :

• Montrer que la résolution Z → Y est un morphisme CH0-trivial (c’est une
propriété indépendante de la résolution). En pratique, il faut faire la résolution
explicite, et voir si les fibres sont CH0-triviales, ce qui donne le résultat grâce à
la Proposition 6.6.

• Montrer qu’un invariant (groupe de Brauer, cohomologie non ramifiée ...) n’est
pas trivial sur Z.

La première méthode, avec H 2
nr , alias le groupe de Brauer, est celle qui a été

utilisée par C. Voisin (doubles solides quartiques) puis dans [19] (quartiques lisses
dans P4), puis par Beauville (doubles solides sextiques), et dans de nombreux
articles subséquents de Hassett, Pirutka, Tschinkel, Kresch, Böhning, von Bothmer,
Auel. C’est celle qui a permis le résultat spectaculaire de Hassett, Pirutka, Tschinkel
[32] selon lequel la rationalité stable n’est pas forcément constante dans une famille
lisse de dimension relative au moins 4.

La seconde méthode, avec les différentielles en caractéristique positive, a été
initiée par B. Totaro [49]. Elle est inspirée d’un travail de Kollár de 1995, qui utilisait
déjà un argument de spécialisation sur une variété singulière en caractéristique
positive et H 0(Z,�i). Totaro en a déduit des résultats très généraux sur la non
rationalité stable des hypersurfaces très générales dans Pn, de degré d ≤ n

satisfaisant approximativement d ≥ 2n/3. Elle a été poursuivie dans [20]. De
nombreux autres résultats ont été ensuite obtenus par cette méthode par T. Okada,
H. Ahmadinezhad, I. Krylov et par Chatzistamatiou et Levine pour d’autres types de
variétés rationnellement connexes. Peut-on envisager des applications intéressantes
du Théorème 6.8 (ii) qu’on ne puisse obtenir à partir de la simple conclusion
H 0(Z,�i) = 0 ?

La première méthode, cette fois-ci avec les invariants cohomologiques supérieurs
Hinr , vient d’être utilisée par Schreieder [45] pour des fibrations en quadriques de
grande dimension au-dessus de l’espace projectif. À cette occasion, il a introduit une
variante importante de la méthode de spécialisation, qui évite dans certains cas de
vérifier si la résolution de la fibre spéciale est CH0-triviale (ou presque R-triviale).
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On trouvera ceci discuté dans le texte [15].
Par spécialisations successives à partir du cas des familles de quadriques de

Pfister au-dessus d’un espace projectif, Schreieder [46] a fait progresser de façon
spectaculaire le cas des hypersurfaces très générales de degré d dans Pn

C
, obtenant

leur non rationalité stable avec une condition du type d ≥ log(n).

7 Hypersurfaces cubiques non stablement rationnelles sur
un corps non algébriquement clos

Soient k un corps et X ⊂ Pnk , n ≥ 3, une hypersurface cubique lisse. On s’intéresse
ici au cas où k n’est pas algébriquement clos.

Le défi ici est, pour un corps k de complexité arithmétique donné (corps fini,
corps local, corps de nombres, corps de fonctions de d variables sur un de ces corps
ou sur les complexes, corps de séries formelles itérées sur l’un de ces corps) de
trouver des hypersurfaces cubiques lisses non rétractilement k-rationnellesX ⊂ Pnk
avec X(k) �= ∅ et n aussi grand que possible.

7.1 Hypersurfaces cubiques réelles

Proposition 7.1 Pour tout entier n ≥ 2, il existe une hypersurface cubique lisse
X ⊂ Pn

R
telle que le lieu des points réels X(R) ait deux composantes connexes. En

particulier, une telle hypersurface n’est pas rétractilement R-rationnelle.

Démonstration. Soit n ≥ 2 et soient x0, . . . , xn−2, u, v des variables. Soit

�(x0, . . . , xn−2, u, v) = (
∑

i

x2
i )v − u(u− v)(u+ v).

Soit Y ⊂ Pn
R

l’hypersurface cubique définie par l’équation

�(x0, . . . , xn−2, u, v) = 0.

Son lieu singulier est donné par u = v =∑

i x
2
i = 0, il n’a pas de point réel. On a

donc Ylisse(R) = Y (R). Les coordonnées (u, v) définissent une application continue
Ylisse(R) → P1(R), dont l’image est la réunion des deux invervalles définis par
u(u − v)(u + v) ≥ 0. On vérifie ainsi que Y (R) est une variété C∞ avec deux
composantes connexes. Soit�(x0, . . . , xn−2, u, v) =∑

i x
3
i + u3+ v3. Pour ε ∈ R

petit, l’hypersurface cubique définie par�+ ε� = 0 est lisse pour ε �= 0, pout tout
ε ∈ R petit, son lieu réel est une variété C∞ lisse, et par le théorème d’Ehresmann,
ce lieu est difféomorphe à Y (R) = Ylisse(R). ��
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Exercice Pour une hypersurface cubique X ⊂ Pn
R

, n ≥ 2, l’espace X(R) a au plus
deux composantes connexes.

7.2 Spécialisations à fibres réductibles

Dans le contexte de la spécialisation du groupe de Chow, Totaro [49] a utilisé
des spécialisations à fibre réductible. On peut le faire aussi dans le cadre de la
R-équivalence. L’énoncé suivant est inspiré par [49] et [7], mais est plus simple.

Proposition 7.2 SoitA un anneau de valuation discrète,K son corps des fractions,
k son corps résiduel. Soit X un A-schéma propre et plat. Supposons la fibre
génériqueX/K lisse et géométriquement intègre. Soit Y la fibre spéciale. Supposons
Y union de deux fermés Y = V ∪ W , T = V ∩ W , T (k) = ∅, Vlisse(k) �= ∅
et Wlisse(k) �= ∅. Alors la K-variété X n’est pas R-triviale et n’est donc pas
rétractilement K-rationnelle.

Démonstration. On peut supposer que A est hensélien. Soient p ∈ Vlisse(k) et q ∈
Wlisse(k). Par le lemme de Hensel, il existe des A-points P etQ de X (R) = X(K)
qui se spécialisent l’un en p, l’autre en q . Par le théorème 6.1, l’application de
spécialisation X(K) = X (A)→ Y (k) passe au quotient par la R-équivalence. Si X
est R-triviale, il existe donc une chaîne de k-morphismes P1

k → Y qui relie p et q .
Il existe donc un k-morphisme f : P1

k → Y tel que f (0) ∈ V (k) et f (∞) ∈ W(k).
La courbe P1

k est alors couverte par les deux fermés non vides v = f−1(V ) et
w = f−1(W), qui contiennent chacun un k-point, et dont l’intersection n’a pas de
k-point car T (k) = ∅. L’un des deux fermés, soit v, est égal à P1

k . Mais alors w ⊂ v,
et tout k-point de w est dans v. Contradiction. ��
Exemples 7.3 Soient n ≥ 2 et f0(x1, . . . , xn) ∈ k[x1, . . . , xn] une forme homogène
de degré d ≥ 2 sans zéro sur le corps k définissant une hypersurface lisse sur k. Soit
α ∈ k∗ une valeur (non nulle) de f sur kn. Soit

f (x0, . . . , xn) := αxd0 − f0(x1, . . . , xn) ∈ k[x0, x1, . . . , xn],

puis

g(x0, . . . , xn) = x0.f (x0, . . . , xn).

Soit Y ⊂ Pnk l’hypersurface de degré d + 1 définie par g = 0. C’est l’union de V
défini par x0 = 0 et W défini par f0(x1, . . . , xn) = 0. L’intersection T = V ∩ W
satisfait T (k) = ∅. On a V (k) �= ∅ etW(k) �= ∅.

Soit g(x0, . . . , xn) ∈ k[x0, x1, . . . , xn] une forme homogène de degré d + 1
définissant une hypersurface lisse dans Pnk . Notons A = k[[t]] et K = k((t)).
L’hypersurface X ⊂ PnK définie par tg(x0, . . . , xn) + f (x0, . . . , xn) = 0 n’est pas
R-triviale, et n’est pas pas rétractilementK-rationnelle.
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On peut aussi donner des exemples similaires avec A un anneau de valuation
discrète complet d’inégale caractéristique.

En utilisant cette méthode dans le cas d = 2, on obtient des hypersurfaces
cubiques lisses, avec un K-point, non rétractilement K-rationnelles dans PNK pour
tout N ≤ 2r−1 sur K = C((u1)) . . . ((ur )) et dans Qp((u1)) . . . ((ur−2)).

Sur K = C((u1))((u2))((u3)) on trouve donc des hypersurfaces cubiques
dans P4

K . Ces bornes sont les mêmes que celles obtenues dans [7] et dans [13], qui
établissent le résultat plus fort que les hypersurfaces cubiques concernées ne sont
pas CH0-triviales. La démonstration de ce dernier résultat utilise une variation due
à Totaro de la technique de spécialisation de Voisin et CT-Pirutka pour les groupes
de Chow de zéro-cycles.

7.3 Hypersurfaces cubiques diagonales et cohomologie non
ramifiée

Ce paragraphe est extrait directement de l’article [13]. On utilise encore ici une
technique de spécialisation, mais elle est différente de celles employées ci-dessus.

Théorème 7.4 Soit k un corps de caractéristique différente de 3, possédant un
élément a qui n’est pas un cube. Soient 0 ≤ n ≤ m des entiers. Soit F un corps avec

k(λ1, . . . , λm) ⊂ F ⊂ Fm := k((λ1)) . . . ((λm)).

L’hypersurface cubique X := Xn,F de Pn+3
F définie par l’équation

x3 + y3 + z3 + aw3 +
n

∑

i=1

λi t
3
i = 0

possède un point rationnel et n’est pas universellement CH0-triviale, en particulier
elle n’est pas rétractilement F -rationnelle.

Démonstration. Pour établir le résultat, on peut supposer que k contient une racine
cubique primitive de l’unité, soit j , et que F = Fm. Le lemme 7.5 ci-dessous
permet de supposer n = m. On fixe un isomorphisme Z/3 = μ3 et on considère
la cohomologie étale à coefficients Z/3. On ignore les torsions à la Tate dans les
notations. Etant donnés un corps L contenant k et des éléments bi, i = 1, . . . , s, de
L∗, on note (b1, . . . , bs) ∈ Hs(L,Z/3) le cup-produit, en cohomologie galoisienne,
des classes (bi) ∈ L∗/L∗3 = H 1(L,Z/3).

On va démontrer par récurrence sur n �= 0 l’assertion suivante, qui implique la
proposition.

(An) Soient k, a, Fn et Xn/Fn comme ci-dessus. Le cup-produit

αn := ((x + jy)/(x + y), a, λ1, . . . , λn) ∈ Hn+2(Fn(Xn),Z/3)
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définit une classe de cohomologie non ramifiée (par rapport au corps de base Fn)
qui ne provient pas d’une classe dans Hn+2(Fn,Z/3).

Le cas n = 0 est connu ([37, Chap. VI, §5] [22, §2.5.1]). Supposons l’assertion
démontrée pour n.

La classe αn+1 sur la Fn+1-hypersurfaceXn+1 ⊂ Pn+4
Fn+1

a ses résidus triviaux en
dehors des diviseurs définis par x+y = 0 et x+jy = 0. Soit� ⊂ Xn+1 le diviseur
x + y = 0. Ce diviseur est défini par les équations

x + y = 0, z3 + aw3 +
n+1
∑

i=1

λi t
3
i = 0.

Le résidu de αn+1 au point générique de � est

∂�(αn+1) = ±(a, λ1, . . . , λn+1) ∈ Hn+2(Fn+1(�),Z/3).

Mais dans le corps des fonctions de�, on a

1+ a(w/z)3 +
n+1
∑

i=1

λi(ti/z)
3 = 0

et cette égalité implique (cf. [40, Lemma 1.3]) :

(a, λ1, . . . , λn+1) = 0 ∈ Hn+2(Fn+1(�),Z/3).

Le même argument s’applique pour le diviseur défini par x + jy = 0. Ainsi αn+1
est une classe de cohomologie non ramifiée sur la Fn+1-hypersurfaceXn+1.

Soit Xn+1 le Fn[[λn+1]]-schéma défini par

x3 + y3 + z3 + aw3 +
n+1
∑

i=1

λit
3
i = 0.

Le diviseur Z défini par λn+1 = 0 sur X est le cône d’équation

x3 + y3 + z3 + aw3 +
n

∑

i=1

λi t
3
i = 0

dans Pn+4
Fn

, cône qui est birationnel au produit de P1
Fn

et de l’hypersurface cubique

lisse Xn ⊂ Pn+3
Fn

définie par

x3 + y3 + z3 + aw3 +
n

∑

i=1

λit
3
i = 0.

Le corps des fonctions rationnelles de Xn+1 est Fn+1(Xn+1).
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On a

∂Z(αn+1) = ±((x + jy)/(x + y), a, λ1, . . . , λn) ∈ Hn+2(Fn(Z),Z/3).

Par l’hypothèse de récurrence

((x + jy)/(x + y), a, λ1, . . . , λn) ∈ Hn+2(Fn(Xn),Z/3)

n’est pas dans l’image de Hn+2(Fn,Z/3). Ceci implique que

((x + jy)/(x + y), a, λ1, . . . , λn) ∈ Hn+2(Fn(Z)),Z/3)

n’est pas dans l’image de Hn+2(Fn,Z/3). Du diagramme commutatif

∂Z : Hn+3(Fn+1(X),Z/3)→ Hn+2(Fn(Z),Z/3)
↑ ↑

∂λn+1=0 : Hn+3(Fn+1,Z/3) → Hn+2(Fn,Z/3)

on conclut que

αn+1 := ((x + jy)/(x + y), a, λ1, . . . , λn+1) ∈ Hn+3(Fn+1(X),Z/3)

n’est pas dans l’image de Hn+3(Fn+1,Z/3).
Ceci établit (An) pour tout entier n et implique (cf. [39]) que la Fn-variété Xn

n’est pas universellement CH0-triviale et n’est pas rétractilement Fn-rationnelle.
��

Lemme 7.5 Soit F un corps. Si une F -variétéX projective, lisse, géométriquement
connexe n’est pas universellement CH0-triviale, alors la F((t))-variétéX×F F((t))
n’est pas universellement CH0-triviale, et donc n’est pas rétractilement F((t))-
rationnelle.

Démonstration. Sur tout corps L contenant F , on dispose de l’application de
spécialisation CH0(XL((t))) → CH0(XL), et cette application est surjective et
respecte le degré. ��
Remarque 7.6 Il serait intéressant de comprendre la généralité de la construction
faite dans le théorème 7.4. On utilise une classe de cohomologie non ramifiée non
constante sur un modèle birationnel de la fibre spéciale d’une k[[t]]-schéma propre
à fibres intègres, et on en tire une classe de cohomologie non ramifiée non constante
de degré un de plus sur la fibre générique sur k((t)), essentiellement par cup-produit
avec la classe d’une uniformisante de l’anneau k[[t]].

On laisse au lecteur le soin d’établir l’analogue suivant du théorème 7.4.

Théorème 7.7 Soient p �= 3 un nombre premier et k un corps p-adique dont le
corps résiduel contient les racines cubiques primitives de 1. Soit a ∈ k∗ une unité
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qui n’est pas un cube. Soit π une uniformisante de k. Soient 0 ≤ n ≤ m des entiers.
Soit F un corps avec

Q(a)(λ1, . . . , λm) ⊂ F ⊂ k((λ1)) . . . ((λm)).

L’hypersurface cubique Xn de Pn+4
F définie par l’équation

x3 + y3 + z3 + aw3 + πt3 +
n

∑

i=1

λi t
3
i = 0,

qui possède un point rationnel, n’est pas universellement CH0-triviale et donc n’est
pas rétractilement F -rationnelle.

Exemples En appliquant le théorème 7.4, on trouve Xn ⊂ Pn+3
F non rétractilement

F -rationnelle avec

k(λ1, . . . , λn) ⊂ F ⊂ k((λ1)) . . . ((λn))

dans les situations suivantes.

(i) Le corps k = F est un corps fini de caractéristique différente de 3 contenant les
racines cubiques de 1.

(ii) Le corps k, de caractéristique différente de 3, possède une valuation discrète,
par exemple k est le corps des fonctions d’une variété complexe de dimension
au moins 1, ou est un corps p-adique, ou est un corps de nombres.

On trouve ainsi des hypersurfaces cubiques lisses non rétractilement
C(x1, . . . , xm)-rationnelles dans Pn

C(x1,...,xm)
, avec un point rationnel, pour tout

entier n avec 3 ≤ n ≤ m+ 2.
En appliquant le théorème 7.7, sur un corps k p-adique (p �= 3) contenant une

racine cubique de 1, on trouve des hypersurfaces cubiques lisses non rétractilement
k(x1, . . . , xm)-rationnelles dans Pnk(x1,...,xm)

, avec un point rationnel, pour tout entier
n avec 4 ≤ n ≤ m+ 4.

Remerciements. Je remercie Andreas Hochenegger, Manfred Lehn et Paolo
Stellari de l’invitation à donner ce cours, et je remercie le rapporteur de ces notes
pour sa lecture attentive.
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Abstract Hassett, Pirutka and Tschinkel gave the first examples of familiesX→B

of smooth, projective, connected, complex varieties having some rational fibres and
some other fibres which are not even stably rational. This used the specialisation
method of Voisin, as extended by Pirutka and myself. Under specific circumstances,
a simplified version of the specialisation method was produced by Schreieder,
leading to a simpler proof of the HPT example. I describe the method in its simplest
form.

1 Introduction

Hassett, Pirutka and Tschinkel [13] gave the first examples of families X→B of
smooth, projective, connected, complex varieties having some rational fibres and
some other fibres which are not even stably rational. This used the specialisation
method of Voisin, as extended by Pirutka and myself. Under specific circumstances,
a simplified version of the specialisation method was produced by Schreieder
[18, 19], leading to a simpler proof of the HPT example (no explicit resolution of
singularities). In the following note I describe the method in its simplest form. For
further developments, the reader is invited to read [1], which offers a different look
at [13] as well as some generalizations, [4], and the papers [18–20] by Schreieder.
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2 Basics on the Brauer Group and on the Chow Group
of Zero-Cycles

Grothendieck defined the Brauer group Br(X) of a scheme X as the second étale
cohomology group H 2

ét(X,Gm) of X with values in the sheaf Gm,X on X. This is a
contravariant functor with respect to arbitrary morphisms of schemes.

If X = Spec(K) is the spectrum of a field, then Br(X) = Br(K), the more
classical cohomological Brauer group H 2(Gal(Ks/K),K∗s ). Assume 2 ∈ K∗.
To the quaternion algebra (a, b) one associates a class (a, b) ∈ Br(K)[2]. The
quaternion algebra is isomorphic to a matrix algebraM2(K) if and only (a, b) = 0 ∈
Br(K), if and only if the diagonal quadratic form < 1,−a,−b > has a nontrivial
zero over K , if and only if the diagonal quadratic form < 1,−a,−b, ab > has a
nontrivial zero overK .

Proposition 2.1 IfX is an integral regular scheme andK(X) is its field of rational
functions, then the natural map Br(X)→Br(K(X)) is injective.

Proposition 2.2 For R a discrete valuation ring with perfect residue field κ and
field of fractionsK , there is a natural exact sequence

0→Br(R)→Br(K)→H 1(κ,Q/Z)→0.

The map ∂R : Br(K)→H 1(κ,Q/Z) is the residue map.

Let R be a discrete valuation ring with perfect residue field κ and field of
fractions K . Suppose 2 ∈ R∗. Given a, b ∈ K∗ we may consider the element
(a, b) ∈ Br(K)[2] associated to the quaternion algebra (a, b). Let v : K∗→Z be the
valuation map. The quotient av(b)/bv(a) ∈ K∗ belongs to R∗. Let cl((av(b)/bv(a))
denote its class in κ∗/κ∗2. One shows :

∂R((a, b)) = (−1)v(a).v(b)cl((av(b)/bv(a))) ∈ κ∗/κ∗2 = H 1(κ,Z/2) ⊂ H 1(κ,Q/Z).

Proposition 2.3 Let R ⊂ S be a local inclusion of discrete valuation rings,
inducing an inclusion of fields K ⊂ L and an inclusion of residue fields κ ⊂ λ.
Assume char(κ) = 0. Let e be the ramification index. Then there is a commutative
diagram

Br(K)→ H 1(κ,Q/Z)

↓ ↓
Br(L) → H 1(λ,Q/Z)

where H 1(κ,Q/Z)→H 1(λ,Q/Z) is e.Resκ,λ.

Let K be a field and X an algebraic variety over K , i.e. a separated K-scheme
of finite type. The group of zero-cycles Z0(X) is the free abelian group on closed
points of X. Given anyK-morphism f : Y→X of K-varieties, one defines the map
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f∗ : Z0(Y )→Z0(X) as the map sending a closed point M ∈ Y with image the
closed point N = f (M) ∈ X to the zero cycle [K(M) : K(N)]N ∈ Z0(X).

Given a normal, connected curve C over K , and a rational function g ∈ K(C)∗,
on associates to it its divisor divC(g) ∈ Z0(C). Given a morphism f : C→X, one
may then consider the zero-cycle f∗(divC(g)) ∈ Z0(X).

One then defines the Chow group CH0(X) of zero-cycles on X as the quotient
of Z0(X) by the subgroup spanned by all f∗(divC(g)), for f : C→X a proper
K-morphism from a normal, integralK-curve to X and g ∈ K(C)∗.

If φ : X→Y is a proper morphism of K-varieties, there is an induced map
φ∗ : CH0(X)→CH0(Y ). In particular, if X/K is proper, the structural map
X→Spec(K) induces a degree map CH0(X)→Z.

If φ : U→X is an open embedding of K-varieties, the natural restriction
map Z0(X)→Z0(U) which forgets closed points outside of U induces a map
CH0(X)→CH0(U).

Let X be a K-variety. There is a natural bilinear pairing

Z0(X)× Br(X)→Br(K)

which sends a pair (P, α) with P a closed point of X and an element α in Br(X)
to CoresK(P )/K(α(P )). If X/K is proper, this pairing induces a bilinear pairing

CH0(X)× Br(X)→Br(K).

See [2, Prop. 3.1].
This pairing satisfies an obvious functoriality property with respect to (proper)

K-morphisms of properK-varieties.

3 Quadric Surfaces over a Field

The following proposition is classical. See [9, 21] and [3, Thm. 3.1].

Proposition 3.1 Let K be a field, char(K) �= 2, and let X ⊂ P
3
K be a smooth

quadric surface. It is defined by a quadratic form q , which one may assume to be
in diagonal form q =< 1,−a,−b, abd >, with a, b, d ∈ K∗. The class of d in
K∗/K∗2 is the discriminant, it does not depend on the choice of the quadratic form
q defining the quadric X.

The natural map Br(K)→Br(X) is surjective.

(a) If d /∈ K∗2, the map Br(K)→Br(X) is an isomorphism.
(b) If d ∈ K∗2, the map Br(K)→Br(X) is surjective, and its kernel is of order

at most 2, spanned by the class of the quaternion algebra (a, b), which is
nontrivial if and only if X(K) = ∅.
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4 A Special Quadric Surface over P
2
C

Reference: [13, 17].
Let F(x, y, z) = x2 + y2 + z2 − 2(xy + yz+ zx).
Let X ⊂ P

3
C
× P

2
C

be the family of two-dimensional quadrics over P2
C

given by
the bihomogeneous equation

yzU2 + zxV 2 + xyW 2 + F(x, y, z)T 2 = 0.

This family is smooth over the open set of P2
C

whose complement is the octic curve
defined by the determinant equation

� = x2.y2.z2.F (x, y, z) = 0.

Note that this is the union of the smooth conic F = 0 and (twice) three tangents to
this conic. The family is flat over P2

C
(all fibres are quadrics). The total space is not

smooth.
Part (a) of the following proposition is a result of Hassett, Pirutka and

Tschinkel [13, Prop. 11].
Part (b) is a special case of the general statement [19, Prop. 7], the proof of which

builds upon results of Pirutka ([17, Thm. 3.17], [19, Thm. 4]), for which material is
offered in Appendix 2 below.

As we shall see, the proof given for (a) in [13, Prop. 11] is easily modified to
simultaneously give a proof of (b).

The proposition suffices for the special case described in this note; it dispenses
us with the recourse to Appendix 2.

Proposition 4.1 Let X̃→X be a projective desingularisation of X. Let α be the
quaternion class (x/z, y/z) ∈ Br(C(P2)).

(a) The image β of α under the inverse map p∗2 : Br(C(P2))→Br(C(X)) is nonzero
and lies in the subgroup Br(X̃).

(b) For each codimension 1 subvariety Y of X̃ which does not lie over the generic
point of P2

C
, the element β ∈ Br(X̃) maps to 0 ∈ Br(C(Y )).

Proof The equation is symmetrical in (x, y, z). The class α = (x/z, y/z) is given
by (x, y) in the open set z �= 0, by (x/z, 1/z) = (x, z) in the open set y �= 0 and
by (1/z, y/z) = (y, z) in the open set x �= 0. In view of the symmetry between
(x, y, z) in the equation, we may restrict attention to the open set A2

C
of P2

C
defined

by z �= 0. From now on we use affine coordinates (x, y). In affine coordinates, the
quaternion algebra (x, y) has nontrivial residues along x = 0 and y = 0.

Let K = C(P2). Let Xη/K be the (smooth) generic quadric. The discriminant
of the quadratic form q =< y, x, xy, F (x, y, 1) > in K∗ is not a square. Thus the
map Br(K)→Br(Xη) is an isomorphism (see Sect. 3). Since the quaternion algebra
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α = (x, y) ∈ Br(C(P2)) has some nontrivial residues, it is nonzero in Br(C(P2)).
Thus its image β ∈ Br(C(X)) is nonzero. ��

Let v be a discrete valuation of rank one on L := K(X), let S be its valuation
ring. Let κv denote the residue field. If K ⊂ S, then (x, y) is unramified. Suppose
S ∩K = R is a discrete valuation ring (of rank one). The image of the closed point
of Spec(R) in P

2
C

is then either a point m of codimension 1 or a (complex) closed
pointm of P2

C
. By symmetry, for the argument we may assume that these points are

in A
2
C

.
Consider the first case. If the codimension 1 point m does not belong to xy = 0,

then α = (x, y) ∈ Br(K) is unramified at m on A
2
C

hence also in Br(L) at v.
Moreover, the evaluation of β in Br(κv) is just the image under Br(C(m))→Br(κv)
of the image of α in Br(C(m)), hence vanishes since Br(C(m)) = 0 (Tsen).

Suppose m is a generic point of a component of xy = 0. By symmetry, it is
enough to examine the affine case where the pointm of codimension 1 is the generic
point of x = 0. In the function field L, we have an identity

yU2 + xV 2 + xyW 2 + F(x, y, 1) = 0

with yU2 + xV 2 �= 0. In the completion of K at the generic point of x = 0,
F(x, y, 1) is a square, because F(x, y, 1) modulo x is equal to (y − 1)2, a nonzero
square. Thus in the completion Lv we have an equality (with some other elements
U,V,W ∈ Lv).

yU2 + xV 2 + xyW 2 + 1 = 0.

This gives (x, y)Lv = 0 ∈ Br(Lv). Hence (x, y)L is unramified at v, thus belongs
to Br(R) and has image 0 in Br(κv).

Suppose we are in the second case, i.e.m is a closed point of A2
C

. There is a local
map O

A
2
C
,m→S which induces a map C→κv . If x �= 0, then x becomes a nonzero

square in the residue field C hence in κv , and the residue of (x, y)L at v is trivial.
The analogous argument holds if y �= 0. It remains to discuss the case x = y = 0.
We have F(0, 0, 1) = 1 ∈ C

∗. Thus F(x, y, 1) reduces to 1 in κv , hence is a square
in the completion Lv . As above, in the completion Lv we have an equality

yU2 + xV 2 + xyW 2 + 1 = 0,

which implies (x, y)Lv = 0 ∈ Br(Lv). Hence (x, y)L is unramified at v, thus
belongs to Br(S) and has image 0 in Br(κv). ��

As in the reinterpretation [5] of the Artin–Mumford examples, the intuitive
idea behind the above result is that the quadric bundle X→P

2
C

is ramified along
x.y.z.F (x, y, z) = 0 on P

2
C

and that the ramification of the symbol (x/z, y/z) on
P

2
C

, which is “included” in the ramification of the quadric bundleX→P
2
C

disappears
over smooth projective models ofX : ramification eats up ramification (Abhyankar’s
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lemma). Here one also uses the fact that the smooth conic defined by F(x, y, z) = 0
is tangent to each of the lines x = 0, y = 0, z = 0, and does not vanish at any of
the intersection of these three lines.

5 The Specialisation Argument

The following theorem is an improvement by Schreieder [18, Prop. 26] of the
specialisation method, as initiated by Voisin [22], in the format later proposed
by Colliot-Thélène and Pirutka [6]. The assumptions in [18, Prop. 26] are more
general than the ones given here. The generic fibre need not be smooth and one
only requires that f−1(U)→U be universally CH0-trivial. There is a more general
version which involves higher unramified cohomology with torsion coefficients. The
proof is identical to the one given here with the Brauer group.

Schreieder’s proof is cast in the geometric language of the decomposition of the
diagonal. I provide a more “field-theoretic” proof. It is well known that both points
of view are equivalent [3, 6]. I add a further, hopefully simplifying, twist by using
specialization of R-equivalence on rational points instead of Fulton’s specialisation
theorem for the Chow group.

Theorem 5.1 Let R be a discrete valuation ring, K its field of fractions, κ its
residue field. Assume κ is algebraically closed and char(κ) = 0. Let K be an
algebraic closure of K . Let X /R be an integral projective scheme over R, with
generic fibre X = XK/K smooth, geometrically integral, and with special fibre
Z/κ geometrically integral. Assume there exists a nonempty open set U ⊂ Z and
a projective, birational desingularisation f : Z̃→Z such that V := f−1(U)→U
is an isomorphism, and such that the complement Z̃ \ V is a union ∪iYi of smooth
irreducible divisors of Z̃. Assume that the K-variety XK is stably rational. If an
element α ∈ Br(Z̃) vanishes on each Yi , then α = 0 ∈ Br(Z̃).

Proof To prove the result, one may assume R = κ[[t]] (completion of the original
R) and K = κ((t)). Assume XK is stably rational. Then there exists a finite
extension K1 = κ((t1/d)) of K over which XK1 is K1-stably rational. We replace
X /R by X ×R κ[[t1/d]]. This does not change the special fibre.

Changing notation once more, we now have X /R an integral projective scheme
whose generic fibre X/K is stably rational over K and whose special fibre Z/κ is
just as in the theorem. Fix m ∈ V (κ), mapping to n ∈ U(κ).

Let L = κ(Z). We have the commutative diagram of exact sequences

⊕iCH0(Yi,L)→ CH0(Z̃L)→ CH0(VL) → 0
↓ ↓ �

CH0(ZL)→ CH0(UL)→ 0.
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where for each i, the closed embedding ρi = Yi→Z̃ induces

ρi,∗ : CH0(Yi,L)→CH0(Z̃L),

the top exact sequence is the classical localisation sequence for the Chow group, the
map f∗ : CH0(Z̃L)→CH0(ZL) is induced by the proper map f : Z̃→Z, the map
CH0(VL)→CH0(UL) is the isomorphism induced by the isomorphism1 f : V→U ,
and the map CH0(ZL)→CH0(UL) is the obvious restriction map for the open set
U ⊂ Z.

Let ξ be the generic point of Z̃ and η the generic point of Z.
Both ηL and nL are smooth points of YL. There exists an extension R→S of

complete dvr inducing κ→L on residue fields. Let F be the field of fractions of
S. By Hensel’s lemma, the points ηL and nL lift to rational points of the generic
fibre of X ×K F/F of XS/S. Since X/K is stably rational, all points of XF (F) are
R-equivalent [7, Prop. 10] and [14, Cor. 6.6.6].

It is a well known fact [15, prop. 3.1] and [14, Comments after Thm. 6.6.2] that
for a proper morphism XS→S over a discrete valuation ring S there is an induced
map on R-equivalence classes X(F)/R→Z(L)/R. This implies ηL − nL = 0 ∈
CH0(ZL).2

From the above diagram we conclude that

ξL = mL +
∑

i

ρi∗(zi) ∈ CH0(Z̃L)

with zi ∈ CH0(Yi,L).
For the proper variety Z̃L, there is a natural bilinear pairing

CH0(Z̃L)× Br(Z̃)→Br(L).

For the smooth, proper, integral variety Z̃, on the generic point ξ ∈ Z̃L(L), this
pairing induces the embedding Br(Z̃) ↪→ Br(κ(Z)). Supposeα ∈ Br(Z̃) vanishes in
each Br(Yi) (which follows from the vanishing in Br(κ(Yi)) because Yi is smooth).
The evaluation of α on mL is just the image of α(m) ∈ Br(κ) = 0. The above
equality implies α(ξ) = 0 ∈ Br(L), hence α = 0 ∈ Br(Z̃). ��

1Instead of assuming that f−1(U)→U is an isomorphism, it would be enough, as in [18], to
assume that this morphism is a universal CH0-isomorphism.
2Alternatively, one could argue as follows. Since X is stably rational over K , over any field F
containingK , the degree map CH0(XF )→Z is an isomorphism (for a simple proof, see [6, Lemme
1.5]). One could then invoke Fulton’s specialisation theorem for the Chow group of a proper
scheme over a dvr [11, §2, Prop. 2.6], to get ηL − nL = 0 ∈ CH0(ZL). Fulton’s specialisation
theorem is a nontrivial theorem. The argument via R-equivalence (cf. [6, Remarque 1.19]) looks
simpler.
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6 Stable Rationality is not Constant in Smooth Projective
Families

We now complete the simplified proof of the theorem of Hassett, Pirutka and
Tschinkel [13].

Theorem 6.1 There exist a smooth projective family of complex fourfolds f :
X→T parametrized by an open set T of the affine line A1

C
and pointsm,n ∈ T (C)

such that the fibre Xn is rational and the fibre Xm is not stably rational.

Proof One considers the universal family of quadric bundles over P
2
C

given in
P

3
C
× P

2
C

by a bihomogenous form of bidegree (2, 2). This is given by a symmetric
(4, 4) square matrix with entries ai,j (x, y, z) homogeneous quadratic forms in three
variables (x, y, z). If its determinant is nonzero, it is a homogeneous polynomial of
degree 8.

We thus have a parameter space B given by a projective space of dimension
59 (the corresponding vector space being given by the coefficients of ten quadratic
forms in three variables). We have the map X→B whose fibres Xm are the various
quadric bundles Xm→P

2
C

, for Xm ⊂ P
3
C
× P

2
C

given by the vanishing of a nonzero
complex bihomogeneous form of bidegree (2, 2).

Using Bertini’s theorem, one shows that there exists a nonempty open set B0 ⊂
B such that the fibres of X→B over points of m ∈ B0 are flat quadric bundles
Xm→P

2
C

which are smooth as C-varieties.
Using Bertini’s theorem, one also shows that there exist points m ∈ B0 with the

property that the corresponding quadric bundle has a1,1 = 0, which implies that the
fibration Xm→P

2
C

has a rational section (given by the point (1, 0, 0, 0)), hence that
the generic fibre of Xm→P

2
C

is rational over C(P2), hence that the C-variety Xm
is rational over C. [Warning : this Bertini argument uses the fact that we consider
families of quadric surfaces over P2

C
. It does not work for families of conics over

P
2
C

.]
These Bertini arguments are briefly described in [18, Lemma 20 and Thm. 47]

and are tacitly used in [19, p. 3].
By Proposition 4.1, the special example in Sect. 4 defines a point P0 ∈ B(C)

whose fibre is Z = XP0 and which admits a projective birational desingularisation
f : Z̃→Z satisfying :

(a) there exists a nonempty open set U ⊂Z, such that the induced map
V := f−1(U)→U is an isomorphism;

(b) the complement Z̃ \ V is a union ∪iYi of smooth irreducible divisors of Z̃;
(c) there is a nontrivial element α ∈ Br(Z̃) which vanishes on each Yi .

Theorem 5.1 then implies that the generic fibre of X→B is not geometrically
stably rational. There are various ways to conclude from this that there are many
points m ∈ B0(C) such that the fibre Xm is not stably rational.
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Take one such point m ∈ B0(C) and a point n ∈ B0(C) such that Xn is rational.
Over an open set of the line joining m and n we get a projective family of smooth
varieties with one fibre rational and with one fibre not stably rational. ��

The proof by Hassett, Pirutka and Tschinkel [13] uses an explicit desingular-
isation of the variety Z in Sect. 4, with a description of the exceptional divisors
appearing in the process. Schreieder’s improvement of the specialisation method
enables one to bypass this explicit desingularisation.

Note that [13] and [19] contain many more results on families of quadrics
surfaces over P2 than Theorem 6.1.

Appendix 1: Conics over a Discrete Valuation Ring

LetR be a dvr with residue field k of characteristic not 2. LetK be the fraction field.
A smooth conic overK admits a regular model X given in P

2
R either by an equation

x2 − ay2 − bz2 = 0

with a, b ∈ R∗ (case (I)) or a regular model X given by an equation

x2 − ay2 − πz2 = 0

with a ∈ R∗ and π a uniformizing parameter (case (II)). Moreover, in the second
case one may assume that a is not a square in the residue field κ .

Proposition 1 Let R be a dvr with residue field k of characteristic not 2. Let K be
the fraction field. Let W→Spec(R) be a proper flat morphism with W regular and
connected. Assume that the generic fibre is a smooth conic over K . Then:

(a) The natural map Br(R)→Br(W) is onto.
(b) For Y ⊂ W an integral divisor contained in the special fibre of W→Spec(R),

and β ∈ Br(W), the image of β under restriction Br(W)→Br(Y ) belongs to
the image of Br(κ)→Br(Y ).

Proof By purity for the Brauer group of a two-dimensional regular scheme, to prove
(a), one may assume that W = X as above. Let X = X ×R K . It is well known
that the map Br(K)→Br(X) is onto, with kernel spanned by the quaternion symbol
(a, b)K in case (I) and by (a, π)K in case (II).

Let β ∈ Br(X ) ⊂ Br(X). Let α ∈ Br(K) be some element with image βK . We
have the exact sequence

0→Br(R){2}→Br(K){2}→H 1(κ,Q2/Z2)

Comparison of residues on Spec(R) and on X shows that the residue δR(α) is either
0 or is equal to the nontrivial class in H 1(k(

√
a)/k,Z/2), and this last case may
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happen only in case (II). In the first case, we have α ∈ Br(R), hence β − αX = 0 in
Br(X) hence also in Br(X ) since X is regular. In the second case, we have

δR(α) = δR((a, π))

hence α = (a, π)+ γ with γ ∈ Br(R). We then get

β = (a, π)K(X) + γK(X) ∈ Br(K(X)).

But (a, π)K(X) = 0. Thus β − γX ∈ Br(X ) ⊂ Br(K(X)) vanishes, hence β =
γX ∈ Br(X ). The map Br(R)→Br(X ) is thus surjective. This gives (a) for X hence
forW , and (b) immediately follows. ��
Exercise Artin-Mumford type examples are specific singular conic bundlesX in the
total space of a rank 3 projective bundle over P2

C
whose unramified Brauer group is

non trivial. Using Proposition 1 and Theorem 5.1, deform such examples into conic
bundles of the same type with smooth ramification locus and whose total space is
not stably rational. As in Sect. 4, there is no need to compute an explicit resolution
of singularities of X.

Appendix 2: Quadric Surfaces over a Discrete Valuation Ring

The following section was written up to give details on some tools and results used
in [19, Thm. 4]. As demonstrated above, this section turns out not to be necessary
to vindicate the HPT example. But it is useful for more general examples.

References: [21], [8, §3], [9, Thm. 2.3.1], [17, Thm. 3.17].
Let R be a discrete valuation ring, K its fraction field, π a uniformizer, κ =

R/(π) the residue field. Assume char(κ) �= 2.
Let X ⊂ P

3
K be a smooth quadric, defined by a nondegenerate four-dimensional

quadratic form q . Up to scaling and changing of variables, there are four possibili-
ties.

(I) q =< 1,−a,−b, abd > with a, b, d ∈ R∗.
(II) q =< 1,−a,−b, π > with a, b ∈ R∗ and π a uniformizing parameter of R.

(III) q =< 1,−a, π,−π.b > with a, b ∈ R∗ and π a uniformizing parameter of
R. The class of a.b ∈ R∗ represents the discriminant of the quadratic form. Its
image a.b ∈ κ∗ is a square if and only if the discriminant of q is a square in
the completion of K for the valuation defined by R.

Let X ⊂ P
3
R be the subscheme cut out by q . Let Y/κ be the special fibre.

In case (I), X /R is smooth.
In case (II), X is regular, the special fibre Y is a cone over a smooth conic.
In case (III), the special fibre is given by the equation x2 − ay2 = 0 in P

3
κ . If a

is a square, this is the union of two planes intersecting along the line x = y = 0.
If a is not a square, this is an integral scheme which over κ(

√
a) breaks up as the
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union of two planes. In both cases, the scheme X is singular at the two points given
by x = y = 0, z2 − dt2 = 0. See [21, §2].

Proposition 1 Let us assume char(κ) = 0.
In case (III), letW→X be a projective, birational desingularisation of X .
In case (I), the map Br(R)→Br(X ) is onto. If d ∈ R is not a square, it is an

isomorphism. If d is a square, the kernel is spanned by the class (a, b) ∈ Br(R).
In case (II), the map Br(R)→Br(X ) is an isomorphism.
In case (III), assume a.b is not a square in κ . Then Br(R)→Br(W) is onto.
In case (III), if either a or b is a square, or if a.b is not a square, then

Br(R)→Br(W) is onto. An element of Br(K) whose image in Br(X) lies in Br(W)
belongs to Br(R).

In case (III), assume a.b is a square in κ . Then the image of (a, π) ∈ Br(K) in
Br(X) belongs to Br(W). It spans the quotient of Br(W) by the image of Br(R). If
moreover a is not a square in κ , then it does not belong to the image of Br(R).

Proof Let x be a codimension 1 regular point on X or onW , lying above the closed
point of Spec(R). Let ex denote its multiplicity in the fibre. We have a commutative
diagram

Br(K)→ H 1(κ,Q/Z)

↓ ↓
Br(X) → H 1(κ(x),Q/Z)

The kernel of Br(K)→H 1(κ,Q/Z) is Br(R).
In case (I) and (III), the special fibre Y is geometrically integral over κ , the

multiplicity is 1, the map H 1(κ,Q/Z)→H 1(κ(x),Q/Z) is thus injective. This is
enough to prove the claim.

Let us consider case (III). The map Br(K)→Br(X) is onto. Let α ∈ Br(K).
Let ρ ∈ H 1(κ,Q/Z) be its residue. On the (singular) normal model given by
q =< 1,−a, π,−π.b > over R, if a ∈ κ is a square, the fibre Y contains
geometrically integral components of multiplicity 1 given by the components of
x2 − ay2 = 0. By the above diagram, ρ = 0 ∈ H 1(κ,Q/Z). We can also use the
model given by q =< 1,−b, π,−π.a >. If b ∈ κ is a square, we conclude that
ρ = 0 ∈ H 1(κ,Q/Z). Let us assume that ρ �= 0 ∈ H 1(κ,Q/Z). Thus a and b
are nonsquares. On the first model, the kernel of H 1(κ,Q/Z)→H 1(κ(Y ),Q/Z)

coincides with the kernel of H 1(κ,Q/Z)→H 1(κ(
√
a,Q/Z), which is the Z/2-

module spanned by the class of a in κ∗/κ∗2 = H 1(κ,Z/2). On the second model,
the kernel of H 1(κ,Q/Z)→H 1(κ(Y ),Q/Z) is the Z/2-module spanned by the
class of b in κ∗/κ∗2 = H 1(κ,Z/2). We thus conclude that a.b is a square in κ , and
that the residue of α coincides with a, i.e. is equal to the residue of (a, π) ∈ Br(K)
(or to the residue of (b, π)).

It remains to show that if a.b is a square in κ , then (a, π) has trivial residues
on W and more generally with respect to any rank one discrete valuation v on the
function field K(X) of X. One may restrict attention to those v which induce the
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R-valuation on K . Let S ⊂ K(X) be the valuation ring of v and let λ be its residue
field. There is an inclusion κ ⊂ λ. In K(X) we have an equality

(x2 − ay2) = π.(z2 − b),

where both sides are nonzero. Thus in Br(K(X)), we have the equality

(a, π) = (a, x2 − ay2)+ (a, z2 − b) = (a, z2 − b),

where the last equality comes from the classical (a, x2 − ay2) = 0. To compute
residues, we may go over to completions. In the completion of R, a.b is a square.
It is thus a square in the completion of K(X) at v. But then in this completion
(a, z2 − b) = (b, z2 − b) = 0 Hence the residue of (a, π) at v is zero. ��
Proposition 2 Assume char(κ) = 0. Let X ⊂ P

3
R be as above, and let W→X

be a proper birational map with W regular. Let β ∈ Br(W) and let Y ⊂ W be an
integral divisor contained in the special fibre ofW→Spec(R). Then the image of β
in Br(κ(Y )) belongs to the image of Br(κ)→Br(κ(Y )).

Proof In case (I) and (II), and in case (III) when a.b is a square in κ , this is clear
since then the map Br(R)→Br(W) is onto.

Suppose we are in case (III). To prove the result, we may make a base change
fromR to its henselisation. Then ab is square in R. The group Br(W) is spanned by
the image of Br(R) and the image of the class (a, π). The equation of the quadric
may now be written

X2 − aY 2 + πZ2 − aπT 2 = 0.

This implies that (a,−π) vanishes in the Brauer group of the function field κ(W) of
W . SinceW is regular, the map Br(W)→Br(κ(W)) is injective. Since (a,−π)κ(W)
belongs to Br(W) and spans Br(W) modulo the image of Br(R), this completes the
proof. ��

One may rephrase the above results in a simpler fashion.

Proposition 3 Assume char(κ) = 0. Let X ⊂ P
3
R be as above, and let W→X be

a proper birational map with W regular.

(i) If R is henselian, then the map Br(R)→Br(W) is onto.
(ii) For any element β ∈ Br(W) and Y ⊂ W an integral divisor contained in the

special fibre ofW→Spec(R), the image of β under restriction Br(W)→Br(Y )
belongs to the image of Br(κ)→Br(Y ).

Upon use of Merkurjev’s geometric lemmas [16, §1], and use of Tsen’s theorem,
one then gets [19, Prop. 7] of Schreieder.
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Appendix 3: A Remark on the Vanishing of Unramified
Elements on Components of the Special Fibre

The following proposition, found in June 2017, gives some partial explanation for
the vanishing on components of the special fibre which occurs in [18, Prop. 6, Prop.
7] and [19, Prop. 7] or in Proposition 4.1 above. Unfortunately the proof requires
that the component be of multiplicity one in the fibre. Since this was written, in the
case of quadric bundles, Schreieder [20, §9.2] has managed to use arguments as in
[8, §3] to get information on what happens with the other components.

Proposition 1 Let A ↪→ B be a local homomorphism of discrete valuation rings
and let K ⊂ L be the inclusion of their fraction fields. Let κ ⊂ λ be the induced
inclusion on their residue fields.

Let � be a prime invertible in A.
Let i ≥ 2 be an integer and let α ∈ Hi(K,μ⊗i� ).
Assume:

(i) B is unramified over A.
(ii) The image of α in Hi(L,μ⊗i� ) is unramified, and in particular is the image of

a (well defined) element β ∈ Hi(B,μ⊗i� ).
Then β(λ) ∈ Hi(λ,μ⊗i� ) is in the image of Hi(κ, μ⊗i� )→Hi(λ,μ⊗i� ).
Proof We may assume that A and B are henselian. Then the residue map ∂A :
Hi(K,μ⊗i� )→Hi−1(κ, μ

⊗(i−1)
� ) is part of a split exact sequence [10, Appendix

B] and [12, Cor. 6.8.8]

0→Hi(A,μ⊗i� )→Hi(K,μ⊗i� )→Hi−1(κ, μ
⊗(i−1)
� )→0,

and all reduction maps Hj(A,μ⊗i� )→Hj(κ,μ⊗i� ), denoted ρ �→ ρ(κ), are
isomorphisms. We have the analogous split exact sequence

0→Hi(B,μ⊗i� )→Hi(L,μ⊗i� )→Hi−1(λ, μ
⊗(i−1)
� )→0,

Let π ∈ A be a uniformizer. Given α ∈ Hi(K,μ⊗i� ), the residue ∂A(α) ∈
Hi−1(κ, μ

⊗(i−1)
� ) is the image of some unique γ ∈ Hi−1(A,μ

⊗(i−1)
� ). Let us

denote by (π) the class of π in K∗/K∗� = H 1(K,μ�). Then the difference
α − (π) ∪ γ ∈ Hi(K,μ⊗i� ) has trivial residue. Thus there exists ζ ∈ Hi(A,μ⊗i� )
such that

α = ζ + (π) ∪ γ ∈ Hi(K,μ⊗i� ).

andreas.hochenegger@unimi.it



124 J.-L. Colliot-Thélène

By hypothesis, the restriction β of α to L is unramified. Thus (π)∪γ ∈ Hi(L,μ⊗i� )
is unramified. Since B is unramified over A, the uniformizer π is also a uniformizer
of B. Thus

0 = ∂B((π) ∪ γ ) = γλ ∈ Hi−1(λ, μ
⊗(i−1)
� )

hence γ = 0 ∈ Hi−1(B,μ
⊗(i−1)
� ), from which follows β = ζ ∈ Hi(B,μ⊗i� ) and

β(λ) ∈ Hi(λ,μ⊗i� ) is the image of ζ(κ) ∈ Hi(κ, μ⊗i� ). ��
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The Rigidity Theorem
of Fano–Segre–Iskovskikh–Manin–
Pukhlikov–Corti–Cheltsov–de Fernex–
Ein–Mustaţă–Zhuang

János Kollár

Abstract We prove that n-dimensional smooth hypersurfaces of degree n + 1 are
superrigid. Starting with the work of Fano in 1915, the proof of this Theorem took
100 years and a dozen researchers to construct. Here I give complete proofs, aiming
to use only basic knowledge of algebraic geometry and some Kodaira type vanishing
theorems.

The classification theory of algebraic varieties—developed by Enriques for surfaces
and extended by Iitaka and then Mori to higher dimensions—says that every variety
can be built from three basic types:

• (General type) the canonical class KX is ample,
• (Calabi-Yau)KX is trivial and
• (Fano)−KX is ample.

Moreover, in the Fano case the truly basic ones are those that have class number
equal to 1. That is, every divisorD onX is linearly equivalent to a (possibly rational)
multiple of −KX.

If two varieties X1,X2 on the basic type list are birationally equivalent then
they have the same type. In the general type case they are even isomorphic and
in the Calabi-Yau case the possible birational maps are reasonably well understood,
especially for threefolds, see [28, 29].

By contrast, Fano varieties are sometimes birationally equivalent in quite unex-
pected ways and the Noether–Fano method aims to understand what happens.

Definition 1 (Weak Rigidity and Superrigidity) I call a Fano varietyX with class
number 1 weakly rigid if it is not birational to any other Fano variety Y with class
number 1, and weakly superrigid if every birational map � : X ��� Y to another
Fano variety Y with class number 1 is an isomorphism.
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The adjective “weakly” is not standard; it allows us to define these notions
without first discussing terminal singularities and Mori fiber spaces. The definitions
of rigid and superrigid are similar, but allow Y to have terminal singularities and
to be a Mori fiber space; see [3, 49].

There are many Fano varieties, especially in dimensions 2 and 3, that are rigid
but not superrigid. Superrigidity is the more basic notion, though, in dimension 3,
the theory of rigid Fano varieties is very rich.

The aim of these notes is to explain the proof of the following theorem. From
now on we work over a field of characteristic 0. It is not important, but we may as
well assume that it is algebraically closed.

Main Theorem 2 Every smooth hypersurface X ⊂ P
n+1 of dimension n ≥ 3 and

of degree n+ 1 is weakly superrigid.

The proofs in the theory are designed to prove superrigidity, and the optimal
version of Theorem 2 says that a smooth Fano hypersurfaceX ⊂ P

n+1 of dimension
≥ 3 is superrigid if and only if degX = n+ 1; see [3, 52]. The proof of this version
needs only some new definitions and minor changes in Step 10.1.

A smooth hypersurface X ⊂ P
n+1 of dimension n ≥ 3 has class number 1 by

Lefschetz’s theorem (see [39] or [17, p. 156]). If n = 2 then X is a cubic surface,
hence it has class number 7. However, if the base field is not algebraically closed,
it frequently happens that X has class number 1, in which case it is weakly rigid
but usually not weakly superrigid by Segre [59]; see [37, Chap. 2] for a modern
treatment.

3 (The History of Theorem 2) The first similar result is Max Noether’s description
of all birational maps P

2 ��� P
2 [46]. Noether’s method formed the basis of

all further developments. It was used by Segre to study birational maps of cubic
surfaces over arbitrary fields [59], and later generalized by Manin and Iskovskikh
to a birational theory of all del Pezzo surfaces and two-dimensional conic bundles
[21, 42].

Theorem 2 was first stated by Fano for threefolds [13, 14]. His arguments
contain many of the key ideas, but they also have gaps. I call this approach the
Noether–Fano method. The first complete proof for threefolds, along the lines
indicated by Fano, is in Iskovskikh-Manin [23]. Iskovskikh and his school used this
method to prove similar results for many other threefolds, see [20, 22, 24, 57]. This
approach was gradually extended to higher dimensions by Pukhlikov [48, 50, 51]
and Cheltsov [2]. These results were complete up to dimension 8, but needed some
additional general position assumptions in higher dimensions. A detailed survey of
this direction is in [52].

The theory of Fano varieties may be the oldest topic of higher dimensional
birational geometry, but for a long time it grew almost independently of Mori’s
Minimal Model Program. The Fano–Iskovskikh classification of Fano threefolds
using extremal rays and flops was first treated by Mori [44] and later improved by
Takeuchi [64].
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The Noether–Fano method and the Minimal Model Program were brought
together by Corti [5]. Corti’s technique has been very successful in many cases,
especially for threefolds; see [7] for a detailed study and [37, Chap. 5] for an
introduction. However, usually one needs some special tricks to make the last steps
work, and a good higher dimensional version proved elusive for a long time.

New methods involving multiplier ideals were introduced by de Fernex et
al. [11]; these led to a more streamlined proof that worked up to dimension 12.
The proof of Theorem 2 was finally completed by de Fernex [9].

The recent paper of Zhuang [67] makes the final step of the Corti approach much
easier in higher dimensions. The papers [10, 41, 62, 63, 67] contain more general
results and applications.

The name Fano–Segre–Iskovskikh–Manin–Pukhlikov–Corti–Cheltsov–-
de Fernex–Ein–Mustaţă–Zhuang theorem was chosen to give credit to all those
with a substantial contribution to the proof, though this under emphasizes the major
contributions of Fano, Iskovskikh and Pukhlikov.

The methods apply to many other Fano varieties for which −KX is a generator
of the class group; see [52, 67] for several examples. One of the big challenges is to
understand what happens if −KX is a multiple of the generator, see [53].

Open Problems About Hypersurfaces
The following questions are stated in the strongest forms that are consistent with the
known examples. I have no reasons to believe that the answer to either of them
is positive, and there may well be rather simple counter examples. As far as I
know, there has been very little work on low degree hypersurfaces beyond cubics in
dimension 4.

Question 4 Is every smooth hypersurface of degree ≥ 4 non-rational?

Non-rationality of a smooth hypersurfaceX ⊂ P
n+1 is obvious if degX ≥ n+2.

For very general hypersurfaces of degree ≥ 2
3n + 3, non-rationality was proved in

[31], a major improvement by Schreieder [58] shows this for degX ≥ log2 n+ 2.

Question 5 Is every smooth hypersurface of degree ≥ 5 weakly superrigid?

Here ≥ 5 is necessary since there are some smooth quartics with nontrivial
birational maps.

Example 6 Let X ⊂ P
2n+1 be a quartic hypersurface that contains 2 disjoint linear

subspacesL1, L2 of dimension n. For every p ∈ P
2n+1 \ (L1∪L2) there is a unique

line �p through p that meets both L1, L2. This line meets X in 4 points, two of
these are on L1, L2. If p ∈ X then this leaves a unique 4th intersection point, call it
�(p). Clearly � is an involution which is not defined at p if either p ∈ L1 ∪ L2 or
if �p ⊂ X.
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1 Rigidity and Superrigidity, an Overview

In the following outlines and in subsequent Sections I aim to put the pieces together
and write down a simple proof of the superrigidity of smooth hypersurfaces V nn+1 ⊂
P
n+1, where most steps are either easy or are direct applications of some general

principle of the Minimal Model Program.
The key notion we need is canonical and log canonical pairs involving linear

systems.

Definition 7 (Log Resolution) Assume that we have a varietyX, a (not necessarily
complete) linear system |M| on X and a divisor D on X. A log resolution of these
data is a proper birational morphism π : X′ → X such that

(1) X′ is smooth,
(2) π∗|M| = |M ′| + B where |M ′| is base-point free and B is the fixed part of

π∗|M|, and
(3) B + π−1∗ (D)+ Ex(π) is a simple normal crossing divisor.

(Here Ex(π) denotes the exceptional set of π , π−1∗ (D) denotes the birational
transform of D and simple normal crossing means that the irreducible components
are smooth and they intersect transversally. The adjective “log” loosely refers to
condition (3).)

The existence of log resolutions was proved by Hironaka; see [34, Chap. 3] for a
recent treatment.

Definition 8 (Canonical, Log Canonical, Etc.) LetX be a smooth variety and |M|
a linear system on X. Let π : X′ → X be a log resolution of |M| as in Definition 7.
Write π∗|M| = |M ′| + B where |M ′| is base-point free and B is the fixed part of
π∗|M|, and KX′ ∼ π∗KX + E where E is effective and π-exceptional. For any
nonnegative rational number c we can thus formally write

KX′ + c|M ′| ∼Q π
∗(KX + c|M|

)+ (E − cB), (1)

whereA1 ∼Q A2 means thatN ·A1 is linearly equivalent toN ·A2 for someN > 0.
A pair

(

X, c|M|) is called canonical (resp. log canonical) if every divisor appears
in E − cB with coefficient ≥ 0 (resp. ≥ −1). This is independent of the log
resolution [36, 2.32].

Note that if r > 0 is an integer then
(

X, c|M|) is canonical (resp. log canonical)
iff

(

X, c
r
|rM|) is. (Keep in mind that |rM| is the linear system spanned by sums of

the formM1 + · · · +Mr whereMi ∈ |M|.) Thus we can always restrict to dealing
with pairs

(

X, c|M|) where c < 1; this is frequently convenient.
If |M| is base point free then B = 0, thus

(

X, c|M|) is canonical for any c. In
all other cases,

(

X, c|M|) is canonical (resp. log canonical) for small values of c
but not for large values. (The transitional value of c is called the canonical (resp.
log canonical) threshold.) Roughly speaking, small threshold corresponds to very
singular base locus.
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WriteE−cB =∑

i aiEi . ThenEi is called a non-canonical divisor (resp. a non-
log-canonical divisor) of

(

X, c|M|) iff ai < 0 (resp. ai < −1). The corresponding
image π(Ei) ⊂ X is a non-canonical center (resp. non-log-canonical center) of
(

X, c|M|). These centers are always contained in the base locus of |M|. It is not
very important for us, but, as we run through all log resolutions and all divisors
on them, we might get infinitely many non-(log)-canonical centers, however their
union is the closed subset

⋃

ai<0π(Ei) (resp.
⋃

ai<−1π(Ei)); see [36, 2.31].
Using Remark 9, these formulas also define the above notions for pairs (X,�)

where� is an effective divisor and pairs
(

X, Ic
)

where I is an ideal sheaf.

Remark 9 (Divisors, Linear Systems and Ideal Sheaves) Much of the Minimal
Model Program literature works with pairs (X,�) where � is a divisor (with
rational or real coefficients), see [35, 36]. For rigidity questions, the natural object
seems to be a pair

(

X, c|M|) where |M| is a linear system and c is a rational or real
coefficient. It is easy to see that if c ∈ [0, 1) (which will always be the case for us)
and D ∈ |M| is a general divisor then the definitions and theorems for

(

X, c|M|)
and

(

X, cD
)

are equivalent.
As we noted in Definition 8, working with

(

X, |M|) is equivalent to working
with

(

X, 1
2 |2M|

)

, but one version may give a clearer picture than the other. As an
illustration, consider the linear system |λx+μ(x− yr) = 0| in the plane. A general
member of it is a smooth curve and the role of the yr term is not immediately visible.
By contrast the linear system |2M| is |λx2+μx(x−yr)+ν(x−yr)2 = 0|, its general
member is (after a local analytic coordinate change) of the form (x2−y2r = 0). Now
we see both the original smoothness (since x2 is there) and the order of tangency
between two members of |M| (shown by y2r ). While computationally this is not
important, conceptually it seems clearer that information about intersections of two
divisors in |M| is now visible on individual divisors in |2M|.

LetX be an affine variety and I ⊂ OX an ideal sheaf. Many authors, for example
[12, 38], work with pairs

(

X, Ic
)

where c is viewed as a formal exponent. If I is
generated by global sections g1, . . . , gm, we can consider the linear system |M| :=
|∑λigi = 0|. Again we find that the definitions and theorems for

(

X, c|M|) and
(

X, Ic
)

are equivalent.
Here I follow the language of linear systems, since this seems best suited to our

current aims. I will also always assume that c is rational. This is always the case
in our applications and makes some statements simpler. However, it does not cause
any essential difference at the end.

We discuss the canonical and log canonical property of linear systems in detail
in Sect. 4. For now we mainly need to know that canonical means mild singularities
and log canonical means somewhat worse singularities. In some sense the main
question of the theory was how to describe these properties in terms of other, better
understood, measures of singularities.

10 (Main Steps of the Proof) The proof can be organized into six fairly indepen-
dent steps. Roughly speaking, Steps 1 and 2 are essentially in the works of Fano,
at least for threefolds. Steps 3 and 4 are substantial reinterpretations of the classical
ideas while Steps 5 and 6 give a new way of finishing the proof.
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Notation For the rest of this section I write Y for a smooth, projective variety,X for
a smooth, projective Fano variety with class number 1 and V (or Vn+1 or V nn+1) for
a smooth hypersurface V nn+1 ⊂ P

n+1 of degree n+ 1 and of dimension n ≥ 3. The
base field has characteristic 0.

Step 10.1 (Noether-Fano Criterion, Sect. 2) A smooth Fano variety X of class
number 1 is (weakly) superrigid if for every movable linear system |M| ⊂ |−mKX|
the pair

(

X, 1
m
|M|) is canonical.

Comments 10.1.1 Movable means that there are no fixed components, some authors
usemobile instead. If dimX = 2 then

(

X, 1
m
|M|) is not canonical iff multx |M| > m

for some point x ∈ X by Lemma 28; this equivalence made Noether’s and Segre’s
proofs work well. If dimX = 3 then Fano tried to prove that if

(

X, 1
m
|M|) is not

canonical then either multC |M| > m for some curve C ⊂ X or multx |M| > 2m
for some point x ∈ X. Fano understood that the latter condition for points is not
right, one needs instead only a consequence of it: The local intersection number at
x is (M ·M ·H)x > 4m2, whereH is a hyperplane through x. In higher dimensions
it does not seem possible to define canonical in terms of just multiplicities and
intersection numbers, this is one reason why the above form of Step 10.1 was
established only in [5]. We prove Step 10.1 in Theorem 14. Although historically
the notion of “canonical” was first defined starting from varieties of general type
(see [36, 54]), the Noether-Fano criterion leads to the exact same notion.

If X is not (weakly) superrigid then there is a movable linear system |M| ⊂
| − mKX| such that

(

X, 1
m
|M|) is not canonical, thus it has some non-canonical

divisors and centers as in Definition 8. (The “worst” non-canonical centers are
called maximal centers by the Iskovskikh school.) From now on we focus entirely
on understanding movable linear systems and their possible non-canonical centers
on X. There are two persistent problems that we encounter.

• We can usually bound the multiplicities of |M|, but there is a gap—growing with
the dimension—between multiplicity and the canonical property.

• We are better at understanding when a pair is log canonical, instead of canonical.

While we try to make statements about arbitrary Fano varieties, at some point we
need to use special properties of the V nn+1. The following bounds, going back to Fano
and Segre, were put into final form by Pukhlikov [51, Prop. 5] and later generalized
by Cheltsov [4, Lem. 13] and Suzuki [63, 2.1] to complete intersections.

Step 10.2 (Multiplicity Bounds, Fano, Segre, Pukhlikov, Sect. 3) Let Y ⊂ P
n+1

be a smooth hypersurface and |H | the hyperplane class on Y . Let D ∈ |mH | be
a divisor, |M| ⊂ |mH | a movable linear system and Z ⊂ Y an irreducible
subvariety.

(a) If dimZ ≥ 1 then multZ D ≤ m.
(b) If dimZ ≥ 2 then multZ(M ·M) ≤ m2,

whereM ·M denotes the intersection of two general members of |M|.
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Comments 10.2.1 Note that Step 10.1 works with |M| ⊂ | − mKX| and Step 10.2
with |M| ⊂ |mH |. The two match up iff −KX ∼ H ; the latter holds for X =
V nn+1, the case that we are considering. In general, the method works best for those
Fano varieties where every divisor is an integral multiple of −KX (up to linear
equivalence).

Next we need to understand the relationship between the multiplicity bounds in
Step 10.2 and the canonical property. This is rather easy for Step 10.2.a. Combining
it with Step 10.3.a we get that

(

Y, 1
m
D
)

is canonical, except at a finite point set
P ⊂ Y . We already mentioned this in Comments 10.1.1; see Lemma 28 or [37,
6.18] for proofs.

Relating Step 10.2.b to the canonical property was less obvious; it was done by
Corti [6, 3.1] (see also [37, Sec. 6.6]), then very much generalized by de Fernex et
al. [12] and sharpened by Liu [40].

Step 10.3 (Non-(log)-canonical points and multiplicity, Corti, Sects. 4 and 5) Let
|M| be a movable linear system on a smooth variety Y .

(a) If
(

Y, 1
m
|M|) is not canonical at p ∈ Y then multp |M| > m.

(b) If
(

Y, 1
m
|M|) is not log canonical at p ∈ Y then multp(M ·M) > 4m2.

Comments 10.3.1 Both of these bounds are sharp as shown by the examples

(

A
2, 1
m
|λxm+1 + μym+1 = 0|) and

(

A
2, 1
m
|λx2m+1 + μy2m+1 = 0|),

which have a non-canonical (resp. non-log-canonical) center at the origin. Surpris-
ingly, part (a) can not be improved for non-log-canonical centers, as shown by

(

A
2, 1
m
|λxm+1 + μy(m+1)2 = 0|).

(This can be computed by hand or see Theorem 29.)

Using a—by now standard—method called inversion of adjunction, which we
discuss in Sect. 5, both parts follow from claims about linear systems on algebraic
surfaces:

Claim 10.3.2 Let |M| be a movable linear system on a smooth surface S.

(a) If
(

S, c|M|) is not canonical at s ∈ S then mults |M| > 1/c.
(b) If

(

S, c|M|) is not log canonical at s ∈ S then mults(M ·M) > 4/c2.

It would be very nice to continue the claims Step 10.3.a, b to stronger and
stronger inequalities for higher codimension non-log-canonical centers. This was
done in [12]. This is very useful if by chance the base locus of |M| has codimension
> 2. However, in many cases the base locus of |M| has codimension 2 and it is not
easy to apply the estimates of [12] directly.

Fano always aimed to reduce questions about Fano threefolds (for him these
meant X ⊂ P

n such that −KX ∼ H ) to their hyperplane sections. These are K3
surfaces, whose geometry was quite well understood. In higher dimensions, the
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hyperplane sections are Calabi-Yau varieties, whose geometry is much less known.
Thus the modern focus is on the change of the singularities as we restrict a linear
systems to a hyperplane section.

Step 10.4 (Cutting by Hyperplanes, Sect. 5) Let |M| be a movable linear system
on a smooth variety Y . Fix a point p ∈ Y and let W be a general member of a very
ample linear system |H | that passes through p. Then

(a) If
(

Y, c|M|) is (log) canonical outside a closed subset Z ⊂ Y then
(

W, c|M|W
)

is (log) canonical outside {p} ∪ (Z ∩W).
(b) If

(

Y, c|M|) is not log canonical at p then
(

W, c|M|W
)

is also not log
canonical at p.

(c) If p is a non-canonical center of
(

Y, c|M|) then p is a non-log-canonical point
of

(

W, c|M|W
)

.

Warning Note that in (c) the point p needs to be a non-canonical center on Y (see
Definition 8) and then it is a non-log-canonical point onW .

Comments 10.4.1 The multiplicity versions of these go back to Bertini and Fano,
but the above form of (c) may have been first made explicit in [6]. By now these are
special cases of the theory of adjunction for log canonical pairs, we discuss this in
Sect. 5.

Note that cutting by a hyperplane has a very curious effect on the singularities.
If

(

X, c|M|) is a canonical (resp. log canonical) pair then its restriction to a
general member of a base point free linear system is still canonical (resp. log
canonical); this is an easy Bertini-type theorem, see Proposition 35.1. Applying this
to X := Y \ Z gives (a). Part (b) is quite a bit harder to prove but it fits the general
pattern that singularities do not get better by cutting with a hyperplane.

The surprising part is (c) which says that the singularity is made worse by
restriction to a general hypersurface through a non-canonical center. This is in
marked contrast with multiplicity, which is preserved by such restrictions. We
discuss this in Sect. 5.

The first application of these ideas is the following.

Rigidity of Quartic Threefolds, Corti’s Variant. 10.4.2 Let X ⊂ P
4 be a smooth

quartic threefold and assume that we have a linear system |M| ⊂ |mH | such that
(

X, 1
m
|M|) is not canonical. One dimensional non-canonical centers are excluded

by Steps 10.2.a and 10.3.a. If x ∈ X is a zero-dimensional non-canonical center
then let W be a general hyperplane section passing through x. Then x is a non-
log-canonical center of

(

W, 1
m
|M|W

)

by Step 10.4.c, hence the local intersection
number (M · M · W)x is > 4m2 by Step 10.3.b. Therefore (M · M · W) > 4m2.
On the other hand,M ∼ mH and hence (M ·M ·W) = 4m2, a contradiction. Thus
smooth quartic threefolds are weakly superrigid. ��

More generally, the method described so far works well if −KX generates the
class group and (−KX)n ≤ 4. Among hypersurfaces in P

n+1, this holds only
for the quartic threefolds. However there are smooth hypersurfaces in weighted
projective spaces with these properties. For example, fix r > 1 and let X be a
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smooth hypersurface of degree 4r + 2 and dimension 2r in the weighted projective
space P(12r, 2, 2r+1) (the notation means that we have 2r coordinates of weight 1,
see [37, 3.48] for an introduction). Then −KX ∼ H and (−KX)2r = 1. With small
changes the method proves that they are superrigid; see [37, 5.22] for details. ��

In the above proof we have used Step 10.3.b onW ∈ |H |. The new idea of [9] is
to use it directly on Y .

Step 10.5 (Doubling the Linear System, de Fernex, Sects. 4 and 5) Instead
of working only with

(

Y, 1
m
|M|), we should focus on the interaction between

(

Y, 1
m
|M|) and (

Y, 1
m
|2M|).

In order to contrast the two cases, let Y ⊂ P
n+1 be a smooth hypersurface and

|M| ⊂ |mH | a movable linear system. Combining Step 10.2.a with Step 10.3.a
and Step 10.2.b with Step 10.3.b gives the following.

(a)
(

Y, 1
m
|M|) is canonical outside a finite set of points P ⊂ Y and

(b)
(

Y, 1
m
|2M|) is log canonical outside a finite set of curves C ⊂ Y .

One should think of these as saying that |M| and |2M| are very singular at p but
less singular almost everywhere else. A key insight of [9] is that (b) is much stronger
than (a). In order to understand this, let us see how one can use the information
provided by Step 10.5.a, b.

Comments 10.5.1 Let Y be a smooth, projective variety, H an ample divisor and
� ∼Q H a Q-divisors with an isolated non-log-canonical center at a point p ∈
Y . The observation that this leads to a global section of OY (KY + H) that does
not vanish at p has been an important ingredient of the Kawamata–Reid–Shokurov
approach to the cone theorem (cf. [36, Chap. 3]) and is central in the works around
Fujita’s conjecture (cf. [33, Secs. 5–6] or [38, Sec. 10.4]). In all these applications
the aim is to get at least 1 section that does not vanish at a given point. Although it
was known that the process can be used to get several sections, this has not been the
focus in the past.

At first sight, Step 10.5.a is better suited to use this method. If
(

Y, 1
m
|M|) is

not canonical at some p ∈ P , then, by Step 10.4.c, after restricting to a general
hyperplane section p ∈ W ⊂ Y , we get

(

W, 1
m
|M|W

)

that is not log canonical at p
but is canonical outside P ∩W . This leads to a section of OW(KW +H) that does
not vanish at p. However, in our cases OW(KW +H) is very ample, so there is no
contradiction.

The problem seems to be that while we have been thinking of canonical as “much
better” than log canonical, from the numerical point of view the difference seems
small. We saw an instance of this in Step 10.3.a, where both the non-canonical and
non-log-canonical cases yield the same inequality; see Step 10.3.1.

In Step 10.5.b we “gain” since |M| is replaced by |2M| but also “lose” since
canonical is replaced by log canonical and the finite set of points P is replaced by
a finite set of curves C. However, when we switch to a hyperplane section W ⊂ Y ,
we focus on the non-log-canonical property anyhow, and C ∩ W becomes a finite
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set of points. So the “losses” do not matter at the end but the “gain” stays with us.
Thus we get that

(a)
(

W, 1
m
|M|W

)

is not log canonical at some p ∈ P ∩W , but even
(b)

(

W, 1
m
|2M|W

)

is log canonical outside P ∩W .

A fundamental claim of [9] is that this in itself leads to a contradiction. While the
argument at the end of [9] is worded differently, unraveling the proofs of [9, Lems.
3–4] gives a quadratic lower bound for h0

(

W,OW(KW + 2H)
)

, almost enough to
get a contradiction without further work. Building on [9], a key observation of [67]
is that a suitable modification of this method leads to an exponential lower bound
and a quick numerical contradiction.

Remark 10.5.2 Once the technical details are settled, we see that there is lot of
room in Step 10.5.b. Namely, if we know only that, for some fixed ε > 0 and d ,
(

Y, 1
m
|(1 + ε)M|) is log canonical outside a subset of dimension ≤ d , that is still

enough to prove Theorem 2 for n sufficiently large (depending on ε and d).

Step 10.6 (Zhuang, Sect. 6) Let Y be a smooth projective variety of dimension d
and L an ample divisor on Y . Further let |M| ⊂ |mL| be a movable linear system
and P ⊂ Y a finite (nonempty) subset of Y . Assume that

(a)
(

Y, 1
m
|M|) is not log canonical at some p ∈ P , but

(b)
(

Y, 1
m
|2M|) is log canonical outside P .

Then

h0(Y,OY (KY + 2L)
) ≥ 1

2 3d .

Comments 10.6.1 One should think of this as saying that if |M| is much more
singular at a finite set of points than elsewhere then the linear system |KY + 2L| is
very large. I stated the case where we compare the singularities of 1

m
|M| and 1

m
|2M|,

the complete version in [67] also applies if we work with c|M| and (c + ε)|M| for
some ε > 0.

It is quite remarkable that there is also a rather easy converse.
Let |L| be any linear system on Y and y ∈ Y a point. If dim |2L| ≥ (3d

d

)

then
there is a linear subsystem |N | ⊂ |2L| that has multiplicity > 2d at y. In particular,
(

Y, 1
2 |N |

)

is not log canonical at y. As d →∞,
(3d
d

)

grows like 6.75d .
Thus if dim |2L| ≥ 6.75d then we can find a linear system |N | that satis-

fies Step 10.6.a, and usually also Step 10.6.b. Informally we can restate Step 10.6
as

Principle 10.6.2 There are no accidental isolated singularities.

11 (Proof of Theorem 2 Using Steps 10.1–6) Let V ⊂ P
n+1 be a smooth

hypersurface of degree n+ 1 ≥ 4. If V is not weakly superrigid, then, by Step 10.1
we get

(

V, 1
m
|M|) that is not canonical. Thus Steps 10.3–5 give aW = Wn−1

n+1 ⊂ P
n

and |M|W such that
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(a)
(

W, 1
m
|M|W

)

is not log canonical at finitely many points P ⊂ W , but
(b)

(

W, 1
m
|2M|W

)

is log canonical outside P .

By Step 10.6 this implies that

h0(W,OW(KW + 2H)
) ≥ 1

2 3n−1.

On the other hand h0
(

W,OW(KW + 2H)
) = h0

(

W,OW(2H)
) = h0

(

P
n,OPn (2)

)

= (

n+2
2

)

, so

(

n+2
2

) ≥ 1
2 3n−1.

The left hand side is quadratic in n, the right hand side is exponential, so for n 1
this can not hold. (In fact, we have a lot of room, leading to many other cases where
the method applies in large dimensions; see [67].)

By direct computation, we get a contradiction for n ≥ 5, hence we get the
superrigidity of V nn+1 ⊂ P

n+1 for n ≥ 5.

One can improve the lower bound in Step 10.6 to 1
2 3d + 3

2 , and then for n = 4

we get an equality
(6

2

) = 15 = 1
2 33 + 3

2 . So there is no contradiction, but it is quite
likely that a small change can make the proof work. However, the n = 3 case does
not seem to follow, but this was already treated in Step 10.4.2. ��
12 (Attribution of the Steps) In rereading many of the contributions to the proof I
was really struck by how gradual the progress was and how difficult it is to attribute
various ideas to a particular author or paper.

Fano’s papers are quite hard to read, and some people who spent years on trying
to learn from them came away with feeling that Fano got most parts of the proof
wrong. Others who looked at Fano’s works feel that he had all the essential points
right. In particular, the attribution of Step 2 has been controversial.

I think of Corti’s work [6] as a major conceptual step forward, but some authors
felt that it did not add anything new, at least initially. The idea of doubling the linear
system is in retrospect already in [6], but the new viewpoint of de Fernex [9] turned
out to be very powerful and, as we discussed in Step 10.5.1, the latter contains
many of the ingredients of Step 6. I had a hard time formulating Steps 3–6 in a way
that shows the differences between them meaningfully while highlighting the new
ideas of the main contributor. Nonetheless, at least in hindsight, each of the Steps
represents a major new idea, though this was not always immediately understood.

No doubt several people will feel that my presentation is flawed in many ways.
Luckily the reader can consult the excellent survey [3] and books [7, 52] for different
viewpoints.

13 (What Is Missing?) My aim was to write down a proof of Theorem 2 that is
short and focuses on the key ideas. My preference is for steps that follow from
general results and techniques of the MMP. Thus several important developments
have been left out.
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After proving rigidity for quartic threefolds, the Russian school went on to study
other Fano threefolds. They found that they are frequently rigid but not superrigid
and the main question is how to find generators for Bir(X). The contributions
of Iskovskikh, Sarkisov, Pukhlikov and Cheltsov are especially significant. These
results and their higher dimensional extensions are surveyed in [3, 52].

The first major applications of the Corti method were also in dimension 3, see
[7] for a survey and [18] for a higher dimensional extension.

In our proof we need to understand zero-dimensional log canonical centers, but
the theory of arbitrary log canonical centers has been quite important in higher
dimensional geometry. The first structure theorems were proved by Ambro [1]; see
[35, Chaps. 4–5] and [15] for later treatments and generalizations.

2 The Noether-Fano Method

We start the proof of Theorem 2 by establishing Step 10.1.

Theorem 14 (Noether-Fano Inequality) Let � : X ��� X′ be a birational map
between smooth Fano varieties of class number 1. Then

(1) either � is an isomorphism,
(2) or there is a movable linear system |M| ⊂ |−mKX| for somem > 0 onX such

that
(

X, 1
m
|M|) is not canonical.

Proof Let Z be the normalization of the closure of the graph of � with projections
p : Z → X and q : Z → X′. Pick any base-point-free linear system |M ′| ⊂
|−m′KX′ | and let |M| := �−1∗ |M ′| denote its birational transform onX. Set |MZ| =
q∗|M ′|. Since the class number of X is 1, |M| ∼Q −mKX for some m > 0. (Ifm is
not an integer, we replace |M ′| by a suitable multiple. Thus we may as well assume
that |M| ⊂ | − mKX|.) We define a q-exceptional divisor Eq and p-exceptional
divisors Ep,Fp by the formulas

KZ = q∗KX′ + Eq, |MZ| = q∗|M ′| and
KZ = p∗KX + Ep, |MZ| = p∗|M| − Fp. (2)

Since X′,X are smooth, Eq,Ep are effective (cf. [60, III.6.1]) and Fp is effective
since p∗|MZ | = |M|.

For any rational number c we can rearrange (2) to get

KZ + c|MZ| ∼Q q
∗(KX′ + c|M ′|

)+ Eq and
KZ + c|MZ| ∼Q p

∗(KX + c|M|
)+ Ep − cFp. (3)
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First we set c = 1
m′ . ThenKX′ + 1

m′ |M ′| ∼Q 0, hence

KZ + 1
m′ |MZ | ∼Q q

∗(KX′ + 1
m′ |M ′|

)+ Eq ∼Q Eq ≥ 0.

Pushing this forward to X we get that

KX + 1
m′ |M| = p∗

(

KZ + 1
m′ |MZ|

) ∼Q p∗(Eq) ≥ 0.

Since

p∗(Eq) ∼Q KX + 1
m′ |M| ∼Q KX − 1

m′mKX = m−m′
m′ (−KX), (4)

we see that m ≥ m′.
Next set c = 1

m
. Then we get that

KZ + 1
m
|MZ| ∼Q p

∗(KX + 1
m
|M|)+ Ep − 1

m
Fp ∼Q Ep − 1

m
Fp.

Pushing this forward to X yields

KX′ + 1
m
|M ′| = q∗

(

KZ + 1
m
|MZ|

) ∼Q q∗(Ep − 1
m
Fp).

As in (4) we obtain that

m′−m
m
(−KX′) ∼Q KX′ + 1

m
|M ′| ∼Q q∗(Ep − 1

m
Fp). (5)

Basic Alternative 14.1

• If Ep − 1
m
Fp is not effective, then we declare the linear system |M| to be “very

singular.” In our terminology,
(

X, 1
m
|M|) is not canonical. This is case (2).

• If Ep − 1
m
Fp is effective, then we declare the linear system |M| to be “mildly

singular.” In our terminology,
(

X, 1
m
|M|) is canonical. We need to prove that in

this case � is an isomorphism.

Thus assume from now on thatEp− 1
m
Fp is effective. Then (5) implies thatm′ ≥

m. Combining it with (4) gives that m′ = m and then (4) shows that p∗(Eq) = 0.
That is, SuppEq is p-exceptional. SinceX′ is smooth, the support ofEq is the whole
q-exceptional divisor Ex(q). Thus every q-exceptional divisor is also p-exceptional.

To see the converse, letD ⊂ Z be an irreducible divisor that is not q-exceptional.
Then q∗(D) ∼Q r|M ′| for some r > 0. Thus

r|MZ | ∼Q q
∗(r|M ′|) ∼Q D + (q-exceptional divisor).

Pushing forward to X now gives that r|M| ∼Q p∗(D), since every q-exceptional
divisor is also p-exceptional. Here p∗(D) �= 0 since r > 0, so D is not p-
exceptional. This shows that Ex(p) = Ex(q).

andreas.hochenegger@unimi.it



142 J. Kollár

Finally set Z := p(Ex(p)
) ⊂ X, Z′ := q(Ex(q)

) ⊂ X′ and apply the following
result of Matsusaka and Mumford [43] to conclude that � is an isomorphism ��
Lemma 15 Let � : Y ��� Y ′ be a birational map between smooth projective
varieties. Let Z ⊂ Y and Z′ ⊂ Y ′ be closed sets of codimension ≥ 2 such that �
restricts to an isomorphism Y \ Z ∼= Y ′ \ Z′. Let H be an ample divisor on Y such
that H ′ := �∗H is also ample. Then � is an isomorphism.

Proof We may assume that H ′ and H are both very ample. Then

|H ′| = ∣

∣H ′Y ′\Z′
∣

∣ = �∗
∣

∣HY\Z
∣

∣ = �∗|H |.

Thus �∗|H | is base point free, hence �−1 is everywhere defined. The same
argument, with the roles of Y, Y ′ reversed, shows that� is also everywhere defined.
So � is an isomorphism. ��
Remark 16 The proof of Theorem 14 also works if X has canonical singularities,
X′ has terminal singularities and they both have class number 1.

3 Subvarieties of Hypersurfaces

Our aim is to prove that a subvariety of a smooth hypersurface can not be
unexpectedly singular along a large dimensional subset. The claim and the method
go back to Fano and Segre; the first complete statement and proof is in [51, Prop.
5].

Theorem 17 Let X ⊂ P
n+1 be a smooth hypersurface, Z ⊂ X an irreducible

subvariety andW ⊂ X a pure dimensional subscheme such that dimZ + dimW ≥
dimX. Assume that either dimZ < dimW or dimZ = dimW = 1

2 dimX and W
is a complete intersection in X. Then

multZ W ≤ degW

degX
. (6)

We define the multiplicity multZ W in Paragraph 20. See [4, Lem. 13] and [63,
2.1] for generalizations of the theorem to complete intersections.

18 (Proof of Step 10.2) For part (a) set W := D ∈ |mH |. By Bézout’s theorem,
degW = m degX so multZ D ≤ m. For part (b) set W = M ·M . Then degW =
m2 degX so multZ(M ·M) ≤ m2. Note thatM ·M is a complete intersection in X,
so the Theorem applies even if n = 4 and dimZ = 2. ��
Remark 19 The simplest special case of the theorem is whenW is an intersection of
X with a hyperplane. Then degW = degX hence we claim thatW has only finitely
many singular points. Equivalently, a given hyperplane can be tangent to a smooth
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hypersurface only at finitely many points. I encourage the reader to prove this;
there are very easy proofs but also messy ones. Note that this is truly a projective
statement. For example, (z − y2x = 0) is a smooth surface in A

3 and the plane
z = 0 is tangent to it everywhere along the x-axis.

Consider next the case when W is an intersection of X with a hypersurface of
degree d . Then (6) says that W has multiplicity ≤ d at all but finitely many of
its points p. The easy geometric way to prove this would be to find a line � in X
that passes through p but not contained in W . This sounds like a reasonable plan if
degX ≤ n, since in these cases there is a line through every point of X, see [32,
V.4.3], which also shows that if degX ≥ 2n then a general X does not contain any
lines.

In Proposition 22, as replacements of lines, we construct certain auxiliary
subvarieties Z∗ that have surprisingly many intersections withW .

The extra assumption in case dimZ = dimW = 1
2 dimX is necessary. Indeed,

there are smooth hypersurfaces X ⊂ P
2n+1 that contain a linear space L of

dimension n. Setting Z = W = L we get that multZ W = 1 but degW
degX = 1

degX .

20 (Multiplicity) The simplest measure of a singularity is its multiplicity. LetX =
(h = 0) ⊂ A

n be an affine hypersurface and p = (p1, . . . , pn) a point on X. We
can write the equation as

h =∑

ai1,...,in (x1 − p1)
i1 · · · (xn − pn)in .

The multiplicity of X at p, denoted by multpX, is defined as

multpX := min{i1 + · · · + in : ai1,...,in �= 0}. (7)

The definition of multiplicity for other varieties is, unfortunately, more complicated.
Let Y ⊂ A

n be a variety of dimension m and p = (p1, . . . , pn) a point on Y . The
following give the correct definition of the multiplicity multp Y , see [45, Chap. 5]
for details.

(1) Let π : An → A
m+1 be a general projection. Then π(Y ) is a hypersurface and

multp Y = multπ(p) π(Y ).
(2) If we are over C, we can fix a small Euclidean ball B(ε) around p, a general

linear subspace L of dimension n−m through p and count the number of those
intersection points ofX with a general small translate of L that are contained in
B(ε).

(3) The multiplicity also equals the limit

lim
r→∞

m!
rm

dimk k[x1, . . . , xn]/
(

IY , (x1 − p1, . . . , xn − pn)r
)

.

The first two are old-style definitions that capture the essence but are not easy to
work with rigorously, the third is easy to use algebraically but it is not even obvious
that the limit exists; see [56]. The most complete modern treatment is given in [16].
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Finally we set

multZ Y := min{multp Y : p ∈ Z}, (8)

and note that the minimum is achieved on a dense open subset.
We will also need the following.

Theorem 20.1 Let X ⊂ P
n+1 be a smooth hypersurface and Z,W ⊂ X irreducible

subvarieties such that Z ∩ W is finite and dimZ + dimW = dimX. Assume
furthermore that neither of them has dimension n

2 . Then

∑

p multp Z ·multpW ≤ degZ·degW
degX .

Comments on the Proof There are several theorems rolled into one here.
Intersection theory says that ifX is any smooth projective variety and Z,W ⊂ X

irreducible subvarieties such that dimZ+dimW = dimX, then they have a natural
intersection number, denoted by (Z · W). Intersection theory can be developed
completely algebraically, but working over C there is a shortcut. Both Z,W have a
homology class [Z] ∈ H2 dimZ(X(C),Z) and [W ] ∈ H2 dimW(X(C),Z) and then

(Z ·W) = [Z] ∩ [W ] ∈ H0(X(C),Z) ∼= Z. (9)

Furthermore, if Z ∩W is finite then their intersection number (Z ·W) is the sum of
local terms, denoted by (Z ·W)p, computed at each p ∈ Z ∩W . Next we need that

(Z ·W)p ≥ multp Z ·multpW. (10)

This very useful inequality does not seem to be included in introductory books. It is
easy to derive it from [45, Cor. A.14], see also [56, p. 95] or [16, Cor. 12.4].

Assume next that X ⊂ P
n+1 is a smooth hypersurface of degree d and W is

obtained as the intersection of X by n− r hypersurfaces of degreesmr+1, . . . ,mn.
If dimW = r then, by Bézout’s theorem,

degW = d ·mr+1 · · ·mn and (Z ·W) = degZ ·mr+1 · · ·mn.

Thus we obtain that

(Z ·W) = degZ·degW
degX . (11)

It is not at all true that every W can be obtained this way, but, by the Lefschetz
hyperplane theorem (see [39] or [17, p. 156]), the homology class ofW is a rational
multiple of a power of the hyperplane class, provided dimW �= n

2 . Thus the above
computation applies to everyW as in Theorem 17.
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21 (Proof of Theorem 17) If dimZ + dimW > dimX and the claim holds for all
subvarietiesZ′ ⊂ Z of codimension 1 then it also holds forZ. Thus we may assume
from now on that dimZ + dimW = dimX.

Both the multiplicity and the degree is linear in irreducible components, so write
W =∑

miWi where theWi are irreducible subvarieties of X.
In Proposition 22 we construct a subvariety Z∗ ⊂ X such that dimZ∗ = dimZ,

degZ∗ = (d − 1)r degZ, Z ∩ Z∗ consists of at least (d − 1)r degZ distinct points
andW ∩ Z∗ is finite.

There is nothing to prove if Z �⊂ Wi . Otherwise, at each point of Z ∩ Z∗ the
intersection multiplicity of Z∗ andWi is at least multZ Wi by (10). Therefore

(

(d − 1)r degZ
) ·multZ Wi ≤ (Wi · Z∗). (12)

Next we use that
∑

imi(Wi ·Z∗) = (W ·Z∗) = degW ·degZ∗
degX by (11). Summing (12)

we get that

(

(d − 1)r degZ
) ·multZ W ≤ (W · Z∗) = degW · (d − 1)r degZ

degX
. (13)

Canceling (d − 1)r degZ gives (6). ��
Next we construct the subvariety Z∗ used in the above proof.

Proposition 22 Let X ⊂ P
n+1 be a smooth hypersurface of degree d . Let Z ⊂ X

be a subvariety of dimension r ≤ n
2 and Wi ⊂ X a finite set of subvarieties. Then

there is a subvariety Z∗ of dimension r such that

(1) degZ∗ = (d − 1)r degZ,
(2) Z ∩ Z∗ consists of at least (d − 1)r degZ distinct points, and
(3) dim

(

Z∗ ∩ (Wi \ Z)
) ≤ dimZ + dimWi − dimX for every i.

The proof relies on the study of certain residual intersections.

23 (Residual Intersection with Cones) LetX ⊂ P
n+1 be a hypersurface of degree

d and Z ⊂ X a subvariety. Pick a point v ∈ P
n+1 and let 〈v, Z〉 denote the cone

over Z with vertex v, that is, the union of all lines 〈v, z〉 : z ∈ Z.
If dimZ ≤ n − 1 and v is general then 〈v, Z〉 has the same degree as Z but 1

larger dimension. If 〈v, Z〉 is not contained in X then X ∩ 〈v, Z〉 is a subscheme of
X of degree= d · degZ. This subscheme contains Z, thus we can write

X ∩ 〈v, Z〉 = Z ∪ Zres
v , (14)

andreas.hochenegger@unimi.it



146 J. Kollár

where Zres
v is called the residual intersection of the cone with X. Note that

degZres
v = (d − 1) · degZ. (15)

We are a little sloppy here; if X is singular along Z then Zres
v is well defined as a

cycle but not well defined as a subscheme. We will always consider the case when
X is smooth at general points z ∈ Z and v is not contained in the tangent plane of
X at z. If these hold then 〈v, Z〉 is also smooth at z and hence Z �⊂ Zres

v . Our aim is
to understand the intersection Z ∩ Zres

v .
Note that Z ∩ Zres

v can be quite degenerate. For example, let X be the cone
(xn + yn = zn) ⊂ P

3 with vertex at (0:0:0:1) and Z the line (x − z = y = 0).
Then 〈v, Z〉 is a plane that containsZ, hence it contains the vertex of the cone. Thus
X∩〈v, Z〉 is a union of n lines through (0:0:0:1). Thus Zres

v is a union of n−1 lines
and Z ∩ Zres

v = (0:0:0:1), a single point.
We see below that similar bad behavior does not happen for smooth hypersur-

faces.

24 (Ramification Linear System) Let X = (G = 0) ⊂ P
n+1 be a hypersurface.

The tangent plane TpX at a smooth point (p0: · · · :pn+1) is given by the equation

∑

ixi
∂G
∂xi
(p) = 0. (16)

Let v := (v0: · · · :vn+1) ∈ P
n+1 be a point and πv : Pn+1 ��� P

n the projection
from v. The ramification divisor Rv of πv|X is the set of points whose tangent plane
passes through v. Thus

Rv =
(∑

ivi
∂G
∂xi
= 0

) ∩X. (17)

Thus the |Rv| form a linear system, called the ramification linear system, which is
the restriction of the linear system of all first derivatives ofG. We denote it by |RX|.
The base locus of |RX| is exactly the singular locus SingX.

Note that |RX| ⊂ |(degX − 1)H |X, whereH is the hyperplane class.

Lemma 25 Let X ⊂ P
n+1 be a smooth hypersurface of degree d . Let Z � X be a

subvariety of dimension r andWi ⊂ X a finite set of subvarieties. Then, for general
v ∈ P

n+1,

(1) Zres
v ∩ Z = Rv ∩ Z (set theoretically) and

(2) Zres
v ∩ (Wi \ Z) has dimension ≤ dimZ + dimWi − n.

Proof Set τ := πv|X. If τ is unramified at x ∈ X then it is a local isomorphism near
x, thus 〈v, Z〉 ∩ X = τ−1

(

τ (Z)
)

equals Z near X. Thus Z ∩ Zres
v ⊂ Z ∩ Rv. To

see the converse, it is enough to prove that Z ∩ Zres
v contains a dense open subset

of Z ∩ Rv. Thus choose a point x ∈ Z that is smooth both on X,Z and such that
τ ramifies at x but τ |Z does not. Then the vector pointing from x to v is also a
tangent vector of 〈v, Z〉 ∩X, hence x is a singular point of 〈v, Z〉 ∩X. So x ∈ Zres

v ,
proving (1).
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Note that p ∈ Zres
v ∩ (Wi \ Z) iff a secant line connecting p with some point

of Z passes through v. The union of all secant lines connecting a point of Z with
a different point of Wi has dimension dimZ + dimWi + 1. Thus only a dimZ +
dimWi + 1 − (n + 1) dimensional family of secant lines passes through a general
point of Pn+1, proving (2). ��
26 (Proof of Proposition 22) Set r = dimZ and Z0 := Z. We inductively define

Zi+1 := (Zi)res
vi for general vi ∈ P

n+1. (18)

We claim that Z∗ := Zr has the right properties. First note that Proposition 22.1
follows from (15).

Using Lemma 25.1 r times we see that Z ∩Z∗ consists of the intersection points

Z ∩ Rv1 ∩ · · · ∩ Rvr (19)

for general vi . (If r = n
2 , we may also get finitely many other pointsZi+1∩(Z\Zi);

these we can ignore.) Since X is smooth, |RX| is base point free, thus (19) consists
of (d−1)r degZ points in general position. (We use characteristic 0 at the last step.)

��

4 Multiplicity and Canonical Singularities

One can usually compute or at least estimate the multiplicity of a divisor or a
linear system at a point quite easily, thus it would be useful to be able decide using
multiplicities whether a pair

(

X, c|M|) is canonical or log canonical. This turns out
to be possible for surfaces, less so for threefolds, but the notions diverge more and
more as the dimension grows.

If a pair
(

X, c|M|) is not canonical, then there is a non-canonical exceptional
divisor. We start with an example where this divisor is obtained by just one blow-
up. Note that every exceptional divisor can be obtained by repeatedly blowing
up subvarieties, but the more blow-ups we need, the harder it is to connect the
multiplicity with being canonical.

Example 27 LetX be a smooth variety,Z ⊂ X a smooth subvariety of codimension
r and |M| a linear system. Let π : X′ → X denote the blow-up of Z with
exceptional divisor E. Then

KX′ = π∗KX + (r − 1)E and π∗|M| = |M ′| +multZ |M| · E.

Thus

KX′ + c|M ′| ∼Q π
∗(KX + c|M|

)+ (

r − 1− c ·multZ |M|
)

E. (20)
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Note that we can apply this to any subvariety, after we replaceX by X \SingZ. We
have thus proved the following.

Claim 27.1 LetX be a smooth variety, |M| a linear system and Z ⊂ X a subvariety.
Then the following hold.

(a) If
(

X, c|M|) is canonical then c ·multZ |M| ≤ codimX Z − 1.
(b) If

(

X, c|M|) is log canonical then c ·multZ |M| ≤ codimX Z. ��
The problem we have is that the converse holds only for n = 2 and only for part (a).
Thus here our aim is to get some weaker converse statements in dimensions 2 and
3. In order to do this, we need a good series of examples.

Claim 27.2
(

A
n, c|∑λix

mi
i |

)

is log canonical iff

c ≤ 1
m1
+ · · · + 1

mn
.

A very useful way to think about this is the following. If we assign weights to the
variables w(xi) = 1

mi
then the linear system becomes weighted homogeneous of

weight 1. Thus, our condition says that

c ·w(∑λixmii
) ≤ w(x1 · · · xn). (21)

The claim is easy to prove if all the mi are the same or if you know how to use
weighted blow-ups, but can be very messy otherwise. The case n = 2 and m1 = 2
is quite instructive and worth trying.

See [37, Sec. 6.5] for details in general (using weighted blow-ups).

The following lemma, which is a partial converse to Claim 27.1.a, proves
Step 10.3.a.

Lemma 28 Let X be a smooth variety and |M| a linear system. Assume that c ·
multp |M| ≤ 1 for every point p ∈ X and dimX ≥ 2. Then

(

X, c|M|) is canonical.
Proof For one blow-up π : X′ → X as in (20) we have the formula

KX′ + c|M ′| ∼Q π
∗(KX + c|M|

)+ (

r − 1− c ·multZ |M|
)

E.

Since r ≥ 2, our assumption c ·multp |M| ≤ 1 implies that r−1−c ·multZ |M| ≥ 0.
If τ : X′′ → X′ is any birational morphism and

KX′′ + c|M ′′| ∼Q τ
∗(KX′ + c|M ′|

)+ E′′,

then we get that

KX′′ + c|M ′′| ∼Q (τ ◦ π)∗
(

KX + c|M|
)+ E′′ + (

r − 1− c ·multZ |M|
)

τ ∗E.
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If
(

X′, c|M ′|) is canonical then E′′ is effective and so is

E′′ + (

r − 1− c ·multZ |M|
)

τ ∗E.

Thus
(

X, c|M|) is also canonical. If p′ ∈ X′ is any point and p = π(p′) then
multp′ |M ′| ≤ multp |M|, thus c ·multp′ |M ′| ≤ 1 and we can use induction.

The problem is that this seems to be an infinite induction, since we can keep
blowing up forever. There are two ways of fixing this.

The easiest is to use a log resolution as in Definition 7 and stop when the
birational transform of |M| becomes base point free, hence canonical.

Theoretically it is better to focus on one divisor at a time and use a lemma of
Zariski and Abhyankar, which is a very weak form of resolution; see [36, 2.45] or
[37, 4.26]. ��
Remark 28.1 Another proof is the following. Let p ∈ B ⊂ X be a general complete
intersection curve. Then c · (|M| · B) ≤ 1, hence

(

B, c|M|B
)

is log canonical.
By Theorem 38 this implies that

(

X, c|M|) is canonical. ��
The following partial converse to Claim 27.1.b) is a reformulation of [65], see

also [37, 6.40] for a proof.

Theorem 29 Let S be a smooth surface and |M| a linear system such that p ∈ S
is a non-log-canonical center of

(

S, c|M|). Then one can choose local coordinates
(x, y) at p and weights w(x) = a and w(y) = b such that

|M| ⊂ ∣

∣xiyj : w(xiyj ) > 1
c
w(xy) = 1

c
(a + b)∣∣. (22)

��
Example 30 It can be quite hard to find the right coordinate system that works; it
is frequently given by complicated power series. For example, [66] writes down a
degree 6 polynomial g(x, y) that, in suitable local coordinates becomes x2 + y20.
(I do not doubt the claim but I have been unable to find a clear, non-computational
explanation.) Taking a = 10 and b = 1 shows that

(

A
2, c(g = 0)

)

is log canonical
for c ≤ 11

20 . Related bounds and examples are given in [25].

The following consequence proves Step 10.3.2.b, we derive Step 10.3.b from it
in Paragraph 39.

Corollary 31 ([6]) Let S be a smooth surface and |M| a movable linear system
such that p ∈ S is a non-log-canonical point of

(

S, c|M|). Then (M ·M)p > 4
c2 .

Remark Unlike for Lemma 28, a direct induction does not seem to work, but [6] sets
up a more complicated inductive assumption and proves it one blow up at a time. The
following argument, relying on Theorem 29, easily generalizes to all dimensions.
(Unfortunately, this is less useful since Theorem 29 does not generalize to higher
dimensions.)
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Proof Assume first that in (22) we have a = b. Then every member of |M| is a
curve that has multiplicity > 2

c
at p and the intersection multiplicity is at least the

product of the multiplicities. (This is a special case of (10), but it is much simpler;
see [60, IV.3.2].) Hence the intersection multiplicity is > 4

c2 .

In general we get that members of |M| have multiplicity > 1
c

(

1 + min{ a
b
, b
a
})

at p and this only gives that (M · M)p > 1
c2 . Thus we need to equalize a and b.

The best way to do this is by a weighted blow-up, see [37, Sec. 6.5], but here the
following trick works.

After multiplying with the common denominator, we may assume that a, b are
integers. Set x = sa and y = tb . These define a degree ab morphism τ : A2

st →
A

2
xy . The inclusion

|M| ⊂ ∣

∣xiyj : ai + bj > 1
c
(a + b)∣∣

of (22) is now transformed into

τ ∗|M| ⊂ ∣

∣sai tbj : ai + bj > 1
c
(a + b)∣∣ ⊂ ∣

∣smtn : m+ n > 1
c
(a + b)∣∣.

That is, τ ∗|M| has multiplicity > 1
c
(a + b), hence (τ ∗M · τ ∗M)p > 1

c2 (a + b)2.
Intersection multiplicities get multiplied by the degree of the map under pull-back,

thus we conclude that (M ·M)p > 1
c2 · (a+b)

2

ab
≥ 4
c2 . ��

A three-dimensional analog of Theorem 29 was conjectured in [6]. The method
of [5] shows that it is a consequence of a result of Kawakita [26]. See also [37, Chap.
5] for more details.

Theorem 32 LetX be a smooth threefold and |M| a linear system such that p ∈ X
is a non-canonical center of

(

X, c|M|). Then one can choose local coordinates
(x, y, z) at p and weights w(x) = a, w(y) = b and w(z) = 1 such that

|M| ⊂ ∣

∣xiyj zk : w(xiyjzk) > 1
c
w(xy) = 1

c
(a + b)∣∣.

��
33 (Summary) Let |M| := |∑λigi | be a linear system on A

n.

• If n = 2 then we can decide whether
(

A
2, c|M|) is canonical at the origin just by

looking at the degrees of the monomials that occur in the gi .
• If n = 2 then we can decide whether

(

A
2, c|M|) is log canonical at the origin

by looking at the monomials that occur in the gi , provided we use the right
coordinate system.

• If n = 3 then we can decide whether
(

A
3, c|M|) is canonical at the origin

by looking at the monomials that occur in the gi , provided we use the right
coordinate system.

• If n ≥ 4 then the situation is more complicated, see Example 34. However, as we
discuss in Sect. 8, there is the following partial replacement.
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We can frequently show that
(

A
n, c|∑λigi |

)

is not log canonical at the origin
by looking at the monomials that occur in a Gröbner basis of the ideal (gi).

Example 34 [37, 6.45] For r ≥ 5 consider the linear system

|Mr | :=
∣

∣(x2 + y2 + z2)2, xr, yr , zr
∣

∣.

Show that
(

C
3, c|Mr |

)

is log canonical iff c ≤ 1
2 + 1

r
. However, using coordinate

changes and weights only shows that c ≤ 3
4 .

5 Hyperplane Sections and Canonical Singularities

We start with the proof of Step 10.4.a.

35 (Bertini Type Theorems) The classical Berti theorem—for differentiable maps
also known as Sard’s theorem—says that a general member of a base point free
linear system on a smooth variety is also smooth. This has numerous analogs, all
saying that if a variety has certain types of singularities then a general member of a
base point free linear system also has only the same type of singularities. Thus it is
not surprising that the same holds for canonical and log canonical singularities. The
log canonical case of the following proves Step 10.4.a.

Proposition 35.1 LetH ⊂ X be a general member of a base point free linear system
|H |. If

(

X, c|M|) is canonical (resp. log canonical) then so is
(

H, c|M|H
)

.

Proof Choose a log resolution π : X′ → X as in Definition 7 and write

KX′ = π∗KX +
∑

eiEi and π∗|M| = |M ′| +∑

aiEi, (23)

where |M ′| is base point free and
∑

Ei has simple normal crossing singularities
only. Thus

KX′ + c|M ′| ∼Q π
∗(KX + c|M|

)+∑

(ei − cai)Ei. (24)

Note that |H | gives us base point free linear systems |H ′| on X′ and |H ′|Ei on
each Ei . The adjunction formula (stated only for curves but proved in general in
[60, VI.1.4]) says that KH =

(

KX + H
)|H and KH ′ =

(

KX′ + H ′
)|H ′ . Adding

H ′ = π∗H to (24) and restricting to H and H ′ we get that

KH ′ + c|M ′|H ′ ∼Q π
∗(KH + c|M|H

)+∑

(ei − cai)(Ei ∩H ′), (25)

whereH ′ is smooth and
∑

(Ei ∩H ′) has simple normal crossing singularities only.
If

(

X, c|M|) is canonical (resp. log canonical) then ei − cai ≥ 0 (resp. ≥ −1) for
every i. The same ei − cai are involved in (25), except that some of the Ej ∩ H ′
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may be empty, in which case ej − caj does not matter for
(

H, c|M|H
)

. In any case,
(

H, c|M|H
)

is also canonical (resp. log canonical). ��
Let us next see what happens if we try to use the same method to prove

Step 10.4.b.

36 Here we have a non-canonical center p ∈ X and we take an H ∈ |H | that
passes through the point p. If there is an exceptional divisor Ej ⊂ X′ such that
π(Ej ) = {p}, then π∗H ⊃ Ej . Hence π∗H is not smooth, it is not even irreducible.
In this case we write

π∗H = H ′ +∑

miEi. (26)

Adding H ′ = π∗H −∑

miEi to (23) we get

KX′ +H ′ + c|M ′| ∼Q π
∗(KX +H + c|M|

)+∑

(ei −mi − cai)Ei . (27)

Thus restricting (27) to H ′ and H we get that

KH ′ + c|M ′|H ′ ∼Q π
∗(KH + c|M|H

)+∑

(ei −mi − cai)(Ei ∩H ′). (28)

At first sight we are done. If p is a non-canonical center of
(

X, c|M|) then there
is an Ej such that π(Ej ) = {p} and ej − caj < 0. Since H passes through p,
mj ≥ 1 also holds, so ej − mj − caj < −1. Thus Ej ∩ H ′ shows that p is a
non-log-canonical center of

(

H, c|M|H
)

.
However, all this falls apart if Ej ∩H ′ = ∅. This can easily happen for some Ej ,

but it is enough to show that it can not happen for everyEj for which ej−mj−caj <
−1. This is what we discuss next.

The following 2 interconnected theorems have many names. In [36] and [35] it
is called inversion of adjunction, while [52] uses Shokurov-Kollár connectedness
principle. A closely related result in complex analysis is the Ohsawa-Takegoshi
extension theorem, proved in [47]. The theorems were conjectured in [61] and
proved in [30, Sec. 17]. The sharpest form was established in [27], see also [35,
Sec. 4.1] for other generalizations.

For simplicity I state it only for smooth varieties, though the singular case is
needed for most applications. The proof is actually a quite short application of
Theorem 47.3; see [36, Sec. 5.4] or [37, Chap. 6] for detailed treatments.

Theorem 37 Let X be a smooth variety and � an effective Q-divisor on X. Let
π : X′ → X be a proper, birational morphism and write

KX′ ∼Q π
∗(KX +�)+∑

biBi,
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where the Bi are either π-exceptional or lie over Supp�. Then every fiber of

π : Supp
(∑

bi≤−1Bi
)→ X is connected. ��

The following consequence is especially important. The first part of it directly
implies Step 10.4.b–c, the second part is also used in Sect. 8.

Theorem 38 Let X be a smooth variety and |M| a linear system on X. Let H ⊂ X
be a smooth divisor. Assume that

(1) either H contains a non-canonical center Zc of
(

X, c|M|),
(2) or H has nonempty intersection with a non-log-canonical center Zlc of

(

X, c|M|).
Then

(

H, c|M|H
)

is not log-canonical.

Proof Choose a log resolution π : X′ → X and write π∗H = H ′ +∑

miEi .
Choosing a general memberM ∈ |M| givesM ′ ∈ |M ′|. We can rearrange (27) as

KX′ ∼Q π
∗(KX +H + cM

)−H ′ − cM ′ +∑

(ei −mi − cai)Ei. (29)

Pick a point p ∈ Zc (resp. p ∈ H ∩ Zlc). We may harmlessly assume that c < 1
(this is always the case for us) and then−cM ′ does not contribute to the

∑

bi≤−1Bi
in Theorem 37. Thus we get that

Fp := π−1(p) ∩ (

H ′ ∪∑

ei−mi−cai≤−1Ei
)

is connected.

If (1) holds then there is an Ej such that p ∈ π(Ej), ej − caj < 0 and mj ≥ 1. If
(2) holds then there is an Ej such that p ∈ π(Ej) and ej − caj < −1. Thus, in both
cases, ej − mj − caj < −1 and π−1(p) ∩∑

ei−mi−cai≤−1Ei is not empty. Since
Fp is connected, we obtain that

π−1(p) ∩H ′ ∩∑

ei−mi−cai≤−1Ei �= ∅.

Thus there is at least one divisor Ej0 such that

ej0 −mj0 − caj0 ≤ −1 and p ∈ π(Ej0 ∩H ′
)

.

HenceEj0∩H ′ gives the non-empty divisor that we needed in (28). A small problem
is that we would like a strict inequality ej0 −mj0 − caj0 < −1. To achieve this, run
the same argument with some c′ < c. Then we get a j0 such that

ej0 −mj0 − caj0 < ej0 −mj0 − c′aj0 ≤ −1 and p ∈ π(Ej0 ∩H ′
)

.

Thus
(

H, c|M|H
)

is not log canonical. This completes the proof of Step 10.4.b. ��
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39 (End of the Proof of Step 10.3.b) Let |M| be a movable linear system on
a smooth variety Y and p ∈ Y a non-log-canonical point of

(

Y, c|M|). The
multiplicity at p is preserved by general hyperplane cuts through p and so is
being non-log-canonical by Theorem 38. Thus eventually we get a surface S =
H1 ∩ · · · ∩Hn−2 containing p such that

(

S, c|M|S
)

is non-log-canonical at p. Thus
multp(M ·M) = multp(|M|S · |M|S) > 4/c2 by Corollary 31. ��

6 Global Sections from Isolated Singularities

The proof of Step 10.6 is a combination of 4 lemmas, which are either quite easy to
prove (Lemma 41) or have been well known (Lemmas 40, 42 and 43). Nonetheless,
the power of their combination was not realized before [67].

We define the upper multiplier ideals J +
(

c|N |) and J +
(

I c
)

for a linear system
|N | and an ideal I in Definition 49. We use the following of its properties.

Lemma 40 Let Y be a smooth variety and |N | a linear system. Then the support of
OY /J +

(

c|N |) is the union of all non-log-canonical centers of (Y, c|N |).
Lemma 41 Let Y be a smooth variety and |N | a linear system. Assume that
(

Y, c2 |N |
)

is not log canonical. Then

J +
(

J +
(

c|N |)) �= OY .

Lemma 42 Let Y be a smooth variety and I ⊂ OY an ideal sheaf that vanishes
only at finitely many points. Assume that J +(I) �= OY . Then

dim
(

OY /I
) ≥ 1

2 3dimY .

Lemma 43 Let Y be a smooth, projective variety, H an ample divisor on Y and
|N | a linear system such that H ∼Q c|N |. Assume that

(

Y, c|N |) is log canonical
outside finitely many points. Then

H 0(Y,OY (KY +H)
) ≥ dim

(

OY /J +
(

c|N |)).

44 (Proof of Step 10.6 Using Lemmas 40–43) We apply Lemma 41 to |N | :=
|2M| and c = 1

m
. We get the ideal sheaf I := J +

( 1
m
|2M|) such that J +(I) �= OY .

By Lemma 40 I vanishes only at finitely many points. Thus, by Lemma 42,

dim
(

OY /J +
( 1
m
|2M|)) ≥ 1

2 3dimY .

Finally using Lemma 43 forH := 2L says that

H 0(Y,OY (KY + 2L)
) ≥ dim

(

OY /J +
( 1
m
|2M|)) ≥ 1

2 3dimY . ��
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We prove Lemma 40 in Paragraph 50. Lemma 42 is local at the points where I
vanishes, in fact, it is a quite general algebra statement about ideals. We discuss it
in detail in Sect. 8. Lemma 43 is a restatement of Corollary 52; we explain its proof
in Sect. 7.

45 (Proof of Lemma 41) Take a log resolution π : Y ′ → Y as in Definition 7 and
write

KY ′ ∼ π∗KY +∑

eiEi and π∗|N | = |N ′| +∑

iaiEi,

where |N ′| is base point free. By Definition 48,

J +
(

c|N |) = π∗OY ′
(∑

i#ei − c′ai$Ei
)

,

where 0 < c − c′ % 1. Thus if

π∗J +
(

c|N |) = OY ′
(−∑

ibiEi
)

,

then −bi ≤ #ei − c′ai$. (We have to be a little careful here. We need to use a
π : Y ′ → Y that is a log resolution for both |N | and J +

(

c|N |).) Therefore

J +
(

J +
(

c|N |)) = π∗OY ′
(∑

i#ei − (1− ε)bi$Ei
)

, (30)

for 0 < ε % 1. If bi = 0 then #ei − (1− ε)bi$ = ei − bi and if bi > 0 then

#ei − (1− ε)bi$ = ei − bi + #εbi$ = ei − bi + 1,

since bi is an integer. Thus, in both cases

#ei − (1− ε)bi$ ≤ ei − bi + 1 ≤ 2ei + #−c′ai$ + 1 ≤ 2ei − cai + 2.

Since
(

Y, c2 |N |
)

is not log canonical, there is an index j such that ej − c
2aj < −1.

Then

2ej − caj + 2 = 2
(

ej − c
2aj

)+ 2 < −2+ 2 = 0.

Thus J +
(

J +
(

c|N |)) vanishes along π(Ej). ��

7 Review of Vanishing Theorems

Here we prove Lemma 43. For this we need to use the cohomology of coherent
sheaves. We use that the groups Hi(Y, F ) exist and that a short exact sequence
of sheaves leads to a long exact sequence of the cohomology groups. For the
uninitiated, [55, Chap. B] is a very good introduction.
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We also need a vanishing theorem which says that under certain assumptions the
cohomology groupH 1(Y, F ) is 0. The reader who is willing to believe Theorem 51
need not get into any further details. However, at first sight, the definition of the
multiplier ideal may appear rather strange, so I include an explanation of where
these definitions and results come from.

46 (Vanishing and Global Sections) Let F be a coherent sheaf on a projective
variety Y . One way to estimate the dimension ofH 0(Y, F ) from below is to identify
a subsheaf S(F ) ↪→ F and the corresponding quotient F � Q(F ), write down the
short exact sequence

0→ S(F )→ F → Q(F )→ 0,

and the beginning of its long exact sequence

0→ H 0(Y,S(F )
)→ H 0(Y, F

)→ H 0(Y,Q(F )
)→ H 1(Y,S(F )

)

.

If the last term vanishes then

dimH 0(Y, F
) ≥ dimH 0(Y,Q(F )

)

.

In our case we have a divisor L and a linear system |M| such that c|M| ∼ L for
some c. We will use these data to construct the subsheaf

S
(

OY (KY + L)
) ⊂ OY (KY + L),

such that a generalization of Kodaira’s vanishing theorem applies to S
(

OY (KY +
L)

)

. These vanishing theorems form a powerful machine which gives us a vanishing
involving OY (KY + L). (For our purposes in Sect. 6, a vanishing involving pretty
much any other OY (aKY + bL) would be good enough, as long as a, b are much
smaller than dimY .)

47 (Generalizations of Kodaira’s Vanishing Theorem) Kodaira’s classical van-
ishing theorem says that if Y is a smooth, projective variety over C and L an ample
divisor onX thenHi

(

Y,OY (KY +L)
) = 0 for i > 0. It has various generalizations

when L is only close to being ample.

47.1 (Close-to-Ample Divisors) It turns out that Kodaira’s vanishing theorem also
works for a divisor L if one can write it as L ∼Q cA+� where

(a) c > 0 and A is nef and big (that is, (A · C) ≥ 0 for every curve C ⊂ Y and
(

AdimY
)

> 0), and
(b) � := ∑

diDi , where di ∈ [0, 1) and
∑

Di has simple normal crossing
singularities only.

In practice the condition that
∑

Di be a simple normal crossing divisor is very
rarely satisfied, but log resolution (as in Definition 7) allows us to reduce almost
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everything to this case. The basic vanishing theorem is the following, see [36, Sec.
2.5] or [38, 9.1.18] for proofs.

Theorem 47.2 (Kawamata-Viehweg Version) Let X be a smooth, projective variety
and L a divisor as in Subparagraph 47.1. Then

Hi
(

X,OX(KX + L)
) = 0 for i > 0. ��

The following versions are easy to derive from Subparagraph 47.1; see [36, 2.68].

Theorem 47.3 (Grauert-Riemenschneider Version) Let X be a smooth, projective
variety, π : X→ Y a birational morphism and L a divisor as in Subparagraph 47.1.
Then

Riπ∗OX(KX + L) = 0 for i > 0. ��

Corollary 47.4 Let X be a smooth, projective variety, π : X → Y a birational
morphism and L a divisor as in Subparagraph 47.1. Then

Hi
(

Y, π∗OX(KX + L)
) = 0 for i > 0. ��

Next we show how we get vanishing theorems starting with a linear system.

48 Let Y be a smooth, projective variety over C and |M| a linear system on Y .
Following Subparagraph 47.1 we would like to get a nef and big divisor plus a
divisor with simple normal crossing support.

Thus let π : Y ′ → Y be a log resolution as in Definition 7. Write

KY ′ = π∗KY +∑

eiEi and π∗|M| = |M ′| +∑

aiEi. (31)

Thus the Ei are either π-exceptional or belong to the base locus of π∗|M|, and we
allow ei or ai to be 0. Let L be an ample divisor such that L ∼Q c|M|. Then we can
write the pull-back of KY + L as

π∗(KY + L) ∼Q KY ′ + c|M ′| +∑

(−ei + cai)Ei . (32)

The right hand side starts to look like we could apply Theorem 47.2 to it, but there
are 2 problems. The coefficient (−ei + cai) need not lie in the interval [0, 1) and,
although |M ′| is nef, it need not be big. The latter can be arranged by keeping a little
bit of L unchanged. That is, pick 0 < c′ < c and write the pull-back of KY + L as

π∗(KY + L) ∼Q KY ′ + (c − c′)π∗L+ c′|M ′| +∑

(−ei + c′ai)Ei. (33)
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Now π∗L + c′|M ′| is nef and big, but the first problem remains. Here we use that
any number a can be uniquely written as a = &a'+ {a} where &a' is an integer and
{a} ∈ [0, 1). Furthermore, let #a$ := −&−a' denote the rounding up of a. Applying
this and rearranging we get that

π∗(KY + L)+∑#ei − c′ai$Ei
∼Q KY ′ + (c − c′)π∗L+ c′|M ′| +∑{−ei + c′ai}Ei. (34)

Now the vanishing Corollary 47.4 applies to the right hand side of (34). Note also
that

π∗OY ′
(

π∗(KX+L)+∑#ei − c′ai$Ei
) = OY (KY+L)⊗π∗OY ′

(∑#ei − c′ai$Ei
)

.

This suggests that the basic object is π∗OY ′
(∑#ei − c′ai$Ei

)

. Note that this does
not depend on c′ as long as c − c′ is small enough. Indeed, then

#ei − c′ai$ =
{ #ei − cai$ if ei − cai /∈ Z and
#ei − cai$ + 1 if ei − cai ∈ Z.

Definition 49 (Multiplier Ideal) LetX be a smooth, projective variety over C and
|M| a linear system. The upper multiplier ideal of c|M| is

J +
(

c|M|) := π∗OY ′
(∑#ei − c′ai$Ei

)

for any c′ satisfying 0 < c − c′ % 1. It is not hard to see that this does not depend
on the choice of π : Y ′ → Y . Note that [38, Sec. 9.2] calls

J
(

c|M|) := π∗OY ′
(∑#ei − cai$Ei

)

the multiplier ideal. Clearly J +
(

c|M|) = J
(

c′|M|) for 0 < c − c′ % 1.
For an ideal sheaf I (gi ) let |M| := |∑λigi | and set J +

(

I c
) := J +

(

c|M|).
50 (Proof of Lemma 40) Set W := SuppOY /J +

(

c|M|). Then W is exactly the
π-image of the support of the negative part of

∑#ei − c′ai$Ei . If ei − cai < −1
then ei − c′ai < −1 so #ei − c′ai$ ≤ −1. If ei − cai ≥ −1 and ai > 0 then
ei − c′ai > −1 so #ei − c′ai$ ≥ 0. If ai = 0 then ei − cai = ei ≥ 0. ��

Now we can apply Corollary 47.4 and get the following, see [38, Sec. 9.4].

Theorem 51 (Nadel Vanishing) Let Y be a smooth, projective variety, L an ample
divisor and |M| a linear system such that c|M| ∼Q L. Then

Hi
(

Y,OY (KY + L)⊗ J +
(

c|M|)) = 0 for i > 0. ��
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As we discussed in Paragraph 46, this immediately implies the following.

Corollary 52 Let Y be a smooth, projective variety, L an ample divisor on Y and
|M| a linear system such that L ∼Q c|M|. Assume that

(

Y, c|M|) is log canonical
outside finitely many points. Then

H 0(Y,OY (KY + L)
) ≥ dim

(

OY /J +
(

c|M|)). ��

8 Review of Monomial Ideals

In this section we prove Lemma 42. Its claim is local at the points where I vanishes,
we can thus work using local coordinates at a point. Though not important, it is
notationally simpler to pretend that we work at the origin of An. (This is in fact
completely correct, one needs to argue that Y and A

n have the same completions,
[60, Sec. II.2.2].)

As a general rule, an ideal is log canonical iff it contains low multiplicity
polynomials. In this section we give a precise version of this claim. Key special
cases of the following are proved by Reid [54] and Corti [6]. More general versions
are in [12, 19]. An excellent detailed treatment of this topic is given in [38, Chap.
9], so I concentrate on the definitions and explanations, leaving the details to [38].

Theorem 53 Let I ⊂ R := k[x1, . . . , xn] be an ideal vanishing only at the origin.
Assume that I is not log canonical. Then

dim
(

R/I) ≥ min
a1,...,an≥0

#
{

N
n ∩ (∑

airi ≤∑

ai
)

}

.

The proof is given in two steps. We first reduce to the case of monomial ideals
in Corollary 55.2 and then to counting lattice points in a simplex Corollary 56.2.
Following the proof shows that the lower bound is sharp, but I do not know a
closed formula for it. However, a simple argument, given in Paragraph 57, gives
the following.

Corollary 54 Let I ⊂ k[x1, . . . , xn] be a non-log-canonical ideal that vanishes
only at the origin. Then

dim
(

R/I) ≥ 1
2 3n.

55 (Deformation to Monomial Ideals) (See [8, Chap. 2] for details.) Let I ⊂
R := k[x1, . . . , xn] be an ideal. Write every g ∈ R as g = in(g) + rem(g) where
in(g) := ag∏xrii is the lexicographically lowest monomial that appears in g with
nonzero coefficient. Define the initial ideal of I (with respect to the lexicographic
ordering) as

in(I) := (

in(g) : g ∈ I). (35)
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Thus in(I) is generated by monomials and it is not hard to see that

dim(R/I) = dim
(

R/ in(I)
)

. (36)

A key property is the following.

Proposition 55.1 If in(I) is log canonical then so is I .

Comments on the Proof Choose integers 1 ≤ w1 % · · · % wn. For g ∈ R let w(g)
denote the largest t power that divides g(tw1x1, . . . , t

wnxn). Then

t−w(g)g(tw1x1, . . . , t
wnxn) = in(g)(x1, . . . , xn)+ t (other terms). (37)

Any finite collection of these defines a linear system |M| on Y := A
n+1 with

coordinates (x1, . . . , xn, t).
If we choose wi that work for a Gröbner basis gi ∈ I , then we get |M| whose

restriction to (t = 0) gives I0 = in(I) and to (t = λ) gives Iλ ∼= I for λ �= 0.
If I0 is log canonical then

(

Y, |M|) is also log canonical by Theorem 38.2, and
so is Iλ ∼= I by Proposition 35.1. ��

Combining (36) and Proposition 55.1 gives the first reduction step of the proof
of Theorem 53.

Corollary 55.2 If Theorem 53 holds for monomial ideals then it also holds for all
ideals. ��
56 (Monomial Ideals) Let I ⊂ k[1, . . . , xn] be a monomial ideal, that is, an ideal
generated by monomials. A very good description of I is given by its Newton
polytope.

For
∏

x
ri
i ∈ I we mark the point (r1, . . . , rn) with a big dot for elements of I \

(x1, . . . , xn)I and with an invisible dot for elements of (x1, . . . , xn)I . The Newton
polytope is the boundary of the convex hull of the marked points, as in the next
example.

The Newton polygon of
(y7, y5x, y3x2, yx4, x6).

A face of the Newton polytope is called central if it contains a point all of whose
coordinates are equal.
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The Newton polygon of
(y7, y5x, y3x2, yx4, x6),

with central face extended.

The next version of Claim 27.2 follows from [54]; see [19] for various general-
izations and [38, Sec. 9.3.C] for proof.

Proposition 56.1 A monomial ideal I is log canonical iff its Newton polytope
contains the point (1, . . . , 1). ��

Thus I is not log canonical iff a central face of its Newton polytope contains a
point (d, . . . , d) with d > 1. The equation of this face can then be written as

∑

airi = d∑ai for some ai ≥ 0.

In particular, a monomial
∏

x
ri
i is not contained in I if

∑

airi ≤∑

ai . We have thus
proved the following.

Corollary 56.2 A monomial ideal I is not log canonical iff there is a simplex

�(a) := (

0 ≤ ri , ∑airi ≤∑

ai
)

that is disjoint from the Newton polytope of I . If this holds then

dim
(

R/I
) ≥

(

number of lattice points
in the simplex�(a)

)

. ��

57 (Lattice Points in Simplices) We thus need to estimate from below the number
of lattice points in the n-simplex

(

0 ≤ ri,∑airi ≤ ∑

ai
)

, independent of the ai . I
could not find the optimal values.

The lower bound 1
2 3n comes from the observation that if ri ∈ {0, 1, 2} then either

(r1, . . . , rn) or (2− r1, . . . , 2− rn) satisfies
∑

airi ≤∑

ai . We can do a little better
by adding the points with coordinates 3, . . . , n on at least 1 of the coordinate axes.

Another lower bound is 1
n

(2n
n

)

, which is asymptotically 4n/(n
√
πn). This comes

from the observation that if
∑

ri ≤ n then at least one of the cyclic permutations of
(r1, . . . , rn) satisfies

∑

airi ≤∑

ai .
The first bound is better for n ≤ 5, the second for n ≥ 6.
We can also combine the two bounds to get

1
n

[(2n
n

)− 1
2 3n

]+ 1
2 3n = 1

n

(2n
n

)+ n−1
2n 3n.
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Hodge Theory of Cubic Fourfolds, Their
Fano Varieties, and Associated K3
Categories

Daniel Huybrechts

Abstract These are notes of lectures given at the school ‘Birational Geometry of
Hypersurfaces’ in Gargnano in March 2018. The main goal was to discuss the Hodge
structures that come naturally associated with a cubic fourfold. The emphasis is
on the Hodge and lattice theoretic aspects with many technical details worked out
explicitly. More geometric or derived results are only hinted at.

The primitive Hodge structure of a smooth cubic fourfold X ⊂ P
5 is concentrated

in degree four and it is of a very particular type. Once a Tate twist is applied
and the sign of the intersection form is changed, it reveals its true nature. It
very much looks like the Hodge structure of a K3 surface. In his thesis Hassett
[12] studied this curious relation and the intricate lattice theory behind it in
greater detail. He established a transcendental correspondence between polarized
K3 surfaces of certain degrees and special cubic fourfolds, some aspects of which
are reminiscent of the Kuga–Satake construction. The geometric nature of the
Hassett correspondence is still not completely understood but it seems that derived
categories are central for its understanding. Work of Addington and Thomas [2]
represents an important step in this direction, combining Hassett’s Hodge theory
with Kuznetsov’s categorical approach to hypersurfaces.

The aim of the lectures was to discuss the Hodge structures H 4(X,Z),
H 4(X,Z)pr, ˜H(X,Z), and H 2(F (X),Z), all naturally associated with a cubic
fourfold X, and their relation to the Hodge structures H 2(S,Z), H 2(S,Z)pr,
˜H(S,Z), and ˜H(S, α,Z) that come with a (polarized, twisted) K3 surface S.
For a discussion of more motivic aspects, partially covered by the original lectures,
and of derived aspects, not touched upon at all, we have to refer to the existing
literature. Most of the content of the lectures is also covered by Huybrechts [19].
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1 Lattice and Hodge Theory for Cubic Fourfolds and K3
Surfaces

In the first section, we collect all facts from Hodge and lattice theory relevant for
the study of cubic fourfolds. The curious relation between the lattice theory of cubic
fourfolds and K3 surfaces has been systematically studied first by Hassett [12].
Earlier results in this direction are due to Beauville and Donagi [5].

1.1 As abstract lattices, the middle cohomology and the primitive cohomology of a
smooth cubic fourfoldX ⊂ P

5 are described by

H 4(X,Z) � I21,2 � E⊕2
8 ⊕ U⊕2 ⊕ I3,0,

H 4(X,Z)pr � E⊕2
8 ⊕ U⊕2 ⊕ A2,

where the square of the hyperplane class h is given as h2 = (1, 1, 1) ∈ I3,0. Here,
we use the common notation E8 and U for the unique, unimodular, even lattices of
signature (8, 0) and (1, 1), respectively, and Im.n for the unique, unimodular, odd
lattice of signature (m, n), see [19, Sec. 1.1.5] for details and references. It will be
convenient to change the sign and introduce the cubic lattice and the primitive cubic
lattice as

�̄ := I2,21 � E8(−1)⊕2 ⊕ U⊕2 ⊕ I0,3 � H 4(X,Z)(−1),

� := E8(−1)⊕2 ⊕ U⊕2 ⊕ A2(−1) � H 4(X,Z)pr(−1).

In particular, from now on (h2)2 = −3. The twist should not be confused with
the Tate twist of the Hodge structure. It turns out that E8(−1)⊕2, certainly the most
interesting part of these lattices, will hardly play any role in our discussion. We shall
henceforth abbreviate it by

E := E8(−1)⊕2

and consequently write

�̄ � E ⊕ U⊕2 ⊕ I0,3 and � � E ⊕U⊕2 ⊕ A2(−1).

Although there is a priori no geometric reason why K3 surfaces should enter the
picture at all, their intersection form will play a central role in our discussion. We
will first address this first purely on the level of abstract lattice theory and later add
Hodge structures.

Recall that for a complex K3 surface S, its middle cohomology with the
intersection form is the lattice

H 2(S,Z) � E ⊕ U⊕3 � E ⊕ U1 ⊕ U2 ⊕ U3 =:  ,
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see [16, Ch. 14]. The summands Ui , i = 1, 2, 3, are copies of the hyperbolic plane
U . Indexing them will make the discussion more explicit and will help us to avoid
ambiguities later on.

The full cohomology H ∗(S,Z) is also endowed with a unimodular intersection
form. It is customary to introduce a sign in the pairing on (H 0⊕H 4)(S,Z), which,
however, does not change the abstract isomorphism type, for U � U(−1). The
resulting lattice is the Mukai lattice

˜H(S,Z) := H 2(S,Z) ⊕ (H 0 ⊕H 4)(S,Z) � E ⊕ U⊕3 ⊕ U4

� E ⊕ U1 ⊕ U2 ⊕ U3 ⊕ U4 =: ˜ .

The standard basis of U consists of isotropic vectors e, f with (e.f ) = 1. We shall
denote the standard bases in the first three copies of U as ei , fi ∈ Ui , i = 1, 2, 3.
However, in order to take into account the sign change in the Mukai pairing, we
shall use the convention that (e4.f4) = −1 and that e4 = [S] ∈ H 0(S,Z) and
f4 = [x] ∈ H 4(S,Z) with x ∈ S a point.

Next, we introduce an explicit embeddingA2
� � �� ˜ . Here, A2 = Z λ1 ⊕Z λ2 is

the lattice of rank two given by the intersection form

(

2 −1
−1 2

)

and we define

A2
� � ��U3 ⊕ U4 ⊂ ˜ (1)

by λ1
� �� e4−f4 and λ2

� �� e3+f3+f4. The orthogonal complement 〈λ1, λ2〉⊥ =
A⊥2 ⊂ ˜ is the lattice

A⊥2 = E ⊕ U1 ⊕ U2 ⊕ A2(−1),

where A2(−1) ⊂ U3 ⊕ U4 is spanned by μ1 := e3 − f3 and μ2 := −e3 − e4 − f4
satisfying (μi)2 = −2 and (μ1.μ2) = 1.

Remark 1.1 We observe that λ⊥1 = E ⊕ U1 ⊕ U2 ⊕ U3 ⊕ Z(−2), where the last
direct summand is generated by e4+f4. Hence, λ⊥1 �  ⊕Z(−2), which is a lattice
of discriminant1 disc(λ⊥1 ) = 2 and which containsA⊥2 ⊕Z (λ1+2λ2) as a sublattice
of index three. As H 2(S,Z) �  and H 2(S[2],Z) � H 2(S,Z) ⊕ Z(−2) for the
Hilbert scheme S[2] of any K3 surface S, this can be read as a lattice isomorphism
λ⊥1 � H 2(S[2],Z).

The discussion so far leads to the fundamental observation that there exists an
isomorphism

�̄ ⊃ � � A⊥2 ⊂ ˜ 

1The sign of the discriminant will be of no importance in our discussion, we tacitly work with its
absolute value.
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between the primitive cubic lattice � and the lattice A⊥2 inside the Mukai lattice ˜ .
For later use, we record that (1) induces inclusions of index three:

A2 ⊕ A2(−1) ⊂ U3 ⊕ U4 and A2 ⊕ A⊥2 ⊂ ˜ ,

where, for example, the quotient of the latter is generated by the image of the class
(1/3)(μ1 − μ2 − λ1 + λ2) = e3 + f4.

Another technical result that will be crucial at some point later, is the following
elementary statement which is surprisingly difficult to prove, cf. [2, Prop. 3.2].

Lemma 1.2 Consider A2 ⊂ ˜ as before, let U � � �� ˜ be an isometric embedding
of a copy of the hyperbolic plane, and denote by A2 + U the saturation of A2 +
U ⊂ ˜ . Then there exists an isometric embedding of a copy of the hyperbolic plane
U ′ �

� ��A2 + U such that rk(A2 + U ′) = 3.

Proof See [2] for the proof. ��
Remark 1.3 To motivate the notion of Noether–Lefschetz (or Heegner) divisors
for cubic fourfolds, let us recall the corresponding concept for K3 surfaces: For
a primitive class � ∈  with (�)2 = d , we write

 d := �⊥ ⊂  .

As � is in the same O( )-orbit as the class e2 + (d/2) f2, cf. [16, Cor. 14.1.10], it
can abstractly be described as

 d � E ⊕ U⊕2 ⊕ Z(−d).

It is important to note that the lattices  d are in general not contained in A⊥2 ⊂ ˜ .

We shall call any primitive vector v ∈ � � A⊥2 with (v)2 < 0 a Noether–
Lefschetz vector. With such Noether–Lefschetz vector one naturally associates two
lattices. On the cubic side, one defines

Zh2 ⊕ Z v ⊂ Kv ⊂ �̄

as the saturation of Zh2 ⊕ Z v ⊂ �̄. On the K3 side, we introduce the saturation

A2 ⊕ Z v ⊂ Lv ⊂ ˜ .

Note that Lv is of rank three and signature (2, 1), while Kv is of rank two and
signature (0, 2). Clearly, their respective orthogonal complements are isomorphic:

�̄ ⊃ K⊥v � L⊥v ⊂ ˜ ,
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as they are both described as v⊥ ⊂ � � A⊥2 . In particular, for the discriminants we
have

d := disc(Lv) = disc(Kv).

The situation has been studied in depth in [12, Prop. 3.2.2]:

Lemma 1.4 (Hassett) Only the following two cases can occur:

(i) Either Zh2 ⊕ Z v = Kv , A2 ⊕ Z v = Lv , and
d = disc(Kv) = disc(Lv) = −3 (v)2 ≡ 0 (6)

(ii) or Zh2 ⊕ Z v ⊂ Kv , A2 ⊕ Z v ⊂ Lv are both of index three, and

d = disc(Kv) = disc(Lv) = −1

3
(v)2 ≡ 2 (6).

Proof The main ingredient is the standard formula, see e.g. [16, Sec. 14.0.2],

disc(Kv) · [Kv : Zh2 ⊕ Z v]2 = disc(Zh2 ⊕ Z v) = −3 (v)2.

Any y ∈ Kv is of the form y = s h2 + t v, with s, t ∈ Q. From (h.y) ∈ Z one
concludes s ∈ (1/3)Z and hence also t ∈ (1/3)Z. This shows that [Kv : Zh2 ⊕
Z v] = 1, 3, or = 9, but the last possibility is excluded as (1/3) h2 �∈ �̄.

In the first case, i.e.Kv = Zh2⊕Z v, one finds d = disc(Kv) = −3 (v)2 ≡ 0 (6).
In the second case, so when the index is three, then 3 d = −(v)2 ≡ 0, 2, 4 (6). On
the other hand,Kv admits a basis consisting of h2 and another class x. Indeed, pick
any class x ∈ Kv whose image generates the quotient Kv/(Zh2 ⊕ Z v) � Z/3Z.
We may assume 3 x = s h2 + t v with s, t = ±1 and, therefore, Kv = Zh2 ⊕ Z x.
Hence, its discriminant satisfies d = −3 (x)2 − (x.h2)2 ≡ 0, 2, 3, 5 (6). Altogether
this shows that d ≡ 0, 2 (6).

We claim that d ≡ 0 (6) holds if and only if Kv = Zh2 ⊕Z v. The ‘if’-direction
was proven already. For the ‘only if’-direction, assume that d ≡ 0 (6) but [Kv :
Zh2 ⊕ Z v] = 3. Pick x ∈ Kv as above. Then, write v = s h2 + t x, s, t ∈ Z,
and use (v.h2) = 0 and the primitivity of v to show v = r ((x.h2) h2 + 3 x) with
r = ±1,±(1/3) as v is primitive. However, (x.h2) ≡ 0 (3) under the assumption
that d ≡ 0 (6). Hence,±v = mh2+ x,m ∈ Z, and, therefore, x ∈ Zh2⊕Z v. This
yields a contradiction and thus proves the assertion.

The assertions for the lattice Lv follows directly from the ones forKv . ��
Remark 1.5 Depending on the perspective, it may be useful to study the various
cases from the point of view of d or, alternatively, of (v)2. To have the results handy
for later use, we restate the above discussion as

d ≡ 0 (6) ⇒ (v)2 = −d/3 ≡ 0 (6) or ≡ ±2 (6),
d ≡ 2 (6) ⇒ (v)2 = −3 d ≡ 0 (6)
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and

(v)2 ≡ ±2 (6) ⇒ d = −3 (v)2 ≡ 0 (6),
(v)2 ≡ 0 (6) ⇒ d = −3 (v)2 ≡ 0 (6) or d = −(1/3) (v)2 ≡ 2 (6).

In particular, d determines (v)2 uniquely, but not vice versa unless (v)2 ≡ ±2 (6).

Proposition 1.6 (Hassett) Let v, v′ ∈ � be two primitive vectors and assume that
disc(Lv) = disc(Lv′) or, equivalently, disc(Kv) = disc(Kv′). Then there exist an
orthogonal transformations g ∈ Õ(�) such that g(v) = ±v′ and, in particular,

Lv′ � Lg(v) andKv′ � Kg(v).

The definition of Õ(�) will be recalled below.

Proof We apply Eichler’s criterion, cf. [11, Prop. 3.3]. If an even lattice N is of the
form N � N ′ ⊕ U⊕2, then a primitive vector v ∈ N with prescribed (v)2 ∈ Z

and (1/n) v̄ ∈ AN , with n determined by (v.N) = nZ, is unique up to the action
of Õ(N). Apply this to v ∈ � � A⊥2 � E ⊕ U⊕2 ⊕ A2(−1) and use that for any
primitive v ∈ �, either (v.�) = Z or = 3Z. This follows from [�̄ : � ⊕ Zh2] = 3
and the unimodularity of �̄.

(i) If (v)2 ≡ 0 (6), there are two cases: Assume first that d ≡ 2 (6) or, equivalently,
that Z v ⊕ Zh2 is not saturated. Then, one finds an element of the form α :=
(1/3) v + t h2 ∈ �̄. As (α.w) ∈ Z for all w ∈ �, this shows (v.�) ⊂ 3Z.
Hence, n = 3 and (1/3) v̄ = ±1 ∈ A� � Z/3Z.

Assume now that d ≡ 0 (6) and write v = n1v1+n2v2 with v1 ∈ E⊕U1⊕U2
and v2 ∈ A2(−1), both primitive, and n1, n2 ∈ Z. If n1 �≡ 0 (3), then there
exists a class w in the unimodular lattice E ⊕ U1 ⊕ U2 ⊂ � with (v.w) �∈ 3Z
and hence (v.�) = Z. If n1 ≡ 0 (3), then n2 �≡ 0 (3), as v is primitive. However,
in this case (1/3) (v±h2) = (n1/3)v1+(1/3) (n2v2±h2) ∈ �̄ and so Z v⊕Zh2

is not saturated, contradicting d ≡ 0 (6).
(ii) If (v)2 ≡ ±2 (6) and hence (v)2 �≡ 0 (3), then (v.�) = Z, n = 1, and v̄ ∈ A�

is trivial.
Hence, in case (i) and (ii), if indeed d and not only (v)2 is fixed, then (v)2 =

(v′)2 and (1/n) v̄ = (1/n) v̄′ ∈ A� (up to sign).
��

Remark 1.7 Due to the uniqueness, no information is lost when explicit classes
v ∈ � � A⊥2 are chosen for any given d . In the sequel, we will work with the
following ones.

(i) For d ≡ 0 (6), one may choose vd := e1 − (d/6) f1 ∈ U1 ⊂ �. Observe that
indeed, as explained in the general context above, (vd)2 = −d/3 and that the
lattice A2 ⊕ Z vd is saturated (use A2 ⊂ U2 ⊕ U3 and vd ∈ U1), i.e.

Ld := Lvd = A2 ⊕ Z vd .
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Similarly,

Kd := Kvd = Zh2 ⊕ Z vd,

which again shows (vd)2 = −d/3. Their orthogonal complement is

�d := L⊥d � K⊥d � E ⊕ U2 ⊕ A2(−1)⊕ Z (e1 + (d/6) f1)

and their discriminant group

AK⊥d
� AKd � Z/3Z⊕ Z/(d/3)Z

is cyclic if and only if 9 � d .
(ii) For d ≡ 2 (6), one sets vd := 3 (e1−((d−2)/6) f1)+μ1−μ2 ∈ U1⊕A2(−1).

Then both inclusions

A2 ⊕ Z vd ⊂ Ld := Lvd and Zh2 ⊕ Z vd ⊂ Kd := Kvd
are of index three, for example vd −λ1+λ2 and vd −h2 are divisible by 3. Use
λ1 = e4−f4, λ2 = e3+f3+f4, μ1 = e3−f3, andμ2 = −e3−e4−f4, the latter
corresponding to (1,−1, 0), (0, 1,−1) ∈ Z

⊕3. In this case, see [1, 12, 31],

�d := L⊥d � K⊥d � E ⊕ U2 ⊕ (Z⊕3, ( . )A) with A :=
⎛

⎝

−2 1 0
1 −2 1
0 1 (d − 2)/3

⎞

⎠

and Ld and Kd are given by the matrices −A and

(−3 1
1 −(d + 1)/3

)

,

respectively. The discriminant groups for d ≡ 2 (6) are cyclic, indeed AK⊥d
�

AKd � Z/dZ.

In addition to the orthogonal group

Õ(�) := { g ∈ O(�̄) | g(h2) = h2 }, (2)

which we will also think of as Õ(�) = { g ∈ O(�) | ḡ ≡ id on A� }, we need to
consider

Õ(�,Kd) := { g ∈ Õ(�) | g(Kd) = Kd, i.e. g(vd) = ±vd }
⋃

Õ(�, vd) := { g ∈ Õ(�) | g|Kd = id, i.e. g(vd ) = vd }.
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Observe that Õ(�, vd) can be identified with the subgroup of all g ∈ O(�d)
with trivial action on the discriminant group A�d � AKd . Also, by definition,
Õ(�, vd) ⊂ Õ(�,Kd) is a subgroup of index one or two. Note that the natural
homomorphism Õ(�,Kd) �� O(Kd) is neither surjective (let alone injective) nor
is its image contained in the subgroup of transformations acting trivially on the
discriminant Õ(Kd).

Lemma 1.8 (Hassett) The subgroup Õ(�, vd) ⊂ Õ(�,Kd) is of index at most two.
More precisely, one distinguishes the following cases:

(i) If d ≡ 0 (6), then

Õ(�, vd) ⊂ Õ(�,Kd)

has index two.
(ii) If d ≡ 2 (6), then

Õ(�, vd) = Õ(�,Kd).

Proof

(i) According to Lemma 1.4, d ≡ 0 (6) if and only if Zh2 ⊕ Z vd = Kd , which is
contained in I0,3 ⊕ U1. Let g ∈ Õ(�) be the orthogonal transformation defined
by g = id on E ⊕ U2 ⊕ I0,3 and by g = −id on U1. Then g is an element in
Õ(�,Kd) \ Õ(�, vd).

(ii) Now, d ≡ 2 (6) if and only if Zh2 ⊕ Z vd ⊂ Kd has index three and then
vd = 3 (e1−((d−2)/6) f1)+μ1−μ2 withμ1 = (1,−1, 0), μ2 = (0, 1,−1) ∈
A2(−1) ⊂ I0,3 and h2 = (1, 1, 1). Now observe that (1/3) (vd − h2) ∈ Kd , but
(1/3) (−vd − h2) �∈ Kd .

��
1.2 It turns out that certain geometric properties of cubic fourfolds are encoded
by lattice-theoretic properties of Noether–Lefschetz vectors v ∈ �. The following
ones are relevant for our purposes. It is a matter of choice, whether they are read
as conditions on d or on the primitive v ∈ �. For d ∈ Z one considers the conditions:

(∗) ⇔ There exists an Ld.

(∗∗′) ⇔ There exists an Ld and an embedding U(n) �
� ��Ld for some n �= 0.

(∗∗) ⇔ There exists an Ld and a primitive embeddingU � � ��Ld.

(∗∗∗)⇔ There exists an Ld and a primitive embeddingU � � ��Ld with λ1 ∈ U.
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Remark 1.9

(i) The following implications trivially hold

(∗∗∗)⇒ (∗∗)⇒ (∗∗′)⇒ (∗).

(ii) Each of the conditions in fact splits in two, distinguishing between d ≡ 0 (6)
and d ≡ 2 (6). We shall write accordingly (∗)0, (∗)2, (∗∗′)0, (∗∗′)2, etc.

Lemma 1.10 Condition (∗∗) holds if and only if there exists an isomorphism of
lattices

ε : �d
∼

�� d.

In this case, one also has an isomorphism of groups

Õ(�, vd) � Õ( d).

Proof Assume that there exists a (primitive) hyperbolic plane U � � ��Ld . As the
composition with the inclusion Ld ⊂ ˜ can be identified with U4

� � �� ˜ up to the
action of O(˜ ), see [16, Thm. 14.1.12], one has U⊥ �  . Hence, �d = L⊥d ⊂
U⊥ �  is a primitive sublattice of corank one, signature (2, 19), discriminant d ,
and is, therefore, isomorphic to  d . Conversely, if L⊥d = �d �  d ⊂  ⊂ ˜ ,
then U4 ⊂ Ld . Here, one again uses that up to O(˜ ), there exists only one primitive
embedding d

� � �� ˜ .
For the isomorphism between the two orthogonal groups, just recall that they are

both described as the subgroup of all orthogonal transformations of �d �  d acting
trivially on the discriminant A�d � A d � Z/dZ. ��
Remark 1.11 As any isometric embedding U � � ��Ld splits, see [16, Ex. 14.0.3],
one concludes that for d satisfying (∗∗)0 and (∗∗)2, respectively, that

(∗∗)0 : A2 ⊕ Z vd � Ld � U ⊕ Z(d) and (vd)2 = −(1/3) d
(∗∗)2 : A2 ⊕ Z vd

� � ��Ld � U ⊕ Z(d) index three and (vd)2 = −3 d.

Remark 1.12 For a numerical description of these conditions one needs the follow-
ing classical facts determining which numbers are represented byA2, see [10, 23].

(i) For a given even, positive integer d there exists a vectorw ∈ A2 with (w)2 = d
if and only if the prime factorization of d/2 satisfies

d
2

= pnp with np ≡ 0 (2) for all p ≡ 2 (3). (3)
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(ii) For a given even, positive integer d there exists a primitive vector w ∈ A2 with
(w)2 = d if and only if

d
2

= pnp with np = 0 for all p ≡ 2 (3) and n3 ≤ 1. (4)

Proposition 1.13 Numerically, (∗), (∗∗′), (∗∗), and (∗∗∗) are described by:
(i) (∗) ⇔ d ≡ 0, 2 (6).

(ii) (∗∗′) ⇔ ∃ w ∈ A2 : (w)2 = d ⇔ (3).

(iii) (∗∗) ⇔ ∃ w ∈ A2 primitive : (w)2 = d ⇔ (4) ⇔ ∃ a, n ∈ Z : d = 2n2+2n+2
a .

(iv) (∗∗∗) ⇔ ∃ a, n ∈ Z : d = 2n2+2n+2
a2 .

Proof The first assertion follows from Lemma 1.4.
To prove (ii), one has to distinguish between the two cases d ≡ 0 (6) and d ≡

2 (6). Assume first that (∗∗′)0 holds. Then Ld = A2 ⊕ Z vd , which contains the
isotropic vector e ∈ U(n) ⊂ Ld . Writing e = w0 + a vd for some w0 ∈ A2 and
a ∈ Z, one has (w0)

2 = a2d/3. Hence, a2d/6 satisfies (3) and, therefore, d/2 does.
The latter then yields the existence of some w ∈ A2 with (w)2 = d . Assume now
we are in case (∗∗′)2, then the standard basis vector e ∈ U ⊂ Ld itself might not
be contained in A2 ⊕Z vd , but 3 e is and replacing e by 3 e and (1/3) by 3, one can
argue as before.

Conversely, if d/2 satisfies (3), then we can pick w ∈ A2 with (w)2 = d/3 for
d ≡ 0 (6) and with (w)2 = 3 d for d ≡ 2 (6). Then e := w + vd is isotropic.
Furthermore, there exists w′ ∈ A2 with m := (e.w′) = (w.w′) �= 0. Then f :=
mw′ − ((w′)2/2) e satisfies (f )2 = 0 and (e.f ) = (e.w′)2 =: n, which yields an
embedding U(n) �

� ��A2 ⊕ Z vd ⊂ Ld proving (∗∗′).
Turning to (iii) and using the notation in (ii), observe that in case (∗∗)0, which

implies (∗∗′)0, the class w0 has to be primitive. Indeed, if w0 = p w1 for some
prime p, then p | a or p | d/3. On the other hand, writing f = w′0+a′ vd yields the
contradiction 1 = (e.f ) = p (w1.w

′
0)+ aa′d/3 ≡ 0 (p). Hence, a2d/6 satisfies (4)

and, therefore, d/2 does, i.e. there exists a primitive w ∈ A2 with (w)2 = d/2. The
argument for (∗∗)2 is similar: If e = w0 + a vd , one argues as before. If not, then
3 e = w0 + a vd and if w0 = pw1, then p �= 3. All other primes are excluded as
before.

For the converse in this situation, we use the arguments above and pick a
primitive w ∈ A2 with (w)2 = d/3 or = 3d , respectively. As AA2 � Z/3Z,
either (w.A2) = Z or = 3Z. If (w)2 = d/3, then the former holds (because
32

� d) and, therefore, w′ above can be chosen such that m = 1. Hence, there
exists U � � ��Ld . If (w.A2) = 3Z, so in particular (w)2 = 3 d and d ≡ 2 (6), then
the class e := w±vd is of the form e = 3 e′ with e′ ∈ Ld . Therefore, the two classes
e′ and f ′ := w′ − ((w′)2/2) e′, where w′ ∈ A2 is chosen such that (w.w′) = 3,
define an embeddingU � � ��Ld .
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As we will not use the presentation of d as (2n2+2n+2)/a and (2n2+2n+2)/a2,
respectively, we leave the proof of the other equivalences to the reader, see [12, Prop.
6.1.3] and [1, Sec. 3]. ��
The following table lists the first special discriminants, highlighting the difference
between the four conditions.

(∗∗∗) 14 26 38 42

(∗∗) 14 26 38 42

(∗∗′) 8 14 18 24 26 32 38 42

(∗) 8 12 14 18 20 24 26 30 32 36 38 42

(∗∗∗) 62

(∗∗) 62 74 78

(∗∗′) 50 62 68 74 78

(∗) 44 48 50 54 56 60 62 66 68 72 74 78

1.3 In the theory of K3 surfaces, there are good reasons to pass from the K3 lattice
 � H 2(S,Z) to the Mukai lattice ˜ � ˜H(S,Z) � H 2(S,Z) ⊕ U4, see [16, Ch.
16] for a survey and references. A similar extension of lattices, though slightly more
technical due to the non-triviality of the canonical bundle, turns out to be useful for
cubics and their comparison with K3 surfaces.

We have already constructed and fixed an isomorphism � � E ⊕ U1 ⊕ U2 ⊕
A2(−1) � A⊥2 , where A2(−1) ⊕ A2

� � ��U3 ⊕ U4. On the cubic side, one also
finds a natural sublattice isomorphic to U3⊕U4, namelyH ∗�=4(X,Z). However, the
distinguished A2(−1) ⊂ � sits in H 4(X,Z), so this has to be modified. Moreover,
we will embed A2 into rational cohomologyH ∗(X,Q) and the intersection product
on H ∗(X,Q) is modified by more than a mere sign.

Definition 1.14 The Mukai pairing on H ∗(X,Q) is defined as

(α.α′) := −
∫

e
c1(X)

2 · α∗ · α′. (5)

Here, (α0 + α2 + α4 + α6 + α8)
∗ := α0 − α2 + α4 − α6 + α8 and

e
c1(X)

2 = e 3h
2 = 1+ 3

2
h+ 9

8
h2 + 27

48
h3 + 81

384
h4.

Warning Unlike the Mukai pairing for K3 surfaces, the pairing (5) is not symmetric.

andreas.hochenegger@unimi.it



176 D. Huybrechts

Definition 1.15 The Mukai vector of a coherent sheaf E ∈ Coh(X), or a complex
E ∈ Db(X), or simply a class E ∈ Ktop(X) is defined as

v(E) := ch(E) ·√td(X).

One easily computes

√

td(X) = 1+ 3

4
h+ 11

32
h2 + 15

128
h3 + 121

6144
h4.

Using the general fact
√

td
∗ = e− c1(X)

2 · √td and the Grothendieck–Riemann–Roch
formula, one expresses the Euler–Poincaré pairing of two coherent sheaves as

χ(E,E′) = −(v(E).v(E′)). (6)

Note that the left hand side is not symmetric, as ωX is not trivial. This confirms the
observation that (5) is not symmetric.

Example 1.16 For our purposes the following classes are of importance:

w0 := v(OX) =
√

td(X), w1 := v(OX(1)) = eh ·
√

td(X),

and w2 := v(OX(2)) = e2h ·√td(X).

In a sense to be made more precise, these classes are responsible for ( . ) not being
symmetric. Explicitly, they are

w0 = 1+ 3

4
h+ 11

32
h2+ 15

128
h3+ 121

6144
h4, w1 = 1+ 7

4
h+ 51

32
h2+ 385

384
h3+ 2921

6144
h4,

and w2 = 1+ 11

4
h+ 132

32
h2 + 1397

384
h3 + 16025

6144
h4.

In addition to the classes w0, w1, w2, one also needs the following ones

v(λ1) := 3+ 5

4
h− 7

32
h2 − 77

384
h3 + 41

2048
h4.

v(λ2) := −3− 1

4
h+ 15

32
h2 + 1

384
h3 − 153

2048
h4.

Remark 1.17 The notation suggests that the v(λi ), i = 1, 2, are Mukai vectors
of some natural (complexes of) sheaves. This is almost true, as we explain next.
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Consider an arbitrary line L ⊂ X and the two natural sheaves OL(i), i = 1, 2, on
X. Their Mukai vectors are

ui := v(OL(i)) =
{

1
3h

3 + 5
12h

4 if i = 1
1
3h

3 + 9
12h

4 if i = 2.

Under the right orthogonal projection H ∗(X,Q) �� {w0, w1, w2}⊥ they are
mapped to λi . Explicitly,

v(λ1) = u1 −w1 + 4w0 and v(λ2) = u2 −w2 + 4w1 − 6w0. (7)

Here, one uses (ui.uj ) = 0 for all i, j and

(wi.wj ) = χ(OX(i),OX(j)) = χ(X,OX(j − i)),
(wi.uj ) = χ(OX(i),OL(j)) = χ(P1,OP1(j − i)),
(ui, wj ) = χ(OL(i),OX(j)) = χ(P1,OP1(i − j − 3)),

Lemma 1.18 If H ∗(X,Q) is considered with the negative Mukai pairing, then

A2
� � ��H ∗(X,Q), λi � �� v(λi )

defines an isometric embedding. Furthermore,

(i) v(λ1), v(λ2) ∈ {w0, w1, w2}⊥.
(ii) w0, w1, w2, v(λ1), v(λ2) ∈ Q[h] are linearly independent.

(iii) {w0, w1, w2, v(λ1), v(λ2)}⊥ = H 4(X,Q)pr = ⊥{w0, w1, w2, v(λ1), v(λ2)},
on which theMukai pairing coincides with the intersection product (up to sign).

(iv) The Mukai pairing ( . ) is symmetric on the right orthogonal complement

{w0, w1, w2}⊥ ⊂ H ∗(X,Q).

Proof The first assertion can be verified by a computation or using (7). Similarly,
(i) follows from the observation that v(λi) is the orthogonal projection of ui and (ii)
is again proven by a computation. Finally, (ii) implies (iii) and (iv) can be deduced
from (iii). ��
Corollary 1.19 The lattices A⊥2 � � � H 4(X,Z)pr ⊂ H ∗(X,Q) and A2 �
Z v(λ1) ⊕ Z v(λ2) ⊂ H ∗(X,Q) are orthogonal with respect to the Mukai
pairing (5). The induced embedding of their direct sum A⊥2 ⊕A2 extends to

A⊥2 ⊕ A2 ⊂ ˜ 
� � ��H ∗(X,Q). (8)

A more conceptual understanding of these calculations is provided by the
discussion in [2]. In particular, cohomology with rational coefficients H ∗(X,Q)
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is replaced by integral topological K-theory. Denote by Ktop(X) the topological K-
theory of all complex vector bundles. Traditionally, the Chern character is used to
identify Ktop(X) ⊗ Q with H ∗(X,Q) = H 2∗(X,Q). For our purposes the Mukai
vector is better suited

v : Ktop(X)
� � ��Ktop(X)⊗Q

∼
��H ∗(X,Q).

Note that the torsion freeness of Ktop(X) follows from the torsion freeness of
H ∗(X,Z) and the Atiyah–Hirzebruch spectral sequence. ThenKtop(X) is equipped
with a non-degenerate but non-symmetric linear form with values in Q. Due to (6), it
takes values in Z on the image of the highly non-injective map K(X) ��Ktop(X).
Clearly, the classes [OX(i)], i = 0, 1, 2, and [OL(i)], i = 1, 2, are all contained in
the image. We shall be interested in the right orthogonal complement of the former
three classes and introduce the notation:

K ′top(X) := { [OX], [OX(1)], [OX(2)] }⊥ ⊂ Ktop(X).

Proposition 1.20 (Addington–Thomas) The restriction of the Mukai pairing
( . ) = −χ( , ) to K ′top(X) is symmetric and integral Moreover, as abstract lattices

˜ � K ′top(X).

Proof Note that v : K ′top(X) ⊗ Q
∼

�� {w0, w1, w2}⊥. Hence, Lemma 1.18 implies
the first assertion. The original proof [2] of the second assertion uses derived
categories. Here is a sketch of a more direct, purely topological argument. Consider
the right orthogonal projection p : Ktop(X) �� ��K ′top(X). It really is defined overZ,

as (wi)2 = 1. Analogously to (7), one has p[OL(1)] = [OL(1)]−[OX(1)]+4[OX]
and p[OL(2)] = [OL(2)]− [OX(2)]+4[OX(1)]−6[OX]. Hence, λi

� �� p[OL(i)]
defines an isometric embeddingA2

� � ��K ′top(X).

First, H 4(X,Z)pr ⊂ H ∗(X,Q) is contained in v(K ′top(X)). Indeed, H 4(X,Z)pr
is spanned by classes of all vanishing spheres and those lift to Ktop(X). After fixing
an isometryE⊕U⊕2⊕A2(−1) � A⊥2 � � � H 4(X,Z)pr ⊂ K ′top(X), this yields an
isometric embedding�⊕A2

� � ��K ′top(X) and allows one to viewμ1, μ2 ∈ A2(−1)
as classes in K ′top(X).

Second, one needs to show that the class (1/3)(μ1−μ2−λ1+λ2) ∈ (A2(−1)⊕
A2)⊗Q ⊂ Ktop(X)⊗Q is integral, i.e. contained in Ktop(X). This presumably can
be achieved algebraically on some particular cubic fourfold.2 Hence, the embedding
in step one extends to an isometric embedding ˜ 

� � ��K ′top(X) of finite index. The
unimodularity of ˜ then implies the second assertion. ��

2This mysterious class would need to satisfy the two equations (λ1.α) = −1 and (λ2.α) = 1.
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1.4 We now endow the various lattices considered above with natural Hodge
structures. Let us first briefly recall the well known theory for K3 surfaces, see [16,
Ch. 16] for further details and references.

For any complex K3 surface S its second cohomology H 2(S,Z), which as a
lattice is isomorphic to  , comes with a natural Hodge structure of weight two
given by the (2, 0)-part H 2,0(S). The full Hodge structure is then determined by
additionally requiringH 1,1(S) ⊥ H 2,0(S) with respect to the intersection pairing.

The global Torelli theorem for complex K3 surfaces asserts that two K3 surfaces
S and S′ are isomorphic if and only if there exists a Hodge isometry H 2(S,Z) �
H 2(S′,Z), i.e. an isomorphism of integral Hodge structures that is compatible with
the intersection pairing:

S � S′ ⇔ ∃H 2(S,Z) � H 2(S′,Z) Hodge isometry.

Let (S, L) be a polarized K3 surface. Then the primitive cohomology
H 2(S,Z)L−pr ⊂ H 2(S,Z) is endowed with the induced structure. Its (2, 0)-part
is again H 2,0(S) and its (1, 1)-part is the primitive part of H 1,1(S), i.e. the kernel
of (L. ) : H 1,1(S) ��C. The polarized version of the global Torelli theorem is the
the statement that two polarized K3 surfaces (S, L) and (S′, L′) are isomorphic
if and only if there exists a Hodge isometry H 2(S,Z) � H 2(S′,Z) inducing
H 2(S,Z)L−pr � H 2(S′,Z)L−pr:

(S, L) � (S′, L)⇔ ∃H 2(S;Z) � H 2(S′,Z), L � ��L′, Hodge isometry

The result will be stated again in moduli theoretic terms in Theorem 2.9.

Warning A Hodge isometry H 2(S,Z)L−pr � H 2(S′,Z)L−pr does not necessarily
extend to a Hodge isometry between the full cohomology. Hence, in general, the
existence of a Hodge isometry between the primitive Hodge structures of two
polarized K3 surfaces does not imply that (S, L) and (S′, L′) are isomorphic. In
fact, even the unpolarized K3 surfaces S and S′ may be non-isomorphic.

Next comes the Mukai Hodge structure ˜H(S,Z). The underlying lattice is
H ∗(S,Z) with the sign change in U4 = (H 0 ⊕ H 4)(S,Z). The Hodge structure
of weight two is again given by the (2, 0)-part being ˜H 2,0(S) := H 2,0(S) and the
condition that ˜H 1,1(S) ⊥ H 2,0(S) with respect to the Mukai pairing. In particular,
U � U4 = (H 0 ⊕ H 4)(S,Z) is contained in ˜H 1,1(S,Z). The derived global
Torelli theorem is the statement that for two projective K3 surfaces S and S′ there
exists an exact, C-linear equivalence Db(S) � Db(S′) between their bounded
derived categories of coherent sheaves if and only of there exists a Hodge isometry
˜H(S,Z) � ˜H(S′,Z):

Db(S) � Db(S′)⇔ ∃ ˜H(S,Z) � ˜H(S′,Z) Hodge isometry.
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A twisted K3 surface (S, α) consists of a K3 surface S together with a Brauer
class α ∈ Br(S) � H 2(S,O∗S) (we work in the analytic topology). Choosing a lift
B ∈ H 2(S,Q) of α under the natural morphismH 2(S,Q) �� Br(S) induced by the
exponential sequence allows one to introduce a natural Hodge structure ˜H(S, α,Z)

of weight two associated with (S, α). As a lattice, this is just ˜H(S,Z), but the (2, 0)-
part is now given by ˜H 2,0(S, α) := C (σ + σ ∧ B), where 0 �= σ ∈ H 2,0(S). This
defines a Hodge structure by requiring, as before, that ˜H 1,1(S, α) ⊥ ˜H 2,0(S, α)

with respect to the Mukai pairing. Although the definition depends on the choice of
B, the Hodge structures induced by two different lifts B and B ′ of the same Brauer
class α are Hodge isometric albeit not canonically, see [21].

The twisted version of the derived global Torelli theorem is the statement that the
bounded derived categories of twisted coherent sheaves on (S, α) and (S′, α′) are
equivalent if and only if there exists a Hodge isometry ˜H(S, α,Z) � ˜H(S′, α′,Z)
preserving the natural orientation of the four positive directions, cf. [16, Ch. 16.4]
and [30]:

Db(S, α) � Db(S′, α′)⇔ ∃ ˜H(S, α,Z) � ˜H(S′, α′,Z) oriented Hodge isometry.

Next consider H 4(X,Z) and H 4(X,Z)pr of a smooth cubic fourfold X. These are
Hodge structures of weight four determined by the one-dimensional H 3,1(X) and
the condition that H 3,1(X) ⊥ H 2,2(X) with respect to the intersection product.

The global Torelli theorem for smooth cubic fourfolds, which we will state again
as Theorem 2.12 in moduli theoretic terms, is the statement that two smooth cubic
fourfolds X and X′ are isomorphic (as abstract complex varieties) if and only if
there exists a Hodge isometry H 4(X,Z)pr � H 4(X′,Z)pr:

X � X′ ⇔ ∃H 4(X,Z)pr � H 4(X′,Z)pr Hodge isometry.

Note that any such Hodge isometry can be extended to a Hodge isometry
H 4(X,Z) � H 4(X′,Z) that maps h2

X to ±h2
X′ . The situation here is easier

compared to the case of polarized K3 surfaces as the discriminant of H 4(X,Z)pr is
just Z/3Z.3

To relate H 4(X,Z) of a cubic fourfolds to K3 surfaces one has to change the
sign of the intersection product, so that as abstract lattices H 4(X,Z) � �̄ and
H 4(X,Z)pr � � (with an implicit sign change), and Tate shift the Hodge structure
to obtain H 4(X,Z)(1) and H 4(X,Z)pr(1), which are now Hodge structures of
weight two.

Definition 1.21 The integral Hodge structure ˜H(X,Z) of K3 type associated with
a smooth cubic fourfoldX is the lattice

˜H(X,Z) := K ′top(X)

3We will encounter yet another Torelli theorem in Sect. 3.3.
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with the Hodge structure of weight two given by ˜H 2,0(X) := v−1(H 3,1(X)) and the
requirement that ˜H 1,1(X) and ˜H 2,0(X) are orthogonal with respect to the Mukai
pairing on Ktop(X).

The Mukai vectorKtop(X)⊗Q
∼

��H ∗(X,Q) induces an isometry

˜H(X,Z) = K ′top(X) � ˜ ⊂ H ∗(X,Q)

with ˜ ⊂ H ∗(X,Q) provided by (8). Observe that there is a natural isometric
inclusion of Hodge structures

H 4(X,Z)pr(1) ⊂ ˜H(X,Z).

Moreover, the sublattice A2 is algebraic, i.e. A2 ⊂ ˜H 1,1(X,Z), and its orthogonal
Hodge structure is A⊥2 � H 4(X,Z)pr(1). Also note that according to Remark 1.1
λ⊥1 ⊂ ˜H(X,Z) is a sub Hodge structure with underlying lattice isomorphic to  ⊕
Z(−2).

Remark 1.22 Once the Kuznetsov category AX ⊂ Db(X) is introduced, one also
writes ˜H(AX,Z) = ˜H(X,Z). The notation ˜H(X,Z) is analogous to the notation
˜H(S,Z) for K3 surfaces and the Hodge structure plays a similar role. In fact, as a
consequence of the above discussion we know that as lattices ˜H(X,Z) � ˜H(S,Z)

and the analogy goes further: For a K3 surface, the algebraic part naturally contains
a hyperbolic plane:

U � (H 0 ⊕H 4)(S,Z)
� � �� ˜H 1,1(S,Z).

Similarly, for a smooth cubic fourfold the algebraic part naturally contains a copy
of A2:

v : A2 � Zp[OL(1)] ⊕ Zp[OL(2)] � � �� ˜H 1,1(X,Z).

Here, p : Ktop(X) ��K ′top(X) is the projection as in the proof of Proposition 1.20,
so the composition maps λ � �� p[OL(i)] � �� v(λi ). Their respective orthogonal
complements are

H 2(S,Z) = U⊥ � � �� ˜H(S,Z) and H 4(X,Z)pr(1) = A⊥2 � � �� ˜H(X,Z),

in terms of which the global Torelli theorem is formulated in both instances. Also,
e4 − f4 = (1, 0,−1) ∈ ˜H 1,1(S,Z) and v(λ1) ∈ ˜H 1,1(X,Z) are both algebraic
classes satisfying (e4 − f4)

2 = 2 = (v(λ1))
2. Their orthogonal complements are

isometric.
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Definition 1.23 Let (S, L) be a polarized K3 surface and X a smooth cubic
fourfold.

(i) We say (S, L) and X are associated, (S, L) ∼ X, if there exists an isometric
embedding of Hodge structures

H 2(S,Z)L−pr
� � ��H 4(X,Z)pr(1). (9)

(ii) We say S and X are associated, S ∼ X, if there exists a Hodge isometry

˜H(S,Z) � ˜H(X,Z).

(iii) For α ∈ Br(S) we say that the twisted K3 surface (S, α) and X are associated,
(S, α) ∼ X, if there exists a Hodge isometry

˜H(S, α,Z) � ˜H(X,Z).

First observe the immediate implication:

(S, L) ∼ X ⇒ S ∼ X.

Indeed, any isometric embedding (9) can be extended to an isometry ˜H(S,Z) �
˜H(X,Z). This follows from the existence of the hyperbolic plane U ⊂
H 2(S,Z)⊥L−pr, cf. [16, Rem. 14.1.13].

As an aside, observe that a K3 surface S that is associated with a cubic
fourfold in any sense is necessarily projective. Indeed, if for example S ∼ X, then
˜H 1,1(S,Z) � ˜H 1,1(X,Z) contains the positive planeA2 and, therefore,H 1,1(S,Z)

contains at least one class of positive square.
The key to link S ∼ X, (S, L), and (S, α) ∼ X to the properties (∗∗) and (∗∗′)

is the following result in [2] generalized to the twisted case in [17].

Proposition 1.24 (Addington–Thomas, Huybrechts) Assume X is a smooth
cubic fourfold.

(i) There exists a K3 surface S with S ∼ X if and only if there exists a (primitive)
embedding U � � �� ˜H 1,1(X,Z).

(ii) There exists a twisted K3 surface (S, α) with (S, α) ∼ X if and only if there
exists an embedding U(n) �

� �� ˜H 1,1(X,Z) for some n �= 0.

Proof Any Hodge isometry ˜H(S,Z) � ˜H(X,Z) yields a hyperbolic plane U �
(H 0 ⊕H 4)(S,Z) ⊂ ˜H 1,1(S,Z) � ˜H 1,1(X,Z). Conversely, if U ⊂ ˜H 1,1(X,Z) ⊂
˜H(X,Z), then as a lattice U⊥ �  . Moreover, the Hodge structure of ˜H(X,Z)

induces a Hodge structure on U⊥ �  which due to the surjectivity of the period
map [16, Thm. 7.4.1] is Hodge isometric to H 2(S,Z) for some K3 surface S.
However, as before, U⊥ � H 2(S,Z) extends to ˜H(X,Z) � ˜H(S,Z). This proves
(i).
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For (ii), again one direction is easy, as ˜H 1,1(S,Z) contains the B-field
shift of (H 0 ⊕ H 4)(S,Z), cf. [16, Ch. 14]. More precisely, ˜H 1,1(S, α,Z) =
(exp(B) ˜H 1,1(S,Q)) ∩ ˜H(S,Z), which clearly contains the lattice (〈1, B,B2/2〉 ∩
˜H(S,Z)) ⊕ H 4(S,Z) � U(n), where n is minimal with n (1, B,B2) ∈ ˜H(S,Z).
The other direction needs a surjectivity statement for twisted K3 surfaces which is
an easy consequence of the surjectivity of the untwisted period map. ��
Proposition 1.25 Assume a smooth cubic fourfold X is associated with some K3
surface S, so S ∼ X. Then there exists a polarized K3 surface (S′, L′) ∼ X:

˜H(S,Z) � ˜H(X,Z) ⇒ H 2(S′,Z)L′−pr
� � ��H 4(X,Z)pr.

Proof Assume S ∼ X. Then there exists a Hodge isometry ˜H(S,Z) � ˜H(X,Z).
On the left hand side, one finds U � (H 0 ⊕ H 4)(S,Z) ⊂ ˜H 1,1(S,Z) and, on
the right hand side, A2 ⊂ ˜H 1,1(X,Z). Consider the saturation of the sum of both
as a lattice U + A2 ⊂ ˜H 1,1(S,Z). According to Lemma 1.2, there exists another
hyperbolic plane U ′ ⊂ U + A2 with rk(U ′ +A2) = 3. Using the surjectivity of the
period map, one finds another K3 surface S′ and a Hodge isometry

˜H(S′,Z) � ˜H(S,Z) � ˜H(X,Z) (10)

inducingH 2(S′,Z) � U ′⊥. But thenH 2(S′,Z)∩A⊥2 ⊂ H 2(S′,Z) is of corank one
and we can assume it to be of the form H 2(S′,Z)L′-pr. However, being contained
in A⊥2 implies that under (10) H 2(S′,Z)L′−pr embeds into H 4(X,Z)pr(1), which
ensures (S′, L′) ∼ X. ��
Corollary 1.26 A smooth cubic fourfold X is associated with some polarized
K3 surface, (S, L) ∼ X, if and only if there exists an isometric embedding
U
� � �� ˜H 1,1(X,Z). ��

2 Period Domains and Moduli Spaces

The comparison of the Hodge theory of K3 surfaces and cubic fourfolds is now
considered in families. Via period maps, this leads to an algebraic correspondence
between the moduli space of polarized K3 surfaces of certain degrees and the moduli
space of cubic fourfolds. The approach has been initiated by Hassett [12] and has
turned out to be very valuable indeed.

2.1 Here is a very brief reminder on some results, mostly due to Borel and Baily–
Borel, on arithmetic quotients of orthogonal type. Let (N, ( . )) be a lattice of
signature (2, n−) and set V := N ⊗R. Then the period domainDN associated with
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N is the Grassmannian of positive, oriented planesW ⊂ V , which alternatively can
be described as

DN � { x | (x)2 = 0, (x.x̄) > 0 } ⊂ P(N ⊗ C)

� O(2, n−)/(O(2)×O(n−)).

By definition, the period domain DN associated with N has the structure of a
complex manifold. This is turned into an algebraic statement by the following
fundamental result [3]. It uses the fact that under the assumption on the signature of
N the orthogonal group O(N) acts properly discontinuously on DN .

Theorem 2.1 (Baily–Borel) AssumeG ⊂ O(N) is a torsion free subgroup of finite
index. Then the quotient

G \DN
has the structure of a smooth, quasi-projective complex variety.

As G acts properly discontinuously as well, the stabilizers are finite and hence
trivial. This already proves the smoothness of the quotient G \ DN . The difficult
part of the theorem is to find a Zariski open embedding into a complex projective
variety.

Finite index subgroupsG ⊂ O(N) with torsion are relevant, too. In this situation,
one uses Minkowski’s theorem stating that the map πp : Gl(n,Z) �� Gl(n,Fp),
p ≥ 3, is injective on finite subgroups or, equivalently, that its kernel is torsion free.
Hence, for every finite index subgroupG ⊂ O(N) there exists a normal and torsion
free subgroupG0 := G ∩ Ker(πp) ⊂ G of finite index.

Corollary 2.2 Assume G ⊂ O(N) is a subgroup of finite index. Then the quotient
G \ DN has the structure of a normal, quasi-projective complex variety with finite
quotient singularities. ��

We remark that not only these arithmetic quotients, but also holomorphic maps
into them are algebraic. This is the following remarkable GAGA style result, see [7].

Theorem 2.3 (Borel) AssumeG ⊂ O(N) is a torsion free subgroup of finite index.
Then any holomorphic map ϕ : Z ��G \DN from a complex variety Z is regular.

Remark 2.4 Often, the result is applied to holomorphic maps to singular quotients
G \DN , i.e. in situations when G is not necessarily torsion free. This is covered by
the above only when Z ��G \DN is induced by a holomorphic map Z′ ��G0 \
DN , where Z′ ��Z is a finite quotient and G0 ⊂ G is a normal, torsion free
subgroup of finite index.
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2.2 We shall be interested in (at least) three different types of period domains: For
polarized K3 surfaces and for (special) smooth cubic fourfolds. These are the period
domains associated with the lattices �, �d , and d :

D ⊂ P(� ⊗ C), Dd ⊂ P(�d ⊗ C), andQd ⊂ P( d ⊗ C).

These period domains are endowed with the natural action of the corresponding
orthogonal groups O(�), O(�d), and O( d) and we will be interested in the
following quotients by distinguished finite index subgroups of those:

C := Õ(�) \D = O(�) \D,

C̃d := Õ(�,Kd) \Dd, ˜̃Cd := Õ(�, vd) \Dd, and

Md := Õ( d) \Qd.

For the first equality note that Õ(�) ⊂ O(�) is of index two, but−id ∈ O(�)\Õ(�)
acts trivially on D. The subgroup Õ( d) ⊂ O( d) is defined analogously to (2).

Due to Theorems 2.1 and 2.3, see also Remark 2.4, the induced maps
˜̃Cd �� �� C̃d �� C are regular morphisms between normal quasi-projective varieties.
The image in C shall be denoted by Cd , so that

˜̃Cd �� �� C̃d �� �� Cd ⊂ C.

The condition (∗) will in the sequel be interpreted as the condition that Cd �= ∅.
Corollary 2.5 (Hassett) Assume d satisfies (∗). The naturally induced maps

˜̃Cd �� �� C̃d �� �� Cd

are surjective, finite, and algebraic.
Furthermore, C̃d �� �� Cd is the normalization of Cd and ˜̃Cd �� C̃d is a finite

morphism between normal varieties, which is an isomorphism if d ≡ 2 (6) and of
degree two if d ≡ 0 (6).

Proof Clearly, if d satisfies (∗)2, then Õ(�,Kd) = Õ(�, vd) by Lemma 1.8 and,
therefore, ˜̃Cd � C̃d . Otherwise, ˜̃Cd �� �� C̃d is the quotient by the involution g ∈
Õ(�) defined by g = id on E ⊕ U2 ⊕ I0,3 and g = −id on U1, which indeed acts
non-trivially on ˜̃Cd .

To prove that C̃d �� �� Cd is quasi-finite, use that C̃d �� C is algebraic with
discrete and hence finite fibres. For a very general x ∈ Dd such that there does not
exist any proper primitive sublattice N ⊂ �d with x ∈ N ⊗ C, any g ∈ Õ(�) with
g(x) = x also satisfies g(�d) = �d and, therefore, g(Kd) = Kd , i.e. g ∈ Õ(�,Kd).
This proves that C̃d �� C is generically injective. Thus, once C̃d �� C is shown to
be finite, and not only quasi-finite, it is the normalization of its image Cd . We refer
to [8, 12] for more details on this point. ��
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Remark 2.6 Note that while the fibre of ˜̃Cd ��C̃d consists of at most two points,
the fibres of C̃d �� Cd may contain more points, depending on the singularity type
of the points in Cd . For fixed d , the cardinality of the fibres is bounded. However, it
is unbounded when d is allowed to grow.

Lemma 1.10 immediately yields the following result which eventually leads to
the mysterious relation between K3 surfaces and cubic fourfolds.

Corollary 2.7 Assume d satisfies (∗∗). We choose an isomorphism ε : �d
∼

�� d .

(i) If d satisfies (∗)0, then ε naturally induces an isomorphism Md � ˜̃Cd .
Therefore, Md comes with a finite morphism onto Cd generically of degree
two:

�ε : Md � ˜̃Cd
2:1

�� C̃d
norm

�� Cd ⊂ C.

(ii) If d satisfies (∗)2, then ε naturally induces an isomorphism Md � ˜̃Cd � C̃d .
Therefore,Md can be seen as the normalization of Cd ⊂ C:

ε : Md
˜̃Cd C̃d

norm Cd ⊂ C. ��
Remark 2.8 As indicated by the notation, the morphism �ε : Md

�� �� Cd ⊂ C,
which will be seen to link polarized K3 surfaces (S, L) of degree d with special
cubic fourfoldsX, depends on the choice of ε : �d ∼ �� d . There is no distinguished
choice for ε and, therefore, one should not expect to find a distinguished morphism
Md

�� Cd that can be described by a geometric procedure associating a cubic
fourfoldX to a polarized K3 surface (S, L).4

To avoid any dependance on ε, one could think of defining a morphism from the
finite quotient

πd :Md = Õ( d) \Qd �� �� M̄d := O( d) \Qd
to some meaningful quotient of C. But, as the degree of πd grows with d , there
definitely is no reasonable quotient of C that would receive all of them. However,
it seems plausible that a quotient Cd �� C̄d can be constructed that allows for a
morphism M̄d

�� �� C̄d . The derived point of view to be explained later will shed
more light on this.

2.3 We start by recalling the central theorem in the theory of K3 surfaces: the global
Torelli theorem. In the situation at hand, it is due to Pjateckiı̆-Šapiro and Šafarevič,
see [16] for details, generalizations, and references.

4I wish to thank E. Brakkee and P. Magni for discussions concerning this point.
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Consider the coarse moduli space Md of polarized K3 surfaces (S, L) with
(L)2 = d , which can be constructed as a quasi-projective variety either by (not
quite) standard GIT methods, by using the theorem below, or as a Deligne–Mumford
stack.

The period map associates with any [(S, L)] ∈ Md a point in Md . For this,
choose an isometry H 2(S,Z) �  , called a marking, that maps c1(L) to � =
e2 + (d/2)f2 and, therefore, induces an isometry H 2(S,Z)L−pr �  d . Then the
(2, 0)-part H 2,0(S) ⊂ H 2(S,C) �  ⊗ C defines a point in the period domain
Qd . The image point in the quotient Õ( d) \Qd is then independent of the choice
of any marking. This defines the period map P : Md ��Md which Hodge theory
reveals to be holomorphic. Note that both spaces,Md and Md , are quasi-projective
varieties with quotient singularities.

Theorem 2.9 (Pjateckiı̆-Šapiro and Šafarevič) The period map is an algebraic,
open embedding

P : Md � � ��Md = Õ( d) \Qd. (11)

Remark 2.10 Coming back to Remark 2.8, one might wonder how the image ofMd
under the finite quotientπd :Md

�� M̄d , can be interpreted geometrically in terms
of the polarized K3 surfaces (S, L) parametrized by Md . There is no completely
satisfactory answer to this, i.e. the image πd(Md) is not known (and should probably
not expected) to be the coarse moduli space of a nice geometric moduli functor. The
best one can say is that for (S, L) ∈ Md with ρ(S) = 1, the fibre π−1

d (πd(S,L)) can
be viewed as the set of all Fourier–Mukai partners of S, which come with a unique
polarization, cf. [13, 18].

To understand the complement of the open embedding (11), note first that any
x ∈ Qd is the period of some K3 surface S. This surface then comes with a natural
line bundle L (up to the action of the Weyl group) corresponding to � = e2 +
(d/2)f2 ∈  . Furthermore, L is ample (again, possibly after applying the Weyl
group action) if and only if there exists no δ ∈  d with (δ)2 = −2 orthogonal to
x, i.e. x ∈ Qd \⋃ δ⊥ with δ ∈ �d := �( d), the set of all (−2)-classes in  d .
Hence, the complement ofMd ⊂Md can be described as the quotient

Õ d) \ δ⊥ ⊂ Md . (12)

Note that Õ( d) acts on �d and that the quotient (12) really is a finite union. In
fact, it consists of at most two components due to the following result.5

Proposition 2.11 The complement Md \ Md consists of either one or two irre-
ducible Noether–Lefschetz divisors depending on d:

(i) If d/2 �≡ 1 (4), then the complement (12) ofMd ⊂Md is irreducible.

5Thanks to O. Debarre for pointing this out to me.
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(ii) If d/2 ≡ 1 (4), then the complement (12) ofMd ⊂Md has of two irreducible
components.

Proof This is again an application of Eichler’s criterion, see the proof of Propo-
sition 1.6. For δ ∈  d with (δ)2 = −2, one has (δ. d) = nZ with n = 1 or
n = 2. In the first case, the residue class (1/n) δ̄ ∈ A d � Z/dZ is trivial. In
the second case, (1/2) δ̄ ≡ 0 or ≡ d/2 (d) in Z/dZ. However, the second case
is only possible if d/2 ≡ 1 (4). Indeed, write δ = δ′ + δ′′ ∈ U⊥2 ⊕ U2 with
δ′′ ∈ �⊥ ∩ U2 = Z (e2 − (d/2)f2). Then (1/2) δ′ + (1/2) δ′′ + (m/2) � ∈  for
some m ∈ Z. Hence, (1/2) δ′ ∈  and, therefore,−2 = (δ)2 ≡ (δ′′)2 (8). Combine
this with (1/2) δ′′ + (m/2) � ∈ U2, which implies (δ′′)2 ≡ −m2d (8). ��
To be more explicit, one can write

Md =
{

Md \ δ⊥0 if d2 �≡ 1 (4)

Md \ (δ⊥0 ∪ δ⊥1 ) if d2 ≡ 1 (4),

where δ0, δ1 are chosen explicitly as δ0 = e1 − f1 and δ1 = 2e1 + d/2−1
2 f1 + e2 −

(d/2) f2.
2.4 We now switch to the cubic side. The moduli space M of smooth cubic
fourfolds can be constructed by means of standard GIT methods as the quotient

M = |OP5(3)|sm//PGl(6).

As in the case of K3 surfaces, mapping a smooth cubic fourfold X to its period
H 3,1(X) ⊂ H 4(X,C)pr � � ⊗ C, which is a point in the period domain D ⊂
P(� ⊗ C), defines a holomorphic map P : M �� C. In analogy to the situation for
K3 surfaces, the following global Torelli theorem has been proven [9, 20, 27, 34, 35].

Theorem 2.12 (Voisin, Looijenga, ..., Charles, Huybrechts–Rennemo, ...) The
period map is an algebraic, open embedding

P : M � � �� C = O(�) \D.

This central result is complemented by a result of Laza and Looijenga, which
can be seen as an analogue of Proposition 2.11, see [26, 27]. First note that for

d = 2 and d = 6 the lattice Kd is given by the matrices

(−3 1
1 −1

)

and

(−3 0
0 −2

)

,

respectively, see Remark 1.7. Hence, if a smooth cubic fourfold X defined a point
in C6, then H 2,2(X,Z)pr would contain a class δ with (δ)2 = 2 contradicting [34,
§4, Prop. 1]. In [12] one finds an argument using limiting mixed Hodge structures
to also exclude the case [X] ∈ C2. So,M ⊂ C \ (C2 ∪ C6).
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Theorem 2.13 (Laza, Looijenga) The period map identifies the moduli space M
of smooth cubic fourfolds with the complement of C2 ∪ C6:

P : M ∼
�� C \ (C2 ∪ C6).

To complete the picture, we state the following result. We refrain from giving a
proof, but refer to similar results in the theory of K3 surfaces [16, Prop. 6.2.9].

Proposition 2.14 The union
⋃

Cd ⊂ C of all Cd with d satisfying (∗ ∗ ∗) is
analytically dense in C. Consequently, the union of all Cd for satisfying (∗∗′) (or
(∗∗) or (∗)) is analytically dense.
Remark 2.15 On the level of moduli spaces, the theory of K3 surfaces is linked with
the theory of cubic fourfolds in terms of the morphism

�ε : Md ⊂Md
�� Cd ⊂ C,

cf. Corollary 2.7. Note that the image of a point [(S, L)] ∈ Md corresponding to
a polarized K3 surface (S, L) can a priori be contained in the boundary C \M =
C2 ∪ C6. However, unless d = 2 or d = 6, generically this is not the case and the
map defines a rational map

ε : Md M ,

which is of degree one or two.

2.5 In Sect. 1.4 we have linked Hodge theory of K3 surfaces and Hodge theory of
cubic fourfolds. We will now cast this in the framework of period maps and moduli
spaces, i.e. in terms of the maps�ε.

Proposition 2.16 A smooth cubic fourfoldX and a polarized K3 surface (S, L) are
associated, (S, L) ∼ X, in the sense of Definition 1.23 if and only if �ε[(S, L)] =
[X] for some choice of ε : �d

∼
�� d :

(S, L) ∼ X ⇔ ∃ ε : �ε[(S, L)] = [X].

Proof Assume �ε[(S, L)] = [X]. Pick an arbitrary marking H 2(S,Z)
∼

�� 

with L
� �� �. Composing the induced isometry H 2(S,Z)L−pr

∼
�� d with

ε−1 :  d
∼

�� �d ⊂ � yields a point in Dd ⊂ D. Then there exists a marking
H 4(X,Z)pr � � such that X yields the same period point in D, which thus yields
a Hodge isometric embedding H 2(S,Z)L−pr

� � ��H 4(X,Z)pr(1). Conversely,
any such Hodge isometric embedding defines a sublattice of � � H 4(X,Z)pr
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isomorphic to some v⊥ which after applying some element in O(�) becomes�d , see
Proposition 1.6. Composing with a marking of (S, L) yields the appropriate ε. ��
Corollary 2.17 Let X be a smooth cubic fourfold.

(i) For fixed d , there exists a polarized K3 surface (S, L) of degree d with X ∼
(S, L) if and only if X ∈ Cd and d satisfies (∗∗).

(ii) There exists a twisted K3 surface (S, α) with X ∼ (S, α) if and only if X ∈ Cd
for some d satisfying (∗∗′).

Proof Consider Md as the moduli space of quasi-polarized K3 surfaces (S, L), i.e.
with L only big and nef but not necessarily ample. One then has to show that when-
ever there exists a Hodge isometric embedding H 2(S,Z)L−pr

� � ��H 4(X,Z)pr(1),
then L is not orthogonal to any algebraic class δS ∈ H 2(S,Z) with (δS)2 = −2.
Indeed, in this case L would be automatically ample. However, such a class δS
would correspond to a class δ ∈ H 2,2(X,Z)pr with (δ)2 = 2, which contradicts
[X] ∈ M = C \ (C2 ∪ C6). Of course, the argument is purely Hodge theoretic and
one can easily avoid talking about quasi-polarized K3 surfaces.

To prove (ii), observe that the period of X is contained in Dd if and only if
one finds Ld

� � �� ˜H 1,1(X,Z). If d satisfies (∗∗′), then there exists U(n) �
� ��Ld

and we can conclude by Proposition 1.24. Conversely, if (S, α) ∼ X, one finds
U(n)

� � �� ˜H 1,1(S, α,Z) � ˜H 1,1(X,Z). As there also exists a positive plane
A2

� � �� ˜H 1,1(X,Z), the lattice U(n) is contained in a primitive sublattice of rank
three in H 1,1(X,Z), which is then necessarily of the form Ld for some d satisfying
(∗∗′). ��

A geometric interpretation of the condition (∗∗∗), involving the Fano variety of
linesF(X), will be explained in the next section, see Proposition 3.4. The conditions
(∗∗) and (∗∗′) will occur there again as well.

Remark 2.18 Note that a given cubic fourfold X can be associated with more than
one polarized K3 surface (S, L) and, in fact, sometimes even with infinitely many
(S, L). To start, there are the finitely many choices of ε ∈ O( d)/Õ( d), see [12,
Thm. 5.2.3]. Then, �ε is only generically injective for d satisfying (∗∗)2 and even
of degree two for (∗∗)0. And finally, X could be contained in more than one Cd . In
fact, it can happen that X ∈ Cd for infinitely many d satisfying (∗∗). To be more
precise, depending on the degree d , there may exist non-isomorphic K3 surfaces S
and S′ endowed with polarizations L and L′, respectively, such there nevertheless
exists a Hodge isometry H 2(S,Z)L−pr � H 2(S′,Z)L′−pr. Indeed, the latter may
not extend to a Hodge isometry H 2(S,Z) � H 2(S′,Z), see Sect. 1.4.

The situation is not quite as bad as it sounds. Although there may be infinitely
many polarized K3 surfaces (S, L) associated with one X, only finitely many
isomorphism types of unpolarized K3 surfaces S will be involved.

Remark 2.19 In [8] a geometric interpretation for the generic fibre of the ratio-
nal map �ε : Md �� Cd in the case d ≡ 0 (6) is described. It turns out that
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�ε[(S, L)] = [(S′, L′)] implies that S′ is isomorphic to M(3, L, d/6), the moduli
space of stable bundles on S with the indicated Mukai vector.

3 Fano Perspective

We come back to the Hodge structure v(λ1)
⊥ ⊂ ˜H(X,Z), see Remarks 1.1

and 1.22. To give it a geometric interpretation, we consider the Fano correspondence

F(X) L
p q

X. (13)

Here, F(X) is the Fano variety of lines contained in X, p : L �� F(X) is the
universal line, and q is the natural projection, cf. [19, Ch. 3] for details and
references. Due to work of Beauville and Donagi [5], it is known that F(X) is a four-
dimensional hyperkähler manifold deformation equivalent to the Hilbert scheme
S[2] of a K3 surface S.

3.1 The fact that F(X) is of K3[2]-type implies that H 2(F (X),Z) with the
Beauville–Bogomolov pairing is isometric to the lattice H 2(S[2],Z) �  ⊕Z(−2).
But the cohomology of the Fano variety can also be compared to ˜H(X,Z) by the
following combination of [1, 5].

Theorem 3.1 (Beauville–Donagi, Addington) The Fano correspondence (13)
induces two compatible Hodge isometries

H 4(X,Z)pr(1)
∼

�� H 2(F (X),Z)pr
⋂ ⋂

v(λ1)
⊥ ∼

�� H 2(F (X),Z)
⋂

˜H(X,Z).

On the left hand side, H 4(X,Z)pr(1) ⊂ v(λ1)
⊥ ⊂ ˜H(X,Z) is the Hodge structure

introduced earlier on the sublattice v(λ1)
⊥ � λ⊥1 �  ⊕ Z(−2). As before, the

sign of the intersection pairing on H 4(X,Z)pr is changed. On the right hand side,
H 2(F (X),Z)pr is the primitive cohomology with respect to the Plücker polarization
g ∈ H 2(F (X),Z). It is endowed with a natural quadratic form, the Beauville–
Bogomolov form on the hyperkähler fourfold F(X). We shall not attempt to prove
the result but we will define the maps that are used and indicate the main steps of
the argument.

First, it has been observed in [5] that

ϕ := p∗ ◦ q∗ : H 4(X,Z)(1) ��H 2(F (X),Z)
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maps h2 to the Plücker polarization g ∈ H 2(F (X),Z) and that for four-dimensional
cubics the map induces an isomorphism

H 4(X,Z)pr(1)
∼

��H 2(F (X),Z)pr

of Hodge structures of weight two satisfying (α)2 = − 1
6

∫

F(X)
ϕ(α)2 · g2, cf. [19,

Sec. 3.4] for statements and further references.
Now, as v(λ1)

⊥ ⊂ ˜H(X,Z) ⊂ H ∗(X,Q) is not concentrated in degree four, we
need to extend the above to the full cohomology. As was observed by Mukai, the
natural map p∗ ◦ q∗ needs to be modified to enjoy certain functoriality properties.
More precisely, it is known that the following diagram commutes

Ktop(X)

v

p∗◦q∗
Ktop(F (X))

v

H ∗(X,Q) H ∗(F (X),Q). (14)

Here, the top and bottom rows are given by E � �� p∗(q∗E) and α � �� p∗(q∗α ·
v(i∗OL)), respectively, where i : L ⊂ X × F(X) is the inclusion, see [14, Ch. 5].
The Mukai vector i∗OL can be computed by means of the Grothendieck–Riemann–
Roch formula as

v(i∗OL) = i∗(td(p)) ·
(

td(X)−1 � td(F (X))
)1/2

.

From here it is a straightforward computation to show that the commutativity of the
diagram (14) implies the commutative diagram

Ktop(X)

ch

p∗◦q∗
Ktop(F (X))

ch

H ∗(X,Q)
ϕ

H ∗(F (X),Q),

where now the bottom row is defined as ϕ : α � �� p∗(q∗α · td(p)). In particular, for
any class γ ∈ Ktop(X) one finds c1(p∗(q∗(γ ))) = {p∗(q∗ch(γ ) · td(p))}2.

The restriction of c1 ◦ p∗ ◦ q∗ : Ktop(X) ��H 2(F (X),Z) to the primitive
part A⊥2 ⊂ K ′top(X), i.e. the part mapping to H 4(X,Q)pr under ch (or,
equivalently, under the Mukai vector v), factors over the original isometry

H 4(X,Z)pr(1)
∼

��H 2(F (X),Z)pr. As observed in Remark 1.1, λ⊥1 ⊂ K ′top(X)

contains A⊥2 ⊕ Z (λ1 + 2λ2) as a sublattice of index three. A computation reveals
where the second summand is mapped to, cf. [1].
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Lemma 3.2 (Addington) Under the map c1 ◦p∗ ◦ q∗ : Ktop(X) ��H 2(F (X),Z)

the class λ1 + 2λ2 is mapped to the Plücker polarization g ∈ H 2(F (X),Z).
Furthermore, (λ1 + 2λ2)

2 = (g)2 = 6, where the second square is with respect
to the Beauville–Bogomolov form. ��

Therefore, there exists an isometric embedding of the sublattice

A⊥2 ⊕ Z (λ1 + 2λ2)
� � ��H 2(F (X),Z), (15)

whereA⊥2 ⊕Z (λ1+2λ2) is a sublattice of λ⊥1 of index three and discriminant disc =
18. On the other hand, as abstract lattices H 2(F (X),Z) � λ⊥1 . Using this, one then

proves that (15) indeed extends to an isometry λ⊥1
∼

��H 2(F (X),Z). Composition

with λ⊥1 � v(λ1)
⊥ yields the Hodge isometry v(λ1)

⊥ ∼
��H 2(F (X),Z). Here,

the orthogonal complements λ⊥1 and v(λ1)
⊥ are taken in K ′top(X) and ˜H(X,Z),

respectively.

3.2 In the sequel, we will think of H 2(F (X),Z) as a natural sub Hodge structure
of ˜H(X,Z):

H 2(F (X),Z) ⊂ ˜H(X,Z),

orthogonal to the distinguished class v(λ1) ∈ ˜H 1,1(X,Z). This should be thought
of as analogous to the inclusion

H 2(S[2],Z) ⊂ ˜H(S,Z),

which is orthogonal to v(Ix ) = (1, 0,−1) ∈ (H 0⊕H 4)(S,Z) ⊂ ˜H 1,1(S,Z). Note
that both vectors, v(λ1) and v(Ix), are of square two, which immediately leads to
the following observation.

Lemma 3.3 Let X be a smooth cubic fourfold and S a K3 surface. Then every

Hodge isometry H 2(F (X),Z)
∼

��H 2(S[2],Z) extends to a Hodge isometry

˜H(X,Z)
∼

�� ˜H(S,Z) mapping v(λ1) to v(Ix). ��
The result should be compared to the observation made earlier that every Hodge
isometry H 4(X,Z)pr

∼ ��H 4(X′,Z)pr extends to H 4(X,Z) ∼ ��H 4(X′,Z) with
h2
X
� �� ± h2

X′ .
This enables one to prove the Fano analogue of Proposition 1.24, see [1, 12, 19].

Proposition 3.4 (Addington, Hassett, Huybrechts) Assume X is a smooth cubic
fourfold.

(i) There exist a K3 surface S and a Hodge isometry

H 2(S[2],Z) � H 2(F (X),Z) (16)
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if and only if there exists an embedding U � � �� ˜H 1,1(X,Z) with v(λ1) con-
tained in its image.

(ii) There exist a K3 surface S and a Hodge isometry

H 2(MS(v),Z) � H 2(F (X),Z) (17)

for some smooth, projective, four-dimensional moduli space MS(v) of stable
sheaves on S if and only if there exists a K3 surface S with S ∼ X if and only
if there exists an embedding U � � �� ˜H 1,1(X,Z).

(iii) There exist a twisted K3 surface (S, α) and a Hodge isometry

H 2(MS,α(v),Z) � H 2(F (X),Z) (18)

for some smooth, projective, four-dimensionalmoduli spaceMS,α(v) of twisted
stable sheaves on S if and only if there exists a twisted K3 surface (S, α) with
(S, α) ∼ X if and only if there exists an embedding U(n) �

� �� ˜H 1,1(X,Z) for
some n �= 0.

Proof Any Hodge isometry (16) extends to a Hodge isometry ˜H(S,Z) �
H 2(F (X),Z) with (1, 0,−1) � �� v(λ1). As (1, 0,−1) ∈ U � (H 0⊕H 4)(S,Z) ⊂
˜H 1,1(S,Z), this proves one direction in (i). For the other direction use the arguments
in the proof of Proposition 1.24 to show that there exists a K3 surface S with S ∼ X
such that the given U � � �� ˜H 1,1(X,Z) corresponds to (H 0 ⊕H 4)(S,Z).

For (ii) and (iii) recall that there exists a Hodge isometry H 2(MS,α(v),Z) �
v⊥ ⊂ ˜H(S, α,Z), cf. [16, Ch. 10] for references in the untwisted case and [21] for
the twisted case. Then, if a Hodge isometry ˜H(S, α,Z) � ˜H(X,Z) is given, let
v ∈ ˜H 1,1(S, α,Z) be the vector that is mapped to v(λ1). Then (17) and (18) hold.
The remaining assertions follow from Proposition 1.24. ��

This leads to the following analogue of Corollary 2.17.

Corollary 3.5 For a smooth cubic fourfold X the condition (i) (or (ii) or (iii)) is
equivalent to X ∈ Cd for some d satisfying (∗∗∗) (or (∗∗) or (∗∗′), respectively).

��
So, at one glance:

H 2(S[2],Z) � H 2(F (X),Z) ⇔ (∗∗∗),
H 2(MS(v),Z) � H 2(F (X),Z) ⇔ (∗∗),
H 2(MS,α(v),Z) � H 2(F (X),Z) ⇔ (∗∗′).

3.3 The purely Hodge and lattice theoretic considerations above can now be
combined with the global Torelli theorem for hyperkähler fourfolds due to Verbitsky
[33] and Markman [29], see also [15]: Two hyperkähler fourfolds Y and Y ′ of
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K3[2]-type are birational if and only if there exists a Hodge isometry H 2(Y,Z) �
H 2(Y ′,Z):

Y ∼ Y ′ ⇔ H 2(Y,Z) � H 2(Y ′,Z).

This then implies the following reformulation of the above results:

S[2] ∼ F(X)⇔ (∗∗∗), MS(v) ∼ F(X)⇔ (∗∗)

and MS,α(v) ∼ F(X)⇔ (∗∗′).

More precisely, one has:

Corollary 3.6 Let X be a smooth cubic fourfold and F(X) its Fano variety of
lines.

(i) There exists a K3 surface S such that F(X) is birational to S[2] if and only if
X ∈ Cd for some d satisfying (∗∗∗).

(ii) There exists a K3 surface S such that F(X) is birational to a certain smooth,
projective moduli spaceMS(v) of stable sheaves on S if and only if X ∈ Cd for
some d satisfying (∗∗).

(iii) There exists a twisted K3 surface (S, α) such that F(X) is birational to a
certain smooth, projective moduli spaceMS,α(v) of twisted stable sheaves on
S if and only if X ∈ Cd for some d satisfying (∗∗′). ��

Remark 3.7 For d ≡ 0 (6) and very general (S, L) ∈ Md , i.e. Pic(S) �
ZL, there exists exactly one other polarized K3 surface (S′, L′) ∈ Md with
�ε[(S, L)] = �ε[(S′, L′)] =: [X]. In particular, the Fano variety F(X) of lines
in the corresponding cubic fourfold X is a natural four-dimensional hyperkähler
manifold associated with (S, L) and (S′, L′). Other hyperkähler manifolds that
come naturally with S and S′ would be S[2] and S′[2]. From Corollary 3.6 we know
that for d not satisfying (∗∗∗) the Hilbert scheme S[2] and the Fano variety F(X)
are not isomorphic. It was recently shown in [8] that also S[2] and S′[2] need not be
isomorphic (nor birational). More precisely, they are isomorphc if and only if the
Pell equation 3p2 − (d/6)q2 = −1 has an integral solution.

4 The Hodge Theory of Kuznetsov’s Category

In this short last section we touch upon the Hodge theoretic aspects of Kuznetsov’s
triangulated category AX naturally associated with every smooth cubic fourfold
X ⊂ P

5. For the more categorical aspects we refer to the original [24, 25] or the
lecture notes in this volume [28]. The Hodge theoretic investigation of AX was
initiated by Addington and Thomas [2], the algebraic part of it played a crucial role
already in [25].
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4.1 We consider the bounded derived category Db(X) = Db(Coh(X)) of
the abelian category Coh(X) of coherent sheaves on X. The three line
bundles OX,OX(1),OX(2) ∈ Db(X) form an exceptional collection, i.e.
Hom(OX(i),O(j)[∗]) = 0 for i > j and C[0] for i = j . According to a result
of Bondal and Orlov [6], the derived category Db(X) determines X uniquely.
More precisely, if there exists an exact, linear equivalence Db(X) � Db(X′) for two
smooth cubic fourfoldsX,X′ ⊂ P

5, thenX � X′. This could be called a categorical
global Torelli theorem, although the existence of such an equivalence is almost as
hard as writing down an explicit isomorphism between them. However, it turns out
that Db(X) contains a natural subcategory which is a much subtler invariant.

Definition 4.1 For a smooth cubic fourfoldX ⊂ P
5, we denote by

AX := 〈OX,OX(1),OX(2)〉⊥ ⊂ Db(X)

the full triangulated subcategory of all objects F ∈ Db(X) right orthogonal to
OX,OX(1), and OX(2), i.e. such that Hom(OX(i), F [∗]) = 0 for i = 0, 1, 2.

Theorem 4.2 (Kuznetsov) The triangulated category AX is a Calabi–Yau cate-
gory of dimension two, i.e. F � �� F [2] defines a Serre functor. ��

In other words, for all E,F ∈ AX there exist functorial isomorphisms

Hom(E, F ) � Hom(F,E[2])∗.

Other examples of such categories are provided by Db(S) and Db(S, α) associated
with K3 surfaces S and twisted K3 surfaces (S, α). A natural question in this context
is now to determine when the Kuznetsov category AX associated with a cubic
fourfold is equivalent to the derived category Db(S) or Db(S, α) for some (twisted)
K3 surface.

4.2 The goal of [2] was to compare Hassett’s condition (∗∗) with the condition
AX � Db(S). Building upon [2], the twisted version was later dealt with in [17].

Theorem 4.3 (Addington–Thomas, Huybrechts) Let X be a smooth cubic four-
fold and (S, α) a twisted K3 surface.

(i) Any exact, linear equivalence AX � Db(S) induces a Hodge isometry
˜H(X,Z) � ˜H(S,Z). In particular,X is contained in Cd with d satisfying (∗∗).

(ii) Any exact, linear equivalence AX � Db(S, α) induces a Hodge isometry
˜H(X,Z) � ˜H(S, α,Z). In particular, X is contained in Cd with d satisfying
(∗∗′).

In fact, it is also known that for very general X ∈ Cd with d satisfying (∗∗)
or (∗∗′), respectively, the converse in (i) and (ii) hold true. The proof, however,
requires a fair amount of deformation theory for Fourier–Mukai kernels developed
in [2, 17, 22, 32]. For non-special cubic fourfolds one has the following result.
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Proposition 4.4 (Huybrechts) Let X and X′ be smooth cubic fourfolds. Then any
Fourier–Mukai equivalence AX � AX′ induces a Hodge isometry ˜H(X,Z) �
˜H(X′,Z). The converse holds for all non-specialX and for general special ones.

The results of the forthcoming [4] complete this picture, so that eventually we
will have

AX � Db(S) ⇔ ˜H(S,Z) � ˜H(X,Z) Hodge isometry,
AX � Db(S, α) ⇔ ˜H(S, α,Z) � ˜H(X,Z) Hodge isometry,
AX � AX′ ⇔ ˜H(X,Z) � ˜H(X′,Z) Hodge isometry.
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Lectures on Non-commutative K3
Surfaces, Bridgeland Stability,
and Moduli Spaces

Emanuele Macrì and Paolo Stellari

Abstract We survey the basic theory of non-commutative K3 surfaces, with a
particular emphasis to the ones arising from cubic fourfolds. We focus on the
problem of constructing Bridgeland stability conditions on these categories and we
then investigate the geometry of the corresponding moduli spaces of stable objects.
We discuss a number of consequences related to cubic fourfolds including new
proofs of the Torelli theorem and of the integral Hodge conjecture, the extension of a
result of Addington and Thomas and various applications to hyperkähler manifolds.

These notes originated from the lecture series by the first author at the school
on Birational Geometry of Hypersurfaces, Palazzo Feltrinelli - Gargnano del Garda
(Italy), March 19–23, 2018.

1 Introduction

K3 surfaces have been extensively studied during the last decades of the previous
century. The techniques used to understand their geometry include Hodge theory,
lattice theory and homological algebra. In fact the lattice and Hodge structures
on their second cohomology groups determine completely their geometry in the
following sense:

(K3.1) Torelli Theorem: Two K3 surfaces S1 and S2 are isomorphic if and only if
there is a Hodge isometry H 2(S1,Z) ∼= H 2(S2,Z).

The result is originally due to Pijateckiı̆-S̆apiro and S̆afarevic̆ in the algebraic
case [144] and to Burns and Rapoport in the analytic case [41] (see also [61, 114]
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for other proofs). Another way to rephrase this is in terms of fibers of the period map
for K3 surfaces: the period map is generically injective. Such a map turns out to be
surjective as well. Roughly speaking this means that one can get complete control
on which weight-2 Hodge structures on the abstract lattice correspond to an actual
surface.

One can go further and construct other compact hyperkähler manifolds out of
K3 surfaces. Following Beauville [25], one could first consider Hilbert schemes
(or Douady spaces) of points on such surfaces. More generally, for a projective K3
surface S and a primitive vector v in the algebraic part of the total cohomology
H ∗(S,Z), one can construct the moduli space MH(S, v) of stable sheaves E on S
with Mukai vector v(E) := ch(E) · √td(S) = v, for the choice of an ample line
bundleH which is generic with respect to v.

(K3.2) The moduli spaceMH(S, v) is a smooth projective hyperkähler manifold of
dimension v2 + 2 which is deformation equivalent to a Hilbert scheme of
points on a K3 surface.

Such moduli spaces deform together with a polarized deformation of the K3
surface S and they yield 19-dimensional families of hyperkähler manifolds. Here
the square of v is taken with respect to the so called Mukai pairing which is defined
on the total cohomology H ∗(S,Z) of S. The above statement is the result of many
different contributions, starting with the foundational work of Mukai [125, 126],
and it is due to Huybrechts [67], O’Grady [131], and Yoshioka. The statement in
its final form is [164, Theorems 0.1 and 8.1]). It also gives a precise non-emptyness
statement: if the Mukai vector is positive, then the moduli space is non-empty if and
only if it has non-negative expected dimension.

More recently, after the works of Mukai [126] and Orlov [135], the bounded
derived categories of coherent sheaves of K3 surfaces and their autoequivalence
groups have been extensively studied. The Torelli theorem (K3.1) has a homological
counterpart:

(K3.3) Derived Torelli Theorem: Given two K3 surfaces S1 and S2, then Db(S1) ∼=
Db(S2) are isomorphic if and only if there is an isometry between the total
cohomology lattices of S1 and S2 preserving the Mukai weight-2 Hodge
structure.

The lattice and Hodge structure mentioned above will be explained in Sect. 3.4.
In the geometric setting considered in (K3.3), it might be useful to keep in mind
that the pairing coincides with the usual Euler form on the algebraic part of the
total cohomologies of S1 and S2. On the other hand, the (2, 0)-part in the Hodge
decomposition mentioned above is nothing but H 2,0(Si).

Thus the existence of an equivalence can be detected again by looking at the
Hodge and lattice structure of the total cohomology (and not just of H 2). Pushing
this further, one can observe that Db(S) carries additional structures: Bridgeland
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stability conditions. Indeed, after the works by Bridgeland [37, 38] we have the
following fact:

(K3.4) If S is a K3 surface, then the manifold parameterizing stability conditions
on Db(S) is non-empty and a connected component is a covering of a
generalized period domain.

Following the pattern for stability of sheaves, one can take a stability condition σ
and a primitive vector v as in (K3.2) such that σ is generic with respect to v. If one
considers the moduli space Mσ(Db(S), v) of σ -stable objects in Db(S) with Mukai
vector v, then by Toda [154], Bayer and Macrì [19, 20], Minamide et al. [123], we
have the analogue of (K3.4):

(K3.5) The moduli space Mσ(Db(S), v) is a smooth projective hyperkähler mani-
fold of dimension v2+2 which is deformation equivalent to a Hilbert scheme
of points on a K3 surface.

Quite surprisingly, a similar picture appears in a completely different setting
when the canonical bundle is far from being trivial: Fano varieties. The first key
example is the case of smooth cubic fourfolds.

(C.1) Torelli Theorem: Two cubic fourfolds W1 and W2 defined over C are
isomorphic if and only if there is a Hodge isometryH 4(W1,Z) ∼= H 4(W2,Z)

that preserves the square of a hyperplane class.

The result is due to Voisin [157] (other proofs were given in [48, 73, 113]).
The striking similarity with K3 surfaces is confirmed by the fact that H 4(W,Z)

carries actually a weight-2 Hodge structure of K3 type. Moreover, it was observed
by Hassett [66] that the 20-dimensional moduli space C of cubic fourfolds contain
divisors of Noether-Lefschetz type and some of them parametrize cubic fourfoldsW
with a Hodge-theoretically associated K3 surface. Roughly, this simply means that
the orthogonal inH 4(W,Z) of a rank 2 sublattice, generated by the self-intersection
H 2 of a hyperplane class and by some special surface which is not homologous to
H 2, looks like the primitive cohomology of a polarized K3 surface.

The hyperkähler geometry that one can associate to a cubic fourfold is actually
quite rich. Indeed, the Fano variety of lines in a cubic fourfold is a four-dimensional
projective hyperkähler manifold which is deformation equivalent to a Hilbert
scheme of points on a K3 surface (see [27]). More recently, it was proved by
Lehn et al. [108] that the moduli space of generalized twisted cubics inside a cubic
fourfold also gives rise to a eight-dimensional projective hyperkähler manifold
which is again deformation equivalent to a Hilbert scheme of points on a K3
surface. All these constructions work in families and thus provide 20-dimensional
locally complete families of four or eight dimensional polarized smooth projective
hyperkähler manifolds.

From the homological point of view, it was observed by Kuznetsov [95] that the
derived category Db(W) of a cubic fourfoldW contains an admissible subcategory
Ku(W) which is the right orthogonal of the category generated by the three line
bundles OW , OW(H) and OW(2H). We will refer to Ku(W) as the Kuznetsov
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component of W . The category Ku(W) has the same homological properties of
Db(S), for S a K3 surface: it is an indecomposable category with Serre functor
which is the shift by 2 and the same Hochschild homology as Db(S). But, forW very
general, there cannot be a K3 surface S with an equivalence Ku(W) ∼= Db(S). This
is the reason why we should think of Kuznetsov components as non-commutative
K3 surfaces.

The study of non-commutative varieties was started more than 30 years ago.
Artin and Zhang [11] investigated the case of non-commutative projective spaces
(see also the book in preparation [163]). In these notes we will follow closely
the approach developed by Kuznetsov [95] and Huybrechts [71]. One important
feature is that the Kuznetzov component comes with a naturally associated lattice
˜H(Ku(W),Z) with a weight-2 Hodge structure. The lattice is actually isometric to
the extended K3 lattice mentioned in (K3.3). Hence, as for K3 surfaces, it is natural
to expect that (C.1) has a homological counterpart in the same spirit as (K3.3):

(C.2) (Conjectural) Derived Torelli Theorem for Cubic Fourfolds: We expect
that, if W1 and W2 are cubic fourfolds, then Ku(W1) ∼= Ku(W2) if and
only if there is a Hodge isometry ˜H(Ku(W1),Z) ∼= ˜H(Ku(W2),Z) which
preserves the orientation of 4-positive directions.

Such a conjecture will be explained later in this paper but it is worth pointing out
that it has been proved generically by Huybrechts [71].

One of the aims of these notes is to show how, following [23, 24], properties
(K3.4) and (K3.5) generalize to this setting. Namely, let W be a cubic fourfold
and let v be a primitive vector in the algebraic part of the total cohomology
˜H(Ku(W),Z) of Ku(W).

(C.3) The manifold parameterizing stability conditions on Ku(W) is non-empty
and a connected component is a covering of a generalized period domain.

(C.4) The moduli spaceMσ(Ku(W), v) is a smooth projective hyperkähler mani-
fold of dimension v2+2 which is deformation equivalent to a Hilbert scheme
of points on a K3 surface, if σ is a stability condition as in (C.3) which is
generic with respect to v.

Again, both constructions work in families (in an appropriate sense) and thus
we get 20-dimensional locally complete families of smooth projective hyperkähler
manifolds. Also, we recover the Fano variety of lines and the manifold related to
twisted cubics as instances of (C.4). The geometric applications of (C.3) and (C.4)
are even more and include a reproof of the Torelli Theorem (C.1), a new simple
proof of the integral Hodge conjecture for cubic fourfolds and the extension of a
result by Addington and Thomas [4] saying that for a cubic W having a Hodge-
theoretically associated K3 surface is the same as having an equivalence Ku(W) ∼=
Db(S), for a smooth projective K3 surface S. All these results will be discussed in
this paper.

The interesting point is that we expect (C.3) and (C.4) to hold for other interesting
classes of Fano manifolds with naturally associated non-commutative K3 surfaces.
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This is the case of Gushel-Mukai and Debarre-Voisin manifolds. We will discuss
this later on in the paper.

Although we do our best to make this paper as much self-contained as possible,
there are various Hodge-theoretical aspects of the theory of cubic fourfolds that are
not discussed here and that can be found in the lecture notes of Huybrechts [72] that
appear in the same volume as the present ones. Moreover, we only touch very briefly
in our treatment the fundamental theory of Homological Projective Duality: we
refer to the original articles [92, 100, 140]. In [99], the relation between rationality
questions and geometric properties of Kuznetsov components is widely discussed.
Finally, an excellent survey of several aspects of the theory of semiorthogonal
decompositions is [97].

Plan of the Paper Let us briefly sketch how the paper is organized. In Sect. 2
we introduce the general material concerning non-commutative varieties with an
emphasis on those that are of Calabi-Yau type. After presenting semiorthogonal
decompositions and exceptional objects (see Sect. 2.1), we discuss in Sect. 2.2 the
notion of non-commutative variety in general. In our framework this just means
an admissible subcategory D of the bounded derived category Db(X), for X a
smooth projective variety. As such, it comes with a Serre functor that we compute
and with a well-defined notion of product, which we use to define the Hochschild
homology and cohomology of D . A non-commutative Calabi-Yau variety is a non-
commutative variety whose Serre functor is the shift by an integer n. In Sect. 2.3
we discuss a general framework to construct examples of such non-commutative
varieties.

Section 3 has a more geometric flavor. It deals with the constructions of non-
commutative K3 categories out of the derived categories of Fano manifolds. The
first case we analyze is the one of cubic fourfolds W (see Sect. 3.1) where the
non-commutative K3 surface is the K3 category Ku(W) mentioned above. As
a result, we state a (generalized version of a) result of Addington and Thomas
(see Theorem 3.7) which characterizes completely the loci in the moduli space of
cubic fourfolds parameterizing the cubics whose Kuznetsov component is actually
equivalent to the bounded derived category of an actual (twisted) K3 surface. Our
proof is provided in Sect. 5.4 and it is based on the use of stability conditions and of
moduli spaces of stable objects. In Sects. 3.2 and 3.3 we study two other classes of
Fano manifolds: Gushel-Mukai and Debarre-Voisin manifolds. Finally, in Sect. 3.5,
by using techniques developed in Sect. 3.4, we present derived variants of the Torelli
theorem for cubic fourfolds and discuss conjectural relations to the birational type
of these fourfolds.

Section 4 is about Bridgeland stability conditions on Kuznetsov components.
After recalling the basic definitions and properties in Sect. 4.1, we outline a few
techniques: the tilting procedure (see Sect. 4.3) and the way this induces stability
conditions on semiorthogonal components (see Sect. 4.4).

We state and prove our first main results in Sect. 5, where we deal with stability
conditions and moduli spaces of stable objects in the Kuznetsov component of
cubic fourfolds. Theorems 5.5 and 5.7 are the main results. They prove essentially

andreas.hochenegger@unimi.it



204 E. Macrì and P. Stellari

what we claim in (C.3). The proof requires the techniques in Sect. 4 and a non-
commutative Bogomolov inequality proved in Theorem 5.3. In Sect. 5.3 we study
moduli spaces and prove Theorem 5.11 which yields (C.4). In the rest of the paper
(see Sect. 5.4) we discuss several applications of these theorems. These include
the complete proof of Theorem 3.7, the proof of the integral Hodge Conjecture
for cubic fourfolds (see Proposition 5.17) originally due to Voisin, and various
constructions of moduli spaces associated to low degree curves in cubic fourfolds
(see Theorems 5.19 and 5.23). We also briefly discuss a homological approach to
the Torelli theorem (C.1) (see Theorem 5.21).

Notation and Conventions We work over an algebraically closed field K; often,
when the characteristic of the field is not zero, we will assume it to be sufficiently
large. When K = C, the field of complex numbers, we set i = √−1. All categories
will be K-linear, namely the morphism sets have the structure of K-vector space
and the compositions of morphisms are K-bilinear maps, and all varieties will be
over K.

We assume a basic knowledge of abelian, derived, and triangulated categories.
Basic references are, for example, [62, 68]. Given an algebraic variety X, we will
denote by Db(X) := Db(coh(X)) the bounded derived category of coherent sheaves
on X. All derived functors will be denoted as if they were underived. If X and Y
are smooth projective varieties, a functor F : Db(X)→ Db(Y ) is called a Fourier-
Mukai functor if it is isomorphic to �P ( ) := pY∗(P ⊗ p∗X( )), for some object
P ∈ Db(X × Y ).

We also expect the reader to have some familiarity with K3 surfaces [70] and
projective hyperkähler manifolds [50, 63].

2 Non-commutative Calabi-Yau Varieties

In this section, we follow closely the presentation and main results in [98];
foundational references are also [35, 36, 92, 97, 140]. We start with a very short
review on semiorthogonal decompositions and exceptional collections in Sect. 2.1.
We then introduce the notion of non-commutative variety in Sect. 2.2 and study
basic facts about Serre functors and Hochschild (co)homology. Finally, in Sect. 2.3
we sketch the proof of a result by Kuznetsov (Theorem 2.39), which provides a
general method to construct non-commutative Calabi-Yau varieties.

2.1 Semiorthogonal Decompositions

Let D be a triangulated category.

Definition 2.1 A semiorthogonal decomposition

D = 〈D1, . . . ,Dm〉
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is a sequence of full triangulated subcategories D1, . . . ,Dm of D — called the
components of the decomposition — such that:

(1) Hom(F,G) = 0 for all F ∈ Di , G ∈ Dj and i > j .
(2) For any F ∈ D , there is a sequence of morphisms

0 = Fm → Fm−1 → · · · → F1 → F0 = F,

such that cone(Fi → Fi−1) ∈ Di for 1 ≤ i ≤ m.

Remark 2.2 Condition (1) of the definition implies that the “filtration” in (2) and
its “factors” are unique and functorial. The functor δi : D → Di given by the i-th
“factor”, i.e.,

δi(F ) = cone(Fi → Fi−1),

is called the projection functor onto Di . In the special case D = 〈D1,D2〉, the
functor δ1 is the left adjoint of the inclusion D1 ↪→ D , while the functor δ2 is the
right adjoint of D2 ↪→ D .

Examples of semiorthogonal decompositions generally arise from exceptional
collections, together with the concept of admissible subcategory.

Definition 2.3 A full triangulated subcategory C ⊂ D is called admissible if the
inclusion functor admits left and right adjoints.

For a subcategory C ⊂ D , we define its left and right orthogonals as

⊥C := {G ∈ D | Hom(G,F ) = 0 for all F ∈ C },
C⊥ := {G ∈ D | Hom(F,G) = 0 for all F ∈ C }.

The following is well-known (see [99, Lemma 2.3] for a more general statement).

Proposition 2.4 Let C ⊂ D be an admissible subcategory. Then there are
semiorthogonal decompositions

D = 〈C ,⊥C 〉 and D = 〈C⊥,C 〉. (1)

Proof Let us denote by �L : D → C the left adjoint to the inclusion functor. Then,
for all G ∈ D , we have a morphismG→ �L(G) in D . The cone of this morphism
is in C⊥, thus giving the first semiorthogonal decomposition. The second one is
analogous, by using the right adjoint. ��

Proposition 2.4 also has a converse statement. Namely, if a category C arises
as semiorthogonal component in both decompositions as in (1), then it must be
admissible. This follows immediately from Remark 2.2.
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Examples of admissible categories are given by exceptional collections.

Definition 2.5

(i) An object E ∈ D is exceptional if Hom(E,E[p]) = 0, for all integers p �= 0,
and Hom(E,E) ∼= K.

(ii) A set of objects {E1, . . . , Em} in D is an exceptional collection if Ei is an
exceptional object, for all i, and Hom(Ei, Ej [p]) = 0, for all p and all i > j .

(iii) An exceptional collection {E1, . . . , Em} in D is full if the smallest full trian-
gulated subcategory of D containing the exceptional collection is equivalent
to D .

(iv) An exceptional collection {E1, . . . , Em} in D is strong if Hom(Ei, Ej [p]) =
0, for all p �= 0 and all i < j .

Proposition 2.6 Let C := 〈E〉 be the smallest full triangulated subcategory of a
proper1 triangulated category D and containing the exceptional object E. Then C
is admissible.

Proof This can be seen directly by constructing explicitly the left and right adjoints
to the functor Db(K) → D , V �→ E ⊗K V (inducing an equivalence Db(K) ∼=
C ). More explicitly, since E is exceptional, given an object C in D , consider the
(canonical) evaluation morphism

⊕

k

Hom(E,C[k])⊗ E[−k] → C,

where the first object is in C . Complete it to a distinguished triangle

⊕

k

Hom(E,C[k])⊗ E[−k] → C → D.

Since E is exceptional, we get Hom(E,D[p]) = 0, for all integers p. Hence D ∈
〈E〉⊥.

Therefore, we constructed a semiorthogonal decomposition

D = 〈〈E〉⊥, 〈E〉〉.

Similarly, we can construct a decomposition D = 〈〈E〉,⊥〈E〉〉, and so the category
C is admissible. ��

1A triangulated category D is proper over K if, for all F,G ∈ D , dimK(⊕p HomD(F,G[p])) <
+∞.
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By using Proposition 2.4, if {E1, . . . , Em} is an exceptional collection in a proper
triangulated category D and C denotes the smallest full triangulated subcategory of
D containing the Ei’s, then we get two semiorthogonal decompositions

D = 〈C⊥, E1, . . . , Em〉 = 〈E1, . . . , Em,
⊥C 〉.

Here, for sake of simplicity, we write Ei for the category 〈Ei〉.
Example 2.7 (Beilinson) A beautiful example is provided by the n-dimensional
projective space P

n. In this case, by a classical result of Beilinson [28], the line
bundles

{OPn(−n),OPn(−n+ 1), . . . ,OPn}

form a full strong exceptional collection and so they yield a semiorthogonal
decomposition

Db(Pn) = 〈OPn (−n),OPn (−n+ 1), . . . ,OPn〉.

The exceptionality and strongness of the collection follow from Bott’s theorem.
The basic idea for the proof of fullness is to use the resolution of the diagonal � ⊂
P
n × P

n given by the Koszul resolution

0→ OPn(−n)��n(n)→ . . .→ OPn(−1)� �1(1)→ OPn×Pn → O�→ 0

associated to a natural section OPn (−1)��1(1)→ OPn×Pn (see, for example, [68,
Section 8.3] for the details).

Actually, any set of line bundles {OPn(k),OPn(k + 1), . . . ,OPn (k + n)}, for k
any integer, is a full strong exceptional collection in Db(Pn).

Example 2.8 (Kapranov et al.) Consider now the Grassmannian Gr(k, n) of k-
dimensional subspaces in an n-dimensional K-vector space. Let U be the tauto-
logical subbundle and Q the tautological quotient. If char(K) = 0 (or sufficiently
large), Kapranov [83] has constructed a full strong exceptional collection, and so a
semiorthogonal decomposition

Db(Gr(k, n)) = 〈�αU ∨〉α∈R(k,n−k),

where R(k, n− k) is the k× (n− k) rectangle, α is a Young diagram, and�α is the
associated Schur functor. The basic idea of the proof is similar to the projective
space case, by using the Borel-Bott-Weil Theorem for proving that the above
collection is exceptional and a Koszul resolution of the diagonal associated to a
canonical section of U ∨�Q. When char(K) > 0, the situation is more complicated
and described in [40]. In mixed characteristic, it is worth mentioning [58] where
semiorthogonal decompositions for the derived categories of Grassmannians over
the integers are studied.
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For later use, we need a different exceptional collection, described more recently
in [59] (see also [105] for related results). We assume that gcd(k, n) = 1. Then we
have a semiorthogonal decomposition in a form which is more similar to the case of
the projective space

Db(Gr(k, n)) = 〈B,B(1), . . . ,B(n− 1)〉,

with the category B generated by the exceptional collection formed by the vector
bundles �αU ∨ associated to the corresponding Schur functors, where the Young
diagram α has at most k − 1 rows and whose p-th row is of length at most (n −
k)(k − p)/k, for p = 1, . . . , k − 1. Explicitly, in the case Gr(2, 5), the category B
is generated by 2 exceptional objects:

B = 〈OGr(2,5),U
∨〉.

In the case of Gr(3, 10), the category B is generated by 12 exceptional objects.

Example 2.9 (Kapranov) LetQ be an n-dimensional quadric in P
n+1 defined by an

equation {q = 0}; we assume that char(K) �= 2. By [83], the category Db(Q)

has one of the following semiorthogonal decompositions, given by full strong
exceptional collections, according to the parity of n. If n = 2m + 1 is odd, we
have

Db(Q) = 〈S,OQ,OQ(1), . . . ,OQ(n− 1)〉,

where S is the spinor bundle on Q defined as Coker(ϕ|Q)(−1) and

ϕ : OPn+1(−1)2
m+1 → O2m+1

Pn+1 is such that ϕ ◦ (ϕ(−1)) = q · Id : OPn+1(−2)2
m+1 →

O2m+1

Pn+1 .
If n = 2m is even, we have

Db(Q) = 〈S−, S+,OQ,OQ(1), . . . ,OQ(n− 1)〉,

where S− := Coker(ϕ|Q)(−1), S+ := Coker(ψ|Q)(−1), and ϕ,ψ : OPn+1(−1)2
m

→ O2m

Pn+1 are such that ϕ ◦ (ψ(−1)) = ψ ◦ (ϕ(−1)) = q · Id. The reader can have a
look at [137] for more results about spinor bundles.

It is a very interesting question to determine which varieties admit a full
exceptional collection. A classical result of Bondal [33] shows that a smooth
projective variety has a full strong exceptional collection if and only if its bounded
derived category is equivalent to the bounded derived category of finitely generated
right modules over an associative finite-dimensional algebra. For example, there is
a vast literature on homogeneous spaces (which conjecturally should have a full
strong exceptional collection; see [105], and the references therein) or in relation to
Dubrovin’s Conjecture [57]. Another example is the moduli space of stable rational
curves with n punctures: by using results of Kapranov [84] and Orlov ([134]; see
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also Example 2.13 below), it is easy to show that a full exceptional collection
exists, but conjecturally there exists a full strong exceptional collection which is
Sn-invariant (see [47, 120]). We also mention the following question by Orlov
relating the existence of a full exceptional collection to rationality; we will study
further conjectural relations between non-commutative K3 surfaces and rationality
in Sect. 3.

Question 2.10 (Orlov) Let X be a smooth projective variety over K. If Db(X)

admits a full exceptional collection, then X is rational.

For later use, we want to show that the semiorthogonal decompositions in
Examples 2.7 and 2.9 can be made relative to a positive dimensional base.

Example 2.11 (Orlov) Let F be a vector bundle of rank r + 1 over a smooth
projective variety X. Consider the projective bundle π : PX(F) → X. Then, by
[134], the pull-back functor π∗ is fully faithful and we have a semiorthogonal
decomposition

Db(PX(F)) = 〈π∗(Db(X))⊗ OPX(F )/X(−r), . . . , π∗(Db(X))〉.

Example 2.12 (Kuznetsov) Let X, S be smooth projective varieties, and let
f : X→ S be a (flat) quadric fibration. In other words, there is a vector bundleE on
S of rank r + 2 such thatX is a divisor in PS(E) of relative degree 2 corresponding
to a line bundle L ⊆ S2E∨. We assume that char(K) �= 2. Such a quadric fibration
comes with a sheaf B of Clifford algebras on S. The corresponding sheaf B0 of
even parts of Clifford algebras can be described as an OS-module in the following
terms:

B0 ∼= OS ⊕ (∧2E ⊗ L)⊕ (∧4E ⊗ L2)⊕ . . .

We can then take the abelian category coh(S,B0) of coherent B0-modules on S
and the corresponding derived category Db(S,B0) := Db(coh(S,B0)). One can
also consider the sheaf B1 of odd parts of the Clifford algebras, which is a coherent
B0-module. Actually, for all i ∈ Z, we have the sheaves

B2i :=B0 ⊗B0 L
−i B2i+1 := B1 ⊗B0 L

−i .

The pull-back functor f ∗ is fully-faithful. Moreover, there is a fully-faithful
functor� : Db(S,B0) ↪→ Db(X), and a semiorthogonal decomposition

Db(X) = 〈�(Db(S,B0)), f
∗(Db(S)), . . . , f ∗(Db(S))⊗ OX/S(r − 1)〉.

The functor � has a left adjoint that we denote by � . The case when char(K) = 0
was treated in [93, Theorem 4.2]. This was generalized in [14, Theorem 2.2.1] to
fields of arbitrary odd characteristic. The case char(K) = 2 is discussed in the same
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paper and it can also be described in a similar way, but the definition of B0 is
different.

Finally, the last case we review is the blow-up along smooth subvarieties.

Example 2.13 (Orlov) Let Y ⊆ X be a smooth subvariety of codimension c.
Consider the blow-up f : ˜X → X of X along Y . Let i : E ↪→ ˜X be the
exceptional divisor. The restriction π := f |E : E → Y is a projective bundle,
as E = PY (NY/X). By [134], the pullback functor f ∗ is fully faithful and, for any
integer j , the functors

�j : Db(Y )→ Db(˜X) G �→ i∗(π∗(G)⊗OE/Y (j)),

are fully-faithful as well, giving the semiorthogonal decomposition

Db(˜X) = 〈f ∗Db(X),�0(D
b(Y )), . . . , �c−2(D

b(Y ))〉.

2.2 Non-commutative Smooth Projective Varieties

We will work with the following definition of non-commutative smooth projective
variety; while this is not the most general notion (see [100, 136, 140]), it will suffice
for these notes.2

Definition 2.14 Let D be a triangulated category linear over K. We say that D
is a non-commutative smooth projective variety if there exists a smooth projective
variety X over K and a fully faithful K-linear exact functor D ↪→ Db(X) having
left and right adjoints.

By identifying D with its essential image in Db(X), then the definition is only
asking that D is an admissible subcategory. Note also that, as a consequence of the
main result in [36], being admissible is a notion which is intrinsic to the category
D , namely every fully faithful functor from a non-commutative smooth projective
variety into the bounded derived category of a smooth projective variety will have
both adjoints.

Products Non-commutative smooth projective varieties are closed under products
(or more generally gluing of categories; see [102, 136]). More precisely, if D1 ⊂
Db(X1) and D2 ⊂ Db(X2), we can define D1 � D2 as the smallest triangulated

2Note that in [136, Definition 4.3] it is used the terminology geometric noncommutative scheme
for what we call non-commutative smooth projective variety.
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subcategory of Db(X1 × X2) which is closed under taking direct summands and
contains all objects of the form F1 � F2, with F1 ∈ D1 and F2 ∈ D2.3

Proposition 2.15 The subcategoryD1 �D2 ⊂ Db(X1 ×X2) is admissible.

Proof This is a special case of [96, Theorem 5.8]. In our context of smooth
projective varieties, it becomes quite simple.

In fact, we claim that there is a semiorthogonal decomposition

Db(X1 ×X2) = 〈D1 �D2,
⊥D1 �D2,D1 � ⊥D2,

⊥D1 � ⊥D2〉.
As remarked in the previous section, this immediately implies that D1 � D2 is
admissible, and thus a non-commutative smooth projective variety.

To prove the claim, we need to check conditions (2.1) and (2.1) of Definition 2.1.
Condition (2.1) follows immediately from the Künneth formula (see, for example,
[68, Section 3.3]):

Hom(F1 �G1, F2 �G2) =
⊕

i∈Z
Hom(F1, F2[i])⊗ Hom(G1,G2[−i]).

Condition (2.1) follows directly from the following elementary but very useful
fact. Let F ∈ Db(X1 × X2). Then since X1 × X2 is projective, we can find a
bounded above locally-free resolution P • of F , such that, for all i, P i = P i1 � P i2 .
Since X1 × X2 is smooth, by truncating this resolution at sufficiently large n (with
respect to the stupid truncation), we obtain a split exact triangle

G→ σ≥−nP • → F,

for some G ∈ Db(X1 ×X2), namely F is a direct factor of σ≥−nP •. Since D1 and
D2 are part of semiorthogonal decompositions of respectively Db(X1) and Db(X2),
this concludes the proof. ��

Having a notion of product, we can define the slightly technical notion of Fourier-
Mukai functor between non-commutative varieties (see [73, 92], and [46] for a
survey on Fourier-Mukai functors).

Definition 2.16 Let X1,X2 be algebraic varieties. Let D1 ↪→ Db(X1) and D2 ↪→
Db(X2) be admissible categories. A functor F : D1 → D2 is called a Fourier-Mukai
functor if the composite functor

Db(X1)
δ1−→ D1 → D2 ↪→ Db(X2)

is of Fourier-Mukai type.

3This is different from the definition which appears in [96, Equation (10)], but in our context of
smooth projective varieties it is equivalent (see also the beginning of the proof of [96, Theorem
5.8]).
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In the previous definition, δ1 denotes the projection functor of Remark 2.2 with
respect to the semiorthogonal decomposition Db(X) = 〈D1,D2〉; it coincides with
the left adjoint to the inclusion functor. By using Proposition 2.15, it is not hard to
see that if a functor between non-commutative varieties is of Fourier-Mukai type,
then the kernel PF ∈ Db(X1 × X2) actually lives in D⊥⊥1 � D2; for example, the
proof in [73, Lemma 1.5] works in general.

Remark 2.17 By [96, Theorem 6.4], the definition of D1 �D2 does not depend on
the embedding. More precisely, given a Fourier-Mukai equivalence D1

∼→D ′1, then
there is a Fourier-Mukai equivalence of triangulated categoriesD1�D2 ∼= D ′1�D2.

An immediate corollary of Proposition 2.15 is that the projection functor δ is
of Fourier-Mukai type. We will use this to define Hochschild (co)homology for a
non-commutative variety.

Lemma 2.18 Let X be a smooth projective variety, and let D ⊂ Db(X) be an
admissible category. Then the projection functor δ : Db(X) → D is of Fourier-
Mukai type.

Proof This is a special case of [96, Theorem 7.1]. Again, in our smooth projective
context, the proof is very simple. Indeed, by Proposition 2.15, the subcategory
Db(X) � D ⊂ Db(X × X) is admissible. The kernel of the projection functor is
simply the projection of the structure sheaf of the diagonal O� ∈ Db(X × X) onto
the category Db(X)�D . ��
Remark 2.19 Not all functorsD1 → D2 are of Fourier-Mukai type (see [147, 160]).
Nevertheless, fully faithful functors are expected to be of Fourier-Mukai type (as
they are in the commutative case, by Orlov’s Representability Theorem [135]). This
goes under the name of Splitting Conjecture (see [92, Conjecture 3.7]).

The Numerical Grothendieck Group Given a triangulated categoryD , we denote by
K(D) its Grothendieck group. If D is a non-commutative smooth projective variety,
then the Euler characteristic

χ(F,G) :=
∑

i

(−1)i dimk HomD (F,G[i])

is well-defined for all F,G ∈ D and it factors throughK(D).

Definition 2.20 Let D be a non-commutative smooth projective variety. We define
the numerical Grothendieck group as Knum(D) := K(D)/ kerχ .

The numerical Grothendieck group is a free abelian group of finite rank. Indeed,
since D is an admissible subcategory of Db(X), for X a smooth projective variety,
thenKnum(D) is a subgroup of the numerical Grothendieck groupN(X) ofX which
is a free abelian group of finite rank.

The Serre Functor Serre duality for non-commutative varieties is studied via the
notion of Serre functor, introduced and studied originally in [34].
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Definition 2.21 Let D be a triangulated category. A Serre functor in D is an
autoequivalence SD : D → D with a bi-functorial isomorphism

Hom(F,G)∨ = Hom(G, SD (F ))

for all F,G ∈ D .

If a Serre functor exists then it is unique up to a canonical isomorphism. If X
is a smooth projective variety, the Serre functor is given by SDb(X)( ) = ⊗
ωX[dimX]. In general, Serre functors exist for non-commutative smooth projective
varieties as well. If D has a Serre functor and � : C ↪→ D is an admissible
subcategory, then the Serre functor of C is given by the following formula

SC = �R ◦ SD ◦� and S−1
C = �L ◦ S−1

D ◦�,

where �R and �L denote respectively the right and left adjoint to the inclusion
functor. Notice also that the Serre functor is of Fourier-Mukai type.

Serre functors behave nicely with respect to products. Given two non-
commutative smooth projective varieties D1 ⊂ Db(X1) and D2 ⊂ Db(X2),
let us denote by PSD1

∈ Db(X1 × X1), respectively PSD2
∈ Db(X2 × X2),

kernels representing the Serre functors. Then the Serre functor of the product
D1 � D2 ⊂ Db(X1 × X2) is representable by PSD1

� PSD2
. This can be proved

directly (for example, the argument in [73, Corollary 1.4] works in general), since
it is true for products of varieties.

We can now define non-commutative Calabi-Yau smooth projective varieties.

Definition 2.22 Let D be a non-commutative smooth projective variety. We say
that D is a non-commutative Calabi-Yau variety of dimension n if SD = [n].

By what we observed before, the product of two non-commutative Calabi-Yau
varieties of dimension n and m is again Calabi-Yau of dimension n+m.

Hochschild (Co)homology The analogue of Hodge cohomology for non-
commutative varieties is Hochschild homology. This can be defined naturally in
the context of dg-categories. In our smooth and projective case, this can also be
done directly at the level of triangulated categories, in a similar way to [44, 45, 121]
for bounded derived categories of smooth projective varieties.4 The main reference
is [94], and we are content here to briefly sketch the basic properties (see also
[141]).

Let D be a non-commutative smooth projective variety. We also fix an embedding
D ↪→ Db(X), for X a smooth projective variety; the definition will of course be
independent of this choice. We let Pδ ∈ Db(X × X) be a kernel of the projection

4Hochschild (co)homology for schemes was originally defined and studied in [112, 153, 161].
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functor δ which is of Fourier-Mukai type, by Lemma 2.18. We also let Pδ! ∈ Db(X×
X) be the kernel of S−1

D , the inverse of the Serre functor of D . For i ∈ Z, we define

HHi (D) := HomDb(X×X)(Pδ, Pδ[i]) (Hochschild cohomology)

HHi (D) := HomDb(X×X)(Pδ![i], Pδ) (Hochschild homology)

Our choice of degree for Hochschild homology is different from [94]. It is coherent,
though, with the definition of Hochschild homology for varieties. Indeed, whenD =
Db(X), this gives the usual definitions

HHi (Db(X)) = HomDb(X×X)(O�,O�[i]),
HHi (D

b(X)) = HomDb(X×X)(S
−1
� [i],O�),

where S−1
� := �∗ω−1

X [−dim(X)].
As in the commutative case, Hochschild cohomology has the structure of a

graded algebra, and Hochschild homology is a right module over it. We can also
define a Mukai pairing

(

,
) : HHi (D)⊗ HH−i (D)→ K

which is a non-degenerate pairing, induced by Serre duality. Roughly, by
reasoning as in [43, Section 4.9], one first considers the isomorphism
τ : Hom(Pδ!, Pδ[−i]) → Hom(Pδ, Pδ ⊗ p∗2ωX[n − i]). The latter vector space
is Serre dual to HH−i (D). Thus (v,w) is defined as the trace of the composition
τ (v) ◦ w.

The triple consisting of Hochschild (co)homology and the Mukai pairing is called
the Hochschild structure associated to D .

Example 2.23 Let E be an exceptional object and let D = 〈E〉. Then HH•(D) =
HH•(D) = K, both concentrated in degree 0.

Remark 2.24 The Hochschild–Kostant–Rosenberg isomorphism �∗XO�X →
⊕

i �
i
X[i] yields the graded isomorphisms

IXHKR : HH∗(X)→ H�∗(X) :=⊕

i H�i(X)
and IHKR

X : HH∗(X)→ HT∗(X) :=⊕

i HTi (X)

where H�i(X) :=⊕

q−p=i Hp(X,�
q

X) and HTi (X) :=⊕

p+q=i Hp(X,∧qTX).
The existence of such isomorphisms is due to Swan [153] for fields of character-

istic zero (see also [45]). In [162] it is proved that if X is a smooth scheme defined
over a field of characteristic p > dimX, then the same result holds. In the recent
paper [9], this was extended (in a slightly weaker form) to smooth proper schemes
over fields of characteristic p ≥ dimX.
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A key property of Hochschild homology is that it behaves well with respect to
semiorthogonal decompositions.

Proposition 2.25 Let D be a non-commutative variety, and let

D = 〈D1, . . . ,Dr 〉

be a semiorthogonal decomposition. Then, for all i ∈ Z,

HHi (D) ∼=
r

⊕

j=1

HHi (Dj ).

Moreover, this decomposition is orthogonal with respect to the Mukai pairing.

Proof The first statement is [94, Corollary 7.5]. Here, for simplicity, we sketch
the proof for the case in which D = Db(X) and we have a semiorthogonal
decomposition Db(X) = 〈C ,⊥C 〉.

We observed above that the projection functors δ1 and δ2 for the admissible
subcategories C and ⊥C respectively are of Fourier-Mukai type with kernels P1
and P2. These objects sit in the following distinguished triangle

P2 → O�→ P1.

Similarly, we have a triangle

P2! → S−1
� → P1!.

Since, by semiorthogonality, Hom(P2!, P1[j ]) = 0, for all j ∈ Z, we have an
induced map

Hom(S−1
� [i],O�) −→ Hom(P1![i], P1)⊕ Hom(P2![i], P2).

By using Serre duality, it is not hard to see that Hom(P1!, P2[j ]) = 0, for all
j ∈ Z as well; hence, the above map is an isomorphism. Finally, by definition,
HHi (D1) = Hom(P1![i], P1); regarding the second factor, it is a small argument
(see [94, Corollary 3.12]) to see that HHi (D2) ∼= Hom(P2![i], P2).

For the second statement, one needs to use the previous construction of the
morphism, together with the isomorphism Hom(Pδ!, Pδ[−i]) ∼= Hom(Pδ, Pδ ⊗
p∗2ωX[n− i]) mentioned before. ��
Example 2.26 Let {E1, . . . , Em} be an exceptional collection, and let D =
〈E1, . . . , Em〉. Then HH•(D) = K

⊕m, concentrated in degree 0.

From Proposition 2.25, we can deduce all other properties of the Hochschild
structure.
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Theorem 2.27 Let C ,D,E be non-commutative smooth projective varieties.

(1) Any Fourier-Mukai functor� : C → D induces a morphism of graded k-vector
spaces �HH : HH•(C ) → HH•(D) such that IdHH = Id and, given another
functor � : D → E , we have (� ◦�)HH = �HH ◦�HH.

(2) If (�,�) is a pair of adjoint Fourier-Mukai functors, then

(

,�HH( )
) = (

�HH( ),
)

.

(3) There is a Chern character ch : K(D)→ HH0(D) such that, for all F,G ∈ D ,

(ch(F ), ch(G)) = −χ(F,G).

(4) The Hochschild structure is invariant under exact equivalences of Fourier-
Mukai type.

Proof As for (1), since � is a Fourier-Mukai functor, it is induced by a Fourier-
Mukai functor � : Db(X1) → Db(X2), where C and D are admissible subcate-
gories of Db(X1) and Db(X2) respectively. LetE be the Fourier-Mukai kernel of� .
It is not difficult to see that � induces a morphism �HH : HH•(X1) → HH•(X2).
For a given i consider μ ∈ HHi (X1) and define �HH(μ) ∈ HHi (X2) in the
following way. We consider the composition

S−1
�X2
[i] γ−→ E◦E∨[i] id◦η◦id−−−−→ E◦S−1

�X1
[i]◦S�X1

◦E∨ id◦μ◦id◦id−−−−−−→ E◦S�X1
◦E∨ h−→ O�X2

,

where η : O�X1
→ S−1

�X1
◦ S�X1

is the isomorphism coming from the easy fact that

�
S−1
�X1

◦�S�X1
= id and the morphisms γ and h are the natural ones.

By Proposition 2.25, HH•(D) is an orthogonal factor of HH•(X2). So we set
�HH in (1) to be the composition of �HH|HH•(C ) with the orthogonal projection
onto HH•(D).

With this definition, (2) follows from a straightforward computation. As for (3),
following [43], let us recall that, given E ∈ D , we can think of E as an object on
pt × X2 and just set ch(E) := (�E)HH(1), where (�E)HH : HH0(pt)(∼= K) →
HH0(X2). Since E ∈ D , we have ch(E) ∈ HH0(D). The compatibility between
the Mukai pairing and χ is proven as in [43, Theorem 7.6] (the change of sign is
harmless here).

For the last statement and more details on the first three, the reader can consult
[94, Section 7]. ��

Notice, in particular, that by Theorem 2.27,(2.27), the Hochschild structure does
not depend on the choice of the embedding D ↪→ Db(X).

For Calabi-Yau varieties, Hochschild homology and cohomology coincide, up to
shift. This is the content of the following result (see [98, Section 5.2]). With our
definition, the proof is immediate.
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Proposition 2.28 Let D be a non-commutative Calabi-Yau variety of dimension n.
Then, for all i ∈ Z, we have

HHi (D) ∼= HHn−i (D).

In particular, HHn(D) �= 0.

Proof We only need to show the last statement. But, by definition, HH0(D) �= 0,
since IdPδ ∈ Hom(Pδ, Pδ). ��

We can use Hochschild cohomology to define the notion of connectedness for
non-commutative varieties.

Definition 2.29 Let D be a non-commutative smooth projective variety. We say
that D is connected if HH0(D) = K.

Lemma 2.30 (Bridgeland’s Trick) LetD be a non-commutative Calabi-Yau vari-
ety of dimension n. IfD is connected, thenD is indecomposable, namely it does not
admit any non-trivial semiorthogonal decomposition.

Proof Let D = 〈D1,D2〉 be a non-trivial semiorthogonal decomposition. Since
D is a non-commutative Calabi-Yau variety of dimension n, then both D1 and D2
are non-commutative Calabi-Yau varieties of dimension n as well. In particular, by
Proposition 2.28, HHn(Di ) �= 0, for i = 1, 2. But then, by Proposition 2.25, we
have

K = HH0(D) = HHn(D) = HHn(D1)⊕ HHn(D),

which is a contradiction. ��
We use Hochschild (co)homology to finally define non-commutative K3 sur-

faces. Recall that for a K3 surface S, Hochschild (co)homology can be easily
computed, by using the Hochschild-Kostant-Rosenberg Theorem:

HH•(S) = K[−2] ⊕K
⊕22 ⊕K[2].

Definition 2.31 Let D be a non-commutative smooth projective variety. We say
that D is a non-commutative K3 surface if D is a non-commutative connected
Calabi-Yau variety of dimension 2 and its Hochschild (co)homology coincides with
the Hochschild (co)homology of a K3 surface.

2.3 Constructing Non-commutative Calabi-Yau Varieties

The goal of this section is to present a result by Kuznetsov which covers essentially
all currently known examples of non-commutative Calabi-Yau varieties. We will
then study examples of non-commutative K3 surfaces in details in Sect. 3, and then
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concentrate on the case of those non-commutative K3 surfaces associated to cubic
fourfolds in Sect. 5.

We will need first to introduce a bit more terminology. First of all, we recall the
notion of spherical functor ([1, 7, 8, 122, 148]). We will follow the definition in [98,
Section 2.5].

Given a functor � : C → D , we keep following the convention of denoting by
�R and �L respectively its right and left adjoint functors (if they exist).

Definition 2.32 Let X,Y be smooth projective varieties and let � : Db(X) →
Db(Y ) be a Fourier-Mukai functor. We say that � is spherical if

(1) the natural transformation �L ⊕ �R → �R ◦ � ◦ �L, induced by the sum of
the two units of the adjunction, is an isomorphism.

(2) the natural transformation �L ◦ � ◦ �R → �L ⊕ �R , induced by the sum of
the two counits of the adjunction, is an isomorphism.

Given a spherical functor, we can define the associated spherical twist functors:

TX : Db(X)→ Db(X), TX(F ) := cone (�L ◦�(F)→ F)

TY : Db(Y )→ Db(Y ), TY (G) := cone (G→ � ◦�L(G)) [−1]
The key result about spherical functors is the following.

Proposition 2.33 Let � : Db(X) → Db(Y ) be a spherical functor. Then the twist
functors TX and TY are autoequivalences. Moreover, we have

� ◦ TX = TY ◦� ◦ [2].
Proof With the above definition, this is proved in detail in [98, Proposition 2.13 &
Corollary 2.17]. The idea of the proof is not hard: if we define

T ′X : Db(X)→ Db(X), T ′X(F) := cone (F → �R ◦�(F)) [−1]
T ′Y : Db(Y )→ Db(Y ), T ′Y (G) := cone (� ◦�R(G)→ G) ,

we can show with a direct argument that TX and T ′X (respectively, TY and T ′Y ) are
mutually inverse autoequivalences. The last formula follows then easily from the
definitions. ��

Secondly, we recall the important notion of rectangular Lefschetz decomposition
(which is fundamental for Homological Projective Duality; see [92, 140]).

Definition 2.34 Let X be a smooth projective variety, and let L be a line bundle
on X. A Lefschetz decomposition of Db(X) with respect to L is a semiorthogonal
decomposition of the form

Db(X) = 〈B0,B1 ⊗ L, . . . ,Bm−1 ⊗ L⊗(m−1)〉, B0 ⊇ B1 ⊇ . . . ⊇ Bm−1.

A Lefschetz decomposition is called rectangular if B0 = B1 = . . . = Bm−1.
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To simplify notation, given a line bundle L on a smooth projective varietyX, we
denote by L : Db(X)

∼→Db(X) the autoequivalence given by tensoring by L.
We can now state the main result for this section. This is our setup.

Setup 2.35 LetM and X be smooth projective varieties and let LM and LX be line
bundles on M and X respectively. Let m, d ∈ Z be such that 1 ≤ d < m. We
assume:

(1) Db(M) has a rectangular Lefschetz decomposition with respect to LM

Db(M) = 〈BM,BM ⊗ LM, . . . ,BM ⊗ L⊗(m−1)
M 〉,

(2) there is a spherical functor� : Db(X)→ Db(M)

which satisfy the following compatibilities:

(i) LM ◦� = � ◦ LX;
(ii) LX ◦ TX = TX ◦ LX;

(iii) TM(BM ⊗ L⊗iM ) = BM ⊗ L⊗i−dM , for all i ∈ Z.

Proposition 2.36 The left adjoint functor �L induces a fully faithful functor
BM ↪→ Db(X).

Proof This is a direct check; see [98, Lemma 3.10] for the details. ��
We set BX := �L(BM). By Proposition 2.36, and by using properties (i) and

(iii), we have a semiorthogonal decomposition

Db(X) = 〈Ku(X),BX,BX ⊗ LX, . . . ,BX ⊗ L⊗(m−d−1)
X 〉, (2)

where Ku(X) is defined as

Ku(X) := 〈BX,BX ⊗ LX, . . . ,BX ⊗ L⊗(m−d−1)
X 〉⊥.

Definition 2.37 We say that Ku(X) is the Kuznetsov component of X associated
to our data:M , �, and the rectangular Lefschetz decomposition of Db(M).

Let us define the two autoequivalences:

ρ : Db(X)
∼→Db(X) ρ := TX ◦ L⊗dX

σ : Db(X)
∼→Db(X) σ := SDb(X) ◦ TX ◦ L⊗mX

Lemma 2.38 We keep our assumptions as in Setup 2.35. We have:

(1) σ ◦ ρ = ρ ◦ σ ;
(2) S−1

Db(X)
= L⊗mX ◦ TX ◦ σ−1;

(3) σ and ρ respect the semiorthogonal decomposition (2).
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Proof The first statement follows immediately from the property (ii) and the fact
that the Serre functor commutes with any autoequivalence. The second statement
follows then immediately. For the last one, one can check it directly; see [98, Lemma
3.11] for the details. ��
Theorem 2.39 (Kuznetsov) Let c := gcd(d,m). The Serre functor of the
Kuznetsov component can be expressed as

S
d/c

Ku(X) = ρ−m/c ◦ σd/c.

To prove the theorem, we introduce a fundamental functor for the Kuznetsov
component, the degree shift functor5:

OKu(X) : Ku(X)→Ku(X) OKu(X) := δKu(X) ◦ LX,

where δKu(X) denotes as usual the projection onto the Kuznetsov component (or
equivalently, the left adjoint functor of the inclusion).

Lemma 2.40 We keep our assumptions as in Setup 2.35. We have:

(1) OKu(X) is an autoequivalence;
(2) OKu(X) ◦ ρ = ρ ◦OKu(X) and OKu(X) ◦ σ = σ ◦OKu(X);
(3) OiKu(X) = δKu(X) ◦ L⊗iX , for all 0 ≤ i ≤ m− d;
(4) S−1

Ku(X) = Om−dKu(X) ◦ ρ ◦ σ−1;

(5) OdKu(X) = ρ.
Proof This is the summary of various results in [98, Section 3]. Property (1) follows
by either (4) or (5). Property (2) follows by a direct check. Property (4) follows
from (3) and by Lemma 2.38, (2). The key results are (3) and (5).

To prove (3), observe that the formula is true for i = 0. Let us assume the formula
is true for 0 ≤ i < m − d; we want to show it is true for i + 1 as well. Let
F ∈ Ku(X). We can consider the composition

F ⊗ L⊗(i+1)
X → δKu(X)(F ⊗ L⊗iX )⊗ LX = OiKu(X)(F )⊗ LX →

→ δKu(X)(O
i
Ku(X)(F )⊗ LX) = Oi+1

Ku(X)(F ).

We need to show that δKu(X)(F ⊗L⊗(i+1)
X ) = Oi+1

Ku(X)(F ), or equivalently that the

cone G of the above composition is in 〈BX,BX ⊗ LX, . . . ,BX ⊗ L⊗(m−d−1)
X 〉.

But, by the octahedral axiom, the cone is an extension of two objects

G1 ⊗ LX → G→ G2,

5In [98] the functor O is defined on the whole derived category Db(X) and it is called rotation
functor.
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whereG1 ∈ 〈BX,BX⊗LX, . . . ,BX⊗L⊗(i−1)
X 〉 andG2 ∈ BX, which is what we

wanted.
We will only show (5) under the assumption d ≤ m− d . Since we are interested

in the Calabi-Yau case (where, in particular, we will have that c = d dividesm), this
is enough for us. By (3), we have that OdKu(X) = δKu(X) ◦ L⊗dX . By definition, we

also have that ρ = TX ◦ L⊗dX .
Let F ∈ Ku(X). Then ρ(F ) is defined by the following triangle

�L(�(F ⊗ L⊗dX ))→ F ⊗ L⊗dX → ρ(F ).

By Lemma 2.38,(3), we know that ρ(F ) ∈ Ku(X). Hence, we only need to show
that �L(�(F ⊗ L⊗dX )) ∈ ⊥Ku(X).

By using adjointness, it is easy to see that �(F ⊗ L⊗dX ) ∈ 〈BM, . . . ,BM ⊗
L⊗d−1
M 〉. The adjoint of property (i) shows that, for all i ∈ Z,

�L(BM ⊗ L⊗iM ) = �L(BM)⊗ L⊗iX = BX ⊗ L⊗iX .

Hence

�L(�(F ⊗ L⊗dX )) ∈ 〈BX, . . . ,BX ⊗ L⊗d−1
X 〉 ⊂ ⊥Ku(X),

as we wanted. ��
We can now prove Kuznetsov’s theorem.

Proof of Theorem 2.39 By Lemma 2.40,(4), we can express the (inverse of the)
Serre functor in terms of the functors OKu(X), ρ, and σ . By Lemma 2.38,(1), all
these functors commute. By raising everything to the power d/c, and by using
Lemma 2.40,(5), the statement follows. ��

3 Fano Varieties and Their Kuznetsov Components:
Examples

In this section we present a few examples of non-commutative K3 surfaces. The
basic references are [95, 99, 104]. There are very interesting examples of non-
commutative Calabi-Yau varieties in higher dimension as well; we will not cover
them in these notes and we refer to [79, 80, 98] and references therein.

The general goal could be stated as follows.

Question 3.1 How to construct examples of non-commutative K3 surfaces? Is there
a generalized period map and a (derived) Torelli Theorem? What is the image of the
period map?
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Already the first part of Question 3.1 is not easy to answer. The main issue is that
the only way we have to construct non-commutative K3 surfaces is by embedding
them in some (commutative) Fano variety. Currently, there are a few families which
have been studied. We will present three of them in this section: cubic fourfolds,
Gushel-Mukai manifolds, and Debarre-Voisin manifolds. All of them arise indeed as
Kuznetsov components in the derived category of a certain smooth Fano variety, as
in Theorem 2.39. Other examples, not covered in these notes, are Küchle manifolds
[101]; in such examples, though, a rectangular Lefschetz decomposition is not yet
known and Theorem 2.39 not yet applicable directly.

There is a common theme and expectation that such non-commutative K3
surfaces should contain deep birational properties on the Fano variety itself. We
can then formulate the following question.

Question 3.2 (Kuznetsov) Let W be a Fano fourfold. Assume that W has a
Kuznetsov component Ku(W) which is a non-commutative K3 surface. If W
is rational, then is Ku(W) equivalent to the derived category of a K3 surface?

The above question is not well-defined in general, since there is no invariant
definition yet of what a Kuznetsov component is for a general fourfoldW (see [99,
Section 3]). On the other hand, in the examples we will see (cubic fourfolds and
Gushel-Mukai fourfolds), there is an evident choice for it, and the above question
therefore makes sense.

Question 3.2 also motivates the understanding of when such a Kuznetsov
component is actually equivalent to the derived category of a K3 surface. We can
then formulate the following question, which we are going to answer in the case of
cubic fourfolds (see Theorem 3.7).

Question 3.3 (Addington-Thomas, Huybrechts) Let W be a Fano variety. Assume
that W has a Kuznetsov component Ku(W) which is a non-commutative K3
surface. Is it true that Ku(W) is equivalent to the derived category of a K3
surface if and only if there is a primitive embedding of the hyperbolic lattice
U ↪→ Knum(Ku(W)) in the numerical Grothendieck group ofW?

The hyperbolic lattice U in Question 3.3 has rank 2, is even unimodular and is
defined by the bilinear form

(

0 1
1 0

)

.

It has a very neat interpretation in terms of moduli spaces of objects in Ku(W).
Indeed, the two square-zero classes correspond to skyscraper sheaves and ideal
sheaves of points on the K3 surface. Also, the fact that the two classes have
intersection 1 corresponds to the fact that both are fine moduli spaces. This is the
way we will approach this question in Sect. 5: we will recover the K3 surface as
moduli space of stable objects in Ku(W), and use a universal family to induce the
derived equivalence.
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In this section we will discuss the above questions in three examples. Cubic
fourfolds will be in Sect. 3.1; Gushel-Mukai manifolds in Sect. 3.2; Debarre-Voisin
manifolds in Sect. 3.3. In Sect. 3.4 we review the integral Mukai structure in these
examples, by using topological K-theory, as in [4]. Finally, in Sect. 3.5 we discuss
Torelli-type statements.

Finally, for sake of completeness, we mention that conjecturally all non-
commutative smooth projective varieties are expected to be admissible subcate-
gories in a Fano manifold (we refer to [31, 60, 85, 86, 128] for recent advances
on this conjecture).

Question 3.4 (Bondal) Let D be a non-commutative smooth projective variety.
Does there exists a Fano manifoldW and a fully faithful functor D ↪→ Db(W)?

3.1 Cubic Fourfolds

Let ι : W ↪→ P
5 be a cubic fourfold over K; we assume char(K) �= 2, 3. We denote

by OW(1) the hyperplane section OP5(1)|W .

The Kuznetsov Component We start by using Theorem 2.39 to show that the
Kuznetsov component of a cubic fourfold is a non-commutative K3 surface.

Lemma 3.5 The functor ι∗ : Db(W) → Db(P5) is spherical. The associated
spherical twists are TW = OW(−3)[2] and TP5 = OP5(−3).

Proof All the statements can be checked by using the exact sequence

0→ OP5(−3)→ OP5 → OW → 0

and a direct computation. ��
By using Lemma 3.5 and the semiorthogonal decomposition

Db(P5) = 〈OP5,OP5(1),OP5(2),OP5(3),OP5(4),OP5(5)〉,

it is immediate to check that the compatibilities in Setup 2.35 are met (d = 3 and
m = 6). Hence, we have a semiorthogonal decomposition

Db(W) = 〈Ku(W),OW ,OW(1),OW(2)〉

and, by Theorem 2.39, the Serre functor SKu(W) = [2]. Hence, Ku(W) is a non-
commutative 2-Calabi-Yau category.

We can also compute Hochschild homology of W directly, by using the
Hochschild-Kostant-Rosenberg Theorem, and the Hodge diamond forW :

HH•(W) = K[−2] ⊕K
⊕25 ⊕K[2].
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By Proposition 2.25, the Hochschild homology of Ku(W) is therefore isomorphic
to the one of a K3 surface. Therefore, Ku(W) is an example of a non-commutative
K3 surface.

Pfaffian Cubic Fourfolds Toward understanding both Question 3.2 and Ques-
tion 3.3 for cubic fourfolds, the first example to analyze in detail is the case of
Pfaffian cubic fourfolds. They are all contained in a special divisor in the moduli
space of cubic fourfolds.

Let V be a K-vector space of dimension 6. For i = 2, 4, let Pf(i, V ) be the closed
subset of P( 2V ) consisting of those forms having rank ≤ i. Let L ⊂ P( 2V ) be
a linear subspace of dimension 8. We set

S := Pf(2, V ) ∩ L and W := Pf(4, V ∨) ∩ L⊥.

For a general L, both S and W are smooth: S is a K3 surface of degree 14 and
W a cubic fourfold. We call all cubic fourfolds obtained in this way Pfaffian cubic
fourfolds, and the K3 surface the associated K3 surface.

We define the correspondence

� := {(s,w) ∈ S ×W : s ∩ ker(w) �= 0} ,

with the natural projections pS : � → S and pW : � → W . The above definition
makes sense in view of the observation that Pf(2, V ) = Gr(2, V ) and thus the points
of S are actually 2-dimensional subspaces of V . Moreover, we think of w as a point
of P( 2V ∨) so that ker(w) is also a subspace of V . We remark here that even though
the expected codimension of � is 3 a direct computation shows that it is actually 2.

Proposition 3.6 (Kuznetsov) Let W be a Pfaffian cubic fourfold, and let S be
the associated K3 surface. Then the ideal sheaf I� induces a Fourier-Mukai
equivalence

�I�⊗p∗WOW (1) : Db(S)
∼→Ku(W) ⊂ Db(W).

Proof This is the content of [90, Theorem 2]. We follow the presentation given in
[3, Proposition 3], and we refer there for all details.

The argument goes as follows, under the additional assumption that L is general
(which is enough for our future purposes). In this case, indeed, S does not contain a
line andW does not contain a plane.

Consider two distinct points p1, p2 ∈ S and set �i := p−1
S (pi). Note that �i is

a quartic scroll, for i = 1, 2. Since p1 �= p2, we have that �1 and �2 are distinct.
Indeed, if we identify pi with the subspace it parametrizes, we have p1 ∩ p2 = {0}
because, otherwise, S would contain a line. This implies that if �1 = �2, then the
maps πi : �i → P(pi)mappingw to pi ∩ker(w) would define two different rulings
on �1 = �2. This is not possible.
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To show that � := �I�⊗p∗WOW (1) is fully faithful, one just applies the standard
criterion due to Bondal and Orlov (see, for example, [68, Proposition 7.1]). In
particular, for p1, p2 ∈ S, we have to prove that

dim Hom(�(Op1),�(Op2)[i]) = dim Hom(Op1,Op2 [i]).

A simple computation shows that �(Opi ) = I�i (1). Thus, the equality above can
be rewritten as

dim Hom(I�1(1),I�2(1)[i]) = dim Hom(Op1,Op2 [i]).

The equality is clearly trivial when i < 0. On the other hand, �i has codimension 2
and �1 and �2 are distinct if p1 �= p2. Hence the equality holds for i = 0 as well.
Since the Serre functor of Ku(W) is the shift by 2, the same results holds true for
i = 2. Since χ(I�1,I�2) = 0, the case i = 1 follows as well.

This implies that � is an equivalence, since we observed that Ku(W) is a
connected Calabi-Yau category of dimension 2 and thus cannot have a proper
admissible subcategory. ��

These cubic fourfolds are rational, as proven in [27, Proposition 5 ii)]. The
argument goes as follows. Take V ′ a general codimension 1 linear subspace in V .
The assignment that sends w ∈ W , to ker(w) ∩ V ′ defines a birational map

W ��� P(V ′),

which gives the rationality ofW .

Cubic Fourfolds and K3 Surfaces In Sect. 5, we will develop the theory of moduli
spaces for the Kuznetsov component of a cubic fourfold. This will allow us to give
a complete answer to Question 3.3 for cubic fourfolds:

Theorem 3.7 (Addington–Thomas, Bayer–Lahoz–Macrì–Nuer–Perry–Stellari)
Let W be a cubic fourfold. Then Ku(W) is equivalent to the derived category of
a K3 surface if and only if there is a primitive embedding of the hyperbolic lattice
U ↪→ Knum(W) in the numerical Grothendieck group ofW .

At the lattice level, the conditionU ↪→ Knum(Ku(W)) implies thatW is special,
in the sense of Hassett [66]. Roughly speaking, a cubic fourfold W is special if
H 4(W,Z) ∩ H 2,2(W) contains the class of a surface which is not homologous to
the self-intersection H 2 of a hyperplane class in W . These special cubic fourfolds
organize themselves in divisors of Noether-Lefschetz type.

Theorem 3.7 was first proved by Addington and Thomas in [4] generically on
these divisors. The completion of their result is in [23]. Both results though rely
on Proposition 3.6 (or a variant of it, for cubic fourfolds containing a plane; see
Remark 3.8 below).
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Remark 3.8 An analogous result can be proved, to characterize cubic fourfoldsW
for which Ku(W) is equivalent to Db(S, α), where S is a K3 surface and α is
an element in the Brauer group Br(S) := H 2(S,O∗S )tor of S. Given a twisted K3
surface, i.e., a pair (S, α) as above, we can define the abelian category coh(S, α) of
α-twisted coherent sheaves on S (see [42, Chapter 1] for an extensive introduction).
We set Db(S, α) := Db(coh(S, α)).

Following [95], it is not difficult to construct examples where Ku(W) ∼=
Db(S, α). Indeed, consider a generic cubic fourfold W containing a plane P . Let
P ′ another plane in P

5 which is skew with respect to P . Let πP : W ��� P ′ be the
natural projection from P . Given p ∈ P ′, the preimage π−1

P (p) is the union of P
and a quadricQp. By blowing-up π̃P : ˜W → P ′, we get a quadric fibration. Given
the double nature of ˜W as a blow-up and as a quadric fibration, one can combine
Examples 2.12 and 2.13 and show that Ku(W) ∼= Db(P ′,B0).

Back to the geometric setting and due to the genericity assumption on W , the
quadric Qp is singular if and only if p belongs to a smooth sextic C ⊆ P ′. The
double cover S of P ′ ramified along C is a smooth K3 surface and the quadric
fibration provided by πP yields a natural class α ∈ Br(S). Moreover Db(P ′,B0) ∼=
Db(S, α).

The rephrasing of Theorem 3.7 in the twisted setting is the following. Let W be
a cubic fourfold. Then Ku(W) is equivalent to the derived category of a twisted K3
surface (S, α) if and only if there is a primitive vector v ∈ Knum(Ku(W)) such that
v2 = 0. This was proved generically on Hassett divisors by Huybrechts in [71], and
the completion is in [23].

It should be noted that the condition of having an isotropic vector in
Knum(Ku(W))mentioned above is equivalent to the condition of having a primitive
embedding U(n) ↪→ Knum(Ku(W)). This shows the analogy with the untwisted
case considered in the theorem above. We conclude by observing that a partial result
in the case of cubics containing a plane is in [124].

3.2 Gushel-Mukai Manifolds

In this section, we assume char(K) = 0. Gushel-Mukai manifolds were introduced
and studied in a series of papers [51–53, 55, 78], based on earlier classification
results in [64, 127].

Definition 3.9 A Gushel-Mukai (GM) manifold is a smooth n-dimensional inter-
section

X := Cone(Gr(2, 5)) ∩ P
n+4 ∩Q, 2 ≤ n ≤ 6,

where Cone(Gr(2, 5)) ⊂ P
10 is the cone over the Grassmannian Gr(2, 5) ⊂ P

9 in
its Plücker embedding, Pn+4 ⊂ P

10 is a linear subspace, andQ ⊂ P
n+4 is a quadric

hypersurface.
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The geometry of GM manifolds is very rich and it is the subject of much interest
recently, also due to their similarity (and connections) with cubic fourfolds. We will
only shortly recall the definition of Kuznetsov component for n = 4, 6, and mention
a few results towards Questions 3.2 and 3.3 in these cases, mostly without proofs.
Our main reference is [104], and we refer there for all details.

The Kuznetsov Component We assume n = 4, 6.6 In this caseX is a Fano manifold.
Since X is smooth, the intersection cone(Gr(2, 5)) ∩Q does not contain the vertex
of the cone. Hence, we can consider the projection from the vertex of the cone in
the Grassmannian

f : X→ Gr(2, 5),

which is called the Gushel map.
There are two possibilities for the Gushel map. Either f is an embedding and its

image is a quadric section of a smooth linear section of Gr(2, 5) (in such a case,
we say that the GM manifold is ordinary), or f is a double covering onto a smooth
linear section of Gr(2, 5), ramified along a quadric section (in such a case, we say
that the GM manifold is special, and we denote by τ the involution). In either case,
we denote the smooth linear section byMX .

Lemma 3.10 Let ι : M ↪→ Gr(2, 5) be a smooth linear section of dimension N ≥
3. Then M has a rectangular Lefschetz decomposition with respect to OM(1) :=
OGr(2,5)(1)|M:

Db(M) = 〈BM,BM(1), . . . ,BM(N − 2)〉,

whereBM = {OM,U ∨
M }, UM := UGr(2,5)|M .

Proof This is [91, Theorem 1.2 & Section 6.1] (see also [104, Lemma 2.2]). It
can also be obtained, in an indirect way, from Theorem 2.39; we briefly sketch the
argument. Indeed, assume, for simplicity, thatM has dimension 5. Then, the functor
ι∗ is spherical and compatible with the rectangular Lefschetz decomposition of
Example 2.8. The corresponding Kuznetsov component is Calabi-Yau of dimension
−3. By Propositions 2.25 and 2.28, this is impossible since the Hochschild
homology ofM can be computed and it is concentrated in degree 0. ��
Lemma 3.11 The functor f∗ : Db(X) → Db(MX) is spherical. The associated
spherical twists are TX = OX(−2)[2], TMX = OMX(−2), if X is ordinary, and
TX = τ ◦ OX(−1)[1], TMX = OMX(−1)[−1], if X is special.

Proof This is a direct check; see [98, Proposition 3.4] for the details. ��

6If n = 2, then X is a K3 surface. If n is odd, everything goes through in the same way, but the
Kuznetsov component is an Enriques-type category, with S2 = [4].
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By using Lemma 3.11 and the rectangular Lefschetz semiorthogonal decomposi-
tion ofMX in Lemma 3.10, we can check that the compatibilities of Setup 2.35 are
met.7 Hence, we have a semiorthogonal decomposition

Db(X) = 〈Ku(X),BX,BX(1), . . . ,BX(n− 3)〉,

where BX := f ∗B = 〈OX,U ∨
X 〉. By Theorem 2.39, the Serre functor SKu(X) =

[2].
The Hochscild homology of Ku(X) can been computed, again by using

Proposition 2.25 and the Hochschild-Kostant-Rosenberg Theorem, since the Hodge
diamond of X is known (see [51, 78]; in particular, [104, Proposition 2.9]). It
coincides with the Hochschild homology of a K3 surface. Therefore, Ku(X) is
a non-commutative K3 surface.

Ordinary GM Fourfolds Containing a Quintic del Pezzo Surface The analogous
result of Proposition 3.6 for GM fourfolds is the following (see [104, Theorem 1.2]).

Theorem 3.12 Let X be an ordinary GM fourfold containing a quintic del Pezzo
surface. Then there is a K3 surface S such thatKu(X) ∼= Db(S).

The geometric construction of the K3 surface S in Theorem 3.12 is rather
concrete. In the language of [104], S is a generalized dual of the Gushel-Mukai
fourfoldX. We do not need to be explicit here about this. But it is worth mentioning
that S is a Gushel-Mukai surface (i.e., n = 2 in Definition 3.9).

With a view toward Question 3.2, GM fourfolds as in Theorem 3.12 are actually
rational (see [104, Lemma 4.7]): very roughly, by blowing up a quintic del Pezzo
surface, we get a fibration over P2 whose general fiber is a smooth quintic del Pezzo
surface. Since, by a theorem of Enriques, Manin, and Swinnerton-Dyer, a quintic
Del Pezzo surface defined over an infinite field k is k-rational [150], this shows
rationality over P2, and so rationality of X.

Gushel-Mukai Manifolds and K3 Surfaces In [104] there are many interesting
conjectures on the Kuznetsov components of GM manifolds, in particular related
to duality. In the very recent preprint [100], the generalized duality conjecture [104,
Conjecture 3.7] has been completely solved (see [100, Corollary 9.21]). This gives
an analogue of Theorem 3.12 for GM sixfolds. On the other hand, we still do not
know even a generic answer to Question 3.3 for GM fourfolds.

3.3 Debarre-Voisin Manifolds

Also in this section, we assume char(K) = 0. Debarre-Voisin manifolds were
studied in [54] with the aim of constructing new examples of locally complete

7If n = 4, we have d = 2 and m = 4, for X ordinary, and d = 1 and m = 3, for X special; if
n = 6, we have d = 1 and m = 5.
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families of polarized hyperkähler fourfolds. Their derived categories are less
studied: indeed much less is known with respect to the two previous examples, and
all basic questions are still open.

Let ι : X ↪→ Gr(3, 10) be a smooth linear section. It is a Fano manifold of
dimension 20. We denote by OX(1) the restriction to X of the Plücker line bundle
OGr(3,10)(1). A computation similar to what we saw before, gives:

Lemma 3.13 The functor ι∗ : Db(X) → Db(Gr(3, 10)) is spherical. The associ-
ated spherical twists are TX = OX(−1)[2] and TGr(3,10) = OGr(3,10)(−1).

By using Fonarev’s rectangular Lefschetz decomposition of Example 2.8, the
compatibilities of Setup 2.35 are met (d = 1 and m = 10), and we obtain a
semiorthogonal decomposition

Db(X) = 〈Ku(X),BX, . . . ,BX(8)〉,
where BX := ι∗BGr(3,10) has a strong full exceptional collection of length 12. By
Theorem 2.39, the categoryKu(X) is 2-Calabi-Yau. The Hodge numbers ofX have
been computed in [54, Theorem 1.1]; by using the Hochschild-Kostant-Rosenberg
Theorem again, we have

HH•(X) = K[−2] ⊕K
130 ⊕K[2],

and so Ku(X) is an example of non-commutative K3 surface.
There is no Debarre-Voisin manifold where Question 3.3 have been answered

yet.

3.4 The Mukai Lattice of the Kuznetsov Component

We assume throughout this section that the base field is the complex numbers, K =
C. We introduce a lattice structure in Hochschild homology in the non-commutative
K3 surface examples discussed in the previous sections. This, together with the
Hodge structure, corresponds to the usual Mukai structure for (derived categories of)
K3 surfaces; we refer to [68, Chapter 10] for a summary of results on K3 surfaces.

Topological K-Theory Let D be a non-commutative smooth projective variety. A
general construction of the topological K-theory associated to D is in [32]. In our
setting, this can be introduced in a way more closely related to the usual K-theory
of a complex manifold as follows.

Setup 3.14 Let X be a smooth projective variety over C. We assume that:

• H ∗(X,Z) is torsion-free and H odd(X,Z) = 0;
• there is a semiorthogonal decomposition

Db(X) = 〈DX,E1, . . . , Em〉
with {E1, . . . , Em} an exceptional collection.
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We consider the topological K-theory Ktop(X) of X. In our setup, since
cohomology is torsion-free and odd cohomology vanishes, Ktop(X) = K0

top(X).
This is defined as the Grothendieck group of topological C-vector bundles on X.

The basic properties of topological K-theory in our setup are the following (see
[12, 13]; see also [4, Section 2]):

(1) Ktop(pt) = Z.
(2) Any morphism f : X → Y induces a pull-back morphism f ∗ : Ktop(Y ) →

Ktop(X) and push-forward morphism f∗ : Ktop(X) → Ktop(Y ). There is a
projection formula and a Grothendieck-Riemann-Roch formula. One can also
take tensor products and duals of classes in topological K-theory.

(3) The Mukai vector

v : Ktop(X)→ H ∗(X,Q) v := ch .
√

tdX

is injective and induces an isomorphism over Q. In particular, Ktop(X) is
torsion-free.

(4) The Mukai pairing ( , ) on Ktop(X) is defined as follows. Pick a map
p : X→ pt to a point and define the topological Euler pairing as

χ(v1, v2) := p∗(v∨1 ⊗ v2) ∈ Ktop(pt),

for all v1, v2 ∈ Ktop(X). Notice that, by (1), χ(v1, v2) is an integer. We can
now set ( , ) := −χ( , ).

(5) Consider the following modification of the Hochschild-Konstant-Rosemberg
isomorphism introduced in Remark 2.24:

IXK := (td(X)−1/2	(−)) ◦ IXHKR,

where td(X)−1/2	(−) denotes the contraction by td(X)−1/2. We can then take
the following sequence of morphisms

Ktop(X) ↪→ Ktop(X)⊗ C
v−→ H ∗(X,C)

(IXK )
−1

−→ HH∗(X),

where v denotes here the C-linear extension of the Mukai vector. The composi-
tion above is compatible with the various Mukai pairings defined on topological
K-theory, singular cohomology and Hochschild homology. Indeed v preserves
the Mukai pairing by Grothendieck-Riemann-Roch for complex vector bundles
while IXK does the same by [145].

Now let X1 and X2 be smooth projective varieties over C and let P ∈
Db(X1 × X2). Consider the Fourier-Mukai functor �P ( ) := (p2)∗(P ⊗
p∗1( )) : Db(X1) → Db(X2). Since, by (2), pull-back, push-forward and
tensorization induce compatible morphisms (�P )K and (�P )H at the level of
(topological) K-theory and singular cohomology (with Q coefficients), we can
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consider the following diagram:

Db(X1)

P

[ ]
K(X1)

P )K

Ktop(X1)
v

P )K

H ∗(X1,Q)
(I

X1
K )−1

P )H

HH∗(X1)

P )HH

Db(X2)
[ ]

K(X2) Ktop(X2)
v

H ∗(X2,Q)
(I

X2
K )−1

HH∗(X2).

(3)

Lemma 3.15 All squares in (3) are commutative.

Proof The commutativity of the first three squares on the left follows directly by
the definition of the induced morphisms. The commutativity of the rightmost square
is proved in [118, Theorem 1.2]. ��

The induced morphism (�P )H is compatible with the Hodge structure on
H ∗(Xi,Q) induced by the isomorphisms IXiK between the total cohomology groups
and the Hochschild homologies HH∗(Xi).

Definition 3.16 Assume we are in Setup 3.14. We define the topological K-theory
of DX as

Ktop(DX) :=
{

u ∈ Ktop(X) : ([Ei], u) = 0, for all i = 1, . . . ,m
}

.

Now let X1 and X2 be as in Setup 3.14 and let � : DX1 → DX2 be a Fourier-
Mukai functor. In this setting, it is not hard to show that we can rewrite (3) in the
following way:

X1 K( X1)

K

Ktop( X1)

K

HH∗( X1)

HH

X2 K( X2) Ktop( X2) HH∗( X2).

The Mukai and Hodge structures in the above diagram are compatible as well.
Finally, the Mukai structure is invariant under deformations. More precisely, let

C be a smooth quasi-projective curve over C, and let g : X → C be a smooth
projective morphism. We let E1, . . . ,Em ∈ Db(X ) be families of exceptional
objects and we assume we have a C-linear semiorthogonal decomposition8

Db(X ) = 〈DX ,E1 ⊗Db(C), . . . ,Em ⊗ Db(C)〉.

8In our smooth setting, C-linearity simply means that each semiorthogonal factor is closed under
tensorization by pull-backs of objects from Db(C).

andreas.hochenegger@unimi.it



232 E. Macrì and P. Stellari

By [96], for each closed point c ∈ C, we have a semiorthogonal decomposition

Db(Xc) = 〈DXc
,E1|c, . . . ,Em|c〉.

We assume that each closed fiber Xc and the above semiorthogonal decomposition
are as in Setup 3.14. Then, since topological K-theory is invariant by smooth
deformations, we have the following result.

Lemma 3.17 In the above notation and assumptions, we have that the topological
K-theory Ktop(DXc

) and its Mukai structure are invariant as c ∈ C varies. In
particular, if there exists c0 ∈ C and a smooth projective K3 surface S such that
DXc0

∼= Db(S), we have Ktop(DXc
) ∼= ˜ := E8(−1)⊕2 ⊕ U⊕4 as lattice, for all

c ∈ C.
Examples LetW be a cubic fourfold defined over C. SinceW can be deformed to a
Pfaffian cubic fourfoldW ′ and we proved in Proposition 3.6 that Ku(W ′) ∼= Db(S),
for S a smooth projective K3 surface, Lemma 3.17 implies that Ktop(Ku(W)),
endowed with the Mukai pairing, is isometric to the K3 lattice ˜ .

The lattice Ktop(Ku(W)) has a weight-2 Hodge structure coming from
Hochschild homology; explicitly, it can be defined in terms of the weight-4 Hodge
structure on H 4(W,Z):

˜H 2,0(Ku(W)) := v−1(H 3,1(W))

˜H 1,1(Ku(W)) := v−1

⎛

⎝

4
⊕

p=0

Hp,p(W)

⎞

⎠

˜H 0,2(Ku(W)) := v−1(H 1,3(W)).

The lattice together with the Hodge structure is called the Mukai lattice of
Ku(W) and denoted by ˜H(Ku(W),Z). We set

˜HHodge(Ku(W),Z) := ˜H(Ku(W),Z) ∩ ˜H 1,1(Ku(W))

˜Halg(Ku(W),Z) := Knum(Ku(W)).

We will see later in Theorem 5.11 that we have ˜HHodge(Ku(W),Z) =
˜Halg(Ku(W),Z). This will imply the integral Hodge conjecture holds for cubic
fourfolds (see Proposition 5.17).

Example 3.18 Let (S, α) be a twisted K3 surface. Then the total cohomology
H ∗(S,Z) is endowed with a Mukai pairing and a weight-2 Hodge structure which
depends on a lift to H 2(S,Q) of α (see, for example, [74]). This lattice with this
Hodge structure is called the Mukai lattice and it is denoted by ˜H(S, α,Z). When α
is trivial we simply write ˜H(S,Z) and we have that ˜H 2,0(S) = H 2,0(S), ˜H 0,2(S) =
H 0,2(S)while ˜H 1,1(S) = H 0(S,C)⊕H 1,1(S)⊕H 4(S,C). If Ku(W) ∼= Db(S, α),
then the two integral Hodge structures coincide.
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Remark 3.19 Consider the projection functor δ : Db(W) → Ku(W) and fix any
line L ⊂ W (as we will see later, there is always a 4-dimensional family of lines in
a cubic fourfold). Define

λ1 := v(δ(OL(1)) λ2 := v(δ(OL(2)).

This vectors generate a primitive positive definite sublattice

A2 =
(

2 −1
−1 2

)

⊂ ˜HHodge(Ku(W),Z)

This embedding ofA2 moves in families. We should think of this primitive sublattice
as the choice of a lattice polarization on Ku(W): we will return to this when
defining Bridgeland stability conditions on Ku(W). By [4, Proposition 2.3] we
have a Hodge isometry

〈λ1,λ2〉⊥ ∼= H 4
prim(W,Z)(−1), (4)

whereH 4
prim(W,Z) is the orthogonal complement of the self-intersection of a hyper-

plane class. By the Local Torelli theorem (see [158, Section 6.3.2]), it follows that
the very general cubic fourfoldW has the property that A2 = ˜HHodge(Ku(W),Z).

Remark 3.20 A direct computation shows that the discriminant group of A2 is the
cyclic group Z/3Z. Thus [130, Theorem 1.6.1 and Corollary 1.5.2] implies that
any autoisometry of A2 extends to an autoisometry of ˜H(Ku(W),Z). Viceversa,
the same results from [130] yield that any autoisometry of the orthogonal A⊥2 in
˜H(Ku(W),Z) extends to an autoisometry of the Mukai lattice.

Example 3.21 For a cubic fourfold W , we can consider the autoequivalence
OKu(W). Its action on ˜H(Ku(W),Z) was investigated in [71, Proposition 3.12]. In
particular, (OKu(W))H fixes the sublattice A2 and cyclicly permutes the elements
λ1, λ2 and −λ1 − λ2. On the other hand, (OKu(W))H acts as the identity on
H 4

prim(W,Z).

As we observed in Example 3.18, an equivalence Db(S) ∼= Ku(W) induces a
Hodge isometry ˜H(S,Z) ∼= ˜H(Ku(W),Z). If such a Hodge isometry exists, we
say thatW has a Hodge theoretically associated K3 surface. Notice that ifW has an
Hodge theoretically associated K3 surface S, then the copy of the hyperbolic lattice
generated by H 0(S,Z) and H 4(S,Z) embeds primitively in Knum(Ku(W)) ⊆
˜HHodge(Ku(W),Z). A simple application of [130, Theorem 1.6.1 and Corollary
1.5.2] shows that the converse is also true. Namely, if there is a primitive embedding
U ↪→ Knum(Ku(W)), then W has a Hodge theoretically associated K3 surfaces.
All in all, these two conditions are equivalent.

If X is a Gushel-Mukai manifold, Theorem 3.12 (for fourfolds; in the six-
folds case, this is [100, Corollary 9.21]) implies that X can be deformed to a
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Gushel-Mukai manifold X′ such that Ku(X′) ∼= Db(S), for a S a K3 surface.
Hence the discussion above can be repeated for Gushel-Mukai manifolds. For
Debarre-Voisin manifolds, this is not yet known even though it is expected to
hold true as well. Moreover, in the case of Gushel-Mukai fourfolds, the concept
of Hodge theoretically associated K3 surfaces is slightly different though from the
case of cubic fourfolds. Indeed, these are special in the sense of [55], and clearly
˜H(S,Z) ∼= ˜H(Ku(X),Z) is still equivalent to the conditionU ↪→ Knum(Ku(X)).
But, contrary to the cubic fourfolds case, having a Hodge theoretically associated
K3 surface may not be divisorial for GM fourfolds, as observed in [143, Section
3.3].

3.5 Derived Torelli Theorem

Let us go back to the case of a twisted K3 surface (S, α). The total cohomology
H ∗(S,R) comes with an orientation provided by the four positive (with respect to
the Muaki pairing) vectors

v1 := (0, ω, 0) v2 :=
(

1, 0,−ω
2

2

)

v3 := Reψ v4 := Imψ,

where ω is a positive real multiple of an ample line bundle and ψ is a generator of
H 2,0(S).

Remark 3.22 In the language of stability conditions that will be introduced in
Sect. 4, the choice of v1 and v2 correspond to the choice of a stability condition
in a connected component of the space of stability conditions of Db(S). Note that
this space is expected to be connected.

The following result was first proved by Orlov in his seminal paper [135] (with
the addition of [77]) and in [74, 75, 146] for twisted K3 surfaces:

Theorem 3.23 (Derived Torelli Theorem for K3 Surfaces) Let (S1, α1) and
(S2, α2) be twisted K3 surfaces. Then the following are equivalent:

(1) There exists an equivalence Db(S1, α1) ∼= Db(S2, α2);
(2) There exists an orientation preserving Hodge isometry ˜H(S1, α1,Z) ∼=

˜H(S2, α2,Z).

To formulate a similar result in the context of non-commutative K3 surfaces
arising in one of the three classes of examples discussed above, we need to specify
an orientation on ˜H(Ku(X),Z), where X is either a cubic fourfold or a Gushel-
Mukai manifold or a Debarre-Voisin manifold.

Inspired by Remark 3.22 we could proceed as follows. Assume that Ku(X)
has a stability condition σ . Then ˜H(Ku(X),Z) contains four positive directions
spanned by the real and imaginary part of the central charge Z of σ and the real
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and imaginary part of a generator of ˜H 2,0(Ku(X)). We can then formulate the
following natural question:

Question 3.24 (Huybrechts) Let X1 and X2 be either cubic fourfold or Gushel-
Mukai manifold or Debarre-Voisin manifold. Is it true that there exists a Fourier-
Mukai equivalence Ku(X1) ∼= Ku(X2) if and only if there is an orientation
preserving Hodge isometry ˜H(Ku(X1),Z) ∼= ˜H(Ku(X2),Z)?

A positive answer would give a non-commutative version of Theorem 3.23.
This would lead us to explore the relations between the existence of equivalences
between the Kuznetsov components and the birational type of the fourfolds:

Question 3.25 (Huybrechts) LetX1 andX2 be fourfolds as above. Is it true that the
existence of a Fourier-Mukai equivalence Ku(X1) ∼= Ku(X2) implies that X1 and
X2 are birational?

In the case of a cubic fourfoldW , the above discussion about orientation can be
made very precise, since ˜Halg(Ku(W),Z) always contains a copy of the positive
definite lattice A2. Together with the real and imaginary part of a generator of
˜H 2,0(Ku(W)) this lattice provides a natural orientation on the Mukai lattice of
Ku(W).

Remark 3.26 It was observed in [71, Lemma 2.3] that the Mukai lattice
˜H(Ku(W),Z) is always endowed with an orientation reversing Hodge isometry.
A way to construct this is by taking the isometry of A2 such that λ1 �→ −λ1 while
λ2 �→ λ1+λ2. By Remark 3.20, this extends to a Hodge isometry of ˜H(Ku(W),Z)
which changes the orientation. Another more geometric way of describing such an
orientation reversing Hodge isometry is by taking the action induced on the Mukai
lattice by the autoequivalence of Ku(W) obtained by taking the dualizing functor
D( ) = RH om( ,OW) (post)composed with the tensorization by OW(1).

For cubic fourfolds, Question 3.24 has the following (partial) answer which is a
slightly more precise version of items (i) and (ii) of [71, Theorem 1.5].

Theorem 3.27 (Non-commutative Derived Torelli) Let W1 and W2 be cubic
fourfolds such that either W1 is very general or ˜HHodge(Ku(W1),Z) contains a
primitive vector v with v2 = 0. Then the following are equivalent:

(1) There exists a Fourier-Mukai equivalenceKu(W1) ∼= Ku(W2);
(2) There exists a Hodge isometry ˜H(Ku(W1),Z) ∼= ˜H(Ku(W2),Z) which is

orientation preserving.

Proof Condition (1) implies (2) in full generality, without the assumptions men-
tioned in the statement. Indeed, we observed in the previous section that a
Fourier-Mukai equivalence Ku(W1) ∼= Ku(W2) induces an Hodge isometry
˜H(Ku(W1),Z) ∼= ˜H(Ku(W2),Z). In case it is not orientation preserving, we can
apply Remark 3.26.

Assume (2). If W1 is very general, then ˜HHodge(Ku(W1),Z) = A2, and so
the same holds for W2. By Eq. (4) the lattices H 4

prim(Wi,Z) are the orthogonal
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complements ofA2. Thus, we get a Hodge isometryH 4
prim(W1,Z) ∼= H 4

prim(W2,Z).
The Torelli theorem for cubic fourfolds mentioned in the introduction and reproved
later in the last section (see Theorem 5.21), implies then that W1 ∼= W2. Hence, in
particular, there is a Fourier-Mukai equivalence Ku(W1) ∼= Ku(W2).

If ˜HHodge(Ku(W),Z) contains a primitive vector v with v2 = 0, then, by
Theorem 3.7 and Remark 3.8, there is a Fourier-Mukai equivalence Ku(W) ∼=
Db(S, α), for some twisted K3 surface (S, α). The fact that (2) implies (1) is
then an easy application of Theorem 3.23, as the orientation preserving Hodge
isometry ˜H(Ku(W1),Z) ∼= ˜H(Ku(W2),Z) yields an orientation preserving
Hodge isometry ˜H(S1, α1,Z) ∼= ˜H(S2, α2,Z). ��

Huybrechts’ result [71, Theorem 1.5] has an additional part proving that the
equivalence between (1) and (2) in Theorem 3.27 holds also for general points in
the divisors of the moduli space C of cubic fourfolds parameterizing special cubic
fourfolds.

Remark 3.28 The tight analogy between Kuznetsov components of cubic fourfolds
and K3 surfaces, suggests that the number of isomorphisms classes of cubic
fourfolds with equivalent Kuznetsov components (with the equivalence given by a
Fourier-Mukai functor) should be finite. Indeed, for K3 surfaces such a finiteness
result is due to Bridgeland and Maciocia [39, Corollary 1.2] (and extended in
[74, Corollary 4.6] to twisted K3 surfaces). For Kuznetsov components, the same
statement is proved in [71, Theorem 1.1]. Notice that the number of isomorphism
classes of cubic fourfolds with equivalent Kuznetsov components can be arbitrarily
large [142]. The same holds for (twisted) K3 surfaces [74, 132, 152].

In the presence of well defined period maps, we could wonder if for two
manifolds X1 and X2 which are either cubic or Gushel-Mukai or Debarre-Voisin,
the following two conditions are equivalent:

(1) There exists a Fourier-Mukai equivalence Ku(X1) ∼= Ku(X2) commuting
with OKu(X1) and OKu(X2);

(2) X1 and X2 are points of the same fibre of the period map.

If X1 and X2 are cubic fourfolds, this is true and reduces once more to the Torelli
Theorem. This will be explained in Theorem 5.20.

4 Bridgeland Stability Conditions

In this section we give a short review on the theory of Bridgeland stability
conditions, with a particular emphasis on the case of non-commutative K3 surfaces.
The main references are still the original works [37, 38, 88]. There are also lecture
notes on the subject; see, for example, [15, 69, 117].
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4.1 Definition and Bridgeland’s Deformation Theorem

Let D be a non-commutative smooth projective variety. The first ingredient in
Bridgeland stability condition is the notion of bounded t-structures. We will actually
only define what a heart of a bounded t-structure is; in view of [37, Lemma 3.2], this
definition uniquely determines the bounded t-structure.

Definition 4.1 A heart of a bounded t-structure in D is a full subcategory A ⊂ D
such that

(a) for E,F ∈ A and n < 0 we have Hom(E, F [n]) = 0, and
(b) for every E ∈ D there exists a sequence of morphisms

0 = E0
ϕ1−→ E1 → . . .

ϕm−→ Em = E

such that the cone of ϕi is of the form Ai[ki] for some sequence k1 > k2 >

· · · > km of integers and objects Ai ∈ A .

If D = Db(X), where X is a smooth projective variety, then coh(X) ⊂ Db(X)

satisfies the axioms above and thus it is the heart of a bounded t-structure. Other
more elaborate ways of constructing these subcategories are discussed in Sect. 4.3.
The heart of a bounded t-structure is always an abelian category.

Definition 4.2 Let  be a finite rank free abelian group and let v : K(D) �  

be a surjective group homomorphism. A Bridgeland stability condition on D (with
respect to the pair ( , v)) is a pair σ = (A , Z) consisting of the heart of a bounded
t-structure A ⊂ D and a group homomorphismZ :  → C (called central charge)
such that:

(a) For every 0 �= A ∈ A , Z(A)9 lies in the extended upper-half plane, i.e.,
Im(Z(A)) ≥ 0 and if Im(Z(A)) = 0, then Re(Z(A)) < 0 (we say that Z is
a stability function).

(b) The function Z allows one to define a slope by setting μσ := − ReZ
ImZ and a

notion of stability: An object 0 �= E ∈ A is σ -semistable if for every proper
subobject F , we have μσ (F ) ≤ μσ (E). We then require any object A of A
to have a Harder-Narasimhan filtration (HN filtration, for short) in semistable
ones. This means that there is a finite sequence of monomorphisms in A

0 = E0 ↪→ E1 ↪→ · · · ↪→ En−1 ↪→ En = A

such that the factors Fj = Ej/Ej−1 are μσ -semistable and

μσ (F1) > μσ (F2) · · · > μσ (Fn).

9We abuse notation and denote Z(v(A)) by Z(A). We use the identifications K(A ) = K(D).
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(c) Finally, σ satisfies the support property: There exists a quadratic form Q on
 ⊗R such thatQ|KerZ is negative definite, andQ(E) ≥ 0, for all σ -semistable
objects E ∈ A .

For an objectE ∈ A , the semistable objects in the filtration in Definition 4.2,(b)
are called Harder-Narasimhan factors (HN factors, for short). The definition of
semistable object can be extended to objects in D : we say that an object F ∈ D
is σ -semistable if F = E[n], for E ∈ A σ -semistable and n ∈ Z. We can also
define the phase of a semistable object as follows: for E ∈ A σ -semistable, we set
ϕ(E) := 1

π
arg(Z(E)) ∈ (0, 1] and ϕ(E[n]) = ϕ(E) + n. The subcategory given

by the union of σ -semistable objects in D gives a slicing of D (this is important,
but we will not need this explicitly in these notes; see [37, Section 3]). Finally,
Harder-Narasimhan filtrations can be defined for any non-zero object E ∈ D , by
combining the two filtrations in Definition 4.2,(b) and in Definition 4.1,(b). We
set ϕ+σ (E), respectively ϕ−σ (E), as the largest, respectively smallest, phase of the
Harder-Narasimhan factors of E.

We denote by Stab( ,v)(D) the set of stability conditions on D as in the above
definition. To simplify the notation, we often write Stab (D) or Stab(D) when  
and/or v are clear. This set is actually a topological space: the topology is given by
the coarsest one such that, for any E ∈ D , the maps

Z : (A , Z) �→ Z, (A , Z) �→ ϕ+(E), (A , Z) �→ ϕ−(E)

are continuous. More explicitly this topology is induced by the generalized (i.e.,
with values in [0,+∞]) metric

d(σ1, σ2) = sup
0 �=E∈D

{|ϕ+σ1
(E)− ϕ+σ2

(E)|, |ϕ−σ1
(E)− ϕ−σ2

(E)|, ‖Z1 − Z2‖
}

,

for σ1, σ2 ∈ Stab (D). Here ‖ ‖ denotes the induced operator norm on
Hom( ,C), with respect to the choice of any norm in  .

The key result in the theory of stability conditions is Bridgeland Deformation
Theorem. This is the main result of [37].

Theorem 4.3 (Bridgeland) The continuousmapZ is a local homeomorphism and
thus the topological space Stab (D) has a natural structure of a complex manifold
of dimension rk( ).

By acting on the central charge by a linear transformation, we have an action
of C (or more generally of the universal cover of GL+2 (R)) on Stab(D). By using
this action, the proof of Theorem 4.3 reduces to study deformations of the central
charge Z with Im(Z) constant; in this case, the heart is also constant. Then the
result follows from an elementary convex geometry argument. This is explained in
full detail in [16]. The role of the support property and an effective deformation
statement is discussed also in [22, Appendix A].
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If we fix v ∈  , then by using the support property there is a locally-finite set of
walls (real codimension one submanifolds with boundary) in Stab (D) where the
set of semistable objects with class v changes.

Definition 4.4 Let v ∈  . A stability condition σ is called generic with respect to
v (or v-generic) if it does not lie on a wall for v.

The main open problem in the theory is the lack of examples. While the surface
case is now well-understood [10, 18, 38, 155], starting from threefolds the theory
becomes quite scarce. In fact, for a long time no example of a stability condition was
known for a projective Calabi-Yau threefold. The first Calabi-Yau examples were
finally produced in [22, 115, 116]; the case of quintic threefolds has been recently
addressed in [109].

A conjectural approach to construct stability condition is via the notion of tilt-
stability [21, 22]. This is a weak stability condition, and we recall here the definition
and the main example: we will use this to construct Bridgeland stability conditions
on non-commutative K3 surfaces.

Definition 4.5 A weak stability condition on D is a pair σ = (A , Z) consisting of
the heart of a bounded t-structure A ⊂ D and a group homomorphism Z :  → C

satisfying (b), (c) in Definition 4.2 and such that

(a’) for E ∈ A , we have ImZ(E) ≥ 0, with ImZ(E) = 0⇒ ReZ(E) ≤ 0.

Example 4.6 Let X be a smooth projective variety of dimension n and with an
ample class H . Consider the lattice  1

H generated by the vectors

(Hn rk(E),Hn−1 · ch1(E)) ∈ Q
⊕2,

for all E ∈ coh(X). Set Zslope(E) := −Hn−1 · ch1(E) + iHn rk(E). It is easy to
verify that the pair σslope := (coh(X),Zslope) is a weak stability condition. Note that
since  1

H has rank 2, the support property trivially holds.
The slope associated to σslope is the classical slope stability for sheaves. Hence,

by the Bogomolov-Gieseker inequality, we have

�H(E) =
(

Hn−1 ch1(E)
)2 − 2

(

Hn ch0(E)
)

(

Hn−2 ch2(E)
)

≥ 0, (5)

for all σslope-semistable sheaves E.

4.2 Bridgeland’s Covering Theorem

Let D be a non-commutative K3 surface such that Knum(D) is finitely generated.
Set  = Knum(D). Consider the natural surjection v : K(D) �  and the Mukai
pairing ( , ) given by

(v(E), v(F )) = −χ(E,F ).
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Example 4.7 If S is a K3 surface, then we have an identification  = ˜Halg(S,Z),
and v is the Mukai vector. Similarly, if D = Ku(W), forW a cubic fourfold, then
 = ˜Halg(Ku(W),Z), and v is as well the Mukai vector.

Under our assumptions, the pairing ( , ) yields a natural identification between
the vector spaces Hom( ,C) and  ⊗ C. In other words, the continuous maps
Z : Stab (D)→ Hom( ,C) can be rewritten as a continuous map

η : Stab (D)→  ⊗ C,

such that, for all σ = (A , Z) ∈ Stab (D), we have Z( ) = (η(σ ), ).
Following [38], we define P ⊂  ⊗ C as the open subset consisting of those

vectors whose real and imaginary parts span positive-definite two-planes in  ⊗R.
Set

P0 :=P \
⋃

δ∈�
δ⊥,

where� := {δ ∈  : (δ, δ) = −2}.
Theorem 4.8 (Bridgeland’s Covering) If η−1(P0) is non-empty, then the restric-
tion

η : η−1(P0)→P0

is a covering map.

The proof is an application of Theorem 4.3. The actual statement is [16, Corollary
1.3] (based on [38, Proposition 8.3]).

Notice that P0 has two connected components. It is expected that the image
im(η) is contained in only one connected component of P0 and that η−1(P0) is
connected and simply-connected as well. This is known only for generic analytic
K3 surfaces (and some generic twisted K3 surfaces) [76]; in the algebraic case, the
strongest evidence is [17]. This is related to the choice of an orientation, as discussed
in Remark 3.22.

Example 4.9 Let S be a K3 surface. We let P+
0 be the connected component of

P0 containing vectors of the form (1, 0,−ω2

2 ) + i(0, ω, 0), where ω is a positive
real multiple of an ample line bundle. The main result of [38] shows that there
exist stability conditions on Db(S) for which skyscraper sheaves are all stable of the
same phase. They are all contained in the same connected component, denoted by
Stab†(Db(S)). Moreover, Stab†(Db(S)) ⊂ η−1(P+

0 ). The proof is by using tilting
of coherent sheaves: we will recall this construction in the next section.
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4.3 Tilting and Examples

The aim of this section is to describe a way to produce (weak) stability condition by
an iteration process based on tilting.

Let D be a non-commutative smooth projective variety and assume that we are
given a weak stability condition σ = (A , Z) on D . Let μ ∈ R. Consider the
subcategories of A defined as follows:

T μ
σ = {E : All HN factors F of E have slope μσ (F ) > μ}
= 〈E : E is σ -semistable with μσ (E) > μ〉,

Fμ
σ = {E : All HN factors F of E have slope μσ (F ) ≤ μ}
= 〈E : E is σ -semistable with μσ (E) ≤ μ〉,

where 〈 〉 denotes the extension closure. This notation will be used only in this
section where there is no risk to confuse this with semiorthogonal decompositions.

The general theory of torsion pairs and tilting allows us to produce a new abelian
category in D which is the heart of a bounded t-structure:

Proposition 4.10 Given a weak stability condition σ = (Z,A ) and a choice of
slope μ ∈ R, the category

A μ
σ = 〈T μ

σ ,F
μ
σ [1]〉

is the heart of a bounded t-structure on D .

The proof is a direct check; see [65]. We will refer to A μ
σ as the tilting of A with

respect to the weak stability condition σ at the slope μ. When σ is clear, we will
sometimes just write A μ.

Let us now consider the case D = Db(X), whereX is a smooth projective variety,
and fix a hyperplane section H on X. By Example 4.6, we have the weak stability
condition σslope and, given β ∈ R, we can consider the tilt

cohβ(X) := (cohσslope(X))
β ⊆ Db(X).

We want now to go further and define a new weak stability condition whose heart
is cohβ(X). To this extent, for E ∈ coh(X), set

chβ(E) = e−βH ch(E) ∈ H ∗(X,R).

We take  2
H to be the lattice generated by the vectors

(Hn rk(E),Hn−1 · ch1(E),H
n−2 · ch2(E)) ∈ Q

⊕3,
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for all E ∈ coh(X). The classical Bogomolov inequality (5) defines a quadratic
inequality on 2

H , and it is the key ingredient in the following result:

Proposition 4.11 Given α > 0, β ∈ R, the pair σα,β = (cohβ(X),Zα,β) with
cohβ(X) as constructed above, and

Zα,β(E) := 1

2
α2Hnchβ0 (E)−Hn−2chβ2 (E)+ iHn−1chβ1 (E)

defines a weak stability condition on Db(X) with respect to 2
H . The quadratic form

Q can be given by �H . Moreover, these stability conditions vary continuously as
(α, β) ∈ R>0×R varies. Finally, if dim(X) = 2, then σα,β is a Bridgeland stability
condition on Db(X).

Proposition 4.11 was observed in the case of surfaces in [10, 38]. The higher
dimensional version is in [21, 22]. When the choice of α and β are irrelevant, we
will refer to the weak stability condition σα,β as tilt stability.

In the applications to cubic fourfolds, we will need to tilt cohβ(X) once more,
where X will be some non-commutative Fano threefold. To this end, the only thing
we will need is to define the analogue of the action of C on the central charge for
tilt-stability, as for Bridgeland stability.

Consider the weak stability condition σα,β on Db(X) as in Proposition 4.11. Let
μ ∈ R. By Proposition 4.10, we get that

cohμα,β(X) := (cohβ(X))μσα,β .

is the heart of a bounded t-structure. Let u ∈ C be the unit vector in the upper half
plane with μ = − 1(u)Im(u) and consider the function

Z
μ
α,β :=

1

u
Zα,β.

Then we have:

Proposition 4.12 The pair (cohμα,β(X),Z
μ
α,β) is a weak stability condition on

Db(X).

Proposition 4.12 was observed implicitly in [21]; the above statement is [24,
Proposition 2.14].

4.4 Inducing Stability Conditions

In this last section, we discuss how stability conditions combine with semiorthogo-
nal decompositions. We follow [24, Sections 4 & 5].

andreas.hochenegger@unimi.it



Non-commutative K3 Surfaces, Bridgeland Stability, and Moduli Spaces 243

Let D be a non-commutative smooth projective variety. Let E1, . . . , Em be an
exceptional collection; set D2 := 〈E1, . . . , Em〉 and D1 = D⊥2 , so that we have a
semiorthogonal decomposition

D = 〈D1,D2〉.

Proposition 4.13 Let σ = (A , Z) be a weak stability condition on D with the
following properties:

(1) Ei ∈ A ,
(2) SD (Ei) ∈ A [1], and
(3) Z(Ei) �= 0,

for all i = 1, . . . ,m. Assume moreover that there are no objects 0 �= F ∈ A1 :=
A ∩D1 with Z(F) = 0 (i.e., Z1 := Z|K(A1) is a stability function onA1). Then the
pair σ1 = (A1, Z1) is a stability condition on D1.

This is [24, Proposition 5.1]. In what follows we sketch why A , under the above
assumptions, induces the heart A1 of a bounded t-structure on D1.

Lemma 4.14 Let A ⊂ D be the heart of a bounded t-structure. Assume that
E1, . . . , Em ∈ A and Hom(Ei, F [p]) = 0, for all F ∈ A , i = 1, . . . ,m, and
p > 1. Then A1 := D1 ∩A is the heart of a bounded t-structure on D1.

Proof The category A1 satisfies condition (a) in Definition 4.1, since it holds for
A ; hence, we only need to verify (b).

Consider F ∈ D1. For every i = 1, . . . ,m, there is a spectral sequence ([29,
(3.1.3.4)]; see also [133, Proposition 2.4])

E
p,q
2 = Hom(Ei,H

q

A (F )[p])⇒ Hom(Ei, F [p + q]).

By assumption, these terms vanish except for p = 0, 1, and thus the spectral
sequence degenerates at E2. On the other hand, since F ∈ D1 = D⊥2 we have
Hom(Ei, F [p+ q]) = 0. Therefore, Hom(Ei,H

q

A (F )[p]) = 0, for all p ∈ Z. This
gives that HqA (F ) ∈ A ∩D1 = A1, and so it proves the claim. ��
Sketch of the Proof of Proposition 4.13 To induce the heart A1 we only need to
verify the assumptions of Lemma 4.14. For all i = 1, . . . ,m, p > 1, and F ∈ A ,
we have

Hom(Ei, F [p]) = Hom(F [p], SD (Ei))∨ = Hom(F, SD (Ei)[−p])∨ = 0,

since SD (Ei) ∈ A [1]. ��
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5 Cubic Fourfolds

The goal of this section is to present the main results in [23, 24]. First of all,
for a cubic fourfold W , we show the existence of Bridgeland stability conditions
on Ku(W) (Theorem 5.5) and describe a connected component of the space of
stability conditions (Theorem 5.7). Then we study moduli spaces of stable objects
and we generalize the Mukai theory to the non-commutative setting; the main result
is Theorem 5.11. Finally, in Sect. 5.4, we explain how to give a uniform setting to
study the various interesting hyperkähler manifolds associated to a cubic fourfolds
(e.g., the Fano variety of lines or the hyperkähler manifolds constructed by using
twisted cubics). As consequences, we also get new proofs of the Torelli theorem
(C.1) and the integral Hodge conjecture for cubic fourfolds.

The basic idea to construct stability conditions is to induce stability conditions
as in Sect. 4.4. The problem is that we are currently not able to do this directly from
the derived category of the cubic fourfold. Instead, we use its structure of conic
fibration (see Sect. 5.1), to reduce to a (non-commutative) projective space, where
this inducing procedure works. The key technical result is a generalization of the
Bogomolov-Gieseker inequality (Theorem 5.3) to this non-commutative setting.

5.1 Conic Fibrations

In this section we assume that char(K) �= 2. Let W be a cubic fourfold and let
L ⊆ W be a line not contained in a plane inW .10 We consider the projection

πL : W ��� P
3

from L to a skew three-dimensional projective space in P
5. Let σ : ˜W :=

BlL(W) → W be the blow-up of W along L. The rational map πL yields a conic
fibration

π̃L : ˜W → P
3.

We use the following notation for divisor classes in ˜W : h is the pull-back of a
hyperplane section on P

3, H is the pull-back of a hyperplane section on W , and
the exceptional divisor D of the blow-up has the formD = H − h.

10Note that such a line always exists as the family of lines in a smooth cubic fourfold are four-
dimensional by [27]. On the other hand, such an hypersurface can contain only a finite number of
planes.

andreas.hochenegger@unimi.it



Non-commutative K3 Surfaces, Bridgeland Stability, and Moduli Spaces 245

As explained in Example 2.12, the conic fibration structure produces a sheaf B0
of even parts of Clifford algebras on P

3 and a semiorthogonal decomposition

Db(˜W) = 〈�(Db(P3,B0)),O˜W(−h),O˜W ,O˜W(h),O˜W(2h)
︸ ︷︷ ︸

π̃∗L Db(P3)

〉. (6)

The Serre functor SB0 of the non-commutative smooth projective variety
Db(P3,B0) has the form

SB0( ) = ⊗B0 B−3[3]
(see [24, Section 7]).

On the other hand, by Example 2.13 (and after some simple mutations), the blow-
up structure gives a semiorthogonal decomposition

Db(˜W) = 〈σ ∗Ku(W),O
˜W(h−H),O˜W ,O˜W (h),O˜W (H),OD(h),O˜W (2h),O˜W (H + h)〉.

(7)

If one compares (7) and (6) and perform some elementary mutations and
adjunctions, one sees that Ku(W) embeds into Db(P3,B0) together with three
more exceptional objects in (7). The precise statement is the following result (see
[24, Proposition 7.7]):

Proposition 5.1 Under the above assumptions,

Db(P3,B0) =
〈

�(σ ∗Ku(W)),B1,B2,B3
〉

,

where � is the left adjoint of �.

As a conclusion, the composition � ◦ σ ∗ yields a fully faithful embedding of
the Kuznetsov component of W into the derived category of a non-commutative
Fano manifold of dimension 3. This is crucial to reduce the complexity of the
computations in the next section.

Remark 5.2 It was observed in [23] that the above construction works for families
of cubic fourfolds over a suitable base. One needs this family to have a section for
the relative Fano variety of lines (and the lines should not be contained in planes in
the corresponding cubic fourfold).

To apply the techniques discussed in Sect. 4.4 and produce stability conditions
on Ku(W), we need to be able to talk about slope and tilt stability for the abelian
category coh(P3,B0) and its tilts, respectively.

Consider the forgetful functor Forg : Db(P3,B0) → Db(P3) and the twisted
Chern character defined as

chB0(E) := ch(Forg(E))

(

1− 11

32
�

)

, (8)
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for all E ∈ Db(P3,B0), where � denotes the class of a line in P
3. We denote by

chB0,i the degree i component of chB0 , and identify them with rational numbers.
Define on coh(P3,B0) the slope function

μ
B0
h (E) :=

{ chB0,1(E)

chB0,0(E)
if chB0,0(E) �= 0

+∞ otherwise,

This function induces a weak stability condition on coh(P3,B0). Thus it makes
sense to talk about μB0

h -(semi)stable (or, simply, slope-(semi)stable) objects in
coh(P3,B0).

The key result is the following generalization of the Bogomolov-Gieseker
inequality for slope-semistable sheaves [24, Theorem 8.3]:

Theorem 5.3 For any μB0
h -semistable sheaf E ∈ coh(P3,B0), we have

�B0(E) := chB0,1(E)
2 − 2 chB0,0(E) chB0,2(E) ≥ 0.

It is not difficult to see that Bi is slope-stable and, with the correction given by
11
32 in (8), we have�B0(Bi ) = 0, for all i ∈ Z. The proof of Theorem 5.3 follows a
similar approach as in Langer’s proof of the usual Bogomolov-Gieseker inequality
[107].

5.2 Existence of Bridgeland Stability Conditions

We keep assuming that char(K) �= 2. In this section we apply the construction of
the previous section to construct Bridgeland stability conditions on Ku(W) and
describe a connected component of Stab(Ku(W)).

The discussion in Sect. 4.3 works verbatim also for the non-commutative variety
(P3,B0). In particular, for a given β ∈ R, we consider the modified twisted Chern
character

chβB0
:= e−β · chB0

and take the lattice  B0 generated by the vectors

(

chB0,0(E), chB0,1(E), chB0,2(E)
) ∈ Q

⊕3,

for all E ∈ Db(P3,B0). By Theorem 5.3 we have a quadratic form �B0 on B0 .
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Let  B0,Ku(W) ⊆  B0 be the lattice which is the image of K(Ku(W)) under
the natural composition K(Ku(W)) → K(Db(P3,B0)) →  B0 . Hence we have
a surjection

v : K(Ku(W))�  B0,Ku(W).

Remark 5.4 It is not difficult to see that v has the following alternative description.
The composition of Forg and of the fully faithful functor � ◦ σ ∗ : Ku(W) →
Db(P3,B0) induces a morphism at the level of numerical Grothendieck groups
which, composed with the Chern character chB0 truncated at degree 2, yields a
surjective morphism

u : ˜Halg(Ku(W),Z)�  B0,Ku(W)

Given the Mukai vector v : K(Ku(W))→ ˜Halg(Ku(W),Z), we have v = u ◦ v.

For β ∈ R, we consider the abelian category cohβ(P3,B0), which is the heart of
a bounded t-structure obtained by tilting coh(P3,B0) with respect to slope-stability
at the slope μB0

h = β. Moreover, for α ∈ R>0 and all β ∈ R, consider the function

Zα,β(E) := 1

2
α2chβB0,0

(E)− chβB0,2
(E)+ i chβB0,1

(E)

defined on  B0,Ku(W) and taking values in C. By Proposition 4.11, the pair

σα,β := (cohβ(P3,B0), Zα,β)

is a weak stability condition on Db(P3,B0) with respect to  B0,Ku(W) (see [24,
Proposition 9.3]). The support property is provided by the quadratic form given by
�B0 .

We want to use this together with Proposition 4.13 to prove the following result.

Theorem 5.5 IfW is a cubic fourfold, then Stab B0,Ku(W)
(Ku(W)) is non-empty.

Proof This is [24, Theorem 1.2]; it is now easy to sketch a proof. Let us fix a line
L ⊂ W not contained in a plane inW . By Proposition 5.1, we have

Db(P3,B0) = 〈Ku(W),B1,B2,B3〉.

Consider the weak stability condition σα,β mentioned above and set β =
−1. Define the slope function μα,−1 := μσα,−1 associated to σα,−1. Let us tilt
coh−1(P3,B0) again with respect to μα,−1 at μα,−1 = 0, getting the heart
coh0

α,−1(P
3,B0) of a bounded t-structure on Db(P3,B0). Set Z0

α,−1 := −iZα,−1.
By Proposition 4.12, the pair

σ 0
α,−1 := (coh0

α,−1(P
3,B0), Z

0
α,−1)
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is a weak stability condition on Db(P3,B0). We want to check that the assumptions
in Proposition 4.13 are satisfied for D1 = Ku(W), D2 = 〈B1,B2,B3〉 and α
sufficiently small. This would then conclude the proof.

Let us start form (1). A direct computation shows that B1,B2,B3,
B−2[1],B−1[1],B0[1] belong to coh−1(P3,B0), and they are σα,−1-stable for
all α > 0. For α sufficiently small, one directly proves that

μα,−1(B−2[1])<μα,−1(B−1[1])<μα,−1(B0[1])< 0<μα,−1(B1)<μα,−1(B2)<μα,−1(B3).

Hence B1, B2 and B3 are contained in coh0
α,−1(P

3,B0), for α sufficiently small.
As for (2), observe that, by [93, Corollary 3.9], Bi ⊗B0 Bj

∼= Bi+j . Thus
SB0(Bj ) ∼= Bj−3[3] and SB0(Bj ) ∈ coh0

α,−1(P
3,B0)[1], for α sufficiently small

and j = 1, 2, 3. A very simple check yields (3).
Finally, by [24, Lemma 2.15], if E ∈ coh0

α,−1(P
3,B0) is such that Z0

α,−1(E) =
0, then Forg(E) is a torsion sheaf supported in dimension 0. But then F /∈ Ku(X)
because

HomB0(Bj , F ) ∼= HomB0(B0, F ) ∼= HomP3(OP3,Forg(F )),

where, in the last isomorphism, we used the adjunction between the functors ⊗O
P3

B0 and Forg (see again [24, Section 7]). ��
To finish the section, we enlarge the lattice with respect to which the support

property holds to get the analogue of Bridgeland’s result for K3 surfaces [38] in
Example 4.9.

Definition 5.6 A full numerical stability condition on Ku(W) is a Bridgeland
stability condition on Ku(W) whose lattice  is given by the Mukai lattice
˜Halg(Ku(W),Z) and the map v is given by the Mukai vector v.

Let Stab(Ku(W)) be the set of full stability conditions. As explained in Sect. 4.2,
we have a map

η : Stab(Ku(W))→ ˜Halg(Ku(W),C)

together with a period domain P0 ⊆ ˜Halg(Ku(W),C) such that η|η−1(P0)
is a

covering map (see Theorem 4.8).
Let σ = (A , Z) be the stability condition constructed in the proof of Theo-

rem 5.5. Consider the pair σ ′ := (A , Z′), whereZ′ := Z◦u (see Remark 5.4). Then
σ ′ is a full stability condition and η(σ ′) ∈ P0. This is proven in [24, Proposition
9.10] and it implies that the open subset η−1(P0) is non-empty. Let P+

0 denote the
connected component of P0 containing η(σ ′), and let Stab†(Ku(W)) denote the
connected component of Stab(Ku(W)) containing σ ′.

Theorem 5.7 The connected component Stab†(Ku(W)) is contained in η−1(P+
0 ).

In particular, the restriction η : Stab†(Ku(W))→P+
0 is a covering map.
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Theorem 5.7 is proved in [23]. The key ingredient is Theorem 5.11 below
and the notion of family of stability conditions to reduce to the K3 surface case
(Example 4.9).

Remark 5.8

(i) If Ku(W) ∼= Db(S), for S a K3 surface, then by construction Stab†(Ku(W))
coincides with the connected component Stab†(Db(S)) discussed in Exam-
ple 4.9.

(ii) We expect Theorems 5.5 and 5.7 to hold also in the case of Gushel-Mukai
fourfolds. Indeed, those varieties have a conic fibration that makes it very
plausible that the approach in Sect. 5.1 would work also in that case. One of
the difficulties consists in proving the analogue of Theorem 5.3 in this new
geometric setting.

5.3 Moduli Spaces

The most important consequence of Theorem 5.5 is to be able to construct and study
moduli spaces of stable objects on Kuznetsov components in an analogous way as
the Mukai theory for K3 surfaces.

General Properties of Moduli Spaces of Complexes Let D ⊂ Db(X) be a non-
commutative smooth projective variety, whereX is a smooth projective variety over
K. In a similar way as in Sect. 2.2, given a scheme B, locally of finite type over K,
we can define a quasi-coherent product category

DQcoh � DQcoh(B) ⊂ DQcoh(X × B)

in the unbounded derived category of quasi-coherent sheaves on X × B (this is the
smallest triangulated subcategory closed under arbitrary direct sums and containing
D � Db(B); see [96]).

Definition 5.9 An object E ∈ DQcoh(X × B) is B-perfect if it is, locally over B,
isomorphic to a bounded complex of quasi-coherent sheaves onB which are flat and
of finite presentation.

Roughly, complexes which are B-perfect are those which can be restricted to
fibers overB. We denote by DB-perf(X×B) the full subcategory of D(Qcoh(X×B))
consisting of B-perfect complexes, and

DB-perf := (DQcoh � DQcoh(B)) ∩ DB-perf(X × B).

Consider the 2-functor

M : Sch→ Grp
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which maps a scheme B which is locally of finite type over K to the groupoid

M(B) :=
{

E ∈ DB-perf : Exti (E|X×{b}, E|X×{b}) = 0, for all i < 0
and all geometric points b ∈ B

}

.

The following is the main result in [111]:

Theorem 5.10 (Lieblich) The functor M is an Artin stack, locally of finite type,
locally quasi-separated and with separated diagonal.

To be precise, in [111] only the case D = Db(X) is considered; for the extension
to non-commutative smooth projective varieties, simply observe that the property
of an object in Db(X) to be contained in D is open. Recall also that a stack is
locally quasi-separated if it admits a Zariski covering with substacks which are
quasi-separated.

Consider the open substack MSpl of M parameterizing simple objects. Recall
that an object E is simple if Hom(E,E) ∼= K. This is again an Artin stack, locally
of finite type, locally quasi-separated and with separated diagonal. One can take
another functor

MSpl : Sch→ Set

obtained from MSpl by forgetting the groupoid structure and quotienting by the
equivalence relation obtained by tensoring by pull-backs of line bundles on B. A
previous result by Inaba [81] ensures thatMSpl is represented by an algebraic space
MSpl which is locally of finite type over K.

Bridgeland Moduli Spaces Assume now we have a Bridgeland stability condition
σ = (A , Z) ∈ Stab (D), and let v ∈  . To be precise, we also need to choose
a phase ϕ ∈ R such that Z(v) ∈ R>0 exp(iπϕ). We denote by Mσ (D, v, ϕ) the
substack of M parameterizing σ -semistable objects in D with class v and phase ϕ.
Often we will use the simplified notation Mσ (D, v).

A priori it does not follow from the definition of Bridgeland stability condition
that this is an open substack of finite type over K.11 Also, even if this is satisfied,
a priori it is not clear that a good moduli space (in the sense of Alper [5]) exists;
a positive result on this direction is due to Alper et al. [6]. Still in the above
assumptions, if the class v is primitive in  and the stability condition σ generic
with respect to v, then there are no properly semistable objects and so a good moduli
spaceMσ(D, v) exists, as a subspace ofMSpl of finite type over K.

It is a key result by Toda [154] that the stability conditions constructed by tilting
in Proposition 4.11 do satisfy openness and boundedness.

11This condition of openness and boundedness of stability should probably be assumed in the
definition of Bridgeland stability condition; see indeed [23, 88].
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More generally, for a K3 surface S, still by [154], this is true for every stability
condition in Stab†(Db(S)). Moreover, by Bayer and Macrì [19], Minamide et al.
[123], if v ∈ ˜Halg(S,Z) is a non-zero vector and σ is a stability condition which
is generic with respect to v, then Mσ(Db(S), v) exists as a projective variety. If v
is primitive with v2 + 2 ≥ 0, thenMσ(Db(S), v) is a non-empty smooth projective
hyperkähler manifold of dimension v2 + 2 which is deformation equivalent to a
Hilbert scheme of points on a K3 surface (this is (K3.5) in the introduction; the
condition v2 + 2 ≥ 0 is also necessary for non-emptyness).

We will not state here the actual result [19, Theorem 1.3], since we will state the
analogous version for non-commutative K3 surfaces arising from cubic fourfolds
in Theorem 5.11 below. On the other hand, we do need the result on K3 surfaces
to prove the result for cubic fourfolds. Hence we give a very short idea of the
proof: there exists a Fourier-Mukai partner of S (which may be twisted) such that
Mσ(Db(S), v) becomes a moduli space of Gieseker semistable (twisted) vector
bundles. And so the result follows directly from the sheaf case in [164].

The Kuznetsov Component of a Cubic Fourfold The main result for non-
commutative K3 surfaces associated to cubic fourfolds is the following theorem
from [23]. We assume in this section for simplicity that the base field is C; while
essentially all results hold true more generally, the fact that moduli spaces are
projective relies on an analytic result.

Theorem 5.11 LetW be a cubic fourfold. Then

˜HHodge(Ku(W),Z) = ˜Halg(Ku(W),Z).

Moreover, assume that v ∈ ˜Halg(Ku(W),Z) is a non-zero primitive vector and let
σ ∈ Stab†(Ku(W)) be a stability condition onKu(W) that is generic with respect
to v. Then

(1) Mσ(Ku(W), v) is non-empty if and only if v2+2 ≥ 0. Moreover, in this case, it
is a smooth projective irreducible holomorphic symplectic variety of dimension
v2 + 2, deformation-equivalent to a Hilbert scheme of points on a K3 surface.

(2) If v2 ≥ 0, then there exists a natural Hodge isometry

θ : H 2(Mσ (Ku(W), v),Z)
∼−−−−→

{

v⊥ if v2 > 0

v⊥/Zv if v2 = 0,

where the orthogonal is taken in ˜H(Ku(W),Z).

Remark 5.12 It would certainly be very interesting to consider the case when v =
mv0, for some m > 1 (i.e., v is not primitive). Then Theorem 5.11 shows that
Mσ(Ku(W), v) is non-empty (i.e., it contains the class of a semistable object) if and
only if v2

0 ≥ −2 (see [20, Theorem 2.6]), for σ a v-generic stability condition. On
the other hand, by [6],Mσ(Ku(W), v) admits a good moduli space. If we can prove
thatMσ(Ku(X), v) is also normal, then we can deduce further thatMσ(Ku(W), v)
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is an irreducible proper algebraic space and either dimMσ (Ku(W), v) = v2 + 2
and the stable locus is non-empty, or m > 1 and v2 ≤ 0.

The proof of (1), which is the only part of the statement we focus on, is mainly
based on a deformation argument which we can sketch as follows. Suppose that
v is such that v2 ≥ −2. It is not difficult to see that one can construct a family
W → C of smooth cubic fourfolds over a smooth curve C such that W ∼= Wp,
for some point p ∈ C while Ku(Wq) ∼= Db(S), for some other point q ∈ C.
To find q , it is enough to deform W to one of the divisors mentioned in Sect. 3.1,
corresponding to cubic fourfolds with homologically associated K3 surface. In view
of Proposition 3.6, we can simply consider the Noether-Lefschetz divisor containing
Pfaffian cubic fourfolds.

If we assume further that v is contained in ˜HHodge(Ku(Wc),Z), for all c ∈ C,
that we can consider the relative moduli space of Bridgeland (semi)stable objects
M(v) → C in the Kuznetsov components such that M(v)p ∼= Mσ(Ku(W), v)
while M(v)q is a moduli space of stable objects in Ku(Wq). This morphism turns
out to be smooth and proper. Thus, to prove thatM(v)p is non-empty, we just need
to prove thatM(v)q �= ∅. Since Ku(Wq) ∼= Db(S), this follows from the analogous
statement for K3 surfaces mentioned before [19, Theorem 1.3]. Notice also that,
since ˜HHodge(Db(S),Z) = ˜Halg(Db(S),Z), the previous deformation argument
implies the analogous statement holds for Ku(W) as well.

The fact thatMσ(Ku(W), v) is symplectic follows from the fact that Ku(W) is
a non-commutative K3 surface. Indeed, the tangent space ofMσ(Ku(W), v) atE is
identified to Hom(E,E[1]) and Serre duality for Ku(W) yields a non-degenerate
skew-symmetric pairing

Hom(E,E[1])×Hom(E,E[1])→ Hom(E,E[2]) ∼= Hom(E,E) ∼= C.

The last isomorphism follows from the fact thatE is stable. Grothendieck-Riemann-
Roch allows us to compute the dimension of Hom(E,E[1]) and thus the dimension
of Mσ(Ku(W), v). The closedness of this symplectic form follows as in the case
for K3 surfaces (proved in [82, Theorem 3.3] and [103]).

To prove that this symplectic manifold is irreducible and projective (and that
the resulting variety is deformation-equivalent to a Hilbert scheme of points),
we use a general fact in [19]. The stability condition σ induces a nef line
bundle on Mσ(Ku(W), v) as follows. Let E be the (quasi-)universal family in
Db(Mσ (Ku(W), v)×W). SinceMσ(Ku(W), v) is a moduli space of stable objects
in Ku(W),E is a family of objects in Ku(W). We then define the numerical Cartier
divisor �σ ∈ NS(Mσ (v))R via the following assignment:

C �→ �σ .C := Im

(

−Z(v(�E(OC)))
Z(v)

)

,

for every curve C ⊆ Mσ (Ku(W), v). The Positivity Lemma of [19] implies that
�σ is nef. A careful application of the main result in [139] implies that a positive
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multiple of �σ is big. Thus the Base Point Free Theorem (see [87, Theorem 3.3])
implies that a positive multiple of �σ is ample.

To make this rigorous one needs to develop a new theory of stability conditions
in families and this is what is carried out in [23]. In particular, this includes the
crucial construction of the relative moduli spaces with respect to a family of stability
conditions.

Remark 5.13 Assume we know that, for a Gushel-Mukai fourfoldX, the Kuznetsov
component Ku(X) carries a stability condition which behaves nicely in family
(see Remark 5.8). Then Theorem 5.11 holds for X as well. Indeed, the same proof
applies using again a degeneration to divisors in the moduli space of Gushel-Mukai
fourfolds parameterizing fourfolds whose Kuznetsov component is equivalent to the
derived category of a K3 surface.

As a consequence, one can construct 20-dimensional locally complete families
of hyperkähler manifolds. Indeed, take a family W → S of cubic fourfolds. Let v be
a primitive section of the local system given by the Mukai lattices ˜H(Ku(Ws),Z)
of the fibers over s ∈ S, such that v stays algebraic on all fibers. Assume that
for s ∈ S very general, there exists a stability condition σs ∈ Stab†(Ku(Ws )
that is generic with respect to v, and such that the associated central charge
Z : ˜Halg(Ku(Ws),Z)→ C is monodromy-invariant.

Theorem 5.14 There exists a non-empty open subset S0 ⊂ S and a varietyM0(v)
with a projective morphismM0(v)→ S0 that makesM0(v) a relative moduli space
over S0: the fiber over s ∈ S0 is a moduli spaceMσs (Ku(Ws), v) of stable objects
in the Kuznetsov category of the corresponding cubic fourfold.

As we mentioned above, this has the following nice application.

Corollary 5.15 For any pair (a, b) of coprime integers, there is a unirational
locally complete 20-dimensional family, over an open subset of the moduli space of
cubic fourfolds, of polarized smooth projective irreducible holomorphic symplectic
manifolds of dimension 2n + 2, where n = a2 − ab + b2. The polarization has
divisibility 2 and degree either 6n if 3 does not divide n, or 2

3n otherwise.

In this framework we recover some of the classical families of hyperkähler
manifolds associated to cubic fourfolds. This is the content of some of the
applications discussed below.

5.4 Applications

In the remaining part of these lecture notes, we want to focus on some geometric
applications of Theorem 5.11 and examples.

End of the Proof of Theorem 3.7 The easy implication in Theorem 3.7 was proved
at the end of Sect. 3.4. Let us now show that if there is a primitive embedding
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U ↪→ ˜Halg(Ku(W),Z), then there is a K3 surface S and an equivalence Db(S) ∼=
Ku(W).

Under our assumption, there is w ∈ ˜Halg(Ku(W),Z) such that w2 = 0.
Pick a stability condition σ ∈ Stab†(Ku(W)) which is generic with respect to
w. By Theorem 5.11, the moduli space Mσ(Ku(W),w) of σ -stable objects in
Ku(W) is non empty, and in fact a K3 surface S. Such a moduli space comes
with a quasi-universal family E yielding a fully faithful functor �E : Db(S, α) →
Db(W), for some α ∈ Br(S). Since S parametrizes stable objects in Ku(W),
the functor �E factors through Ku(W) and thus provides a fully faithful functor
�E : Db(S, α) ↪→ Ku(W). As Ku(W) is connected, this functor is actually
an equivalence. Notice that this already proves the non-trivial implication in the
generalization of Theorem 3.7 in Remark 3.8.

Since U embeds in ˜Halg(Ku(W),Z), we have further a vector v such that
(v,w) = 1. A standard argument shows that, under these assumptions, the quasi-
universal family E is actually universal. Thus α is trivial and we get an equivalence
Db(S) ∼= Ku(W).

Remark 5.16 Theorem 3.7 also shows that Kuznetsov’s categorical conjectural
condition for rationality (i.e., Ku(W) ∼= Db(S)) matches the more classical Hodge
theoretical one due to Harris and Hassett [66] (i.e., W has a Hodge theoretically
associated K3 surface). At the moment, the list of divisors parameterizing rational
cubic fourfolds and verifying Harris-Hassett-Kuznetsov prediction is short but
interesting (see [149] for recent developments and [89, 129] for very recent and
interesting results about specialization for stably rationality and rationality).

The Integral Hodge Conjecture for Cubic Fourfolds The rational Hodge conjecture
for cubic fourfolds was proved by Zucker in [165] (see also [49]). On the other hand,
on cubic fourfolds the Hodge conjecture holds for integral coefficients as well; this
is due to Voisin [159, Theorem 18] and can be reproved directly as a corollary of
Theorem 5.11 as follows (see [23]).12

Proposition 5.17 (Voisin) The integral Hodge conjecture holds for any cubic
fourfoldW .

Proof Consider a class v ∈ H 4(W,Z) ∩ H 2,2(W). By [12, Section 2.5] (see also
[4, Theorem 2.1 (3)]), there exists w ∈ Ktop(W) such that v(w) = v + ṽ, where
ṽ ∈ H 6(W,Q)⊕H 8(W,Q).

Take the projection w′ of w to ˜H(Ku(W),Z) (induced by the projection func-
tor). Then w differs fromw′ by a linear combination with integral coefficientsw′ =
w+ a0[OW ] + a1[OW(1)] + a2[OW(2)] in Ktop(W). Since the projection preserves
the Hodge structure, w′ is actually in ˜HHodge(Ku(W),Z) = ˜Halg(Ku(W),Z), by
Theorem 5.11.

12The argument was also suggested to us by Claire Voisin.
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Let E ∈ Ku(W) be such that v(E) = w′ and set

F := E ⊕ O⊕|a0|
W [ε(a0)] ⊕ OW(1)⊕|a1|[ε(a1)] ⊕ OW(2)⊕|a2|[ε(a2)],

where for an integer a ∈ Z, we define ε(a) = 0 (resp., = 1) if a ≥ 0 (resp., a < 0).
Then c2(F ) = v, which is therefore algebraic. ��
Remark 5.18 By Remark 5.13, if one could prove that the Kuznetsov component
of a GM fourfold carries Bridgeland stability conditions, then the theory of moduli
spaces would allow us to repeat verbatim the same argument above and prove the
integral Hodge conjecture for GM fourfolds.

The Fano Variety of Lines and the Torelli Theorem In the seminal paper [27],
Beauville and Donagi showed that the Fano variety of lines F(W) of a cubic
fourfoldW is a smooth projective hyperkähler manifold of dimension 4. Moreover,
F(W) is deformation equivalent to the Hilbert scheme of length-2 zero-dimensional
subschemes of a K3 surface. The embeddingF(W) inside the Grassmannian of lines
in P

5 endowes F(W) with a privileged ample polarization induced by the Plücker
embedding.

The study of F(W) as a moduli space of stable objects was initiated in [119] for
cubic fourfolds containing a plane and satisfying an additional genericity condition.
But the techniques discussed here allow us to prove complete results. Indeed, for
any cubic fourfoldW , in the notation of Theorem 5.7, fix a stability condition σ ∈
Stab†(Ku(W)) such that η(σ) ∈ (A2)C ∩P ⊆ P+

0 . We then get the following
general result, which is [110, Theorem 1.1].

Theorem 5.19 (Li-Pertusi-Zhao) In the assumptions above, the Fano variety of
lines inW is isomorphic to the moduli spaceMσ(Ku(W),λ1). Moreover, the ample
line bundle �σ on Mσ(Ku(W),λ1) is identified with a multiple of the Plücker
polarization by this isomorphism.

Sketch of the proof Following [24, Appendix A], we outline the proof under the
genericity assumption that ˜H(Ku(W),Z) does not contain (−2)-classes. This
means that there is no class v ∈ ˜H(Ku(W),Z) such that v2 = −2. This will
be enough for the application to the Torelli Theorem for cubic fourfold.

Let L be a line inW . Following [103], consider the kernel of the evaluation map

FL := Ker
(

O⊕4
W � IL(1)

)

,

which is a torsion-free Gieseker-stable sheaf. A direct computation shows that

Hom(FL, FL[i]) = 0 Hom(FL, FL) ∼= C Hom(FL, FL[1]) ∼= C
4,

for i < 0. Moreover, v(FL) = λ1 and v(FL)2 = 2.
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The point is that FL needs to be σ -stable for any σ ∈ Stab†(Ku(W)), under our
genericity assumptions. Indeed, if this is not the case, then one can show that there
must exist a distinguished triangle

A→ FL → B,

where A and B are σ -stable and dim Hom(A,A[1]) = dim Hom(B,B[1]). More-
over, a direct computation shows that such dimensions are equal to 2. This means
that v(A)2 = v(B)2 = 0 and (v(A)+ v(B))2 = 2. But then (v(A)− v(B))2 = −2.
This is a contradiction

The mapping L �→ FL yields an embedding F(W) ↪→ Mσ(Ku(W),λ1). By
Theorem 5.11, the latter space is a smooth projective hyperkähler manifold of
dimension 4. Hence F(W) ∼= Mσ(Ku(W),λ1).

We omit here the discussion about the polarization �σ : it is a straightforward
computation (which uses [19, Lemma 9.2] and [2, Equation (6)]). ��

We are now ready to answer Question 3.24 in the case of cubic fourfolds.

Theorem 5.20 (Huybrechts-Rennemo) Let W1 and W2 be smooth cubic four-
folds. Then W1 ∼= W2 if and only if there is an equivalence � : Ku(W1) →
Ku(W2) such that OKu(W2) ◦� = � ◦OKu(W1).

13

Sketch of the proof This is proved in [73, Corollary 2.10], by using the Jacobian
ring. We present a sketch of a different proof, by using Theorem 5.19: the advantage
being that this holds over arbitrary characteristics �= 2. It follows from Example 3.21
that up to composing � with a suitable power of the autoequivalence OKu(W2)

defined in Sect. 2.3 and, possibly, with the shift by 1, we can assume without loss of
generality that �H : ˜H(Ku(W1),Z) → ˜H(Ku(W2),Z) is such that �H(λ1) =
λ1. Let σ1 be any stability condition in Stab†(Ku(W1)) and let σ2 := �(σ1).
Then � induces a bijection between the moduli spaces Mσ1(Ku(W1),λ1) and
Mσ2(Ku(W2),λ1). A more careful analysis, based on the same circle of ideas as
in [30, Section 5.2], shows that we can replace� with a Fourier-Mukai functor with
the same properties. Hence, one can show that such a bijection can be replaced
by an actual isomorphism of smooth projective varieties preserving the ample
polarizations �σ1 and �σ2 (here we use the same approach as in [30, Section 5.3]).

If we pick σ1 ∈ Stab†(Ku(W1)) and η(σ1) ∈ (A2)C ∩P then, by using the
results in [23], it can be proved that we can choose the functor� in such a way that
σ2 ∈ Stab†(Ku(W2)) and η(σ2) ∈ (A2)C ∩P . Theorem 5.19 implies that

Mσi (Ku(Wi),λ1) ∼= F(Wi)

13It is actually enough to assume that the action of � on ˜Halg commutes with the action of the
degree-shift functor.
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with this isomorphism sending �σi to the Plücker polarization. Summarizing, we
have an isomorphism F(W1) ∼= F(W2) preserving the Plücker polarization. A
classical result by Chow (see [48, Proposition 4]), implies thatW1 ∼= W2. ��

As a consequence, we present the recent proof of the Torelli theorem for cubic
fourfolds by Huybrechts and Rennemo [73]. This result was originally proved by
Voisin in [157] and subsequently reproved by Loojienga in [113]. Based on the
Torelli theorem for hyperkähler manifolds [156], Charles [48] gave an elementary
proof relying on the Fano variety of lines. The new approach combines Theo-
rem 5.20 and the Derived Torelli Theorem for twisted K3 surfaces (Theorem 3.23).
Notice that here we assume the local injectivity of the period map for cubic fourfolds
which is a classical result (see, for example, [158, Section 6.3.2]).

Theorem 5.21 (Voisin) Two smooth complex cubic fourfolds W1 and W2 are iso-
morphic if and only if there exists a Hodge isometryH 4

prim(W1,Z) ∼= H 4
prim(W2,Z).

Sketch of proof Let ϕ : H 4
prim(W1,Z)

�−→ H 4
prim(W2,Z) be a Hodge isometry.

By [73, Proposition 3.2], it induces a Hodge isometry ϕ′ : ˜H(Ku(W1),Z)
�−→

˜H(Ku(W2),Z) that preserves the natural orientation. This can be explained in
the following way. By Eq. (4) in Remark 3.19, H 4

prim(Wi,Z)
∼= 〈λ1,λ2〉⊥. But

A2 = 〈λ1,λ2〉 has discriminant group Z/3Z (see again Remark 3.19). Thus, by
Remark 3.20, we see that ϕ extends to a Hodge isometry ˜H(Ku(W1),Z) ∼=
˜H(Ku(W2),Z). If the latter isometry is orientation preserving, then we are
done. Otherwise, we compose with an orientation reversing Hodge isometry (see
Remark 3.26). So we may assume that ϕ′ is orientation preserving since the very
beginning.

A general deformation argument based on [71] shows that ϕ′ extends to a local
deformation Def(W1) ∼= Def(W2). The set D ⊂ Def(W1) of points corresponding
to cubic fourfolds W such that Ku(W) ∼= Db(S, α), for (S, α) a twisted K3
surface, and ˜Halg(Ku(W),Z) does not contain (−2)-classes is dense in the moduli
space (this follows from Remark 3.8 and [76, Lemma 3.22]). As explained in
[73, Section 4.2], for any t ∈ D there is an orientation preserving Hodge
isometry ϕt : ˜H(Ku(Wt ),Z) → ˜H(Ku(W ′′t ),Z) which lifts to an equivalence
�t : Ku(Wt )→Ku(W ′′t ) such that OKu(W ′′t ) ◦� = � ◦OKu(Wt). Theorem 5.20
implies that Wt ∼= W ′′t , for any t ∈ D. Since the moduli space of cubic fourfolds is
separated, this yieldsW1 ∼= W2. ��
Remark 5.22 One should not expect that the same argument used in the proof of
Theorem 5.21 might work for GM fourfolds. Indeed, in this case the period map is
known to have positive dimensional fibers (see [55, Theorem 4.4]).

Twisted Cubics We can analyze further the relation between the geometry of moduli
spaces of rational curves inside cubic fourfolds and the existence of interesting
hyperkähler varieties associated to the cubic.

The next case would be to study moduli of conics inside a cubicW . But any such
conic would be contained in a plane cutting out a residual line on W . On the other
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hand, for a line L in W , we can take all projective planes in P
5 passing through L.

The residual curve in each of these planes is then a conic. In conclusion, the moduli
space of conics would be (at least birationally) a P

3-bundle over F(W). Thus there
is no interesting new hyperkähler manifold associated to conics.

Contrary to this, the case of rational normal curves of degree 3 is extremely
interesting and has been studied in [108]. We can summarize their work in the
following way. Let us start with a cubic fourfoldW which does not contain a plane.
The irreducible componentM3(W) of the Hilbert scheme containing twisted cubic
curves is a smooth projective variety of dimension 10.

The curves in M3(W) always span a P
3, so there is a natural morphism from

M3(W) to the Grassmannian Gr(3,P5) of three-dimensional projective subspaces
in P

5. This morphism induces a fibrationM3(W)→ Z′(W), which turns out to be a
P

2-fiber bundle. With some further work, the authors of [108] prove that the variety
Z′(W) is also smooth and projective of dimension 8.

The geometric nature of Z′(W) is difficult to describe but roughly speaking,
Z′(W) is constructed as a moduli space of determinantal representations of cubic
surfaces in W (see [26, 56]). Finally, in Z′(W) there is an effective divisor coming
from non-CM twisted cubics on W . This divisor can be contracted and after
this contraction we get a new variety denoted by Z(W) and which is a smooth
projective hyperkähler manifold of dimension 8. It contains the cubic fourfoldW as
a Lagrangian submanifold and Z′(W) is actually the blow-up of Z(W) in W .

An approach to the study of this hyperkähler manifold by homological methods
was initiated in [106] (see also [151]). The main result is the following and shows
that the whole picture in [108] has a neat modular interpretation.

Theorem 5.23 Let W be a smooth cubic fourfold not containing a plane and with
hyperplane class H .

(1) Let v1 =
(

0, 0,H 2, 0,− 1
4H

4
)

. Then Z′(W) is isomorphic to an irreducible

component of the moduli space of Gieseker stable sheaves on W with Chern
character v1.

(2) Let v2 =
(

3, 0,−H 2, 0, 1
4H

4
)

. Then:

(2a) Z′(W) is isomorphic to an irreducible component of the moduli space of
Gieseker stable torsion free sheaves onW with Chern character v2.

(2b) If W is very general, both Z(W) and Z′(W) are isomorphic to an
irreducible component of the moduli space of tilt-stable objects on Db(W)

with Chern character v2. The contraction Z′(W)→ Z(W) is realized as
a wall-crossing contraction in tilt-stability.

(2c) If W is very general, then Z(W) is isomorphic to a moduli space of
Bridgeland stable objects in Ku(W) with Chern character v2.

Part (2c) of the above result, together with Theorem 5.11, implies that Z(W) is
deformation equivalent to a Hilbert scheme of 4 points on a K3 surface. This result
was first proved by Addington and Lehn in [3].

The last part of Theorem 5.23 has been recently improved in [110, Theorem 1.2].
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Theorem 5.24 (Li-Pertusi-Zhao) Let W be a smooth cubic fourfold not containing
a plane and let σ ∈ Stab†(Ku(W)) such that η(σ) ∈ (A2)C ∩P ⊆ P0. The
smooth projective hyperkähler eightfold Z(W) is isomorphic to the moduli space
Mσ(Ku(W), 2λ1 + λ2).

It is quite natural to ask what happens to the moduli spaceMσ(Ku(W), 2λ1+λ2)

whenW degenerates to a cubic fourfold containing a plane. In this situation, any P
3

containing the plane cuts a non-integral surface of degree 3. Hence some objects in
the moduli space are properly semistable. In [138], Ouchi described a moduli space
of stable objects in Ku(W), forW a cubic fourfold containing a plane, such thatW
embeds into it as a Lagrangian submanifold.
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Appendix: Introduction to Derived
Categories of Coherent Sheaves

Andreas Hochenegger

Abstract In these notes, an introduction to derived categories and derived functors
is given. The main focus is the bounded derived category of coherent sheaves on a
smooth projective variety.

1 Introduction

One way to get your hands on coherent sheaves is by short exact sequences. To
name three important ones:

• 0→ OPn → OPn(1)
⊕(n+1) → TPn → 0 Euler sequence

• 0→ IY |X → OX → OY → 0 Ideal sheaf sequence
• 0→ TY → TX|Y → NY |X → 0 Normal sheaf sequence

where Y ⊂ X is a closed embedding.
Such sequences are usually the starting point for computations. But by applying

any meaningful operation to such a sequence one will almost inevitably lose the
exactness on the left or right end. Examples for such operations are

• Hom(F,−), Hom(F,−)
• f∗, �(X,−)

• F⊗−
• f ∗

where F is a coherent sheaf, and f : X→ Y a morphism. Another issue is that the
projection formula and flat base change work only for specific classes of coherent
sheaves such as for locally free sheaves. That exactness gets lost, should not be seen
as a failure but an indication that there is something more to say.
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Example Let C and C′ be two rational curves on a smooth projective surface X.
Applying Hom(−,OC) to the ideal sheaf sequence of C′ yields

0→ Hom(OC ′,OC)→ H 0(OC)→ H 0(OC(C
′))

This sequence is a short exact sequence if and only if

• C and C′ are disjoint, then Hom(OC ′,OC) = 0 and OC ∼= OC(C
′); or

• C = C′ and H 0(OC(C)) vanishes, as Hom(OC,OC) → H 0(OC) is an
isomorphism.

These are quite special situations (note that the second case implies that C2 < 0). In
particular, if C and C′ intersect, this sequence can to be continued with Ext-groups.
The intersection number can be easily computed using the Euler characteristic:

C′.C = −χ(OC ′,OC) = − dim Hom(OC ′,OC)+ dim Ext1(OC ′,OC).

In order to deal with such examples, homological algebra proposes to replace
sheaves by adapted resolutions and the derived category of sheaves will become the
proper framework for such computations.

Aim These notes serve as a companion to the lecture notes [11] and give the
necessary background on derived categories. The motivating question is how to
change (or better: derive) a functor between abelian categories in order to keep
exactness. We hope to convince the reader that this question leads quite inevitably
to the notion of a derived category and derived functors.

In the first part, we give the general construction of derived categories of an
abelian category and derived functors. The motivating question leads to the notion
of adapted resolutions and quasi-isomorphisms in Sect. 2.1. As an intermediate step
we arrive at the notion of a homotopy category in Sect. 2.2. In Sect. 2.3, the derived
category is constructed and its triangulated structure discussed. Finally in Sect. 2.4,
we will see that derived functors become exact on the derived level.

In the second part, we focus on the derived category of sheaves, especially on the
construction of derived functors. There we deal with left-exact functors like Hom
and push-forward in Sect. 3.1, and then with right-exact functors like ⊗ and pull-
back in Sect. 3.2. Moreover, we give some compatibilities among these functors in
Sect. 3.3. Finally, we discuss a bit the important notion of Fourier-Mukai transforms
in Sect. 3.4.

The third section can be seen as an application of the theory of Fourier-Mukai
transforms. Moreover, it should pave the way for [11]. There we present some
comparatively recent results on the auto-equivalences of the derived category of
a complex projective K3 surface.

For full details, we refer to the wonderful books [3] and [7] which these notes
follow to quite some extent. But we also want to mention the books [4], [9] and
[10] which were very helpful when compiling these notes. In this text, we do not
give proper references, because all results are nowadays pretty standard and can be
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found in any of the above mentioned sources. The only exception is the last section
were more recent results are presented and therefore some references given. We
want to stress that most of the proofs below are just indications of the main ideas,
and usually borrowed from one of the above mentioned books. We hope that these
indications give the novice a good feeling about what is going on, and ideally leave
such a reader well-prepared for a closer study using a textbook.

Prerequisites We assume that the reader has a background in algebraic geometry
and is acquainted with basic notions from homological algebra.

Conventions With k, we denote a field which is not necessarily algebraically closed
or of characteristic zero. When we speak of categories, we implicitly assume that
they are k-linear (even though this is not strictly necessary for most of the abstract
theory). By a variety we mean an integral separated scheme of finite type over k.

2 From Abelian to Derived Categories

2.1 Adapted Resolutions

In this section, we will introduce the central notion of quasi-isomorphism and
speak about adapted resolutions. Moreover, we will give a definition of the derived
category by a universal property.

We fix some notation. Let A be an abelian category, i.e. we can speak of short
exact sequences. We denote by Com(A) the category of (cochain) complexes in A,
i.e. its objects are sequences

C
• : · · · → Ci−1 di−1−−→ Ci

di−→ Ci+1 → · · ·

with Ci ∈A and di ◦di−1 = 0 for all i ∈ Z, and morphisms are maps of complexes,
i.e.

C• · · · Ci Ci+1 · · ·

D• · · · Di Di+1 · · ·
f

•

di

f i f i+1

di

With Com+(A), Com−(A) and Comb(A) we denote the full subcategory of
bounded below, bounded above, and bounded complexes, respectively. For example,
C• ∈ Com+(A) if Ci = 0 for i % 0.

By slight abuse of notation, given some class of objects I in A, we will write
Com(I) for the (full) subcategory consisting of those complexes in Com(A) which
are sequences of objects in I.
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Due to di ◦di−1 = 0 or, equivalently, im di−1 ⊆ ker di , we can take cohomology
of any C• ∈ Com(A), i.e.

Hi(C
•
) = ker di

im di−1 .

Note that we can consider H•(C•) when equipped with the zero-differential again as
an element of Com(A). We say thatC• is acyclic (or exact) if it has no cohomology,
i.e. H•(C•) = 0.

Moreover, a map f • : C• → D• of complexes induces a map

H
•
(f

•
) : H•

(C
•
)→ H

•
(D

•
).

We say that f • is a quasi-isomorphism if H•(f •) is an isomorphism.

Definition 2.1 Let F : A → B be a left-exact functor between abelian categories.
Let IF be a class of objects in A. We say that IF is F -adapted if

• F(I •) is acyclic for any acyclic complex I • ∈ Com+(IF );
• for any A ∈A there is an injection A ↪→ I with I ∈ IF .

The first property says in particular that F preserves exactness of short exact
sequences of objects in IF . The second property ensures that we can replace any A
by an adapted resolution, as the following lemma shows.

Lemma 2.2 Let F : A → B be a left-exact functor between abelian categories,
and let IF be an F -adapted class. Then for any A ∈ A, there is a complex I • ∈
Com+(IF ) such that

A · · · 0 A 0 · · ·

I • · · · 0 I 0 I 1 · · ·
f f

is a quasi-isomorphism. We call I • an F -adapted resolution of A.

Proof We only indicate how I • can be constructed. By the second property of an
F -adapted class, there is an injection f : A ↪→ I 0 for some I 0 ∈ IF . Now continue
inductively, by choosing I i+1 to contain the cokernel of the previous map, and
setting di : I i → I i+1 to be the composition I i � coker ↪→ I i+1. ��
Remark 2.3 The above lemma can be generalised to complexes, i.e. for any
A• ∈ Com+(A) there is an adapted I • ∈ Com+(IF ) and a quasi-isomorphism
f • : A• → I •.

Proposition 2.4 If A contains enough injective objects, i.e. for any A ∈ A there
is an inclusion A ↪→ I with I injective, then the class IA of all injective objects in
A is adapted for all left-exact functors starting inA.
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Proof This question can be reduced to short exact sequences, by breaking up I • into
0 → ker(di) → I i → im(di) → 0. Now the statement can be shown using two
standard facts about injective objects:

• Any short exact sequence 0 → I → A → B → 0 in A with I injective splits.
In particular, its image under F is still exact.

• For a short exact sequence 0 → I ′ → I → A → 0 in A with I, I ′ injective,
also A is injective. ��

Remark 2.5 We have dealt here only with left-exact functors, but there is a dual
story. For a right-exact functorF : A → B, an F -adapted class PF should satisfy

• F(P •) is acyclic for any acyclic complex P • ∈ Com−(PF );
• for any A ∈A there is an surjection P � A with P ∈ PF .

Moreover, we get an F -adapted resolution P • → A in Com−(PF ). Finally, if there
are enough projective objects, the class of projective objects is adapted for all right-
exact functors.

The discussion of this section shows, that we want to identify quasi-isomorphic
complexes, as such an identification allows us to pass from an object to an adapted
resolution. This aim is summarised in the following definition.

Definition 2.6 Let A be an abelian category. A category D together with a functor
Q : Com(A)→ D is called derived category of A if

• Q(f
•
) is an isomorphism for any quasi-isomorphism f •;

• any other functor F : Com(A) → T which maps quasi-isomorphisms to
isomorphism factors uniquely through D:

Com( )
F

Q ∃!

Analogously, we can define the bounded below, bounded above and bounded
derived category of A.

This definition by a universal property automatically yields the uniqueness up to
equivalence, but we have yet to provide existence.

2.2 The Homotopy Category

In this section, we will introduce homotopies and show that they induce quasi-
isomorphisms. In the case that there are enough injective objects (or dually,
projective objects), these are all quasi-isomorphisms.
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There is a cheap way to build a map of complexes:

Lemma 2.7 LetC• andD• be two complexes and {hi : Ci → Di−1}i be a sequence
of morphisms inA. Then f i = hi+1di + di−1hi : Ci → Di fit together to a map of
complexes:

C• · · · Ci Ci+1 · · ·

D• · · · Di−1 Di · · ·
f •

di

hi

f i

hi+1

di−1

Proof We only have to check that di(hi+1di + di−1hi) = (hi+2di+1 + dihi+1)di ,
which holds as C• and D• are complexes. ��
Definition 2.8 Let f •, g• : C• → D• be two maps of complexes. We say that f •

and g• are homotopic, if there is a sequence of morphisms hi : Ci → Di−1, such
that f i − gi = hi+1di + di−1hi for all i ∈ Z. We write f • ∼ g• in this case.

Lemma 2.9 Let f •, g• : C• → D• be two maps of complexes. If f • and g•

are homotopic, then the induced maps H•(f •) and H•(g•) are equal. Moreover,
homotopy∼ defines an equivalence relation for maps of complexes.

As a corollary we get that homotopies are a source of quasi-isomorphisms:

Remark 2.10 Let f • : C• → D• and g• : D• → C• be two maps of complexes such
that f • ◦ g• ∼ idD• and g• ◦ f • ∼ idC• . Then both f and g are quasi-isomorphisms,
as

H
•
(f

•
) ◦H•

(g
•
) = H

•
(f

• ◦ g•) = H
•
(idD•) = idH•(D•)

and similarly for H•(g•) ◦H•(f •).

Definition 2.11 Let A be an abelian category. The homotopy category Hot(A) of
A consists of

• objects: complexes of objects in A;
• morphisms: maps of complexes modulo homotopy

HomHot(A)(C
•
,D

•
) := HomCom(A)(C

•
,D

•
)/ ∼

Moreover, we can define Hot+(A), Hot−(A) and Hotb(A) as the full subcategories
of Hot(A) consisting of bounded below, bounded above, and bounded complexes,
respectively. Similarly for any full additive subcategory C of A, we can define the
homotopy category Hot(C) (and bounded analogues) by restricting to complexes of
objects in C.

Enough Injective Objects In the case that enough injectives are present, we can
say even more about the homotopy category.
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Proposition 2.12 Let f : C → D be a morphism in an abelian category A with
enough injectives. Then the following holds

• For any choice of injective resolutions C → I • andD→ J •, f can be lifted to a
map of complexes f • : I • → J •, in particular the following diagram commutes:

C I 0

D J 0

f f 0

• any two such lifts are homotopic.

Proof We only show existence, because uniqueness up to homotopy can be shown
similarly. By injectivity of J 0, there is the lift f 0 of the compositionC → D ↪→ J 0:

C I 0

D J 0

f f 0

The statement can be shown by induction, continuing the argument like in that proof
of Lemma 2.2. ��
Remark 2.13 Actually, a similar proof which is (notationally) more involved shows
that any f • : C• → D• in Com+(A) for an abelian category A with enough
injectives can be lifted to a map of complexes f̃ • : I • → J • with I • and J • injective
resolutions of C• and D•. Again, any two such lifts are homotopic.

Remark 2.14 For f • = idC• : C• → C
•, we get as an important special case that

any two injective resolutions of C• are homotopic.

Finally, there is a converse to Remark 2.10, whose proof needs Remark 2.13.

Proposition 2.15 Let A be an abelian category with enough injectives. Let
f • : I • → J • be a quasi-isomorphism of injective complexes in Com+(A). Then
there is a quasi-isomorphism g• : J • → I • with homotopies f • ◦ g• ∼ idJ • and
g• ◦ f • ∼ idI • .

Given an abelian categoryA with enough injectives I, the last proposition shows
that quasi-isomorphisms become invertible in Hot+(I), but even more is true.

Proposition 2.16 Let A be an abelian category with enough injectives I. Then
Hot+(I) is the bounded below derived categoryD+(A) ofA.

For an arbitrary F -adapted class, a quasi-isomorphism might not have a homo-
topy inverse like in Proposition 2.15. The crucial ingredient there is the lifting
property of injective objects. As usual, we can enforce the existence of such
homotopy inverses by formally introducing them. This will be done in the following
section.
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Remark 2.17 In the presence of enough projective objects P in an abelian category
A, we get statements dual to those in this subsection. Most notably, in this case
Hot−(P) is the bounded above derived category D−(A) of A.

2.3 The Derived Category

In this section, we will finally give a construction of the derived category and speak
about its triangulated structure.

For an abelian category A let qis denote the class of all quasi-isomorphisms. We
finally state the existence of the derived category in general, which is due to Verdier.

Theorem 2.18 Let A be an abelian category. The category D(A) :=
Hot(A)[qis−1] given by
• objects: complexes of objects in A;
• morphisms: the same as in Hot(A) but with quasi-isomorphisms formally

inverted:

HomD(A)(C
•
,D

•
) := HomHot(A)(C

•
,D

•
)[qis−1] =

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

C̃•

C• D•

f̃
•

s
•

f

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C̃• complex of objects in A,

s• ∈ HomHot(A)(C
•, C̃•) quasi-isomorphism,

f̃
• ∈ HomHot(A)(C̃

•
,D

•
).

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

is the derived category ofA.

Remark 2.19 The definition of the morphisms above as roofs is a bit informal. For
example one needs to show that a zig-zag of two such roofs can be composed to a
single roof. For this the key ingredient is that quasi-isomorphisms form a localising
class of morphisms inside Hot(A). To invert such a class is also called Verdier
localisation.

One can construct the derived category of A also by formally inverting quasi-
isomorphisms in Com(A), see [3, §III.2.2]. But this causes several technical
problems which can be avoided by passing first to Hot(A).

Remark 2.20 There is a natural functor

A → D(A), C �→ [· · · → 0→ C → 0→ · · · ]

mapping any C ∈ A to the complex with C at the zero position. By slight abuse of
notation, we will denote this complex again by C.
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This functor is fully faithful, i.e. for any two C,D ∈A holds

HomD(A)(C,D) = HomA(C,D).

Moreover, the essential image of this functor consists of all complexes C• such that
Hi(C•) = 0 for i �= 0.

Triangulated Structure As the objects of D(A) are complexes, there is the shift
functor:

[1] : D(A)→ D(A), C
• �→ C

•[1] := C•+1.

The usual convention here is that the sign of the differential changes under shift, i.e.

diC•[1] = −di+1
C• .

With this shift functor, we can define the (mapping) cone of a map of complexes
f • : C• → D• as the complex Cone(f •) with

Conei (f •) = Ci+1 ⊕Di, diCone(f •) =
(−di+1

C• 0
f i+1 diD•

)

We will also write Cone(f •) C• 1 D•
as a semi-direct sum. With these

definitions f induces a triangle of morphisms in D(A):

C
• f

•

−→ D
• j

•

−→ Cone(f •)
p
•

−→ C
•[1].

where j • is the inclusion of the semi-direct summandD• and p• the projection onto
C•[1].
Remark 2.21 We want to stress that only for honest maps of complexes we have an
explicit construction of the mapping cone. Notationally, we will therefore mark a
map of complexes f • always with a dot, in order to distinguish them from (general)
morphisms f in D(A) which are roofs.

Definition 2.22 We call a sequence of morphisms C• → D• → E• → C•[1] an
exact triangle (or distinguished triangle)

We call a sequence of morphisms C• → D• → E• → C•[1] an exact triangle
(or distinguished triangle) if there is a commutative diagram in D(A) of the form

C• D• E• C•[1]

C
•

D
•

C(f̃
•
) C

•[1]

f

c d e c[1]
f̃

•

with f̃ • a map of complexes.
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The complex E• is called the cone of the morphism f : C• → D• and denoted
by Cone(f ).

Remark 2.23 The triangle is often visualised in the following way:

C
•

D
•

E•
[1]

where the lower left arrow involves a shift by one. Note that a triangle can also be
extended to a long sequence

· · · → E
•[−1] → C

• → D
• → E

• → C
•[1] → D

•[1] → · · ·

which is actually a complex in D(A), see Remark 2.30 below.

Distinguished triangles generalise short exact sequences in a very precise way.

Proposition 2.24 Let 0 → C
f−→ D

g−→ E → 0 be a short exact sequence in
the abelian category A. Considering these objects in D(A), they form the exact

triangle C
f−→ D

g−→ E→ C[1].
Proof We consider the exact triangle C

f−→ D
j−→ Cone(f )

p−→ C[1]. Note that
Cone(f ) is a two-term complex, quasi-isomorphic to E:

C(f ) 0 C D 0

E 0 E 0

g

f

g

One can check that this quasi-isomorphism can be completed to a diagram of quasi-
isomorphisms, which shows the claim:

C D C(f ) C[1]

C D E C[1]

f j p

g

f g h

��
Remark 2.25 The mindful reader may ask about the third morphism in the triangle,
namely h : E → C[1]. Note that h ∈ HomD(A)(E,C[1]) = Ext1A(E,C), see
Example 2.40. It is well-known that Ext1(E,C) corresponds to extensions, so h
encodes the middle term D; see [3, §III.6.2] for a discussion of this.
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Theorem 2.26 Let A be an abelian category. Then its derived category D(A) is
a triangulated category, i.e. it satisfies the four axioms TR1–TR4.

TR1 The triangle C•
id−→ C• → 0→ C•[1] is exact.

Any triangle isomorphic to an exact one is again exact.
Any morphism f : C• → D• can be completed to an exact triangle.

Proof of TR1 for D(A) For the derived category D(A) the second clause is
satisfied by definition. For the first clause, one only needs to check that the cone
Cone(id) is homotopic to the zero complex. To see the last, write a morphism
f : C• → D

• as a roof f = f̃ • ◦ (s•)−1, which fits into the following commutative
diagram of exact triangles:

C• D• C(f ) C•[1]

C̃• D• C(f •) C̃•[1]

f

(s•)−1

j • s•[1]◦p•

(s•)−1[1]
f̃ • j • p•

��
Remark 2.27 By the last clause of TR1, cones in the derived category D(A)

unifying both kernel and cokernel of the abelian category A. More precisely,
considering a map f : C → D in A as a map of complexes in D(A), one can
check that H−1(Cone(f )) = ker(f ) and H0(Cone(f )) = coker(f ).

TR2 The triangle C•
f−→ D• g−→ E•

h−→ C•[1] is exact if and only if D• g−→ E•
h−→

C•[1] −f [1]−−−→ D•[1] is.

Proof of TR2 for D(A) We only discuss “ 2⇒ ” a bit (as the converse direction
is analogous). By TR1 we may assume that f = f • is a map of complexes, E• ∼=
Cone(f •) and g• : D• → Cone(f •) is the inclusion as a semi-direct summand. We
have to show that C•[1] is isomorphic to Cone(g•). Note that by our simplifications
Cone(g•) = D•[1] C•[1] D•. One can now check that

(−f •[1], id, 0) : D•[1] C
•[1] D

• → Cone(g•)

gives the desired isomorphism. ��
TR3 Given two exact triangles and two morphisms c and d as below:

C• D• E• C•[1]

C
•

D
•

E
•

C
•[1]

f

c d e c[1]
f

then there is a (not necessarily unique) morphism e making this diagram commuta-
tive.
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Proof of TR3 for D(A) After replacing f and f ′ by maps of complexes, and E•

and E′• by the respective cones, one can check that e = (c[1], d) fits into the
diagram. ��
Remark 2.28 One might suppose by our reasoning about the existence of the
dashed morphism in D(A), that cones are functorial in D(A), i.e. given a natural
transformation η : F → G between functors preserving exact triangles, there exist
the functor Cone(η) of cones.

In a naive way, such a statement is wrong. Take for example the exact triangle

C
• id−→ C

• → 0 → C
•[1] for any non-trivial C• ∈ D(A). After shifting, we can

write down the following diagram

C• 0 C•[1] C•[1]

0 C•[1] C•[1] 0

− id[1]

− id[1]

All the non-labelled solid arrows are just zero morphisms. For the dashed arrow, we
can choose any morphism C•[1] → C•[1].

But in a more sophisticated way, such a statement is true for derived categories
using dg-enhancements, a topic that we will not enter here.

Remark 2.29 By [12, Lem. 2.2], TR3 is not necessary as an axiom, it follows from
the other three axioms. But we prefer to keep it in this list, as it is an often used
property of triangulated categories. Finally, this shows also that the non-functoriality
of cones inside a triangulated category goes deeper than TR3.

Remark 2.30 From TR1–TR3 follows that in exact triangles, the composition of
two consecutive morphisms is zero. This follows from the following diagram (and
shifted versions):

C
•

C
•

0 C
•[1]

C• D• E• C•[1]

id

id f id

f g h

TR4 Given two morphisms f : C• → D• and g : D• → E•, there is a triangle of
cones

Cone(f )→ Cone(g ◦ f )→ Cone(g)→ Cone(f )[1]

which fits into the following commutative diagram (where we suppress for simplic-
ity the last degree-increasing morphism in the exact triangles):
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C•
D•

E•

f

g ◦ f g

C(f )

C(g) C(g ◦ f )

We omit the proof of TR4 for D(A), as it is more technical.

Remark 2.31 The last axiom goes under the name octahedral axiom as it can
be pictured by a diagram in the form of an octahedron, but we think that the
above diagram is more helpful. It comes from the following lemma about abelian
categories, which one might call windmill lemma:

Given f : C → D and g : D → E in an abelian category A. Then there is
an exact sequence of kernels and cokernels fitting into the commutative diagram of
Fig. 1. The proof is an exercise in homological algebra, but may also be deduced
from the octahedral axiom using Remark 2.27.

Remark 2.32 Just by restricting the class of exact triangles, one can also see that
D−(A), D+(A) and Db(A) are triangulated categories.

C D

E

f

g ◦ f g

ker(f)

ker(g ◦ f)

coker(f)

ker(g)

coker(g) coker(g ◦ f)

0

0

Fig. 1 The windmill lemma
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2.4 Exact Functors

In this section, we introduce the notion of an exact functor between triangulated
categories.

Definition 2.33 A functor F : T → T′ between triangulated categories is called
exact, if

• F commutes with shifts, i.e. there is a functor isomorphism F ◦[1]T ∼= [1]T′ ◦F ;
• for any exact triangle A→ B → C → A[1] in T, its image F(A)→ F(B)→
F(C)→ F(A)[1] is exact in T′.

Proposition 2.34 Let A be an abelian category and D(A) its derived category.
Then there is the functor H• : D(A) → D(A) which sends each complex C• to
its cohomologyH•(C•) equipped with the zero differential. This functor is an exact
functor.

Remark 2.35 The statement of this proposition is usually formulated differently.

For any exact triangle C•
c−→ D• d−→ E•

e−→ C•[1] in D(A), its image under H• can
be rolled out to a long exact sequence in cohomology:

· · · → Hi (C
•
)

Hi (c)−−−→ Hi(D
•
)

Hi (d)−−−→ Hi(E
•
)

Hi (e)−−−→ Hi+1(C
•
)→ · · ·

For defining derived functors in general, we first give an analogue of Proposi-
tion 2.16.

Proposition 2.36 Let F : A → B be a left-exact functor, and let IF be an F -
adapted class. Then the inclusion Com+(IF ) ⊂ Com+(A) induces an equivalence

ιF : Hot+(IF )[qis−1] → D+(A).

Note that the inverse ι−1
F replaces a complex C• by an F -adapted resolution.

Definition 2.37 Let F : A→ B be a left-exact functor, and let IF be an F -adapted
class. The right-derived functor of F is given by

RF : D+(A)→ D+(B), C• �→ F(ι−1
F (C

•
)).

Definition 2.38 Let F : A → B be a left-exact functor. By taking cohomology, we
get induced functors

RiF :=Hi (RF) : D+(A) RF−−→ D+(B) Hi−→ B

which are called i-th right-derived functors of F .
Moreover, we can precomposeRiF withA → D+(A) and get induced functors

on the abelian level, which we will denote by the same symbol.

andreas.hochenegger@unimi.it



Appendix: Introduction to Derived Categories 281

Note that the last step in the definition of RiF is taking cohomology of the
complex, in particular, RiF (A) = R0F(A[i]). One can check that R0F and F
are naturally isomorphic.

Remark 2.39 The definition of the right-derived functor RF is based on the choice
of an F -adapted class. But one can show that different choices yield isomorphic
derived functors, as the derived functor can be characterised by a universal property.
See [3, §III.6.7] for more details on this.

Example 2.40 Let A be an abelian category with enough injectives. One common
way to define ExtiA(C,D) is by using an injective resolution I • of D:

ExtiA(C,D) := Hi HomA(C, I
•
)

Hence we see that ExtiA(C,−) is the i-th right-derived functor of HomA(C,−).
Moreover, we get that

ExtiA(C,D) = HomD(A)(C,D[i]).

Remark 2.41 Let F : A→ B be a right-exact functor. Since we have already given
the definition of a right derived functor, we leave the proper definition of a left-
derived functor LF and i-th left-derived functor LiF as an exercise to the reader.

The following theorem finally tells us that (right-) derived functors preserve
exactness in the derived sense. As usual, there is also an analogous statement for
left-derived functors.

Theorem 2.42 Let F : A → B be a left-exact functor between abelian categories,
such that there is an F -adapted class in A. Then the right-derived functor
RF : D+(A)→ D+(B) is an exact functor.

Proof The essential steps are

• ιF : Hot+(IF )[qis−1] → D+(A) is exact and therefore ι−1
F as well;

• the functor Hot+(IF )[qis−1] → D+(B), I • → F(I •) is also exact, which
follows from the adaptedness of IF .

��
Note that the combination of Theorem 2.42 and Remark 2.35 gives again long

exact sequences, i.e. for an exact triangle C• → D• → E• → C•[1] and a right-
derived functor RF , there is the long exact sequence

· · · → RiF (C•)→ RiF (D•
)→ RiF (E•)→ Ri+1F(C

•
)→ · · ·

We close this section with a very important exact functor.
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Definition 2.43 Let A be a k-linear category such that Hom(A,B) is finite-
dimensional for any two objects A,B ∈ A. An auto-equivalence S : A → A

is called Serre functor of A if for all A,B ∈ A there is an isomorphism

ηA,B : Hom(A,B)→ Hom(B, SA)∨

of k-vector spaces, which is functorial in both A and B.

We note that without the assumption on the dimension of the Hom-spaces, one
runs into problems (as V ∨∨ �∼= V if V is an infinite-dimensional vector space).

Proposition 2.44 Let A be a k-linear triangulated category with Serre functor S.
Then S is an exact functor.

3 The Derived Category of Coherent Sheaves

From now on, we will specialise and consider the abelian category coh(X) of
coherent sheaves on a noetherian scheme X over a field k. We denote the derived
category of coh(X) by Db(X) := Db(coh(X)).

3.1 Deriving Left-Exact Functors

In this section, we discuss the most prominent left-exact functors in algebraic
geometry: Hom, push-forward and sheaf Hom.

Theorem 3.1 Let X be a noetherian scheme. Then there are enough injective
objects in the category of quasi-coherent sheaves Qcoh(X).

We remark that injective sheaves are hardly finitely generated. Actually, for our
applications this is only a minor technical issue.

Proposition 3.2 Let X be a noetherian scheme. Then the inclusion functor

Db(X)→ Db(Qcoh(X))

induces an equivalence of Db(X) with Db
coh(Qcoh(X)), the derived category of

complexes of quasi-coherent sheaves with bounded cohomology.

The following proposition will allow us to restrict derived functors to the
bounded derived category of coherent sheaves.

Proposition 3.3 Let X and Y be schemes and F : Qcoh(X)→ Qcoh(Y ) be a left-
exact functor. Assume that there is an F -adapted class in Qcoh(X).
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If for anyF ∈ coh(X) holds RF(F) ∈ Db(Y ), then the right-derived functor of
F restricts to

RF : Db(X)→ Db(Y ).

We have formulated this proposition using an adapted class (even though there
are enough injective sheaves), because we will also use the dual statement for right-
exact functors.

Proof Let F• ∈ Db(X) be a bounded complex with Fi = 0 for i > n. Choose
some adapted resolution F• → I • = [· · · 0 → Im → Im+1 → · · · ], which might
be in D+(X). Then its truncation complex

I≤n : [· · · → 0→ Im→ · · · → In−1 dn−→ In → ker(dn)→ 0→ · · · ]

is still quasi-isomorphic to F•, but ker(dn) ∈ coh(X) will not be F -acyclic in
general. Nevertheless, by assumption RF(ker(dn)) ∈ Db(Y ), so we can replace
ker(dn) by some bounded adapted resolution J •. One can check that I≤n and J • fit
together to form a bounded adapted resolution of F •. ��
Inner Homomorphisms Given a quasi-coherent sheaf F ∈ Qcoh(X) on a
noetherian scheme X over a field k, there is the left-exact functor

Hom(F,−) : Qcoh(X)→ kMod = Qcoh(Speck).

Since X is noetherian, there are enough injectives in Qcoh(X) and we get

RHom(F,−) : D+(Qcoh(X))→ D+(kMod)

Actually, this functor can be extended to complexes F• ∈ Com−(Qcoh(X)).

Proposition 3.4 Let X be a smooth and proper variety and F• ∈ Db(X). Then
RHom(F•,−) restricts to a functor

RHom(F•
,−) : Db(X)→ Db(kmod).

This proposition follows from RHom(F•,−) = R� ◦ RHom(F•,−), see
Proposition 3.19, and the corresponding statements for R� and RHom.

Example 3.5 Let C be a projective curve with a singular point x. Then for the
skyscraper sheaf k(x) one can show that Exti (k(x),k(x)) �= 0 for all i > 0. In
particular, the image of RHom(k(x),−) is not contained in Db(kmod).

Push-Forward Let f : X → Y be a morphism of noetherian schemes, which
induces the left-exact push-forward functor (or direct image)

f∗ : Qcoh(X)→ Qcoh(Y ).
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As X is noetherian, Qcoh(X) has enough injectives, so f∗ gives the right-derived
functor

Rf∗ : D+(Qcoh(X))→ D+(Qcoh(Y )).

The Rif∗ =HiRf∗ are also known as higher direct images of f .
For a noetherian scheme X over a field k, the push-forward of the structure map

π : X → Speck is taking global sections, so � = π∗ in this case. Moreover, for a
sheaf F we find that its cohomology groups are thereforeHi(X,F) = Riπ∗(F).

Proposition 3.6 Let f : X → Y be a morphism of noetherian schemes and F ∈
Qcoh(X). Then the derived push-forward restricts to

Rf∗ : Db(Qcoh(X))→ Db(Qcoh(Y )).

If f is in addition a proper morphism, then Rf∗ restricts further to

Rf∗ : Db(X)→ Db(Y ).

Proof Using Proposition 3.3, the statements can be reduced to the following (deep)
theorems:

• if F ∈ Qcoh(X) then Rif∗F X are trivial for i > dim(X);
• if f is proper and F coherent, then all Rif∗F are coherent.

��
Local Homomorphisms Let X be a noetherian scheme and F ∈ Qcoh(X). Then
there is the left-exact functor

Hom(F,−) : Qcoh(X)→ Qcoh(X)

which induces the derived functor

RHom(F,−) : D+(Qcoh(X))→ D+(Qcoh(X)).

Like in the case of Hom, the sheaf F can be replaced by a bounded above complex.

Proposition 3.7 Let X be a smooth and proper variety and F• ∈ Db(X). Then
RHom(F•

,−) restricts to a functor

RHom(F
•
,−) : Db(X)→ Db(X).

Definition 3.8 Let X be a smooth projective variety and F• ∈ Db(X). Then the
dual of F• is F•∨ := RHom(F•,OX) ∈ Db(X).
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3.2 Deriving Right-Exact Functors

In this section, we discussion of the most prominent right-exact functors: tensor and
pull-back.

Remark 3.9 Let X = P
1 be the projective line over an infinite field. Then there are

no (non-zero) projective objects in coh(X) or Qcoh(X), see [5, Ex. III.6.2].

Tensor Product This lack of projective objects implies that we still have to work
in order to derive tensor product and pull-back.

Theorem 3.10 Let X be a scheme and F a quasi-coherent sheaf. Then the flat
sheaves in Qcoh(X) form an adapted class for the left-exact functor F = F ⊗
−: Qcoh(X)→ Qcoh(X).

Proof We check the two properties in the definition of adaptedness. Let F• be an
acyclic complex of quasi-coherent sheaves. Then for a flat sheaf E, the complex
F• ⊗ E is still acyclic by definition of flatness.

Let G ∈ Qcoh(X). We use that arbitrary direct sums of flat sheaves are flat and
that OU ∈ Qcoh(X) is flat for any open U ⊂ X. With this it is easy to build a
surjection

⊕

i OUi � G by choosing (local) generators of G as a OX-module. ��
Remark 3.11 If X is a noetherian scheme and F a coherent sheaf on X, then F is
flat if and only if it is locally free.

In particular, tensoring with a locally free coherent sheaf yields an exact functor.
So with no need to derive, we arrive at the description of the Serre functor in the
smooth case.

Theorem 3.12 Let X be a smooth projective variety. Then the exact functor

Db(X)→ Db(X), F
• �→ F

• ⊗ ωX[dim(X)]

is a Serre functor of Db(X).

Projective objects in abelian categories are characterised by a lifting property
dual to the one of Proposition 2.12. For an adapted class, like locally free sheaves
for the tensor product, such a lifting does not exist in general.

Example 3.13 Consider X = P
1. The structure sheaf O is already locally free, but

tensoring the Euler sequence with O(−2) yields another locally free resolution:

P • 0 (−2) (−1)⊕2 0

0 0

f
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Note that f is a quasi-isomorphism, as H•(P •) = O. The (dual) lifting property of
Proposition 2.12 would ask for a map g in the converse direction:

P
•

id

g

f

But such a g cannot exist, since Hom(O,O(−1)) = H 0(P1,O(−1)) = 0.

Proposition 3.14 Let X be a scheme and F• ∈ Com−(coh(X)). Then the right-
exact functorF• ⊗ − induces the left-derived functor

F
• L⊗ −: D−(X)→ D−(X).

If additionally, X is smooth andF• ∈ Db(X), then this functor restricts to

F
• L⊗ −: Db(X)→ Db(X).

Proof The last statement can be shown using the analogue of Proposition 3.3 and
the theorem that for smooth varieties any F• ∈ Db(X) is quasi-isomorphic to a
bounded complex of locally free sheaves of length at most dim(X). ��
Remark 3.15 The (−i)-th derived functor of the tensor product is denoted by

Tori (F
•
,−) := H−i(F• L⊗ −).

Pull-Back Let f : X → Y be a morphism of noetherian schemes. Note that the
pull-back (or inverse image) f ∗ is the composition of the exact functor f−1 with
the tensor product OX ⊗f−1OY

−.

From this, using flat sheaves as an adapted class, we get the left-derived functor

Lf ∗ : D−(Qcoh(Y ))→ D−(Qcoh(X))

which is the composition of f−1 and OX
L⊗f−1OY

−.

Proposition 3.16 Let f : X → Y be a morphism of noetherian schemes with Y
smooth. Then Lf ∗ restricts to

Lf ∗ : Db(Y )→ Db(X).

Proof As for the tensor product, smoothness of Y implies that we can replace a
bounded complex of coherent sheaves by a bounded complex of locally free sheaves.

��
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3.3 Compatibilities

In this section, we will speak a bit about the interaction between the above
introduced derived functors: adjunction of pull-back and push-forward, projection
formula and flat base change.

Remark 3.17 The crucial technical tool for this section is hidden in Remark 2.39:
the right- (or left-) derived functor associated to a left- (or right-) exact functor is
essentially unique.

In particular, an equality of functors on an adapted class extends to an equality
of derived functors.

As a first application of this remark, we see that the adjunction of f ∗ and f∗ on
the abelian level extends to derived categories.

Proposition 3.18 Let f : X → Y be proper morphism of smooth varieties. Then
Lf ∗ andRf∗ form a pair of adjoint functors, i.e. there is an isomorphism functorial
in both arguments

HomDb(X)(Lf
∗F,G) ∼−→ HomDb(Y )(F,Rf∗G).

Another equality of abelian functors is � ◦Hom = Hom.

Proposition 3.19 Let X be a smooth projective variety and F• ∈ Db(X). Then
R� ◦ RHom(F•,−) = RHom(F•,−).
Proof Hidden in this statement is the equality R(� ◦ Hom(F•,−)) = R� ◦
RHom(F•,−), which follows from the fact that Hom(F•,−) maps injective
sheaves to �-acyclic ones. ��

The next proposition is the so-called projection formula which, on the abelian
level of coherent sheaves, holds for locally free sheaves F.

Proposition 3.20 Let f : X → Y be proper morphism of smooth varieties and
E• ∈ Db(X), F• ∈ Db(Y ). Then there is a natural isomorphism

Rf∗(E•)
L⊗ F

• ∼−→ Rf∗(E•
L⊗ Lf ∗(F•

)).

Finally, there is also the flat base change. For this, note that pull-backs along flat
morphisms do not need to be derived.

Proposition 3.21 Let u : X → Z be a flat morphism and f : Y → Z a proper
morphism of smooth varieties. Consider the fibre product

X ×
Z

Y Y

X Z

v

g f

u
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Then forF• ∈ Db(Y ) there is a natural isomorphism

u∗Rf∗(F•
) ∼−→ Rg∗v∗(F•

)

and in particular, u∗Rif∗(F•) ∼= Rig∗v∗(F•).

3.4 Fourier-Mukai Transforms

We introduce an important class of exact functors between derived categories of
coherent sheaves.

Throughout this section, let X and Y be smooth projective varieties. Moreover,
we denote the two projections from their product by:

X × Y

X Y

q p

Definition 3.22 Let P• ∈ Db(X × Y ) then the induced exact functor

�P• : Db(X)→ Db(Y ), E
• �→ Rp∗(q∗E•

L⊗ P
•
)

is called the Fourier-Mukai transform with Fourier-Mukai kernel P•.

Note that in the above definition, there is no need to derive q∗, as a projection is
flat. Moreover, a Fourier-Mukai kernel can be used to define also a Fourier-Mukai
transform in the converse direction. To stress the direction, we sometimes write
�X→YP• .

For a Fourier-Mukai kernel P• ∈ Db(X × Y ), its left and right adjoint Fourier-
Mukai kernels in Db(X × Y ) are

P
•
L := P

•∨ ⊗ p∗ωY [dim(Y )], P
•
R := P

•∨ ⊗ q∗ωX[dim(X)].

This notation is justified by the following statement.

Proposition 3.23 LetP• ∈ Db(X×Y ), then the Fourier-Mukai transforms�Y→XP
•
L

and�Y→XP•
R

are left and right adjoint to �X→YP• .

Finally, one can ask, whether a given exact functor F : Db(X) → Db(Y ) is of
Fourier-Mukai type, i.e. can be written as a Fourier-Mukai transform with some
kernel. The central result to this question is the following theorem by Orlov.
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Theorem 3.24 Let F : Db(X) → Db(Y ) be an exact fully faithful functor and
assume thatX and Y are smooth projective varieties. Then there is aP• ∈ Db(X×
Y ) such that F ∼= �P• . Moreover, P• is unique up to isomorphism.

Remark 3.25 The original statement also assumes the existence of a left adjoint.
Based on work of Bondal and van den Bergh, the existence of both adjoints is
automatic. Moreover, over an algebraically closed field of characteristic zero, a non-
zero exact full functor F : Db(X) → Db(Y ) between smooth projective varieties
is already faithful. Details on both can be found in the survey [2, Prop. 3.5 & Thm.
3.14].

For the following, let ι : X ∼→ � ⊂ X × X denote the inclusion of the diagonal
�, in particular, ι∗OX = O�.

Examples 3.26 Let f : X→ Y be a morphism between smooth projective varieties
and denote by �f its graph in X × Y . Then push-forward and pull-back are of
Fourier-Mukai type:

Rf∗ ∼= �X→YO�f
, Lf ∗ ∼= �Y→XO�f

.

Notable special cases are

• id = �O� , where � is the diagonal;
• H ∗(X,−) = �OX , using that X ∼= X × Spec(k) and H ∗(X,−) = Rπ∗ for
π : X→ Spec(k).

The shift functor is of Fourier-Mukai type using the kernel O�[1].
The tensor product F• L⊗ − is of Fourier-Mukai type, using the kernel ι∗(F•

)

with ι : X ↪→ X × X. By Proposition 3.23, also Hom(F•
,−) is of Fourier-Mukai

type, as it is the left adjoint of the tensor product.

Proposition 3.27 The composition of two functors of Fourier-Mukai type is again
of Fourier-Mukai type.

Example 3.28 Let X be a smooth projective variety. Then the Serre functor S =
−⊗ ωX[dim(X)] of Db(X) is of Fourier-Mukai type.

With this Proposition 3.27 by Mukai, we can use the above functors as building
blocks, yielding a vast array of functors of Fourier-Mukai type. It is probably fair
to say that all geometrically meaningful functors are of Fourier-Mukai type. For
further discussion see the survey [2].

4 The Derived Torelli Theorem for K3 Surfaces

This last section serves as a bridge to [11]: we discuss the auto-equivalences of the
derived category of K3 surfaces. In this section, the ground field will be C.
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For basic facts about K3 surfaces and its Hodge theory needed here, already the
recap in [7, §10.1] is enough. We will only recall the global Torelli theorem. For
this let X be a K3 surface. The standard polarised Hodge structure on the second
cohomologyH 2(X,C), which uses the intersection pairing, can be restricted to the
integral cohomology:

H 2(X,Z) = H 2,0(X,Z)⊕H 1,1(X,Z)⊕H 0,2(X,Z).

Note that a smooth rational curve C ⊂ X becomes a (−2)-class [C] inside
H 1,1(X,Z) ⊂ H 2(X,Z). In particular, the associated reflection

s[C] : H 2(X,C)→ H 2(X,C), α �→ α + (α, [C])[C]

is a Hodge isometry, i.e. s[C] respects the intersection pairing and the
decomposition. Moreover, this reflection restricts to an (integral) Hodge isometry
s[C] : H 2(X,Z)→ H 2(X,Z).

Theorem 4.1 (Torelli) Let X and Y be two K3 surfaces. Then there is an isomor-
phism f : X ∼→ Y if and only if there exists a Hodge isometry φ : H 2(X,Z) ∼→
H 2(Y,Z).

In this case, there are smooth rational curves C1, . . . , Cm on X such that

φ = ±s[C1] ◦ · · · ◦ s[Cm] ◦ f∗.

Derived Torelli In the following, we will see that the above statement is the
cohomological “shadow” of a statement involving the respective derived categories.

Let f : X → Y be a morphism of K3 surfaces. On the level of rational
cohomology, f induces a ring homomorphism

f ∗ : H ∗(Y,Q)→ H ∗(X,Q),

the cohomological pull-back. Using Poincaré duality, the cohomological push-
forward

f∗ : H ∗(X,Q)→ H ∗(Y,Q)

can be defined as the dual map to f ∗. Given a class α ∈ H ∗(X × Y,Q) the
cohomological Fourier-Mukai transform with kernel α is

�Hα : H ∗(X,Q)→ H ∗(Y,Q), β �→ p∗(α.q∗(β)).

Definition 4.2 Let X be an algebraic K3 surface. Then the Mukai vector of E• ∈
Db(X) is defined as

v(E
•
) := (rk(E•), c1(E

•
), rk(E•)+ c2

1(E
•
)/2− c2(E

•
)).
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Moreover, for α = (α0, α1, α2) and β = (β0, β1, β2) with αk, βk ∈ H 2k(X,Q), the
Mukai pairing is given as

〈α, β〉 := α1.β1 − α0.β2 − α2.β0.

Remark 4.3 Up to a sign, the Mukai pairing can be seen as a cohomological shadow
of the Euler characteristic χ . To be precise, for E•, F • ∈ Db(X) holds

−〈v(E•), v(F •)〉 = χ(E•, F •) :=
∑

(−1)k dimRk Hom(E•, F •).

This follows quite immediate from the Hirzebruch-Riemann-Roch formula.

The definition of the Mukai pairing is made in such a way, that the pairing extends
the intersection pairing onH 2(X,Z). Even more, we can extend the integral Hodge
structure on H 2(X,Z) by setting

H̃ 2,0(X,Z) := H 2,0(X,Z),

H̃ 1,1(X,Z) := H 0(X,Z)⊕H 1,1(X,Z)⊕H 4(X,Z),

H̃ 0,2(X,Z) := H 0,2(X,Z).

This gives an integral weight-two Hodge structure on H ∗(X,Z), which is polarised
by the Mukai pairing. In the following, we will denote this polarised Hodge structure
by H̃ (X,Z), which is called the Mukai lattice.

Theorem 4.4 ([13]) Let � : Db(X) ∼→ Db(Y ) be an equivalence of the derived
categories of two algebraic K3 surfaces. Then this induces a map on cohomology
which defines a Hodge isometry

�H : H̃ (X,Z) ∼−→ H̃ (Y,Z).

Proof By Theorem 3.24, � can be written uniquely as a Fourier-Mukai transform
with Fourier-Mukai kernel P • ∈ Db(X × Y ). As the key ingredient, Mukai showed
that v(P •) ∈ H̃ 1,1(X,Z). As a consequence, �H := �H

v(P •) : H ∗(X,Q) →
H ∗(X,Q) can be restricted to the integral part. Finally, as an application of the
Grothendieck-Riemann-Roch formula, one obtains that

v(�(E
•
)) = �H(v(E•)).

��
Remark 4.5 If � : Db(X)→ Db(Y ) is an equivalence between derived categories
of arbitrary smooth projective varieties, then there is a natural pairing on cohomol-
ogy such that the induced �H : H ∗(X,Q) → H ∗(X,Q) is an isometry, see [7,
§5.2]. Note that in the general situation, �H will not restrict to the integral part.
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Corollary 4.6 LetX be an algebraic K3 surface. Then there is a homomorphism of
groups

% : Aut(Db(X))→ O(H̃ (X,Z)), � �→ �H,

where Aut(Db(X)) is the group of auto-equivalences of Db(X) and O(H̃ (X,Z))
denotes the group of Hodge isometries of the Mukai lattice.

Orlov strengthened the Mukai’s result to the so-called derived Torelli Theorem.

Theorem 4.7 ([14]) Two algebraic K3 surfaces X and Y have equivalent derived
categories if and only if there exists a Hodge isometry of their Mukai lattices.

Proof The strategy of the proof is to reduce to the case that an isometry
φ : H̃ (X,Z) → H̃ (Y,Z) preserves H 2. This reduction is built on results about
moduli spaces of sheaves on K3 surfaces, see [7, §10.3] for an overview. As soon
as φ preservesH 2, by Theorem 4.1 such an isometry is of the form

φ = ±s[C1] ◦ · · · ◦ s[Cm] ◦ f∗.

for some f : X ∼→ Y . In particular, Db(X) ∼= Db(Y ). ��
The relationship of auto-equivalences and Hodge isometries was clarified further

by Hosono et al. [6], Ploog [15] and Huybrechts et al. [8].
The central observation is that the Mukai lattice H̃ (X,Z) has signature (4, 20)

and that there is a natural orientation of the positive directions. Given an ample
class α ∈ H 1,1(X) and a generator σ ∈ H 2,0(X), the four classes

1(exp(iα)) = 1− α2/2, 3(exp(iα)) = α, 1(σ ), 3(σ )

define an orientation which is independent of the choices of α and σ . We denote by
O+(H̃ (X,Z)) the Hodge isometries which preserve this orientation.

Proposition 4.8 Let X be an algebraic K3 surface and � ∈ Aut(Db(X)). Then
�H preserves the natural orientation, i.e. �H ∈ O+(H̃ (X,Z)). Conversely, for
any ψ ∈ O(H̃ (X,Z)) there is a � ∈ Aut(Db(X)) with

�H = ψ ◦ (± idH 2),

in particular, O+(H̃ (X,Z)) ⊂ O(H̃ (X,Z) has index two.

Spherical Twists As a corollary of Proposition 4.8 we obtain the following short
exact sequence for an algebraic K3 surface X:

0→ ker(%)→ Aut(Db(X))
%−→ O+(H̃ (X,Z))→ 0.
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One may wonder which elements lie in the kernel of % , i.e. auto-equivalences that
act as the identity on cohomology. Or one might ask whether the reflections s[C] for
smooth rational curves C ⊂ X can be lifted to auto-equivalences of Db(X). Both
questions lead to the notion of a spherical twist. We recall the central properties, for
further details see [7, §8.1].

Definition 4.9 Let X be a smooth projective variety. An object E• ∈ Db(X) is
called spherical if

• E
• is a spherelike object, i.e.

Hom∗(E•, E•) :=
⊕

k

Hom(E•, E•[k])[−k] ∼= C[t]/t2;

• and E• is a Calabi-Yau object, i.e. E• ⊗ ωX ∼= E•.
Remark 4.10 The graded vector space Hom∗(E•, E•) is the cohomology of the
complex RHom(E•, E•) ∈ Db(Cmod), and actually quasi-isomorphic to it. Note
that Hom∗(E•, E•) becomes a C-algebra with the Yoneda product. So the first
property asks that there is an (up to scalar) unique self-extension of E• that squares
to zero. By the second property this extension has to be of degree dim(X).

Theorem 4.11 Let E• be a spherical object in Db(X). Then there is an auto-
equivalence TE• ofDb(X) which fits into an exact triangle of functors:

Hom∗(E•,−)⊗ E• ev−→ id→ TE• → Hom∗(E•,−)⊗ E•[1],

which is called the spherical twist along E•.

Remark 4.12 The first arrow in the above triangle is the evaluation map ev which
comes from the adjunction of Hom and ⊗. This triangle of functors cannot serve as
a definition of TE• , as cones are not functorial. But ev induces a morphism between
the respective Fourier-Mukai kernels, which allows to define TE• as a Fourier-Mukai
transform to the cone of this morphism.

The triangle of functors above allows to deduce easily two important properties
of a spherical twist TE• :

• TE• (E
•) = E•[1− dim(X)] and

• TE• (F
•) = F • for F • with Hom∗(E•, F •) = 0.

On the level of cohomology, these properties become

• THE• (v(E
•)) = (−1)1−dim(X)v(E•) and

• THE• (α) = α for α with 〈v(E•), α〉 = 0.

In particular, THE• is already completely determined: it is the reflection along v(E•)⊥
if dim(X) is even and the identity if dim(X) is odd.
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Corollary 4.13 For an algebraic K3 surface X holds:

• If E• is a spherical object, then T2
E• is a non-trivial element of ker(%).

• If C ⊂ X is a smooth rational curve, then OC(−1) is a spherical object with
THOC(−1) = s[C].

Proof The first part follows from the observation that THE• is a reflection. For the
second part, one can check that all OC(k) are spherical objects for k ∈ Z. But only
for k = −1, one obtains that v(OC(−1)) = [C]. ��

So in the presence of smooth rational curves on an algebraic K3 surface, we
obtain elements in ker(%). The question about the structure of ker(%) in general is
hard, so far only the case of Picard rank 1 is solved.

Theorem 4.14 ([1]) Let X be an algebraic K3 surface of Picard rank 1. Then
ker(%) is the product of Z · [2] and the free group generated by T2

V with V running
over all spherical vector bundles on X.
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