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a b s t r a c t 

The effect of elastic deformations induced by gravity loading on the active circumnutation 

movements of growing plant shoots is investigated. We consider first a discrete model 

(a gravitropic spring-pendulum system) and then a continuous rod model which is an- 

alyzed both analytically (under the assumption of small deformations) and numerically 

(in the large deformation regime). We find that, for a choice of material parameters con- 

sistent with values reported in the available literature on plant shoots, rods of sufficient 

length may exhibit lateral oscillations of increasing amplitude, which eventually converge 

to limit cycles. This behavior strongly suggests the occurrence of a Hopf bifurcation, just 

as for the gravitropic spring-pendulum system, for which this result is rigorously estab- 

lished. At least in this restricted set of material parameters, our analysis supports a view 

of Darwin’s circumnutations as a biological analogue to structural systems exhibiting flut- 

ter instabilities, i.e. , spontaneous oscillations away from equilibrium configurations driven 

by non-conservative loads. Here, in the context of nutation movements of growing plant 

shoots, the energy needed to sustain oscillations is continuously supplied to the system by 

the internal biochemical machinery presiding the capability of plants to maintain a vertical 

pose. 

© 2019 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Nutations and circumnutations, namely, periodic movements in rapidly elongating plant organs such as roots, hypocotyls,

shoots, branches, and flower stalks have fascinated scientists for over a century. A large body of literature has followed

the seminal work by Darwin (1880) , see Schuster (1996) and Mugnai et al. (2015) for a (partial) list of references. In one

of the prevailing theories currently accepted, nutations are oscillatory movements arising from the over-compensatory re-

sponse of a plant to the changing orientation of its gravisensory apparatus relative to the Earth’s gravity vector. Contribu-

tions of particular relevance are Israelsson and Johnsson (1967) , Johnsson and Heathcote (1973) and Johnsson et al. (2009) .

Very recently, quantitative models supporting this hypothesis have been proposed and tested, see e.g. , Bastien et al. (2013) ,
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Fig. 1. A 40-day-old sample of Arabidopsis thaliana (ecotype Col-0) grown under normal gravity conditions (1 g) at the SAMBA laboratory of SISSA. (a) 

A superposition of two snapshots to highlight the amplitude of lateral oscillations (circumnutations) exhibited by the primary shoot. (b) A sequence of 

snapshots taken at time intervals of 10 minutes. Notice that the characteristic time of circumnutational oscillations is of the order of τ c � 90 min. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bastien et al. (2014) , Chelakkot and Mahadevan (2017) , Pouliquen et al. (2017) and Meroz et al. (2019) and the microscopic

mechanisms governing gravisensing have been identified ( Chauvet et al., 2019 ). 

In this paper, building on the observation that growing shoots often appear as elongated biological structures of signifi-

cant weight relative to their stiffness, we focus on the role that elastic deformations arising from gravity loading may have

on the nutational movements. We analyze these movements as a Hopf bifurcation phenomenon in the equations governing

the gravitropic dynamics of a growing shoot, and identify the regime of material and geometric parameters in which this

bifurcation, and hence nutation movements, are likely to occur. As discussed in the manuscript, the parameters which come

into play are four characteristic times, namely, the duration of statoliths avalanche in the statocytes τ a , the growth time τ g ,

the memory time τm 

, the reaction time τ r , and two dimensionless loading parameters, that is, y and λ, determined by the

shoot weight and slenderness, respectively. 

Typically, elastic deformations are just one of the concurrent factors promoting oscillatory response. There are how-

ever regimes of the governing parameters, identified by values of the four characteristic response times and of the two

dimensionless loading parameters, in which taking into account the elastic deformations induced by gravity loading is nec-

essary to “explain” the emergence of oscillations. At least in this restricted set of geometric and material parameters, our

analysis supports a view of Darwin’s circumnutations as a biological analogue to structural systems exhibiting flutter insta-

bilities, i.e. , spontaneous oscillations away from equilibrium configurations. In recent papers appeared in this journal, these

have been analyzed in structural systems loaded by non-conservative (follower) forces, see Bigoni and Noselli (2011) and

Bigoni et al. (2018) . Here, in the context of nutation movements of growing plant shoots, the energy needed to sustain os-

cillations is continuously supplied to the system by the internal biochemical machinery presiding the capability of plants to

maintain a vertical pose. 

1.1. State of the art: a brief review 

Movements of growing plant organs are very complex and far from being completely understood. The observable shape of

a plant is the specific result of its unique history of endogenous and exogenous factors. Discerning whether certain dynamics

are encoded in the biology of the system or they represent the mechanical and physiological reaction to external cues, or a

combination of both, is a fundamental question that has intrigued and puzzled many scientists over the past two centuries.

Movements in plants are mainly classified in tropisms and nastic movements. Tropisms are the directed growth responses

to directional environmental cues, e.g. , light ( phototropism ), gravity ( gravitropism ), touch ( thigmotropism ), etc, while nastic

movements are motions responding to external stimuli which are independent of the position of the stimulus source, e.g. ,

temperature ( thermonasty ), chemicals ( chemonasty ), touch ( thigmonasty ), etc. 

This classification fails to include circumnutation movements, i.e. , circular, elliptical or pendular oscillations of elongating

plant organs (exemplified in Fig. 1 for Arabidopsis thaliana Col-0), which are caused by radially asymmetric growth rates

that have uncertain origin. The first reports about circumnutations can be traced back to the 19th century and, since then,

many different terms have been used in the literature to refer to such a phenomenon. Indeed, Palm (1827) talked about
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twining , von Sachs (1875) used the term revolving nutation , Darwin (1880) coined the term circumnutation , Noll (1885) re-

ported about rotating nutations , Gradmann (1922) about over-bending movements , Rawitscher (1932) about circular move-

ments , Bünning (1953) about circumnasty and Hammer and Gessner (1958) about growth oscillations . 

It seems widely accepted that circumnutations are the consequence of helical growth and reversible cell volume varia-

tions ( Mugnai et al., 2015 ). However, consensus on the regulatory mechanism of circumnutations has not been reached yet,

with opinions split between two main theories: circumnutations can be explained either by endogenous mechanisms or as

internal responses to exogenous stimuli. In the first case, circumnutations should constitute a class of movements on their

own ( Correll and Kiss, 2008 ), whereas in the second case, they should be included among tropisms or nastic movements. 

Darwin (1880) was probably the first one to suggest an endogenous feature of circumnutations whose “amplitude, or di-

rection, or both have only to be modified for the good of the plant in relation with internal or external stimuli ”. Theories support-

ing this point of view included hormonal and ionic oscillations with gravity acting as an external signal. Arnal (1953) pro-

posed periodic variations in auxin fluxes from the tip and Joerrens (1957) hypothesized periodic changes in the sensitivity

of the elongating cells to auxin. Heathcote and Aston (1970) formulated the theory of a nutational oscillator situated in

each cell. Studying shoots in Phaseolus Vulgaris L. , Millet et al. (1984) , Millet et al. (1988) and Badot et al. (1990) proposed

a primary mechanism residing in the moving of a turgescence wave around the shoot, also related to K distribution. More

recently, Shabala and Newman (1997) and Shabala (2003) observed strong correlations between nutation and rhythmical

patterns of H 

+ , K 

+ and Ca 2+ ion fluxes in the elongation region of corn roots. 

On the other side, Gradmann (1926) introduced the idea that circumnutations could be the result of delayed gravitropic

responses: the deviation from the vertical line triggers a correcting movement that, due to a reaction time between per-

ception and actuation, makes the plant overshoot giving rise to self-sustained oscillations. Building on this, Israelsson and

Johnsson (1967) and Somolinos (1978) showed that a model describing the plant gravitropic response based on delay and

memory could explain circumnutations. Later, observing an autotropic straightening to a vertical position in Avena seedlings

during weightlessness experiments, Chapman et al. (1994) adapted the model proposed by Israelsson and Johnsson (1967) by

including such autotropic effects. 

The debate about the role of gravity for the induction or continuation of circumnutations persisted and has been fu-

eled by new experiments on Earth and in space over the last few decades ( Kiss, 20 06; 20 09; Kobayashi et al., 2019 ). On

the one hand, the study of agravitropic mutants in morning glory, pea and arabidopsis supported the idea that gravire-

sponse is required in both the shoots and roots of dicotyledonous plants ( Hatakeda et al., 2003; Kim et al., 2016; Kitazawa

et al., 20 05; 20 08 ). On the other hand, many experimental results have been interpreted as corroborating the Darwinian

theory of endogenous oscillations affected by graviresponses. Based on experiments in microgravity reported by Brown and

Chapman (1984) , Brown et al. (1990) and Johnsson et al. (1999) suggested a two-oscillator model by combining the grav-

itropic feedback oscillator with an endogenous oscillator. Performing experiments on the gravitropic rice mutant lazy1 ,

Yoshihara and Iino (2006) concluded that circumnutation and gravitropism are separate (although interfering) phenomena.

Moreover, “minute oscillatory movements in microgravity ” have been observed by Johnsson et al. (2009) in A. thaliana and,

more recently, also Kobayashi et al. (2019) reported minute movements in rice coleoptiles in microgravity, although cau-

tiously stressing the fact that such movements were difficult to measure and it was “technically difficult to determine whether

they were truly circumnutation or not ”. 

In addition, another important unsolved issue is to which extent the role of gravity depends on the plant organs or

species. For instance, tillers of the rice mutant lazy1 behave differently from coleoptiles ( Abe et al., 1996 ), and evolutionary

benefits are obvious for twining plants in search of mechanical support. In any case, it is clear that considerable deviations

from the plumb line will cause a gravitropic reaction, possibly interfering with an endogenous oscillator (assuming this

oscillator exists). This is the reason why gravitropism plays a crucial role when dealing with circumnutations. In general,

the study of any kind of tropism consists in understanding the mechanisms of stimulus perception, signal transduction and

response. 

The concept of tropism was introduced by Knight in 1806 but only recently “the data converged to provide a picture

of the physiological, molecular and cell biological processes that underlie plant tropisms ” ( Gilroy and Masson, 2008 ). About

gravitropism, it is widely accepted that plants sense gravity in specialized cells (statocytes) through the sedimentation of

starch-filled plastids (statoliths) which are denser than the surrounding cellular fluid. This leads to the development of

an asymmetry in auxin concentration between the upper and lower flanks, causing differential cell elongation and hence

bending. 

The standard way to model gravitropism goes back to Von Sachs (1882) , who formulated the so-called sine law stating

that the graviresponse is proportional to the sine of the angle formed by the vertical and the organ axis. An important modi-

fication to the sine law has been introduced by Bastien et al. (2013) and Bastien et al. (2014) , who included a proprioception

term to describe the phenomenon of organ straightening called autotropism. However, in the last few decades, an apparent

contradiction emerged when testing this law: under permanent inclination, the response of the plant appeared to be inde-

pendent of effective gravity, whereas, under transient gravi-stimulation, the graviresponse was quantified by a dose-response

curve, the dose depending on the stimulation time and the effective gravity ( Chauvet et al., 2019 ). By introducing a memory

process in the gravitropic signalling pathway (using an approach already proposed by Israelsson and Johnsson (1967) and

similarly taken by Meroz et al. (2019) ) and a microscropic description of the statoliths dynamics, Chauvet et al. (2019) identi-

fied four time-scales regulating the graviresponse. In this unified framework, the gravity-independent sine law is recovered

when the stimulation is long enough compared to the statolith avalanche duration and the memory time, while dose-
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Fig. 2. (a) A sketch of the one-degree-of-freedom gravitropic spring-pendulum system discussed in the manuscript. (b) Real (solid lines) and imaginary 

(dashed lines) part of the roots of the characteristic equation (11) as functions of y ∈ [0, 1] for η = 1 and σ = 0 . 008 . We distinguish three regions cor- 

responding to three distinct behaviours of the fixed point ˆ θ ≡ 0 : (i) a stable node (light blue), (ii) a stable spiral (orange), and (iii) an unstable spiral 

converging to a stable limit cycle (green). (c) Numerical solutions of the nonlinear discrete delay differential Eq. (6) at increasing values of the parameter y 

and for ˆ θ ( ̂ t ) = 0 . 01 for ̂  t ≤ 0 . Specifically, the angular coordinate ˆ θ is reported as a function of dimensionless time ̂  t for y = 0 . 9 (light blue curve), y = 0 . 99 

(orange curve), and y = 0 . 995 (green curve). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

responses are obtained either when the time of the stimulation is shorter than the avalanche time or when it is longer than

that but shorter than the memory time. 

In this scenario, elastic deformations due to gravity loading have been often overlooked. Here, we have made an effort

to take them into account building on the recent advances in the understanding of gravitropic and autotropic responses

( Chauvet et al., 2019; Dumais, 2013; Hamant and Moulia, 2016 ) and in the modeling of the additional effects due to elastic

deflections through the separation of sensed and actuated variables ( Chelakkot and Mahadevan, 2017 ). 

2. A gravitropic spring-pendulum system 

We begin our study on circumnutations of growing shoots by exploring the dynamics of a prototypical system consisting

of an upward vertical pendulum supported by a “gravitropic” torsional spring which adapts its rest angle to reorient the

pendulum in the direction opposite to gravity. 

Specifically, let us consider a rigid bar of length � , hinged at the bottom and supported by a spring of torsional stiffness

B > 0, see Fig. 2 a. The bar carries its weight, modelled by a vertical distributed load of magnitude q , and is confined to the

plane { e 1 , e 2 } so that its configuration is determined at any time t by the angle θ ( t ) with respect to the vertical. 

Equilibrium of the pendulum under the prescribed distributed load requires that 

m (θ, θ0 ) = 

1 

2 

q � 2 sin θ, (1) 

where m ( θ , θ0 ) is the torque exerted by the spring. As for its constitutive characterization, we consider the affine law 

m (θ, θ0 ) = B ( θ − θ0 ) , (2) 

where θ0 is the time-dependent rest angle for which we assume the following time evolution law 

˙ θ0 (t) = − β

τg τm 

∫ t−τr 

−∞ 

e −
1 

τm 
( t−τr −τ ) sin θ (τ ) d τ, (3) 

where a dot denotes differentiation with respect to time. In the equation above, β ≥ 0 is the dimensionless gravitropic sen-

sitivity, τ g > 0 is the characteristic time for the evolution of the rest angle, τ r ≥ 0 is the geotropic reaction time or delay,
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whereas τm 

> 0 is a parameter of the exponential weighting function defining the plant’s memory of the stimulus. The

evolution law (3) was initially proposed by Israelsson and Johnsson (1967) to model the response of growing plants to

gravi-stimulation. This has been recently improved by Chauvet et al. (2019) to account for the dynamics of statoliths sedi-

mentation, as discussed in the manuscript. 

For the special case of β = 0 the time evolution of the rest angle is inhibited. It follows that θ0 ( t ) ≡ 0, such that the ver-

tical configuration is an equilibrium which loses stability as the length of the pendulum exceeds a critical value � c (buckling

critical length). This can easily be computed through a stability analysis of the spring-pendulum system, leading to 

� c := 

√ 

2 B 

q 
. (4)

Our goal is to consider the more general case of β � = 0 and to explore the behaviour of the spring-pendulum system

as its length increases. We anticipate that our analysis will reveal that the trivial equilibrium (θ, θ0 ) = (0 , 0) undergoes a

supercritical Hopf bifurcation at a pendulum length of the order of � c . To that aim, we proceed by taking the derivative of

the balance Eq. (1) . Substitution of (3) leads to 

˙ θ (t) 

(
1 − q � 2 

2 B 

cos θ (t) 

)
= − β

τg τm 

∫ t−τr 

−∞ 

e −
1 

τm 
( t−τr −τ ) sin θ (τ ) d τ , (5)

such that by a further differentiation with respect to time we arrive at (
1 − q � 2 

2 B 

cos θ (t) 

)(
θ̈ (t) + 

1 

τm 

˙ θ (t) 
)

+ 

q � 2 

2 B 

˙ θ2 (t) sin θ (t) + 

β

τg τm 

sin θ (t − τr ) = 0 . (6)

We notice that, in the absence of external loading ( q = 0 ), (6) reduces to the so-called “sunflower” equation. This model

was proposed by Israelsson and Johnsson (1967) to interpret the geotropic circumnutations of the apical region of plants, and

has already been proved to admit periodic solutions ( Somolinos, 1978 ) for a specific range of parameters. However, growing

shoots often appear as elongated, biological structures of significant weight relative to their stiffness, a fact that cannot be

disregarded. This is evident from the parameter q � 2 /(2 B ) in the equation above, measuring the relative magnitude of the

plant’s weight to stiffness. 

To explore the effect of elastic deformations of the pendulum due to gravity loading, we proceed by linearizing

Eq. (6) about θ = 0 to derive the following second order discrete delay differential equation (
1 − q � 2 

2 B 

)(
θ̈ (t) + 

1 

τm 

˙ θ (t) 
)

+ 

β

τg τm 

θ (t − τr ) = 0 , (7)

which, assuming τ r > 0, can be restated in dimensionless form upon introduction of three dimensionless parameters, i.e. , 

y := 

q � 2 

2 B 

, η := 

τr 

τm 

, σ := β
τ 2 

r 

τg τm 

, (8)

leading to 

( 1 − y ) 

(
¨̂
 θ ( ̂ t ) + η ˙ ˆ θ ( ̂ t ) 

)
+ σ ˆ θ ( ̂ t − 1) = 0 , (9)

where ˆ θ ( ̂ t ) := θ ( ̂ t τr ) and a superimposed dot denotes now differentiation with respect to the dimensionless time ˆ t := t/τr .

Here, we prefer to omit the details of our analysis to focus instead on the following, important result. In fact, application

of the theorems reported in Appendix A leads to the conclusion that (9) exhibits a supercritical Hopf bifurcation at 

y = y 	 := 1 − σ

η

sin ξ 	 

ξ 	 
, (10)

where ξ 	 is defined as the unique root of ξ = η cot ξ in (0, π /2). Notice that y = (�/� c ) 
2 , such that we propose the following

physical interpretation of the result above: in a growing shoot subject to gravity, circumnutations may arise as a consequence

of a Hopf bifurcation as the shoot’s length attains the critical value � 	 := 

√ 

y 	 � c . We infer from Eq. (10) that y 	 < 1, so

that � 	 < � c , i.e. , the delayed graviresponse triggers a Hopf bifurcation before the buckling critical length is reached. This

conclusion is further supported by the analysis of the roots of the characteristic equation relative to (9) 

(1 − y ) 
(

ˆ ω 

2 + η ˆ ω 

)
e ˆ ω + σ = 0 , (11)

obtained by plugging in it the representation 

ˆ θ ( ̂ t ) = e ̂ ω ̂ t for the angular coordinate, where ˆ ω is a dimensionless circular

frequency. We report in Fig. 2 b the real (solid lines) and the imaginary (dashed lines) part of the roots of the characteristic

Eq. (11) as functions of the loading parameter y ∈ [0, 1] for η = 1 and σ = 0 . 008 . These values were determined by assuming

a gravitropic sensitivity of β = 0 . 8 , τg = 1200 min, and τr = τm 

= 12 min, see Chauvet et al. (2019) , and correspond to a

critical loading parameter of y 	 � 0.993. 

In the figure, we distinguish three regions corresponding to distinct behaviours of the fixed point ˆ θ ≡ 0 : (i) a stable node

(light blue region, where roots are real and negative), (ii) a stable spiral (orange region, where roots are complex conjugate
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with negative real part), and (iii) an unstable spiral converging to a stable limit cycle (green region, where roots are complex

conjugate with positive real part) for y > y 	 . The figure also reports numerical solutions of the nonlinear discrete delay

differential Eq. (6) at increasing values of the parameter y and for the initial condition of ˆ θ ( ̂ t ) = 0 . 01 for ˆ t ≤ 0 . Specifically,

Fig. 2 c shows the angular coordinate ˆ θ as a function of dimensionless time ˆ t for y = 0 . 9 (light blue curve), y = 0 . 99 (orange

curve), and y = 0 . 995 (green curve). The numerical implementation of the nonlinear Eq. (6) was achieved by exploiting the

NDSolve functionality of Mathematica v11.3.0.0 and confirms the onset of periodic solutions in correspondence with the

theoretical Hopf bifurcation point. 

We notice, in passing, that the distributed delay of (5) is not necessary to give rise to such a qualitative behaviour.

Indeed, the following first order differential equation with discrete delay 

˙ θ (t) ( 1 − y cos θ (t) ) = − β

τg 
sin θ (t − τr ) (12) 

has the same qualitative features and undergoes a supercritical Hopf bifurcation at 

y 	 0 := 1 − 2 

π

σ

η
. (13) 

Eq. (12) can be recovered from Eq. (5) by letting τm 

↘ 0 (as the gravitropic memory kernel in (5) tends to a Dirac delta in

the sense of distributions) and, consistently, y 	 ↗ y 	 
0 
. 

In concluding this section, we find it useful to stress the significance of elastic deformations due to gravity in determining

the oscillatory behaviour sometimes exhibited by growing shoots. In fact, by neglecting the effect of either external loading

( q → 0) or of elastic deformations ( B → ∞ ), one would constrain the parameter y to null, such that self-sustained oscillations

would be impossible, at least for the chosen values of the parameters, which are the most realistic ones to characterize the

biological machinery regulating the gravitropic response of plant organs. 

3. A rod model for growing shoots 

Inspired by the prototypical system studied in Section 2 , we introduce a planar rod model that accounts for growth by

cell expansion and for the evolution of spontaneous curvature due to gravitropism and proprioception. For the evolution

laws that govern the active response of the rod we rely on recent developments from the available literature. Finally, we

derive a reduced model that is appropriate for the study of circumnutations in young plant shoots. 

3.1. Mechanics 

We model the plant shoot as an unshearable and (elastically) inextensible rod confined to the plane spanned by { e 1 , e 2 }.

At each time t its centreline r ( s, t ) is a planar C 2 curve of length � ( t ) parametrized by the arc-length s ∈ [0, � ( t )]. The rod

undergoes an extensional growth characterized by a prescribed time evolution of the actual stretch 

λ(S 0 , t) = 

∂s 

∂S 0 
( S 0 , t ) , (14) 

where S 0 ∈ [0, � (0)] is the reference arc-length, and s ( S 0 , t ) denotes the change of coordinate in C 1 that at any time t maps

S 0 into the current arc-length. 

We denote by θ ( s, t ) in C 2 the angle between the unit vector e 2 pointing in the vertical direction and the local tangent

to the curve, see Fig. 3 a. Then, the unit tangent to the rod axis is 

r ′ = sin θ e 1 + cos θ e 2 , (15) 

where a prime denotes differentiation with respect to s , such that the configuration of the rod can be reconstructed from θ
as 

r (s, t) = r 0 + 

∫ s 

0 

r ′ ( σ, t ) d σ , (16) 

where r 0 is the position of the basal end. 

Since we have in mind processes where the time-scale for mechanical equilibrium is much shorter than any biological

time-scale of the plant, we impose static equilibrium at any time, i.e. , 

n 

′ + f = 0 , m 

′ + r ′ × n = 0 , (17) 

where n and m are the resultant contact force and contact couple, whereas f is the body force per unit current length.

From the planarity assumption, n = n 1 e 1 + n 2 e 2 and m = m 3 e 3 and, from the physics of the problem, we prescribe f = −q e 2 
where q denotes the plant’s weight per unit current length. 

As for the constitutive response of the rod to bending, we follow the approach by Chelakkot and Mahadevan (2017) and

assume a linear Euler-Bernoulli law such that 

m 3 (s, t) = −B (s, t) 
[
θ ′ (s, t) − κ(s, t) 

]
, (18) 
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Fig. 3. (a) A sketch of the planar rod model for the analysis of periodic oscillations in plant shoots. (b) Real (solid lines) and imaginary (dashed lines) 

part of the roots of the characteristic Eq. (37) as functions of � / � c ∈ [0, 1] and for the choice of parameters introduced in Section 4.1 . As for the case of 

the gravitropic spring-pendulum system, we distinguish three regions corresponding to different dynamical responses for ˆ θ ( ̂ s , ̂ t ) : (i) an exponential decay 

(light blue), (ii) a damped oscillation (orange), and (iii) an increasing oscillation (green) for � > � 	 ≈ 0.895 � c . (c) Superimposition of deformed shapes from 

the nonlinear rod model as computed for � = 0 . 91 � c as the time spans half a period of the limit cycle. (d) Numerical solutions of the nonlinear problem 

(24) –(26) as obtained for � = 0 . 91 � c . Specifically, the transverse displacement and the phase portraits related to the angle and position of the rod’s tip as 

functions of time are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

where B is the bending stiffness and κ is the spontaneous curvature which models differential growth in the cross section.

In the following, we will assume the bending stiffness to be constant. More refined models may account for changes in B

due to lignification. 

3.2. Growth law and time-evolution of the spontaneous curvature 

In the present rod model, the active response of the plant is described by appropriate evolution laws for the stretch λ
and for the spontaneous curvature κ . As for the stretch, we assume that cells extension occurs only in the growth zone of

constant length � 0 := � (0), where, following Bastien et al. (2014) , we prescribe a constant elongation rate, i.e. , 

˙ λ

λ
(S 0 , t) = 

⎧ ⎨ 

⎩ 

0 if 0 ≤ s (S 0 , t) < � (t) − � 0 , 

1 

τg 
if s (S 0 , t) ≥ � (t) − � 0 , 

(19)

where τ g is the characteristic time of growth induced by cell elongation and a superimposed dot denotes differentiation

with respect to time. 

Two main ingredients have been identified by Bastien et al. (2014) to model tropic movements of plants: (i) graviception ,

that aims to reorient the stem along the vertical, and (ii) proprioception , which tends to reduce the curvature of the organ.

Both mechanisms determine the time evolution of the spontaneous curvature, such that, in the growth zone, its material

time-derivative reads 

d 

d t 
κ(s (S 0 , t) , t) = G (s (S 0 , t) , t) + P (s (S 0 , t) , t) , (20)

where G ( s, t ) and P ( s, t ) are the gravitropic and proprioception signals. 

From a biological standpoint, the response of the growth zone to gravi-stimulation is the result of several processes at the

cellular level which are not yet completely understood. In particular, differential growth across the plant section is attributed

to an auxin asymmetry between the upper and the lower part of the organ, and auxin redistribution is triggered by the

sedimentation of statoliths in specialized cells called statocytes. Following Chauvet et al. (2019) , we model this dynamics as
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a viscous relaxation governed by the equation 

d 

d t 
θ s (s (S 0 , t) , t) = 

1 

τa 
sin ( θ s (s (S 0 , t) , t) − θ (s (S 0 , t) , t) ) , (21) 

where τ a is the characteristic duration of the statoliths avalanches and θ s ( s, t ) is the local orientation of statoliths with

respect to the vertical. Moreover, the same authors included in the model terms accounting for delay and memory processes

that characterize the gravitropic signalling pathway. To model such processes, they proposed the following integral law 

G (s, t) = − β

Rτm 

τg 

∫ t−τr 

−∞ 

e −
1 

τm 
( t−τr −τ ) sin θ s (s, τ ) d τ, (22) 

where τm 

is the memory time, τ r is the reaction time or delay, β is a dimensionless gravitropic sensitivity, whereas R is

the radius of the shoot’s cross section. 

In addition to the gravitropic response, it has been shown that, after a first phase where the organ responds to envi-

ronmental stimuli, an independent mechanism takes place that hampers bending and favours a straight posture. The micro-

scopic functioning of this phenomenon, called autotropism or autostraightening, is mostly unknown ( Okamoto et al., 2015 ).

However, we model it as proprioception following Bastien et al. (2013) , such that 

P (s, t) = − γ

τg 
θ ′ (s, t) , (23) 

where γ is a dimensionless proprioception sensitivity. 

3.3. A reduced model for the study of circumnutations: The regime τ a � τ c � τ g 

As discussed in the previous section, four different time-scales control the evolution of growth-driven stretch and spon-

taneous curvature, i.e., τ g , τ a , τm 

and τ r . Chauvet et al. (2019) determined the order of magnitudes of these characteristic

times for wheat ( Triticum aestivum ) coleoptiles as follows: τ a � 2 min, τm 

� τ r � 12 min, and τ g � 1200 min. 

Since the period τ c of most circumnutational oscillations is in the range of 20 − 300 min ( Brown, 1993 ), we can assume

that the statolith avalanche dynamics is much faster compared to circumnutations which, in turn, are much faster than the

dynamics of cell elongation. On the one hand, the assumption of τ g � τ c implies that we can neglect changes in length �

and bending stiffness B . Indeed, at short times compared to τ g , the organ length approximately coincides with � (0), and

there is no distinction between current and reference arc-lengths. On the other hand, the condition τ a � τ c yields θ s ( s,

t ) ≈ θ ( s, t ). Moreover, we neglect the proprioceptive term in the evolution law (20) since curvatures are relatively small, as

confirmed by the results presented in the following. Based on these assumptions, we arrive at the reduced model 

B 

[
θ ′′ (s, t) − κ ′ (s, t) 

]
= −q (� − s ) sin θ (s, t) , ˙ κ(s, t) = − β

Rτm 

τg 

∫ t−τr 

−∞ 

e −
1 

τm 
( t−τr −τ ) sin θ (s, τ ) d τ (24)

in the variables ( θ , κ) for s ∈ (0, � ) and t > 0. Specifically, (24) 1 was obtained by first solving for the balance of forces (17) 1 
in the absence of apical loads and then plugging the expression for the contact force in (17) 2 , while accounting for the

constitutive law of (18) . As for (24) 2 , it trivially follows from (20) with P = 0 and with the gravitropic signal given by (22) ,

where θ replaces θ s . The system of Eq. (24) is supplemented by the following boundary and initial conditions, namely 

θ (0 , t) = 0 , θ ′ (�, t) − κ(�, t) = 0 , (25)

holding ∀ t > 0 as the basal end is clamped and the apical end is torque free, and 

θ (s, t) = θ0 (s, t) , κ(s, 0) = κ0 (s ) , (26) 

prescribing respectively the past history of the angular coordinate and the initial datum for the spontaneous curvature

evolution ∀ s ∈ [0, � ]. 

Assuming sufficient regularity, we can combine the time-derivative of (24) 1 with the space-derivative of (24) 2 , so that by

a further differentiation with respect to time we arrive at 

θ̈ ′′ + 

1 

τm 

˙ θ ′′ + 

q (� − s ) 

B 

[ (
θ̈ + 

1 

τm 

˙ θ
)

cos θ − ˙ θ 2 sin θ
] 

+ 

β

Rτm 

τg 
θ ′ (s, t − τr ) cos θ (s, t − τr ) = 0 , (27) 

along with the boundary condition (25) 1 and 

θ̈ ′ (�, t) + 

1 

τm 

˙ θ ′ (�, t) + 

β

Rτm 

τg 
sin θ (�, t − τr ) = 0 , (28) 

holding ∀ t > 0 and resulting from time differentiation of (25) 2 . 

4. Analysis of circumnutations in plant shoots 

Guided by the study performed on the gravitropic spring-pendulum system, we proceed by first carrying out an analysis

of the linearized version of Eq. (27) . Such an analysis reveals the existence of periodic solutions that are reminiscent of

circumnutations. Next, we introduce a computational model for the nonlinear governing equations that allows to explore the

dynamics of model shoots in the oscillatory regime, providing evidence of a limit cycle associated with a Hopf bifurcation. 
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4.1. Linearization about the straight equilibrium configuration 

By linearizing problem (27) and (28) about the equilibrium solution θ ( s, t ) ≡ 0, we get the following fourth order partial

differential equation with discrete delay 

θ̈ ′′ (s, t) + 

1 

τm 

˙ θ ′′ (s, t) + 

q (� − s ) 

B 

(
θ̈ (s, t) + 

1 

τm 

˙ θ (s, t) 
)

+ 

β

Rτm 

τg 
θ ′ (s, t − τr ) = 0 , (29)

supplemented by the boundary condition (25) 1 and 

θ̈ ′ (�, t) + 

1 

τm 

˙ θ ′ (�, t) + 

β

Rτm 

τg 
θ (�, t − τr ) = 0 , (30)

holding ∀ t > 0 and resulting from the linearization of (28) . Upon introducing four dimensionless parameters, i.e. , 

y := 

q � 3 

B 

, η := 

τr 

τm 

, σ := β
τ 2 

r 

τg τm 

, μ := 

� 

R 

, (31)

Eq. (29) can be recast in dimensionless form as 

¨̂
 θ ′′ ( ˆ s , ̂  t 

)
+ η ˙ ˆ θ ′′ ( ˆ s , ̂  t 

)
+ y 

(
1 − ˆ s 

)( ¨̂
 θ
(

ˆ s , ̂  t 
)

+ η ˙ ˆ θ
(

ˆ s , ̂  t 
))

+ σμ ˆ θ ′ ( ˆ s , ̂  t − 1 

)
= 0 . (32)

Here, ˆ θ ( ̂ s , ̂  t ) := θ ( ̂ s l, ̂  t τr ) and primes and dots denote differentiation with respect to ˆ t := t/τr and ˆ s := s/�, respectively. As

for the boundary conditions, we write 

ˆ θ (0 , ̂  t ) = 0 , 
¨̂
 θ ′ (1 , ̂  t ) + η ˙ ˆ θ ′ (1 , ̂  t ) + σμ ˆ θ (1 , ̂  t − 1) = 0 , (33)

holding ∀ ̂

 t > 0 , whereas the initial condition is 

ˆ θ ( ̂  s , ̂  t ) = 

ˆ θ0 ( ̂  s , ̂  t ) , (34)

which applies ∀ ̂  s ∈ [ 0 , 1 ] , ∀ ̂

 t ∈ [ −1 , 0 ] . 

We proceed with our analysis in the linear regime by seeking time-harmonic solutions of the form 

ˆ θ ( ̂ s , ̂  t ) = ϕ( ̂ s ) e ̂ ω ̂t

to (32) –(34) . By substituting the form above in (32) we obtain 

ϕ 

′′ ( ̂  s ) + c ϕ 

′ ( ̂  s ) + y 
(
1 − ˆ s 

)
ϕ( ̂  s ) = 0 , (35)

where c := σμ e − ˆ ω / ( ̂  ω 

2 + η ˆ ω ) . Integration of (35) leads to 

ϕ( ̂  s ) = e −c ̂ s / 2 
[
c 1 Ai (x ( ̂  s )) + c 2 Bi (x ( ̂  s )) 

]
, (36)

in which c 1 and c 2 are constants of integration, whereas Ai (x ) and Bi (x ) are the Airy functions of the first and second kind,

respectively, and x ( ̂ s ) := [ c 2 / 4 − y (1 − ˆ s )] /y 2 / 3 . By imposing the boundary conditions (33) , and neglecting the trivial case of

c 1 = c 2 = 0 , we derive 

Ai (x 0 ) 
(
c Ai (x 1 ) + 2 

3 
√ 

y Bi 
′ (x 1 ) 

)
− Bi ( x 0 ) 

(
c Ai ( x 1 ) + 2 

3 
√ 

y Ai 
′ (x 1 ) 

)
= 0 , (37)

where x 0 := x (0), x 1 := x (1), and a prime denotes differentiation of the Airy functions with respect to their argument. 

We numerically computed the roots of the characteristic Eq. (37) to explore the stability of model shoots of increasing

length � . To this aim, we exploited the FindRoot functionality of Mathematica v11.3.0.0. In agreement with Chelakkot and

Mahadevan (2017) and Chauvet et al. (2019) , we calibrated the model by setting β = 0 . 8 , τg = 1200 min, τm 

= τr = 12 min,

R = 0 . 5 mm, E = 10 7 Pa for the Young’s modulus, and q = ρgA where ρ = 10 3 Kg m 

−3 is the mass density, A the cross-

sectional area, and g the gravitational acceleration. For such a choice of model parameters, we determined values of the

circular frequency ˆ ω letting � range in [0, � c ]. Here, � c denotes the critical length at which an elastic rod of bending stiffness

B subject to a distributed, vertical load of magnitude q loses stability, that is 

� c := 

3 
√ 

αB/q , (38)

with α ≈ 7.837, see Greenhill (1881) . 

We report in Fig. 3 b the real (solid lines) and the imaginary (dashed lines) part of two roots of (37) . As for the case

of the gravitropic pendulum, we distinguish in the figure three regions corresponding to different dynamical responses of
ˆ θ ( ̂ s , ̂  t ) : (i) an exponential decay (light blue region, where roots are real and negative), (ii) a damped oscillation (orange

region, where roots are complex conjugate with negative real part), and (iii) an increasing oscillation (green region, where

roots are complex conjugate with positive real part) for � > � 	 ≈ 0.895 � c . 

Our analysis is restricted to solutions of the form introduced above, where spatial and temporal variables are separated.

However, the presented results clearly indicate that the rod model suffers an instability in the linear regime as the shoot’s

length exceeds the critical value � 	 . This behaviour shares similarities with that exhibited by the gravitropic spring-pendulum

system of the previous section. We shall next explore the dynamical response of the active rod model in the nonlinear

regime by means of numerical computations. 
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4.2. Numerical implementation of the rod model 

In this section, we introduce a numerical implementation of the nonlinear problem (24) –(26) in order to explore the

regime of large amplitude oscillations exhibited by model shoots. Specifically, we solve Eq. (24) along with boundary condi-

tions (25) and initial conditions (26) by using the finite element method. 

As a first step towards the numerical formulation, it is convenient to introduce the auxiliary field w ( s, t ) representing the

delay integral, i.e. , 

w (s, t) := 

∫ t−τr 

−∞ 

e −
1 

τm 
( t−τr −τ ) sin θ (s, τ ) d τ , (39) 

so that such integral may be computed from the solution of the differential equation 

˙ w (s, t) = − 1 

τm 

w (s, t) + sin θ (s, t − τr ) . (40) 

With the definition (39) , the Eq. (24) 2 for the evolution of the spontaneous curvature reads 

˙ κ(s, t) = − β

Rτm 

τg 
w (s, t) . (41) 

To obtain the weak formulation of the governing equations, we multiply (24) 1 , (40) , and (41) by the test functions ˜ θ, ˜ w ,

and ˜ κ, respectively, such that an integration in space along the interval [0, � ] leads to ∫ � 

0 

(
B 

(
θ ′ (s, t) − κ(s, t) 

)
˜ θ ′ (s, t) + q (� − s ) sin θ (s, t) ̃  θ(s, t) 

)
d s = 0 , (42a) 

∫ � 

0 

(
˙ w (s, t) + 

1 

τm 

w (s, t) + sin θ (s, t − τr ) 
)

˜ w (s, t) d s = 0 , (42b) 

∫ � 

0 

(
˙ κ(s, t) + 

β

Rτm 

τg 
w (s, t) 

)
˜ κ(s, t) d s = 0 . (42c) 

In performing the integration by parts of the terms involving curvatures in (24) 1 we have accounted for the boundary

condition (25) 2 and for the essential condition 

˜ θ (0 , t) = 0 . Following standard finite element procedures, both the unknowns

θ , w, κ and the corresponding test fields are discretized in space using linear Lagrange shape functions, while for the time

discretization we choose the second-order generalized alpha method. The weak form equations were implemented and

solved in COMSOL Multiphysics v5.4 using the Weak Form PDE mode. 

Here, we focus our numerical study on the unstable regime predicted by the linear analysis of the previous section, see

the green region of Fig. 3 b. In particular, we choose a rod of length �̄ := 0 . 91 � c that is above the threshold � 	 . As the initial

datum, we set 

θ0 (s, t) = a Re (e ω̄ t ) ϕ(s/ ̄� ) , (43) 

holding ∀ t ≤ 0. In the equation, a is the amplitude, ω̄ is the dimensional (complex) eigenvalue that solves (37) for � = �̄ ,

and ϕ(s/ ̄� ) is the corresponding eigenfunction as given by (36) . Consequently, the initial condition for the delay integral w

can be estimated from (39) under the hypothesis that a � 1, so that sin θ0 ( s, t ) ≈ θ0 ( s, t ). To initialize the simulation with a

zero-stress configuration, the magnitude of the distributed load is ramped from zero to q over a time interval much smaller

than the fastest characteristic time scale of the system, i.e., τ r , while the initial spontaneous curvature κ( s , 0) equals the

visible curvature θ ′ ( s , 0) with θ (s, 0) = θ0 (s, 0) = aϕ(s/ ̄� ) . 

Consistently with the theoretical results exposed in Section 4.1 , our computational study reveals the onset of a limit cycle

as the rod’s length exceeds � 	 ( ≈ 7.1 cm, for the chosen parameters). In particular, we report in Fig. 3 c several configurations

of the rod at different times, clearly showing a symmetric oscillation with respect to the vertical line as the time spans half

a period of the limit cycle ( ≈ 88 min, for a full cycle). In addition, Fig. 3 d depicts the transverse displacement and the phase

portraits related to the angle and position of the tip as functions of time. These show the signature of the limit cycle and

provide a quantitative description of the dynamics of the system during its evolution towards the steady, oscillatory regime.

5. Conclusions and outlook 

Inspired by the fascinating phenomenon of circumnutations, we investigated the effect of elastic deformations induced

by gravity loading on the active response of plant shoots, an aspect that has been so far disregarded. To this aim, we first

introduced a simple prototypical model, the so-called gravitropic spring-pendulum system. This was shown to be capable

of capturing the main features of plants response to gravity. The simplicity of the model allowed us to perform a rigorous

mathematical analysis to prove that a Hopf bifurcation occurs for a critical length of the pendulum. 

To account for the complex nature of the interplay between elasticity and growth in plant shoots, we then derived a

planar rod model built upon recent advances in the understanding of gravitropism. For this model, in a linearized setting,

we proved the existence of oscillatory and diverging solutions above a critical length of the rod. 
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Finite element simulations allowed us to extend the analysis of the dynamics of model shoots into the nonlinear regime,

with computational results confirming our theoretical findings. For a choice of material parameters consistent with the

available literature on plant shoots, we found that rods of sufficient length may exhibit lateral oscillations of increasing am-

plitude, which eventually converge to limit cycles. This behavior strongly suggests the occurrence of a Hopf bifurcation, just

as for the gravitropic spring-pendulum system, and is closely reminiscent of the periodic movements reported for elongating

plant organs. 

The present study supports the idea that plant nutations might be the result of a posture feedback control based on

delayed graviresponses of a slender structure approaching the buckling critical length. This does not exclude that, in other

circumstances such as in the case of climbing plants reaching for support, or in the coiling of tendrils, periodic helical

motion may be the outcome of endogenous biological processes, leading to evolutionary advantages. In the case we consider,

however, nutations may be simply a by-product of gravitropism -the attempt of plants to keep a vertical posture- and of

deflections due to gravity loading. Here gravity plays two distinct roles that should not be confused. On the one hand,

gravity causes the dynamics of statoliths and hence triggers the plant gravitropic response; on the other hand, the presence

of gravity implies a load that the plant carries, with the corresponding elastic deflections, and this study shows that this

effect is not negligible. Such a distinction must be kept in mind when altering the effect of gravity by means of experiments

in Space or on Earth. Interestingly, the main features of our self-sustained oscillations depend on several distinct physical

parameters, and this might explain the diversity of nutations observed in nature, even though each case should be carefully

examined to rule out different biological mechanisms that our model has not yet taken into account. A general conclusion

emerging from our analysis, that is worth emphasizing, is that the energy needed to sustain spontaneous oscillations is

continuously supplied to the system by the internal biochemical machinery presiding the capability of plants to maintain a

vertical pose. 

We are aware of the inherent limitations of the proposed mechanical models, which are simplistic in many respects.

Nevertheless, our quantitative results seem to be in good agreement with observations on circumnutations in the sense that

both the critical length and the period of oscillations have the expected order of magnitude. Future work will include a

quantitative assessment of the accuracy of the theoretical predictions in comparison with experimental observations. More-

over, the nonlinear rod model will be extended to account for a full three-dimensional description of the kinematics of plant

nutations as recently developed by Bastien and Meroz (2016) . 

Beside their relevance in a biological context, studies on circumnutational movements in plants are providing inspiration

for innovative designs in robotic applications from which, in turn, they benefit getting new insights. For instance, Del Dot-

tore et al. (2018) have shown that soil penetration strategies mimicking circumnutations of plant roots may be advantageous

when compared to more standard drilling techniques in the context of robotic soil exploration tasks. 
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Appendix A. Hopf bifurcation: Existence of periodic solutions 

In this section, we prove the supercritical Hopf bifurcation result for the gravitropic spring-pendulum system (6) stated

in Section 2 . To this end, we first recall some mathematical notions and results. 

Definition A.1 (RFDE or DDE) . Let C := C([ −d, 0] , R 

n ) for d ∈ [0, ∞ ) and denote the norm of an element φ in C by | φ| :=
sup δ∈ [ −d, 0] | φ(δ) | . If x ∈ C ( [ t 0 − d, t 1 ] , R 

n ) for t 1 > t 0 in R , then for any t ∈ [ t 0 , t 1 ], we define x t ∈ C by 

x t (δ) := x (t + δ) ∀ δ ∈ [ −d, 0] . 

Given D ⊂ R × C and f : D → R 

n , we say that the relation 

˙ x (t) = f (t, x t ) (A.1)

is a Retarded Functional Differential Equation (RFDE), or a Delay Differential Equation (DDE), on D . A function x ∈
 ( [ t 0 − d, t 1 ] , R 

n ) is said to be a solution of (A.1) with initial value φ ∈ C at t 0 if ( t , x t ) ∈ D for all t ∈ [ t 0 , t 1 ], x t 0 ≡ φ and

x ( t ) has a continuous derivative on ( t 0 , t 1 ), a right hand derivative at t 0 and satisfies (A.1) on [ t 0 − d, t 1 ) . Such a solution will

be denoted by x ( t ; φ). Moreover, we say that Eq. (A.1) is 

(i) linear if f (t, φ) = L (t ) φ + h (t ) , where L ( t ) is linear; 

(ii) autonomous if f (t, φ) = g ( φ) where g does not depend on t . 

Definition A.2 (Stability of equilibria) . Let x 	 be an equilibrium point of ˙ x (t) = f (x t ) , i.e. , f ( x 	 ) ≡ 0 . Then, the point x 	 is said

to be 

(i) stable if, for any ε > 0, there is δ > 0 such that for any φ ∈ C with | φ| < δ, we have | x ( t ; φ)| < ε for t ≥ t − d; 
0 
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(ii) unstable if it is not stable; 

(iii) asymptotically stable if it is stable and there is b > 0 such that | φ| < b implies that | x ( t ; φ)| → x 	 as t → ∞ ; 

(iv) a local attractor if there is a neighborhood U of x 	 such that lim t→∞ 

dist (x (t;U) , x 	 ) = 0 , i.e. , x � attracts elements in

U uniformly. 

Definition A.3 (Characteristic equation) . Let L : C → R 

n be a continuous linear functional. We define the characteristic equa-

tion of the linear retarded equation 

˙ x (t) = L (x t ) as 

det ( ω I − L ω ) = 0 , (A.2) 

where L ω := [ L ( exp ω e 1 ) | . . . | L ( exp ω e n ) ] . Here, exp ω ( δ) := e ωδ and { e i } i is the canonical basis for R 

n . 

Many well known results for ODEs can be shown to be still valid for RFDEs. In particular, if the characteristic equation

of a linear system has a root with positive real part, then the origin is unstable. For asymptotic stability, it is necessary and

sufficient to have each root ω with negative real part. If the RFDE is nonlinear and 0 is an equilibrium with all the char-

acteristic roots (resp. a characteristic root) of the linearization at 0 , having negative (resp. positive) real part, then classical

approaches can be used to show that 0 is asymptotically stable (resp. unstable) for the nonlinear equation. Also the standard

Hopf bifurcation theorem is valid for RFDEs in the following form. 

Theorem A.1 (Hopf bifurcation) . Consider a one-parameter family of autonomous RFDEs of the form 

˙ x (t) = F (μ, x t ) , (A.3) 

where F ∈ C 2 ( R × C, R 

n ) such that 0 is an equilibrium point of (A.3) for all μ. Define L : R × C → R 

n by 

L (μ) φ = D φF (μ, 0 ) φ, (A.4) 

where D φF ( μ, 0 ) is the derivative of F ( μ, φ) with respect to φ at φ = 0 . Assume that: 

(i) the linear equation ˙ x (t) = L (0) x t has a pair of simple imaginary characteristic roots ω 

±
0 

= ±iβ0 � = 0 and all other charac-

teristic roots ω j � = mω 

+ 
0 

for any m ∈ Z . 

Then there is a μ0 > 0 and a simple characteristic root ω(μ) = α(μ) + iβ(μ) of equation ˙ x (t) = L (μ) x t s.t. ω(0) = ω 

+ 
0 

and

for | μ| < μ0 it is continuously differentiable. Suppose that: 

(ii) Re (ω 

′ (0)) = α′ (0) � = 0 , where prime denotes differentiation with respect to μ. 

Then, for μ close to zero, (A.3) has nontrivial periodic solutions, with period close to 2 π / β0 . 

The linearization of (6) in the main text is a second order linear autonomous RFDE with discete delay of the form 

ÿ (t) + a ̇ y (t) + by (t − 1) = 0 , (A.5) 

which can be restated in system form as {
˙ x 1 (t) = x 2 (t) 
˙ x 2 (t) = −ax 2 (t) − bx 1 (t − 1) 

i.e. , 

˙ x (t) = 

[
0 1 

0 −a 

]
x t (0) + 

[
0 0 

−b 0 

]
x t (−1) =: L (a ) x t . 

Since the characteristic equation of (A.5) is equivalent to 

�(ω) := 

(
ω 

2 + aω 

)
e ω + b = 0 , 

we are interested in determining the behaviour of its roots in terms of the parameter a . To this purpose, we restate the

following result shown by Somolinos (1978) . 

Lemma A.1. Consider the equation (
ω 

2 + aω 

)
e ω + b = 0 (A.6) 

for b > 0 and let ξ b be the unique solution of ξ 2 = b cos (ξ ) in (0, π /2) and let a b := sin ( ξ b ) b / ξ b . Then the following holds for

equation (A.6) : 

(i) all roots have negative real parts if and only if a > a b ; 

(ii) for a = a b , ± i ξ b is the only pair of simple imaginary roots. In particular, no other root is an integer multiple of i ξ b ; 

(iii) there is an ε > 0 and a root ω( a ) that is continuously differentiable in ( a b − ε, a b + ε) s.t. ω(a b ) = iξb and Re (ω 

′ (a b )) < 0 ;
(iv) for each a < a b , there are precisely two roots ω with Re (ω) > 0 and Im (ω) ∈ ( −π, π) . 
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The proof of Lemma A.1 uses the same argument applied by Hale and Lunel (1993) (see Theorem A.6 therein) which is

based on the Pontryagin’s method. Thanks to this result, one can prove the following theorem. 

Theorem A.2. Consider F ∈ C 2 
(
R × C 

(
[ −1 , 0 ] , R 

2 
)
, R 

2 
)
, 

F (a, x t ) = L (a ) x t + f (a, x t ) , 

where f ( a , 0 ) ≡ 0 for all a ∈ R and L (a ) : C 
(
[ −1 , 0 ] , R 

2 
)

→ R 

2 is the linear operator 

L (a ) φ := 

[
0 1 

0 −a 

]
φ(0) + 

[
0 0 

−b 0 

]
φ(−1) , 

where b > 0 . Then the system 

˙ x (t) = F (a, x t ) undergoes a subcritical Hopf bifurcation at a = a b := sin (ξb ) b/ξb where ξ b is the

unique solution of ξ 2 = b cos (ξ ) in (0, π /2) . 

Proof. By Lemma A.1 , the system 

˙ x (t) = F (a − a b , x t ) verifies all the hypothesis of Theorem A.1 . Therefore there is a subcrit-

ical Hopf bifurcation at a = a b . �

Finally, we prove the supercritical Hopf bifurcation result as stated in Section 2 . 

Corollary A.2.1. For q � 2 < 2 B Eq. (6) has a supercritical Hopf bifurcation at 

q� 2 

2 B 

= y 	 := 1 − βτr 

τg 

sin ξ 	 

ξ 	 
, (A.7)

where ξ 	 is the unique root of ξ = 

τr 
τm 

cot ξ in (0, π /2) . 

Proof. The linearization of (6) about 0 is given by (7) which can be written in the dimensionless form as (9) , i.e. , 

θ̈ ( ̂ t ) + η ˙ θ ( ̂ t ) + 

σ

( 1 − y ) 
θ ( ̂ t − 1) = 0 , 

where by hypothesis y < 1 (or q � 2 < 2 B ). Since its characteristic equation is equivalent to 

(
ˆ ω 

2 + η ˆ ω 

)
e ˆ ω + 

σ

( 1 − y ) 
= 0 , 

Theorem A.2 implies that a Hopf bifurcation occurs at 

η = 

σ

( 1 − y ) 

sin ξ 	 

ξ 	 
, ξ 	 = 

σ

( 1 − y ) 

cos ξ 	 

ξ 	 
, (A.8)

where ξ 	 ∈ (0, π /2). Taking the ratio between (A.8) b and (A.8) a , we get 

ξ 	 = η cot ξ 	 , 

and then (A.8) a can be rewritten as 

y = 1 − σ

η

sin ξ 	 

ξ 	 
, 

which is exactly (A.7) . Moreover, since the inequality 

η < 

σ

( 1 − y ) 

sin ξ 	 

ξ 	 

corresponds to 

y > 1 − σ

η

sin ξ 	 

ξ 	 
, 

we conclude that the Hopf bifurcation is supercritical in terms of y . �

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.jmps.2019.

103702 . 
Please cite this article as: D. Agostinelli, A. Lucantonio and G. Noselli et al., Nutations in growing plant shoots: The role of 

elastic deformations due to gravity loading, Journal of the Mechanics and Physics of Solids, https://doi.org/10.1016/j.jmps. 

2019.103702 

https://doi.org/10.1016/j.jmps.2019.103702
https://doi.org/10.1016/j.jmps.2019.103702


14 D. Agostinelli, A. Lucantonio and G. Noselli et al. / Journal of the Mechanics and Physics of Solids xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: MPS [m3Gsc; September 3, 2019;10:0 ] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

Abe, K. , Takahashi, H. , Suge, H. , 1996. Lazy gene (La) responsible for both an agravitropism of seedlings and lazy habit of tiller growth in rice (oryza sativa

l.). J. Plant Res. 109, 381–386 . 

Arnal, C. , 1953. Recherches sur la nutation des coléoptiles. Librairie générale de l’enseignement . 
Badot, P. , Melin, D. , Garrec, J. , et al. , 1990. Circumnutation in phaseolus vulgaris. II. potassium content in the free-moving part of the shoot. Plant Physiol.

Biochem. (Paris) 28, 123–130 . 
Bastien, R. , Bohr, T. , Moulia, B. , Douady, S. , 2013. Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in

plants. Proc. Natl. Acad. Sci. USA 110, 755–760 . 
Bastien, R. , Douady, S. , Moulia, B. , 2014. A unifying modeling of plant shoot gravitropism with an explicit account of the effects of growth. Front. Plant Sci.

5, 136 . 

Bastien, R., Meroz, Y., 2016. The kinematics of plant nutation reveals a simple relation between curvature and the orientation of differential growth. PLoS
Comput. Biol. 12, e1005238. doi: 10.1371/journal.pcbi.1005238 . 

Bigoni, D., Kirillov, O.N., Misseroni, D., Noselli, G., Tommasini, M., 2018. Flutter and divergence instability in the pflüger column: experimental evidence of
the Ziegler destabilization paradox. J. Mech. Phys. Solids 116, 99–116. doi: 10.1016/j.jmps.2018.03.024 . 

Bigoni, D., Noselli, G., 2011. Experimental evidence of flutter and divergence instabilities induced by dry friction. J. Mech. Phys. Solids 59, 2208–2226.
doi: 10.1016/j.jmps.2011.05.007 . 

Brown, A.H. , 1993. Circumnutations: from darwin to space flights. Plant Physiol. 101, 345 . 

Brown, A.H. , Chapman, D.K. , 1984. Circumnutation observed without a significant gravitational force in spaceflight. Science 225, 230–232 . 
Brown, A.H. , Chapman, D.K. , Lewis, R.F. , Venditti, A.L. , 1990. Circumnutations of sunflower hypocotyls in satellite orbit. Plant Physiol. 94, 233–238 . 

Bünning, E. , et al. , 1953. Entwicklungs-und bewegungsphysiologie der pflanze. Springer . 
Chapman, D.K. , Johnsson, A. , Karlsson, C. , Brown, A. , Heathcote, D. , 1994. Gravitropically-stimulated seedlings show autotropism in weightlessness. Physiol.

Plant 90, 157–162 . 
Chauvet, H. , Moulia, B. , Legué, V. , Forterre, Y. , Pouliquen, O. , 2019. Revealing the hierarchy of processes and time-scales that control the tropic response of

shoots to Gravi-stimulations. J. Exper. Botany 70, 1955–1967 . 
Chelakkot, R. , Mahadevan, L. , 2017. On the growth and form of shoots. J. R. Soc. Interf. 14, 20170 0 01 . 

Correll, M.J. , Kiss, J.Z. , 2008. Space-based Research on Plant Tropisms. In: Gilroy, S., Masson, P. (Eds.), Plant Tropisms. Blackwell Publishing, Oxford,

pp. 161–182 . 
Darwin, C. , 1880. The Power of Movement in Plants. John Murray, London . 

Del Dottore, E. , Mondini, A . , Sadeghi, A . , Mattoli, V. , Mazzolai, B. , 2018. An efficient soil penetration strategy for explorative robots inspired by plant root
circumnutation movements. Bioinsp. Biomimet. 13, 015003 . 

Dumais, J. , 2013. Beyond the sine law of plant gravitropism. Proc. Natl. Acad. Sci. USA 110, 391–392 . 
Gilroy, S. , Masson, P. , 2008. Plant Tropisms. Blackwell Publishing, Oxford . 

Gradmann, H. , 1922. Die fünfphasenbewegung der ranken. Jahrbücher für wissenschaftliche Botanik 61, 169–204 . 

Gradmann, H. , 1926. Die bewegungen der ranken und die überkrümmungstheorie. Jahrbücher für wissenschaftliche Botanik 65, 224–278 . 
Greenhill, A.G. , 1881. Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to

which a tree of given proportions can grow. Proc. Camb. Philos. Soc. 4, 65–73 . 
Hale, J.K. , Lunel, S.M.V. , 1993. Introduction to Functional Differential Equations. Springer Science & Business Media . 

Hamant, O. , Moulia, B. , 2016. How do plants read their own shapes? New Phytol. 212, 333–337 . 
Hammer, L. , Gessner, F. , 1958. Lichtedingte wachstumsschwingungen bei helianthus annuus. Österreichische botanische Zeitschrift 105, 529–549 . 

Hatakeda, Y. , Kamada, M. , Goto, N. , Fukaki, H. , Tasaka, M. , Suge, H. , Takahashi, H. , 2003. Gravitropic response plays an important role in the nutational

movements of the shoots of pharbitis nil and arabidopsis thaliana. Physiol. Plantarum 118, 464–473 . 
Heathcote, D.G. , Aston, T. , 1970. The physiology of plant nutation: i. nutation and geotropic response. J. Exp. Bot. 21, 997–1002 . 

Israelsson, D., Johnsson, A., 1967. A theory for circumnutations in helianthus annuus. Physiol. Plant 20, 957–976. doi: 10.1111/j.1399-3054.1967.tb08383.x . 
Joerrens, G. , 1957. Nutationsbewegungen bei Triticum-Koleoptilen . Ph.D. thesis 

Johnsson, A., Heathcote, D., 1973. Experimental evidence and models on circumnutations. Zeitschrift für Pflanzenphysiologie 70, 371–405. doi: 10.1016/
S0044- 328X(73)80117- 5 . 

Johnsson, A. , Jansen, C. , Engelmann, W. , Schuster, J. , 1999. Circumnutations without gravity: a two-oscillator model. J. Gravitat. Physiol. 6, 9–12 . 

Johnsson, A., Solheim, B.G.B., Iversen, T.H., 2009. Gravity amplifies and microgravity decreases circumnutations in arabidopsis thaliana stems: results from
a space experiment. New Phytol. 182, 621–629. doi: 10.1111/j.1469-8137.2009.02777.x . 

Kim, H.j. , Kobayashi, A. , Fujii, N. , Miyazawa, Y. , Takahashi, H. , 2016. Gravitropic response and circumnutation in pea (pisum sativum) seedling roots. Physiol.
Plant 157, 108–118 . 

Kiss, J.Z. , 2006. Up, down, and all around: how plants sense and respond to environmental stimuli. Proc. Natl. Acad. Sci. USA 103, 829–830 . 
Kiss, J.Z. , 2009. Plants circling in outer space. New Phytol. 182, 555–557 . 

Kitazawa, D. , Hatakeda, Y. , Kamada, M. , Fujii, N. , Miyazawa, Y. , Hoshino, A. , Iida, S. , Fukaki, H. , Morita, M.T. , Tasaka, M. , et al. , 2005. Shoot circumnutation

and winding movements require gravisensing cells. Proc. Natl. Acad. Sci. USA 102, 18742–18747 . 
Kitazawa, D. , Miyazawa, Y. , Fujii, N. , Nitasaka, E. , Takahashi, H. , 2008. Characterization of a novel gravitropic mutant of morning glory, weeping2. Adv. Space

Res. 42, 1050–1059 . 
Kobayashi, A., Kim, H.J., Tomita, Y., Miyazawa, Y., Fujii, N., Yano, S., Yamazaki, C., Kamada, M., Kasahara, H., Miyabayashi, S., Shimazu, T., Fusejima, Y.,

Takahashi, H., 2019. Circumnutational movement in rice coleoptiles involves the gravitropic response: analysis of an agravitropic mutant and space-
grown seedlings. Physiol. Plant 165, 464–475. doi: 10.1111/ppl.12824 . 

Meroz, Y. , Bastien, R. , Mahadevan, L. , 2019. Spatio-temporal integration in plant Tropisms. J. R. Soc. Interf. 16, 20190038 . 

Millet, B. , Melin, D. , Badot, P.M. , 1988. Circumnutation in phaseolus vulgaris. i. growth, osmotic potential and cell ultrastructure in the free-moving part of
the shoot. Physiol. Plant 72, 133–138 . 

Millet, B. , Melin, D. , Bonnet, B. , Ibrahim, C. , Mercier, J. , 1984. Rhythmic circumnutation movement of the shoots in phaseolus vulgaris l. Chronobiol. Int. 1,
11–19 . 

Mugnai, S. , Azzarello, E. , Masi, E. , Pandolfi, C. , Mancuso, S. , 2015. Nutation in Plants. In: Mancuso, S., Shabala, S. (Eds.), Rhythms in Plants. Springer, pp. 19–34 .
Noll, F. , 1885. Über rotierende nutation an etiolierten keimpflanzen. Botanische Zeitung 43, 664–670 . 

Okamoto, K. , Ueda, H. , Shimada, T. , Tamura, K. , Kato, T. , Tasaka, M. , Morita, M.T. , Hara-Nishimura, I. , 2015. Regulation of organ straightening and plant
posture by an actin–myosin XI cytoskeleton. Nat. Plants 1, 15031 . 

Palm, L.H. , 1827. Über das winden der pflanzen: Eine botanisch-physiologische abhandlung. Löflund . 

Pouliquen, O. , Forterre, Y. , Bérut, A. , Chauvet, H. , Bizet, F. , Legue, V. , Moulia, B. , 2017. A new scenario for gravity detection in plants: the position sensor
hypothesis. Phys. Biol. 14, 035005 . 

Rawitscher, F. , 1932. Geotropismus der pflanzen. G. Fischer, Jena . 
von Sachs, J. , 1875. Textbook of Botany, English Translation Edition. Oxford University Press, Oxford . 

von Sachs, J. , 1882. Über orthotrope und plagiotrope pflanzentheile. Arbeiten des Botanischen Instituts in Würzburg 2, 226–284 . 
Schuster, J. , 1996. Studying circumnutation of the hypocotyls of Arabidopsis thaliana and Helianthus annuus . Ph.D. thesis 

Shabala, S. , 2003. Physiological Implications of Ultradian Oscillations in Plant Roots. In: Abe, J. (Ed.), Roots: The Dynamic Interface between Plants and the

Earth. Springer, Dordrecht, pp. 217–226 . 
Please cite this article as: D. Agostinelli, A. Lucantonio and G. Noselli et al., Nutations in growing plant shoots: The role of 

elastic deformations due to gravity loading, Journal of the Mechanics and Physics of Solids, https://doi.org/10.1016/j.jmps. 

2019.103702 

http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0001
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0002
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0002
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0003
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0004
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0005
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0005
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0005
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0005
https://doi.org/10.1371/journal.pcbi.1005238
https://doi.org/10.1016/j.jmps.2018.03.024
https://doi.org/10.1016/j.jmps.2011.05.007
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0009
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0009
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0010
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0010
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0010
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0011
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0012
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0012
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0012
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0013
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0014
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0015
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0015
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0015
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0016
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0016
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0016
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0017
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0018
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0019
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0020
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0020
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0020
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0021
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0022
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0023
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0023
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0024
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0024
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0024
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0025
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0025
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0025
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0026
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0026
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0026
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0027
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0028
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0028
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0028
https://doi.org/10.1111/j.1399-3054.1967.tb08383.x
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0030
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0030
https://doi.org/10.1016/S0044-328X(73)80117-5
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0032
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0032
https://doi.org/10.1111/j.1469-8137.2009.02777.x
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0034
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0035
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0035
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0036
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0036
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0037
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0038
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0038
https://doi.org/10.1111/ppl.12824
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0040
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0041
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0042
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0043
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0044
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0044
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0045
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0046
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0047
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0048
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0049
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0049
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0050
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0050
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0051
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0052
http://refhub.elsevier.com/S0022-5096(19)30610-6/sbref0052
https://doi.org/10.1016/j.jmps.2019.103702


D. Agostinelli, A. Lucantonio and G. Noselli et al. / Journal of the Mechanics and Physics of Solids xxx (xxxx) xxx 15 

ARTICLE IN PRESS 

JID: MPS [m3Gsc; September 3, 2019;10:0 ] 

 

 

Shabala, S.N. , Newman, I.A. , 1997. Proton and calcium flux oscillations in the elongation region correlate with root nutation. Physiol. Plant 100, 917–926 . 
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