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We study the effect of membrane viscosity in the dynamics of liquid membranes—possibly with free or
internal boundaries—driven by conservative forces �curvature elasticity and line tension� and dragged by the
bulk dissipation of the ambient fluid and the friction occurring when the amphiphilic molecules move relative
to each other. To this end, we formulate a continuum model which includes a form of the governing equations
for a two-dimensional viscous fluid moving on a curved, time-evolving surface. The effect of membrane
viscosity has received very limited attention in previous continuum studies of the dynamics of fluid mem-
branes, although recent coarse-grained discrete simulations suggest its importance. By applying our model to
the study of vesiculation and membrane fusion in a simplified geometry, we conclude that membrane viscosity
plays a dominant role in the relaxation dynamics of fluid membranes of sizes comparable to those found in
eukaryotic cells, and is not negligible in many large synthetic systems of current interest.
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I. INTRODUCTION

In recent years, much attention has been devoted to the
study of fluid membranes and, in particular, to lipid bilayers
which provide the fundamental separation structure in eu-
karyotic cells. Lipid bilayers form the envelope of the
plasma membrane, the nucleus, the organelles, and the trans-
port vesicles and tubes within a cell, to name a few. These
are very versatile structures that change in shape and topol-
ogy to accomplish the cell function. Lipid bilayer mem-
branes also form artificial vesicles, which provide a simple
model system for the study of physiological processes in the
cell such as endo- and exocytosis, tubulation, or raft forma-
tion and evolution �1–3�. Synthetic biomimetic systems, such
as nanoscale chemical reactor networks, are also made out of
lipid bilayer fluid membranes �4�. Recently, liquid am-
phiphilic membranes have been developed that do not rely
on lipids but rather on diblock copolymers �5–7�. These
polymerosomes are tougher than lipid vesicles and may find
applications in drug delivery systems.

Amphiphilic membranes adopt a fluid phase above a tran-
sition temperature. In this phase, the bilayer retains the trans-
verse order endowing the membrane with curvature elastic-
ity. Within its plane, however, the bilayer behaves like a
viscous fluid due to a large lateral mobility of the am-
phiphilic molecules. The behavior of fluid membranes as
two-dimensional viscous fluids has been convincingly estab-
lished and quantified experimentally �8–11�. Thus, from a
mechanics point of view, fluid membranes are a quite unique
system in that their behavior combines the mechanics of sol-
ids �curvature or out-of-plane elasticity� and of fluids �in
plane viscous flow�, all being tied up in a curved geometry.
This feature allows for tubulation, membrane fusion or fis-

sion, and other transformations essential to the cell function.
When the membrane shape changes, the amphiphiles in the
bilayer are required to rearrange, hence inducing a surface
flow. The fundamental role of the viscosity of fluid mem-
branes in the mobility of membrane inclusions has long been
recognized �12�. However, its role in the dynamics of mem-
brane systems has received only limited attention �13–17�.
The purpose of the present paper is to investigate this issue
in the context of the dynamics of relaxation to equilibrium of
fluid membranes that are brought out of equilibrium by some
regulated or active mechanism �3,18� or by a change of the
environment such as the osmotic conditions, the temperature,
or the concentration of lipids or proteins �2,19,20�.

A number of theoretical models and simulation methods
have been used to study fluid membranes. Classically, these
have been modeled as continua, which has led to a wealth of
striking results. The present work follows this approach. Re-
cently, coarse-grained discrete models have been very suc-
cessful in computational studies of lipid membranes, particu-
larly in reproducing the self-assembly of amphiphilic
membranes. These include dynamically triangulated surface
models �21–23� as well as coarse-grained particle models
�24–26�. Thanks to the increasing computational power
available, these methods are starting to reach sufficiently
large time and length scales to provide significant results.
Nevertheless, even for limited scale spans these simulations
remain extremely expensive, and seem at this point comple-
mentary to continuum methods. Any of these approaches can
describe membrane viscosity, either explicitly or implicitly.

A number of important questions concerning the mechan-
ics of amphiphilic membranes have already been addressed.
Continuum mechanics models have produced phase dia-
grams of the different equilibrium shapes considering curva-
ture elasticity and area and volume constraints, that success-
fully reproduce experimental observations �see �27,28� for
interesting reviews�. Much attention has also been devoted to
the dynamics of fluid membrane vesicles or capsules �these
are vesicles attached to a polymeric network which confers
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on them shear elasticity� in shear flow. Understanding the
effective rheology of suspensions of these objects has been
one of the main objectives �29,30�. In most of these studies,
the vesicles only generate elastic forces due to curvature
elasticity, and all dissipative forces come from the ambient
fluid �31�. Only rarely is the viscosity of the membrane ac-
counted for in the continuum studies �32�, although recent
coarse-grained simulations highlight the critical role of mem-
brane viscosity in the behavior of suspended vesicles in shear
flow �21,22�. The effect of the membrane flow and viscosity
has been incorporated in some studies concerned with the
mechanics of fluid membranes under external actions leading
to tether formation �15,16�, and also for relaxation dynamics
�14�. In summary, although the importance of membrane vis-
cosity has been pointed out, and has been accounted for in a
handful of studies, it is often neglected in continuum studies
on the basis of simple estimations �17�. When considered in
calculations, it is for very simple geometries �14� or for small
perturbations around a spherical shape �32�. This might be
because of the difficulty of solving, and even formulating,
the governing equations for the membrane fluid flow.

Here, we derive the equations for the dynamics of inex-
tensible fluid membranes, whose shape evolution is driven
by curvature elasticity and line tension �arising in mem-
branes with boundaries or in multicomponent vesicles� and
dragged by the surrounding incompressible viscous fluid and
by the membrane viscosity. For vesicle mechanics in a fluid
at rest the inertial forces are negligible. Consequently, the
flow does not have intrinsic dynamics but it rather acts as a
dissipative force opposing the evolution of the system in the
direction of the driving energetic forces. One key ingredient
in this derivation is a geometric formulation of the two-
dimensional Stokes flow in a curved, time-evolving surface.
This formulation is more transparent and presents practical
advantages in computations as compared to previous propos-
als. Some effects that can be important in some instances,
such as the interlayer slip �known to be mobilized in tether
formation� �13–15� or the relaxation of curvature elasticity
by flip-flop dynamics �typically very slow�, are not consid-
ered here. We also assume instantaneous osmotic equilibrium
between the fluid enclosed by the vesicle and the outer fluid
�28,33�; hence there is no fluid flow across the membrane.

We apply our model to a minimal yet informative ex-
ample of relaxation dynamics, that of a spherical bud embed-
ded in an infinite planar membrane. This constrained geom-
etry has been considered before to study fusion or fission of
vesicles �17,34�, although these references did not consider
the surface flow. As a matter of fact, to our knowledge, the
surface flow equations have not been solved before for a
nontrivial membrane geometry experiencing large shape
changes. This case study provides an estimate of the dynam-
ics of the formation of a small bud in a large two-component
vesicle �35�, and allows us to investigate the relevance of
surface viscosity in the relaxation dynamics of fluid mem-
branes.

The paper is organized as follows. In Sec. II, we present a
direct derivation of the equations governing the flow of a
two-dimensional viscous fluid on a time-evolving surface. In
Sec. III, using the principle of virtual power, we derive the
governing equations for the relaxation dynamics of a fluid

membrane embedded in surrounding fluid and driven by cur-
vature elasticity and line tension. This section includes the
axisymmetric particularization of the equations, useful in
many practical examples. In Sec. IV, we analyze the example
of the spherical bud and discuss the implications of our
study. Finally, the conclusions are collected in Sec. V. The
paper relies on a number of results from differential geom-
etry and the calculus of variations, most of which are classi-
cal. We have collected them in four appendixes, for the read-
er’s convenience.

II. TWO-DIMENSIONAL STOKES FLOW ON A TIME-
EVOLVING SURFACE

The partial differential equations governing the dynamics
of a fluid in the interfacial state have been proposed in
�36,37�, a study motivated by the mechanics of insoluble
surface films and foam stability. This theory derives the
equations of motion of surface fluids from the balance laws
of continuum mechanics using the tools of tensor analysis on
manifolds. The equations of motion are formulated intrinsi-
cally in a two-dimensional �2D� manifold with time-varying
metric, ignoring the embedding in Euclidean space of the
surface on which the two-dimensional fluid flows. This for-
mulation has prevailed in the literature concerning interfacial
flows and the fluid mechanics of amphiphilic membranes
�see �38� for a recent reference�. The equations in �36� make
extensive use of the covariant derivative, and calculations in
local coordinates involve the coefficients of the Riemannian
connection and its derivatives. The complexity of the equa-
tions may explain why they are often written but seldom
solved, in most cases considering infinitesimal variations of
the surface shape around a simple geometry �39,40�, or why
there are no numerical simulations of the phenomenon.

An alternative form of these equations expressed in Car-
tesian coordinates was proposed by �41�; see also �32�. In
this approach, the velocity of the membrane is viewed as the
restriction to the surface of the velocity field of the bulk
embedding fluid, and the membrane mechanics equations are
obtained in terms of the bulk velocity field and the Cartesian
nabla operator by means of time-dependent projection opera-
tors. This method, which somehow hides the geometry and
complexity of the equations, is particularly convenient to
study small shape perturbations around simple geometries or
surface flows in stationary surfaces, but has not been applied
to large shape changes.

In the mathematics literature, there has also been an inter-
est in formulating the Navier-Stokes equations on general
manifolds �see, for example, �42,43��. These references rec-
ognize the subtleties in describing vectorial second-order
partial differential equations on curved domains, but consider
time-independent domains. Unlike for scalar conservation
laws �44�, in the vector case merely translating the differen-
tial operators to manifold operators, as done by some authors
�45,46�, leads to governing equations different from those
that result from the basic conservation laws of physics.

We next present a concise derivation of the equations gov-
erning the flow of a two-dimensional fluid moving on a sur-
face in Euclidean space that evolves in time. We assume in
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this section that the time evolution of the surface is given
�through a prescribed normal velocity field�. We express
these equations extrinsically in terms of normal and tangen-
tial components of the fields �47,48�. We provide a geometric
form of the equations in the language of differential forms.
This formulation allows for a transparent connection with the
usual equations of fluid flow and for a clear interpretation of
the additional geometric terms. The geometric form of the
equations that we present is easily workable in analytical or
numerical calculations. This section requires some back-
ground on differential geometry, exterior calculus, and tensor
analysis on manifolds. The reader is referred to Appendix A
and references therein for the notation and basic results.

A. Conservation of mass

We now consider the conservation of mass for a 2D con-
tinuum medium �t in motion with a velocity field V: �t
→R3. We assume that �t is smooth and decompose the ve-
locity field into its in-plane or tangential component v and its
normal component vn so that V=v+vnn where n denotes the
unit normal to the surface.

Following �47�, the conservation of mass for this deform-
ing 2D continuum is

�̇ + � div v − �vnH = �t� + div��v� − �vnH = 0, �1�

where � denotes the mass density �per unit surface�, H de-
notes twice the mean curvature, i.e., the trace of the second
fundamental form k=−��n��, and div denotes the surface
divergence. For an inextensible homogeneous medium, this
reduces to

div v − vnH = 0. �2�

Due to the disparity between elastic moduli, under usual cir-
cumstances amphiphilic membranes can be considered as in-
extensible �27�.

B. Conservation of linear momentum

We adopt a similar representation for the body forces act-
ing on the membrane, B=b+bnn, where again b denotes the
tangential component of the body forces while bn denotes the
normal component. The body force b may be a prescribed
dead load or, more interestingly, it may arise from the inter-
action of the membrane with the surrounding fluid, as de-
tailed later. We shall also see that bn may arise from curva-
ture elasticity. As in the theory of interfacial fluid mechanics
�36�, it is assumed that the two-dimensional fluid can only
produce tangential viscous tractions along internal bound-
aries. Hence, generalizing the Cauchy tetrahedron theorem,
the medium sustains a two-dimensional viscous stress tensor.
Consequently, as will become clearer below, such a medium
can only produce viscous forces normal to the surface
through curvature. Let � denote the surface Cauchy stress
tensor, a contravariant two-tensor field on �t.

The conservation of angular momentum around an axis
normal to the surface is expressed in the present setting as
usual, by the symmetry of the 2D stress tensor �36,47�. Con-
servation of linear momentum tangentially to the surface can
be expressed as

���tv + v · �v − vnHv� = b + div � , �3�

where we recall that � denotes the covariant derivative on
the surface, and div is the surface divergence operator. We
assume in the remainder of the paper that the inertial forces
are much smaller than the viscous forces, and therefore can
be neglected. The in-plane surface viscosity of typical lipid
bilayers divided by the bilayer thickness is two orders of
magnitude larger than that of water. This, together with the
typical length and time scales involved in budding, leads to
typical Reynolds numbers in the 10−6–10−8 range. Therefore,
the above equation reduces to

b + div � = 0 or ba + �ab
�b = 0. �4�

The conservation of linear momentum normal to the surface
reads

bn + �:k = 0 or bn + �abkab = 0. �5�

If the normal velocity vn is externally prescribed, this equa-
tion provides the required reaction bn.

C. Constitutive relation

For the appropriate measure of the strain rate in the
present setting, it is useful to resort to a geometrical defini-
tion of the rate-of-deformation tensor as the tangent projec-
tion of the rate of change of the metric tensor, i.e., the Lie
derivative of the metric tensor with respect to V �47�, which
results in

1

2
LV�g� = d =

1

2
���v�� + ��v��T� − vnk , �6�

or in components

2dab = gacv
c
�b + gbdv

d
�a − 2vnkab = va�b + vb�a − 2vnkab.

�7�

Analogous expressions can be found in the intrinsic formu-
lation of �36� and in the Cartesian formulation of �41�.

Note that, for an inextensible 2D medium, the conserva-
tion of mass can be stated as the familiar requirement that the
trace of the rate of deformation vanish:

tr d = gabva�b − vngabkab = div v − vnH = 0. �8�

A number of constitutive relations can be considered for
an amphiphilic membrane. Coarse-grained molecular dy-
namics simulations �49� and experimental observations
�8–10� support modeling the bilayer as a Newtonian two-
dimensional fluid, at least at temperatures well above the
transition temperature between the fluid and a more ordered
solid or gel phase. In fact, near the transition temperature at
which the membrane loses its fluidity, surface viscosity in-
creases dramatically and the behavior may significantly de-
viate from that of a Newtonian fluid �50�. Similarly, for very
small length scales, e.g., in the vicinity of a transmembrane
protein, the hypothesis of the membrane behaving as a New-
tonian fluid may break down. Apart from these situations, it
seems reasonable to rely on the natural generalization of a
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Newtonian isotropic fluid to this two-dimensional setting,
with a linear relation between the viscous stress tensor and
the rate-of-deformation tensor. Following �36�, we write

�visc = 2�d� + ��tr d�g�, �9�

the total Cauchy stress tensor being

� = − pg� + �visc, �10�

where p denotes the thermodynamic pressure �here a surface
tension�. Note that for a quiescent fluid �visc vanishes, and as
expected the stress arising from p=const satisfies the balance
of linear momentum since the covariant derivative of the
metric tensor vanishes identically.

D. Surface Stokes flow

Assuming that the 2D fluid is inextensible and Newton-
ian, the balance of linear momentum tangential to the de-
forming surface and balance of mass read

���tv + v · �v − vnHv� = − grad p + 2� div d� + b ,

div v − vnH = 0,

where d� follows from Eq. �6� and involves the normal ve-
locity of the surface vn. This is the analog of the incompress-
ible Navier-Stokes equations in the present setting. Neglect-
ing inertial forces, the boundary value problem to be solved
is the following. Find a vector field v tangent to �t and a
scalar field p such that

− gabp�b + 2�dab
�b + ba = 0 in �t, �11�

va
�a − vnH = 0 in �t, �12�

supplemented by boundary conditions at ��t=��t
D���t

N of
the type v=w in ��t

D and � ·�=s in ��t
N where � is the unit

outer normal to ��t and tangential to the surface.

E. Geometric form of the equations

The main objective in seeking alternative forms for Eq.
�11� is to untangle the term div d� into a clear geometric
form in the spirit of �36�, but expressed extrinsically in terms
of the second fundamental form. Since 2dab=gacgbdvc�d
+gacgbdvd�c−2vnkab, it follows that

2dab
�b = gacgbdvc�d�b

A

+ gacgbdvd�c�b

B

− 2vn�bkab − 2vnkab
�b

C

.

�13�

By the definition of the rough Laplacian and by virtue of

Bochner’s formula �see Appendix A�, we have A= ��̂v�a

= ��Rv�a+Kva, where K denotes the Gaussian curvature. On
the other hand, from the lack of commutativity of the second
covariant derivative, we have

B = gacvb
�c�b = gacvb

�b�c + gacKvc = gac�div v��c + Kva

= �grad�div v��a + Kva. �14�

The Codazzi-Mainardi equations lead to

C = 2vngacH�c = 2�grad�vnH��a − 2gacvn�cH . �15�

Thus, we obtain

2dab
�b = ��Rv�a + �grad�div v − 2vnH��a − 2vn�b�kab − Hgab�

+ 2Kva. �16�

Now, noting that in the language of exterior calculus div v
=−�v�,

��Rv�a = gab��− �d − d��v��b

= − gab��dv��b + �grad�div v��a, �17�

we finally obtain

2dab
�b = − gab��dv��b + 2�grad�tr d��a − 2vn�b�kab − Hgab�

+ 2Kva �18�

or

2 div d� = − ��dv��� + 2 grad�tr d� − 2�k − Hg�� · grad vn

+ 2Kv . �19�

We note that �k−Hg� is not the traceless part of the second
fundamental form, �k− �H /2�g�.

Summarizing and rewriting Eq. �5�, the Stokes boundary
value problem of an inextensible fluid on an evolving surface
is

− grad p + ��− ��dv��� − 2�k − Hg�� · grad vn + 2Kv� + b

= 0 in �t,

div v − vnH = 0 in �t,

bn − pH + 2���v:k − �H2 − 2K�vn� = 0 in �t,

v = w in ��t
D,

� · � = s in ��t
N. �20�

The term ��dv��� in the first equation, as noted in Appendix
A, is the generalization to surfaces of the usual �curl curl v�
term of the incompressible Stokes equation in bulk. For a
prescribed surface time evolution, the third equation can be
used to compute the required reaction bn, while for a pre-
scribed normal force per unit surface bn, this is an equation
for the unknown vn. The correspondence of these equations
with the intrinsic approach of �36�, which involves time and
space derivatives of the metric tensor, is not obvious for
some terms, but can be checked.

Let us consider, for comparison with other references in
the literature, the case of a stationary surface �vn=0� in the
absence of body forces �b=0�. The equation of balance of
linear momentum we have obtained involves the viscous
term ��−��dv���+2Kv�. In formulating partial differential
equations on manifolds, it may be tempting to merely trans-
late the Cartesian form of the equations, replacing bulk dif-
ferential operators by the corresponding surface differential
operators. This procedure leads to correct equations for sca-
lar partial differential equations such as the diffusion equa-
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tion on manifolds. The equation of balance of linear momen-
tum for an incompressible Newtonian fluid, neglecting
inertial forces, admits two equivalent expressions in Carte-
sian coordinates, either

− �p + ��v = 0 or − �p − � � � � � v = 0 .

�21�

As further elaborated in Appendix A, there are two meaning-
ful definitions of the Laplacian of a vector field on a mani-
fold that are not equal in general, and essentially correspond
to each of these two forms of the equations. The translation
to a surface of the first form, which considers the Laplacian
of the vector by components, reads

− grad p + ��̂v = − grad p + ��− ��dv��� + Kv� = 0 ,

�22�

where the inextensibility of the membrane and Bochner’s
formula have been used. This approach was followed in �45�
to formulate the Navier-Stokes equations on Riemannian
manifolds. If the second form of the equations is translated,
using the Laplace–de Rham operator as a natural generaliza-
tion, the result is

− grad p − ���dv��� = 0 . �23�

Such an approach can be found in �46� to study the Navier-
Stokes equations on a sphere. Note that none of these trans-
lations coincide with the equations we obtained from the
balance laws of continuum mechanics. For the case vn=0,
other references have considered the correct operator
��43,42�, Note Added in Proof�.

F. Variational formulation

As in the Euclidean case, the Stokes flow follows from a
minimum principle. This variational formulation is useful for
coupling the surface flow with other mechanical effects and
for numerical implementations of the theory. We define the
Rayleigh dissipation potential �one-half of the rate of viscous
dissipation� as:

WD�v,vn� =
1

2
�

�

�:d dS . �24�

For an inextensible viscous surface fluid, the Rayleigh dissi-
pation can be particularized to

WD�v,vn� = ��
�

d:d dS , �25�

noting that � :d= �−pg�+2�d�� :d=−p tr d+2�d :d=2�d :d.
Interestingly, this dissipation potential for fluid membranes
was deduced in �39� on the basis of covariance.

Consider the problem of finding the vector field v tangent
to the surface �t and the scalar field vn, consistent with the
Dirichlet boundary conditions that minimize the total dissi-
pation potential including the dissipation potential of the ex-
ternal actions

Diss�v,vn� = WD�v,vn� − �
�

�vnbn + v · b�dS − �
��

v · s d�

�26�

subject to the inextensibility constraint −div v+vnH=0. We
can form the Lagrangian functional, in which the surface
tension acts like a Lagrange multiplier for the inextensibility
constraint, and compute its variations,

L�v,vn,p� = ��
�

d:d dS − �
�

�vnbn + v · b�dS − �
��

v · s d�

− �
�

�div v − vnH�p dS , �27�

	vL = 2��
�

d:�	v dS − �
�

b · 	v dS − �
��

s · 	v d�

− �
�

�div 	v�p dS

= − �
�

�2� div d� + b − grad p� · 	v dS

+ �
��

�� · �− pg + 2�d� − s� · 	v d� , �28�

	vn
L = �

�t

�− 2�d:k − bn + pH�	vndS

= − �
�t

�2���v:k − �H2 − 2K�vn� + bn − pH�	vn dS ,

�29�

	pL = − �
�

�div v − vnH�	p dS . �30�

It follows that Eqs. �20� are precisely the Euler-Lagrange
equations of L�v ,vn , p�.

III. THE COUPLED SYSTEM

This section derives the equations that govern the dynam-
ics of a fluid membrane embedded in a surrounding fluid
driven by curvature elasticity and line tension. Line tension
arises when the membrane is not closed or has several
phases. We present each phenomenon separately, and couple
all together through the principle of virtual power.

A. Ambient fluid

Since we are mostly concerned with surface phenomena,
we have reserved the symbol � for the surface covariant
derivative, div for the surface divergence, V for the velocity
of the particles on the surface, � for the shear viscosity of the
2D fluid on the membrane, etc. To refer to bulk objects �op-
erators, fields, material properties, etc.�, the superscript b will
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be used. Assuming that the fluid membrane is surrounded by
a Newtonian incompressible fluid for which inertial forces
are negligible, we can define a Lagrangian functional ac-
counting for the Rayleigh dissipation potential and the in-
compressibility constraint,

Lb�Vb,pb� = �b�
R3

Db:DbdV − �
R3

��b · Vb�pbdV

− �
R3

bb · VbdV . �31�

The rate-of-deformation tensor is Db= 1
2 ��bVb+ ��bVb�T� and

bb denotes the bulk body force on the surrounding fluid. An
unbounded domain for the bulk fluid is considered for sim-
plicity. The Euler-Lagrane equations that derive from this
functional are the Stokes flow equations for the bulk fluid:

− �bpb − �b��b � �b � Vb� + bb = 0 in R3, �32�

�b · Vb = 0 in R3. �33�

B. Curvature elasticity

We model the curvature elasticity of fluid membranes us-
ing the classical Helfrich-Canham energy �see �27� for a dis-
cussion on curvature elasticity models�, consisting of a term
depending on twice the mean curvature H and another term
depending on the Gaussian curvature K,

EHC = �
�




2
�H − C0�2dS + �

�


GK dS , �34�

where C0 denotes the spontaneous curvature and 
 and 
G
are elastic parameters. We ignore nonlocal energy contribu-
tions for simplicity �28�. When vesicles without boundary
are considered, the Gaussian curvature energy contribution is
a topological invariant and is often disregarded. For surfaces
with boundary or multicomponent vesicles, this term is not
irrelevant as a consequence of the Gauss-Bonnet theorem.

An important feature of the energy EHC is its invariance
under the action of tangential velocity fields whose normal
component to the surface boundary vanish since these do not
change the surface geometry. In other words, EHC is invariant
with respect to re-parametrizations of the surface. This is a
crucial difference of this curvature elasticity model with elas-
tic models for thin solid objects, which include shear energy
terms. The invariance of EHC with respect to reparametriza-
tions �i.e., tangential flows that do not change the boundary�
is clear from the expression of the energy release rate asso-
ciated with EHC presented below. Note, however, that tangen-
tial velocity fields may contribute to the rate of curvature
energy release through boundary terms. Recalling the de-
composition of the total velocity of the surface particles into
a tangential and a normal component, V=v+vnn �see Ap-
pendix C for the details, where an alternative derivation of
the results in �51� is also provided�, the energy release rate of
the curvature energy is

GHC�v,vn� = − ĖHC

= − �
�


	�H +
H − C0

2
�H2 − 4K + HC0�
vndS

+ �
��


�grad H · ��vnd� − �
��


G�t · k · ���tvnd�

− �
��




2
�H − C0�2�v · ��d� − �

��


GK�v · ��d�

− �
��


�H − C0��vn���d�

− �
��


G�H − � · k · ���vn���d� . �35�

Note that for scalar fields the surface Laplacian admits a
single definition and is therefore denoted simply by �. Recall
that � denotes the outer unit normal to the boundary of the
surface tangent to it, and t denotes a tangent unit vector to
the curve ��. By �� we denote differentiation in the direction
of � �and thus �vn���=grad vn ·��, and �t denotes differentia-
tion along the curve ��. The boundary terms in the second
line can be understood as the working of shear line forces,
normal to the surface since they produce power against vn.
The boundary terms in the third line correspond to the work-
ing of membrane line forces since they produce power
against the tangential velocity normal to the boundary, and
finally, the terms in the fourth line represent the working of
distributed couples applied at the boundary of the surface
since they produce power against the derivative of vn normal
to the boundary of the surface.

This identification of the tractions at the boundary of the
membrane is in principle useful when external forces or con-
straints are imposed on membrane edges. Although buried in
the above form of the equations, it is possible to identify the
stresses of an elastic fluid membrane �52,53�, and even de-
duce the above equations from a nonlinear Kirchhoff-Love
shell theory with a specific constitutive model �54�. This has
been done for purely elastic membranes, but can be extended
in the present setting, where a viscous stress would need to
be introduced as well. This conceptually interesting exercise
is beyond the scope of the present paper.

C. Line tension

To consider membranes which are possibly open, or have
multiple phases, it is important to include the effect of the
line tension at the boundary or interface �� �35�. The line
tension or interfacial energy is

EI = �
��

� d� = ������ , �36�

where � denotes the line tension and ����� the length of the
interface. As detailed in Appendix D, the interfacial energy
release rate is
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GI = − ĖI = �
��

��vnkn + �v · ��kg�d� , �37�

where kn and kg denote the normal and geodesic curvatures
of the curve �� viewed as a subset of � �55�.

D. Full coupled system

The governing coupled evolution equations for a vesicle
with boundary �or a vesicle with an interface� embedded in a
surrounding fluid are obtained through the principle of vir-
tual power balancing conservative and dissipative forces �the
dissipation minus the energy release rate is minimized sub-
ject to the inextensibility and incompressibility constraints�:

	�L�v,vn,p� + Lb�Vb,pb� − GHC�v,vn� − GI�v,vn�� = 0,

�38�

subject to the compatibility condition

�Vb�� = v + vnn . �39�

This condition can be interpreted as a no-slip condition be-
tween the surrounding fluid and the membrane, as adopted in
�56� or �28�, and supported by recent coarse-grained molecu-
lar dynamics simulations �49�. We assume that the surface �
is orientable, and denote the side of the surface in which the
normal n points outward the � side, the � side being the
opposite side. We define

T
b =  n · �

b =  n · �− p
b Id + 2�bD

b � . �40�

We can interpret this as the traction exerted by the bulk fluid
on either side of surface. This traction is split into its tangen-
tial and normal components as

T�
b = t�

b � ��T�
b · n�

tn�
b

n .

�41�

Note that tn
b always denotes a normal traction on the surface

pointing away from the surface. We write ��·�� for the jump of
a quantity across the surface �, defined as the value on the �
face minus the value on the � face.

Noting that on the surface � the variations of Vb are re-
lated to the variations of v and vn through the compatibility
condition in Eq. �39�, while at �� the variations of vn and
�vn��� are independent, the resulting Euler-Lagrange equa-
tions are

	Vb: − �bpb − �b��b � �b � Vb� + bb = 0 in R3 \ � ,

	pb: �b · Vb = 0 in R3 \ � ,

	v: − grad p − ����dv��� + 2�k − Hg�� · grad vn − 2Kv�

+ �t+
b + t−

b� = 0 in � ,

2����v�symm − vnk� · � + �− p + �
/2��H − C0�2

+ 
GK − �kg�� = 0 in �� ,

	p: − div v + vnH = 0 in � ,

	vn
: − 2���v:k − �H2 − 2K�vn� + pH − ��tn

b��

+ 
��H +
H − C0

2
�H2 − 4K + HC0�� = 0 in � ,

− 
�grad H · �� + 
G�t · k · ���t − �kn = 0 in �� ,

	�vn���
: 
�H − C0� + 
G�H − � · k · �� = 0 in �� ,

�42�

together with the compatibility condition in Eq. �39� and the
geometric evolution equation

dx

dt
= v�x� + vn�x�n�x� for x � � . �43�

Note that time appears explicitly only in this last equation.
This set of equations determines the time evolution of the
surface �, of the fields defined on the surface v, vn, and p,
and of the bulk fields Vb and pb.

Let us examine the three boundary conditions at ��,
which in the above equations represents the edge of the
membrane. The first one is a vectorial equation and sets the
equilibrium of tangential tractions, i.e., membrane line-
distributed forces and in-plane shear line-distributed forces.
The second equation at �� corresponds to the balance of
out-of-plane shear line-distributed forces. Finally, the third
equation at �� is the balance of line-distributed couples.
Only the first of these boundary equations involves viscous
forces.

It has been assumed that no external forces or imposed
velocities or twists are applied at this boundary, i.e., the
boundary conditions derived are homogeneous Neumann
conditions. The case of nonhomogeneous Neumann or Di-
richlet conditions is straightforward to treat. Also, with the
above equations at hand, it is straightforward to consider
multicomponent membranes.

E. Axisymmetric form of the coupled equations

We consider now an axisymmetric vesicle as detailed in
Appendix B, given in Cartesian coordinates by
(r�u�cos � ,r�u�sin � ,z�u�), with u� I= �u1 ,u2� and �
� �0,2��. For brevity, we neglect the terms due to the sur-
rounding fluid, whose axisymmetric form can be found in
standard textbooks. We assume that there is no dependence
on the angle �, and therefore the normal velocity and the
surface tension of the membrane depend only on u, i.e., vn�u�
and p�u�. The tangential velocity field is of the form v
=vu�u�� /�u. Its associated one-form is v�=a2vu�u�du. We
shall denote vu�u� simply by v�u�. It is straightforward from
Appendix B that dv�=0. Note carefully that the tangent vec-
tor � /�u is not a unit vector, unless the generating curve
describing the surface of revolution is parametrized by the
arclength. The unit normal at the boundary of the surface
tangential to it is simply ��u1�=−�1 /a�� /�u and ��u2�
= �1 /a�� /�u.

With the formulas in Appendix B, defining a2�u�
= �r��u��2+ �z��u��2 and b�u�=−r��u�z��u�+r��u�z��u�, noting
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that in the present setting kn=z� /ar, kg=−r� /ar, � ·k ·�
=b /a3, and t ·k ·�=0, and with the expressions

H =
1

a
	 b

a2 +
z�

r

, K =

bz�

a4r
, �44�

the coupled equations �42� become

	v: − p� + 2�	 z�

ar
vn� + a2Kv
 = 0 for u � I ,

− p + 2�	1

a
�av�� −

b

a3vn
 +



2
�H − C0�2 + 
GK + �

r�

ar

= 0 at u = u1,2,

	p:
1

ar
�arv�� − Hvn = 0 for u � I ,

	vn
: − 2�	 b

a4 �av�� +
z�r�

ar2 v − �H2 − 2K�vn
 + pH

+ 
� 1

ar
	 r

a
H�
�

+
H − C0

2
�H2 − 4K + HC0�� = 0

for u � I ,

− 
H� − �
z�

r
= 0 at u = u1,


H� − �
z�

r
= 0 at u = u2,

	�vn���
: 
�H − C0� + 
G

z�

ar
= 0 at u = u1,2. �45�

The shape of the vesicle is time dependent, and therefore we
can view its parametrization as depending on time as well,
i.e., r�u , t� and z�u , t�. Denoting differentiation with respect
to time by an overdot, the shape evolution equation �43�
becomes

ṙ = vr� −
z�

a
vn, ż = vz� +

r�

a
vn. �46�

This geometric evolution is Lagrangian since the surface is
advected by the velocity of the material particles. However,
only the evolution of the shape of the membrane matters
since Eqs. �45� are invariant with respect to reparametriza-
tions, i.e., they do not refer to a reference configuration and
do not depend explicitly on time. Thus, in Eq. �46� v can be
chosen rather arbitrarily, as long as it agrees with the physi-
cal velocity at the boundary.

In the axisymmetric case, a simple calculation shows that
the viscous dissipation density can be computed as

d:d = 	1

a
�av��
2

+ 	 r�

r
v
2

−
2vn

a
	 b

a3 �av�� +
z�r�

r2 v

+ �H2 − 2K�vn

2. �47�

The particularization to an arclength parametrization �u=s,

a=1� used in �57� introducing the angle ��s� from the r axis
to the tangent vector to the generating curve is straightfor-
ward, with the caution that in the surface evolution equations
ṙ= v̂ cos �+vn sin �, ż=−v̂ sin �+vn cos �, v̂ should be cho-
sen such that �d /dt��r�2+z�2�=0 to preserve the arclength
parametrization, or equivalently v̂+��vn=0, subject to
v̂�u1�=v�u1� and v̂�u2�=v�u2�.

IV. BUDDING OF A SPHERICAL CAP

Consider a spherical bud protruding off an infinitely large
planar fluid membrane, as in �34,17�. See also �14� for a
related calculation. We assume that the composition of the
bud and of the flat membrane is different, and consider an
interface energy between the two phases. As illustrated in
Fig. 1, we shall denote the budding spherical cap by ��, the
flat perforated membrane by ��, and the interface between
them by �. We assume that the position of the plane contain-
ing �� remains fixed. This model constrains the geometry in
a reasonable but severe way, in such a way that the configu-
ration of the membrane system can be described by a single
parameter. This parameter is the angle � illustrated in Fig. 2.
This allows us to obtain the dynamics, i.e., ��t�, from the
single ordinary differential equation �ODE� that follows from
the variational principle in Eq. �38�, which is coupled to two
systems of partial differential equations, that governing the
bulk fluid and that governing the flow on the surface.

A. Setup

In the one-parameter family of configurations of the
spherical bud, �=0 corresponds to a completely flat circular
bud, while at �=� the bud is a sphere. The inextensibility of
the lipid bilayer completely determines the geometry of the
system, and in particular sets the radius of the bud R��� and
the radius of the neck �neck��� during this motion.

The spherical caps for each � must have equal area as
required by the inextensibility of the bilayer, say A0. Thus,
we have A0=2��1−cos ��R2���; hence

FIG. 1. Model for bud formation with two fluid membranes, a
spherical cap with fixed area �� and a punctured plane ��.

FIG. 2. Family of configurations of a bud in a frame fixed to the
flat substrate �left� and relative to a frame centered at the centers of
the spherical caps �right�.
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R��� = 	 A0

2��1 − cos ��

1/2

=
R0

1 − cos �
, �48�

where R0=A0 /2� is the radius of the sphere at �=� /2. For
subsequent reference,

R���� = −
1

2
R���

sin �

1 − cos �
. �49�

For the calculations on ��, it is convenient to consider a
frame whose origin O2 coincides with the center of the
spherical caps throughout the motion. Note that, since iner-
tial effects are neglected, the fact that this frame moves with
respect to the fixed plane containing �� is irrelevant. An
arclength parametrization of the generating curve of the axi-
symmetric surface ��, an arc of circle, for a given configu-
ration labeled by � is given by r�s�=R sin ��s� and z�s�
=R cos ��s�, where ��s�=s /R, for s� �0,�R�. The explicit
dependence of R and R� on � defined by Eqs. �48� and �49�
is omitted from this point on.

For the calculations on �� and the bulk fluid flow, we
shall use a frame with origin in the center of the circular hole
of ��, O1. The radius of the circle �, the neck of the bud, is
�neck���=R���sin �. Viewing � as a function of time to be
determined, the normal velocity of the evolving bud �� rela-
tive to O2 is uniform and can be expressed as

vn = R��̇ = −
1

2
R

sin �

1 − cos �
�̇ . �50�

The velocity of the boundary can be written in a frame
whose origin is O2 as

W = �̇�R�n + R�� = vn	n − 2
1 − cos �

sin �
�
 . �51�

It then follows that the velocity at which O1 and O2 move
relative to each other is vO1,O2

=vn�2−cos ��.

B. Solution of the surface flow in the � phase

The equation of balance of mass becomes here

1

sin �

�

��
�sin �v� = − 2vn, �52�

which is easily integrated to

v�s� = − 2vn
1 − cos �

sin �
= − 2vn

1 − cos�s/R�
sin�s/R�

, �53�

where the boundary condition v��R�= �̇R=−2vn�1
−cos �� /sin �, which follows from Eq. �51�, has been used.

It is readily checked that v�0�=0, and that when �̇�0 we
have v�0 for s� �0,�R�, as physically expected. The sur-
face tension p can also be obtained from the governing equa-
tions and is coupled to the solution of the ambient fluid flow,
but it does not affect the kinetics of the system as it does not
dissipate power. We do not solve for it here, although it can
be physically relevant to assess whether the vesicle is close
to rupture.

We can now compute the Rayleigh viscous dissipation.
Inserting Eq. �52� into Eq. �47� and after some manipula-
tions, we obtain

d:d =
1

2
	v� −

cot �v
R


2

= 2	vn

R

2	1 − cos �

1 + cos �

2

.

Consequently, noting that both vn and R are constant in the
spherical cap we have

WD,���,�̇� = 4���vn
2�

0

� �1 − cos �

1 + cos �
�2

sin � d�

I���

= ���R0
2 1 + cos �

�1 − cos ��2 I����̇2,
�54�

where

I��� = − �1 + cos �� +
4

1 + cos �
+ 4 ln 2�1 + cos �� − 4 ln 2.

1. Solution of the surface flow in the � phase

The 2D flow in the � phase can be obtained from sym-
metry considerations and the equation of conservation of
mass, the solution being a radial field

v��� =
�neck���

�
�̇neck��� =

R2 sin ��cos � − 1�
2�

�̇ . �55�

The surface tension in the � phase is obtained from the equa-
tion of balance of linear momentum in the � direction, and,
as before, couples with the ambient flow mechanics and is
irrelevant for the dynamics of the process. It is readily
checked that the Rayleigh dissipation potential in the � phase
is

WD,���,�̇� = ���R0
21 − cos �

2
�̇2. �56�

C. Solution of the bulk flow

To compute the dissipation rate of the ambient flow, we
combine an asymptotic solution with finite element calcula-
tions. Consider first a vanishingly small vesicle protruding
off a plane that divides the space into two half spaces. To this
end, we adapt a general solution in �58�. We consider a
volume-expanding point located at the surface, i.e., a point
flow source, and also the prescribed velocity field from Eq.
�55�. In �17�, the surface flow dissipation was neglected and
for the ambient flow solution only the volume contribution to
this solution was considered. In a spherical coordinate sys-
tem �r ,� ,�� centered at O1, we obtain

V�
b =

Ṡ

2�

cos ��1 − cos ��
sin �

r−1, �57�
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Vr
b =

Ṡ

2�
�1 − 2 cos ��r−1 +

3V̇

2�
cos2 � r−2, �58�

with S=��neck
2 ��� and V= �� /3�R3����2−3 cos �+cos3 ��,

and thus Ṡ=−�R2���sin ��1−cos ���̇ and V̇

= �� /2�R3���sin � cos ��1−cos ���̇ in the upper half space.
In the lower half space the rate of change of the volume
reverses its sign.

In computing the dissipation potential for the ambient
fluid, the dissipation density cannot be integrated in the full
space because it blows up. For a careful estimation of the
dissipation, we divide space into two regions, the sphere of
radius Rcutoff centered at O1 and its complement. The Ray-
leigh dissipation produced outside the sphere follows from
the asymptotic solution above, and results in

WD,out
b = ��b sin2 �	11

10

R0
6

Rcutoff
3

cos2 �

1 − cos �
+ ln 4

R0
4

Rcutoff

�̇2.

�59�

The dissipation within the sphere �O1 ,Rcutoff� and around the
bud is computed using a finite element axisymmetric calcu-
lation. For each �, two finite element calculations are set up,
one in the upper part of the sphere delimited by �� and ��

and one in the lower part. Since the dissipation is propor-

tional to �̇2, in the calculations we fix �̇=1. The boundary
conditions at the surface of the sphere of radius Rcutoff are
taken from the asymptotic solution, while on �� and �� the
velocity field in the bulk is prescribed to match the solutions
of the flows in these domains given in the previous sections,
in agreement with Eq. �39�. The values of the computed dis-
sipations converge very fast for increasing values of Rcutoff of
a few times R0. The flow patterns obtained in selected con-
figurations are depicted in Fig. 3 �left�. The Rayleigh dissi-
pation inside the sphere, WD,in

b , obtained computationally is
then added to WD,out

b to obtain the total Rayleigh dissipation,
expressed as

WD
b ��,�̇� = ��bR0

3G����̇2. �60�

The nondimensional function G��� is plotted in Fig. 3 �bot-
tom�.

To avoid the singularity of the asymptotic solution, �17�
removed a small hemispherical portion of domain in the vi-
cinity of the point source representing the bud, of size R���
in the upper half space and of size �neck��� in the lower half
space. The resulting approximation to the Rayleigh dissipa-

tion potential is then WD
b �11 /5�b /��1 /R3+1 /�neck

3 �V̇2. As
shown in Fig. 3 �right�, this approximation severely underes-
timates the viscous dissipation of the bulk fluid, particularly
for intermediate values of �. This figure also shows how the

dissipation rate for �̇=1 blows up when the bud is nearly
closed, which effectively stalls the time evolution of the sys-
tem near this point. This is a consequence of the rigidity of
the geometry we are considering. A flexible vesicle would
change its shape to relax the dissipation. Away from this
point, the model we consider seems reasonable.
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FIG. 4. �Color online� Dissipative contributions in the numera-
tor of Eq. �65� �left�, and time evolution of the system ��t� �right�
for examples A �top row�, B �middle row�, and C �bottom row�.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

ψ
G
(ψ
)

Present work

Sens, PRL (2004)

(b)(a)

FIG. 3. �Color online� Structure of the bulk flow in the vicinity
of the bud at a representative configuration �left�. The arrows have

the same scale, and are plotted for �̇=1. Bulk dissipation function
as a function of � �right�.
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D. Energy release rate

Assuming constant line tension �, the interfacial energy is
simply EI=2���neck���=2��R���sin �. The interfacial en-
ergy release rate simplifies to

GI��,�̇� = ��R0
1 − cos ��̇ . �61�

Noting that the surface area of the spherical cap is
2�R2����1−cos ��, the curvature energy adopts the form
EHC=��1−cos ���
�2+C0R�2+2
G�; hence

GHC��,�̇� = − 2� sin ��
	2 +
C0R0

1 − cos �

 + 
G��̇ .

�62�

E. Dynamics of budding

The dynamics of the budding process can now be estab-
lished through the principle of virtual power, which states
here that for each �, the rate at which the process occurs is

such that the dissipative forces equilibrate the conservative
driving forces:

0 =
�

��̇
�WD,� + WD,� + WD

b − GHC − GI� , �63�

which results in

R0
2���F���� + ��F���� + �bR0G�����̇

=
�R0

2
H���� + H
����
	2 +

C0R0

1 − cos �

 + 
G� ,

�64�

where H����=1−cos �, H
���=−sin �, and

F���� =
1 + cos �

�1 − cos ��2 I���, F���� =
1 − cos �

2
.

This first-order ODE provides the time evolution ��t�. The
solution to this ODE follows from

t = �
��0�

��t� R0
2���F���� + ��F���� + �bR0G����

��R0/2�H���� + �
�2 + C0R0/1 − cos �� + 
G�H
���
d� . �65�

F. Discussion

For the sake of this discussion, we assume 
G=0 and
C0=0. The numerator of the integrand in Eq. �65� embodies
the dissipative mechanisms while the denominator represents
the driving forces. Each of these terms introduces a length
scale. It is convenient to introduce a conventional classifica-
tion of synthetic lipid vesicles according to their size, that
distinguishes between small unilamellar vesicles �SUVs� of
diameters between 20 and 100 nm, large unilamellar vesicles
�LUVs� of diameters between 100 nm and 1 �m, and giant
unilamellar vesicles �GUVs� of diameters larger than 1 �m,
which can reach 100 �m.

In the denominator, the fact that the line tension term is
multiplied by R0 and the curvature term is not introduces the
so-called invagination length �34,35�

�1 =
4


�
. �66�

For lipid vesicles in the liquid phase, typical values for these
parameters are 
�10−19 J �9� and ��10−11–10−12 N
�1,34,35�, which result in �1�40–400 nm. For buds smaller
than this length scale, the curvature elasticity dominates line
tension, while the opposite happens for larger buds.

Similarly, the fact that the bulk viscosity term in the nu-
merator is multiplied by the size of the bud R0 while the
surface viscosity terms are not induces another length scale

�2 =
�

�b . �67�

This length scale also arises in the Saffman-Delbruck theory
for the diffusion of membrane inclusions �12�; see also �56�.
Large buds measured in terms of �2 will display dynamics
governed by the dissipation in the bulk fluid, while the dy-
namics of small buds will be dictated by the membrane dis-
sipation. Typically, the surrounding fluid has a viscosity
close to that of water, �b�10−3 N s m−2. As for the two-
dimensional viscosity of fluid membranes, the ranges of val-
ues can be quite wide. Consequently, �2 strongly depends on
the particular amphiphilic mixture under consideration, as
well as the environmental conditions. Typical viscosities for
lipid membranes in the liquid phase are ��5
�10−9 N s m−1 �9�, resulting in �2�5 �m. The membrane
viscosity diverges as the temperature is lowered, reaching the
gel phase. In liquid-ordered �Lo� phases observed in multi-
component GUVs, the diffusion coefficient of chemical
probes has been reported to decrease between one and two
orders of magnitude, depending on the chemical composi-
tion, as compared to the liquid disordered �Ld� phase �2�.
According to the theory in �12�, this would imply a viscosity
in Lo phases between one and two orders of magnitude larger
than in Ld phases; hence �2�50–500 �m. Thus, the simple
example considered here suggests that for transport vesicles
and organelle formation within the cell �of sizes of tens to
hundreds of nanometers�, or for synthetic lipid vesicles in the
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range of SUVs, LUVs, and even GUVs depending on the
chemical composition, membrane dissipation dominates the
dissipation in the bulk fluid. This challenges to some degree
the predominant view that in GUVs the only relevant source
of dissipation is that of the bulk fluid. For instance, in recent
experiments on multicomponent GUVs, buds of Lo phases of
a few micrometers, hence smaller than �2, were studied �1,2�.

One important observation is that for realistic parameter
values of fluid membranes, �1 is smaller than �2. For lipid
membranes in the liquid phase, we have seen that �1
�40–400 nm and �2�5–50 �m. This fact allows us to dis-
tinguish three regimes. In regime I, for small buds �R0
��1�, curvature elasticity and membrane viscosity govern
the dynamics, and the characteristic time scale t��R0

2 /2

follows from Eq. �65�. In regime II for intermediate buds
��1�R0��2�, the line tension and the membrane viscosity
dominate resulting in the characteristic time scale t
�2�R0 /�. In regime III for large buds �R0��2� the charac-
teristic time scale of budding t�2�bR0

2 /� results from the
line tension and the dissipation in the bulk fluid. The discus-
sion of the previous paragraph suggests that giant unilamel-
lar vesicles do not necessarily lie in regime III. In fact,
GUVs made out of Lo phases typically lie in regime II.

The way the size of the vesicle enters in these time scale
estimates suggests that the model presented here could be
compared against experiments, particularly in regimes II and
III, where the vesicles can be observed by optical micros-
copy. Alternatively, some experimental conditions promote
the fusion of collections of vesicles made out of a single lipid
composition between themselves or into a larger vesicle. In
this situation, line tension does not operate and the length
scale �2 separates two regimes. Below this length scale, the
typical time scale of fusion events is t��R0

2 /2
, while
above it the time scale is t��bR0

3 /
. By recording the typi-
cal fusion time �after the neck has been formed� as a function
of vesicle size, the present theory could be experimentally
tested.

In recently developed polymer liquid vesicles �5,6�, self-
assembled from dilute solutions of amphiphilic block co-
polymers, the membrane viscosity can be three orders of
magnitude larger with typical values of ��2
�10−6 N s m−1. This results in �2�2 mm, and very slow
shape changes as recorded in experiments on the dynamics
of vesicle fusion �20�. Consequently, for these systems only
regimes I and II are physically meaningful, and membrane
dissipation overwhelmingly dominates the bulk fluid dissipa-
tion.

By way of illustration, we exercise the model for the bud-
ding of a spherical cap, i.e., we solve the ODE for ��t� using
Eq. �65�, in three instances of interest. In all cases, we as-
sume 
=10−19 J, 
G=0, C0=0, and �b�10−3 N s m−2. We
consider first two examples representative of recent experi-
ments on multicomponent GUVs, in which we take �
=10−12 N, ��=5�10−9 N s m−1 for the viscosity of lipid
membrane ��, and a higher value of ��=20�� for the bud
��, which models a liquid ordered phase. We consider rep-
resentative sizes for the buds as observed in �1,2�: R0
=40 �m in example A, while R0=5 �m in example B. In
these two examples, the initial shape of the bud is a small
perturbation of a planar disk. Since for these buds line ten-

sion dominates the curvature elasticity, the interface will
shrink to a point and the bud will evolve into a full sphere.
The perturbation is introduced because the planar disk con-
figuration is an equilibrium, yet unstable, configuration. Ex-
ample C studies the fusion of a small vesicle of R0=60 nm
into a much larger lipid membrane, a crude model for a
transport vesicle fusing with the plasma membrane. In this
example we assume that �� and �� are made out of the same
material; hence �=0 and ��=��. Here, in the absence of
line tension and spontaneous curvature, the bud naturally
evolves toward the planar disk configuration. For this reason,
the example starts from a perturbation of the full sphere con-
figuration, which now is an unstable equilibrium state.

Figure 4 shows the relative contributions of the dissipa-
tive mechanisms in the integrand Eq. �65� as well as the
solutions ��t� for each example. As for the energetic mecha-
nisms, line tension dominates examples A and B, while only
curvature elasticity is operative in example C. It is clear from
the figure that examples A and B, representative of typical
multicomponent GUV experiments, lie between regimes II
and III. Hence they are driven by line tension and signifi-
cantly dragged by the viscosity of both the membrane and
the surrounding fluid. In example C, surface dissipation
dominates bulk dissipation, and the process occurs at a much
higher rate, particularly at later stages.

V. CONCLUSIONS

Motivated by the out-of-equilibrium behavior of systems
in biology and bioinspired technology, we have studied the
relaxation dynamics of fluid membranes with a particular
emphasis on the two-dimensional viscous flow of membrane
constituents on the curved, time-evolving geometry of a
vesicle. We have derived from the balance principles of con-
tinuum mechanics a geometric form of the governing equa-
tions for the 2D Stokes flow on a curved moving surface. We
have coupled this surface viscous flow to curvature elasticity,
the line tension arising in vesicles with boundary or with
several phases, and to the flow of the ambient bulk fluid. The
resulting coupled system of equations describes the dynam-
ics of fluid membranes. As a minimal yet informative model
for budding of vesicles or membrane fusion, we have con-
sidered a simple one-degree-of-freedom system consisting of
a spherical cap membrane protruding off an infinite planar
membrane, embedded in a viscous fluid. This example pro-
vides insight into the dynamics of fluid membranes. In par-
ticular, it enables us to identify three regimes for the dynam-
ics of fluid membranes, defined in terms of two characteristic
lengths. For small vesicles, curvature elasticity and mem-
brane viscosity set the dynamics. For vesicles of intermediate
size, line tension and membrane viscosity are the dominant
driving and dissipative mechanisms. For large vesicles, line
tension and the bulk viscosity become dominant. We find
that the parameter range in which membrane viscosity domi-
nates bulk viscosity is rather common in cell biology and in
man-made bioinspired systems. This challenges the idea that
for large synthetic vesicles the main dissipation mechanism
is that of the ambient fluid. For polymerosomes of any real-
istic size or for small transport vesicles in the cell, the sur-
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face viscous flow in the membrane provides the dominating
energy dissipation mechanism of the vesicle. We believe that
this research may provide fertile grounds for targeted experi-
ments and numerical studies of more realistic geometries.
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APPENDIX A: FACTS OF DIFFERENTIAL
GEOMETRY

A general introduction to the notions of differential geom-
etry useful here can be found in �59,60�. Next, we provide
the notation used, as well as some specific results used in the
paper.

1. Exterior calculus and differential forms

Given a Riemannian manifold � of dimension n �here we
consider surfaces embedded in R3�, its tangent bundle
�whose sections are vector fields on �� is denoted by T�,
while T*� denotes its dual. T*� is the cotangent bundle,
where the differential one-forms exist. The metric tensor of
the manifold is denoted by g or gab in components, while its
inverse is g� or gab. The operation of lowering the indices of
a tensor is denoted by �, the flat operator. The sharp operator
� raises the indices of a tensor. For example, if ��T*� is a
differential one-form, �� is a vector field defined by ����a

=�a=gab�b. Conversely, given a vector field v�T�, the dif-
ferential one-form v� is defined by va=gabvb. Differential
k-forms are completely antisymmetric covariant tensors, and
the bundle of differential k-forms is denoted by �k���. The
wedge product between differential forms, an antisymme-
trized tensor product, is denoted by ∧. If � is a k-form and �
is an l-form, �∧� is a �k+ l�-form. The natural differential
operator acting on differential forms is the exterior derivative
d :�k���→�k+1���. The Hodge star operator � :�k���
→�n−k��� is defined by the relation �∧ ��= �� ·��dV for all
� ,���k���, where dV is the volume form �the area form dS
for surfaces� induced by the metric tensor and · denotes the
inner product of differential forms. The co-differential opera-
tor 	 :�k+1���→�k��� is the formal L2 adjoint of the exte-
rior derivative, i.e.,

�
�

�d� · ��dV = �
�

d� ∧ � � = �
�

� ∧ � �� = �
�

�� · ���dV

and follows from 	= �−1�nk+1�d�, where k+1 is the order of
the differential form it is acting on, resulting in a k-form.
Thus, for two-dimensional manifolds, 	=−�d�.

2. Covariant differentiation

The symbol � denotes the covariant differentiation on the
manifold. The covariant derivative of the metric is zero,

�g=0 and �g�=0. This is the reason why the operations of
raising and lowering indices commute with the covariant de-
rivative. In index notation, covariant differentiation is de-
noted by �a. Note that the coordinate expression of the cova-
riant derivative involves the Christoffel symbols or
coefficients of the Riemannian connection. For example, if
we denote the coordinate system by �xa�, for a vector field v
we have

va
�b = �bVa =

�Va

�xb + �a
cbVc. �A1�

When acting on scalar fields, the covariant derivative coin-
cides with the exterior derivative, and produces a one-form.
The sharp operator turns this one-form into the gradient op-
erator on the manifold grad f = �df��, in coordinates

�grad f�a = gabf �b = gab �f

�xb .

The divergence is the negative adjoint operator of the gradi-
ent and follows from div v=va

�a. It can also be defined in
terms of the codifferential as div v=−	v�. We denote by �*

the formal L2 adjoint of the covariant derivative.

3. Curvature

Let � denote a one-form. Then �a�b�c−�a�c�b=�dRd
abc,

where Rl
abc denotes the Riemannian curvature tensor �a mea-

sure of the noncommutativity of the second covariant deriva-
tive�. Analogously, for a vector field v, we have va

�b�c
−va

�c�b=Ra
bcdv

d. Consequently, va
�b�a−va

�a�b=vcRbc, where
Rbc=Ra

bac is the Ricci curvature, whose trace �the scalar
curvature� is twice the Gaussian curvature K for surfaces. As
a matter of fact, for surfaces in R3, Rbc=Kgbc, and conse-
quently

va
�b�a − va

�a�b = vcKgbc = Kvb.

We denote by kab the second fundamental form and by H
=kabgab twice the mean curvature. From the Codazzi-
Mainardi equations kab�c=kbc�a=kca�b we get

kab
�b = gacH�c.

4. Laplacians

For functions, the Laplacian on a manifold �Laplace-
Beltrami operator� can be defined in terms of the covariant
derivative and its adjoint �f =−�*� f =div�grad f�=gabf �a�b.
The Laplace-Beltrami operator can also be defined in terms
of the exterior derivative �f =−	df . These two definitions
are equivalent.

For a vector field �or a differential form�, there are two
common Laplacians. On the one hand, one can define for any

tensor field �̂=−�*�, which for a vector field can be com-

puted as ��̂v�a=gbcva
�b�c, and similarly for a differential one-

form ��̂��a=gbc�a�b�c. This second order self-adjoint opera-
tor is called the Bochner or rough Laplacian. On the other
hand, the Laplace–de Rham operator �also called the
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Hodge–de Rham Laplacian� �R :�k→�k acting on differen-
tial forms is defined as �R=−�d−d�. This operator can be
extended to vector fields by �Rv= ��R�v����. Recalling that
div=−�, we recognize from the definition of �R the classical
identity of two- and three-dimensional vector calculus �v=
−����v+��� ·v�. Thus, the generalization of the curl-
curl operator to n-dimensional manifolds is �d.

Unlike the case of scalar fields, for vectors or differential
one-forms these two Laplacians are not equal in general. In
fact, the Bochner formula �61�, also called the Weitzenböck

identity, states that ��R��a= ��̂��a−�cg
cbRba, which for a

surface in R3 results in

�̂� = �R� + K� or �̂v = �Rv + Kv .

APPENDIX B: AXISYMMETRIC SURFACES

Let us consider a parametrization of a surface of revolu-
tion around the z axis �, of the form

x�u,�� = „r�u�cos �,r�u�sin �,z�u�…

for u� �u1 ,u2� and �� �0,2��, expressed in Cartesian coor-
dinates. The natural tangent vectors associated with the co-
ordinates �xa�= �u ,�� are

�

�u
= „r��u�cos �,r��u�sin �,z��u�… ,

�

��
= „− r�u�sin �,r�u�cos �,0… .

From this point on, we omit the explicit dependence on u of
the functions r and z. The natural basis of the tangent plane
at any point on the surface is then �ea�= �� /�u ,� /���, while
the natural basis for the cotangent space is �ea�= �du ,d��.
The metric tensor and its inverse for this surface relative to
the standard Euclidean metric in the natural bases are

�gab� = 	a2 0

0 r2 
, �gab� = 	1/a2 0

0 1/r2 
 ,

where a2�u�= �r��u��2+ �z��u��2. An arclength parametriza-
tion of the generating curve is enforced by requiring a�u�
=1. We denote the determinant of the metric tensor by g
=det gab=a2r2. A simple calculation shows that the unit nor-
mal to the surface can be written as n
=1 /a�−z� cos � ,−z� sin � ,r�� and the second fundamental
form in the natural basis is written as

�kab� =
1

a
	b 0

0 rz�

 ,

where b�u�=−r��u�z��u�+r��u�z��u�. The mean and Gauss-
ian curvatures are computed as the trace and the determinant
of

�ka
b� = �gackcb� =

1

a
	b/a2 0

0 z�/r

 .

The exterior derivative of a function on �, f�u ,��, is

df =
�f

�xaea =
�f

�u
du +

�f

��
d� ,

and its gradient

grad f = �df�� = gab �f

�xbea =
1

a2

�f

�u

�

�u
+

1

r2

�f

��

�

��
.

The exterior derivative of a one-form �= fdu+g d� is

d� = 	 �g

�u
−

�f

��

du ∧ d� .

Any two-form is proportional to the volume �area� form dS
=gdu∧d�. The exterior derivative of a two-form is zero.
The Hodge star of the basis vectors can be computed using
textbook formulas �60�,

�du =
r

a
d�, � d� = −

a

r
du ,

�du ∧ d� =
1

ar
, � 1 = ar du ∧ d� = dS .

With this in mind, the Laplacian of a scalar function can be
computed as

�Rf = − �df =
1

ar
� �

�u
	 r

a

�f

�u

 +

�

��
	a

r

�f

��

� .

Given a vector field expressed in the natural basis by F
=Fu� /�u+F�� /��, the associated one-form is F�=a2Fudu
+r2F�d�, and we can compute

�F� = ar�− F�ds + Fud�� ,

d � F� = 	 ��arFu�
�u

+ ar
�F�

��

du ∧ d� ,

div F = − �F = � d � F� =
1

ar

��arFu�
�u

+
�F�

��
.

The curl-curl of a one-form �= fdu+g d� can be computed
as

�d� =
1

r2

�

��
	 �g

�u
−

�f

��

du −

r

a

�

�u
� 1

ar
	 �g

�u
−

�f

��

�d� .

To compute covariant derivatives of vector fields and differ-
ential one-forms, the Christoffel symbols are needed �see Eq.
�A1��. The formula for the Christoffel symbols

�bc
a =

1

2
gad��cgdb + �bgdc − �dgbc�

allows us to compute

��··
u� = 	a�/a 0

0 − rr�/a2 
, ��··
�� = 	 0 r�/r

r�/r 0

 .

For instance, the covariant derivative of a vector field of the
form v=v�u�� /�u is
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�va
�b� = 	v� + �a�/a�v 0

0 �r�/r�v

 = 	�av��/a 0

0 �r�/r�v

 .

APPENDIX C: VARIATIONS OF THE HELFRICH-
CANHAM ENERGY

We consider variations of the surface of the form x+ tV
where the surface velocity has a tangential and a normal
component, V=vnn+v. Furthermore, at the boundary of the
surface ��, we decompose the tangential velocity as follows:

�V��� = vnn + v�� + vtt .

By n we denote the unit normal to the surface, by � the unit
outer normal to the boundary and tangential to the surface,
by t the tangential unit vector to the boundary of the surface,
and by N the normal to the boundary viewed as a curve in
space.

In most references dealing with the Helfrich-Canham and
related energies �59� only normal variations are considered.
This is indeed sufficient for surfaces without boundary, since
only the normal velocity changes the shape of the surface.
However, as we shall see below, this is not the case for
surfaces with a boundary.

We first compute the rate of change of the mean curvature
part of the Helfrich-Canham energy,

� d

dt
�

t=0
�

�

�H − C0�2dS = �
�

2�H − C0�Ḣ dS

+ �
�

�H − C0�2ḋS .

As shown in �59�, Ḣ=�vn+vn�H2−2K�. As for the time de-
rivative of the area element, besides the regular contribution

considered in this reference, ḋS=−HvndS, for surfaces with
boundary, we have also a singular contribution concentrated

at the boundary, ḋS=−HvndS+v�	������ ·dS�. Here, 	����
denotes a Dirac mass concentrated at the boundary of the
surface. Consequently, the above expression becomes

�
�

2�H − C0���vn + vn�H2 − 2K��dS − �
�

�H − C0�2HvndS

+ �
��

�H − C0�2v · � d� .

By applying Green’s formula twice on the term involving the
surface Laplacian of vn, and assuming for simplicity that 

and C0 are uniform on the surface, we finally obtain

� d

dt
�

t=0
�

�




2
�H − C0�2dS

= �
�


	�H +
H − C0

2
�H2 − 4K + HC0�
vndS

− �
��


�grad H · ��vnd�

+ �
��


�H − C0���vn · ��d�

+ �
��




2
�H − C0�2�v · ��d� .

We now turn to the rate of change of the Gaussian curva-
ture part of the Helfrich-Canham energy, and assuming for
simplicity that 
G is constant, we want to compute

D = � d

dt
�

t=0
�

�

K dS = �
�

K̇ dS + �
�

K ḋS .

We first note that, for surfaces without boundary and con-
stant genus, the above expression vanishes owing to the
Gauss-Bonnet theorem. We are interested in surfaces with a
boundary, for which the formula

�
�

K dS = 2�� − �
��

kgd�

holds �kg is the geodesic curvature of the curve ���, and in
general this variation does not vanish. We recall that the
Gaussian curvature is obtained as K=det�ka

b�=det�kacg
cb�.

From Jacobi’s formula, we have

K̇ = � d

dt
�

t=0
�det�ka

b�� = K�k−1�a
ckc

a.

The two-dimensional form of the Cayley-Hamilton formula
gives

�k−1�a
c = −

1

K
�ka

c − H	a
c� ,

and we also recall from �59� that k̇cd= �vn��c�d−vnkc
eked and

ġda=2vnkda. From the equations above, we have

K̇ = �H	a
c − ka

c��k̇cdgda + kcdġda�

= �Hgcd − kcd���vn��c�d + vnkc
eked� .

Consequently, we have

D = �
�

�Hgcd − kcd��vn��c�ddS + �
�

�Hkdekde − kabkb
ckca�vndS

− �
�

KHvndS + �
��

K�v · ��d� .

It is simple to check that the second and third integrals can-
cel each other, for instance by expressing the second funda-
mental form in the orthonormal basis which diagonalizes it.
We are left with

RELAXATION DYNAMICS OF FLUID MEMBRANES PHYSICAL REVIEW E 79, 031915 �2009�

031915-15



D = �
�

�Hgcd − kcd��vn��c�ddS + �
��

K�v · ��d�

= �
��

�Hgcd − kcd��vn��c�dd� − �
�

�gcdH�d − kcd
�d��vn��cdS

+ �
��

K�v · ��d� ,

where the first term in the last line vanishes according to the
Codazzi-Mainardi equations. For closed surfaces the varia-
tions of the integral of K vanish as expected. Thus, in the
usual vector calculus notation, we are left with

D = �
��

grad vn · �Hg − k� · � d� + �
��

K�v · ��d� .

For later use, we still need to reformulate this expression.
Since in general the metric and the second fundamental form
are not isotropic, the first contribution does not involve only
the derivative of the normal velocity in the direction normal
to the boundary of the surface �vn���=grad vn ·�, which is the
kinematic variable conjugate to distributed couples at the
boundary. Another way of looking at the same problem is
that, in a variational principle, the variations of vn and �vn
and the boundary are not independent but the variations of vn
and �vn��� are, hence yield corresponding balance laws. For
this purpose, we split ��vn���= �vn����+ �vn��tt, and using the
divergence theorem on the boundary of the surface �which
we assume to be a closed curve� rewrite the first integral in
the above expression for D as

�
��

��H − � · k · ���vn��� + �t · �Hg − k� · ���vn��t�d�

= �
��

��H − � · k · ���vn��� − �t · �Hg − k� · ���tvn�d�

= �
��

�H − � · k · ���vn���d� + �
��

�t · k · ���tvnd� .

In the last line, we have used the fact that � is a unit vector
normal to t. Finally, we obtain

� d

dt
�

t=0
�

�

K dS = �
��

�H − � · k · ���vn���d�

+ �
��

�t · k · ���tvnd� + �
��

K�v · ��d� .

APPENDIX D: VARIATIONS OF THE INTERFACIAL
ENERGY

We recall the decomposition of the velocity of the par-
ticles on the boundary of the surface �a field of vectors in R3

based on ���:

�V�� = vnn + v��

v�

+ vtt ,

where as indicated the first two terms are normal to the curve
��.

A standard result for curves is that d�=−kvNd�, where k
is the curvature of the curve and vN is the velocity of the
curve in the direction of the normal to the curve. Let us
express the rate of change of the line element viewing the
curve �� as a subset of the surface �. Let us denote by � the
angle between n and N, the normal to �� as a curve in space,
measured from outside �. With this definition cos �=n ·N
and sin �=� ·N. We then have

vN = v� · N = �vnn + v��� · N = vn cos � + v� sin � .

Recalling the standard definitions of the normal and the geo-
desic curvatures of curves within surfaces �55�, with the sign
convention used here,

kn = k cos � = k�n · N� and kg = k sin � = k�� · N� ,

we finally obtain d�=−�vnkn+v�kg�d�, and thus

ĖI = � d

dt
�

t=0
�

��

� d� = − �
��

��vnkn + v�kg�d� .
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