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Abstract. In this paper some new tools for the study of evolution problems
in the framework of Young measures are introduced. A suitable notion of time-
dependent system of generalized Young measures is defined, which allows us
to extend the classical notions of total variation and absolute continuity with

respect to time, as well as the notion of time derivative. The main results are a
Helly type theorem for sequences of systems of generalized Young measures and
a theorem about the existence of the time derivative for systems with bounded
variation with respect to time.

1. Introduction. The notion of a Young measure was introduced by L.C. Young
in [29] to describe generalized solutions to minimum problems in the calculus of
variations. Since then it has been applied to several problems in the calculus of
variations, in control theory, in partial differential equations, and in mathematical
economics. For the general theory of Young measures we refer to [3], [4], [7], [15,
Chapters 2 and 3], [18], [23], [27], [28, Chapter IV], and [30]. Several applications
are devoted to evolution problems (see, e.g., [12], [13], [21], [22], [24], and [25]).

In this paper we introduce some new tools in the theory of Young measures for
the study of rate independent evolution problems. To describe the content of this
paper, let us consider a problem defined on a time interval I , with space variable x
in a compact metric space X , and state variable u in a finite dimensional Hilbert
space Ξ. We assume that X is endowed with a given nonnegative Radon measure
λ with suppλ = X . Given a sequence uk = uk(t, x) of functions from I×X
to Ξ, satisfying suitable estimates, it is often possible to extract a subsequence
converging, for every t ∈ I , to a Young measure µt , which encodes information on
the statistics of the space oscillations of uk(t, x) at time t .

To simplify the notation, the Young measure µt will always be regarded as a
measure on X×Ξ, whose projection on X coincides with λ . In this introduction
we will never consider the standard disintegration (µx

t )x∈X , which is usual in the
classical presentation of the theory (see Remark 3.5).

If we want to extend some natural notions, like total variation, absolute conti-
nuity, or time derivative, from the original context of time dependent functions to
the generalized context of time-dependent Young measures, we need to know the
joint oscillations of uk(t1, x), . . . ,uk(tm, x) for every finite sequence t1, . . . , tm of
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times. These are described by the Young measure µt1...tm
, with state space Ξm ,

generated by the sequence of Ξm -valued functions (uk(t1, x), . . . ,uk(tm, x)). It is
easy to see that µt1...tm

cannot be derived from the measures µt1 , . . . ,µtm
. Indeed,

these measures give no information on the correlation between the oscillations at
different times. The situation is similar to what happens in stochastic processes,
where the knowledge of the distribution function of each single random variable is
not enough to deduce their joint distribution.

This leads to the notion of system of Young measures, defined as a family
(µt1...tm

), where t1, . . . , tm run over all finite sequences of elements of I , with
t1 < · · · < tm , and each µt1...tm

is a Young measure on X with values in Ξm .
We assume that (µt1...tm

) satisfies the following compatibility condition, which is
always satisfied when µt1...tm

is generated by a sequence of time-dependent func-
tions: if {s1, . . . , sn} ⊂ {t1, . . . , tm} and s1 < · · · < sn , then µs1...sn

coincides with
the corresponding projection of µt1...tm

.
The notions of total variation (Definition 8.1), time derivative (Definition 9.4),

and absolute continuity (Definition 10.1) can be easily defined in the framework
of systems of Young measures in such a way that they coincide with the standard
notions in the case of time-dependent functions. The main result of the paper
is a version of Helly’s Theorem for systems of Young measures (Theorem 8.10):
if (µk

t1...tm
) has uniformly bounded variation, then there exist a system (µt1...tm

)
with bounded variation, a set Θ ⊂ I , with I \ Θ at most countable, and a sub-
sequence, still denoted (µk

t1...tm
), such that µk

t1...tm
⇀ µt1...tm

weakly∗ for every
finite sequence t1, . . . , tm ∈ Θ with t1 < · · · < tm .

Another important result provides the existence of the time derivative µ̇t for
almost every t whenever the family (µt1...tm

) has bounded variation (Theorem 9.7).
The variation can be expressed by an integral involving the time derivatives when
(µt1...tm

) is absolutely continuous (Theorem 10.4).
In the forthcoming papers [10] and [11] we will apply these results to deal with

some quasistatic evolution problems with nonconvex energies, which arise in the
study of plasticity with softening. Since in these applications the energy functionals
have linear growth in some directions, we have to consider the case where the
generating sequence (uk(t, x)) is bounded in Lr

λ(X ; Ξ) only for r = 1. It is well
known that in this case Young measures should be replaced by more general objects,
which take into account concentrations at infinity (see [13]). In [1] and [14] this is
done by considering a pair (µY, µ∞), where µY is a Young measure on X with values
in Ξ and µ∞ , called the varifold measure, is a measure supported on X×ΣΞ , where
ΣΞ denotes the unit sphere in Ξ. Other results on this subject are contained in
[19], [20], and [17].

In the spirit of [13], we prefer to present these generalized Young measures in
a different way, using homogeneous coordinates to describe the completion of Ξ
obtained by adding a point at infinity for each direction. We replace the pair
(µY, µ∞) by a single nonnegative measure µ on X×Ξ×R (Definition 3.9), acting
only on continuous functions f(x, ξ, η) which are positively homogeneous of degree
one in (ξ, η). We assume that µ is supported on the set {η ≥ 0} and that the
projection of ηµ onto X coincides with λ . We show that, if λ is nonatomic, then
the space L1

λ(X ; Ξ) can be identified (Definition 3.1) with a dense subset of the
space of generalized Young measures (Theorem 5.1).
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Using this approach, we are able to prove the results on total variation and time
derivatives for systems of Young measures in a context that is general enough for
the applications considered in [10] and [11].

2. A space of homogeneous functions and its dual. If E is a locally compact
space with a countable base and Ξ is a finite dimensional Hilbert space, Mb(E; Ξ)
denotes the space of bounded Radon measures on E with values in Ξ, endowed
with the norm ‖ν‖ := |ν|(E), where |ν| denotes the variation of ν . When Ξ = R ,
the corresponding space will be denoted simply by Mb(E). As usual, M+

b (E)
denotes the cone of nonnegative bounded Radon measures on E . If ν ∈ Mb(E)
and f ∈ L1

ν(E; Ξ), the measure f ν ∈ Mb(E; Ξ) is defined by (f ν)(A) :=
∫

A
f dν

for every Borel set A ⊂ E .
By the Riesz Representation Theorem Mb(E; Ξ) can be identified with the dual

of C0(E; Ξ), the space of continuous functions ϕ : E → Ξ such that {|ϕ| ≥ ε} is
compact for every ε > 0. The weak∗ topology of Mb(E; Ξ) is defined using this
duality.

Throughout the paper (X, d) is a given compact metric space and λ is a fixed
nonnegative Radon measure on X with suppλ = X . The symbol Ξ will denote any
finite dimensional Hilbert space. The spaces Lr(X ; Ξ), r ≥ 1, will always refer to
the measure λ . If µ ∈Mb(X ; Ξ), µa and µs denote the absolutely continuous and
the singular part of µ with respect to λ . Measures in Mb(X ; Ξ) which are absolutely
continuous with respect to λ will always be identified with their densities, which
belong to L1(X ; Ξ). In this way L1(X ; Ξ) is regarded as a subspace of Mb(X ; Ξ).

In order to define the notion of generalized Young measure on X with values in
Ξ, it is convenient to introduce a space of homogeneous functions and to discuss
some properties of its dual.

Definition 2.1. Let Chom(X×Ξ) be the space of all continuous f : X×Ξ → R

such that ξ 7→ f(x, ξ) is positively homogeneous of degree one on Ξ for every
x ∈ X ; i.e., f(x, tξ) = tf(x, ξ) for every x ∈ X , ξ ∈ Ξ, and t ≥ 0. This space is
endowed with the norm

‖f‖hom := max{|f(x, ξ)| : x ∈ X, ξ ∈ ΣΞ} ,

where ΣΞ := {ξ ∈ Ξ : |ξ| = 1} .

We introduce now two dense subspaces of Chom(X×Ξ) that will be useful in the
proof of some properties of generalized Young measures.

Definition 2.2. Let Chom
L (X×Ξ) be the space of all f ∈ Chom(X×Ξ) satisfying

the following Lipschitz condition: there exists a constant a ∈ R such that

|f(x, ξ1) − f(x, ξ2)| ≤ a |ξ1 − ξ2| (2.1)

for every x ∈ X and every ξ1, ξ2 ∈ Ξ.

Remark 2.3. If f ∈ Chom
L (X×Ξ) and ω is the modulus of continuity of the

restriction of f to X×ΣΞ , then (2.1) and the homogeneity of f imply that

|f(x1, ξ1) − f(x2, ξ2)| ≤ |f(x1, ξ1) − f(x1, ξ2)| + |f(x1, ξ2) − f(x2, ξ2)| ≤

≤ a |ξ1 − ξ2| + |ξ2|ω(d(x1, x2)) .

Exchanging the roles of ξ1 and ξ2 we obtain

|f(x1, ξ1) − f(x2, ξ2)| ≤ a |ξ1 − ξ2| + min{|ξ1|, |ξ2|}ω(d(x1, x2))

for every x1, x2 ∈ X and every ξ1, ξ2 ∈ Ξ.
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Lemma 2.4. The space Chom
L (X×Ξ) is dense in Chom(X×Ξ) .

Proof. Let us fix f ∈ Chom(X×Ξ). For every k > ‖f‖hom let us consider the
Moreau-Yosida approximation fk : X×Ξ → R defined by

fk(x, ξ) := min
ξ′∈Ξ

{f(x, ξ′) + k |ξ′ − ξ|} .

Using the standard properties of Moreau-Yosida approximations it is easy to check
that fk ∈ Chom

L (X×Ξ) (with constant k ) and that the sequence fk is nondecreasing
and converges pointwise to f (see, e.g., [8, Remark 9.6 and Theorem 9.13]). By
Dini’s Theorem we conclude that fk → f uniformly on X×ΣΞ , hence fk → f in
Chom(X×Ξ).

Definition 2.5. Let Chom
△ (X×Ξ) be the space of all f ∈ Chom(X×Ξ) which

satisfy the triangle inequality f(x, ξ1 + ξ2) ≤ f(x, ξ1) + f(x, ξ2) for every x ∈ X
and every ξ1 , ξ2 ∈ Ξ.

Remark 2.6. As |f(x, ξ)| ≤ |ξ| ‖f‖hom , each f ∈ Chom
△ (X×Ξ) is Lipschitz con-

tinuous with respect to ξ and satisfies

|f(x, ξ1) − f(x, ξ2)| ≤ |ξ1 − ξ2| ‖f‖hom

for every x ∈ X and every ξ1 , ξ2 ∈ Ξ. Therefore Chom
△ (X×Ξ) ⊂ Chom

L (X×Ξ).

Lemma 2.7. The space of functions of the form f1−f2 , with f1, f2 ∈ Chom
△ (X×Ξ) ,

is dense in Chom(X×Ξ) .

Proof. Thanks to the obvious density in Chom(X×Ξ) of the space of functions
f ∈ Chom(X×Ξ) such that f(x, ·) belongs to C2(Ξ \ {0}) for every x , it is enough
to prove that every such function can be written as f = f1 − f2 , with f1, f2 ∈
Chom

△ (X×Ξ). To this aim it suffices to show that there exists a constant c := c(f)

such that f2(x, ξ) := c |ξ| − f(x, ξ) is convex in ξ for every x ∈ X . A simple
calculation shows that the quadratic form corresponding to the Hessian matrix of
f2 with respect to ξ at a point (x, e), with e ∈ ΣΞ , is given by

D2
ξf2(x, e) ξ · ξ = c |ξ|2 − c (ξ · e)2 −D2

ξf(x, e) ξ · ξ . (2.2)

By the Euler relation we have Dξf(x, ξ) ξ = f(x, ξ). Taking the derivative with
respect to ξ we obtain D2

ξf(x, ξ) ξ = 0 for every ξ , in particular D2
ξf(x, e) has an

eigenvalue 0 with eigenvector e . This implies that there is a constant b(x, e) such
that D2

ξf(x, e) ξ · ξ ≤ b(x, e) |ξ⊥e |2 , where ξ⊥e := ξ − (ξ · e) e is the component of ξ

orthogonal to e . As b(x, e) is bounded by the continuity of the second derivatives of
f , and |ξ⊥e |2 = |ξ|2−(ξ · e)2 , by (2.2) there exists a constant c such that D2

ξf2(x, e)

is positive definite for every x ∈ X and every e ∈ ΣΞ , hence f2(x, ξ) is convex with
respect to ξ for every x ∈ X .

Definition 2.8. The dual of the space Chom(X×Ξ) is denoted by M∗(X×Ξ), and
the corresponding dual norm by ‖ · ‖∗ ; the weak∗ topology of M∗(X×Ξ) is defined
by using this duality. It is sometimes convenient to write the dummy variables
explicitly and to use the notation 〈f(x, ξ), µ(x, ξ)〉 for the duality product 〈f, µ〉 .
The positive cone M+

∗ (X×Ξ) is defined as the set of all µ ∈M∗(X×Ξ) such that

〈f, µ〉 ≥ 0 for every f ∈ Chom(X×Ξ) with f ≥ 0 .

Remark 2.9. It is easy to see that for every µ ∈M+
∗ (X×Ξ) we have

‖µ‖∗ = 〈|ξ|, µ(x, ξ)〉 .
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Strictly speaking, the elements µ of M∗(X×Ξ) are not measures, because they
act only on homogeneous functions. However, the notion of image of µ under a
map ψ can be defined by duality, as in measure theory.

Definition 2.10. Let Ξ and Ξ′ be two finite dimensional Hilbert spaces and let
ψ : X×Ξ → X×Ξ′ be a continuous map of the form ψ(x, ξ) = (x, ϕ(x, ξ)), with
ϕ : X×Ξ → Ξ′ positively one-homogeneous in ξ . The image ψ(µ) of µ ∈M∗(X×Ξ)
under ψ is defined as the element of M∗(X×Ξ′) such that

〈f, ψ(µ)〉 = 〈f ◦ ψ, µ〉 = 〈f(x, ϕ(x, ξ)), µ(x, ξ)〉

for every f ∈ Chom(X×Ξ′).

Similarly we can define the notion of support of µ ∈ M∗(X×Ξ). We say that a
subset C of X×Ξ is a Ξ-cone if (x, ξ) ∈ C ⇒ (x, tξ) ∈ C for every t ≥ 0.

Definition 2.11. The support suppµ of µ ∈M∗(X×Ξ) is defined as the smallest
closed Ξ-cone C ⊂ X×Ξ such that 〈f, µ〉 = 0 for every f ∈ Chom(X×Ξ) vanishing
on C .

Remark 2.12. For every µ ∈ M∗(X×Ξ) there exists a measure µ̃ ∈ Mb(X×Ξ)
with compact support such that

〈f, µ〉 =

∫

X×Ξ

f dµ̃ (2.3)

for every f ∈ Chom(X×Ξ). A measure with this property can be constructed by
considering the continuous linear map on C(X×ΣΞ) defined by

g 7→ 〈|ξ|g(x, ξ/|ξ|), µ(x, ξ)〉 .

By the Riesz Representation Theorem there exists µ̃ ∈Mb(X×ΣΞ) such that

〈|ξ|g(x, ξ/|ξ|), µ(x, ξ)〉 =

∫

X×ΣΞ

g dµ̃

for every g ∈ C(X×ΣΞ). Regarding µ̃ as a measure on X×Ξ supported by X×ΣΞ ,
we obtain (2.3). This construction suggests that the measure µ̃ satisfying (2.3) is
not unique; indeed, we can repeat the same construction with ΣΞ replaced by any
other concentric sphere. More in general, suppose that E is a compact subset of
X×(Ξ \ {0}) with the following property: for every x ∈ X and every ξ ∈ ΣΞ there
exists a unique t > 0 such that (x, tξ) ∈ E . Then there exists a unique measure
µ̌ ∈Mb(E) such that

〈f, µ〉 =

∫

E

f dµ̌

for every f ∈ Chom(X×Ξ). The measure µ̌ clearly depends on E , as explained
above in the case E = X×ΣΞ .

For the applications it is convenient to extend some of the previous results to a
suitable space of possibly discontinuous functions.

Definition 2.13. Given two finite dimensional Hilbert spaces Ξ and Ξ′ , define
Bhom

∞ (X×Ξ; Ξ′) as the space of Borel functions f : X×Ξ → Ξ′ such that

(a) for every x ∈ X the function ξ 7→ f(x, ξ) is positively homogeneous of degree
one on Ξ,

(b) there exists a constant a ∈ R such that |f(x, ξ)| ≤ a|ξ| for every (x, ξ) ∈
X×Ξ.
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The smallest constant a satisfying the previous inequality is denoted by ‖f‖hom .
When Ξ′ = R , the corresponding space will be denoted simply by Bhom

∞ (X×Ξ).

Definition 2.14. For every f ∈ Bhom
∞ (X×Ξ) and every µ ∈M∗(X×Ξ) the duality

product 〈f, µ〉 is defined by

〈f, µ〉 :=

∫

X×Ξ

f dµ̃ ,

where µ̃ is any measure satisfying the conditions of Remark 2.12. By homogeneity
the value of 〈f, µ〉 does not depend on the particular measure µ̃ chosen in (2.3). The
same definition (with values in R ∪ {+∞} this time) is adopted if µ ∈M+

∗ (X×Ξ)
and f : X×Ξ → R ∪ {+∞} is a Borel function such that f(x, ξ) is positively
homogeneous of degree one in ξ and f(x, ξ) ≥ −c|ξ| for some constant c ≥ 0.

Let πX : X×Ξ → X be the projection onto X . We now define the image under
πX of the product hµ of an element µ of M∗(X×Ξ) by a homogeneous function
h .

Definition 2.15. Let Ξ and Ξ′ be two finite dimensional Hilbert spaces, let µ ∈
M∗(X×Ξ), and let h ∈ Bhom

∞ (X×Ξ; Ξ′). The measure πX(hµ) is the element of
Mb(X ; Ξ′) such that

∫

X

ϕ · dπX(hµ) = 〈ϕ(x) · h(x, ξ), µ(x, ξ)〉 (2.4)

for every ϕ ∈ C(X ; Ξ′), where the dot denotes the scalar product in Ξ′ .

Remark 2.16. For every µ̃ ∈Mb(X×Ξ) satisfying (2.3) we can consider the Radon
measure hµ̃ ∈Mb(X×Ξ; Ξ′) having density h with respect to µ̃ . It is easy to check
that the measure πX(hµ) defined by (2.4) coincides with the image under πX of
the measure hµ̃ . Note that the measure hµ̃ depends on the choice of µ̃ satisfying
(2.3), while, by (2.4), its projection πX(hµ̃) does not.

Remark 2.17. It follows from the definition that we have the estimate

‖πX(hµ)‖ ≤ ‖h‖hom‖µ‖∗

for every µ ∈M∗(X×Ξ) and every h ∈ Bhom
∞ (X×Ξ; Ξ′).

3. Generalized Young measures. As mentioned in the introduction, the notion
of a generalized Young measure is used to describe oscillation and concentration
phenomena for sequences which are bounded in Lr(X ; Ξ) only for r = 1. To
study concentration phenomena, where the sequences tend to infinity along given
directions in the space Ξ, it is useful to introduce homogeneous coordinates. This
is done by replacing the space Ξ by Ξ×R , whose generic point is denoted by (ξ, η);
the set of points with η = 1 is identified with Ξ, while points with η = 0 are
interpreted as directions at infinity.

In our presentation the space of generalized Young measures will be a subset
of the space M+

∗ (X×Ξ×R), where Ξ×R plays the role of the Hilbert space Ξ of
the previous section. Before describing this set, we first consider generalized Young
measures associated with functions.

Definition 3.1. Given u ∈ L1(X ; Ξ), the generalized Young measure associated
with u is defined as the element δu of M+

∗ (X×Ξ×R) such that

〈f, δu〉 =

∫

X

f(x, u(x), 1) dλ(x)
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for every f ∈ Chom(X×Ξ×R).

In the spirit of [16] and [26] we extend this definition to measures p ∈Mb(X ; Ξ).

Definition 3.2. Given p ∈ Mb(X ; Ξ), the generalized Young measure associated
with p is defined as the element δp of M+

∗ (X×Ξ×R) such that for every f ∈
Chom(X×Ξ×R)

〈f, δp〉 =

∫

X

f(x, dp
dσ (x), dλ

dσ (x)) dσ(x) ,

where σ is an arbitrary nonnegative Radon measure on X with λ << σ and
p << σ .

The homogeneity of f implies that the integral does not depend on σ and that
the definitions coincide when p = u ∈ L1(X ; Ξ). The norm of δp is given by the
following lemma.

Lemma 3.3. Let p ∈Mb(X ; Ξ) . Then

‖δp‖∗ =

∫

X

√

1 + |pa|2 dλ+ |ps|(X) ≤ λ(X) + |p|(X) .

Proof. Let us consider the Borel partition X = Xa∪Xs with λ(Xs) = 0 = |ps|(Xa)
and let σ := λ + |ps| , so that σ = λ on Xa and σ = |ps| on Xs . By Remark 2.9
we have

‖δp‖∗ = 〈
√

|ξ|2 + |η|2, δp(x, ξ, η)〉 =

∫

X

√

| dp
dσ |

2 + | dλ
dσ |

2 dσ =

=

∫

Xa

√

1 + |pa|2 dλ+ |ps|(Xs) =

∫

X

√

1 + |pa|2 dλ + |ps|(X) ,

which concludes the proof.

We recall the definition of Young measure.

Definition 3.4. A Young measure on X with values in Ξ is a measure ν ∈
M+

b (X×Ξ) such that πX(ν) = λ . The space of Young measures on X with values
in Ξ is denoted by Y (X ; Ξ). For every r ≥ 1 let Y r(X ; Ξ) be the space of all
ν ∈ Y (X ; Ξ) whose r -moment

∫

X×Ξ

|ξ|r dν(x, ξ)

is finite.

Remark 3.5. By the Disintegration Theorem (see, e.g., [27, Appendix A2]) for ev-
ery ν ∈ Y (X ; Ξ) there exists a measurable family (νx)x∈X of probability measures
on Ξ such that

∫

X×Ξ

g(x, ξ) dν(x, ξ) =

∫

X

(

∫

Ξ

g(x, ξ) dνx(ξ)
)

dλ(x)

for every bounded Borel function g : X×Ξ → R . The probability measures νx are
uniquely determined for λ-a.e. x ∈ X .

Definition 3.6. Given ν ∈ Y 1(X ; Ξ), the generalized Young measure associated
with ν is defined as the element ν of M+

∗ (X×Ξ×R) such that

〈f, ν〉 :=

∫

X×Ξ

f(x, ξ, 1) dν(x, ξ)

for every f ∈ Chom(X×Ξ×R).
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Remark 3.7. It follows from Remark 2.9 that

‖ν‖∗ =

∫

X×Ξ

√

1 + |ξ|2 dν(x, ξ) ≤ λ(X) +

∫

X×Ξ

|ξ| dν(x, ξ) .

Remark 3.8. If µ = δp for some p ∈Mb(X ; Ξ), the following properties hold:

suppµ ⊂ X×Ξ×[0,+∞) , (3.1)

πX(ηµ) = λ . (3.2)

We will refer to (3.2) as the projection property. According to (2.4), it is equivalent
to

〈ϕ(x)η, µ(x, ξ, η)〉 =

∫

X

ϕdλ for every ϕ ∈ C(X) . (3.3)

Properties (3.1) and (3.2) continue to hold if µ = ν for some ν ∈ Y 1(X ; Ξ).

This motivates the following definition.

Definition 3.9. The space GY (X ; Ξ) of generalized Young measures on X with
values in Ξ is defined as the set of all µ ∈ M+

∗ (X×Ξ×R) satisfying (3.1) and
(3.2). On GY (X ; Ξ) we consider the norm and the weak∗ topology induced by
M∗(X×Ξ×R).

Remark 3.10. By approximation we can prove that (3.3) holds for every µ ∈
GY (X ; Ξ) and for every bounded Borel function ϕ : X → R .

The sequential compactness of every bounded subset of GY (X ; Ξ) is given by
the following theorem.

Theorem 3.11. Every bounded sequence in GY (X ; Ξ) has a subsequence which
converges weakly∗ to an element of GY (X ; Ξ) .

Proof. Since GY (X ; Ξ) is closed in the weak∗ topology of M∗(X×Ξ×R), the result
follows from the Banach-Alaoglu Theorem.

Remark 3.12. If µk is a sequence in GY (X ; Ξ) which converges weakly∗ to µ ∈
GY (X ; Ξ), then ‖µk‖∗ → ‖µ‖∗ by Remark 2.9.

Remark 3.13. If f : X×Ξ×R → R ∪ {+∞} is lower semicontinuous, (ξ, η) 7→

f(x, ξ, η) is positively homogeneous of degree one, and f(x.ξ, η) ≥ −c
√

|ξ|2 + |η|2

for some constant c ≥ 0, then

〈f, µ〉 ≤ lim inf
k→∞

〈f, µk〉

for every sequence µk in GY (X ; Ξ) which converges weakly∗ to µ ∈ GY (X ; Ξ),
where 〈f, ·〉 is defined by (2.3). Indeed, any such f is the supremum of a family of
functions in Chom(X×Ξ×R).

In the case of a generalized Young measure µ ∈ GY (X ; Ξ) the duality prod-
uct 〈f, µ〉 can be defined for every f in the space Bhom

∞,1 (X×Ξ×R) introduced by

the following definition, which is slightly larger than the space Bhom
∞ (X×Ξ×R)

considered in the previous section.

Definition 3.14. Given two finite dimensional Hilbert spaces Ξ and Ξ′ , we con-
sider the space Bhom

∞,1 (X×Ξ×R; Ξ′) of all Borel functions f : X×Ξ×R → Ξ′ such
that

(a) for every x ∈ X the function (ξ, η) 7→ f(x, ξ, η) is positively homogeneous of
degree one on Ξ×R ,
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(b) there exist a constant a ∈ R and a function b ∈ L1(X) such that

|f(x, ξ, η)| ≤ a|ξ| + b(x)|η| (3.4)

for every (x, ξ, η) ∈ X×Ξ×R .

When Ξ′ = R , the corresponding space will be denoted simply by Bhom
∞,1 (X×Ξ×R).

Lemma 3.15. Let µ ∈ GY (X ; Ξ) and let µ̃ ∈ Mb(X×Ξ×R) be a measure with
compact support satisfying (2.3). Then every f ∈ Bhom

∞,1 (X×Ξ×R) is µ̃-integrable.

Proof. Let us fix f ∈ Bhom
∞,1 (X×Ξ×R). For every k let fk be the function defined by

fk(x, ξ, η) := f(x, ξ, η) if |f(x, ξ, η)| ≤ a|ξ|+k|η| , and by fk(x, ξ, η) := 0 otherwise.
Then we have

∫

X×Ξ×R

|fk| dµ̃ ≤

∫

X×Ξ×R

[a|ξ| + (b(x) ∧ k)|η|] dµ̃ =

= 〈a|ξ| + (b(x) ∧ k)|η|, µ(x, ξ, η)〉 ≤ 〈a|ξ|, µ(x, ξ, η)〉 +

∫

X

b dλ .

It follows from Fatou’s Lemma that f is µ̃ -integrable.

Definition 3.16. Given f ∈ Bhom
∞,1 (X×Ξ×R) and µ ∈ GY (X ; Ξ), the duality

product 〈f, µ〉 is defined by

〈f, µ〉 :=

∫

X×Ξ×R

f dµ̃ , (3.5)

where µ̃ ∈ Mb(X×Ξ×R) is any measure with compact support satisfying (2.3),
with Ξ replaced by Ξ×R .

Remark 3.17. The integral in (3.5) is well defined by Lemma 3.15. It is easy to
see that the value of this integral does not depend on the choice of µ̃ satisfying
(2.3), and that

|〈f, µ〉| ≤ a ‖µ‖∗ + ‖b‖1 ,

where a and b satisfy (3.4) and ‖b‖1 denotes the L1 norm of b .

We now consider the image of a generalized Young measure.

Definition 3.18. Let Ξ and Ξ′ be two finite dimensional Hilbert spaces and let
ψ :X×Ξ×R → X×Ξ′×R be a map of the form ψ(x, ξ, η) = (x, ϕ(x, ξ, η), η), with
ϕ∈Bhom

∞,1 (X×Ξ×R; Ξ′). The image ψ(µ) of µ ∈ GY (X ; Ξ) under ψ is defined as
the element of GY (X ; Ξ′) such that

〈f, ψ(µ)〉 = 〈f ◦ ψ, µ〉 = 〈f(x, ϕ(x, ξ, η), η), µ(x, ξ, η)〉 (3.6)

for every f ∈ Bhom
∞,1 (X×Ξ′×R).

Remark 3.19. Under the assumptions of the definition the function f ◦ψ belongs
to Bhom

∞,1 (X×Ξ×R), so that the duality product 〈f ◦ψ, µ〉 is well defined. Moreover,

by the particular form of the map ψ , the element of M+
∗ (X×Ξ′×R) defined by (3.6)

satisfies (3.1) and (3.2), therefore it belongs to GY (X ; Ξ′).
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4. Comparison with other presentations of the theory. In this section we
show that every µ ∈ GY (X ; Ξ) can be represented by a unique Young measure-
varifold pair (µY, µ∞), where µY ∈ Y 1(X ; Ξ) and µ∞ ∈M+

b (X×ΣΞ). To introduce
this representation, we recall that Y 1(X ; Ξ) can be identified with a suitable subset
of GY (X ; Ξ) (Definition 3.6). The following definition identifies the measures in
M+

b (X×ΣΞ) with particular elements of M∗(X×Ξ×R).

Definition 4.1. For every ν ∈M+
b (X×ΣΞ) let ν̂ be the element of M∗(X×Ξ×R)

defined by

〈f, ν̂〉 =

∫

X×ΣΞ

f(x, ξ, 0) dν(x, ξ)

for every f ∈ Chom(X×Ξ×R).

Remark 4.2. It follows from the definition that πX(ην̂) = 0 for every ν ∈
M+

b (X×ΣΞ). Since ν̂ does not satisfy the projection property (3.2), it does not
belong to GY (X ; Ξ).

The main result of this section is the following theorem.

Theorem 4.3. Let µ ∈ GY (X ; Ξ) . Then there exists a unique pair (µY, µ∞) , with
µY ∈ Y 1(X ; Ξ) and µ∞ ∈M+

b (X×ΣΞ) , such that

µ = µY + µ̂∞ ,

which is equivalent to

〈f, µ〉 =

∫

X×Ξ

f(x, ξ, 1) dµY(x, ξ) +

∫

X×ΣΞ

f(x, ξ, 0) dµ∞(x, ξ) (4.1)

for every f ∈ Bhom
∞,1 (X×Ξ×R) .

Remark 4.4. The converse of Theorem 4.3 is also true: if µY ∈ Y 1(X ; Ξ) and
µ∞ ∈Mb(X×ΣΞ), then formula (4.1) defines an element of GY (X ; Ξ).

Remark 4.5. Let λ∞ := πX(µ∞). Since λ = πX(µY ), by the Disintegration
Theorem (see, e.g., [27, Appendix A2]) there exist a measurable family (µx,Y )x∈X

of probability measures on Ξ and a measurable family (µx,∞)x∈X of probability
measures on ΣΞ such that

〈f, µ〉 =

∫

X×Ξ

f(x, ξ, 1) dµY (x, ξ) +

∫

X×ΣΞ

f(x, ξ, 0) dµ∞(x, ξ) =

=

∫

X

(

∫

Ξ

f(x, ξ, 1) dµx,Y (ξ)
)

dλ(x) +

∫

X

(

∫

ΣΞ

f(x, ξ, 0) dµx,∞(ξ)
)

dλ∞(x)

for every f ∈ Bhom
∞,1 (X×Ξ×R).

Remark 4.6. Thanks to Remark 2.9, if we apply (4.1) to f(x, ξ, η) =
√

|ξ|2 + |η|2 ,
we obtain

‖µ‖∗ =

∫

X×Ξ

√

1 + |ξ|2 dµY (x, ξ) + µ∞(X×ΣΞ) ≤

≤ λ(X) +

∫

X×Ξ

|ξ| dµY (x, ξ) + µ∞(X×ΣΞ) .

Proof of Theorem 4.3. For every Borel function g : X×Ξ → R with

κg := sup
(x,ξ)∈X×Ξ

|g(x, ξ)|
√

1 + |ξ|2
< +∞ , (4.2)
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we consider the Borel function ϕg : X×Ξ×R → R defined by

ϕg(x, ξ, η) :=

{

η g(x, ξ/η) if η > 0 ,

0 if η ≤ 0 .

Since ϕg ∈ Bhom
∞ (X×Ξ×R), we can consider the duality product 〈ϕg, µ〉 . The

function g 7→ 〈ϕg, µ〉 is linear, bounded, and positive on C0(X×Ξ). By the Riesz

Representation Theorem there exists µY ∈M+
b (X×Ξ) such that

〈ϕg, µ〉 =

∫

X×Ξ

g(x, ξ) dµY(x, ξ) (4.3)

for every g ∈ C0(X×Ξ). As ‖g‖hom ≤ κg , we have

|

∫

X×Ξ

g(x, ξ) dµY(x, ξ)| ≤ κg‖µ‖∗

for every g ∈ C0(X×Ξ). By approximation we can prove that
∫

X×Ξ

|ξ| dµY(x, ξ) ≤ ‖µ‖∗ (4.4)

and that (4.3) holds for every Borel function g : X×Ξ → R satisfying (4.2). By
(3.2) we have πX(µY ) = λ , which, together with (4.4), gives µY ∈ Y 1(X ; Ξ).

For every bounded Borel function h : X×ΣΞ → R we consider the Borel function
ψh : X×Ξ×R → R defined by

ψh(x, ξ, η) :=

{

|ξ|h(x, ξ/|ξ|) if η = 0 , ξ 6= 0 ,

0 otherwise.

Since ψh ∈ Bhom
∞ (X×Ξ×R), we can consider the duality product 〈ψh, µ〉 . The

function h 7→ 〈ψh, µ〉 is linear, bounded, and positive on C(X×ΣΞ). By the Riesz
Representation Theorem there exists µ∞ ∈M+

b (X×ΣΞ) such that

〈ψh, µ〉 =

∫

X×ΣΞ

h dµ∞ (4.5)

for every h ∈ C(X×ΣΞ). By approximation we can prove that the previous equality
holds for every bounded Borel function h : X×ΣΞ → R .

Given any f ∈ Bhom
∞ (X×Ξ×R), we consider the functions g :X×Ξ → R and

h :X×ΣΞ → R defined by

g(x, ξ) := f(x, ξ, 1) , h(x, ξ) := f(x, ξ, 0) .

By homogeneity we have f = ϕg + ψh on X×Ξ×[0,+∞). Then (4.1) follows from
(3.1), (4.3), and (4.5). The result can be extended to f ∈ Bhom

∞,1 (X×Ξ×R) by
approximation.

The uniqueness of the pair (µY, µ∞) can be deduced from the fact that, if (4.1)
is satisfied, then (4.3) holds for every g ∈ C0(X×Ξ), while (4.5) holds for every
h ∈ C(X×ΣΞ).

Remark 4.7. It is easy to prove, by approximation, that (4.1) continues to hold
when f : X×Ξ×R → R ∪ {+∞} is a Borel function such that f(x, ξ, η) is posi-
tively homogeneous of degree one in (ξ, η) and satisfies the inequality f(x, ξ, η) ≥
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−c
√

|ξ|2 + |η|2 for some constant c ≥ 0. This allows us to characterize the general-
ized Young measures associated with Young measures with finite r -moment, r > 1,
using the homogeneous functions {Pr} : Ξ×R → [0,+∞] defined by

{Pr}(ξ, η) :=

{

|ξ|r/ηr−1 if η > 0 ,

+∞ if η ≤ 0 .
(4.6)

Indeed, for r > 1 formula (4.1) implies that µ = µY with µY ∈ Y r(X ; Ξ) if and
only if 〈{Pr}, µ〉 < +∞ .

Let ψΞ
0 : X×Ξ×R → X×Ξ×R be the Borel map defined by

ψΞ
0 (x, ξ, η) =

{

(x, ξ, η) if η 6= 0 ,

(x, 0, 0) if η = 0 .

Note that ψΞ
0 satisfies the conditions of Definition 3.18.

For every f ∈ Bhom
∞,1 (X×Ξ×R) we have

(f ◦ ψΞ
0 )(x, ξ, η) =

{

f(x, ξ, η) if η 6= 0 ,

0 if η = 0 .

From (4.1) it follows that for every µ ∈ GY (X ; Ξ)

〈f, µY 〉 = 〈f ◦ ψΞ
0 , µ

Y 〉 = 〈f ◦ ψΞ
0 , µ〉 ,

hence µY = ψΞ
0 (µ).

Lemma 4.8. Let Ξ and Ξ′ be two finite dimensional Hilbert spaces, let µ ∈
GY (X ; Ξ) , let ψ : X×Ξ×R → X×Ξ′×R be a map as in Definition 3.18, and let
ν := ψ(µ) . Then

νY = ψ(µY ) , ν̂∞ = ψ(µ̂∞) .

Proof. The former equality follows from the fact that ψ ◦ψΞ
0 = ψΞ′

0 ◦ψ . The latter
follows now from Theorem 4.3 by the linearity of the map µ 7→ ψ(µ).

Combining the compactness property (Theorem 3.11) and the representation
formula (Theorem 4.3) we recover the following result, originally proved in [1] (see
Remark 4.5).

Theorem 4.9. Let uk be a bounded sequence in L1(X ; Ξ) . Then there exist a
subsequence, still denoted uk , a Young measure µY ∈ Y 1(X ; Ξ) , and a measure
µ∞ ∈Mb(X×ΣΞ) , such that
∫

X

g(x, uk(x)) dλ(x) −→

∫

X×Ξ

g(x, ξ) dµY(x, ξ) +

∫

X×ΣΞ

g∞(x, ξ) dµ∞(x, ξ) (4.7)

for every continuous function g : X×Ξ → R such that for every (x0, ξ0) ∈ X×Ξ
the limit

g∞(x0, ξ0) := lim
x→x0, ξ→ξ0

η→0+

η g(x, ξ/η)

exists and is finite.

Proof. Let us consider the sequence δuk
in GY (X ; Ξ) introduced in Definition 3.1.

By Lemma 3.3 we have ‖δuk
‖∗ ≤ supj ‖uj‖1 + λ(X) < +∞ . By Theorem 3.11

there exists a subsequence, still denoted uk , such that δuk
converge weakly∗ to
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an element µ of GY (X ; Ξ). Let g be as in the statement of the theorem and let
f : X×Ξ×R → R be defined by

f(x, ξ, η) :=

{

η g(x, ξ/η) if η > 0 ,

g∞(x, ξ) if η ≤ 0 .

It is easy to check that f is continuous in (x, ξ, η) and homogeneous of degree one
in (ξ, η). Therefore, the weak∗ convergence of δuk

to µ implies that
∫

X

g(x, uk(x)) dλ(x) =

∫

X

f(x, uk(x), 1) dλ(x) −→ 〈f, µ〉 . (4.8)

By Theorem 4.3, taking into account the definition of f , we obtain that there exists
a pair (µY, µ∞), with µY ∈ Y 1(X ; Ξ) and µ∞ ∈M+

b (X×ΣΞ), such that

〈f, µ〉 =

∫

X×Ξ

g(x, ξ) dµY(x, ξ) +

∫

X×ΣΞ

g∞(x, ξ) dµ∞(x, ξ) . (4.9)

The conclusion follows from (4.8) and (4.9).

5. A density result. In this section we prove that, if λ is nonatomic, then the
generalized Young measures of the form δu associated with functions u ∈ L1(X ; Ξ)
are dense in GY (X ; Ξ). The main result is the following approximation theorem.

Theorem 5.1. Assume that λ is nonatomic and let µ ∈ GY (X ; Ξ) . Then there
exists a sequence un in L1(X ; Ξ) such that δun

⇀ µ weakly∗ in GY (X ; Ξ) .

Proof. We consider the decomposition

µ = µY + µ̂∞

of Theorem 4.3 and fix a sequence σn converging to 0 with 0 < σn < min{1, λ(X)} .

For every n we consider two countable partitions Ξ =
⋃

j B
n,Y
j and ΣΞ =

⋃

j B
n,∞
j ,

where the sets Bn,Y
j and Bn,∞

j satisfy

diamBn,Y
j ≤ σn and diamBn,∞

j ≤ σn . (5.1)

Let λY := πX(
√

1 + |ξ|2µY ) and λ∞ := πX(µ∞); i.e.,

λY(A) =

∫

A×Ξ

√

1 + |ξ|2 dµY(x, ξ) and λ∞(A) = µ∞(A×ΣΞ)

for every Borel set A ⊂ X . As λ = πX(µY), the measure λY is absolutely contin-
uous with respect to λ .

Let us consider the partition X = Xa∪Xs , with λ(Xs) = 0 = λ∞,s(Xa), where
λ∞,s is the singular part of λ∞ with respect to λ . To prove the theorem, for every
n we will consider a new partition X = Xn,a ∪ Xn,s , where Xn,a and Xn,s are
suitable approximations of Xa and Xs such that λ(Xn,a) > 0 and λ(Xn,s) > 0.
We will construct the approximating sequence un by defining it separately on Xn,a

and Xn,s .

Step 1. Definition of un on Xn,s . We begin by constructing Xn,s . For every n
we can find a countable Borel partition Xs =

⋃

iX
n,s
i ∪Nn,s , where each Xn,s

i is
closed,

diamXn,s
i ≤ σn/2 , and λ∞(Nn,s) = 0 . (5.2)
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In the following, given a subset E ⊂ X and a radius r > 0, the r -neighbourhood
of E will be denoted by

(E)r := {x ∈ X : d(x,E) < r} .

Since λ(Xn,s
i ) = λY(Xn,s

i ) = 0 and λ((Xn,s
i )r) > 0 for every r > 0, we can

construct inductively a decreasing sequence rn
i such that 0 < rn

i ≤ σn/2,

λ((Xn,s
i )rn

i
) ≤ σnλ

∞(Xn,s
i ) , (5.3)

λY((Xn,s
i )rn

i
) ≤ 2−iσn , (5.4)

λ∞((Xn,s
i )rn

i
\Xs) ≤ 2−iσn , (5.5)

λ((Xn,s
i+1)rn

i+1
) ≤ 1

3λ((X
n,s
i )rn

i
) . (5.6)

We define

An,s
i := (Xn,s

i )rn
i
\

⋃

j>i(X
n,s
j )rn

j
.

By (5.6) we have

λ(An,s
i ) ≥ 1

2λ((X
n,s
i )rn

i
) > 0 ,

while (5.2), together with the inequality 0 < rn
i ≤ σn/2, yields

diamAn,s
i ≤ σn . (5.7)

By (5.3) we have

0 < λ(An,s
i ) ≤ σnλ

∞(Xn,s
i ) = σnµ

∞(Xn,s
i ×ΣΞ) = σn

∑

j µ
∞(Xn,s

i ×Bn,∞
j ) .

Since λ is nonatomic we can find a countable Borel partition An,s
i =

⋃

j A
n,s
ij such

that

0 < λ(An,s
ij ) ≤ σnµ

∞(Xn,s
i ×Bn,∞

j ) . (5.8)

For every n we define

Xn,s :=
⋃

ij A
n,s
ij ∪Xs . (5.9)

Note that by (5.4) and (5.5) we have

λY(Xn,s) ≤ σn and λ∞(Xn,s \Xs) ≤ σn . (5.10)

We define

un(x) := cnijξ
n,∞
j for x ∈ An,s

ij , (5.11)

where ξn,∞
j are arbitrary points of Bn,∞

j and

cnij :=
µ∞(Xn,s

i ×Bn,∞
j )

λ(An,s
ij )

. (5.12)

By (5.8) we have that

cnij ≥ 1/σn . (5.13)

By (5.12) and by (5.13) we have
∫

Xn,s

√

1 + |un|2 dλ ≤ λ∞(Xs)
√

1 + σ2
n . (5.14)

Step 2. Definition of un on Xn,a . We set

Xn,a := X \Xn,s .

In order to define un on Xn,a we consider a countable Borel partition Xn,a =
⋃

iA
n,a
i , with An,a

i satisfying

0 < diamAn,a
i ≤ σn . (5.15)
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As Xn,a ⊂ Xa by (5.9), λ∞ is absolutely continuous with respect to λ on Xn,a .
Since λ is nonatomic, for every i we may choose 0 < εn

i ≤ σn and two disjoint

Borel sets An,Y
i and An,∞

i in such a way that An,a
i = An,Y

i ∪An,∞
i and

λ(An,∞
i ) = εn

i λ
∞(An,a

i ) ≤ σnλ(A
n,a
i ) . (5.16)

Since λ is nonatomic and

εn
i λ

∞(An,a
i ) = εn

i µ
∞(An,a

i ×ΣΞ) =
∑

j ε
n
i µ

∞(An,a
i ×Bn,∞

j ) ,

we can also find a countable Borel partition An,∞
i =

⋃

j A
n,∞
ij such that

λ(An,∞
ij ) = εn

i µ
∞(An,a

i ×Bn,∞
j ) . (5.17)

Note also that by (5.16) we have

λ(An,Y
i ) = λ(An,a

i ) − λ(An,∞
i ) ≥ (1 − σn)λ(An,a

i )

and so there exists 0 < δn
i ≤ σn such that λ(An,Y

i ) = (1 − δn
i )λ(An,a

i ). As λ =

πX(µY), arguing as before we may find a countable Borel partition An,Y
i =

⋃

j A
n,Y
ij

such that

λ(An,Y
ij ) = (1 − δn

i )µY(An,a
i ×Bn,Y

j ) . (5.18)

We are ready to define un on Xn,a by setting

un(x) := ξn,Y
j for x ∈ An,Y

ij and un(x) :=
1

εn
i

ξn,∞
j for x ∈ An,∞

ij ,

(5.19)

where ξn,Y
j are arbitrary points in Bn,Y

j and ξn,∞
j are the points of Bn,∞

j chosen

in (5.11). Using (5.17) and (5.18) it is easy to check that
∫

Xn,a

√

1 + |un|2 dλ ≤ σnλ(X) + λY (X) + λ∞(Xn,a)
√

1 + σ2
n . (5.20)

By (5.14) and (5.20) we have
∫

X

√

1 + |un|2 dλ ≤ σnλ(X) + λY (X) + λ∞(X)
√

1 + σ2
n , (5.21)

which implies that un is bounded in L1(X ; Ξ). It follows from Lemma 3.3 that
‖δun

‖∗ is uniformly bounded.

Step 3. Proof of the convergence. Thanks to Lemma 2.4, to prove the weak∗

convergence of δun
it is enough to show that

〈f, δun
〉 → 〈f, µ〉, (5.22)

for every function f ∈ Chom
L (X×Ξ×R). Let us fix f ∈ Chom

L (X×Ξ×R). By
Remark 2.3 there exist a constant a ∈ R and a continuous function ω : [0 + ∞) →
[0 + ∞), with ω(0) = 0, such that

|f(x1, ξ1, η1) − f(x2, ξ2, η2)| ≤ a
√

|ξ1 − ξ2|2 + |η1 − η2|2 +

+ ω(d(x1, x2))min{
√

|ξ1|2 + |η1|2,
√

|ξ2|2 + |η2|2}
(5.23)

for every x1, x2 ∈ X , ξ1, ξ2 ∈ Ξ, η1, η2 ∈ R .
By definition we have

〈f, δun
〉 =

∫

Xn,a

f(x, un, 1) dλ+

∫

Xn,s

f(x, un, 1) dλ . (5.24)
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By (5.19) the first integral in the right-hand side can be written as

∫

Xn,a

f(x, un, 1) dλ =

=
∑

ij

∫

An,Y

ij

f(x, ξn,Y
j , 1) dλ+

∑

ij

∫

An,∞

ij

f(x, ξn,∞
j /εn

i , 1) dλ =

=
∑

ij

f(xn,a
i , ξn,Y

j , 1)λ(An,Y
ij ) +

∑

ij

f(xn,a
i , ξn,∞

j /εn
i , 1)λ(An,∞

ij ) + ra,1
n ,

(5.25)

where xn,a
i are arbitrary points in An,a

i and the remainder ra,1
n tends to 0 as a

consequence of (5.15), (5.17), (5.18), and (5.23), which lead to the estimate

|ra,1
n | ≤ ω(σn)

∑

ij

√

1 + |ξn,Y
j |2 λ(An,Y

ij ) +

+ ω(σn)
∑

ij

1

εn
i

√

(εn
i )2 + |ξn,∞

j |2 λ(An,∞
ij ) ≤

≤ σn ω(σn)λ(Xn,a) + ω(σn)λY(Xn,a) + ω(σn)λ∞(Xn,a)
√

1 + σ2
n .

On the other hand by (5.17) and (5.18) we have

∑

ij

f(xn,a
i , ξn,Y

j , 1)λ(An,Y
ij ) +

∑

ij

f(xn,a
i , ξn,∞

j /εn
i , 1)λ(An,∞

ij ) =

=
∑

ij

(1 − δn
i ) f(xn,a

i , ξn,Y
j , 1)µY(An,a

i ×Bn,Y
j ) +

+
∑

ij

f(xn,a
i , ξn,∞

j , εn
i )µ∞(An,a

i ×Bn,∞
j ) =

=

∫

X×Ξ

f(x, ξ, 1) dµY(x, ξ) +

∫

Xa×ΣΞ

f(x, ξ, 0) dµ∞(x, ξ) + ra,2
n ,

(5.26)

where the remainder ra,2
n tends to 0 as a consequence of (5.1), (5.10), (5.15), and

(5.23), which lead to the estimate

|ra,2
n | ≤

(

2aσn + ω(σn)
)(

λY(X) + λ∞(Xa)
√

1 + σ2
n

)

+ 2aσn .

From (5.25) and (5.26) we obtain

∫

Xn,a

f(x, un, 1) dλ =

∫

X×Ξ

f(x, ξ, 1) dµY(x, ξ) +

∫

Xa×ΣΞ

f(x, ξ, 0) dµ∞(x, ξ) + ra
n ,

(5.27)
where ra

n := ra,1
n + ra,2

n tends to 0.
By (5.11) and (5.12) the second integral in the right-hand side of (5.24) can be

written as
∫

Xn,s

f(x, un, 1) dλ =
∑

ij

f(xn,s
i , cnijξ

n,∞
j , 1)λ(An,s

ij ) + rs,1
n , (5.28)

where xn,s
i are arbitrary points in Xn,s

i and the remainder rs,1
n tends to zero as a

consequence of (5.2), (5.7), (5.12), (5.13), and (5.23), which lead to the estimate

|rs,1
n | ≤ ω(σn)λ∞(Xs)

√

1 + σ2
n .
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On the other hand by (5.12)
∑

ij

f(xn,s
i , cnijξ

n,∞
j , 1)λ(An,s

ij ) =

=
∑

ij

f(xn,s
i , ξn,∞

j , 1/cnij)µ
∞(Xn,s

i ×Bn,∞
j ) =

=

∫

Xs×ΣΞ

f(x, ξ, 0) dµ∞(x, ξ) + rs,2
n ,

(5.29)

where the remainder rs,2
n tends to 0 as a consequence of (5.1), (5.2), (5.13), and

(5.23), which lead to the estimate

|rs,2
n | ≤

(

aσn + ω(σn)
√

1 + σ2
n

)

λ∞(Xs) .

From (5.28) and (5.29) we obtain
∫

Xn,s

f(x, un, 1) dλ =

∫

Xs×ΣΞ

f(x, ξ, 0) dµ∞(x, ξ) + rs
n , (5.30)

where rs
n := rs,1

n + rs,2
n tends to 0.

From (4.1), (5.24), (5.27), and (5.30) we obtain (5.22), which concludes the proof
of the theorem.

Remark 5.2. If un is a sequence in L1(X ; Ξ) such that δun
⇀ µ weakly∗ in

GY (X ; Ξ), then
∫

X

√

1 + |un|2 dλ −→ ‖µ‖∗

by Lemma 3.3 and Remark 3.12.

6. The notion of barycentre. In this section we study some properties of the
barycentre of a generalized Young measure.

Definition 6.1. The barycentre of a generalized Young measure µ ∈ GY (X ; Ξ) is
the measure bar(µ) ∈Mb(X ; Ξ) defined by

bar(µ) = πX(ξ µ) .

Remark 6.2. By Definition 2.15 a measure p ∈ Mb(X ; Ξ) coincides with bar(µ)
if and only if

∫

X

ϕ · dp = 〈ϕ(x) · ξ, µ(x, ξ, η)〉 (6.1)

for every ϕ ∈ C(X ; Ξ). By approximation we can prove that the same equality
holds for every bounded Borel function ϕ : X → Ξ.

Remark 6.3. Let µ = µY+µ̂∞ be the decomposition of Theorem 4.3, let (µx,Y)x∈X

and (µx,∞)x∈X be the families of probability measures introduced in Remark 4.5,
and let λ∞ := πX(µ∞). We consider the functions uY : Ω → Ξ and u∞ : Ω → Ξ
defined by

uY(x) :=

∫

Ξ

ξ dµx,Y(ξ) and u∞(x) :=

∫

ΣΞ

ξ dµx,∞(ξ) .

Then bar(µ) = uY + u∞ λ∞ . In particular, if µ = µY , then bar(µ) = uY ∈
L1(X ; Ξ). Therefore, bar(δu) = u for every u ∈ L1(X ; Ξ). It follows immediately
from Definition 3.2 and (6.1) that we have also bar(δp) = p for every p ∈Mb(X ; Ξ).
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Remark 6.4. From Remark 2.17 we obtain

‖bar(µ)‖ ≤ ‖µ‖∗ .

If µk ⇀ µ weakly∗ in GY (X ; Ξ), then bar(µk) ⇀ bar(µ) weakly∗ in Mb(X ; Ξ).
If µ = µY with µY ∈ Y r(X ; Ξ) for some r > 1, then Remark 6.3 implies that
bar(µ) ∈ Lr(X ; Ξ) and

‖bar(µ)‖r ≤
(

∫

X×Ξ

|ξ|r dµY(x, ξ)
)1/r

= 〈{Pr}, µ〉
1/r ,

where ‖ · ‖r denotes the norm in Lr(X ; Ξ) and {Pr} is the homogeneous function
defined in (4.6).

We now prove the Jensen inequality for generalized Young measures.

Theorem 6.5. Let f : X×Ξ×R → R∪{+∞} be a Borel function such that (ξ, η) 7→
f(x, ξ, η) is positively one-homogeneous, convex, and lower semicontinuous for every
x ∈ X and satisfies the inequality

f(x, ξ, η) ≥ −c
√

|ξ|2 + |η|2

for some constant c . Then

〈f, δbar(µ)〉 ≤ 〈f, µ〉 (6.2)

for every µ ∈ GY (X ; Ξ) .

Proof. Let us fix µ ∈ GY (X ; Ξ), let p := bar(µ), and let σ ∈ M+
b (X) be such

that p << σ and λ << σ . We consider an increasing sequence of functions fk

converging to f such that each fk has the form

fk(x, ξ, η) = sup
1≤i≤k

{ai(x) · ξ + bi(x)η}

with ai : X → Ξ and bi : X → R bounded σ -measurable functions (see, e.g., [6,
Theorem 2.2.4]). For every k there exists a Borel partition (Bk

i )1≤i≤k such that

∫

X

fk(x, dp
dσ ,

dλ
dσ ) dσ =

k
∑

i=1

{

∫

Bk
i

ai · dp+

∫

Bk
i

bi dλ
}

.

By (3.2) and (6.1) we obtain
∫

Bk
i

ai · dp+

∫

Bk
i

bi dλ = 〈(ai(x) · ξ + bi(x)η)1Bk
i
(x), µ(x, ξ, η)〉 ≤

≤ 〈f(x, ξ, η)1Bk
i
(x), µ(x, ξ, η)〉 .

Summing over i we get
∫

X

fk(x, dp
dσ ,

dλ
dσ ) dσ ≤ 〈f(x, ξ, η), µ(x, ξ, η)〉 ,

and taking the limit with respect to k gives inequality (6.2).

Remark 6.6. Let f : X×Ξ×R → [0,+∞] be a Borel function such that (ξ, η) 7→
f(x, ξ, η) is positively one-homogeneous for every x ∈ X , and let co f be the lower
semicontinuous convex envelope of f with respect to (ξ, η). By applying (6.2) to
co f we obtain

〈co f, δbar(µ)〉 ≤ 〈f, µ〉

for every µ ∈ GY (X ; Ξ).
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The opposite inequality requires special conditions on f and µ , as shown in the
following lemma, that will be used in [11].

Lemma 6.7. Let µ ∈ GY (X ; Ξ) , let f : X×Ξ×R → [0,+∞] be a Borel function
such that (ξ, η) 7→ f(x, ξ, η) is positively one-homogeneous for every x ∈ X , and
let co f be the lower semicontinuous convex envelope of f with respect to (ξ, η) .
Assume that 〈f, µ〉 ≤ 〈co f, δbar(µ)〉 < +∞ . Then suppµ is contained in the closure
of {f = co f} .

Proof. Using the hypothesis and (6.2) we obtain

〈co f, δbar(µ)〉 ≤ 〈co f, µ〉 ≤ 〈f, µ〉 ≤ 〈co f, δbar(µ)〉 ,

hence, 〈f − co f, µ〉 = 0. Since f − co f and µ are nonnegative, we conclude that
suppµ is contained in the closure of {f = co f} .

7. Compatible systems of generalized Young measures. Let A ⊂ R and
let p be a function from A into Mb(X ; Ξ). For every finite sequence t1 < t2 <
· · · < tm in A we consider the measure (p(t1), . . . ,p(tm)) ∈ Mb(X ; Ξm) and the
corresponding generalized Young measure

(δp)t1...tm
:= δ(p(t1),...,p(tm)) ∈ GY (X ; Ξm) (7.1)

introduced in Definition 3.2, with Ξ replaced by Ξm . To describe an important
property of this family of generalized Young measures it is convenient to introduce
the following definition.

Definition 7.1. If {s1, s2, . . . , sn} ⊂ {t1, t2, . . . , tm} ⊂ R , with s1 < s2 < · · · < sn

and t1 < t2 < · · · < tm , we define the projection πt1...tm
s1...sn

: X×Ξm×R → X×Ξn×R

by
πt1...tm

s1...sn
(x, ξt1 , . . . , ξtm

, η) = (x, ξs1 , . . . , ξsn
, η) .

Remark 7.2. It is easy to see that the family of generalized Young measures δp ,
defined in (7.1), satisfies the compatibility condition

(δp)s1...sn
= πt1...tm

s1...sn
((δp)t1...tm

)

whenever {s1, s2, . . . , sn} and {t1, t2, . . . , tm} are as in Definition 7.1.

This motivates the following definition.

Definition 7.3. A compatible system of generalized Young measures on X , with
values in a finite dimensional Hilbert space Ξ and with time set A ⊂ R , is a
family µ = (µt1...tm

) of generalized Young measures µt1...tm
∈ GY (X ; Ξm), with

t1, . . . , tm running over all finite sequences of elements of A with t1 < t2 < · · · < tm ,
such that the following compatibility condition holds:

µs1...sn
= πt1...tm

s1...sn
(µt1...tm

) , (7.2)

whenever {s1, s2, . . . , sn} ⊂ {t1, t2, . . . , tm} . The space of all such systems is de-
noted by SGY (A,X ; Ξ) and is equipped with the weakest topology such that the
maps µ 7→ µt1...tm

from SGY (A,X ; Ξ) into GY (X ; Ξm), endowed with the weak∗

topology, are continuous for every m and every finite sequence t1, . . . , tm in A with
t1 < t2 < · · · < tm . Although this topology is not induced by duality, we shall refer
to it as the weak∗ topology of SGY (A,X ; Ξ).

Definition 7.4. Given a function p from A ⊂ R into Mb(X ; Ξ), the family δp

defined in (7.1) is called the compatible system of generalized Young measures as-
sociated with p .
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The compatibility condition (7.2) implies that the barycentre of µt1...tm
is com-

pletely determined by the barycentres of µt1 , . . . ,µtm
.

Proposition 7.5. Let µ ∈ SGY (A,X ; Ξ) . Then

bar(µt1...tm
) = (bar(µt1), . . . ,bar(µtm

))

for every finite sequence t1, . . . , tm in A with t1 < t2 < · · · < tm .

Proof. Let (p1, . . . , pm) := bar(µt1...tm
) and qi = bar(µti

) for i = 1, . . . ,m . Using
(6.1) for every (ϕ1, . . . , ϕm) ∈ C(X ; Ξm) we have

m
∑

i=1

∫

X

ϕi · dpi =

m
∑

i=1

〈ϕi(x) · ξi,µt1...tm
(x, ξ1, . . . , ξm, η)〉 , (7.3)

∫

X

ϕi · dqi = 〈ϕi(x) · ξi,µti
(x, ξi, η)〉 for i = 1, . . . ,m . (7.4)

The compatibility condition (7.2) implies that

〈ϕi(x) · ξi,µt1...tm
(x, ξ1, . . . , ξm, η)〉 = 〈ϕi(x) · ξi,µti

(x, ξi, η)〉 ,

hence (7.3) and (7.4) yield

m
∑

i=1

∫

X

ϕi · dpi =

m
∑

i=1

∫

X

ϕi · dqi

for every (ϕ1, . . . , ϕm) ∈ C(X ; Ξm). This gives pi = qi for i = 1, . . . ,m .

The notion of left continuity, introduced in the next definition, is very useful in
the applications.

Definition 7.6. A system µ ∈ SGY (A,X ; Ξ) is said to be left continuous if for
every finite sequence t1, . . . , tm in A with t1 < · · · < tm the following continuity
property holds:

µs1...sm
⇀ µt1...tm

weakly∗ in GY (X ; Ξm) (7.5)

as si → ti , with si ∈ A and si ≤ ti .

The following theorem proves the weak∗ compactness of subsets of SGY (A,X ; Ξ)
defined by imposing bounds on the norms of µt for every t ∈ A .

Theorem 7.7. For every function C : A→ [0,+∞) the set

{µ ∈ SGY (A,X ; Ξ) : ‖µt‖∗ ≤ C(t) for every t ∈ A} (7.6)

is weakly∗ compact in SGY (A,X ; Ξ) .

To prove the theorem we need the following lemma which provides an estimate
of the norm ‖µt1...tm

‖∗ in terms of the norms ‖µti
‖∗ .

Lemma 7.8. For every µ ∈ SGY (A,X ; Ξ) we have

‖µt1...tm
‖∗ ≤

m
∑

i=1

‖µti
‖∗

for every finite sequence t1, . . . , tm in A with t1 < t2 < · · · < tm .
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Proof. By Remark 2.9 and by the compatibility condition (7.2) we have

‖µt1...tm
‖∗ = 〈|(ξ1, . . . , ξm, η)|,µt1...tm

(x, ξ1, . . . , ξm, η)〉 ≤

≤
m

∑

i=1

〈|(ξi, η)|,µt1...tm
(x, ξ1, . . . , ξm, η)〉 =

=

m
∑

i=1

〈|(ξi, η)|,µti
(x, ξi, η)〉 =

m
∑

i=1

‖µti
‖∗ ,

which concludes the proof.

Proof of Theorem 7.7. By Lemma 7.8 for every function C : A → [0,+∞) the set
defined in (7.6) is contained in the set of all µ ∈ SGY (A,X ; Ξ) such that

‖µt1...tm
‖∗ ≤

m
∑

i=1

C(ti)

for every finite sequence t1, . . . , tm in A with t1 < t2 < · · · < tm . As the topology
in SGY (A,X ; Ξ) is induced by the product of the weak∗ topologies of the spaces
GY (X ; Ξm) corresponding to the projections µt1...tm

, the set (7.6) is compact in
the weak∗ topology of SGY (A,X ; Ξ) by Tychonoff’s Theorem.

Remark 7.9. If A = {a0, a1, . . . , ak} , with a0 < a1 < · · · < ak , then for every
µ ∈ GY (X ; Ξk+1) there exists a unique system µA ∈ SGY (A,X ; Ξ) such that
µA

a0...ak
= µ . This system is defined by

µA
t1...tm

= πa0...ak

t1...tm
(µ)

for every {t1, t2, . . . , tm} ⊂ {a0, a1, . . . , ak} with t1 < t2 < · · · < tm .

The notion of piecewise constant interpolation will be useful in the application
to evolution problems.

Definition 7.10. Let A = {a0, a1, . . . , ak} , with a0 < a1 < · · · < ak . For every
t1, . . . , tm in [a0, ak] with t1 < t2 < · · · < tm let ρt1...tm

: X×Ξk+1×R → X×Ξm×R

be defined by

ρt1...tm
(x, ξa0 , . . . , ξak

, η) := (x, ξt1 , . . . , ξtm
, η) ,

with ξti
= ξaj

, where j is the largest index such that aj ≤ ti . For every

µ ∈ GY (X ; Ξk+1) the piecewise constant interpolation µ[A] of µ is the element
of SGY ([a0, ak], X ; Ξ) defined by

µ
[A]
t1...tm

:= ρt1...tm
(µ) (7.7)

for every t1, . . . , tm in [a0, ak] with t1 < t2 < · · · < tm .

Remark 7.11. It is easy to check that ρs1...sn
= πt1...tm

s1...sn
◦ ρt1...tm

whenever
{s1, s2, . . . , sn} ⊂ {t1, t2, . . . , tm} ⊂ [a0, ak] , with s1 < s2 < · · · < sn and t1 <

t2 < · · · < tm . Therefore the family of generalized Young measures (µ
[A]
t1...tm

)
defined by (7.7) satisfies the compatibility condition (7.2).
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8. The notion of variation. In this section we study the notion of variation on
a time interval of a compatible system of generalized Young measures, and prove a
compactness theorem which extends Helly’s Theorem.

Definition 8.1. Given a set A ⊂ R , the variation of µ ∈ SGY (A,X ; Ξ) on the
time interval [a, b] , with a , b ∈ A , is defined as

Var(µ; a, b) := sup

k
∑

i=1

〈|ξi − ξi−1|,µt0t1...tk
(x, ξ0, . . . , ξk, η)〉 ,

where the supremum is taken over all finite families t0, t1, . . . , tk in A such that
a = t0 < t1 < · · · < tk = b (with the convention Var(µ; a, b) = 0 if a = b).

Remark 8.2. If µ = δp for some function p : A → Mb(X ; Ξ), then Var(µ; a, b)
reduces to the variation of p on [a, b] ∩A .

Remark 8.3. Returning to the general case, the compatibility condition (7.2) yields

Var(µ; a, b) = sup
k

∑

i=1

〈|ξi − ξi−1|,µti−1ti
(x, ξi−1, ξi, η)〉 ,

where the supremum is taken over all finite families t0, t1, . . . , tk in A such that
a = t0 < t1 < · · · < tk = b .

Remark 8.4. If t1, t2, t3 ∈ A and t1 < t2 < t3 , by the compatibility condition
(7.2) and by the triangle inequality we have

〈|ξ3 − ξ1|,µt1t3(x, ξ1, ξ3, η)〉 = 〈|ξ3 − ξ1|,µt1t2t3(x, ξ1, ξ2, ξ3, η)〉 ≤

≤ 〈|ξ3 − ξ2|,µt1t2t3(x, ξ1, ξ2, ξ3, η)〉 + 〈|ξ2 − ξ1|,µt1t2t3(x, ξ1, ξ2, ξ3, η)〉 =

= 〈|ξ3 − ξ2|,µt2t3(x, ξ2, ξ3, η)〉 + 〈|ξ2 − ξ1|,µt1t2(x, ξ1, ξ2, η)〉 .

Using this inequality it is easy to deduce from Remark 8.3 that

Var(µ; a, c) = Var(µ; a, b) + Var(µ; b, c) (8.1)

for every a, b, c ∈ A with a ≤ b ≤ c . This implies in particular that the function
t 7→ Var(µ; a, t) is nondecreasing on A ∩ [a,+∞).

Remark 8.5. If A = {a0, . . . , ak} ⊂ R is a finite set, with a0 < a1 < · · · < ak ,
µ ∈ GY (X ; Ξk+1), and µA ∈ SGY (A,X ; Ξ) is the associated system defined in
Remark 7.9, it follows from (8.1) that

Var(µA; a0, ak) =
k

∑

i=1

〈|ξi − ξi−1|,µ
A
ai−1ai

(x, ξi−1, ξi, η)〉 =

=

k
∑

i=1

〈|ξi − ξi−1|, µ(x, ξ0, . . . , ξk, η)〉 .

It is easy to see that, if µ[A] ∈ SGY ([a0, ak], X ; Ξ) is the piecewise constant inter-
polation of µ defined by (7.7), then

Var(µ[A]; a0, ak) = Var(µA; a0, ak) =

k
∑

i=1

〈|ξi − ξi−1|,µ
A
ai−1ai

(x, ξi−1, ξi, η)〉

=

k
∑

i=1

〈|ξi − ξi−1|, µ(x, ξ0, . . . , ξk, η)〉 .
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Definition 8.6. Let h : Ξ → [0,+∞) be a positively one-homogeneous function
satisfying the triangle inequality. Given a set A ⊂ R , the h-variation of µ ∈
SGY (A,X ; Ξ) on the time interval [a, b] , with a , b ∈ A , is defined as

Varh(µ; a, b) := sup

k
∑

i=1

〈h(ξi − ξi−1),µt0t1...tk
(x, ξ0, . . . , ξk, η)〉 ,

where the supremum is taken over all finite families t0, t1, . . . , tk in A such that
a = t0 < t1 < · · · < tk = b (with the convention Varh(µ; a, b) = 0 if a = b).

Remark 8.7. It is well known that every positively one-homogeneous function
h : Ξ → [0,+∞) satisfying the triangle inequality is continuous and satisfies an
estimate of the form h(ξ) ≤ c |ξ| for some constant c . It follows that Varh(µ; a, b) ≤
cVar(µ; a, b). It is easy to see that all properties of Var(µ; a, b) proved so far can
be extended to Varh(µ; a, b).

Using the compatibility condition it is easy to prove the following lemma.

Lemma 8.8. Let T > 0 and let µ ∈ SGY ([0, T ], X ; Ξ) with Var(µ; 0, T ) < +∞ .
For every f ∈ Chom

L (X×Ξ×R) the function t 7→ 〈f,µt〉 has bounded variation on
[0, T ] .

The proof is omitted, since it is similar to the proof of the following lemma, which
will be used in Theorem 9.7.

Lemma 8.9. Let T > c > 0 and let µ ∈ SGY ([0, T ], X ; Ξ) with Var(µ; 0, T ) <
+∞ . For every f ∈ Chom

L (X×Ξ2×R) the function Φf
c (t) := 〈f,µt,t+c〉 has bounded

variation on [0, T − c] .

Proof. Let V (t) := Var(µ; 0, t) for every t ∈ [0, T ] . Let us fix f ∈ Chom
L (X×Ξ2×R)

and let a be a constant satisfying (2.1). Let t1, t2 with 0 ≤ t1 < t1 + c < t2 <
t2 + c ≤ T . Using the compatibility condition (7.2) and (8.1), we obtain

|Φf
c (t2) − Φf

c (t1)| =

= |〈f(x, ξ2, ξ
′
2, η) − f(x, ξ1, ξ

′
1, η),µt1,t1+c,t2,t2+c(x, ξ1, ξ

′
1, ξ2, ξ

′
2, η)〉| ≤

≤ a〈|ξ2 − ξ1| + |ξ′2 − ξ′1|,µt1,t1+c,t2,t2+c(x, ξ1, ξ
′
1, ξ2, ξ

′
2, η)〉 =

= a〈|ξ2 − ξ1|,µt1,t2(x, ξ1, ξ2, η)〉 + a〈|ξ′2 − ξ′1|,µt1+c,t2+c(x, ξ
′
1, ξ

′
2, η)〉 ≤

≤ V (t2) − V (t1) + V (t2 + c) − V (t1 + c) .

The same inequality can be proved if 0 ≤ t1 < t2 ≤ t1 + c < t2 + c ≤ T . As V is
nondecreasing, we conclude that the total variation of Φf

c on [0, T − c] is less than
or equal to V (T − c) + V (T ).

The following result can be considered as a version of Helly’s Theorem for com-
patible systems of generalized Young measures. Note that this is a sequential com-
pactness result, in contrast with Theorem 7.7.

Theorem 8.10. Let T > 0 and let µk be a sequence in SGY ([0, T ], X ; Ξ) such
that

sup
k

Var(µk; 0, T ) ≤ C , (8.2)

sup
k

‖µk
t0‖∗ ≤ C∗ , (8.3)



24 G. DAL MASO, A. DESIMONE, M.G. MORA AND M. MORINI

for some t0 ∈ [0, T ] and some finite constants C and C∗ . Then there exist a
subsequence, still denoted µk , a set Θ ⊂ [0, T ] , containing 0 and with [0, T ]\Θ at
most countable, and a left continuous µ ∈ SGY ([0, T ], X ; Ξ) , with

Var(µ; 0, T ) ≤ C , (8.4)

‖µt‖∗ ≤ C∗ + C for every t ∈ [0, T ] , (8.5)

such that
µk

t1...tm
⇀ µt1...tm

weakly∗ in GY (X ; Ξm) (8.6)

for every finite sequence t1, . . . , tm in Θ with 0 ≤ t1 < · · · < tm ≤ T .

Proof. The proof is divided in several steps.

Step 1. Boundedness of µk
t1...tm

. We begin by proving that ‖µk
t ‖∗ is bounded

uniformly with respect to t ∈ [0, T ] and k . Let us fix t < t0 . By the compatibility
condition (7.2)

〈|ξ|,µk
t (x, ξ, η)〉 − 〈|ξ0|,µ

k
t0(x, ξ0, η)〉 =

= 〈|ξ|,µk
tt0(x, ξ, ξ0, η)〉 − 〈|ξ0|,µ

k
tt0(x, ξ, ξ0, η)〉 ≤

≤ 〈|ξ − ξ0|,µ
k
tt0(x, ξ, ξ0, η)〉 ≤ Var(µk; t, t0) ≤ C .

Thanks to Remark 2.9, from (8.2) and (8.3) we obtain that

sup
k

‖µk
t ‖∗ ≤ C∗ + C (8.7)

for every t ∈ [0, t0). A similar argument proves (8.7) when t ∈ [t0, T ] .
By Lemma 7.8 and (8.7) we obtain

‖µk
t1...tm

‖∗ ≤ m(C∗ + C) (8.8)

for every finite sequence t1, . . . , tm with t1 < · · · < tm .

Step 2. Choice of the subsequence. Let D be a countable dense subset of [0, T ] con-
taining 0. By the compactness Theorem 3.11, using (8.8) and a diagonal argument,
we can extract a subsequence, still denoted µk , such that, for every s1, . . . , sm

in D with 0 ≤ s1 < · · · < sm ≤ T , the sequence µk
s1...sm

converges weakly∗ in
GY (X ; Ξm).

Step 3. Choice of Θ . Let V k(t) := Var(µk; 0, t). Since V k is nondecreasing, by
(8.2) and by Helly’s Theorem there exists a subsequence, still denoted V k , such
that, for every t ∈ [0, T ] , V k(t) → V (t), where V is a nondecreasing function on
[0, T ] with values in [0, C] . Let

Θ := {0} ∪ {t ∈ (0, T ] : lim
s→t−

V (s) = V (t)} . (8.9)

Step 4. Convergence and left continuity on Θ . Let us fix two finite sequences
t1, . . . , tm and s1, . . . , sm in [0, T ] such that 0 ≤ s1 < t1 < · · · < sm < tm ≤ T .
We want to estimate the difference µk

t1...tm
− µk

s1...sm
. Let f ∈ Chom

L (X×Ξm×R).
Then there exists a constant a such that

|f(x, ξt1 , . . . , ξtm
, η) − f(x, ξs1 , . . . , ξsm

, η)| ≤ a
m

∑

i=1

|ξti
− ξsi

| . (8.10)

In order to estimate |〈f,µk
t1...tm

〉−〈f,µk
s1...sm

〉| , it is convenient to use the identities

〈f,µk
t1...tm

〉 = 〈f(x, ξt1 , . . . , ξtm
, η),µk

s1t1...smtm
(x, ξs1 , ξt1 , . . . , ξsm

, ξtm
, η)〉 ,

〈f,µk
s1...sm

〉 = 〈f(x, ξs1 , . . . , ξsm
, η),µk

s1t1...smtm
(x, ξs1 , ξt1 , . . . , ξsm

, ξtm
, η)〉 ,



TIME-DEPENDENT SYSTEMS OF GENERALIZED YOUNG MEASURES 25

which follow from the compatibility condition (7.2). Taking into account (8.10), we
then have

|〈f,µk
t1...tm

〉 − 〈f,µk
s1...sm

〉| ≤

≤ a

m
∑

i=1

〈|ξti
− ξsi

|,µk
s1t1...smtm

(x, ξs1 , ξt1 , . . . , ξsm
, ξtm

, η)〉 =

= a

m
∑

i=1

〈|ξti
− ξsi

|,µk
siti

(x, ξsi
, ξti

, η)〉 ,

which by (8.1) gives

|〈f,µk
t1...tm

〉 − 〈f,µk
s1...sm

〉| ≤ a
m

∑

i=1

(V k(ti) − V k(si)) . (8.11)

A simple modification of the proof shows that (8.11) holds even if 0 = s1 = t1 <
s2 ≤ t2 < · · · < sm ≤ tm ≤ T .

If t1, . . . , tm ∈ Θ with 0 ≤ t1 < · · · < tm ≤ T , for every ε we can choose
s1, . . . , sm ∈ D , with 0 ≤ s1 ≤ t1 < s2 ≤ t2 < · · · < sm ≤ tm ≤ T , such that
a

∑

i(V (ti)−V (si)) < ε . Using (8.11) we deduce that |〈f,µk
t1...tm

〉−〈f,µk
s1...sm

〉| <

ε for k large enough. As the sequence 〈f,µk
s1...sm

〉 converges, we have |〈f,µk
s1...sm

〉−

〈f,µk′

s1...sm
〉| < ε for k, k′ large enough. It follows that |〈f,µk

t1...tm
〉−〈f,µk′

t1...tm
〉| <

3ε for k, k′ large enough, hence 〈f,µk
t1...tm

〉 is a Cauchy sequence for every f ∈

Chom
L (X×Ξm×R). By (8.8) we deduce from Lemma 2.4 that, for every t1, . . . , tm

in Θ with 0 ≤ t1 < · · · < tm ≤ T , the sequence µk
t1...tm

converges weakly∗ to some
element µt1...tm

of GY (X ; Ξm) satisfying

‖µt1...tm
‖∗ ≤ m(C∗ + C) . (8.12)

We observe that, given t1, . . . , tm and s1 . . . sm in Θ, we can pass to the limit
in (8.11) and obtain

|〈f,µt1...tm
〉 − 〈f,µs1...sm

〉| ≤ a

m
∑

i=1

(V (ti) − V (si)) (8.13)

for every f satisfying (8.10) and every pair of finite sequences t1, . . . , tm and
s1, . . . , sm in Θ such that s1 ≤ t1 < s2 ≤ t2 < · · · < sm ≤ tm . Using the
definition (8.9) of Θ and Lemma 2.4, we deduce from (8.12) and (8.13) that, for
every t1, . . . , tm in Θ with t1 < · · · < tm , we have µs1...sm

⇀ µt1...tm
weakly∗ in

GY (X ; Ξm), as si → ti , si ∈ Θ, and si ≤ ti .

Step 5. Extension to [0, T ] . It remains to show that we can define µt1...tm
when

some ti does not belong to Θ, in such a way that the resulting system of generalized
Young measures satisfies the compatibility conditions, inequalities (8.4) and (8.5),
and the continuity property (7.5). To this purpose, it is enough to observe that,
since V has a finite limit from the left at each point, we have

lim
k,k′→∞

m
∑

i=1

(V (sk
i ) − V (sk′

i )) = 0
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for every sequence (sk
1 , . . . , s

k
m) in Θm with sk

i → ti , s
k
i ≤ ti . Indeed, if ti 6∈ Θ,

we have

V (sk
i ) → V −(ti) := lim

s→ti
s<ti

V (s) . (8.14)

For these sequences (sk
1 , . . . , s

k
m) we can deduce from (8.13) that 〈f,µsk

1 ...sk
m
〉 sat-

isfies a Cauchy condition for every f satisfying (8.10). By (8.12) we deduce from
Lemma 2.4 the existence of the weak∗ -limit of µs1...sm

as si → ti , si ∈ Θ, and
si ≤ ti . We take such a weak∗ limit as the definition of µt1...tm

. Clearly µt1...tm

satisfies (8.12) and, by construction, from (8.13), we deduce that for every f satis-
fying (8.10) and every pair of finite sequences t1, . . . , tm and s1, . . . , sm in [0, T ] ,
with 0 ≤ s1 ≤ t1 < s2 ≤ t2 < · · · < sm ≤ tm ≤ T , there holds

|〈f,µt1...tm
〉 − 〈f,µs1...sm

〉| ≤ a

m
∑

i=1

(V −(ti) − V −(si)) , (8.15)

where V − is the left-continuous representative of V defined by (8.14). The conti-
nuity property (7.5) follows easily from (8.15) and from Lemma 2.4.

For every finite sequence t1, . . . , tm in Θ with t1 < · · · < tm we have

m
∑

i=1

〈|ξi − ξi−1|,µ
k
ti−1ti

(x, ξi−1, ξi, η)〉 ≤ C .

Passing to the limit as k → ∞ , we obtain

m
∑

i=1

〈|ξi − ξi−1|,µti−1ti
(x, ξi−1, ξi, η)〉 ≤ C

whenever t1, . . . , tm ∈ Θ. This restriction can be removed by an approximation
argument, and this proves (8.4).

The compatibility condition (7.2) for µk implies that

〈f,µk
s1...sn

〉 = 〈f ◦ πt1...tm

s1...sn
,µk

t1...tm
〉

for every f ∈ Chom(X×Ξn×R) and every pair of finite sequences s1, . . . , sn and
t1, . . . , tm in [0, T ] with s1 < · · · < sn , t1 < · · · < tm , and {s1, . . . , sn} ⊂
{t1, . . . , tm} . Passing to the limit as k → ∞ , we obtain

〈f,µs1...sn
〉 = 〈f ◦ πt1...tm

s1...sh
,µt1...tm

〉 ,

whenever si and tj belong to Θ. This restriction can be removed by an approxi-
mation argument, therefore µ ∈ SGY ([0, T ], X ; Ξ).

Remark 8.11. By taking µk = µ in Theorem 8.10 we obtain the following result:
if µ ∈ SGY ([0, T ], X ; Ξ) and Var(µ; 0, T ) < +∞ , then there exist a left continuous
ν ∈ SGY ([0, T ], X ; Ξ) and a set Θ ⊂ [0, T ] , containing 0 and with [0, T ]\Θ at most
countable, such that Var(ν; 0, T ) ≤ Var(µ; 0, T ) and µt1...tm

= νt1...tm
for every

finite sequence t1, . . . , tm in Θ with t1 < · · · < tm . A slight modification of the
proof shows also that for every finite sequence t1, . . . , tm in [0, T ] with t1 < · · · < tm
we have µs1...sm

⇀ νt1...tm
weakly∗ in GY (X ; Ξm) as si → ti in [0, T ] , with

si < ti .

We conclude this section by proving the lower semicontinuity of the h-variation.
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Theorem 8.12. Let T > 0 and let µk be a sequence in SGY ([0, T ], X ; Ξ) . Suppose
that there exist a dense set D ⊂ [0, T ] , and a left continuous µ ∈ SGY ([0, T ], X ; Ξ)
such that

µk
t1...tm

⇀ µt1...tm
weakly∗ in GY (X ; Ξm)

for every finite sequence t1, . . . , tm in D with t1 < · · · < tm . Then

Varh(µ; 0, T ) ≤ lim inf
k→∞

Varh(µk; 0, T )

for every positively one-homogeneous function h : Ξ → [0,+∞) satisfying the tri-
angle inequality.

Proof. Let us fix h . For every finite sequence t1, . . . , tm in D with t1 < · · · < tm
we have

m
∑

i=1

〈h(ξi − ξi−1),µ
k
ti−1ti

(x, ξi−1, ξi, η)〉 ≤ Varh(µk; 0, T ) .

Since h is continuous (Remark 8.7), passing to the limit as k → ∞ we obtain

m
∑

i=1

〈h(ξi − ξi−1),µti−1ti
(x, ξi−1, ξi, η)〉 ≤ lim inf

k→∞
Varh(µk; 0, T )

whenever t1, . . . , tm ∈ D . The same inequality can be proved when t1, . . . , tm ∈
[0, T ] by an approximation argument, thanks to left continuity. The conclusion is
obtained by taking the supremum with respect to t1, . . . , tm .

9. Weak∗ derivatives of systems with bounded variation. In this section
we introduce the notion of weak∗ derivative of a compatible system of general-
ized Young measures on the time interval [0, T ] , with T > 0, and prove that, if
Var(µ; 0, T ) < +∞ , then the weak∗ derivative exists at almost every t ∈ [0, T ] .

Definition 9.1. Given µ ∈ SGY ([0, T ], X ; Ξ), the difference quotient of µ between
times t1 and t2 , with 0 ≤ t1 < t2 ≤ T , is the element of GY (X ; Ξ) defined as the
image

qt1t2(µt1t2)

of µt1t2 under the map qt1t2 : X×Ξ×Ξ×R → X×Ξ×R defined by

qt1t2(x, ξ1, ξ2, η) = (x, ξ2−ξ1

t2−t1
, η) .

Remark 9.2. It follows from Definition 3.18 that the difference quotient is char-
acterized by the equality

〈f(x, ξ, η), qt1t2(µt1t2)(x, ξ, η)〉 = 〈f(x, ξ2−ξ1

t2−t1
, η),µt1t2(x, ξ1, ξ2, η)〉

for every f ∈ Chom(X×Ξ×R).

Remark 9.3. It follows from the definition of barycentre that

bar(qt1t2(µt1t2)) =
bar(µt2) − bar(µt1)

t2 − t1
. (9.1)

In particular, if µ = δp for some function p : [0, T ] →Mb(X ; Ξ) (see (7.1)), then

qt1t2(µt1t2) = qt1t2(δ(p(t1),p(t2))) = δp(t2)−p(t1)
t2−t1

(9.2)

(see Definition 3.2).
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Definition 9.4. We say that µ ∈ SGY ([0, T ], X ; Ξ) has a weak∗ derivative µ̇t0

at time t0 ∈ [0, T ] if qtt0(µtt0) ⇀ µ̇t0 weakly∗ in GY (X ; Ξ) as t → t−0 and

qt0t(µt0t) ⇀ µ̇t0 weakly∗ in GY (X ; Ξ) as t→ t+0 , which is equivalent to

〈f(x, ξ0, η), µ̇t0(x, ξ0, η)〉 = lim
t→t−0

〈f(x, ξ−ξ0

t−t0
, η),µtt0(x, ξ, ξ0, η)〉 =

= lim
t→t+0

〈f(x, ξ−ξ0

t−t0
, η),µt0t(x, ξ0, ξ, η)〉

(9.3)

for every f ∈ Chom(X×Ξ×R).

Remark 9.5. It follows from (9.2) that, if µ = δp for some function p : [0, T ] →
Mb(X ; Ξ) and

p(t) − p(t0)

t− t0
→ ṗ(t0)

strongly in Mb(X ; Ξ) as t→ t0 , then µ has a weak∗ derivative at t0 and

µ̇t0 = δṗ(t0) .

This is not true if
p(t) − p(t0)

t− t0
⇀ ṗ(t0) (9.4)

only in the weak∗ topology of Mb(X ; Ξ). However, using Remark 9.3, in this case
we obtain

bar(µ̇t0) = ṗ(t0) ,

if the weak∗ derivative of µt1...tm
:= δ(p(t1),...,p(tm)) exists at t0 .

An example where (9.4) holds but µ̇t0 6= δṗ(t0) , can be constructed in the fol-
lowing way. Let T = 2, X = [−1, 1], Ξ = R , let λ be the Lebesgue measure, let
w : R → R be the 2-periodic function defined by

w(x) :=

{

1 if 2k ≤ x < 2k + 1 for some k ∈ Z ,

−1 if 2k − 1 ≤ x < 2k for some k ∈ Z .

For every t ∈ [0, 2] let u(t) ∈ L1(X) be the function defined by

u(t, x) :=

{

(t− 1)w( x
t−1 ) if t 6= 1 ,

0 if t = 1 .

As t→ 1 we have

u(t) − u(1)

t− 1
⇀ 0 weakly∗ in Mb(X ; Ξ) ,

while

δu(t)−u(1)
t−1

⇀ 1
2δ1 + 1

2δ−1 weakly∗ in GY (X ; Ξ) ,

which implies µ̇1 = 1
2δ1 + 1

2δ−1 .

Remark 9.6. If µ ∈ SGY ([0, T ], X ; Ξ) has a weak∗ derivative µ̇t0 at time t0 ∈
[0, T ] , then

bar(µt) − bar(µt0)

t− t0
⇀ bar(µ̇t0)

weakly∗ in Mb(X ; Ξ) as t→ t0 . This follows from (9.1) and Remark 6.4.

The following theorem is the main result of this section.
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Theorem 9.7. Let T > 0 and let µ ∈ SGY ([0, T ], X ; Ξ) with Var(µ; 0, T ) <
+∞ . Then the weak∗ derivative µ̇t exists for a.e. t ∈ [0, T ] . Moreover, for every
f ∈ Chom(X×Ξ×R) the function t 7→ 〈f, µ̇t〉 is integrable on [0, T ] . Finally, if
h : Ξ → [0,+∞) is a positively one-homogeneous function satisfying the triangle
inequality, then

∫ b

a

〈h(ξ), µ̇t(x, ξ, η)〉 dt ≤ Varh(µ; a, b) (9.5)

for every a, b ∈ [0, T ] with a ≤ b .

Proof. Some ideas of this proof are borrowed from the proof of [2, Theorem 4.1.1]
on the existence of the metric derivative of a Lipschitz curve.

Step 1. Boundedness of the difference quotients. By Remark 2.9 and by (3.1) for
every t1, t2 ∈ [0, T ] , with t1 < t2 , we have

‖qt1t2(µt1t2)‖∗ ≤ 1
t2−t1

〈|ξ2 − ξ1|,µt1t2(x, ξ1, ξ2, η)〉 + 〈η,µt1t2(x, ξ1, ξ2, η)〉 .

Let V : [0, T ] → [0,+∞) be the nondecreasing function defined by

V (t) := Var(µ; 0, t) . (9.6)

By (3.2) and (8.1) we conclude that

‖qt1t2(µt1t2)‖∗ ≤ V (t2)−V (t1)
t2−t1

+ λ(X) .

Let t0 ∈ [0, T ] be a point where the derivative of V exists. By the previous
inequality we have that

‖qtt0(µtt0)‖∗ and ‖qt0t(µt0t)‖∗

are bounded uniformly with respect to t . By the separability of Chom(X×Ξ×R)
there exists a countable dense subset F of the set Chom

△ (X×Ξ×R) introduced in

Definition 2.5. Therefore, since F is dense in Chom(X×Ξ×R) (see Lemma 2.7), to
prove the existence of the weak∗ derivative of µ at t0 it is enough to show that

lim
t→t−0

〈f(x, ξ−ξ0

t−t0
, η),µtt0(x, ξ, ξ0, η)〉 = lim

t→t+0

〈f(x, ξ−ξ0

t−t0
, η),µt0t(x, ξ0, ξ, η)〉 (9.7)

for every f ∈ F .

Step 2. Some auxiliary functions. In order to prove (9.7), let us fix f ∈ F and let
τi be a countable dense sequence in [0, T ] . For every i we define

ϕf
i (t) :=











〈f(x, ξ − ζi, (t− τi)η),µtτi
(x, ξ, ζi, η)〉 if t < τi ,

0 if t = τi ,

〈f(x, ξ − ζi, (t− τi)η),µτit(x, ζi, ξ, η)〉 if t > τi .

(9.8)

Let us prove that ϕf
i has bounded variation. Let us fix t1, t2 ∈ [0, T ] , with

t1 < t2 . We consider first the case t1 < τi < t2 . By the compatibility condition
(7.2) we have

|ϕf
i (t2) − ϕf

i (t1)| ≤

≤ 〈|f(x, ξ2 − ζi, (t2 − τi)η) − f(x, ξ1 − ζi, (t1 − τi)η)|,µt1τit2(x, ζi, ξ1, ξ2, η)〉 .

Since, by Remark 2.6,

|f(x, ξ2 − ζi, (t2 − τi)η)− f(x, ξ1 − ζi, (t1 − τi)η)| ≤ (|ξ2 − ξ1|+ (t2 − t1)|η|) ‖f‖hom ,
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using again (7.2) we obtain

|ϕf
i (t2) − ϕf

i (t1)| ≤

≤
(

〈|ξ2 − ξ1|,µt1t2(x, ξ1, ξ2, η)〉 + (t2 − t1) 〈|η|,µt1t2(x, ξ1, ξ2, η)〉
)

‖f‖hom .

The same inequality can be proved when τi ≤ t1 or τi ≥ t2 . By (3.1), (3.2), (8.1),
and (9.6) we conclude that

|ϕf
i (t2) − ϕf

i (t1)| ≤ (V (t2) − V (t1) + (t2 − t1)λ(X)) ‖f‖hom . (9.9)

We now prove that for every t1, t2 ∈ [0, T ] , with t1 < t2 , we have

ϕf
i (t2) − ϕf

i (t1) ≤ 〈f(x, ξ2 − ξ1, (t2 − t1)η),µt1t2(x, ξ1, ξ2, η)〉 . (9.10)

We consider first the case t1 < τi < t2 . By (7.2) and (9.8) we have

ϕf
i (t2) = 〈f(x, ξ2 − ξ1 + ξ1 − ζi, (t2 − t1 + t1 − τi)η),µt1τit2(x, ξ1, ζi, ξ2, η)〉 .

From the triangle inequality and from (7.2) we get

ϕf
i (t2) ≤ 〈f(x, ξ2 − ξ1, (t2 − t1)η),µt1t2(x, ξ1, ξ2, η)〉 +

+ 〈f(x, ξ1 − ζi, (t1 − τi)η),µt1τi
(x, ξ1, ζi, η)〉 ,

(9.11)

which gives (9.10) by (9.8). The proof in the cases τi ≤ t1 and τi ≥ t2 is similar.
Let W : [0, T ] → R be the increasing function defined by

W (t) := V (t) + t λ(X) (9.12)

and let σ : [0,W (T )] → [0, T ] be the nondecreasing function defined by

σ(s) := inf{t ∈ [0, T ] : W (t) ≥ s} .

It is easy to see that

σ(W (t)) = t for every t ∈ [0, T ] . (9.13)

As W (t2) −W (t1) ≥ (t2 − t1)λ(X) for every t1 < t2 , we have

0 ≤ σ(s2) − σ(s1) ≤ (s2 − s1)/λ(X) (9.14)

for every s1 < s2 , hence σ is Lipschitz continuous.
By (9.9) and (9.13) we have

|(ϕf
i ◦ σ)(s2) − (ϕf

i ◦ σ)(s1)| ≤ |s2 − s1| ‖f‖hom

for every s1, s2 ∈ W ([0, T ]) . Therefore, there exists a function ψf
i : [0,W (T )] → R

such that ψf
i (s) = (ϕf

i ◦ σ)(s) for every s ∈ W ([0, T ]) and

|ψf
i (s2) − ψf

i (s1)| ≤ |s2 − s1| ‖f‖hom (9.15)

for every s1, s2 ∈ [0,W (T )] . For every s0 ∈ [0,W (T )] let

ψ̇f
i (s0) = lim sup

s→s0

ψf
i (s) − ψf

i (s0)

s− s0
.

By (9.15) we have |ψ̇f
i (s0)| ≤ ‖f‖hom , and by Lebesgue’s Differentiation Theorem

the limsup is a limit for a.e. s0 ∈ [0,W (T )] . Finally, let ωf : [0,W (T )] → R be the
function defined by

ωf (s) := sup
i
ψ̇f

i (s) . (9.16)

By the bound on ψ̇f
i we have

|ωf (s)| ≤ ‖f‖hom (9.17)
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for every s ∈ [0,W (T )] .

Step 3. The exceptional set. Let L1 be the Lebesgue measure on R . By (9.14)
and (9.15) there exists a measurable set N ⊂ [0,W (T )] , with L1(N) = 0, such
that each point of [0,W (T )] \ N is a Lebesgue point of ωf for every f ∈ F and

a differentiability point for ψf
i for every f ∈ F and for every i . Let NW be the

set of points of [0, T ] where the derivative Ẇ of W does not exist. By Lebesgue’s
Differentiation Theorem we have L1(NW ) = 0. Since σ is Lipschitz continuous and
W−1(N) = σ(N ∩W ([0, T ])) by (9.13), we have that L1(W−1(N)) = 0, hence

L1(NW ∪W−1(N)) = 0 . (9.18)

Step 4. Estimate from below. Let us fix t0 6∈ NW ∪W−1(N), with 0 < t0 < T , and

let s0 = W (t0). As ϕf
i (t) = ψf

i (W (t)), from (9.10) we obtain

ψf
i (W (t2)) − ψf

i (W (t1)) ≤ 〈f(x, ξ2 − ξ1, (t2 − t1)η),µt1t2(x, ξ1, ξ2, η)〉

for every t1, t2 ∈ [0, T ] with t1 < t2 . This implies

ψ̇f
i (W (t0)) Ẇ (t0) ≤ lim inf

t→t−0

〈f(x, ξ−ξ0

t−t0
, η),µtt0(x, ξ, ξ0, η)〉 ,

ψ̇f
i (W (t0)) Ẇ (t0) ≤ lim inf

t→t+0

〈f(x, ξ−ξ0

t−t0
, η),µt0t(x, ξ0, ξ, η)〉

for every i , which by (9.16) gives

ωf (W (t0)) Ẇ (t0) ≤ lim inf
t→t−0

〈f(x, ξ−ξ0

t−t0
, η),µtt0(x, ξ, ξ0, η)〉 , (9.19)

ωf (W (t0)) Ẇ (t0) ≤ lim inf
t→t+0

〈f(x, ξ−ξ0

t−t0
, η),µt0t(x, ξ0, ξ, η)〉 . (9.20)

Step 5. Estimate from above. To prove the opposite inequality we show that

〈f(x, ξ2 − ξ1, (t2 − t1)η),µt1t2(x, ξ1, ξ2, η)〉 ≤

∫ W (t2)

W (t1)

ωf (s) ds (9.21)

for every t1, t2 , with 0 < t1 < t2 < T , such that W is continuous at t1 or t2 . We
prove (9.21) only when W is continuous at t1 , the other case being analogous. For
every ε > 0 there exists i such that τi < t1 and

W (t1) −W (τi) < ε . (9.22)

As ψf
i is Lipschitz, from the compatibility condition (7.2) we get

∫ W (t2)

W (t1)

ωf(s) ds ≥

∫ W (t2)

W (t1)

ψ̇f
i (s) ds = ψf

i (W (t2)) − ψf
i (W (t1)) =

= ϕf
i (t2) − ϕf

i (t1) = 〈f(x, ξ2 − ζi, (t2 − τi)η),µτit1t2(x, ζi, ξ1, ξ2, η)〉 −

− 〈f(x, ξ1 − ζi, (t1 − τi)η),µτit1t2(x, ζi, ξ1, ξ2, η)〉 .

(9.23)

Using Remark 2.6 we obtain

f(x, ξ2 − ζi, (t2 − τi)η)≥f(x, ξ2 − ξ1, (t2 − t1)η)−(|ξ1 − ζi| + (t1 − τi)|η|) ‖f‖hom,

−f(x, ξ1 − ζi, (t1 − τi)η) ≥ −(|ξ1 − ζi| + (t1 − τi)|η|) ‖f‖hom ,
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so that, using again (3.2) and (7.2), inequality (9.23) and the definition of W give
∫ W (t2)

W (t1)

ωf(s) ds ≥ 〈f(x, ξ2 − ξ1, (t2 − t1)η),µt1t2(x, ξ1, ξ2, η)〉 −

− 2(W (t1) −W (τi))‖f‖hom .

By (9.22) we conclude that
∫ W (t2)

W (t1)

ωf(s) ds ≥ 〈f(x, ξ2 − ξ1, (t2 − t1)η),µt1t2(x, ξ1, ξ2, η)〉 − 2ε‖f‖hom .

As ε > 0 is arbitrary, this proves (9.21).
Since W is differentiable at t0 and W (t0) is a Lebesgue point of ωf , inequality

(9.21) implies

lim sup
t→t−0

〈f(x, ξ−ξ0

t−t0
, η),µtt0(x, ξ, ξ0, η)〉 ≤ ωf(W (t0)) Ẇ (t0) ,

lim sup
t→t+0

〈f(x, ξ−ξ0

t−t0
, η),µt0t(x, ξ0, ξ, η)〉 ≤ ωf(W (t0)) Ẇ (t0) ,

which, together with (9.19) and (9.20), give

lim
t→t−0

〈f(x, ξ−ξ0

t−t0
, η),µtt0(x, ξ, ξ0, η)〉 = ωf (W (t0)) Ẇ (t0) ,

lim
t→t+0

〈f(x, ξ−ξ0

t−t0
, η),µt0t(x, ξ0, ξ, η)〉 = ωf (W (t0)) Ẇ (t0) .

By (9.18) this proves (9.7) and concludes the proof of the existence of the weak∗

derivative µ̇t0 for a.e. t0 ∈ [0, T ] . Moreover it shows that

〈f(x, ξ, η), µ̇t0(x, ξ, η)〉 = ωf (W (t0)) Ẇ (t0) (9.24)

for every f ∈ F and for a.e. t0 ∈ [0, T ] .

Step 6. Integrability of t 7→ 〈f, µ̇t〉 . To prove the measurability of this function for
every f ∈ Chom(X×Ξ×R), we fix a sequence εk of positive numbers converging to
0 and a function f ∈ Chom

L (X×Ξ×R). By Lemma 8.9 the function

t 7→ 〈f(x, ξ′−ξ
εk

, η),µt,t+εk
(x, ξ, ξ′, η)〉

is measurable on [0, T − εk] . Since it converges to t 7→ 〈f, µ̇t〉 for a.e. t ∈ [0, T ] ,
we conclude that this function is measurable on [0, T ] . The same property can
be proved for an arbitrary f ∈ Chom(X×Ξ×R) by approximation, thanks to
Lemma 2.4.

By (9.17) and (9.24) we have

|〈f, µ̇t〉| ≤ Ẇ (t) ‖f‖hom

for every f ∈ F . The same inequality holds for any f ∈ Chom(X×Ξ×R) by the

density of F (see Lemma 2.7). Since Ẇ is integrable, this concludes the proof of
the integrability of t 7→ 〈f, µ̇t〉 on [0, T ] .

Step 7. Estimate for Varh(µ; a, b) . Let h : Ξ → [0,+∞) be a positively one-
homogeneous function satisfying the triangle inequality. Since the function t 7→
Varh(µ; a, t) is nondecreasing on [a, b] , by Lebesgue Differentiation Theorem it is
differentiable for a.e. t ∈ [a, b] and

∫ b

a

d

dt
Varh(µ; a, t) dt ≤ Varh(µ; a, b) . (9.25)
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Let t0 ∈ (a, b) be a point where t 7→ Varh(µ; a, t) is differentiable and the weak∗

derivative µ̇t0 exists. By the definition of Varh for every t ∈ (t0, b) we have

Varh(µ; a, t0) + 〈h(ξ − ξ0),µt0t(x, ξ0, ξ, η)〉 ≤ Varh(µ; a, t) .

Since h is positively homogeneous of degree one, we obtain

〈h( ξ−ξ0

t−t0
),µt0t(x, ξ0, ξ, η)〉 ≤

Varh(µ; a, t) − Varh(µ; a, t0)

t− t0
.

From (9.3) we deduce that

〈h(ξ), µ̇t0(x, ξ, η)〉 ≤
d

dt
Varh(µ; a, t)

∣

∣

∣

t=t0
.

Since this inequality holds for a.e. t0 ∈ [a, b] , from (9.25) we obtain
∫ b

a

〈h(ξ), µ̇t(x, ξ, η)〉 dt ≤ Varh(µ; a, b) ,

which concludes the proof of (9.5).

10. Absolute continuity. In this section we introduce the notion of absolutely
continuous system of generalized Young measures on the time interval [0, T ] , with
T > 0, and prove that for these systems the h-variation can be computed using the
weak∗ derivative by the formula

Varh(µ; a, b) =

∫ b

a

〈h(ξ), µ̇t(x, ξ, η)〉 dt (10.1)

for every a, b ∈ [0, T ] , with a < b .

Definition 10.1. We say that a compatible system of generalized Young measures
µ ∈ SGY ([0, T ], X ; Ξ) is absolutely continuous on [0, T ] if for every ε > 0 there
exists δ > 0 such that

k
∑

i=1

〈|ξ2 − ξ1|,µaibi
(x, ξ1, ξ2, η)〉 ≤ ε (10.2)

for every finite family (a1, b1), . . . , (ak, bk) of nonoverlapping open intervals in [0, T ]
with

k
∑

i=1

(bi − ai) ≤ δ .

Remark 10.2. It follows from Definition 3.2 that, if µ = δp for some function
p : [0, T ] → Mb(X ; Ξ), then µ is absolutely continuous on [0, T ] if and only if p

is absolutely continuous on [0, T ] in the usual sense of functions with values in a
Banach space.

If u is an absolutely continuous function from [0, T ] into Lr(X ; Ξ) for some
r > 1, then the derivative u̇(t), defined as the strong Lr limit of the difference
quotients, exists at a.e. t ∈ [0, T ] (see, e.g., [5, Appendix]). By Remark 9.5 it follows
that, if µ = δu , then µ̇t = δu̇(t) for a.e. t ∈ [0, T ] , and (10.1) follows from the
classical theory (see, e.g., [5, Appendix]).

If p is an absolutely continuous function with values in Mb(X ; Ξ), then the
derivative ṗ(t), defined as the weak∗ limit of the difference quotients, exists at a.e.
t ∈ [0, T ] (see [9, Appendix]). This is not enough to guarantee that µ̇t = δṗ(t) for
a.e. t ∈ [0, T ] when µ = δp (see Remark 9.5). Therefore, in this case (10.1) cannot
be obtained directly from known results.
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Remark 10.3. As in the classical case, one can see that, if µ ∈ SGY ([0, T ], X ; Ξ)
is absolutely continuous on [0, T ] , then Var(µ; 0, T ) < +∞ . In this case, if
V : [0, T ] → [0,+∞) is the nondecreasing function defined by

V (t) := Var(µ; 0, t) ,

then for every ε > 0
k

∑

i=1

(V (bi) − V (ai)) ≤ ε

for every finite family (a1, b1), . . . , (ak, bk) of nonoverlapping open intervals in [0, T ]
with

k
∑

i=1

(bi − ai) ≤ δ ,

where δ is the constant in the definition of the absolute continuity of µ . In partic-
ular, V is absolutely continuous on [0, T ] .

Theorem 10.4. Suppose that µ ∈ SGY ([0, T ], X ; Ξ) is absolutely continuous on
[0, T ] and that h : Ξ → [0,+∞) is positively one-homogeneous and satisfies the
triangle inequality. Then

Varh(µ; a, b) =

∫ b

a

〈h(ξ), µ̇t(x, ξ, η)〉 dt

for every a, b ∈ [0, T ] with a ≤ b .

Proof. Let W be defined by (9.12). By Remark 10.3 W is absolutely continuous on
[0, T ] . By Remark 8.7 the function f(x, ξ, η) := h(ξ) belongs to Chom

△ (X×Ξ×R).
Therefore, we can add this function to the set F introduced in Step 1 of the proof
of Theorem 9.7 and we can consider the corresponding function ωh : [0,W (T )] → R

defined by (9.16). By (9.21) and (9.24) we have

〈h(ξ2 − ξ1),µt1t2(x, ξ1, ξ2, η)〉 ≤

∫ W (t2)

W (t1)

ωh(s) ds , (10.3)

〈h(ξ), µ̇t(x, ξ, η)〉 = ωh(W (t)) Ẇ (t) (10.4)

for every t1, t2 ∈ [0, T ] , with t1 < t2 , and for a.e. t ∈ [0, T ] .
By the definition of Varh(µ; a, b), inequality (10.3) implies that

Varh(µ; a, b) ≤

∫ W (b)

W (a)

ωh(s) ds (10.5)

for every a, b ∈ [0, T ] , with a ≤ b . On the other hand, since W is absolutely
continuous on [0, T ] , we have

∫ W (b)

W (a)

ωh(s) ds =

∫ b

a

ωh(W (t))W ′(t) dt =

∫ b

a

〈h(ξ), µ̇t(x, ξ, η)〉 dt , (10.6)

where the last equality follows from (10.4). The conclusion follows now from (9.5),
(10.5), and (10.6).
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