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Abstract

Isogeometric analysis (IGA) is emerging as a technology bridging Computer Aided
Geometric Design (CAGD), most commonly based on Non-Uniform Rational B-Splines
(NURBS) surfaces, and engineering analysis. In finite element and boundary element
isogeometric methods (FE-IGA and IGA-BEM), the NURBS basis functions that de-
scribe the geometry define also the approximation spaces. In the FE-IGA approach, the
surfaces generated by the CAGD tools need to be extended to volumetric descriptions,
a major open problem in 3D. This additional passage can be avoided in principle when
the partial differential equations to be solved admit a formulation in terms of bound-
ary integral equations, leading to Boundary Element Isogeometric Analysis (IGA-BEM).
The main advantages of such an approach are given by the dimensionality reduction
of the problem (from volumetric-based to surface-based), by the fact that the interface
with CAGD tools is direct, and by the possibility to treat exterior problems, where the
computational domain is infinite. By contrast, these methods produce system matrices
which are full, and require the integration of singular kernels. In this paper we address
the second point and propose a nonsingular formulation of IGA-BEM for 3D Stokes flows,
whose convergence is carefully tested numerically. Standard Gaussian quadrature rules
suffice to integrate the boundary integral equations, and carefully chosen known exact
solutions of the interior Stokes problem are used to correct the resulting matrices, ex-
tending the work by Klaseboer et al. (Journal of Fluid Mechanics, 696(1):468–478, 2012)
to IGA-BEM.

Keywords: Isogeometric Analysis, Boundary Element Method, Stokes Flows, NURBS

1. Introduction

Integration between finite element analysis (FEA) and conventional computer aided
geometric design (CAGD) tools is becoming increasingly popular, following the isogeo-
metric analysis (IGA) paradigm introduced by Hughes et al. in [24] for the discretization
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of partial differential equations (PDEs). There are several motivations behind IGA tech-
niques, the most prominent ones being related to the computational cost of translation
of data between CAGD and FEA packages. The most attractive feature of IGA is its
ability to maintain the same exact description of the computational domain geometry
throughout the analysis process, by using the same class of functions used for geometry
parameterization in CAGD packages, namely Non-Uniform Rational B-Splines (NURBS),
for the PDE solution space. IGA is often seen as a generalization of standard FEMs,
where more regular functions are employed. The additional regularity inherited from the
NURBS spaces leads to other advantages with respect to FEA, such as better conver-
gence properties and the ability to treat higher order problems (see, for example, the
book by Cottrell et al. [14] for a comprehensive list of references on the argument).

While the finite element isogeometric analysis (FE-IGA) has received most of the
attention of the scientific community, only few results are available for boundary element
methods (BEM) and boundary integral equations (BIE) in general. In 2D, there are
some works on potential flows, such as [36] and [44], and on elastostatic analysis [40].
Three dimensional applications are of great interest in the maritime community, and
there are some works on NURBS based panel methods to study, for example, marine
propellers [25] or the wavemaking resistance problem [10]. Three-dimensional IGA-BEM
linear elasticity has recently been studied in [20] while some work on shape optimization
has been presented in [29]. Boundary element isogeometric analysis (IGA-BEM) is very
attractive for the solution of homogeneous elliptic PDEs, both in the interior and in the
exterior cases, since it requires the solution of integral equations only on the boundary
of the enclosing (or enclosed) domain, which is typically the only information that is
generated by standard CAGD tools. In contrast, FE-IGA requires the extension of the
computational domain inside (or outside) the enclosing CAGD surface, an outstanding
problem in IGA.

While the dimensional reduction of the domain diminishes significantly both the num-
ber of degrees of freedom and the computational cost associated with the handling of the
geometry, there are two main drawbacks which require special attention, and are common
to all boundary integral discretizations: i) the system matrices that are produced with
a boundary integral method are full, and ii) the integrands contain (1/r) singularities
or worse (in three dimensions) around the source point, arising from the fundamental
solutions in formulating the boundary integrals. Both issues have perhaps contributed
in keeping the IGA community away from boundary integral formulations.

In the literature, the first issue is usually tackled by acceleration techniques such as
the fast multipole method [39] (see [31] for a survey of this technique applied to BEM),
which allow one to solve the system without assembling the full matrices, and at the
same time reduce the cost of the matrix-vector multiplication from O(n2) to O(n) (this
technique has already been applied to Laplace problems in two dimensional IGA-BEM
in [44]). The second issue is more delicate and its solution depends highly on the degree of
the discrete functional spaces and of the geometry description, remaining one of the most
difficult aspects of the implementation of BEM. Different approaches are possible, (see,
for example, [23]) but high order methods and curved geometries still remain challenging.

Popular approaches to tackle singular integration involve a local change of variables
for the quadrature rules, following the principle that the Jacobian of the transformation
can be used to eliminate locally the kernel singularities. Examples of these methods
are given by Lachat and Watson [28] and by Telles [45]. Both methods are elegant and
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produce accurate results, but they require a great number of basis functions evaluations,
which need to be evaluated on different quadrature points whenever the element being
integrated approaches a singularity.

Recently, Klaseboer et al. [26] proposed an analytical method that removes the sin-
gularities of the boundary integrals, by exploiting carefully chosen known solutions of
the PDEs. These ideas, presented also in earlier theoretical works by Liu et al. [32, 30],
were recently implemented for various elliptic PDEs in [27] and [43], and produce well
conditioned boundary integrals, which can be integrated with standard quadrature rules.

In this paper we extend these ideas to isogeometric collocation boundary integral
approximations of three-dimensional Stokes flow, and show once again the superior ap-
proximation properties of the isogeometric approach with respect to standard BEM im-
plementations. The computational cost of this nonsingular method is much smaller when
compared to traditional approximation procedures, and its accuracy is two to three or-
ders of magnitude better than in the traditional isoparametric BEM when compared
with the results presented in [43] for the same number of degrees of freedom. The im-
proved performance obtained thanks to isogeometric analysis makes IGA-BEM a very
promising tool for the solution of complex fluid-structure interaction problems arising in
biophysics and bio-medical applications [15, 12]. In fact, our choice of Stokes flows as a
model problem is motivated by our interest in modeling the flows induced by swimming
bacteria and unicellular organisms [1, 4, 3, 2, 6] and lipid bilayer membranes [5, 38].

The rest of this paper is organized as follows. In Section 2 we present a brief overview
of isogeometric NURBS spaces. The continuous problem that we want to takle by IGA-
BEM is introduced in Section 3, while its boundary integral formulation is presented
in Section 4. Section 5 is dedicated to the implementation details of the isogeometric
collocation boundary element discretization of Stokes flow, and in Section 6 we present the
generalization of the work by Klaseboerb et al.[26], [27] and [43]. Section 7 is dedicated
to the numerical validation of the method presented in this paper and we draw some
conclusions in Section 8.

2. Overview of isogeometric NURBS spaces

Given a nondecreasing knot vector Θ = {k0, k1, ..., kn+p}, the n basis splines of degree
p are defined by the recurrence relation

B(i,0)(s) =

{
1, if ki ≤ u < ki+1

0, otherwise,
(1)

for p = 0, while for p > 0 we have

B(i,p)(s) = τ (i,p)(s)B(i,p−1)(s)− τ (i+1,p)(s)B(i+1,p−1)(s), (2)

for i = 0, ..., n− 1, where

τ (i,p)(s) :=

⎧⎨
⎩

s− ki

ki+p − ki
if ki+p �= ki

0, otherwise.
(3)
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The above recurrence relation can be evaluated in a numerically stable way by the
de Boor algorithm (see, for example, [35]). It is possible to generate a B-Spline curve
c(s) ⊂ �d by using a set of n coordinates P i ∈ �d, referred to as control points, as

c(s) =

n−1∑
i=0

P iB(i,p)(s). (4)

The properties of the curve c(s) depend highly on the properties of the knot vector Θ:
if a knot is repeated q times, the curve c(s) at the location of the repeated knot is of class
Cp−q, and whenever a curve is only of class C0 at a knot location, then it is interpolatory
at that location. Discontinuities (C−1 curves) are also allowed and are obtained when a
knot is repeated q = p+1 times. Repeating a knot more than p+1 times is not allowed.

NURBS basis functions are readily obtained from B-Splines by assigning a positive
weight wi to each basis spline function and defining the corresponding NURBS basis
function as

N i(s) :=
wiB(i,p)(s)∑n−1

j=0 wjB(j,p)(s)
. (5)

Notice that also the NURBS basis have the partition of unity property, and B-Splines
can be considered a special case of NURBS by taking all weights to be identical.

Taking m knot vectors Θi, with i = 0, . . . ,m−1, one can generalize the NURBS basis
functions to m-dimensions by tensor products. Indicating with s := [s0, ..., sm−1] ∈ �m

a point in �m and i := (i0, . . . , im−1) a multi-index belonging to the set

J := {j = (j1, . . . , jm), 0 ≤ jk < nk, k = 1, . . . ,m}, (6)

the m-variate B-Splines and NURBS basis functions are given by

Bi,p(s) :=
m−1∏
k=0

B(ik,pk)(sk), N i(s) :=
wiB

(i,p)(s)∑
j∈J wjB(j,p)(s)

, (7)

where i, p and j are all multi-indices. The multi-index p = (p0, . . . , pm−1) is used to
keep track of the degrees of the B-Splines in each direction, while n = (n0, . . . , nk−1)
is used to keep track of the number of basis functions in each direction. Notice that in
Equations (5) and (7) we dropped the superscripts p and p from the definition of the
NURBS basis functions N i, to ease the notation in the rest of the paper.

As a generalization of the one dimensional case, if we take a collection of n :=∏m−1
k=0 nk control points in �d, with d ≥ m, we can represent a m-dimensional mani-

fold in a d-dimensional space as the image of the map

�d ⊃ x(s) :=
∑
i∈J

P iN i(s) s ∈ �m. (8)

When m is equal to one two or three, the set of control points P i with i ∈ J is
referred to as control polygon, control net or control lattice respectively. The domain of
the map x(s) is the set

Bm := [k00, k
0
n1+p1

]× · · · × [km−1
0 , km−1

nm−1+pm−1
] ⊂ �m, (9)
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where kij is the j-th knot in the i-th knot vector Θi. The first fundamental form associated
to the map x(s) is given by

g(s) := (Dx(s))TDx(s) ∈ �m×m, (10)

where Dx(s) is the Jacobian of the mapping x(s):

(Dx(s))ab :=
∂xa

∂sb
(s) =

∑
k∈J

(P k · ea)
∂Nk

∂sb
(s),

a = 0, . . . , d− 1 b = 0, . . . ,m− 1, (11)

ea is a unit vector in the a-th spatial direction, and k is a multi-index.
Integrals on the m-dimensional manifold x(Bm) can be pulled back to the domain

Bm using the standard transformation rule∫
x(Bm)

f(x) dγm =

∫
Bm

f(x(s))J(s) ds, (12)

where we indicated with J(s) the square root of the determinant of the first fundamental
form:

J(s) :=
√
det(g(s)). (13)

The geometry Ω ≡ x(Bd) of the domain or of its boundary Γ can then be represented
via the NURBS basis above, by choosing appropriately the knot spans, the weights and
the control points that define the mapping x(s). A geometry based on the map defined
above is referred to as CAGD patch. The full domain Ω may be constructed by gluing
together several patches. For the sake of simplicity, however, we expose the theory and
the numerical approximation only considering single patch geometries, referring to [14]
for treatments of multi-patch domains, with different level of regularity across different
patches, as well as for indications on how to treat different refinements on each patch.

A standard (scalar) isogeometric finite dimensional space is readily obtained by con-
sidering the span of the functions φi := N i ◦ x−1:

Vh := span{φi(y)}i∈J , y ∈ x(Bm) ⊂ �d, (14)

where φi are such that

φi(x(s)) = N i(s), ∀s ∈ Bm. (15)

The dimension of the space Vh is n =
∏m

k=1 nk and it is equal to the number of control
points that define the geometry of the problem. A finite dimensional space for vector
fields of q components is obtained by considering

V q
h := span{τ i(y)}qni=1 y ∈ x(Bm) ⊂ �d, (16)

where the basis functions τ i are such that

τ i(y) := eaφ
j(y), n−1 := 1, i = q

(
m−1∑
w=0

(
jw

w−1∏
k=0

nk−1

))
+ a. (17)
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The global index i varies continuously from one to qn = q
∏m

k=1 nk, and it is meant
to transform the multi-index j ∈ J plus the component index a into a unique global
identifier for the i-th basis function. Conversely, given a global index j, it is possible
to infer to which component the basis function refers to, and what is the multi-index
which identifies the underlying NURBS basis by inverting the rightmost expression in
Equation (17).1

In what follows, we use upper latin indices starting from i to indicate the global
numbering of the basis functions defining the space V q

h and lower latin indices starting
from a to label spacial coordinates. For spatial coordinates, we use Einstein summation
convention. A vector function of q components f(x) in the space V q

h is identified by its
coefficient vector f such that

V q
h � f(x) :=

nq−1∑
i=0

f iτ i(x), (18)

where, with a slight abuse of notation, we denote the vector of coefficients f with the
same symbol as the function f(x) but without the argument “(x)”.

Finite element isogeometric analysis (FE-IGA) is based on functional spaces Vh in
which the dimension m of the reference manifold Bm and of embedding space �d are
equal, i.e., m = d.

Boundary integral equations, on the other hand, rely on the convolution with fun-
damental solutions to study the problem only on the boundary Γ of the domain Ω,
requiring a discretization of functional spaces defined on manifolds of co-dimension one,
i.e., m = d− 1.

3. Hydrodynamic equations

We are interested in solving Stokes equations in a domain Ω̃ ⊆ �d, with a given
Dirichlet boundary condition ug on Γ̃ := ∂Ω̃, and d is either two or three. Neumann or
mixed problems can be treated in a similar way (see, for example,[22]), and we use this
model system simply to fix the ideas.

In both the finite and infinite domain cases, we will study problems for which it is
possible to identify a closed domain Ω, that is used to generate the domain of the fluid Ω̃
and its boundary Γ̃. In the exterior case, we have that Ω̃ := �d \Ω, while in the interior
case, Ω̃ ≡ Ω.

With this convention, the interior and the exterior Stokes problems can both be
expressed by the following set of equations:

− ηΔu+∇p = −∇ · σ = 0 in Ω̃ (19a)

∇ · u = 0 in Ω̃ (19b)

u = ug on Γ̃ (19c)

1For example, in Matlab the local to global conversion is obtained with the function SUB2IND, while
the global to local conversion is obtained by the function IND2SUB.
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where u and p are the velocity and hydrodynamic pressure fields in the domain Ω̃ (ei-
ther finite or infinite), η is the viscosity of the fluid, ug is the (given) fluid velocity at
the boundary of the domain and σ is the Cauchy stress tensor for an incompressible
Newtonian fluid:

σ := −pI + η(∇u+∇uT ). (20)

Equations (19a) and (19b) describe the conservation of linear momentum and mass
in the Stokes fluid, while (19c) is a Dirichlet boundary condition. The pressure p can be
regarded as the Lagrange multiplier associated with the conservation of volume (19b),
and it is uniquely determined by u up to an additive constant.

When the domain is infinite, i.e., when we are treating the exterior Stokes problem,
then the boundary Γ̃ is split into two parts: the boundary Γ of the finite domain Ω, and
the boundary at infinity, Γ∞, defined as

Γ∞ := lim
R→∞

∂BR(0), (21)

where BR(0) is the ball of radius R centered at the origin.
In the infinite domain case, System (19) has a unique solution in the Sobolev spaces

H1(Ω̃) for the velocity and L2
0(Ω̃) for the pressure (here the subscript zero stands for zero

mean average), provided that the Dirichlet boundary data ug goes to zero sufficiently

fast on Γ∞, that its portion on Γ is in the space H
1
2 (Γ), and provided that Γ is regular

enough. A boundary Γ of class C1 guarantees existence and uniqueness of the exterior
solution u, see, for example Ref. [17].

For the finite domain case to have a solution, the Dirichlet data ug needs to be
compatible with the mass conservation equation, i.e.,

(ug,n) :=

∫
Γ

ug · n dΓ = 0, (22)

where n is the outer normal to the domain Ω, and the notation (·, ·) is used for the
L2(Γ)d inner product. Also in the interior case, a boundary Γ of class C1 and boundary

data ug ∈ H
1
2 (Γ), satisfying (22), guarantee existence and uniqueness of a solution.

4. Boundary integral representation

Our boundary integral formulation follows closely Ref. [37] and Ref [42]: if we consider
Stokes equation in free-space associated with a forcing term due to a Dirac mass centered
in y and weighted with the force vector k, i.e.,

− ηΔu(x) +∇p(x) = −∇ · σ = kδ(x− y) in �d

∇ · u(x) = 0 in �d

lim
|x|→∞

|u(x)| = 0

lim
|x|→∞

|p(x)| = 0,

(23)
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we can express the solution u and σ using the free-space Green’s functions S and T :

ua(x) =
1

4(d− 1)πη
Sab(x− y)kb

σac(x) =
1

4(d− 1)π
Tabc(x− y)kb,

(24)

where

Sab(r) =
rarb
|r|d +

{
−δab log(|r|) if d = 2
δab

|r| if d = 3

Tabc(r) = −2d
rarbrc
|r|d+2

.

(25)

When Γ is Lipschitz regular, we can define the single and double layer potentials:

D̃ : H− 1
2 (Γ)d −→ H1(�d \ Γ)d

(D̃f)a(x) :=
1

4(d− 1)πη

∫
Γ

Sab(x− y)fb(y) dΓ(y) (26)

Ñ : H
1
2 (Γ)d −→ H1(�d \ Γ)d

(Ñu)a(x) :=
1

4(d− 1)π

∫ PV

Γ

Tabc(x− y)ub(y)nc(y) dΓ(y). (27)

Although the integral in Equation (27) is well defined for each x in �d \ Γ, we retain
the PV symbol to indicate an integral in the Cauchy principal value sense, to maintain
the same definition of Ñ when taking its trace on Γ, later in this section. Indeed, given
the solution u ∈ H1(Ω̃)d of System (19), and its associated stress tensor σ ∈ L2(Ω̃)d×d,
we have a boundary integral representation of the solution u in arbitrary points x ∈ Ω̃
in terms of the traces of u and σn on Γ (see, for example, [37] or [42]).

Calling γint
0 : Hs(Γ)d → Hs− 1

2 (Γ)d and γext
0 : Hs(Γ)d → Hs− 1

2 (Γ)d the interior and
exterior trace operators (when Γ is a Lipschitz boundary we can choose s in � [17]), and

defining uint/ext := γ
int/ext
0 u, and σint/extn := γ

int/ext
0 σn we have

u(x) + (Ñuint)(x) = +
(
D̃(σintn)

)
(x), x ∈ Ω (28)

u(x)− (Ñuext)(x) = −
(
D̃(σextn)

)
(x), x ∈ �d \ Ω. (29)

Equation (28) is the boundary integral representation for an interior Stokes flow,
where the trace uint of u on Γ has to satisfy condition (22), while Equation (29) is the
boundary integral representation for an exterior Stokes flow, where the trace uext on Γ
is allowed to be arbitrary, as long as it belongs to the space H

1
2 (Γ).

Notice that in the infinite domain case, both integrals on Γ∞ disappear due to bound-
ary conditions, and the distinction between the interior and the exterior case in Equa-
tions (28) and (29) is only given by the signs in front of the single and double layer
potentials, which take into account the fact that the normal n is pointing outwards with
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respect to the domain Ω; therefore, it is inward with respect to the domain of integration
in the exterior case.

Since both the single and the double layer operators have their range in H1(�d \ Γ),
we can take the interior trace on Γ in Equation (28) and the exterior trace on Γ in
Equation (29) to obtain boundary integral equations defined on Γ only. When taking the
traces of the single layer potential, the integral in Equation (26) becomes weakly singular
but remains integrable, and it is continuous across Γ. On the contrary the integration
of the double layer potential only converges in the Cauchy principal value sense, and it
jumps across Γ. We define the single and double layer operators respectively as:

D := γint
0 D̃ = γext

0 D̃ : H− 1
2 (Γ)d → H

1
2 (Γ)d (30)

N := (1− c)I + γint
0 Ñ = cI + γext

0 Ñ : H
1
2 (Γ)d → H

1
2 (Γ)d, (31)

where I is the identity and the scalar function c(x) is defined as

c(x) := lim
ε→0

∫
Ω∩∂Bε(x)

dΓ

2(d− 1)πε2
=

⎧⎪⎪⎨
⎪⎪⎩
1 if x ∈ Ω
1

2
if x ∈ Γ of class C1

0 if x ∈ �d \ Ω,
(32)

and it is there to take into account the Cauchy limiting value of the double layer integral
(see, for example, [42]). In general c(x) is the fraction of angle (d = 2) or solid angle
(d = 3) from which the domain Ω is seen by x ∈ Γ and it is almost everywhere equal to
1/2 for a Lipschitz boundary.

Although in the Sobolev space H
1
2 (Γ)d we could drop the function c and use directly

the value 1/2 (as it is often done in the literature), we retain the function c itself in
view of the numerical discretization by collocation boundary element methods, in which
a correct evaluation of c at corners and edges of the integration domain Γ is essential
for accurate numerical results. The interior and exterior Stokes problems satisfy the
boundary integral equations

cuint +Nuint = Df int in H
1
2 (Γ) (33)

(1− c)uext −Nuext = Dfext in H
1
2 (Γ), (34)

where f int := σintn and fext := σextnext = −σextn are the interior and exterior normal
tractions on Γ.

Solving Stokes problem for both the interior and the exterior case simultaneously,
and summing Equations (33) and (34) one obtains the following compact representation
integral, also known as Stokes transmission problem:

{{u}}c +N [[u]] = D [[σ]]n (35)

where {{·}}c and [[·]] are the c-weighted average and jump operators, defined as

{{a}}c :=
(
caint + (1− c)aext

)
[[a]] :=

(
aint − aext

)
.
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Boundedness of the single and double layer operators can be shown when Γ is the
boundary of a Lipschitz domain Ω:

D : H− 1
2+s(Γ)d →H

1
2+s(Γ)d

N : H
1
2+s(Γ)d →H

1
2+s(Γ)d,

(36)

for all |s| ≤ 1
2 (see, for example, [42]).

Some properties of the single layer operator can be inferred from the consideration
that u = 0, p = −1 is a solution to Problem (19), both in the interior and the exterior
case. Plugging this solution into Equation (33) or (34) we obtain

Dn = 0, (37)

and it is possible to show (see, for example, [17]) that the single layer potential D is

elliptic in the subspace H
− 1

2∗ (Γ)d defined as

H
− 1

2∗ (Γ)d :=

{
w ∈ H− 1

2 (Γ)d s.t. < w,n >:=

∫
Γ

w · n = 0

}
, (38)

where the notation < ·, · > is used to indicate the duality between H− 1
2 (Γ)d and H

1
2 (Γ)d,

in contrast with (·, ·) which is used for the L2(Γ)d inner product.
If we consider the interior problem only, then the homogeneous Neumann problem

(f int = 0) has non trivial solutions corresponding to the the 3(d− 1) dimensional space
of rigid body velocities R.2 Plugging these solutions into Equation (33), we get

NuR = −cuR ∀uR ∈ R, (39)

and one can show ellipticity of the operator cI +N in the subspace H
1
2

R(Γ)
d, defined as

H
1
2

R(Γ)
d :=

{
v ∈ H

1
2 (Γ)d s.t. (v,uR) = 0, ∀uR ∈ R

}
. (40)

Since the operator D has a nonempty kernel, we can incorporate the eigenspace to
obtain uniquely solvable boundary integral integrations (see, for example, [22]). At the
discrete level this is necessary to make the inversion of the discrete version of operator
D well conditioned.

We introduce the extended operator D defined as

< Df ,u >:=< Df ,u > + γ < f ,n > (u,n)

∀u ∈ H
1
2 (Γ)d, ∀f ∈ H− 1

2 (Γ)d, γ ≥ 0, (41)

which, by definition, coincides with D in the space H
− 1

2∗ (Γ)d. In the operator D, the
zeroth eigenvalue of D (corresponding to the eigenvector n) is substituted with γ/(n,n).

2When d = 2, R := span

{(
1
0

)
,

(
0
1

)
,

(−y
x

)}
, while when d = 3 we have that R :=

span

⎧⎨
⎩
⎛
⎝1
0
0

⎞
⎠ ,

⎛
⎝0
1
0

⎞
⎠ ,

⎛
⎝0
0
1

⎞
⎠ ,

⎛
⎝−y

x
0

⎞
⎠ ,

⎛
⎝ 0
−z
y

⎞
⎠ ,

⎛
⎝ z

0
−x

⎞
⎠
⎫⎬
⎭.
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A positive γ ensures invertibility of the Dirichlet matrix in the finite dimensional spaces
approximating H

1
2 (Γ)d and H− 1

2 (Γ)d.
The extended operator D can be used to define two Dirichlet to Neumann maps,

DN int
Γ and DNext

Γ , where the Dirichlet data ug is given, and we want to find out the
tractions f := σn = DNΓug on Γ. In both cases we obtain Fredholm integral equations
of the first kind given by

DN int
Γ := D−1

(cI +N )

DNext
Γ := D−1(

(1− c)I −N
)
.

(42)

We remark here that in the Dirichlet to Neumann maps of Equation (42), the extended
operator D will provide specific uniquely determined solutions of the integral equations,
whereas the original Stokes Dirichlet problem still has the null space span(n) (see, for
example, [22]).

Among all possible Neumann solutions (which are not unique, since the pressure
is known up to a constant), the ones which are selected by the Dirichlet to Neumann

maps (42) are those for which the normal traction f is in the space H− 1
2 (Γ)d∗.

An effective way to discretize the boundary integral equations (33) and (34) and the
resulting maps given in Equation (42) is given by the boundary element method, in which
u and f are sought for in a finite dimensional space defined on Γ, and the Dirichlet to
Neumann maps become matrices.

Here we exploit the isogeometric NURBS spaces defined in Section 2 to define the
finite dimensional spaces, as well as the discrete versions of the boundary integral equa-
tions (33) and (34) and of the Dirichlet to Neumann maps (42). The integration in
both operators is desingularized extending the techniques introduced in [27, 26, 43] for
standard boundary element methods to the isogeometric approximation introduced here.

5. Isogeometric collocation BEM for Stokes flows

We assume the boundary Γ of the domain Ω to be a closed curve if d = 2 or a closed
surface if d = 3. Once a CAGD description of Γ is available, we can readily define the
isogeometric vector space V d

h (Γ) of finite dimensional functions of d components defined
on Γ using the tools introduced in Section 2.

When the boundary Γ is piecewise smooth (and therefore also the finite dimensional
space V d

h (Γ) is piecewise smooth), we can exploit the higher regularity for the velocity
fields and for the normal traction fields and the boundedness of the single and double
layer operators expressed in Equation (36) to give sense to point-wise evaluation of the
single and double layer operators defined in Equations (30) and (31).

This process allows one to obtain square matrices that approximate the single and
double layer operators, by collocating the boundary integral equations (33) or (34) at n
distinct collocation points {xα}nα=1, and restricting both u(x) and f(x) to live in the

finite dimensional space V d
h (Γ) ⊂ H

1
2 (Γ)d ⊂ H− 1

2 (Γ)d:

c(xα)uint, jτ j(xα) +
(
Nuint, jτ j

)
(xα) =

(
Df int, jτ j

)
(xα) (43)(

1− c(xα)
)
uext, jτ j(xα)− (

Nuext, jτ j
)
(xα) =

(
Dfext, jτ j

)
(xα) (44)
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where summation is implied over j. In what follow we use greek upper indices to indicate
an index running from zero to n−1, identifying a specific collocation point xα. For each
collocation point xα, Equations (43) and (44) are systems of d equations in 2dn unknowns
(the dn coefficients of u and the dn coefficients of f), which can be compactly rewritten
as

CMuint +Nuint = Df int (45)

(I − C)Muext −Nuext = Dfext, (46)

where the (square) matrices M , N , D and C are given by

M (αd+a) (j) := δabτ
j
b (x

α) (47)

N (αd+a) (j) :=
1

4(d− 1)π

∫
Γ

Tabc(xα − y)τ jb (y)nc(y) dΓy (48)

D(αd+a) (j) :=
1

4(d− 1)πη

∫
Γ

Sab(x
α − y)τ jb (y) dΓy (49)

Cij := −δij

∑dn−1
k=0 N ik∑dn−1
k=0 M ik

= −δij

dn−1∑
k=0

N ik (50)

and the index α runs from zero to n − 1, a, b, c run from zero to d − 1 and j runs from
zero to dn− 1. Summation is implied over the spatial coordinate indices a, b, c and δij is
the Kronecker delta, which is one if i is equal to j, and zero otherwise.

Equation (50) is a numerical way to compute the fraction of solid angle by which
the collocation points xα see the domain. This technique is usually known as the Rigid
Body Mode (RBM) or rigid mode technique (see, for example, [16]), and it exploits the
boundary integral identity (39) for rigid modes to compute exactly the coefficients c(xα).

A common approach for the choice of the collocation points is given by the Greville
abscissæ (see, for example, [19], or [8]), which are defined as

xα := x(sα), sαi :=

∑p
j=1 k

i
αi+j

p
, (51)

where α is the multi-index associated with the linear global index α and kiαi+j are the
knots of the knot vector Θi. Care should be taken in order to avoid collapsing collocation
points, which would result in matrices with identical lines being produced.

6. Desingularization of the boundary integral equations

If we consider the interior problem defined in Equation (33), which we denote here
for convenience after dropping the int superscript,

cu+Nu = Df in H
1
2 (Γ), (52)

we observe that the operators N and D are defined through a Cauchy principal value
integral, and a weakly singular integral, which arise from using Green’s theorem and the
fundamental solutions to formulate the boundary integrals.
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In three dimensions these are integrals that contain a (1/r) or stronger singularity
around the source points. Numerical integration of such singularities is a delicate and
ill-conditioned problem, which requires a careful treatment (see, for example, [23] or [45]
for an overview of the available techniques).

In [30, 32] it was shown how these singularities can be safely considered artifacts of the
convolution with the fundamental solutions. They are not essential to boundary integral
formulations, because they can be removed by exploiting the fundamental identities
coming from the physical interpretation of the problem. The idea behind these techniques
stems from the fact that we know the exact solutions to Equation (52) for all pairs uR,fR

which represent pure translations and rotations, and clever choices of these solutions can
be superimposed on the unknown pair u,f to remove the singularities of both kernels.

In [27, 26, 43] this idea was implemented in a standard BEM code, where the authors
show that standard quadrature rules can be used in the resulting boundary integral
equations, which become nonsingular.

We adapt these techniques to the collocation isogeometric approximation of three
dimensional boundary integral equations for Stokes flow, taking into account the non
interpolatory nature of the isogeometric basis, and compare our results with analytical
results for simple geometries.

Given a solution u and f of the interior problem (52), and a point y on a smooth
portion of Γ, if u and f are continuous on y, we can consider the linear velocity

w(x;u,f ,y) := u(y) +Q(f(y),n(y))(x− y), (53)

where the (constant) matrix Q(f ,n) is defined as

Q(f ,n) := f ⊗ n− 1

4
(f · n)(I + n⊗ n

)
. (54)

The divergence of w vanishes everywhere, the pressure is identically zero, and we can
express the associated normal stress g as

g(x;u,f ,y) := η
(
Q(f(y),n(y)) +Q(f(y),n(y))T

)
n(x). (55)

For any point y on a smooth portion of the boundary, the pair w and g satisfies the
boundary integral equation (52), and it is such that the values of w and g computed in
x = y are equal to u(y) and f(y). In particular we have (see the Appendix in [27] for
the details of the proof):

lim
x→y

(
w(x;u,f ,y)− u(y)

)
= O(|x− y|2)

lim
x→y

(
g(x;u,f ,y)− f(y)

)
= O(|x− y|), (56)

which is exactly what is needed to cancel the singularities of the operators N and D
when evaluated at the point y in Equation (52).

If we repeat this construction for each collocation point xα, and define

wα(x) := w(x;u,f ,xα)

gα(x) := g(x;u,f ,xα)
(57)
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we can subtract from the boundary integral equation for u and f evaluated at the col-
location points xα the corresponding boundary integral equation for wα(x) and gα(x),
to obtain a non-singular formulation of the boundary integral equation (thanks to prop-
erties (56)) given by

N (u−wα) = D(f − gα) in H
1
2 (Γ), (58)

where the term c(u(xα)−wα(xα)) vanishes, because the two velocities coincide in xα.
If we evaluate the boundary integral equation (58) at the collocation point xα, then the
singularities in the integrals which define N and D are compensated by (u(x)−wα(x))
and (f(x) − gα(x)) which go to zero when x → xα with the right powers, leaving us
with a formulation which does not require any singular integration.

In Equation (58), the functions wα and gα depend linearly on the solution u,f . In
particular we can define the following three operators:

M(y) :C0(Bε(y) ∩ Γ) �→ �d(
M(y)u

)
(x) = u(y)

W(y) :C0(Bε(y) ∩ Γ) �→ H
1
2 (Γ)(

W(y)f
)
(x) = Q(x;f(y),n(y))(x− y)

G(y) :C0(Bε(y) ∩ Γ) �→ H− 1
2 (Γ)(

G(y)f
)
(x) = η

(
Q(x;f(y),n(y)) +Q(x;f(y),n(y))T

)
(59)

where Bε(y) is the ball of radius ε centered in y, and ε is arbitrarily small, such that its
intersection with Γ remains smooth.3 Using these operators we can rewrite w and g as

wα = M(xα)u+W(xα)f

gα = G(xα)f .
(60)

If we leave the term of wα that depends on u on the left hand side in Eq. (58), and
move the term that depends on f on the right hand side, we obtain

N (u− u(xα)) = D(f − gα) +NQα(x− xα) in H
1
2 (Γ), (61)

which can be rewritten using the operators in Equation (60) as

N
(
I −M(xα)

)
u =

(
D
(
I − G(xα)

)
+NW(xα)

)
f in H

1
2 (Γ). (62)

If we discretize directly Equation (62) instead of Equation (52), we obtain a non-
singular formulation of the boundary integral equations that can be expressed in the
form

Hu = Lf , (63)

3This assumption implies, in particular, that collocation points should not be positioned on corners,
since in that case the normal would not be uniquely defined, and the present technique would not be
applicable.
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where the entries of the matrices H and L are given by

H(dα+a)(j) = ea ·
(
N (I −M(xα))τ j

)
(xα)

L(dα+a)(j) = ea ·
((

D(I − G(xα)) +NW(xα)
)
τ j

)
(xα).

(64)

In the definition (64), we observe that all operators are linear, and allow us to rewrite
the system as

Hu := (N + CM)u = (D +BM)f =: Lf , (65)

where the matrices H and L can be constructed a posteriori with elementary linear
algebra operations starting from the matrices M , N and D defined in Equations (47–
49), where the integrations are computed using standard quadrature formulas, ignoring
the inaccuracies that will be accumulated around the diagonals of N and D.

In particular, we have

(CM)(dα+a)(j) = ea ·
(−NM(xα)τ j

)
(xα)

(BM)(dα+a)(j) = ea ·
((−DG(xα) +NW(xα)

)
τ j

)
(xα),

(66)

where the matrix C is diagonal and the matrix B is composed of n blocks of dimension
d× d on the diagonal.

In a way that is very similar to the rigid body mode or rigid mode technique [16], we
exploit the fact that, by construction, the final system has to solve exactly the dn pairs
of solutions wα and gα associated with the basis functions of Vh.

For a given basis function τ i, its associated pair wα and gα will be different from
zero only if xα belongs to its support, therefore the only entries of the matrices D and
N that will be corrected are those around the diagonal. Explicit calculations of B and
C will be given below.

This process is easily implemented when the finite dimensional space is of Lagrangian
type, i.e., when φβ(xα) = δβα. In this case the singular diagonal blocks of the matricesN
and D can be expressed in terms of the remaining parts of the same matrices, exploiting
the formulation (58), as shown in [43].

In the isogeometric case, however, the basis functions are not of interpolatory type,
and the a posteriori implementation requires a little more attention, hence the corrections
in the forms CM and BM . Notice that on the left hand side we obtain the same kind
of indirect regularization that was used in Equation (50).

In order to compute the B matrix, we start with the consideration that the value of
the a-th coefficient of the NURBS function u(x) in the point xα is obtained by reading
the dα + a column of the matrix-vector multiplication between M and the vector u of
coefficients defining u(x):

(Mu)(dα+a) = ua(x
α). (67)

In the case of Lagrange finite dimensional spaces, the collocation matrix M is the
identity matrix, and the procedure outlined in [43] can be applied directly. For an
isogeometric collocation boundary element discretization, the matrices N , D and M
should be multiplied with vectors of coefficients, not nodal values. We exploit the well
known property of NURBS functions, by which interpolation of the control polygon
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commutes with affine transformations to express the coefficients defining the dn pairs of
functions wα and gα as

W (dβ+a)(dα+b) =
d−1∑
c=0

Qb,α
ac (cdβ+c − xα

c )

G(dβ+a)(dα+b) =
d−1∑
c=0

η(Qb,α
ac +Qb,α

ca )n̄dβ+c,

(68)

where n̄ is the L2 projection of the normal in the NURBS space, c is the control polygon
that defines the geometry, τ are the basis functions of Vh and the matrices Qa,α are given
by

Qa,α := ea ⊗ n(xα)− 1

4
na(x

α)
(
I + n(xα)⊗ n(xα)

)
. (69)

The isogeometric regularization of the matrices N and D through the matrices C
and B can then be computed as

Cij := −δij

dn−1∑
k=0

N ik

B(dα+i)(dα+j) =
dn−1∑
a=0

(
−D(dα+i)(a)G(a)(dα+j) +N (dα+i)(a)W (a)(dα+j)

)
.

(70)

The correction applied to the system by the matrices C and B takes into account
the knowledge of the exact solutions wα and gα in the point xα to correct the singular
entries in N and D, similarly in spirit to what is done in the rigid body technique.

For this technique to be accurate and efficient, quadrature formulas that guarantee
an accurate integration of the non singular portion of Γ should be used.

7. Numerical Verification

One of the advantages of using NURBS basis functions for the geometry description,
is the possibility to represent exactly conic curves. In this section we compare several
numerical experiments with known analytical results for spheroids in uniform flows, using
both standard integrations (based on the works by Lachat and Watson [28] and by
Telles [45]) as well as the techniques exposed in Section 6.

A prolate spheroid of eccentricity e :=
√

1− (a/b)2 is defined as the surface of rev-
olution around the z axis of an ellipse with semi-minor and semi-major axes a and b,
implicitly defined by the equation

x2 + y2

a2
+

z2

b2
= 1, a ≤ b. (71)

We indicate with λ the ratio b/a ≥ 1, and we fix the volume of the spheroid to be
equal to that of a sphere with unit radius, corresponding to the choice λ = 1, a = b = 1.

In [7] it is argued that Gaussian quadrature rules may not be efficient in isogeometric
analysis, since they do not exploit the interelement regularity which is typical of B-Splines
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and NURBS. Efficient rules are devised in [7] for the integration of mass and stiffness
matrices in isogeometric analysis.

In the case of boundary integral operators, however, the integrands contain non linear
terms depending on different powers of the distance between the quadrature point and
the evaluation point, and the quadrature rules which have been devised there might not
be optimal in this case.

In our first set of experiments, we show how in non-singular boundary integral equa-
tions, i.e., where the singularity is far away from the integration surface, in some cases
standard Gaussian quadrature rules fail to deliver a convergence rate which is indepen-
dent on the geometry. On surfaces with high curvatures this is even more evident than
in standard IGA analysis, and the authors are currently working on devising alternative
quadrature methods that will provide optimal convergence results for standard integrals
independently on the curvature.

This consideration is common to all IGA-BEMmethods, not only to the one presented
in this paper, since Gauss quadrature rules are still the de-facto standard integration
tool for boundary element methods in all cases where the singularity is far away from
the singularity.

When implementing a boundary element approximation, the following crucial points
should be taken in consideration, both in standard BEM as well as in IGA-BEM:

1. An efficient and accurate integration method should be used, capable of integrating
to a good degree of accuracy polynomial or rational functions on curved geometries,
weighted with (1/r) or (1/r)2, when r > 0;

2. A strategy should be chosen to integrate in regions which contain a singularity
of type (1/r) or (1/r2), such as the one presented in this paper, or one based on
special quadrature techniques, such as those presented in [45] or [28], or any other
technique to approximate Cauchy Principal value integrals (see, for example, [23]).

In the tests that follow, we asses the quality of standard Gaussian quadrature rules to
address Point 1 in Section 7.1, and we show some critical points which have to be taken
under consideration also when using isogeometric approximations. In Section 7.2 we make
some considerations on the approximation capabilities of the iso-geometric space Vh when
it comes to approximating the normal vector field, discussing some of the consequences
on the convergence of numerical methods. We compare the computational cost between
the technique introduced in Section 6 and standard singular integration techniques in
Section 7.3, while Point 2 above is explored in detail in Section 7.4, where we asses the
accuracy of the method introduced in this paper and we compare it to other integration
methods introduced in [28] and in [45].

The validation and the test cases we present here were implemented in Matlab [33],
using the NURBS toolbox [41]. Similar functionalities, which are tailored mostly for
FE-IGA applications, are available in the GeoPDEs package [18], an open source library
for isogeometric analysis.

7.1. Geometry discretization and quadrature rules for non singular integration

The nonsingular integration method we presented in Section 6 hinges upon the as-
sumption that it is possible to integrate effectively and accurately the non singular parts
of the boundary integral equations.
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Figure 1: Control net and NURBS surface of a prolate spheroid with ratio λ = 1.5.

In this section we present a set of tests on simple geometries with different curvatures
aimed at selecting reasonable quadrature rules for the integration of the non singular
parts of the boundary integral equations, which are crucial for the accuracy of the non-
singular method presented in Section 6, and we quantify the influence of the geometry
on the integration strategies.

We construct our prolate spheroids starting from a circular arc which is deformed to
an ellipse and revolved around the z axis. Figure 1 shows an example of the coarsest
control net used for our simulations, for the case λ = 1.5. An exact representation of
these conic curves can be obtained with quadratic NURBS for both the z-direction, and
the revolution direction. In the z-direction the knot span used to generate the surface of
revolution is given by {0, 0, 0, 1/2, 1/2, 1, 1, 1}, with control points and weights given in
Table 1.

c0 c1 c2 c3 c4

x 0.0000 0.6177 0.8736 0.6177 0.0000
y 0 0 0 0 0
z -1.3104 -0.9266 0 0.9266 1.3104
w 1.0000 0.7071 1.0000 0.7071 1.0000

Table 1: Control points for half ellipse with λ = 1.5. Last line contains the weights of the NURBS basis.

The revolution around the z-axis generates a NURBS surface with 45 control points
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(5 in the z-direction, and 9 in the revolution direction). The knot spans have respectively
3 and 5 non zero segments, which are split at the abscissae of the collocation points, and
then filled with Gauss quadrature points.

Whenever the evaluation point for the boundary integral representation given in
Equations (28) and (29) is not on the boundary Γ of the domain Ω, then the inte-
grands defined in Equations (30) and (31) are regular, and their integration is possible
with standard quadrature rules.

We construct quadrature rules based on tensor product repetitions of standard Gaus-
sian quadrature rules on each non-zero interval of the union between the knot spans and
the abscissas of the collocation points. This choice is driven by the consideration that,
while the desingularization technique introduced in Section 6 produces integrands which
are non singular, in general they are only continuous at the collocation points. Although
Gauss quadrature rules converge also for functions which are only continuous, their con-
vergence speed would suffer from the limited regularity. On the other hand, splitting the
elements at collocation abscissae removes these limitations and allows us to use standard
Gauss quadrature rules with the nonsingular technique introduced in Section 6 in a very
effective way.

In order to select a sufficiently accurate quadrature rules for non-singular integrals,
we test some boundary integral identities on different prolate spheroids, with λ ranging
from one to two, where the singularity is placed inside or outside of the domain. For
comparison purposes only, we also test these identities in the singular case, i.e., when the
evaluation point lyes on the boundary itself. In this case we expect standard quadrature
rules not to converge, and we show in these examples how they actually fail.

We measure the norms of Ei(x), defined as

E0
a(x) :=

1

8π

∫
Γ

Sab(x− y)nb(y) dΓ(y) = 0 ∀x ∈ �d (72)

E1
ab(x) :=

1

8π

∫
Γ

Tabc(x− y)nc(y) dΓ(y) = 0 ∀x ∈ �d \ Ω (73)

E2
ab(x) :=

1

8π

∫
Γ

Tabc(x− y)nc(y) dΓ(y)− δab = 0 ∀x ∈ Ω (74)

E3
ab(x) :=

1

8π

∫
Γ

Tabc(x− y)nc(y) dΓ(y)−
1

2
δab = 0 ∀x ∈ Γ, (75)

in three points, respectively x0 = (1, 2, 3)T ∈ �d \ Ω, x1 = (.1, .3, .2)T ∈ Ω and x2 =
(a, 0, 0)T ∈ Γ, using different number of quadrature points in each interval.

The results are summarised in Figures 2, 3 and 4. A close inspection reveals that the
computed quantities in the exterior part of the domain (i.e., for x = x0) converge at the
same rate almost independently of the spheroid geometry.

In the interior case (i.e., when x = x1) the geometry seems to play a more important
role, and the convergence rates deteriorate when the curvature is higher, even though we
observe a uniform behaviour with respect to the number of quadrature points in each
fixed geometry.

In the singular case (i.e., when x = x2) the deterioration of the accuracy of the inte-
grals is expected and it is the main reason for devising alternative integration techniques,
such as, for example, those presented in [45] or [28], or the ones introduced in Section 6.
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Figure 2: Norm of E0(x0) (left) and E1(x0) for different numbers of quadrature points.
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Figure 3: Norm of E0(x1) (left) and E2(x1) for different numbers of quadrature points.
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Figure 4: Norm of E0(x2) (left) and E3(x2) for different numbers of quadrature points.

Somewhat surprising are the results which emerge from Figure 3, since they show
a quite drastic dependency on the geometry of standard Gauss quadrature rules when
applied to non-singular boundary integrals. This problem is present also in standard
IGA analysis, but it seems more important in boundary integral equations, probably due
to the presence of the 1/rp terms in the integrands. In IGA analysis, Gauss quadrature
rules are sub-optimal, as is shown, for example, in [7]. This is not to say that they do
not converge to the correct solution (as Figure 2 and 3 show) when raising the number of
quadrature points, but simply that some care should be taken when high order quadrature
rules are required (for example when performing p-refinements), since merely increasing
the number of quadrature points may not the best strategy to tackle IGA problems in
general.

The results in Figures 2, 3 and 4 are obtained with the coarse knot span produced
by the NURBS toolbox. If we fix the number of quadrature points to five and eight and
raise the number of control points by k-refinement, i.e., by inserting equally spaced knots
in the knot span, for the worst case scenario of E2(x1), we obtain the results presented
in Figure 5, which shows how also when using relatively cheap Gauss quadrature rules,
we can obtain very good convergence properties (up to machine precision) for the non-
singular boundary integral identities, even though the underline quadrature formulas are
not optimal nor independent on the geometry.

The singular case, shown in Figure 6, is very sensitive with respect to the position
of the singularity (which here coincides with the image of a collocation point), and
deteriorates very quickly when the singular points get closer and closer to the quadrature
points.

A deeper investigation is required, maybe following [7], to exploit the additional
interelement regularity of NURBS basis functions in selecting optimal quadrature rules
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Figure 5: Norm of E2(x1) for 5 quadrature points (left) and for 8 quadrature points (right) for different
numbers of control points.
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Figure 6: Norm of E3(x2) for 5 quadrature points (left) and for 8 quadrature points (right) for different
numbers of control points.
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for nonsingular boundary element method formulations such as the one presented in this
paper. Following the results presented in these tests, we fixed the number of quadrature
points to six and eight and performed the following tests using k-refinement, for both
quadratic and cubic NURBS.

In the authors’ experience, raising the number of Gauss quadrature points over eight
points per direction does not improve significantly the accuracy of any of the considered
methods (at least in the quadratic and cubic cases), while it increases significantly their
computational costs. A possible explanation for this behaviour is presented in the next
section.

7.2. Representation of the normal vector field

A key and delicate aspect of all boundary integral discretizations is the accurate
representation of the normal vector field n in the finite dimensional space Vh.

For iso-geometric spaces defined on non-trivial geometries, the normal vector n does
not belong to Vh. While this may seem like a non-issue, it impacts negatively on both
the convergence properties of the method, and on the possibility to represent exactly
trivial solutions.

Take, for example, a given linear velocity field of the kind

ug = Q(x− xo), (76)

where Q is a constant 3×3 matrix with zero trace and x0 is an arbitrary point. An exact
representation of u on Γ is possible in the finite dimensional space Vh because the space
is iso-geometric, and therefore it can represent exactly affine transformations of points x
on the boundary. The velocity ug is constructed precisely as an affine transformation of
the vector x.

In the interior problem, this velocity admits the zero pressure solution

σg = η(Q+QT ), (77)

where σg is the Cauchy stress solution associated to ug, and it is a constant symmetric
tensor. Since n, in general, does not belong to Vh, the normal stress fg := σgn cannot
belong to Vh either, since it is an affine transformation of n, and therefore it is not
possible to represent exactly the solution to ug.

A general consequence of this lack of representability of the normal n is that the L2

error of the solution will in general be dominated by the error in the approximation of
the normal n (an error which is purely geometric), that is:

‖fh − fexact‖ ∼ ‖nh − nexact‖, (78)

independently on the technique that was used to compute the singular integrals.
To give a sense of what is the influence of this error, we report in Figure 7 the error in

the representation of the normal, when nh is computed as the L2 projection of n, for the
geometries that were introduced in the previous section. The geometry where λ = 1.00
has not been plotted, since that is the only case in which the normal is exact, and the
error remains at the machine level for all numbers of control points.

Independently on the accuracy of the integration techniques, the L2 error between
the computed solution and the exact solution (in which also the normal is computed
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Figure 7: L2 error in the representation of the normal n for different number of control points, with
quadratic NURBS (left) and with cubic NURBS (right), based on standard 8 points Gauss quadrature
rules. Increasing the number of quadrature ponts does not improve the graph any further.

exactly) will be bounded by the values in Figure 7. For the range of numbers of degrees
of freedom we have chosen, the minimum of these values go between 10−3 for quadratic
NURBS and 10−4 for cubic NURBS, with significant differences between large curvature
geometries (λ ∼ 2.00) and small curvature ones (λ ∼ 1).

7.3. Cost comparison with standard singular-quadrature techniques

In this section we compare the computational cost of the desingularization technique
presented in Section 6 when compared to two classical integration methods. The first
one is based on the work by Lachat and Watson [28], while the second exploits Telles
transformations [45]. Both methods are based on singularity removal by local change of
variables.

The principle behind these classical integration techniques is that every collocation
point can be isolated into well separated square boxes, where it occupies the position ξ̄.
An appropriate change of variables can then be introduced, such that

B := [0, 1]d, η : B �→ B, J :=
∂η

∂ξ

η(∂B) ≡ ∂B, detJ > 0 ∀ξ �= ξ̄, detJ |ξ̄ = 0.

(79)

When using this transformation combined with appropriate integration formulas for
the evaluation of singular integrals, the zeroth Jacobian compensates for the singularity
of the kernels.

In the method proposed by Lachat and Watson in [28], each box B is split into
triangles which have one vertex in ξ̄. At the edges of the domain the collocation point
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ξ̄ may be on a vertex or on a edge, in which cases two or three triangles are enough. In
general four triangles are needed around each collocation point.

A standard quadrature formula on the reference square is chosen and mapped to each
of the triangles, by collapsing two vertices of the square on the vertex coinciding with ξ̄.
The final quadrature formula is obtained by glueing together all the patches, it preserves
the accuracy of the original one, and has the characteristic that its Jacobian is zero at ξ̄.
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Figure 8: Singular quadrature formulas based on Lachat-Watson (top) and Telles transformations (bot-
tom) for singularities on the points (1, 1) (left), (.7, 0) (center), and (.2, .3) (right), based on equi-spaced
quadrature rules with 21× 21 points.

A similar procedure is presented by Telles in [45], but there the transformation is
obtained by tensor product from one dimensional quadratic or cubic transformations
which have zero derivatives in ξ̄. The resulting quadrature formulas are cheaper to
evaluate with respect to the Lachat-Watson ones, and when they are based on cubic
transformations they can also have zero second order derivatives at ξ̄, which contributes
in improving their effectiveness in singular integrations.

Examples of such constructions are outlined in Figure 8, where we pick three possible
locations of the singularities, and we construct both a simple Lachat-Watson quadrature
formula and a Telles quadrature formula starting from the tensor product of a 21 equi-
spaced points quadrature rules (only for illustrational purposes in the Figures).

By construction, the Lachat-Watson technique is well suited for weakly singular in-
tegrals, and its effectiveness is usually increased by raising the number of quadrature
points in the angle direction, or by combining it with a Telles transformation along the
radial direction, which would allow to have also second order derivatives at ξ̄ equal to
zero.
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Moreover, in the Lachat-Watson case the singularity is constrained to be inside the
reference square, while in the Telles quadrature it can be at arbitrary locations, which
makes it also usable for quasi-singular integrals, i.e., for those integrals in which the
singularity is close to, but outside, the panel where the integration is occurring. In the
examples depicted in Figure 8, the quadrature rules based on Telles transformation are
respectively two, three and four times cheaper than the Lachat-Watson ones.
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Figure 9: Average cost between standard IGA-BEM and non-singular IGA-BEM for 8 quadrature points.

In Figure 9 we present a comparison of the cost associated to the various phases of
the numerical integration procedure using Lachat-Watson integration, Telles integration
and non-singular integration. These phases can be summarised as follows

phase 1: Pre-caching of all basis function values and gradients in each of the quadrature
points and in each of the collocation points;

phase 2: Integration of the boundary integral equations into system matrices;

phase 3: Linear system solution.

Only phase one and phase two are plotted, since there are no significant differences
in phase 3 (the linear system is of the same size in all cases). All methods have been
implemented without any special optimization. In particular, we observe that a much
greater effort is required in the evaluation of the basis functions if singular quadrature
rules are used, since there have to be a specialisation of the quadrature rule for each panel
of integration, resulting in a much higher number of basis function evaluations. The
difference in total execution time is in the order of one order of magnitude faster when
using standard integration and the desingularization technique introduced in Section 6.

These results are the average of five simulations, on a Intel Xeon quad core machine
with 8GB of memory, running Linux operating system, where we maintained the com-
parisons as fair as possible, i.e., we maintained the number of quadrature points for the
generating Gauss quadrature rules equal to eight in all cases, even though it is well-known
for the Lachat-Watson regularization technique that more integration points should be
chosen in the angle direction than in the radial direction.
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7.4. Accuracy comparison on translating prolate spheroids

Prolate spheroids are a suitable test case for the validation of boundary integral
methods, since their traction is known analytically (see, for example, [13]), and the
characteristics of the solution allow one to test the behavior of the numerical scheme for
high curvatures near the axis of symmetry as well as away from it, by simply modifying
the spheroid eccentricity.

When such an object moves uniformly in a quiescent Stokes flow with constant velocity
U = uxex + uzez, and no-slip boundary conditions on the surface of the body, the total
drag it experiences can be expressed as

F = 6πνb(uxcxex + uzczez), (80)

where

cx :=
16

3
e3

(
2e+ (3e2 − 1) ln

1 + e

1− e

)−1

,

cz :=
8

3
e3

(
−2e+ (1 + e2) ln

1 + e

1− e

)−1

.

(81)

In this section we show the results for the three different three-dimensional solver,
testing both different geometries as well as different angles of translation. In particular
we report the error in the drag experienced by the sphere, and by spheroids with ratios
ranging from λ = 1 to λ = 2, for different refinement levels and fixing the number of
quadrature points per segment to be equal to eight.

The velocities are selected to be

U i = cos(θi)ex + sin(θi)ez, θi :=
π

2

i

9
, i = 0, . . . , 9, (82)

and we measure the relative errors in percentage, defined as

Ei
F := 100

|F h − F (θi)|
|F (θi)| . (83)

An example solution is presented in Figure 10, where we show in color the magnitude
of the velocity field for a prolate spheroid in uniform flow, together with the projection
on three orthogonal planes of the streamlines in the case θ = θ8, and λ = 1.5. Detailed
error results are presented in Table 2 for λ = 1, Table 3 for λ = 1.5 and Table 4 for λ = 2
when using and quadratic NURBS, and integrating with the non-singular approach.

We observe that, with respect to the results presented in [27] and [43], we obtain much
smaller errors in all cases. A summary of the worst case scenario using Lachat Watson
integration, Telles integration and the non-singular method is shown in Figures 11, 12
and 13 where the behaviour of the maximum error under k-refinement in the quadratic
and cubic cases is shown.

We observe that the results obtained with the Lachat Watson quadrature technique
(Figure 11) is very robust in terms of dependency on the geometry, but it is also the one
that attains the highest errors, when compared both with the Telles method (Figure 12)
and with the non-singular method (Figure 13).
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Figure 10: Streamlines of the solution with θ = θ8 and λ = 1.5.

18θ/π n = 91 n = 231 n = 325 n = 435 n = 561

1 1.66 · 10−2 % 1.35 · 10−4 % 9.54 · 10−5 % 6.16 · 10−4 % 3.88 · 10−5 %
2 1.64 · 10−2 % 1.64 · 10−4 % 9.40 · 10−5 % 6.12 · 10−4 % 4.15 · 10−5 %
3 1.59 · 10−2 % 2.28 · 10−4 % 8.97 · 10−5 % 5.97 · 10−4 % 4.83 · 10−5 %
4 1.51 · 10−2 % 3.01 · 10−4 % 8.28 · 10−5 % 5.74 · 10−4 % 5.73 · 10−5 %
5 1.41 · 10−2 % 3.71 · 10−4 % 7.34 · 10−5 % 5.45 · 10−4 % 6.67 · 10−5 %
6 1.29 · 10−2 % 4.33 · 10−4 % 6.19 · 10−5 % 5.12 · 10−4 % 7.54 · 10−5 %
7 1.17 · 10−2 % 4.84 · 10−4 % 4.86 · 10−5 % 4.79 · 10−4 % 8.27 · 10−5 %
8 1.05 · 10−2 % 5.22 · 10−4 % 3.42 · 10−5 % 4.50 · 10−4 % 8.82 · 10−5 %
9 9.76 · 10−3 % 5.46 · 10−4 % 1.97 · 10−5 % 4.30 · 10−4 % 9.17 · 10−5 %
10 9.47 · 10−3 % 5.54 · 10−4 % 1.09 · 10−5 % 4.23 · 10−4 % 9.28 · 10−5 %

Table 2: Spheroid ratio λ = 1.00. Ei
F for different angles θi across the vertical directions, and for different

numbers of control points across the horizontal direction, using non-singular integration method, based
on 8 points Gauss quadrature.

In the non-singular method, the error maxi |Ei
F | does not seem to have a clear con-

vergence rate, although it is consistently lower than both Lachat Watson method and
Telles method. In view of the considerations made in Section 7.2, this is not surprising,
since both the Telles method and the nonsingular one reach a level of accuracy which
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18θ/π n = 91 n = 231 n = 325 n = 435 n = 561

1 2.16 · 10−2 % 3.49 · 10−3 % 1.49 · 10−3 % 6.42 · 10−4 % 1.76 · 10−4 %
2 2.19 · 10−2 % 3.45 · 10−3 % 1.48 · 10−3 % 6.42 · 10−4 % 1.74 · 10−4 %
3 2.27 · 10−2 % 3.33 · 10−3 % 1.44 · 10−3 % 6.42 · 10−4 % 1.67 · 10−4 %
4 2.39 · 10−2 % 3.13 · 10−3 % 1.38 · 10−3 % 6.42 · 10−4 % 1.55 · 10−4 %
5 2.54 · 10−2 % 2.85 · 10−3 % 1.29 · 10−3 % 6.42 · 10−4 % 1.39 · 10−4 %
6 2.69 · 10−2 % 2.50 · 10−3 % 1.19 · 10−3 % 6.42 · 10−4 % 1.19 · 10−4 %
7 2.84 · 10−2 % 2.09 · 10−3 % 1.08 · 10−3 % 6.42 · 10−4 % 9.38 · 10−5 %
8 2.96 · 10−2 % 1.67 · 10−3 % 9.77 · 10−4 % 6.42 · 10−4 % 6.54 · 10−5 %
9 3.03 · 10−2 % 1.30 · 10−3 % 8.99 · 10−4 % 6.42 · 10−4 % 3.48 · 10−5 %
10 3.06 · 10−2 % 1.15 · 10−3 % 8.70 · 10−4 % 6.42 · 10−4 % 1.13 · 10−5 %

Table 3: Spheroid ratio λ = 1.50. Ei
F for different angles θi across the vertical directions, and for different

numbers of control points across the horizontal direction, using non-singular integration method, based
on 8 points Gauss quadrature.

18θ/π n = 91 n = 231 n = 325 n = 435 n = 561

1 1.75 · 10−2 % 2.45 · 10−4 % 3.41 · 10−4 % 1.70 · 10−4 % 7.31 · 10−4 %
2 1.73 · 10−2 % 7.91 · 10−4 % 3.39 · 10−4 % 1.79 · 10−4 % 7.24 · 10−4 %
3 1.68 · 10−2 % 1.52 · 10−3 % 3.34 · 10−4 % 2.04 · 10−4 % 7.00 · 10−4 %
4 1.60 · 10−2 % 2.24 · 10−3 % 3.24 · 10−4 % 2.40 · 10−4 % 6.61 · 10−4 %
5 1.47 · 10−2 % 2.93 · 10−3 % 3.12 · 10−4 % 2.80 · 10−4 % 6.05 · 10−4 %
6 1.32 · 10−2 % 3.57 · 10−3 % 2.96 · 10−4 % 3.20 · 10−4 % 5.33 · 10−4 %
7 1.13 · 10−2 % 4.13 · 10−3 % 2.79 · 10−4 % 3.57 · 10−4 % 4.47 · 10−4 %
8 9.36 · 10−3 % 4.57 · 10−3 % 2.63 · 10−4 % 3.87 · 10−4 % 3.52 · 10−4 %
9 7.72 · 10−3 % 4.85 · 10−3 % 2.52 · 10−4 % 4.06 · 10−4 % 2.68 · 10−4 %
10 7.04 · 10−3 % 4.95 · 10−3 % 2.47 · 10−4 % 4.13 · 10−4 % 2.30 · 10−4 %

Table 4: Spheroid ratio λ = 2.00. Ei
F for different angles θi across the vertical directions, and for different

numbers of control points across the horizontal direction, using non-singular integration method, based
on 8 points Gauss quadrature.

is lower than the error in the representation of the normal, and further improvement
cannot be achieved.

For all considered geometries and combination of collocation points, the computed
error with the non-singular method is between 10−2% and 10−4% for the quadratic case
and between 10−3% and 10−4% for the cubic case at a fraction of the computational
cost (see Figure 9). The error obtained with the Lachat Watson technique is about two
orders of magnitude worse of both the Telles and the non-singular case, at a much higher
computational cost.

Figure 11 seems to suggest that the simplistic implementation we made of the Lachat
Watson technique is not a suitable choice for IGA-BEM implementations of stokes flows.
As kindly suggested by one of the reviewers, it seems that eight quadrature points on
both the radial and angle direction are not enough to reach satisfactory convergence
results with this technique, and a higher number of quadrature points should be used
in the angle direction. The additional computational cost associated with this choice,
however, makes it a less appealing solution if compared with Telles transformation or
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Figure 11: Maximum error Ei
F across all angles θi, for different number of control points, with quadratic

NURBS (left) and with cubic NURBS (right), using Lachat Watson quadrature rules based on 8 points
Gauss quadrature.
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Figure 12: Maximum error Ei
F across all angles θi, for different number of control points, with quadratic

NURBS (left) and with cubic NURBS (right), using Telles quadrature rules based on 8 points Gauss
quadrature.
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Figure 13: Maximum error Ei
F across all angles θi, for different number of control points, with quadratic

NURBS (left) and with cubic NURBS (right), using non-singular quadrature rules based on 8 points
Gauss quadrature.

with the nonsingular technique introduced in Section 6.
Figures 12 and 13 show that both Telles and the non-singular method presented in

this paper are suitable choices for accurate IGA-BEM approximations of Stokes flow,
since both methods reach a level of accuracy which is comparable with the error in the
approximation of the normal vector field n, presented in Figure 7.

Comparing the behaviour of the quadratic approximations versus the cubic ones in
Figures 11, 12 and 13 seems to suggest that using p refinement would lead to much lower
values of the error while keeping the same number of control points (see, for example [9]).
This, however, requires a careful treatment of the quadrature rules to ensure that the
higher polynomial degree in both the geometry and finite dimensional space is matched
by higher regularity in the integration formulas in order to fully benefit from higher order
convergences.

For the case θ = 0, we asses the convergence of all methods in the L2 norm using the
analytical solution. Given a unit velocity field directed along the axis of symmetry, the
analytical solution for the normal stress density σn = f = fzez is directed along the z
axis and is given by:

fz = 2
e3

(1− e2)1/6
(

1+e2

2 ln
(
1+e
1−e

)− e
) 1√

1− e2z2/b2
. (84)

In Figures 14, 15 and 16 we present the plot of the error in the L2 norm of the normal
stress density f during k refinement for quadratic and cubic NURBS for all considered
methods.
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Figure 14: L2 error for different number of control points, with quadratic NURBS (left) and with cubic
NURBS (right), using Lachat Watson integration method, based on 8 points Gauss quadrature.
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Figure 15: L2 error for different number of control points, with quadratic NURBS (left) and with cubic
NURBS (right), using Telles integration method, based on 8 points Gauss quadrature.

The technique introduced in Section 6 is independent on the quadrature rules which
are used to integrate the boundary integral equations, and can be used also with standard
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Figure 16: L2 error for different number of control points, with quadratic NURBS (left) and with cubic
NURBS (right), using non-singular integration method, based on 8 points Gauss quadrature.
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Figure 17: Maximum error Ei
F across all angles θi, for different number of control points, with quadratic

NURBS (left) and with cubic NURBS (right), using Lachat Watson+non-singular quadrature rules based
on 8 points Gauss quadrature.

integration techniques.
In Figures 17 and 18 we plot the error maxi |Ei

F | when using a combination of the non-
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Figure 18: Maximum error Ei
F across all angles θi, for different number of control points, with quadratic

NURBS (left) and with cubic NURBS (right), using Telles+non-singular quadrature rules based on 8
points Gauss quadrature.
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Figure 19: L2 error for different number of control points, with quadratic NURBS (left) and with
cubic NURBS (right), using Lachat Watson+non-singular integration method, based on 8 points Gauss
quadrature.
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Figure 20: L2 error for different number of control points, with quadratic NURBS (left) and with cubic
NURBS (right), using Telles+non-singular integration method, based on 8 points Gauss quadrature.

singular integration technique of Section 6 with the Lachat Watson and Telles quadrature
techniques. Comparing the results with Figures 11, and 12 we observe a drastic improve-
ment on the error, with a negligible additional computational cost.

In Figure 19 and 20 we plot the error in the L2 norm when combining our technique
with the classical ones.

When used as a standalone method, the desingularization technique (Figures 13
and 16) follows very closely the error in the representation of the normal (Figure 7),
which was argued to be an intrinsic limit of the finite dimensional space Vh (Section 7.2).
Telles method (Figures 12 and 15), on the other hand, seems to reach the limit of the
geometrical error slightly faster with respect to the nonsingular technique. The higher
accuracy, however, is reached at a much higher computational cost (Figure 9), which is
one order of magnitude higher than the cost associated to the nonsingular technique.

The best results in terms of accuracy are obtained when one combines our desingular-
ization technique with one of the standard quadrature techniques, as in the cases LW+NS
and T+NS (Figures 17–20). The method we propose can be successfully used to tackle
IGA-BEM problems, both as a standalone method with classical Gauss quadrature rules,
as well as in combination with integration techniques typical of BEM implementations,
such as the Lachat Watson technique or the Telles one.

8. Conclusions

Isogeometric boundary element methods for Stokes flow are very promising in terms
of accuracy, and produce consistently better results than the standard boundary element
method. We find that the nonsingular IGA-BEM based on quadratic NURBS achieves
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an accuracy which is around 10−3% already with 231 nodes in a set of problems reported
in [43], where 642 nodes were necessary for an accuracy of about .5% (more than one
order higher).

The method proposed in this paper extends the ideas of Klaseboer et al. [27, 26,
43] to isogeometric boundary element methods (IGA-BEM). The main advantage of
this approach comes from the true desingularization of the boundary integral equations,
thanks to which it is possible to use standard quadrature formulas to assemble the system
matrices. A model problem for three dimensional Stokes flows was presented, showing
very good agreement with known analytical solutions. Although the superior convergence
properties of IGA-BEM is evident, a deeper investigation on the quadrature formulas is
desirable, in order to fully exploit the potential of isogeometric analysis (see, for example,
[7]).

The non-singular technique presented in this paper delivers approximation properties
which are similar both qualitatively and quantitatively to the ones obtained with Telles
algorithm, at a fraction of the computational cost. Moreover, it outclasses another
classical method which is often used in standard BEM implementations (the Lachat
Watson technique) but which fails to deliver satisfactory results in the iso-geometric
context, unless one is willing to pay a much higher computational cost.

Although we could not observe clear L2 convergence rates in the examples we pre-
sented, we believe that these results depend mostly on the approximation properties of
the iso-geometric finite dimensional spaces, which lack the capability to represent exactly
the outer normals. Despite this fact, the combination of the non-singular method with
standard singular integration techniques, yields a significant increase both in accuracy
and robustness of standard IGA-BEM methods.

In [32] and [30] it is argued that this kind of regularization of the boundary integral
integrations requires the boundary Γ to be of class C1. We are currently investigating the
convergence properties of both the regularization presented in Section 6 and of standard
IGA-BEM techniques when applied to geometries which contain corners and edges.

We are planning applications of the method proposed in this paper to model full
three-dimensional flows induced by swimming bacteria and unicellular organisms, ex-
tending [1, 4, 3, 2, 6] and to model the relaxation dynamics and the flow around three-
dimensional lipid bilayer membranes, extending [5, 38]. The flexibility and the accuracy of
the nonsingular IGA-BEM makes it also a good candidate to replace or complement more
complex fluid-structure interaction methods, such as the ones presented in [34, 21, 11].

Acknowledgements

Marino Arroyo acknowledges the support of the European Research Council under
the European Community’s 7th Framework Programme (FP7/2007-2013)/ERC grant
agreement nr 240487 and the Generalitat de Catalunya for the prize “ICREA Academia”.

The authors are grateful to the anonymous reviewers for their helpful comments.

References

[1] F. Alouges, A. DeSimone, and L. Heltai. Numerical strategies for stroke optimization of axisym-
metric microswimmers. Mathematical Models and Methods in Applied Science, 21(02):361–387,
2011.

36



  

[2] F. Alouges, A. DeSimone, and L. Heltai. Optimally swimming stokesian robots. Discrete and
Continuous Dynamical Systems - Series B (DCDS-B), 18(5):11891215, 2013.

[3] F. Alouges, A. DeSimone, and A. Lefebvre. Optimal strokes for low Reynolds number swimmers:
an example. J. Nonlinear Sci., 18(3):277–302, 2008.

[4] F. Alouges, A. DeSimone, and A. Lefebvre. Optimal strokes for axisymmetric microswimmers. The
European Physical Journal E, 28(3):279–284, mar 2009.

[5] M. Arroyo and A. DeSimone. Relaxation dynamics of fluid membranes. Physical Review E,
79(3):031915, 2009.

[6] M. Arroyo, L. Heltai, D. Millán, and A. DeSimone. Reverse engineering the euglenoid movement.
Proceedings of the National Academy of Sciences, 109(44):17874–17879, 2012.
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