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Spontaneous Division and Motility in Active Nematic Droplets
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We investigate the mechanics of an active droplet endowed with internal nematic order and surrounded
by an isotropic Newtonian fluid. Using numerical simulations we demonstrate that, due to the interplay
between the active stresses and the defective geometry of the nematic director, this system exhibits two of
the fundamental functions of living cells: spontaneous division and motility, by means of self-generated
hydrodynamic flows. These behaviors can be selectively activated by controlling a single physical
parameter, namely, an active variant of the capillary number.

DOI: 10.1103/PhysRevLett.112.147802 PACS numbers: 61.30.Jf, 42.70.Df, 87.16.Ka

The goal of understanding the machinery of life has led
in recent years to the ambitious idea of constructing
synthetic minimal cells: chemical machines capable of
reproducing some of the fundamental traits of living cells
such as self-maintaining, duplicating, and passing infor-
mation across generations [1–3]. The first challenge in this
program is to identify the crossover region between
molecular self-assembly and molecular operation [4], a
task that has led to investigate the mechanics of self-
dividing lipid vesicles [5,6] and, more recently, the cou-
pling of self-dividing vesicles with self-replicating nucleic
acids enclosed in the interior of the vesicle [7,8]. Mass
transfer due to hydrodynamic instabilities, such as the
Marangoni effect, has been recently invoked as a possible
route to motility in prebiotic structures [9].
While a description of the general properties of living

matter is beyond the reach of existing theoretical
approaches, the paradigm of active systems has provided
in recent years a promising framework to portray the
emergent mechanical behavior of a number of biological
and bioinspired materials. Active systems are nonequili-
brium assemblies of orientationally ordered self-driven
particles. Each active particle is capable of converting
stored or ambient energy into systematic movement. The
interaction of active particles with each other and with the
surrounding medium gives rise to mechanical stresses and
highly correlated collective motion over large scales
[10–13]. Originally developed for modeling collections
of swimming [14] and crawling cells [15], and later
extended to the cytoskeleton and its components
[10,16,17], the mechanics of active matter has gained
increasing attention in the last decade thanks to its
successes in the modeling of cellular motility, intracellular
movement, and transport [18].
In this Letter we illustrate a remarkable example of cell

mimicry in a two-dimensional active droplet endowed with
internal nematic order and surrounded by an isotropic
Newtonian fluid. Because of the interplay between the
active stresses and the geometry of the nematic director,

which is constrained by the droplet topology, this system
exhibits two of the defining functions of living cells:
spontaneous division and motility, by means of self-
generated hydrodynamic flows. These behaviors can be
selectively activated by controlling a single physical
parameter corresponding to an active variant of the capil-
lary number. As in the case of minimal cell models based
on oil droplets in water [9,19], the purpose of this work is to
explore physical mechanisms leading to cell-like behaviors.
The hydrodynamic equations of an active nematic

medium have been proposed based on phenomenological
arguments [10,11,20,21], or derived from microscopic
models [22–24]. Our system is an incompressible two-
phase fluid consisting of a nematic phase embedded in an
isotropic phase. The two phases have, for simplicity, the
same density ρ, which is then constant throughout the
system. We call v the flow velocity and Q the nematic
tensor field which, for uniaxial nematics in two dimensions,
is given by Qij ¼ Sðninj − δij=2Þ, where n is the nematic
director and 0 ≤ S ≤ 1 is the order parameter representing
the local extent of nematic order.
In order to implement the mechanism of phase separation

we use a diffuse interface method similar to that proposed
in Ref. [25] to simulate two-phase flows in complex fluids.
In this picture the two phases are described by a phase field
−1 ≤ ϕ ≤ 1, such that ϕ ¼ −1 represents the isotropic
phase, ϕ ¼ 1 the nematic phase, and ϕ ≈ 0 the diffuse
interface. The effective capillarity of the interface can be
described starting from a Ginzburg-Landau energy density
of the form

fcap ¼
1

2
κ

�
j∇ϕj2 þ 1

2ϵ2
ðϕ2 − 1Þ2

�
: (1)

This functional favors the separation of the phases into
domains of pure components (i.e., ϕ ¼ �1). The surface
tension Σ of the interface is related to the parameters
appearing in Eq. (1) by Σ ¼ ffiffiffi

8
p

=3ðκ=ϵÞ [25–27]. The
interfacial tension gives rise to a body force of the form
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f cap ¼ −ϕ∇μ [28], where μ ¼ δFcap=δϕ ¼ −κ½Δϕ−
ϕðϕ2 − 1Þ=ϵ2� is an effective chemical potential. This force
is experienced by the system only along the diffuse inter-
face where μ undergoes an abrupt spatial variation.
Furthermore, the incompressibility of the fluid phases
implies d=dt

R
dAϕ ¼ 0 and ∇ · v ¼ 0. The hydrodynamic

equations for the fields ϕ, Q, and the flow velocity v are
then given by [11,21]

Dϕ

Dt
¼ Mκ

�
Δϕ −

ϕðϕ2 − 1Þ
ϵ2

þ ξðϕÞ
�
; (2a)

ρ
Dvi
Dt

¼ ηΔvi − ∂ip − ϕ∂iμþ ∂jσij; (2b)

DQij

Dt
¼ λSuij þQikωkj − ωikQkj þ γ−1Hij; (2c)

whereD=Dt ¼ ∂t þ v ·∇ is the material time derivative,M
is a mobility coefficient, η the viscosity (also assumed to be
the same in both fluids), and p the pressure. The function ξ
is a Lagrange multiplier that guarantees mass conservation:

ξðϕÞ ¼ jϕ2 − 1j
R
dAϕðϕ2 − 1ÞR
dAjϕ2 − 1j : (3)

This form was recently introduced [29] as an alternative to a
more classic nonlocal expression [30], and leads to higher
accuracy in mass conservation by combining both local and
nonlocal terms. In Eq. (2c) uij ¼ ð∂ivj þ ∂jviÞ=2 and
ωij ¼ ð∂ivj − ∂jviÞ=2 are the rate of strain and the vorticity
tensors representing the coupling between orientational
order and flow (with λ the flow alignment parameter [31]).
The molecular field Hij, on the other hand, drives the
relaxational dynamics of the nematic phase (with γ a
rotational viscosity) and can be obtained from the variation
of the total free energy of the nematic phase Fnem ¼R
dAðfLdG þ fancÞ as Hij ¼ −δFnem=δQij. Here, the

Landau–de Gennes free energy density fLdG governs the
behavior of the bulk nematic phase:

fLdG ¼ 1

2
K

�
j∇Qj2 þ 1

δ2
trQ2ðtrQ2 − ϕÞ

�
; (4)

where K is an elastic constant (proportional to the classic
Frank constant) and the second term in Eq. (4) leads to a
second order isotropic-nematic phase transition controlled
by the phase-field ϕ. Since trQ2 ¼ S2=2, Eq. (4) implies
that, where ϕ ¼ −1, fLdG has a minimum for S ¼ 0,
corresponding to the isotropic phase, and for ϕ ¼ 1,
fLdG is minimized by S ¼ ffiffiffiffi

ϕ
p ¼ 1.

The term fanc represents the anchoring energy at the
isotropic-nematic interface. Here we use a diffuse version
of the Nobili-Durand anchoring energy [32]:

fanc ¼
1

2
Wtrðj∇ϕj2Q − AÞ2; (5)

where Aij ¼ ∂iϕ∂jϕ − j∇ϕj2δij=2. The effect of fanc is to
favor a director field n parallel to ∇ϕ (hence normal to the
interface) and the value S ¼ 1 for the nematic order
parameter.
Finally, the stress tensor σ ¼ σr þ σa is the sum of the

elastic stress due to nematic elasticity, σrij ¼ −λSHij þ
QikHkj −HikQkj and of an active contribution σaij ¼ αQij
that describes contractile (α > 0) and extensile (α < 0)
stresses exerted by the active particles in the direction of the
director field.
We have integrated Eqs. (2) numerically in a square

L × L domain with periodic boundary conditions. The
initial configuration consists of a circular droplet of
radius R ¼ L=10, with director field uniformly aligned
and the flow velocity identically zero. The integration is
performed using a vorticity or stream-function finite differ-
ence scheme on a collocated grid of lattice spacing
Δx ¼ Δy ¼ 0.078. The time integration was performed
via a fourth-order Runge-Kutta method with time stepΔt ¼
10−3 [11,21]. To make Eqs. (2) dimensionless, we normal-
ize distance by R, time by τ ¼ γR2=K corresponding to the
relaxation time scale of the nematic phase over the length
scale of the droplet, and stress by the elastic stress
σ ¼ K=R2. All the other quantities are rescaled accord-
ingly. We have focused on the interplay between the surface
tension Σ of the droplet and the contractile active stress
α > 0 and kept the other parameters constant (λ ¼ 0.1,
η ¼ M ¼ 1, W ¼ 1.25, ϵ ¼ δ ¼ 0.15).
It is well known that, in bulk systems, contractile and

extensile active stresses favor, respectively, splayed and
bent configurations of the nematic director through feed-
back mechanisms mediated by the flow [33]. As a
consequence, a uniformly oriented reference configuration
becomes unstable once the internal active stress exceeds a
critical value αc ∼ η=τ [11,21]. In nematic droplets, the
director field is forced to have defects as a consequence of
the disk topology and the normal orientation at the inter-
face. This is achieved by forming two þ1=2 disclinations
approximately located at a distance of order ϵ ¼ δ

ffiffiffiffiffiffiffiffiffiffiffi
W=K

p
from the droplet boundary, see Fig. 1(a) and Supplementary
Material [34]. In passive nematic droplets, the defects repel
each other with a force inversely proportional to their
distance. This repulsion is in turn balanced by surface
tension leading to a slight elongation of the droplet along
the line joining the defects [25].
The scenario outlined above is dramatically altered by

the presence of activity. Fueled by the strong distortion
introduced by a defect, the active stresses give rise to a flow
whose magnitude and direction is controlled by the activity
constant α [35]. For a contractile droplet (α > 0) with
homeotropic boundary, the axisymmetric structure of the
director drives a typical quadrupolar straining flow, causing
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a much more drastic elongation than that produced by the
elastic repulsion alone [Fig. 1(c)].
To characterize the spontaneous deformation we have

measured the extension of the droplet as a function of the
activity parameter α, for various Σ values [Fig. 2(a)]. This
shows a clear linear behavior except for small α values,
where the deformation is mainly dictated by the elastic

repulsion between the defects. This behavior is consistent
with the general picture of drop deformation in a straining
flow [36,37]. According to this, a neutrally buoyant droplet
placed in a shear flow experiences a strain that scales
linearly with the capillary number Ca ¼ ηv=Σ. Now, the
velocity of the flow generated by an active nematic
disclination scales like v ∼ αR=η [35], hence, the linear
dependence of the droplet extension on α. Moreover, by
introducing an active variant of the capillary number,
defined as Caα ¼ αR=Σ, one can rescale the numerical
data and collapse them on the same master curve
[Fig. 2(a), inset].
For larger activity the droplet becomes motile. Like in

the case of active polar droplets [38,39], motility is
achieved by means of a spontaneous splay deformation
arising from the instability of the configuration of lowest
nematic energy. As for static deformations, the droplet
initially elongates as a consequence of the quadrupolar
straining flow driven by the defects [Fig. 1(d)]. In the
configuration of maximal elongation, the director field in
the interior of the droplet is rather uniform, but after some
time it starts to spontaneously splay [Fig. 1(e)]. The splayed
configuration of the director field breaks the axial sym-
metry of the systems and transforms the quadrupolar flow

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1 (color online). The three behaviors of an active nematic
droplet for fixed surface tension Σ ¼ 2.6 and varying activity
obtained from a numerical solution of Eq. (2). (a)–(c) For small
activity the droplet stretches under the effect of the quadrupolar
straining flow generated by the pair ofþ1=2 disclinations. (d)–(f)
For α ¼ 16, the uniformly oriented director field in the interior of
the droplet is unstable to splay and the droplet deforms.
Following the deformation of the droplet, the backflow is no
longer axially symmetric and this causes the droplet to move.
(g)–(i) For very large activity (α ¼ 36), the capillary forces are no
longer sufficient to balance the initial straining flow and the
droplet divides. Movies displaying the time evolution of each
state are included as Supplementary Material [34].

(a)

(b)

FIG. 2 (color online). (a) Extension of the droplet versus
activity for various Σ values. The data collapse on the same
master curve when rescaled with respect to the active capillary
number Caα ¼ αR=Σ (inset). (b) The velocity of a motile droplet
versus activity for various Σ value. When rescaled with respect to
Caα, the data intersect at the critical capillary number Camot

α ≈ 4.5
(inset). The solid lines show the typical square-root law and are
obtained from a fit.
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in a dipolar flow consisting of two large vortices running
across the droplet. This causes the droplet to move at
constant velocity along its symmetry axis [Fig. 1(f)].
Figure 2(b) shows a plot of the center of mass velocity
versus α for various Σ values; due to the initial axial
symmetry, the onset of motion occurs as a supercritical
bifurcation and the velocity follows a typical square-root
scaling law [38]. Unlike the extension curve, the rescaled
velocity data do not collapse on the same curve, but they do
intersect at the critical point [Fig. 2(b), inset]. This implies
that, while activity and surface tension independently affect
the motion of active droplets, the onset of motility is
controlled uniquely by the active capillary number Caα.
With the choice of parameters used here the motility
transition occurs at Camot

α ≈ 4.5. The motility mechanism
described here can be classified as a particular form of
swimming: the droplet generates a flow in an ambient fluid
and uses this to propel itself. In the presence of a substrate,
several alternative motility mechanisms, which do not
involve hydrodynamic flow and are collectively known
as crawling, are possible [40–42].
Motility occurs as the combination of two processes: the

initial elongation of the droplet, driven by the straining flow
produced by the defects, and the instability of this configu-
ration to splay. The existence of the intermediate elongated
configuration is guaranteed by the fact that viscous and
pressure forces exerted by the flow on the droplet are
balanced by the resistance due to interfacial tension forces.
For large capillary numbers, the capillary forces are no
longer sufficient to achieve this balance, the droplet con-
tinuously stretches and eventually divides before the splay
instability can develop [Figs. 1(g)–1(i)]. Our numerical
data indicate that division occurs at a critical value
11.4 < Cadivα < 16. Once the parent droplet first divides,
the active capillary number drops due to the reduction in the
droplet size R. Thus, the two daughter droplets remain stable
unless the activity is large enough that the new capillary
number is itself larger than Cadivα , in which case multiple
divisions occur. This mechanism can, in principle, lead to a
cascade of divisions that terminates only once the size of the
youngest generation of droplets is such that Ca < Cadivα .
Figure 3 shows a phase diagram in the (α, Σ) plane
summarizing the three behaviors described so far.
The results presented here are strictly valid for a two-

dimensional fluid. When including the effect of three
dimensionality, several aspects of the droplet behavior
remains, however, qualitatively unchanged. The active flow
associated with axisymmetric droplets, for instance, has the
structure illustrated in Fig. 1. Thus, both spontaneous
stretching and division, which do not alter the axial
symmetry of the droplet, would occur in three dimensions
in the same way as described here. The splay deformation
that determines the regime of motility does instead break
axial symmetry. This, however, does not prevent motility
from setting in three-dimensional systems as demonstrated
in [38] for polar droplets. In the case of a thin film of active
nematic suspended in a bulk Newtonian fluid, on the other

hand, the frictional damping exerted by the surrounding
fluid dissipates momentum through a force of the form
f fri ¼ −ξv in Eq. (2b). Such a frictional interaction removes
energy from the flow at scales lfri ¼

ffiffiffiffiffiffiffi
η=ξ

p
and has no

effect on the mechanics of the droplet as long as lfri ≫ R.
In conclusion, we have investigated the mechanics of a

contractile active nematic droplet surrounded by a
Newtonian fluid. Because of the interplay between the
active stresses and the defective geometry of the nematic
director, the system is able to mimic two of the defining
functions of living cells: spontaneous division and motility,
which can be selectively activated by controlling a
single physical parameter: the active capillary number.
Suspensions of microtuble bundles and kinesin, as those
pioneered by Sanchez et al. [43], could serve as the
backbone for an experimental realization of these nematic
automata. In this case, however, the extensile active stresses
(i.e., α < 0) will have to be combined with tangential
anchoring in order for the resulting active backflow to
produce the same stretching mechanism described here.
While bridging the gap between biological complexity and
theoretical modeling remains a challenge for the future, our
results provide a conceptual guidance to study the basic
physical mechanisms behind motility and spontaneous
division.

L. G. is grateful to Rastko Sknepnek and Luca Heltai for
help with the simulations, and to Giovanni Romeo, whose
unforgettable passion and curiosity have been inspirational
throughout this work. A. D. S. acknowledges the ERC
Advanced Grant No. 340685 MicroMotility.

FIG. 3 (color online). Phase diagram showing the three classes
of behavior exhibited by contractile active droplets for different α
(activity) and Σ (surface tension). For low activity, the quad-
rupolar straining flow generated by the pair ofþ1=2 disclinations
leads to a stationary elongated shape. When the activity is very
strong, the active backflow causes the droplet to spontaneously
divide. For intermediate activity and sufficiently large surface
tension the director spontaneously splays and the droplet moves
as a consequence of the associated backflow.
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