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Growing networks of actin fibers are able to organize into com-
pact, stiff two-dimensional structures inside lamellipodia of crawl-
ing cells. We put forward the hypothesis that the growing actin
network is a critically self-organized system, in which long-range
mechanical stresses arising from the interaction with the plasma
membrane provide the selective pressure leading to organization.
We show that a simple model based only on this principle repro-
duces the stochastic nature of lamellipodia protrusion (growth per-
iods alternating with fast retractions) and several of the features
observed in experiments: a growth velocity initially insensitive to
the external force; the capability of the network to organize its
orientation; a load-history-dependent growth velocity. Our model
predicts that the spectrum of the time series of the height of a
growing lamellipodium decays with the inverse of the frequency.
This behavior is a well-known signature of self-organized criticality
and is confirmed by unique optical tweezer measurements per-
formed in vivo on neuronal growth cones.

Actin networks are remarkable biological materials essential
for the structural stability of eukariotic cells and for many

of their vital functions, including motility (1, 2). They are formed
by oriented and branched actin fibers (3) and are able to produce
compact and relatively stiff two-dimensional structures such as
lamellipodia. Within the lamellipodium of a crawling cell, actin
networks are capable of organizing over length scales of several
micrometers. Moreover, they are able to grow at an approxi-
mately constant velocity, independently of the strength of the
external force that opposes their growth (4, 5).

The mechanisms underlying this process have been the object
of intense theoretical investigation. The reliability of a model is
normally judged from its capability of predicting an almost con-
stant force–velocity (Fv) relationship up to a stall force. In auto-
catalytic nucleation models (6), when the force increases, the
actin network—due to the activity of controlling proteins—origi-
nates new branches, so that the velocity v remains constant for
increasing values of F, while the density increases accordingly.
Other models are based on the idea of Brownian ratchets (7–9):
thanks to thermal fluctuations of the membrane, actin filament
tips in contact with the membrane become accessible to free actin
monomers (and hence to growth by polymerization). These mod-
els have been used to explain experimental observations on
Listeria monocytogenes propulsion (10). The dendritic-nucleation/
array-treadmilling model (11) can reproduce the observed geo-
metric structure of actin meshworks near the leading edge of a
lamellipodium (12). A symmetric orientation of the actin fila-
ments with respect to the force direction is predicted, provided
that branching and capping protection take place only close to the
membrane.

The importance of regulatory proteins has been convincingly
established in experiments (13–19), and most of the available
models focus on biochemical regulation, although mechanical
interactions are also known to play an important role (20–30).
In refs. 25–28, pulsatile motion of beads propelled by growing
actin networks has been observed in models where phases of

accumulation of mechanical stresses in the actin filaments alter-
nate with sudden accelerations due to rupture events in the
network. These approaches are able to reproduce results from
bead and rod motility assays aimed at replicating Listeria motility
(24–29). It is suggested in ref. 22 that themechanical forces arising
from actin filament growth against a membrane may provide the
basic mechanism for persistent and coordinated cell movement
and that, at least in keratocytes, regulatory elements such as sig-
naling molecules may be dispensable or redundant. However, a
quantitative assessment of the role of forces in orchestrating or-
ganized growth inside protruding lamellipodia is still missing.

Recent advances in experimental techniques have provided de-
tailed information on the dynamics of actin networks (4, 5, 31),
both in vivo and in vitro. Very accurate optical tweezer in vivo
measurements of the position of a lamellipodium have demon-
strated that the leading edge advances with a characteristic “sto-
chastic swing” behavior, in which growth periods alternate with
retractions (4). This behavior is observed also when the force ex-
erted by the bead is small, but oscillations increase in size and
frequency when the force becomes large. Using the same techni-
que, it was shown that the force necessary to stop completely the
growth of the network is of the same order of magnitude of the
one exerted by the plasma membrane (4). Thus, also in normal
conditions (in the absence of the bead) the propulsive force is
almost counterbalanced by the relatively strong tension exerted
by the membrane. In this scenario, the retraction periods can
be interpreted as due to the pressure exerted by the membrane.
Periods of growth alternate with “avalanches” in which the net-
work collapses, at least locally. Why has nature chosen to design
the combined system formed by the network and the membrane
in this special condition of marginal stability? One may argue that
it is not by chance. In fact, the actin network has to produce struc-
tures that protrude for several micrometers, and these structures
have to be compact and without overhangs in order to be effective
for pushing. Avalanches driven by forces arising from the contact
with the membrane could be the mechanism that enforces the op-
timal organization at the micrometer scale.

In order to elaborate on this idea on a quantitative basis, we
designed a simple model of lamellipodia growth based only onme-
chanical ingredients. In the model (see Fig. 1 and Methods), the
actin network forms by a stochastic process, in which at every “time
step” an actin “monomer” is added at the tip (barbed end) of a
random filament, forming a time-evolving truss structure. At the
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beginning of the simulation, “seed” monomers are created at the
bottom of the simulation box and kept fixed throughout the com-
putation. Filaments repel each other at a short distance and, with a
given probability, branch at a random point. Filaments are allowed
to grow and branch if the event does not lead to overlaps with
preexisting neighboring filaments or with the membrane (steric
hindrance). The network is kept under compressive stress by a flex-
iblemembrane, directly interactingwith the leadingedgeof thenet-
work.Weassume that thepolymerization rate is force independent.

The model scale is defined by two independent quantities,
the filament diameter d and the filament breaking force Fr . All the
other parameters can be expressed in terms of these units as indi-
cated in the caption of Fig. 1. We assumed d ¼ 7 nm (19, 32),
whereas the critical force for the filament is assumed in the range
Fr ¼ 100–200 pN (33, 34). The persistence length ξ for the fila-
ments is assumed in the range ξ ¼ 1–2 × 103 d corresponding to
about 7–15 μm, which is in agreement with data in refs. 35, 36)
(see SI Text for further discussion on the choice of parameters).
We further assume that a filament pushing against the membrane
deforms a slice of a thickness comparable to the filament diameter
d. This assumption allows us to estimate the stiffness parameters
for our two-dimensional model from experimental measurements
of membrane elastic properties. A stretching stiffness approxi-
mately 2Fr used in the model corresponds to an in-plane stretching
modulus of the order of 100 pN∕nm, in agreement with ref. 37.
The bending modulus κ ¼ 0.1Frd2 corresponds to a bending stiff-
ness of approximately 20 KBT, consistent with refs. 4 and 12.

After each growth event, we compute the local stress on each
of the actin monomers by minimizing the total potential energy of
the network using a computer program (38). If the stress in a
monomer becomes higher than a critical threshold, the monomer
breaks and the filament depolymerizes from its pointed end. A
similar scheme of filament crushing and disassembly at the trail-
ing edge has been recently proposed in ref. 23 as a key mechanism
for shape regulation in fish keratocytes.

We avoided on purpose including in the model the effect of a
regulating network based on biochemistry (e.g., we do not model
explicitly the selective capping of filaments far from the mem-
brane). This regulating network is present in living cells but, as we

will see, its presence is not essential for explaining many key
features of the available experimental evidence. For fish kerato-
cytes, this has already been suggested in ref. 22.Onemay then spec-
ulate that biochemical regulation could have appeared later in
evolution in order to optimize the performance of the system, build-
ing on a simpler prototype based only on mechanical regulation.
Also other effects (cross-links between actin fibers, membrane-
cytoskeleton adhesion, etc.) are neglected in our model because
they are not strictly necessary for stress transmission in the com-
pressive regime arising inside thenetworkwhen it grows against the
membrane, or when the lamellipodium pushes against an obstacle.

Results
The results reported here refer to the benchmark values of the
model parameters reported in Table S1. A typical outcome of our
simulations is shown in Fig. 2, where we plot the height of the
lamellipodium as a function of time. It is evident that growth
proceeds alternating protrusions and fast retractions. Cleavage
events are marked by crosses in Fig. 2. This behavior closely
resembles the experimental traces at high time resolution (4).
The emergence of a strongly organized structure, such as the
one depicted in Fig. 2 Inset A, Top Left that leads to a protrusion
of almost 50 times the filament thickness d, is obtained after many
attempts, in which the system collapses almost completely at
much smaller heights (see Movie S1). Less catastrophic retrac-
tions are observed also when the system is finally able to grow,
after t ¼ 1;800. These retractions are indeed crucial to achieve
a sufficient structural stability, as in these events “unfit” filaments
are cleaved and eliminated. In other words, if the filaments would
not break, the system would not be able to produce a compact
and organized structure capable of sustaining a significant exter-
nal pressure. This scenario, in which mutation is guaranteed by
random growth and branching, while selection is achieved
through failure of the overstressed filaments, is strongly reminis-
cent of the evolutionary model in ref. 39. Due to the pressure
exerted by the membrane, the actin network organizes itself into
a close packed structure, in which each branch is sustained by
several other branches (Fig. 2 Inset A, Top Left).

Fig. 1. The model. We consider a two-dimensional network of actin filaments growing against a membrane subject to an external force F directed along the
protrusion direction y and opposing the lamellipodium growth. Actin monomers are modeled, as in a truss structure, by two nodes and four connections
(edges, the green lines in the figure). Lengths are measured in units of the filament thickness d and forces in units of the filament rupture force Fr . The
force F is distributed on a representative cell of width Lcell ¼ 32 d. Periodic boundary conditions are assumed in order to reduce edge effects. At the beginning
of the simulation, 12 monomers are created at y ∼ 0 at an angle θ with the y axis. These seeds are kept fixed throughout the simulation. Time is measured in
units of growth steps, in each of which amonomer is added at the tip (barbed end) of a randomly chosen filament. One branching event occurs at a random site
along the filaments at every growth step with a probability Pb ¼ 0.3. The branching angle φ is fixed at 60° [close to the measured value of 70° (6, 11, 12)]. The
contact among different filaments and between filaments and the membrane is modeled by a short-range repulsive potential active for a distance <d. In view
of the truss geometry, filaments fail if the absolute value of the force in one of the edges exceeds a critical value fc ¼ Fr∕2, in which case the overcritical
monomer is cleaved. Cleaved filaments, which have an exposed pointed end, depolymerize with a speed of 10 monomers per growth step. We assume the
filaments to be linearly elastic up to failure, with a persistence length ξ ¼ 1;000 d. This corresponds to approximately 10 μm (35). Reduction to a two-dimen-
sional model is obtained by assuming that a growing planar network deforms a slice of thickness d in the direction orthogonal to the plane of the lamelli-
podium. The resulting one-dimensional elastic membrane has stretching stiffness of the order of Fr (37) and bending stiffness κ ¼ 0.1Frd2, which results in a
persistence length λd with λ ∼ 8 ≪ 103 (4, 12). The influence of the parameters on the predictions of the model is discussed in detail in SI Text.
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Just as in autocatalytic (6) and dendritic-nucleation/array-
treadmilling models (11), during organized growth all the rele-
vant events (polymerization, branching, and cleavage) happen in
a relatively thin layer close to the membrane, while the rest of the
network reaches a steady state. This is demonstrated in Fig. 2
Insets B, where we plot the probability of observing a branching
and a polymerization event as a function of height (averages are
taken over several independent simulations). In contrast with the
other models (6, 11), these peaked distributions are not imposed
a priori but stem only from the mechanical properties of the sys-
tem: Monomers buried deeply into the network, and far away
from the membrane, are mechanically shielded (low stress levels
and no growth or branching because of lateral support and steric
hindrance). However, it is obvious that selective localization of sui-
table proteins and enzymes, which catalyze branching and growth
in the proximity of the membrane (6, 11, 40), can greatly enhance
the efficiency of the system (e.g., by decreasing the waiting time for
the formation of configurations that are fit for pushing).

Another important feature of our model is that during orga-
nized growth the stress is uniformly distributed throughout the
network. In Fig. 2 Insets A the monomers are colored according
to the local stress, with red indicating traction and blue compres-
sion. Clearly, the stress is modest and uniformly distributed at all
heights. Fig. 2 Insets C show the maximum absolute value of the
force as a function of height, highlighting that it is more evenly
distributed and lower in average in the case of an organized geo-
metry (Top Left) compared to the cases of a nonorganized one
(Bottom Right). Moreover, it is clear how the maximum force near
the bottom of the simulation box is high for nonorganized net-
works, whereas it is close to zero for organized structures. This
is an important feature, because ruptures of the network near the
bottom cause global, catastrophic avalanches.

Filament Orientation.Because of the pressure exerted by the mem-
brane, the network is capable of reaching a global geometric
organization by automatically aligning the bisectrix of the branch-
ing angle with the external force. In Fig. 3A we show a typical
configuration reached starting from an initial state in which the
filaments are “misoriented” (i.e., θ ¼ 10°, −50°) but very flexible
(ξ ¼ 200 d). Indeed, as shown in Fig. 3B, the orientation of
monomers below 25 d is strongly affected by the initial orienta-
tion of the seeds that, in the example in Fig. 3B, are generated
with a probability strongly peaked around −10° and 50° (red
curve). The distribution above 50 d, instead, shows only two
significant peaks around �30° (blue curve). The symmetric pat-

tern we obtain is in agreement with experiments (39) and repro-
duces, relying only on mechanics, the results obtained in ref. 11. A
similar numerical experiment has been conduced for randomly
oriented, regularly stiff filaments (ξ ¼ 1;000 d). The configura-
tion reported in Fig. 3C shows how only the filaments with sym-
metric orientation with respect to the force direction are selected
by the growth-cleavage-depolymerization process. The selection
is extraordinarily clear in the sharp orientation distribution
reported in Fig. 3D and takes place on a very short length scale
(about 20 d). Thus the mechanics of the system suggests two dis-
tinct mechanisms to explain the observed symmetry of filaments
orientation: rotation due to filament flexibility (over a long range)
and selection due to cleavage–depolymerization of misoriented
filaments (over a shorter range).

Velocity. The model also predicts that fit networks grow with an
almost constant force–velocity relationship. In Fig. 4A we report
the time histories of the network height for different values of the
forces. It is evident that, when organized growth takes place, the
height traces are roughly parallel to each other independent of
the level of the force. However, retraction events are more fre-
quent and severe for higher values of the force. In Fig. 4B we
report the distribution of the velocity of the advancing front. In-
creasing the force broadens the velocity distribution, but affects
much less the position of the maximum. At F > 0.6Fr , the center
of the distribution collapses to zero, and the observation of po-
sitive velocities becomes unlikely. The value of the most likely
velocity is plotted against force intensity in Fig. 4C. Such a plot
shows a strong nonlinear dependence of the velocity on the force,
with an almost flat behavior at low forces and a stalling force of
about 0.6Fr . This behavior closely resembles the experimental Fv
curves, measured by atomic force microscopy (AFM) (5, 31) and
optical tweezers (4). The curve is well fitted by the relation
v ¼ v0ð1 − F∕FstallÞ4, where Fstall is the stalling force and v0 is the
velocity under zero force, similar to the one proposed in ref. 22.
In our model, the approximately constant Fv behavior is a con-
sequence of the capability of the network of adjusting to variable
force levels by reorganizing its geometric structure. At the same
time, the network becomes slightly more dense as reported in
Fig. 4C, Inset, in agreement with numerical findings in ref. 6.

Given the geometry that we consider in this work (see Fig. 1), a
stalling force of 0.6Fr corresponds to approximately 0.05Fr acting
on each filament in contact with the membrane. With Fr∼
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100 pN, we find that, according to our model, the growth of a
lamellipodium can be stopped by applying an external force of
a few piconewtons per filament in contact with the membrane.
As already found elsewhere (4), this force is of the order of mag-
nitude of the restraining force exerted by the membrane: For a
lamellipodium slice of thickness d and width Lcell ¼ 32 d this
force is of the order of 2γLcell where γ ¼ 0.005 KBT is the mem-
brane surface tension (4, 12). The resulting estimated force per
filament is 0.09Fr corresponding to 9 pN. This estimate is prob-
ably an upper bound, as it assumes that most of the surface ten-
sion is sustained by a single layer, as it would happen if the front is
rounded (12). In order to be more quantitative on this estimate,
one should model the system in three dimensions.

In the simulations, branch junctions are usually assumed to
have the same resistance as the filaments. To check the effect
of possible preferential breaking at branching sites, we performed
simulations doubling the filaments resistance without changing
the resistance of the branching points. We obtain very similar re-
sults in terms of filament orientations and Fv diagrams, with geo-
metries showing shorter side branches (see SI Text). These results
suggest that the Fv curve is controlled by the resistance of the
weak points in the network.

Hysteresis. Because the network geometry may evolve, the growth
velocity at a given force level depends on the load history, as
also observed experimentally (31). Indeed, a network that has
survived a high force level is extremely fit and can withstand lower
forces more easily. In this network, large avalanches will be more

unlikely, and the velocity distribution will be shifted toward larger
positive values (see SI Text). We conclude that the multiplicity of
velocities under the same applied force, and the resulting hystere-
tic Fv response are natural consequences of the morphological
changes from one stable network structure to another, occurring
when a lamellipodium grows against a time-dependent applied
force. A similar idea has been put forward in ref. 41, where
hysteresis arises from transitions between two fixed metastable
geometric configurations. In our approach hysteresis is triggered
by the same selection mechanism that leads to organized growth.

Self-Organized Criticality.The most peculiar feature of our model is
that mechanical stress is the key factor that leads to geometric
organization. Systems evolving in conditions of spatial or tempor-
al self-organization as a consequence of an external stress or
pressure are rather common in nature. A clear signature of this
scenario is the onset of a power-law distribution in spatial or time
correlations (42). Not surprisingly, our model shows very clearly
this signature, as it is basically equivalent to a two-dimensional
sand pile, with the membrane tension playing the role of gravity.
As shown in Fig 4D, the power spectral density (PSD) of the front
height decays as 1∕f α, where f is the frequency, and the exponent
α is approximately equal to two regardless of the intensity of the
force. The same signature is observed for the simulated growth
against a linear spring. One immediately wonders if also experi-
mental traces show these features.

In order to answer this question, we performed accurate mea-
surements of the position of the front of a lamellipodium by an
optical tweezer. Neurons from dorsal root ganglia (DRG) of P10-
P12 rats were isolated and plated on poly-L-lysine-coated glass
coverslips, positioned on the stage of an inverted microscope
used for imaging and for force measurements (4). After 1 or
2 d of incubation, lamellipodia emerged and silica beads were
trapped with an infrared optical tweezer in front of the lamelli-
podia. The bead position was measured at 10-kHz temporal
resolution with a quadrant position detector using back focal
plane interferometry (43). As the lamellipodium grows, the bead
is pushed away from the center of the trap. This allows for a
simultaneous measurement of the force and of the velocity of
the lamellipodium front (4). In a typical experiment the bead re-
mains detached from the lamellipodium, and its position fluctu-
ates significantly due to Brownian motion. In these conditions,
the PSD of the position of the front is flat up to the cutoff fre-
quency of the trap (102 Hz in our case). In rare cases, adhesion
forces caused the bead to seal onto the lamellipodium. In these
conditions, the amplitude of fluctuations of the bead decreases
significantly, and it is possible to measure the position of the
lamellipodium front with a very good temporal resolution. In
Fig. 4E we report the PSD of bead displacements during such
an adhesion phase. Remarkably, it decays as 1∕f 2, in a manner
that closely resembles the numerical results of Fig. 4D. For com-
parison, in Fig. 4E we also show the spectrum in a noncontact
phase and in a control experiment in which the bead is stuck
on the poly-L-lysine-coated coverslip. The different PSD decay
in this latter case proves that the signature of the lamellipodium
growth is not due to environmental noise.

Discussion
In summary, we have shown that a model based on the mechan-
ical interaction between a growing stiff network of collaborating
filaments and a flexible membrane is capable of explaining many
seemingly unrelated features of the observed behavior of growing
lamellipodia: a growth velocity initially insensitive to the external
force up to a stalling value; the capability of the network to
organize its orientation with respect to the applied force; a load-
history-dependent growth velocity; the concentration of the
branching/capping protection zone near the membrane. The mod-
el predicts that the range of external forces for which growth can
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take place is in the 10−2–10−1 pN∕nm range. In normal conditions,
this is exerted by the membrane, which is then responsible for ex-
erting the “selective pressure” on the network. The range of forces
predicted by our model is just marginally larger than 2 � 0.02 pN∕
nm, the restraining force per unit length exerted by surface tension
on a growing lamellipodium (12), and of the same order of mag-
nitude of 2 � 0.1 pN∕nm, the force exerted by the membrane
according to the estimate for a crawling keratocyte (22).

In our model, we assumed for simplicity that the polymeriza-
tion rate is not explicitly force-dependent. However, the filaments
on which a monomer is added are not chosen at random, as
growth events that would lead to overlaps with preexisting fila-
ments or with the membrane are not allowed (see Methods). As
a consequence, the axial forces on filaments selected for growth
are always rather low. In fact, we computed the probability dis-
tribution of the axial forces acting on the filaments on which a
new monomer is added during 12 statistically independent his-
tories of growth against different external forces (see SI Text).
Even when the network grows against the comparatively large ex-
ternal force of 0.5Fr , the axial force on growing filaments is zero
in 40% of the cases and is larger than 1∕6Fr only in about 1% of
the cases. Introducing a genuine force-dependent rate of poly-
merization would certainly be an interesting theme for further
studies. However, modeling exactly this effect may require pre-
cise experimental information on the growth dynamics of isolated
filaments, extending the results in ref. 44.

Our model provides an explanation for the stochastic nature of
the motion of the leading edge observed in experiments, where
growth periods alternate with fast retractions. In fact, we claim
that these retractions are essential in order to make our growth
mechanism robust. This has an important and nontrivial conse-
quence on the statistics of these retractions, whose amplitude
and frequency are predicted to obey a power-law distribution, as
in critically self-organized systems. This prediction is confirmed
by our experiments on neuronal growth cones, showing that the
PSD of the time series of the height of a growing lamellipodium
decays with the square inverse of the frequency. It is well known
that in conditions of self-organized criticality power-law distribu-
tions should emerge also in other observables, such as the ampli-
tude of the retractions or the correlation between the height of the
front in two different locations. The presence of these power laws
is a direct consequence of the model we propose here and offers a
direct manner of falsifying or confirming its validity when even
more accurate experimental data will become available.

Retraction events may play an important role in all processes
where motility rests on the buildup of compressive stresses in ac-
tin filaments (structures that, without some form of organization
and coordination, would be ill-equipped to sustain compressive
and bending stresses). These are ubiquitous in actin cell motility,
including systems exhibiting pulsatile motion such as Listeria and
motility assays (25–28). In beadmotility assays, for example, pauses
(during which stresses accumulate in the growing network) alter-
nate with sudden accelerations of the whole bead (due to the
breakup of transient attachments and fracture of shells of filaments
encapsulating the bead). Although these velocity fluctuations in-
volve macroscopic spatial and temporal scales, the ones occurring
in the active layer forming at the leading edge of a protruding
lamellipodium, between the plasma membrane and the previously
grown, immobilized network, take place at microscopic scales.
In our scheme, these fluctuations are themeans to achieve network
geometries that are effective for pushing the lamellipodium
forward and generate sustained motility. Retractions and jerky
motion at microscopic scales are compatible with smooth motion
without significant oscillations at macroscopic scales. Thus, we
believe that our scheme of mechanical self-organization through
accumulation of mechanical stresses and avalanches of breaking
events may be relevant for other actin-based motile systems,
besides the neural growth cones studied in this paper.

Model
In the model developed in this work, the actin network forms by a
stochastic process driven by an energy function defining the in-
teraction between the filaments and between the filaments and
the membrane. At the ith growth step, the energy of the system
Ei is a function of the position of the nodes fugi. The equilibrium
configuration of the nodes fueqgi is obtained by minimizing Ei
numerically, via a conjugate gradient method implemented in
the Surface Evolver package (38)

fueqgi ¼ argminfugiEiðfugiÞ: [1]

We assume the actin filaments to be linearly elastic up to failure
and the membrane to have a linear elastic in-plane behavior. The
filaments are represented by a truss structure, namely, a bead
andspringmodelwherethespringconstant is thestretchingstiffness
Ea of the edges. The bending stiffness of the filaments is related
to the persistence length ξ by the classical statistical mechanics
result κa ¼ 2ξKBT, where κa is the equivalent bending stiffness of
the truss structure modeling the actin filaments. In turn, from
simple geometry and statics, the bending stiffness of the filament
κa can be related to the stiffness of the trusses, namely κa ¼
2Eaða tan β∕4Þ2,whereβ ¼ 60° is thecharacteristicangleofthetruss
edges (see Fig. 1). Equating the two expressions for κa, we obtain

Ea ¼
16ξKbT
a2 tan2 β

; [2]

and the elastic energy for the whole actin network is

Eactin
i ¼ ∑

a

1

2
Eaε

2
ala; [3]

where ϵa is the extensional strain of the actin edge a, and la is its un-
deformed length. A similar energy is considered for themembrane

Emembrane
i ¼ ∑

m

1

2
Emε

2
mlm: [4]

Themembrane is assumed tohavealso a bending stiffness κ that pe-
nalizes its curvature ρ. Thebending energyof a slice of thicknessd is
of the form

Ebending
i ¼ ∑

m

κρ2md; [5]

where ρm is the curvature computed distributing the angle at
the node m of the discretized membrane over a length d (equal
to the membrane discretization length). The bending stiffness
of the membrane corresponds to a persistence length ξm ¼
κ∕2 KBT ∼ 8 d for the parameter values used in the model.

Contact among different filaments is modeled by introducing
a short-range repulsion energy ψ between the nodes. Given a
pair of nodes h and k, ψ is a function of the distance dhk between
the two nodes, and the contribution to the overall energy of the
system is given by

Econtact
i ¼ ∑

h
∑
k≠h

ψðdhkÞ: [6]

We take for ψ the functional form

ψðdhkÞ ¼
(
c
h�

dhk
δ

�
−4

− 2
�
2dhk
δ

�
−2 þ 2−4

i
dhk ≤ 2δ

0 dhk > 2δ
; [7]

where c is a constant. The contact force goes to infinity for vanish-
ing distance and vanishes smoothly when the distance is larger
than the threshold length 2δ. Contact between filaments andmem-
brane ismodeled in precisely the same way except that, in this case,
the contact length parameter 2δ is used. Besides governing force
transmission and mechanical collaboration between filaments,
detection of contact also allows us to limit uncontrolled growth
of the filaments. Indeed, we discard growth events on a filament
that would lead to overlap with neighboring filaments. This makes
an explicit modeling of capping unnecessary. This approximation
should probably be reconsidered if the model is extended to
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3D. The larger contact length parameter for filament–membrane
interactions leads to a typical separation between filaments and
membrane larger than one monomer and mimics the impact of
the high flexibility of the membrane (20, 35, 37) on the dynamics
of growth: Adding a monomer against the membrane is allowed
becausemembrane ripples, triggered by thermal fluctuations, allow
monomers to reach the barbed ends. Instead, growth against other
filaments is less likely, as filaments are more rigid and fluctuations
are unlikely to create enough room for an extra monomer. We
typically consider constant external forces of intensity F pushing
down themembrane nodes:Lext

i ¼ −F∑hyh. We also seek tomod-
el theprotrusionof a lamellipodiumagainst anelastic spring. In this
case the work of the external forces is given byLext

i ¼ −Kȳ∑h yh,
where ȳ is the mean height of the membrane and K is a stiffness
constant. Summarizing, the energy of the system is

Ei ¼ Eactin
i þEmembrane

i þ Ebending
i þ Econtact

i −Lext
i : [8]

Experimental Methods
Neuron preparation. Rats (P10-P12) were anesthetized with CO2

and sacrificed by dislocation in accordance with the Italian
Animal Welfare Act. DRGs were incubated with trypsin (0.5 mg∕
mL, Sigma-Aldrich), collagenase (1 mg∕mL, Sigma-Aldrich), and
DNase (0.1 mg∕mL, Sigma-Aldrich) in 5 mL neurobasal medium
(Gibco, Invitrogen) in a shaking bath (37 °C, 35–40 min). DRGs
were mechanically dissociated, centrifuged at 300 × g, resus-
pended in culture medium, and plated on poly-L-lysine-coated

(0.5 μg∕mL, Sigma-Aldrich) coverslips. Cells were incubated
for 24 to 48 h followed by the addition of nerve growth factor
(50 ng∕mL; Alomone) before the measurements.

Optical Tweezer Setup. The optical tweezers setup was built as pre-
viously described (43). The dish containing the differentiating
neurons and the beads (PSI-1.0NH2, G.Kisker GbR) was placed
on the microscope stage, which could be moved by a three-axis
piezoelectric nanocube (17 MAX 301, Melles Griot Inc.). The
temperature of the dish was kept at 37 °C by a Peltier device. The
bead position was determined in the x, y, and z planes with a lateral
and axial accuracy of 2 and 5 nm, respectively, which was obtained
from the analysis of the interference between forward scattered
light from the bead and unscattered light (43, 45). The back focal
plane of the condenser was imaged onto a QPD (C5460SPL 6041,
Hamamatsu), and the light was converted to differential outputs
digitized at 10 kHz and low pass filtered at 5 kHz. Both the lateral
and axial trap stiffness, kxy ¼ ðkx;kyÞ and kz, respectively, as well as
the detector sensitivity were calibrated using the power spectrum
method (43) with voltage signals filtered and digitized at 5 kHz. In
order to reduce and possibly avoid all mechanical perturbations
affecting the measurement of x ¼ ðx;y;zÞ, the optical tweezers set-
up was kept in an isolated and soundproof room, and the scientists
performing the experiments controlled all operations remotely
from a separate room, in order to reduce perturbations, which
could have affected previous investigations.
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SI Text
Model Parameters. Numerical simulations in the main text have
been performed with the parameter values reported in Table S1
(if not specified otherwise) to which we refer as the “benchmark”
set of parameters.

The two most critical parameters are the filament breaking
force Fr and their persistence length ξ, because they are strongly
affected by several factors, such as filament decoration and load-
ing condition. Experimental estimates for the breaking force in
tension vary in the range 100–600 pN (1, 2) depending on whether
the filament is subject to torsion. In our simulations filaments
break in bending and the value of Fr ¼ 100 pN used in the bench-
mark simulations gives a critical bending moment Frd∕2 ¼
350 pN · nm, which is very close to the one estimated from ref. 3
using K∕ρ� ¼ 306 pN · nm, where K is the bending stiffness and
ρ� is the critical bending radius. Fig. S1 shows that the Fv curves
obtained with fFr ¼ 100 pN;ξ ¼ 7 μmg and fFr ¼ 200 pN;
ξ ¼ 15 μmg are very similar. The range of variability of ξ is com-
patible with data in ref. 4 for a different kind of actin-binding
proteins.

Movie S1.Movie S1, also downloadable from http://people.sissa.it/
~desimone/Movies/ActinMovie.avi, shows the simulation of an
actin network growing against a force of 0.5Fr . (Top Left) We plot
the distribution of the maximum stress with height. (Top Right)
This shows the time history of the advancing front; crosses indi-
cate time instants where ruptures take place while the current
position is indicated by the moving red dot. (Lower) The evolving
network configuration is shown; beams are colored according to
the stress experienced (red indicates traction and blue com-
pression).

Sensitivity to the Parameters. In order to analyze the sensitivity of
our results to changes in the parameters, we performed simula-
tions varying one parameter at a time with respect to the values
reported in Table S1. Fig. S2 summarizes the influence of struc-
tural parameters on the growth of the lamellipodium. In Fig. S2a
we report the height distribution for various choices of branching
probability, seed orientation, filament stiffness, and membrane
stiffness. Reduced branching leads to less organized structures
and penalizes lamellipodium growth. Reducing branching prob-
ability also leads to shorter protrusions (the height of the lamel-
lipodium remains confined below 25 d). A symmetric distribution
of initial seeds leads to a more effective configuration compared
with the one with seeds at θ ¼ þ10°, −50°, and this confirms the
finding in ref. 5 that the filaments are preferentially organized in
two symmetric families with respect to the growth direction.
Asymmetric configurations rarely lead to lamellipodium growth
above 12.5 d, whereas the height distribution is almost flat up to
50 d for symmetric growth. Filament stiffness has a very strong,
and somewhat surprising, effect on the lamellipodium growth.
Indeed, stiffer filaments lead to less effective protrusion. This
phenomenon is explained by the fact that stiffer filaments break
before being able to exploit the supporting action of neighbors,
whereas softer filaments can bend more before breaking, enhan-
cing the capability of the network to dissipate stress concentra-
tions by lateral diffusion. The effect of filament stiffening
(ξ ¼ 2;000 d) is the most dramatic one and constrains the lamel-
lipodium to fast oscillations that rarely go above 10 d in height.
With softer filaments (ξ ¼ 200 d) the lamellipodium grows easily
above 50 d. The histograms of mesoscopic velocity distributions
in Fig. S2b confirm that lower branching probability, nonsym-

metric networks, and stiffer filaments all lead to less effective
pushing action. The black curves in Fig. S2 depict the effect of
a tenfold increase in membrane bending stiffness. The lamellipo-
dium growth is slower with respect to the benchmark case and this
can be easily explained by the mechanics of the system: A stiffer
membrane is harder to bend; thus fewer filaments can impinge
on it simultaneously. This reduces its effect of load distribution
over several filaments and forces concentration on few filaments
promotes filament breaking and lamellipodium retractions.

Additional Results. Active Layer. Fig. 2 Insets B (main text) show
that branching and capping protection concentrate in a narrow
region closely following the membrane during protrusion. In
Fig. S3 we give further details on this result from our simulations.
Fig. S3 a and b shows that the branching and the capping protec-
tion layers, respectively, follow the membrane more closely when
the force is higher. This is easily explained from the fact that
smaller overhangs are tolerated when the opposing load is higher,
and this leads to more compact structures with free space allow-
ing for polymerization and branching only at the very top of the
growing network. The result is confirmed in Fig. S3 c and d, where
the distribution of the actual distance of active barbed ends and
active branching sites from the membrane are depicted, respec-
tively. The distributions show that the most of the polymerization
and branching activity is concentrated in 2–4 d from the mem-
brane and, again, that the active regions narrow for higher values
of forces. The thickness of the active region is slightly larger com-
pared to the estimate in ref. 5 (approximately 1 d), but in this case
it arises naturally from the steric hindrance of the filaments and
is not governed by biochemical control, which might enhance the
concentration in a narrower zone.

Hysteresis. As discussed in the main text, the mechanical organi-
zation of the network might explain, at least qualitatively, the hys-
teretic behavior observed experimentally in ref. 6. In Fig. S4 we
show some results on this topic. Fig. S4a reports the load history
used to test the growth velocity: After 500 growth steps at 1∕2Fr ,
the force is increased to 5∕6Fr for 1,000 growth steps and then
reduced again to 1∕2Fr for the following 500 growth steps. The
corresponding time history of the velocity is reported in Fig. S4b
where it is clear that the “training” during the intermediate
growth period against a higher load results in a speedup of the
lamellipodium in the third period at the same level of force.
The result is statistically significant as proved in Fig. S4c where
we report the velocity distribution computed over 12 independent
simulations under the same load history: The velocity distribution
shifts toward higher values with an approximately 60% increase in
the mean velocity and an approximately 40% increase in the peak
of the velocity distribution after the training under larger force.

Preferential Breaking at Branch Junctions. It is well known (7) that
phalloidin stabilizes Arp2∕3 complexes, which are responsible for
the branching of actin filaments. Unstabilized branch junctions
might be more fragile and break under smaller forces. To test
the effect of branching points stabilization on lamellipodium
protrusion we performed simulations with a rupture force of
the filaments of 200 pN and rupture force for the branching
points of 100 pN. We denote these as “weak junctions” simula-
tions. The Fv diagram for these simulations is almost identical to
the one for the benchmark case, as shown in Fig. S5a. This shows
that lamellipodia protrusion, in our model, is mainly determined
by the strength of the weak points in the network. The distribu-
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tion of filaments orientation remains symmetric for both sets of
parameters but with a wider distribution in the case of weak junc-
tions (compare Fig. S5 b and d). This might be due to the fact that
the increased strength of the filaments allows them to grow longer
and bend more. This also induces a qualitative difference in the
type of structures arising in organized networks as evident from
the comparison of Fig. S5 c and e: In the benchmark case protru-
sion relies on the formation of densely branched, V-type struc-
tures. In the case of weak junctions, protrusion relies on few
long filaments with many short side branches.

Axial Forces on Filaments. In our model polymerization rate does
not depend explicitly on the axial force acting on the filaments.

However, the filaments on which a monomer is added are not
chosen at random, as growth events that would lead to overlaps
with preexisting filaments or with the membrane are not allowed
(see Methods). As a consequence, the axial forces on filaments
selected for growth are always rather low. In Fig. S6 we show
the cumulated probability distribution of observing an axial force
larger than a given value on the filaments eligible for growth ac-
cording to the criterion described in Methods. Axial forces on the
tips are computed as the component along the filament axis of the
resulting force on the three trusses intercepted by a transverse
section on the tip monomer. Compressive forces are assumed
to be positive. The distribution is computed on 12 statistically in-
dependent histories of growth against different external forces.
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averages for 12 independent simulations with the same history of applied force as in b.
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Movie S1. A model actin network growing against a force of 0.5 Fr simulation results using material parameters listed in Table S1.

Movie S1 (MOV)
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Table S1. Model parameters

Parameter Description Value Refs.

d actin filament thickness 7 nm (1, 2)
β characteristic angle of the truss structure 60°
a monomer edge length d cosðβ∕2Þ
θ initial orientation of seeds ± 30°
φ branching angle 60° (3–5)
Pb branching probability 0.3
D depolymerization speed 10
ξ filament persistence length 103 d (6, 7)
Fr filament rupture force 100 pN (8)
f c edge rupture force Fr∕2
Em membrane stretching stiffness 2Fr (9, 10)
κ membrane bending stiffness 0.1Fr · d2 (5)
c contact stiffness 30 pN · nm
δ contact length 0.5a

Parameters for the benchmark simulations in units of filament thickness d and
filament rupture force Fr .
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