
ar
X

iv
:1

91
2.

13
47

6v
1 

 [
he

p-
th

] 
 3

1 
D

ec
 2

01
9

Restrictions for n-Point Vertices in

Higher-Spin Theories

Stefan Fredenhagen,a,b Olaf Krügera and Karapet Mkrtchyanc

aUniversity of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
bErwin Schrödinger International Institute for Mathematics and Physics, Boltzmanngasse 9, 1090

Vienna, Austria
cScuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

E-mail: stefan.fredenhagen@univie.ac.at, olaf.krueger@univie.ac.at,

karapet.mkrtchyan@sns.it
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have to consider Schouten identities due to over-antisymmetrisation of space-time indices.

When the dimension is lowered, such identities have to be considered, but their appearance

only leads to equivalences of large-d vertices and does not lead to new types of vertices.

We consider the case of low dimensions, d ă n, in detail, where the large number of

Schouten identities leads to strong restrictions on independent vertices. We also comment

on the generalisation of our results to the intermediate case n ď d ď 2n ´ 2. In all cases,

the independent vertices are expressed in terms of elementary manifestly gauge-invariant

quantities, suggesting that no deformations of the gauge transformations are induced.
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1 Introduction

In this paper, we investigate a Lagrangian formulation of higher-spin (HS) theories in

arbitrary dimensions. The aim of this work is, in particular, to obtain restrictions for all

possible independent interaction vertices of order n ě 4 for massless higher-spin fields,

extending the three-dimensional results of [1]. Together with the earlier results on the

cubic vertices [2–9] (see also [10–15]), this work intends to complete the classification of

all independent interacting deformations of free massless HS Lagrangians [16, 17] to the

lowest order in the deformation parameters (coupling constants) in Minkowski space-time

of arbitrary dimensions d ě 3.

HS Gravities [18–20] (see, e.g., [21, 22] for reviews) are generalisations of Einstein’s

General Relativity which involve higher-spin gauge fields. These are symmetric tensor

(Fronsdal) fields1 φµ1...µs , described by the Fronsdal action [16] at free level, describing

massless particles of spin s upon quantisation2. A set of free HS fields can be described

by a Lagrangian, which is a sum of Fronsdal Lagrangians for spin s fields. However, a full

non-linear Lagrangian of interacting Fronsdal fields is not available to date.

Such theories are strongly constrained by gauge invariance, necessary for consistency.

These gauge transformations extend those of General Relativity — space-time reparametri-

sations, or diffeomorphisms — to larger symmetries, involving gauge parameters that are

Lorentz tensors of rank ps´ 1q for each massless spin s field. This extension of symmetries

can potentially resolve some problems of General Relativity (singularities, quantisation

problem, etc), making HS Gravity an attractive field of investigation.

The corresponding gauge transformation for free fields reads 3

δp0qφµ1...µs “ s Bpµ1
ǫµ2...µsq , (1.1)

which generalises the well known expressions for massless vector fields (s “ 1) in gauge

theory and the Graviton (s “ 2) in linearised gravity theory.

The naive intuition from lower-spin model building suggests that one can pick an

arbitrary collection of fields, including massless HS fields, and the gauge symmetries will

partly constrain the interactions, leaving room for a large parameter space of theories. It

turns out, that the severe constraints from HS gauge invariance rule out theories with an

arbitrary choice of the particle content. Therefore, one is easily led to negative results if one

chooses an arbitrary starting setup for constructing a theory with massless HS spectrum.

This striking difference from textbook examples makes it tempting to conclude after some

attempts that such theories cannot exist.

The problem can be traced to the global symmetries of the theory (see, e.g., [23]).

Building such theories, therefore, can be addressed constructively by looking for suitable

global symmetry algebras, which have to satisfy the so-called admissibility condition [24].

This condition rules out infinitely many potential candidate algebras (see, e.g., [25]) and

1The index s is the spin of the field and µi “ 0, . . . , d ´ 1 in d dimensions.
2In this paper, we will restrict ourselves to integer-spin (bosonic) fields for simplicity.
3The round (square) brackets denote (anti-)symmetrisation with weight one.
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was crucial in deriving the list of admissible HS algebras [26, 27] and constructing full non-

linear HS equations [18–20] in the frame formulation, proving the existence of a theory with

massless HS fields. This theory, however, has unusual properties: there is an infinite tower

of massless higher-spin fields with s “ 0, 1, 2, . . . and a necessarily non-zero cosmological

constant [28]. The need for a non-zero cosmological constant is related to diffeomorphism

transformations, as explained in [29, 30], essential for the Fradkin-Vasiliev solution to the

Aragone-Deser problem [31]. This argument, together with the holographic conjectures

(see, e.g., [32, 33]) motivated the intense studies of HS interactions, especially in pAqdSd

background [34–44].

The frame-like formulation of HS gravities that led to successful developments (includ-

ing Vasiliev’s non-linear equations [18–20]) registered less progress so far in understanding

the corresponding Lagrangian formulation. On the other hand, the metric-like formulation

[16, 17, 43] is a simple suitable setup for classifying interaction vertices and deriving restric-

tions on interacting Lagrangians. Here, we work in the framework of the Noether-Fronsdal

program (see [45–58] for related literature and [9] for a recent summary of the status of

the problem) to classify independent vertices of order n ě 4 in arbitrary dimensions d ě 3,

generalising the d “ 3 results obtained earlier in [1].

The situation is different only in three dimensions, where the interacting HS theo-

ries can admit arbitrary Einstein backgrounds (including Minkowski) as well as a finite

spectrum of massless HS fields (see, e.g., [59–63]). However, such massless HS fields do

not correspond to propagating particles in d “ 3, while the inclusion of matter leads to a

situation similar to the higher-dimensional story in many ways.

The Noether-Fronsdal program is a systematic approach to perturbatively construct a

Lagrangian L for an arbitrary interacting HS theory order by order. In this procedure, L

is expanded in powers of small parameters gn,

L “ L2 `
ÿ

ně3

gnLn ` Opg2nq . (1.2)

Here, L2 denotes the free Fronsdal Lagrangian and another sum over the different kinds of

n-point vertices Ln is suppressed.

The action must be gauge-invariant, hence, δL equals a total derivative, where δ is

obtained by a deformation of the free gauge transformation δp0q,

δ “ δp0q `
ÿ

kě1

δpkq .

Here, the deformation δpkq is of k-th order in the fields. Since our aim is to find constraints

for the independent vertex structures (i.e. linear in the coupling constants4), the n-point

vertex must satisfy

δp0qLn ` δpn´2qL2 “ 0 up to total derivatives . (1.3)

4Gauge invariance provides constraints to fix the terms proportional to higher powers of coupling con-

stants. We are interested here in the structures that parametrise the non-trivial deformations at the lowest

order in the coupling constants.
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In this paper, we find restrictions for all independent n-point vertices Ln for massless

HS fields in arbitrary dimension d ě 3, such that they satisfy Eq. (1.3) 5. From that, we

deduce a simple classification of vertices. For a summary of the explicit results, see the

beginning of Section 7.

The paper is organised as follows: In Section 2, we set up notations and provide the

mathematical framework for our analysis. There, we discuss that we have to analyse three

different cases separately: Large dimensions d ě 2n ´ 1 (see Section 3), low dimensions

d ă n (see Section 5) and the intermediate case (see comments in Section 7). We mostly

consider parity-even vertices, but give a generalisation to parity-odd vertices in Section 6.

We finally conclude in Section 7.

2 Preliminaries

We want to constrain the n-point independent vertices Ln that may constitute the lowest

order deformations of the free Lagrangian for massless HS fields. For this purpose, it is

sufficient to restrict ourselves to the traceless and transverse (TT) sector of the Lagrangian

as in [1]. Hence, we can assume that the tensors φµ1...µs that describe the gauge fields,

are traceless, divergence-free and the corresponding free equation of motion is given by the

(massless) Klein-Gordon equation, hence

gµ1µ2φµ1...µs “ 0 , Bµ1φµ1¨¨¨µs “ 0 , BνBν φµ1...µs

ˇ̌
free e.o.m.

“ 0 . (2.1)

The relaxation of these conditions will allow to reconstruct the full off-shell counterpart of

the TT vertices as in [6, 43].

2.1 Vertex Generating Operators

It is very convenient to contract the indices of the fields each with an auxiliary vector

variable aµ,

φpsqpx, aq “
1

s!
φµ1...µspxqaµ1 ¨ ¨ ¨ aµs . (2.2)

This has several advantages: First, we do not have to tackle expressions with too many

indices and secondly, the tensor φµ1¨¨¨µs is by construction symmetric. We will also note

later on, that the complexity of index contractions will be reduced a lot. For example,

using the short-hand notation Pµ “ Bxµ and Aµ “ Baµ , the relations in Eq. (2.1) simplify

to

A2 φpsq “ 0 , A ¨ P φpsq “ 0 , P 2 φpsq
ˇ̌
free e.o.m.

“ 0 . (2.3)

We call these relations collectively Fierz equations [64].

Now, each n-point vertex Ln in Eq. (1.2) is a product of n massless bosonic fields (and

possibly derivatives thereof). But it has to be a Lorentz scalar, hence, all indices of the

fields (and of the derivatives) must be fully contracted. For now, let us concentrate on

5We consider a flat Minkowski space-time but comment also on pAqdS backgrounds in the Section 7.
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parity-even vertices — we consider parity-odd vertices in Section 6. Then, we can write

Ln in the following, very convenient way:

Lnpxq “ V

˜
nź

i“1

φipxi, aiq

¸ ˇ̌
ˇ̌
ˇxi“x
ai“0

. (2.4)

This needs some explanation:

• We use the notation set up in Eq. (2.2) and dropped the spin labels of the fields: φi

is a spin si field, φi “ φpsiq.

• The term in brackets represents a function of the spacetime coordinates xi and the

auxiliary vector variables ai. The vertex generating operator V performs the index

contractions between the fields φi as follows: Let P
µ
i “ Bxµ

i
and A

µ
i “ Baµi as in

Eq. (2.3). Then, V must be a polynomial in the following commuting variables:

zij “ Ai ¨ Aj

ˇ̌
1ďiďjďn

, yij “ Ai ¨ Pj

ˇ̌
1ďi,jďn

, sij “ Pi ¨ Pj

ˇ̌
1ďiďjďn

. (2.5)

The operator zij induces a single contraction of indices between the fields φi and φj ,

whereas yij will take one index of the field φi and contract it with a derivative which

acts on the field φj . Finally, the operators sij will introduce extra derivatives (a

derivative of φi is contracted with a derivative of φj). These are called Mandelstam

variables.

• Since all of the indices in Ln have to be contracted, we discard all terms that still

contain at least one of the auxiliary variables, when V acted on the terms in brackets.

Thus, we set ai “ 0 in the end, which ensures that Ln is Lorentz invariant. Finally,

we also set xi “ x. The splitting of the coordinates is useful to keep track of the

derivatives acting on different fields, and has no physical consequences.

All in all, we translated the problem of ‘what is the most general form of the parity-

even n-point vertex Ln’ to the question ‘what is the most general form of the vertex

generating operator V in the polynomial ring Rryij, zij |iďj , sij |iďjs’. The connection be-

tween Lagrangian Ln and operator V is given by Eq. (2.4). We also ensured that Ln is

Lorentz invariant.

There are two questions arising now: First of all, there are equivalence relations for

Lagrangians: e.g., two Lagrangians that differ by a total derivative lead to the same action.

We call them equivalent in this case. What does this imply for the corresponding vertex

generating operators? Secondly, how do we have to constrain V, such that Ln is gauge

invariant? We present a general answer to these questions in the next two sections and

give more details in Sections 3 and 5.

2.2 Equivalence Relations for Vertex Generating Operators

We must take into account that different Lagrangians may describe the same theory. We

say that they are equivalent in this case and evidently, we are only interested in Ln up to
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equivalence. When we encode the Lagrangians via vertex generating operators, we need to

introduce a notion of equivalence for operators: vertex operators V and V 1 are equivalent,

V « V 1, iff the two Lagrangians Ln and L1
n, constructed from them via Eq. (2.4) are also

equivalent. We are hence only interested in V up to equivalence and summarise the different

kinds of equivalence relations in the following.

The first kind of equivalence relations arises from field redefinitions φi ÞÑ φi ` δφi,

where δφi is non-linear in the fields. These do not change the theory, but affect the

Lagrangian. For example, terms in L2 may contribute to Ln when the fields are redefined

non-linearly. But in this way, the n-point vertices only change by terms that vanish when

the free equations of motion are imposed. We say that two Lagrangians are equivalent,

when they are related by such field redefinitions and deduce from Eq. (2.4) that we can

choose V to be independent of sii. Furthermore, we assume that V does not depend on zii

and yii, because the fields are traceless and divergence free.

Mathematically speaking, we impose the equivalence relations

yii « 0, zii « 0, sii « 0 (2.6)

and deduce that each operator in the ideal xyii, zii, siiy Ă Rryij, zij |iďj, sij |iďjs is equivalent

to 0. Hence, we can construct equivalence classes of vertex generating operators,

rVs P
Rryij , zij |iďj, sij |iďjs

xyii, zii, siiy
.

But the quotient ring is isomorphic to the subring R “ R
“
yij|i‰j , zij |iăj , sij|iăj

‰
,

Rryij, zij |iďj , sij|iďjs

xyii, zii, siiy
» R Ă Rryij, zij |iďj , sij|iďjs ,

so we can choose the vertex generating operator as V P R. In other words, we simply

dropped the dependence of V on yii, zii and sii.

Secondly, acting with the operator Dµ “
řn

j“1
P

µ
j on the term in brackets in Eq. (2.4)

gives a total derivative in the Lagrangian. This does not change the action and hence, does

not affect the theory. Therefore, we impose the equivalence relations

Ai ¨ D “
nÿ

j“1

yij « 0, Pi ¨ D “
nÿ

j“1

sij « 0 . (2.7)

These together generate an ideal ID Ă R and in the following, we consider equivalence

classes of vertex generating operators in the quotient ring

rVs P
R

ID
.

As for the equivalence relations in Eq. (2.6), we could choose a convenient representative

V in R, but it turns out to be better to keep the quotient ring structure for now.

A last equivalence stems from ‘Schouten identities’, i.e. relations following from over-

antisymmetrisation of spacetime indices. These spacetime dimension-dependent identities
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are exact relations at the Lagrangian level. In the polynomial ring R, however, we for-

got that we work in d dimensions. Therefore, we have to impose Schouten identities as

equivalence relations for vertex generating operators 6, which form an ideal IS Ă R as

follows: Let b “ pP1, . . . , Pn, A1, . . . Anq be a vector of derivative operators and consider

the symmetric 2n ˆ 2n matrix

B “
`
bK ¨ bL

˘ˇ̌
K,LPp1,...,2nq

“

˜
S YT

Y Z

¸
. (2.8)

Here, S “ psijq, Y “ pyijq, Z “ pzijq are symmetric pn ˆ nq-matrices with elements in

R. With the equivalence relations in Eq. (2.6), the diagonal elements of S, Y and Z

vanish equivalently. We also keep in mind that there are further equivalence relations from

Eq. (2.7) which introduce a linear relation among the first n rows (and columns) of B, but

we do not apply them right now.

Then, the ideal IS is generated by all pd ` 1q ˆ pd ` 1q minors of B. We show this

in a moment, but note first that this implies that IS is trivial for d ě 2n ´ 1. Indeed,

in this case, there is only one such minor, namely when equality holds. This minor is

detB, which is equivalent to zero due to the equivalence relations in ID (the first n rows

add up to a total derivative). Now we show that for d ă 2n ´ 1, the above statement

is true. Indeed, remove p2n ´ d ´ 1q rows and columns from B, such that only the rows

K1, . . . ,Kd`1 P p1, . . . , 2nq and the columns L1, . . . , Ld`1 P p1, . . . , 2nq remain and call the

resulting pd ` 1q ˆ pd ` 1q-matrix M . Then,

detM “ δµ1

ν1
¨ ¨ ¨ δ

µd`1

νd`1
B

µ1

rK1
¨ ¨ ¨B

µd`1

Kd`1s
Bν1

L1
¨ ¨ ¨B

νd`1

Ld`1

“ δ
µ1¨¨¨µd`1

ν1¨¨¨νd`1
B

µ1

K1
¨ ¨ ¨B

µd`1

Kd`1
Bν1

L1
¨ ¨ ¨B

νd`1

Ld`1
(2.9)

and acting with it on the term in brackets in Eq. (2.4) yields a term in the Lagrangian

with over-antisymetrised indices. On the other hand, each term in the Lagrangian with

over-antisymmetrised indices corresponds to a vertex generating operator V that contains

a factor of the form on the rhs of Eq. (2.9) for a certain set of indices Ki, Li P p1, . . . , 2nq.

Hence, V P IS.

At this step, it is convenient to introduce the notion of the level of a Schouten identity.

To this end, let us first define the level of the rows and columns of B as follows: The first

n rows and columns of B are of level 0 and all others are of level 1. Furthermore, each

pd`1q ˆ pd`1q-submatrix M of B that is obtained by removing rows and columns inherits

those row and column levels from B. Then, the sum of row and column levels of M equals

the power of Aµ
i operators in ιdpdetMq. This is what we call the level of the Schouten

6Formally, let ιd be the map

ιd : R Ñ RrPµ
i , A

µ
i s

Vpzij , yij , sijq ÞÑ VpAi ¨ Aj , Ai ¨ Pj , Pi ¨ Pjq

that replaces the operators zij , yij and sij by their definitions in Eq. (2.5). ιd therefore reintroduces the

operators Pi and Ai and hence, spacetime indices in d dimensions in the vertex generating operator V. The

kernel ι´1

d p0q of this map is what we call the ideal of Schouten identities in d dimensions.
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identity detM “ 0. Denote by Ipkq the ideal generated by all Schouten identities of level

k, then we have

IS “
2d`2ÿ

k“0

Ipkq , (2.10)

where again, d denotes the spacetime dimension.

Now, we consider three cases:

• For large dimensions, d ě 2n´1, as discussed before, there are no non-trivial Schouten

identities at all (the only possible Schouten identities arise in the case d “ n` 1, but

they are zero up to total derivatives, so they are already contained in ID). This case

is much simpler and we treat it separately in Section 3.

• For large values of n, d ă n, only the subideal Ip0q might be trivial (namely for

d`1 “ n, where the level 0 Schouten identities vanish up to a total derivative and thus

are already contained in ID). Thanks to the variety of Schouten identities available,

we are able to perform a lot of simplifications. We treat this case in Section 5.

• In the intermediate case 2n ´ 2 ě d ě n only the ideals of level 2d ´ 2n ` 4, . . . , 2n

are non-trivial. We will not study this case in full detail here, but a general charac-

terisation of the corresponding vertices is given in Section 7.

All in all, we have now considered all possible equivalences for parity-even Lagrangians.

Because of the freedom of field redefinitions, we consider V P R and we divide out the ideals

generated by total derivatives (ID) and Schouten identities (IS),

rVs P
R

I
, I “ IS ` ID . (2.11)

2.3 Imposing Gauge Invariance

Finally, we require that L is gauge invariant, i.e. it satifies Eq. (1.3). What does this imply

for the corresponding vertex generating operator V? Note first that the second term in

Eq. (1.3) vanishes when the free equations of motions are imposed. In other words, the

requirement of gauge invariance for the independent vertex structures reads

δ
p0q
k Ln « 0 , (2.12)

where δ
p0q
k is the free gauge transformation of the field φk (see Eq. (1.1)).

The latter can be simplified by contracting the tensor for the gauge parameter in

Eq. (1.1) with auxiliary vector variables aµ as well,

ǫps´1qpx, aq “
1

ps ´ 1q!
ǫµ1...µs´1

pxqaµ1 ¨ ¨ ¨ aµs´1 . (2.13)

Again, we drop the spin index, ǫk “ ǫpsk´1q, and the linearised gauge transformation of the

k-th field φk in Eq. (1.1) reads

δ
p0q
k φkpxk, akq “ ak ¨ Pk ǫkpxk, akq, (no sum).
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Note that this gauge transformation must be consistent with Eqs. (2.3). We therefore

impose the Fierz equations also for the gauge parameter.

All in all, we can now impose the restrictions for the vertex generating operators V

from gauge invariance, Eq. (2.12):

δ
p0q
k Ln “ V ak ¨ Pk

˜
ǫkpxk, akq

i‰kź

1ďiďn

φipxi, aiq

¸ ˇ̌
ˇ̌
ˇxi“x
ai“0

« 0 .

Since all the auxiliary vector variables ai are set to zero in the end, it immediately follows

that Ln is gauge invariant if and only if the corresponding vertex generating operator V P R

(via Eq. (2.4)) satisfies

for all k P t1, . . . , nu : rV, ak ¨ Pks “: DkV P IS ` ID . (2.14)

Here, we defined the operators Dk of gauge variations. These act as linear first-order

differential operators on the vertex V:

Dk “
nÿ

j“1

´
yjk

B

Bzkj
` skj

B

Bykj

¯
. (2.15)

3 The case 2n ´ 1 ď d

We start with the case of sufficiently high space-time dimensions where the classification of

vertices is the simplest because there are no Schouten identities and we only have to take

into account total derivatives, hence, I “ ID.

3.1 Gauge Invariants

To derive the n-th order independent vertices we first recall the constraints on the vertex

generating operators yij , zij , sij in Eqs. (2.6) and (2.7) and count the independent variables:

yii « 0 ,
nÿ

j“1

yij « 0 , npn ´ 2q variables yij , (3.1a)

zij “ zji , zii « 0 ,
npn ´ 1q

2
variables zij , (3.1b)

sij “ sji , sii « 0 ,
nÿ

j“1

sij « 0 ,
npn ´ 3q

2
variables sij . (3.1c)

The vertex depends altogether on 2npn´2q variables, and is subject to n linear differential

equations that stem from Eqs. (2.14) and (2.15) 7. If these differential equations are linearly

independent, the solution should depend on 2npn ´ 2q ´ n “ np2n ´ 5q variables.

7Notice that the operators Dk are consistent with these constraints (3.1), which means that Dk acting

on a constraint will lead to a constraint. Therefore we can leave the operators Dk in the general form stated

in Eq. (2.15) and do not need to express them in terms of a set of independent variables.
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For cubic vertices, n “ 3, this would give three invariants, while we know that the

solution depends on four invariants y12 , y23 , y31 and G “ y12 z23 ` y23 z31 ` y31 z12 . The

reason is that the three equations in that case are not linearly independent: y12D1 `

y23 D2 ` y31D3 “ 0. Due to this relation, we have, e.g., the Yang-Mills cubic vertex

V YM
3 “ G and the Einstein-Hilbert cubic vertex V EH

3 “ G2.

On the other hand, one can easily see from Eq. (2.15) that the operators Dk are linearly

independent for n ě 4. Hence, the general form of the vertices should depend on np2n´ 5q

invariants composed of sij , yij , zij .

At this point, we introduce gauge invariant operators, which are more suitable as the

building blocks of n-th order vertices. These are given through the following variables:

sij “ sji
npn ´ 3q

2
variables , (3.2)

cij “ yij yji ´ sij zij “ cji ,
npn ´ 1q

2
variables , (3.3)

ci,jk “ yij sik ´ yik sij “ ´ci,kj ,
npn ´ 2qpn ´ 3q

2
variables . (3.4)

It is easy to show that these expressions are gauge invariant:

Dk sij “ 0 , Dk cij “ 0 , Dk ci,jl “ 0 . (3.5)

Counting the number of the variables sij and cij is straightforward. In order to count

the number of ci,jk variables, we count separately the number of choices for i and the number

of choices for the antisymmetric pair jk for a given i and multiply them. Naively, we choose

i in n possible ways, and the antisymmetric pair jk takes values in ti`1 , . . . , i´2 pmod nqu,

therefore takes pn´2qpn´3q
2

values, hence the number of ci,jk’s is given above. These variables

ci,jk are not linearly independent though, satisfying the following relations:

3 ci,rjk si|ls ” ci,jk sil ` ci,kl sij ` ci,lj sik “ 0 , . (3.6)

These naively are npn´2qpn´3qpn´4q
6

many, given by multiplying the n possible choices of i

and pn´2qpn´3qpn´4q
6

choices of the antisymmetric triple jkl. But again, this counting is

redundant, due to linear relations between equations, involving different choices of jkl.

These relations are also given by adding another sim and antisymmetrising the four indices

jklm. This chain of reducibility can be resummed to get all linearly independent variables

of ci,jk. This is done by finding the number of possible values of jk antisymmetrised pairs

that correspond to the independent variables, by summing up with changing signs the

numbers of components of antisymmetric tensors of glpnq, starting from rank two:

n´2ÿ

i“2

p´1qi
ˆ
n ´ 2

i

˙
“ n ´ 3 . (3.7)

This means that the number of independent variables ci,jk is npn ´ 3q. We see that

the variables ci,jk are redundant and we choose the following set of independent variables:

Y
j
i :“ ci,i`j i`1 , (3.8)
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where now j “ 2, . . . , n´ 2, taking n´ 3 possible values (indices are always meant modulo

n). Thus, the number of variables Y j
i is altogether npn ´ 3q. It is elementary to show that

any other variable ci,jk can be expressed through Y
j
i using Eq. (3.6):

ci,jk “
ci,j i`1 sik ´ ci,k i`1 sij

si i`1

“
Y

j´i
i sik ´ Y k´i

i sij

si i`1

. (3.9)

Therefore altogether we have:

npn ´ 3q

2
`

npn ´ 1q

2
` npn ´ 3q “ np2n ´ 5q invariants. (3.10)

Given that the number of independent invariants sij , cij , Y
j
i is the same as the number of

variables that should constitute the building blocks of n-th order independent vertices, it

is already tempting to conclude that the most general solution is an arbitrary function of

these variables. We will show this now, by allowing for dividing by Mandelstam variables

and making the replacements

zij “
1

sij
pyij yji ´ cijq , (3.11)

and, consecutively,

yii`j “
1

sii`1

pyii`1 sii`j ´ Y
j
i q , j “ 2, . . . , n ´ 2 mod n , (3.12)

expressing the vertex operator in terms of the variables sij, cij , Y
j
i and yii`1. Correspond-

ingly, the gauge variation in terms of these variables is generated by the operators

Dk “ skk`1

B

Bykk`1

, (3.13)

which turn into a single derivative. Therefore, the new gauge invariance equations for the

vertex operator give:

DkVpsij , cij , Y
j
i , yii`1q “ skk`1

B

Bykk`1

Vpsij , cij , Y
j
i , yii`1q « 0 . (3.14)

If we go to a set of independent variables, we can conclude that the yii`1-derivative is equal

to zero, and the vertex can be solely written in terms of the gauge invariant combinations

sij , cij , Y
j
i . A gauge invariant local vertex generating operator V in high enough dimension

(d ě 2n ´ 1) is then in one-to-one correspondence to a polynomial in sij, cij , Y
j
i , allowing

at most those inverse powers of Mandelstam variables, such that V becomes polynomial in

the variables sij, yij and zij , when re-expressing the combinations cij and Y
j
i .

3.2 Building blocks of vertices

We have just shown that any gauge-invariant vertex V of order n for d ě 2n ´ 1 can be

rewritten as a function of the invariants cij , Y
j
i and sij. This function is polynomial in cij

and Y
j
i , but can contain inverse powers of the Mandelstam variables sij.
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In this subsection we address the question: ‘what is the most general form of this

function if we assume that the vertex is local?’ First of all it is clear that any polynomial

of cij , Y
j
i and sij defines a local and gauge-invariant vertex. Now let us analyse the case

that the vertex contains a single pole in one sij when written in terms of the invariants:

V “
1

sij
Qpcij , Y

j
i , sklq . (3.15)

Here, we assume that the polynomial Q does not explicitly depend on this specific sij . For

V to be local, the inverse of sij has to be compensated by a term proportional to sij that

arises when the invariants are rewritten in terms of sij, yij, zij . One can show that in this

case, V is a linear combination of

bijkℓ “
1

sij
pcij sik sjℓ ´ ci,jkcj,iℓq and

1

sij
psikci,jℓ ´ siℓci,jkq (3.16)

multiplied by polynomials in cij , Y
j
i and the Mandelstam variables 8. The second expression

is simply equal to ci,kℓ (see Eq. (3.6)), so it is again a polynomial in skl and c variables.

The first one can be rewritten as

bijkℓ “ det

¨
˚̋
sij sik yji

sℓj sℓk yjℓ

yij yik zij

˛
‹‚` skℓcij . (3.17)

Hence, up to a shift by a polynomial in Mandelstam and c variables, the building block

bijkℓ can be written as a determinant of a 3 ˆ 3-submatrix of the matrix B (see Eq. (2.8)).

This nicely fits with the observation that also the c invariants are just minors of B,

cij “ ´ det

˜
sij yji

yij zij

¸
, ci,jk “ det

˜
sik sij

yik yij

¸
. (3.18)

Notice that these minors as well as the p3 ˆ 3q-example above have the property that each

pn`iq-th row (column) of the second block is accompanied by the corresponding (i-th) row

(column) of the first block. This ensures gauge invariance because the i-th gauge variation

transforms the pn ` iq-th row (column) into the i-th row (column) leading to a vanishing

determinant. Translating such a building block to the fields, the resulting expression is a

pure curvature term: a tensor index of a field i occurs in an antisymmetric combination

with an index of a derivative acting on the field.

Of course all such minors can be written as polynomials in the c invariants with

negative powers of Mandelstam variables allowed. This can be explicitly seen when in

the determinant we add to the pj ` nq-th column the j-th column multiplied by ´
yjj`1

sjj`1
,

and similarly we add to the pi ` nq-th row the i-th row multiplied by ´yii`1

sii`1
. Then one

arrives at

det

˜
psijq pyjiq

pyijq pzijq

¸
“ det

¨
˝ psijq

´
1

sjj`1
cj,ij`1

¯
´

1

sii`1
ci,ji`1

¯ ´
1

sijsii`1sjj`1
pcj,j`1 ici,i`1 j ´ sii`1sjj`1cijq

¯
˛
‚ .

(3.19)

8Note that ci,jk can be expressed as a polynomial in Y ’s and Mandelstam variables via Eq. (3.9).
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Here, the labels i and j only run through the values that correspond to the rows and

columns present in the minor that we are considering.

There is one additional possibility due to the linear dependencies in B: we can take

the determinant of the p2n´ 1q ˆ p2n´ 1q submatrix that is obtained by deleting, e.g., the

first row and column. This is still gauge invariant because the gauge transformation with

respect to the variables of the first field transforms the first row of the second block into a

linear combination of the n ´ 1 rows of the first block, and the determinant still vanishes.

Expressed in terms of fields, such a building block corresponds to a term of the form

δ
rµ2¨¨¨µ2ns
ν2¨¨¨ν2n φp1q

µn`1

νn`1Bµ2
Bν2φp2q

µn`2

νn`2 ¨ ¨ ¨ BµnBνnφpnq
µ2n

ν2n , (3.20)

which is gauge invariant up to total derivatives. This Lovelock-type vertex can be gener-

alised in a way, where one computes the determinant of the minor of B containing n ´ 1

rows and columns from the first block and arbitrary number m of rows and columns from

the second block, but these do not introduce new building blocks 9.

Note that also the Mandelstam variables sij are 1ˆ1-minors. It is tempting to speculate

that all gauge invariant local vertices V can be written as polynomials in the types of

minors of B mentioned above. If this speculation is correct, then for a spin configuration

s1 ě s2 ě ¨ ¨ ¨ ě sn the lowest number of derivatives in a local vertex is s1 ` s2 ` ¨ ¨ ¨ ` sn´1.

4 Lower dimension: dealing with Schouten identities

In the previous section we have discussed the gauge-invariant vertices when we do not

have to consider Schouten identities. When we go to lower dimensions, the ideal of re-

lations is enlarged from ID to ID ` IS . Gauge-invariant vertex generating operators for

large dimensions still define gauge-invariant operators in lower dimensions, but a priori,

enlarging the ideal could have two effects: First, inequivalent vertices become equivalent,

and second, new vertices arise that are gauge-invariant only up to the now larger set of

equivalence relations. We will show in the following that the latter possibility does not lead

to new equivalence classes of vertices, but that for all gauge-invariant vertex generating

operators there are equivalent operators10 which are gauge-invariant already without the

use of Schouten identities.

To show this, start with a vertex generating operator V as a polynomial in sij, yij , zij

that in d dimensions is gauge invariant,

DkV P ID ` IS . (4.1)

In V we now express the variables zij and yij in terms of cij, Y
j
i and yii`1,

V “ QVpcij , Y
j
i , yii`1q , (4.2)

9By adding total derivatives they can be transformed to a expression of the type (3.19) where the n ´ 1

rows (columns) of the first block contain the m rows (columns) corresponding to those of the second block.
10as long as we can divide by Mandelstam variables
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where QV is a polynomial in the given variables. We suppressed the dependence on Man-

delstam variables which can also occur with negative powers. In these variables, the gauge

variation Dk is written as a derivative with respect to ykk`1 as in Eq. (3.13), so we have

DkV “ skk`1

B

Bykk`1

QVpcij , Y
j
i , yii`1q P ID ` IS . (4.3)

When we expand Q in powers of y12,

QVpcij , Y
j
i , yii`1q “

Nÿ

n“0

qnpcij , Y
j
i , y23, . . . , yn1qpy12qn , (4.4)

we apply pD1qN to the expression and obtain

N !ps12qNqN P ID ` IS . (4.5)

When we allow us to divide by Mandelstam variables, we conclude that

qN P
1

ps12qN
pID ` ISq . (4.6)

Similar relations can be found for all other terms in the expansion in y12 and also in the

other variables yii`1. Hence, we find that

V ´ QVpcij , Y
j
i , yii`1q

ˇ̌
yii`1“0

P
1

∆
pID ` ISq , (4.7)

where ∆ is a product of powers of Mandelstam variables. Therefore, V is equivalent to

an operator depending only on cij and Y
j
i which already defines a gauge invariant vertex

operator without the need of Schouten identities.

We conclude that in all dimensions, vertex generating operators can be expressed in

terms of the operators identified for large dimensions. The main task for lower dimension

is therefore to work out explicitly the equivalences between such operators that are induced

by Schouten identities. Here, the case of low dimensions, d ă n, is special because many

Schouten identities arise that reduce the independent equivalence classes considerably. This

will be discussed in detail in the subsequent section. The identifications in the intermediate

case will be stated in the discussion in Section 7.

In the remainder of this section we give a heuristic geometric argument why generically

one does not expect new vertices to appear when we lower the dimension. In the sense

of algebraic geometry, the ideal I “ IS ` ID defines a variety V pIq as the zero-set of the

polynomials contained in I. If I was a prime ideal, we could think of the ring R{I as the

ring of polynomial functions on this variety. The gauge variations Dk define n vector fields

on this variety, and we are looking for functions on V pIq that are constant along the vector

fields. When we enlarge the ideal to I 1 Ą I by going from higher to lower dimensions where

new Schouten identities occur, we concentrate on a subvariety V pI 1q of V pIq. Generically,

if the vector fields do not degenerate on this subvariety, functions that are constant along

Dk on V pI 1q can be lifted to constant functions on V pIq.
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The above argument only gives a very rough picture, because apart from the possible

degeneration of the vector fields, there are two subtleties: First, as it was said, the argument

only applies to prime ideals, but the ideals that occur are usually not prime; secondly, there

could be constant polynomials on V pI 1q whose lifts to V pIq are not polynomial. Therefore,

this picture can only be seen as a heuristic explanation why generically we do not expect

new gauge invariant vertices to appear when we lower the dimension.

5 The case n ą d

In this chapter, we find general restrictions for gauge invariant n-point vertices with n ą d.

Our result is a simple characterisation of equivalence classes rVs P R{I for vertex generating

operators. The results are summarised in Section 5.4.

As discussed in Section 2.2, we have the full set of Schouten identities at hand in order

to find a simple representative V for a given vertex. This has the advantage that a lot

of simplifications are possible. On the other hand, the structure of the set of Schouten

identities is very complicated, and the number of independent Schouten identities in the

polynomial ring is large. This problem was solved in [1] for d “ 3 by observing that many

Schouten identities become dependent when multiplied with an appropriate product ∆ of

Mandelstam variables. By multiplying a given vertex V with ∆, the remaining indepen-

dent Schouten identities can be used to deduce strong constraints for the vertex V itself.

Essentially, one can treat the Mandelstam variables in the manipulations like numbers and

also divide by them. This concept can be also employed in higher dimensions.

Formally, to be able to divide by certain combinations of Mandelstam variables, we

introduce the ring of fractions, M´1R. Here, M is a multiplicatively closed set containing

all (finite) products of non-zero minors of the submatrix S of B (see Eq. (2.8)): these are

the expressions we want to divide by. More explicitly, let MipSq be the set of non-zero

minors of S 11 and let M “ MonrMipSqs be the set of monomials in these minors. Then,

the ring of fractions consists of formal quotients,

M´1R “
! r

∆
|∆ P M, r P R

)
, (5.1)

with the obvious rules for addition and multiplication. As also 1 P M , we can identify R

via r ÞÑ r
1
as subring of M´1R. The ideal I “ IS ` ID Ă R can then be seen as a subset

of M´1R which generates an ideal IM in M´1R. Using the embedding of R into M´1R,

we have an induced map of the quotient rings,

iM :
R

I
Ñ

M´1R

IM
. (5.2)

As we will argue below, this map is injective, and therefore we can characterise equiva-

lence classes of vertices uniquely by equivalence classes in the ring of fractions. The crucial

11First, non-zero minors of order one are just the Mandelstam variables sij with i ‰ j. Secondly, all

minors of order 2, 3, . . . , d are generically non-zero — even when the equivalence relations in Eq. (2.7) are

applied. Finally, all minors of order greater than d do vanish due to Schouten identities. Hence, MipSq

consists of all p2 ˆ 2q , p3 ˆ 3q , . . . pd ˆ dq subdeterminants of S as well as the Mandelstam variables sij

with i ‰ j.
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observation is now that in M´1R many of the generators of the ideal become dependent, so

that IM has a simple set of generators. This section is structured as follows. In Section 5.1

we find a simple set of generators for IM . This enables us to find a convenient represen-

tative of rVs in the quotient of the ring of fractions in Section 5.2. We then impose gauge

invariance in Section 5.3, which leads to strong restrictions on the vertex V. In d “ 3,

these restrictions completely rule out independent vertices (as reported in [1]), in higher

dimensions the restrictions are less strict, and we discuss them in Section 5.4. In order to

make the structure of this paper better accessible, we collect some proofs in Section 5.5.

Before we proceed, we want to show that iM is indeed injective. If iM prVsq “ r0s, this

means that V P RX IM . Then, there is some ∆ P M such that ∆V P I. But if ∆V defines

a trivial vertex, then also V defines a trivial vertex, which can be seen in Fourier space,

where the operators sij are numbers. In particular, the polynomial ∆ is non-zero on the

subvariety defined by k2i “ 0 and
ř

ki “ 0. Now, if ∆V defines a trivial vertex, then

∆V
ź

i

pφipki, aiq
ˇ̌
ˇ
ai“0

(5.3)

vanishes on this subvariety. But ∆ is non-vanishing almost everywhere. Hence, since V

only depends polynomially on k
µ
i , V applied on the fields pφi must vanish. So we conclude

that V « 0, hence rVs “ r0s.

5.1 A Minimal Generating Set of Schouten Identities

In this section, we find a simple set of generators for the ideal IM in two steps. First,

any Schouten identitiy multiplied with a certain ∆ P M “ MonrMipSqs is an element in

the ideal generated by the equivalence relations in Eq. (2.7) and all Schouten identities up

to level 2 12 (recall the notion of level introduced in the paragraph before Eq. (2.10)). In

other words,

there exists ∆ P MonrMipSqs : ∆ ¨ IS Ă
2ÿ

k“0

Ipkq ` ID . (5.4)

We show this in Section 5.5.1. This observation implies that in the ring of fractions where

we are allowed to divide by ∆, we need far less generators for the Schouten identities.

In order to perform the second step, we introduce some more notations: First,

Nij “

¨
˚̋

sij ¨ ¨ ¨ sij`d´1

...
. . .

...

si`d´1 j ¨ ¨ ¨ si`d´1j`d´1

˛
‹‚ (5.5)

is a d ˆ d submatrix of S, hence, detNij P MipSq and Nij has full rank. Secondly, let

B1pi, jq with i, j “ 1, . . . , n be the following pd ` 1q ˆ pd ` 1q submatrix of B: It contains

the rows and columns i, i ` 1, . . . , i ` d ´ 1 (modulo n) as well as another row j and the

12This proof relies on the fact that n ą d.
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column i ` n. Hence,

detB1pi, jq “ det

¨
˚̊
˚̊
˚̊
˝

0

yii`1

Nii ...

yii`d´1

sji ¨ ¨ ¨ sji`d´1 yij

˛
‹‹‹‹‹‹‚

P Ip1q 13. (5.6)

Finally, let B2pi, jq with i, j “ 1, . . . , n be the pd`1qˆpd`1q submatrix of B containing the

rows i, i`1, . . . , i`d´1 (modulo n) and i`n, as well as the columns j, j `1, . . . , j `d´1

(modulo n) and j ` n. Hence,

detB2pi, jq “ det

¨
˚̊
˚̊
˝

yij

Nij

...

yij`d´1

yij ¨ ¨ ¨ yij`d´1 zij

˛
‹‹‹‹‚

P Ip2q .

With these notations, we show in Section 5.5.2 that there exists ∆ P M “ MonrMipSqs

such that

∆ ¨ pIS ` IDq Ă Ip0q `

C
nÿ

k“1

sik , detB1pi, jq , detB2pi, jq
ˇ̌
ˇ i, j “ 1, . . . , n

G
. (5.7)

Denote the family of generators of Ip0q by pdetB0pAqq, where A labels the different equiv-

alence relations. Then, we can conclude that IM is generated as

IM “

C
nÿ

k“1

sik , pdetB0pAqq , detB1pi, jq , detB2pi, jq
ˇ̌
ˇ i, j “ 1, . . . , n

G
. (5.8)

5.2 The choice of Representative

Now, let us investigate the relevant ideal IM in order to choose a convenient representative

for V in its equivalence class rVs P M´1R{IM .

We start by considering the Schouten identities detB2pi, jq P Ip2q, with i ‰ j. Using

a Laplace expansion along the last column, they read

0 « detB2pi, jq “ zij detNij ` terms that do not contain any zkl . (5.9)

Since detNij P MipSq, we can divide by it in M´1R, and express zij by an expression

independent of any zkl. Hence, we may choose the representative of rVs to be independent

of zij . In the same way, the Schouten identities detB1pi, jq P Ip1q take the form

0 « detB1pi, jq “ yij detNii ` ppsij, yii`1, . . . , yii`d´1q .

Here, the polynomial p only depends on yii`1, . . . , yii`d´1
14 and the Mandelstam variables.

Using these Schouten identities, we can replace all of the operators yij in V except for

yii`1, . . . , yii`d´1.

13Note that this is true for all j “ 1, . . . , n. If for example j “ i, then detB1pi, jq “ 0 P Ip1q.
14the indices are considered modulo n.
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Finally, we perform a change of variables in V. Similarly to Eq. (3.8) we introduce the

combinations

Y
j
i “ sii`1yii`j ´ sii`jyii`1 for j “ 2, . . . , d ´ 1 , (5.10)

and replace all yii`2, . . . , yii`d´1 in terms of these variables and yii`1. This can be done,

because sii`1 P M and we can divide by it in M´1R. We arrive at

V « QVpyii`1, Y
j
i , sijq , (5.11)

where QV is a polynomial in yii`1, Y
j
i and the Mandelstam variables (with coefficients that

can contain inverse powers of elements in MipSq). More explicitly, we can see rVs as an

element in the quotient

rVs P
M´1

R

”
yii`1, Y

j
i , sij

ı

A
pdetB0pAqq ,

řn
j“1

sij , detB2pi, iq
ˇ̌
i “ 1, . . . , n

E . (5.12)

There are several reasons to introduce the Y j
i variables. First, they are the gauge invariant

combinations of the yij variables — we have discussed this already in Section 3 and it

will become important in Section 5.3. Secondly, the remaining level-2 Schouten identities

detB2pi, iq can be written solely in terms of the Y
j
i ’s and the Mandelstam variables, and

they do not depend explicitly on yii`1. We show this in the rest of this section: For this

purpose, consider

s2ii`1 detB2pi, iq “ det

¨
˚̊
˚̊
˚̊
˝

0

sii`1yii`1

Nii ...

sii`1yii`d´1

0 sii`1yii`1 ¨ ¨ ¨ sii`1yii`d´1 0

˛
‹‹‹‹‹‹‚

.

The determinant of the matrix does not change when yii`1 times the first row is subtracted

from the last one and yii`1 times the first column is subtracted from the last one. Hence,

using the definition of Y j
i in Eq. (5.10), we find

s2ii`1 detB2pi, iq “ det

¨
˚̊
˚̊
˚̊
˚̊
˝

0

0

Nii Y 2
i
...

Y d´1

i

0 0 Y 2
i ¨ ¨ ¨ Y d´1

i 0

˛
‹‹‹‹‹‹‹‹‚

“ ´
d´1ÿ

j,k“2

Y
j
i padjNiiqjk Y

k
i “: qi2pY j

i , sjkq .

Here, we used a Laplace expansion along the last row and column. The resulting poly-

nomials qi
2
are quadratic in the Y

j
i variables with coefficients that still depend on the

Mandelstam variables. However, the qi
2
’s are independent of yii`1. We comment on their
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structure in Section 5.4. All in all, we can replace the generators detB2piq by qi2 because

we are allowed to divide by Mandelstam variables. Hence, we have the following result:

rVs P
M´1

R

”
yii`1, Y

j
i , sij

ı

A
pdetB0pAqq ,

řn
j“1

sij , q
i
2

ˇ̌
i “ 1, . . . , n

E .

5.3 General Restrictions from Gauge Invariance

With the results of the previous sections, we now show that the polynomial QV introduced

in Eq. (5.11) can be chosen to be independent of yii`1 if the operator V corresponds to a

gauge invariant Lagrangian Ln. From now on, we will always consider V as an element in

the bigger ring of fractions.

Starting from Eq. (2.14) and using that the operators ak ¨ Pk commute with all Man-

delstam variables, we find that a gauge invariant vertex Ln requires

for all k P t1, . . . nu : rV, ak ¨ Pks P IM ,

where Ln and V are related via Eq. (2.4). Now, the ideal IM is gauge invariant, hence, it

commutes with the operators ak ¨Pk. We deduce that the polynomial in Eq. (5.11) satisfies

rQV , ak ¨ Pks P

C
pdetB0pAqq ,

nÿ

j“1

sij , q
i
2pY j

i q
ˇ̌
i “ 1, . . . , n

G
.

With

ryii`1, ak ¨ Pks “ δiksii`1 ñ rY j
i , ak ¨ Pks “ δik psii`jsii`1 ´ sii`1sii`jq “ 0 ,

it follows immediately that

for all k “ 1, . . . , n : skk`1Bykk`1
QV P

C
pdetB0pAqq ,

nÿ

j“1

sij , q
i
2pY j

i q
ˇ̌
i “ 1, . . . , n

G
.

But the generators of the ideal on the rhs do not depend on yii`1. We conclude that QV

can be chosen to be independent of yii`1. More explicitly,

V « QVpY j
i , sijq , rVs P

M´1
R

“
Y k
i , sij

‰
A

pdetB0pAqq ,
řn

j“1
sij , q

i
2
pY j

i q | i “ 1, . . . , n
E . (5.13)

5.4 Restrictions for V

Let us summarise our results. Eq. (5.13) states that each gauge invariant vertex V is

equivalent to a vertex QV , which does only depend on Mandelstam variables and Y
j
i . In

particular, translating back to the vertex in terms of Pµ
i and A

µ
i operators, we have the

following relation:

ιdpY j
i q “ 2PiµAiνP

µ

ri`1
Aν

i`js “ 2PirµAiνsP
µ
i`1

Aν
i`j .
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Now, in the vertex generated by QV , an index of the ith field is only generated by A
µ
i via

a corresponding Y
j
i . Hence, the ith field enters the Lagrangian via a curvature term (each

index of the field is antisymmetrised with an index of a partial derivative acting on it). We

deduce that QV generates a Lagrangian, which can be written solely in terms of curvature

terms.

The drawback of this analysis is that we loose locality on the way to this result. QV

might not have a local form, since it can have inverse powers of Mandelstam variables. We

can only say that for each gauge invariant vertex (generated by V), there is a ∆ P M such

that ∆V can be written only in terms of curvatures.

Much stricter conditions can be found in three dimensions [1]. In that case, there

is only one Y
j
i and the corresponding Schouten identity is qi2 “ ´s2ii`1

pY 2
i q2. Hence,

detB2pi, iq “ pY 2
i q2 « 0 and QV is only linear in Yi. One can then deduce that V itself

is at most linear in each of the operators A
µ
i , which means that the corresponding vertex

Ln contains no higher-spin fields at all. This argument can also be obtained from the

observation that in d “ 3, there are simply no curvature terms for higher-spin fields.

5.5 Proofs

5.5.1 Proof of Eq. (5.4)

Let detM “ 0 be a Schouten identity that stems from a pd ` 1q ˆ pd ` 1q-submatrix

M of B such that detM R ID. Let r (s) be the number of level-0 rows (columns) of

M . Furthermore, let Let r̄ (s̄) be the number of level-1 rows (columns) of M . Hence,

r ` r̄ “ s ` s̄ “ d ` 1. Without loss of generality, we assume r ě s 15. Furthermore, let

s̄ ě 2, hence, the level of the Schouten identity detM “ 0 is r̄ ` s̄ ě 2. In particular,

equality holds if and only if s̄ “ 2 and r̄ “ 0.

With the submatrix M given, we construct a pd ` 2q ˆ pd ` 2q-submatrix ĂM of B as

follows:

• Removing p2n ´ d ´ 2q rows and columns from B results in ĂM .

• There is a level-0 row (which we call Row) and a level-0 column (called Col) in ĂM ,

such that removing Row and Col in ĂM yields M . Hence, ĂM contains pr ` 1q level-0

rows and ps ` 1q level-0 columns.

• The construction of ĂM might not be unique, but is always possible. This can be seen

as follows: In order to construct ĂM , there must be at least one level-0 row of B that

is not part of M (otherwise, M would contain all level-0 rows of B which means that

detM P ID which contradicts our assumption). Furthermore, there are at least two

level-0 columns of B that are not part of M , because s̄ ě 2 and hence, s ď d ´ 1 16.

In particular, we can always choose ĂM such that the intersection of Row and Col

contains a non-zero Mandelstam variable.

The construction of the matrix ĂM is visualised in Figure 1.

15If r ă s, we choose MT instead of M , which yields the same Schouten identity detMT “ detM . MT

is a submatrix of B as well because B is symmetric.
16
B has more than d level-0 columns, since n ą d.
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s level-0 columns

r
level-0

row
s

M “

ps ` 1q level-0 columns
pr

`
1q

level-0
row

s

Row

C
o
l

‰ 0ĂM “

Figure 1. Visualisation of the matrices M and ĂM

For ĂM , Cramers rule states that

Ipd`2qˆpd`2q det ĂM ´ ĂM ¨ CT “ 0, (5.14)

where C “ pcijq denotes the cofactor matrix of ĂM “ p rmijq. In particluar, cij is (up to a

factor of ˘1) equal to the determinant of the pd`1qˆpd`1q-submatrix obtained by deleting

the i-th row and the j-th column from ĂM . In other words, cij is a pd ` 1q ˆ pd ` 1q-minor

of B, hence cij P IS. In the following, we consider only part of Eq. (5.14):

δji det ĂM ´
s`1ÿ

k“1

rmjkcik ´
d`2ÿ

k“s`2

rmjkcik “ 0 i “ 1, . . . , s ` 1, j P J . (5.15)

Here, J is a (non-unique) subset of s ` 1 level-0 rows that contains Row. In other words,

J Ă t1, . . . , r ` 1u , |J | “ s ` 1 , Row P J .

Performing a Laplace expansion of det ĂM along the last column of ĂM (which is of level 1

because of s̄ ě 2), we deduce that det ĂM is a linear combination of Schouten identities of

level r̄ ` s̄ ´ 1 and r̄ ` s̄ ´ 2. Hence,

det ĂM P Ipr̄ ` s̄ ´ 1q ` Ipr̄ ` s̄ ´ 2q .

Furthermore, in the third term of Eq. (5.15), the Schouten identities cik with k ą s ` 1

are of level pr̄ ` s̄ ´ 1q. We therefore conclude that the middle term is an element in the

following ideal:

for all i “ 1, . . . , s ` 1, j P J :

˜
s`1ÿ

k“1

rmjkcik

¸
P Ipr̄ ` s̄ ´ 1q ` Ipr̄ ` s̄ ´ 2q . (5.16)

Now, denote by N “ p rmjkq (with j P J and k P t1, . . . , s ` 1u) the ps ` 1q ˆ ps ` 1q-

submatrix of ĂM that occurs in Eq. (5.16). It is also a submatrix of S as it only consists of
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level-0 rows and columns. Since s` 1 ď d, we deduce that detN P MipSq 17. In particular,

detN ‰ 0 and by inverting N in Eq. (5.16) using Cramers rule, we find

for all j P J, k P t1, . . . , s ` 1u : detN ¨ cjk P Ipr̄ ` s̄ ´ 1q ` Ipr̄ ` s̄ ´ 2q .

Finally, setting j “ Row and k “ Col, we have cjk “ detM — which corresponds

to the Schouten identity of level pr̄ ` s̄q we started with. It follows directly that for all

detM P Ipr̄ ` s̄q, either detM P ID or

there exists detN P MipSq : detN ¨ detM P Ipr̄ ` s̄ ´ 1q ` Ipr̄ ` s̄ ´ 2q . (5.17)

In other words,

there exists ∆ P MonrMipSqs : ∆ ¨ Ipr̄ ` s̄q Ă Ipr̄ ` s̄ ´ 1q ` Ipr̄ ` s̄ ´ 2q ` ID

and a recursion over r̄ and s̄ proves the general statement in Eq. (5.4).

5.5.2 Proof of Eq. (5.7)

We prove Eq. (5.7) in three steps. It directly follows from Eq. (5.4), as well as Eqs. (5.18,

5.22 and 5.26).

Part 1: First of all, we show that

there exists ∆ P MonrMipSqs : ∆Ip2q Ă Ip0q ` Ip1q `
@
detB2pi, jq

ˇ̌
i, j “ 1, . . . , n

D
.

(5.18)

Therefore, consider an arbitrary level-2 Schouten identity detM « 0, with M being a

pd`1q ˆ pd`1q-submatrix of B. As explained in the previous section, we may assume that

M has either one (r̄ “ 1, s̄ “ 1) or two level-1 columns (r̄ “ 0, s̄ “ 2). In the latter case,

the proof of the previous section goes through and Eq. (5.17) is satisfied. Hence, we only

need to consider the other case pr̄ “ s̄ “ 1q. In particular, we show that if M contains the

level-1 row i ` n and the level-1 column j ` n of B, then:

there exists ∆ P MonrMipSqs : ∆ detM P Ip1q ` xdetB2pi, jqy , (5.19)

which implies Eq. (5.18).

We prove Eq. (5.19) by induction. Therefore, fix i and j. Let I2pK,Lq be the ideal

generated by all level-2 Schouten identities detM « 0, such that the pd ` 1q ˆ pd ` 1q-

submatrix M of B has the following properties:

i) M contains the level-1 row i ` n and the level-1 column j ` n of B.

ii) K rows (L columns) of M stem from the rows i, . . . , i`d´1 (columns j, . . . , j`d´1)

(modulo n) of B.

17In the case that s “ 0, N is just a Mandelstam variable. But within the construction of ĂM , we chose

Row and Col such that its intersection (which is N in that case) is non-zero. Therefore, detN “ N ‰ 0.
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Hence, I2pd, dq “ xdetB2pi, jqy and Eq. (5.19) is a recursive consequence of the following

two propositions:

if K ă d , there exists ∆ P MonrMipSqs : ∆ ¨ I2pK,Lq Ă Ip1q ` I2pK ` 1, Lq , (5.20)

if L ă d , there exists ∆ P MonrMipSqs : ∆ ¨ I2pK,Lq Ă Ip1q ` I2pK,L ` 1q . (5.21)

Here, we present the proof of Eq. (5.21). Eq. (5.20) can be shown in the same way,

except that the roles of rows and columns are interchanged. Therefore, we start with a

pd ` 1q ˆ pd ` 1q-submatrix M of B, such that detM P I2pK,Lq with L ă d. For M given,

we construct a pd ` 2q ˆ pd ` 2q-matrix ĂM as follows:

• Removing the first row from ĂM yields a pd ` 1q ˆ pd ` 2q-submatrix xM of B.

• There is a unique k0 P t1, . . . , d ` 1u, such that removing the k0-th column from xM
yields M . We construct ĂM such that the k0-th column stems from one of the columns

j, . . . , j ` d ´ 1 (modulo n) of B, which is possible because L ă d.

• Note that xM has d ` 1 level-0 columns. Hence, at least one of those cannot stem

from one of the columns j, . . . , j ` d ´ 1 (modulo n) of B. Let us agree that at least

the l0-th column has this property. Obviously, l0 ‰ k0.

• The first two rows of ĂM coincide, hence, det ĂM “ 0.

Now, Cramers rule states that ĂMCT “ 0, where C “ pcklq is the cofactor matrix of
ĂM “ p rmklq. The first column of this matrix equation reads

d`2ÿ

l“1

rmklc1l “ 0 .

Note that up to a factor of ˘1, c1l is the determinant of the pd`1qˆpd`1q-matrix obtained

by removing the first row and the lth column from ĂM . Hence, c1l P Ip2q for l ď d ` 1 and

c1 d`2 P Ip1q. In particular, c1k09 detM P I2pK,Lq and c1l09 detMl0Ñk0 P I2pK,L ` 1q,

where the matrix Ml0Ñk0 differs from M by only one column. Indeed, it contains the k0-th

column of ĂM instead of the l0-th. We deduce that

l‰l0ÿ

1ďlďd`1

rmklc1l P Ip1q ` I2pK,L ` 1q .

Now, consider only the rows 2, . . . , d ` 1 of that relation. The matrix N “ p rmklq with

k P t2, . . . , d ` 1u and l P t1, . . . , d ` 1uztl0u is a pd ˆ dq-submatrix of S and can hence, be

inverted using Cramers rule. We find that

detN ¨ c1l P Ip1q ` I2pK,L ` 1q

and setting l “ k0 finally proves Eq. (5.21).
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Part 2: In a second step, we show that

there exists ∆ P MonrMipSqs : ∆Ip1q Ă Ip0q ` xdetB1pi, jq | i, j “ 1, . . . , ny . (5.22)

The proof is similar to the previous one. Let detM « 0 be an arbitrary level-1 Schouten

identity, whereM is a pd`1qˆpd`1q-submatrix of B. As explained in the previous section,

we may assume that M has exactly one level-1 column (r̄ “ 0, s̄ “ 1). In particular, we

show that if M contains the level-1 column i ` n of B, then:

there exists ∆ P MonrMipSqs : ∆ detM P Ip0q ` xdetB1pi, jq | j “ 1, . . . , ny , (5.23)

which implies Eq. (5.22).

Again, we prove Eq. (5.23) by induction. Therefore, fix i. Let I1pK,Lq be the ideal

generated by all level-1 Schouten identities detM « 0, such that the pd ` 1q ˆ pd ` 1q-

submatrix M of B has the following properties:

i) M contains the level-1 column i ` n of B.

ii) K rows (L columns) of M stem from the rows (columns) i, . . . , i ` d ´ 1 (modulo n)

of B.

Hence, Mpd, dq “ xdetB1pi, jq | j “ 1, . . . , ny and Eq. (5.23) is a recursive consequence of

the following two propositions:

if K ă d , there exists ∆ P MonrMipSqs : ∆ ¨ I1pK,Lq Ă Ip0q ` I1pK ` 1, Lq , (5.24)

if L ă d , there exists ∆ P MonrMipSqs : ∆ ¨ I1pK,Lq Ă Ip0q ` I1pK,L ` 1q . (5.25)

Here, we give the proof of Eq. (5.25), Eq. (5.24) follows analogously. For a given

pd ` 1q ˆ pd ` 1q-submatrix M of B, such that detM P I1pK,Lq with L ă d, we construct

a pd ` 2q ˆ pd ` 2q-matrix ĂM as follows:

• Removing the first row from ĂM yields a pd ` 1q ˆ pd ` 2q-submatrix xM of B.

• There is a unique k0 P t1, . . . , d ` 1u, such that removing the k0-th column from xM
yields M . Again, we construct ĂM such that the k0-th column stems from one of the

columns i, . . . , i ` d ´ 1 (modulo n) of B, which is possible because L ă d.

• Note that xM has d ` 1 level-0 columns. Hence, at least one of those (say, the l0-th)

cannot stem from one of the columns i, . . . , i`d´1 (modulo n) of B. Again, l0 ‰ k0.

• The first two rows of ĂM coincide, hence, det ĂM “ 0.

Now, Cramers rule states that ĂMCT “ 0, where C “ pcklq is the cofactor matrix of
ĂM “ p rmklq. Considering the first column of this matrix equation, we have

d`2ÿ

l“1

rmklc1l “ 0 .
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Up to a factor of ˘1, c1l is the determinant of the pd ` 1q ˆ pd ` 1q-matrix obtained by

removing the first row and the lth column from ĂM . Hence, c1l P Ip1q for l ď d ` 1 and

c1 d`2 P Ip0q. In particular, c1k09 detM P I1pK,Lq and c1l09 detMl0Ñk0 P I1pK,L ` 1q,

where the matrix Ml0Ñk0 differs from M by only one column (it contains the k0-th column

of ĂM instead of the l0-th). We deduce that

l‰l0ÿ

1ďlďd`1

rmklc1l P Ip0q ` I1pK,L ` 1q .

Again, we only consider the rows 2, . . . , d ` 1 of that relation. The matrix N “ p rmklq

with k P t2, . . . , d ` 1u and l P t1, . . . , d ` 1uztl0u is a pd ˆ dq-submatrix of S and can be

inverted using Cramers rule. Finally,

detN ¨ c1l P Ip0q ` I1pK,L ` 1q

and setting l “ k0 proves Eq. (5.25).

Part 3: Finally, we prove that for any i P t1, . . . , nu,

detNii

nÿ

j“1

yij P

C
nÿ

j“1

sij

G
` xdetB1pi, jqy , (5.26)

where Nii P MipSq is defined in Eq. (5.5).

Fix i P t1, . . . , nu. Then, for any j P t1, . . . , nu, let Niipk Ñ jq be the matrix Nii,

where the pk ` 1qst row is replaced by
´
sji sji`1 ¨ ¨ ¨ sji`d´1

¯
. In particular,

nÿ

j“1

detNiipk Ñ jq P

C
nÿ

j“1

sij

G
, (5.27)

because the determinant of Niipk Ñ jq is linear (especially in the pk ` 1qst row).

Now, a Laplace expansion of Eq. (5.6) with respect to the last column results in

detB1pi, jq “ yij detNii ´
d´1ÿ

k“0

yii`1 detNiipk Ñ jq ,

which holds for all j P t1, . . . , nq. In particular,

detNii

nÿ

j“1

yij “
nÿ

j“1

detB1pi, jq `
d´1ÿ

k“0

yii`1

nÿ

j“1

detNiipk Ñ jq ,

which, taking Eq. (5.27) into account, proves Eq. (5.26).

6 Parity-Odd Vertices

So far, we only discussed parity-even vertices, i.e. terms in the Lagrangian which do not

involve the epsilon tensor ǫµ1¨¨¨µd
. However, the discussion of the previous sections can

simply be generalised also for parity-odd vertices.
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First of all, the most general form of a parity-odd vertex is given by Eq. (2.4) but with

V replaced by

Ṽ “
ÿ

QI1¨¨¨IdṼ
I1¨¨¨Id , (6.1)

where ṼI1¨¨¨Id P Rryij, zij |iďj , sij|iďjs contains the parity-even contractions 18 and

QI1¨¨¨Id “ ǫµ1¨¨¨µd
b
µ1

I1
¨ ¨ ¨ bµd

Id

is totally antisymmetric in its indices (Ik “ 1, . . . , 2n). The derivative operators bI were

introduced in Section 2.2, right before Eq. (2.8). Note that for i “ 1, . . . , n, we have bi “ Pi

and bi`n “ Ai. The structure of the gauge-invariant parity-odd vertices depends on the

dimension:

• For d ě 2n, there are no parity-odd n´point vertex operators, because QI1¨¨¨Id “ 0

(the vector b has only 2n ´ 1 independent entries up to total derivatives).

• For d “ 2n ´ 1, there is a unique elementary parity-odd vertex operator

QLL
1¨¨¨2n´1 “ ǫµ1...µ2n´1

P
µ1

1
. . . P

µn´1

n´1
A

µn

1
. . . Aµ2n´1

n , (6.2)

which is gauge invariant up to total derivatives and squares to the Lovelock operator

(3.20). This covers also the case of n “ 3 and d “ 5, consistent with [5].

• In the case n ą d, we make use again of the fact that we consider rVs in the ring of

fractions. The crucial point is that the general form of an elementary building block

QI1¨¨¨Id of parity-odd vertices can be highly simplified, when it is multiplied with the

upper-left d ˆ d submatrix of S. Denote this matrix by Sd. Its determinant,

detSd “
1

d!
ǫµ1¨¨¨µd

ǫν1¨¨¨νdb
µ1

1
¨ ¨ ¨ bµd

d bν1
1

¨ ¨ ¨ bνdd ,

is a non-zero minor of B, hence, detSd P MipSq and we conclude that

detSd ¨ QI1¨¨¨Id “ pB1I1 ¨ ¨ ¨BdIdq
ˇ̌
rI1¨¨¨Ids

¨ Q1¨¨¨d .

In other words, for any parity-odd vertex in the Lagrangian given by the vertex

generating operator Ṽ in Eq. (6.1), we find

detSd ¨ Ṽ “ Q1¨¨¨d ¨ V , (6.3)

where V P Rryij, zij |iďj, sij |iďjs as in the parity-even case.

Now, since we work in the ring of fractions, we can divide by detSd P MipSq. Fur-

thermore, Q1¨¨¨d is gauge invariant:

rQ1¨¨¨d, ak ¨ Pks “ 0 .

Hence, along the same lines as in Section 5, we find that

Ṽ « Q1¨¨¨d ¨ QVpY j
i , sijq . (6.4)

18We discussed these in the previous sections, where they were called V.
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• For n ď d ď 2n ´ 2, one has to be more careful, taking into account the Schouten

identities, as was done for cubic vertices in d “ 4 [7] and d “ 3 [9]. The difference

here is in the possibility to use negative powers of Mandelstam variables in the case

of n ě 4. The idea is to use Schouten identities to bring any parity-odd vertex

structure to a form, where one has a gauge-invariant “square-root of a Horndeski-

type operator”:

Q
pn´1q
I1¨¨¨Id

“ ǫµ1...µd
P

µ1

I1
. . . P

µn´1

In´1
A

µn

In
. . . A

µd

Id
, Ik ď n . (6.5)

This procedure can remove redundancies present due to Schouten identities, but the

uniquely fixed form of the vertex may involve negative powers of the variables19 sij.

This scheme was instrumental in deriving parity-odd cubic vertices in four [7] and

three dimensions [9]. We just need to show here, that any parity-odd vertex operator

that involves less than n´1 derivatives, can be related to another operator with more

derivatives by Schouten identities. We prove this in the rest of this section.

Let us take a generic operator of this type,

Q
pkq
I1...Ik J1...Jd´k

“ ǫµ1...µd
P

µ1

I1
. . . P

µk

Ik
A

µk`1

J1
. . . A

µd

Jd´k
, (6.6)

with k ď n´ 2, 1 ď I1 ă I2 ă ¨ ¨ ¨ ă Ik ď n and 1 ď J1 ă J2 ă ¨ ¨ ¨ ă Jd´k`1 ď n. We

can form a Schouten identitiy

0 “ ǫµ1...µd
P

µ1

I1
. . . P

µk

Ik
A

rµk`1

J1
. . . A

µd

Jd´k
P ν1
Ik`1

. . . P
νk`1s
I2k`1

PK1

ν1
. . . P

Kk`1

νk`1
, (6.7)

or, schematically,

0 “ Qpkq detSpk`1q ` OpQpjąkqq , (6.8)

where detSpk`1q P MipSq, while OpQpjąkqq refers to all the terms that contain parity-

odd opeartors involving more than k derivatives PI . Using the equation Eq. (6.8),

one can replace the operator Qpkq with expressions that contain operators Qpjq with

j ą k, but also inverse powers of detSpk`1q (which are non-zero). This is possible as

long as k ď n´2, therefore the procedure saturates when all the parity-odd operators

are brought to the form (6.5).

7 Discussion

In this work, we complete the classification of independent vertices of arbitrary order n ě 3

for massless bosonic fields with arbitrary spin in arbitrary space-time dimensions d ě 3.

We briefly summarise the results:

• For dimensions d ě 2n ´ 1 there are no Schouten identities. After reducing to the

independent Mandelstam variables, we find that all gauge invariant operators can be

expressed as polynomials in the gauge-invariant combinations cij and Y
j
i ,

V P M´1

1
Rrsij, cij , Y

j
i s , (7.1)

19In the special case of cubic vertices in d “ 4 [7], one even gets negative powers of yij ’s, which, however

can be removed by inverting this procedure after solving for the vertex operator.
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where M1 is the set of all products of Mandelstam variables sij (i ­“ j). The invariant

combinations Y j
i are labelled by i “ 1, . . . , n and j “ 2, . . . , n ´ 2.

• For dimensions d ă n we have the full set of Schouten identities at our disposal. All

gauge invariant operators are already generated by the Y
j
i where i “ 1, . . . , n and

j “ 2, . . . , d ´ 1. All remaining relations are generated by level-0 Schouten identities

and specific quadratic expressions qi
2
in the variables Y j

i ,

rVs P
M´1

Rrsij , Y
j
i s

xpdetB0pAqq, qi
2
y
, (7.2)

where again we reduced to the independent Mandelstam variables.

• In the intermediate case (2n ´ 1 ą d ě n), we have Schouten identities, but because

d ě n the non-trivial Schouten identities involve at least pd ´ nq ` 2 ě 2 level-1 rows

and columns. By an argument analogous to the one leading to Eq. (5.4) one can show

that in the ring of fractions all Schouten identities are generated by those that contain

n ´ 1 level-0 rows and columns and pd ´ nq ` 2 rows and columns of level-1. Let us

denote them by detB2pd´nq`4pAq, where A labels the possible choices of the level-1

rows and columns. These generators are all gauge-invariant (up to total derivatives),

and hence we can express them in terms of the invariant combinations cij and Y
j
i as

in Section 3. Then the gauge invariant vertices are classified by equivalence classes

rVs P
M´1

Rrsij, cij , Y
j
i s

xdetB2pd´nq`4pAqy
. (7.3)

An interesting question is whether the higher order vertices can induce deformations of

gauge transformations for the fields involved. Deformations arise when the gauge variation

is non-trivial before imposing the equations of motion. Terms in the variation that contain

the equations of motion have to be compensated by a non-trivial δpn´2q in Eq. (1.3). We

have found that in all dimensions, as long as we are allowed to divide by Mandelstam

variables, the independent gauge-invariant vertices can be expressed in terms of the com-

binations cij and Y
j
i “ ci,i`ji`1, but these — as defined in Eq. (3.3) and Eq. (3.4) — are

manifestly gauge-invariant without need of equations of motion. This strongly suggests

that the vertex does not induce a deformation. Strictly speaking we can only conclude

that ∆V for an appropriate product ∆ of Mandelstam variables does not induce any defor-

mation. However, in Fourier space ∆ is simply a (generically non-zero) number and should

not change the general structure of deformations, hence we do not expect that V itself can

induce a deformation.

To recapitulate, as soon as we allow for dividing by Mandelstam variables (and hence,

we loose manifest locality), the independent vertices of order n ě 4 can be all written in

terms of linearised curvatures of HS fields. Therefore they are manifestly gauge invariant

with respect to linearised gauge transformations and do not introduce deformations for

the latter. On the other hand, if such deformations of the gauge transformations, induced

from cubic vertices, exist in the theory, then these vertices will be completed by further
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non-linear terms. This is similar to higher-curvature terms in Einstein Gravity, whose

non-linear structure is gauge invariant with respect to full diffeomorphisms, induced from

the Einstein-Hilbert cubic vertex. Such non-linear completions may make use of non-linear

generalisation of de Wit-Freedman curvatures [65], which are not known in metric-like

formulation (see, however, [66]). In the frame formulation, these vertices would correspond

to structures that make use of Weyl tensors and their descendants (zero form sector of

Vasiliev system). In the light of our findings here, the three dimensional results of [1] can

be interpreted as particular case of the general dimensional results: all the independent

vertices are given through linearised curvatures, which are on-shell trivial in d “ 3.

Even though the classification is done for Minkowski spaces, we expect the vertices

found here to deform smoothly to pAqdS space-times as it happens for cubic vertices.

Indeed, the existence of pAqdS extensions for linearised de Wit-Freedman curvatures for

HS fields [67] allows to straightforwardly lift vertices given through curvatures to pAqdSd.

Same is true for the operators (3.20) and (6.5), where one can simply replace derivatives

with pAqdSd covariant ones.

Our results should have a direct analogue for correlation functions of conserved tensors

in d ´ 1 dimensional conformal field theories, which can be classified with similar meth-

ods [68]. For n “ 3 there is a precise match between independent vertices and three-point

functions [5–7, 38, 43, 44, 68–70]. It would be interesting to compare our findings for n ě 4

with the group theoretic results of [71].

Next, we would like to note that there is another interpretation of the equation

Eq. (2.12) which we solved here. One can think of Eq. (2.12) as a Ward identity for

an n-point amplitude computed in a theory of interacting HS fields. It is clear from our

discussion, that the building blocks of the amplitudes are given through cij , Y
j
i “ ci,i`ji`1

and Mandelstam variables, including negative powers of the latter. They correspond to

arbitrary tensor contractions of linearised curvatures [65] of HS gauge fields and their

derivatives. These linear de Wit-Freedman curvatures (or their traceless part: the Weyl

tensors) and their derivatives are the only on-shell non-zero gauge invariants with respect

to the linearised gauge transformations. It is natural that the amplitudes for n ě 4 should

be given through gauge invariant quantities, as they are observable.

The amplitude interpretation might be less motivated in three dimensions, since there

are no propagating HS massless particles in three dimensions. As proved in [1], there

are no candidate invariants for amplitudes with such fields either for d “ 3. There is

one difference between amplitudes and vertices though — the latter are supposed to be

local, while the former do not have to. Given that one can always multiply the candidate

invariant vertices (amplitudes) by a non-vanishing function of Mandelstam variables, one

can show that relaxing locality would not help to get non-zero amplitudes in d “ 3. There

is an interesting conclusion to be made here: since the amplitude is a sum of exchanges20

and contact vertices, vanishing amplitudes imply that the exchanges and contact vertices

20The exchange is again a notion that is defined when there are particles to exchange, but this should

not affect our argument, given that a propagator for massless HS fields can be formally defined in three

dimensions. See, e.g., [72, 73]. We thank Shailesh Lal for a discussion about this point.
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should cancel each other. This is only possible if the non-local parts of the exchanges sum

up to zero, which should be specific to three dimensions and is presumably due to the

special structure of vertices and Schouten identities present only in three dimensions. We

plan to study the Lagrangian formulation of metric-like non-linear HS theories with(out)

matter in the near future to expose these special properties of HS gravities in d “ 3.

Note added We learned from Euihun Joung and Massimo Taronna about their preprint

with related results [74], which will appear on arxiv simultaneously.
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