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Abstract: Parity-even cubic vertices of massless bosons of arbitrary spins in three di-

mensional Minkowski space are classified in the metric-like formulation. As opposed to

higher dimensions, there is at most one vertex for any given triple s1, s2, s3 in three dimen-

sions. All the vertices with more than three derivatives are of the type ps, 0, 0q, ps, 1, 1q

and ps, 1, 0q involving scalar and/or Maxwell fields. All other vertices contain two (three)

derivatives, when the sum of the spins is even (odd). Minimal coupling to gravity, ps, s, 2q,

has two derivatives and is universal for all spins (equivalence principle holds). Minimal

coupling to Maxwell field, ps, s, 1q, distinguishes spins s ď 1 and s ě 2 as it involves one

derivative in the former case and three derivatives in the latter case. Some consequences

of this classification are discussed.
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1 Introduction

When trying to understand several complicated phenomena in physics, it is useful to start

from the spherical cows in the vacuum. For higher-spin (HS) theories [1–8] — field theories

containing massless fields with spins s ą 2 — these cows are three dimensional models.

They have attracted considerable interest during recent years (see e.g. [9–12]) due to their

simplicity, nevertheless encoding non-trivial physics [13, 14].

Three dimensional higher spin theories have been useful laboratories for simple models

of holography [15–18] and explorations of physics beyond the spin two horizon [18–21].

The possibility to formulate them as Chern-Simons theories [22, 23], [14, 19, 20] with

non-compact gauge groups makes general relativity and (colored) HS theories in three

dimensions a simple playground for tackling problems relevant to quantum gravity. This

simplicity is lost, however, as soon as one adds matter into the picture [4, 24]. On the

other hand, the HS theory with matter content [4] is more similar to the situation in higher

dimensions [3]. Not surprisingly, holographic models of higher spins in three dimensions

also require matter content [15, 17] and therefore their understanding requires careful study

of the matter coupling in HS systems in three dimensions [4, 16]. In a sense, once matter is

added, the three-dimensional theory becomes almost as complicated as its four dimensional

counterpart [3]. Nevertheless, we will see in this work, that the cubic interactions of HS

fields in metric-like formulation are totally different from those in higher dimensions and

have certain inner simplicity, possibly inherited from Chern-Simons formulation.

The question of the Lagrangian formulation of HS theories is a long standing puzzle,

addressed in particular through attempts for perturbative constructions of the action for

HS theories, in the spirit of the so-called Fronsdal program [2], that resulted so far in full

classifications of cubic interactions in dimensions higher than three (see e.g. [30–36]).

In three dimensions, unlike higher dimensions, HS interacting theories can be consid-

ered not only in constant non-zero curvature backgrounds, but also in Minkowski space,

since the main obstacles in higher dimensions — Weinberg’s S-matrix argument [25] and

Aragone-Deser problem [26] are not relevant in d “ 3. The first one is not relevant due to

the fact, that there are no HS propagating particles in three dimensions, while the second

one does not apply as shown by Aragone and Deser themselves [27] (see also [28, 29]) due to

the admissibility of minimal gravitational coupling in Minkowski space of three dimensions.

Together with the fact that the Fronsdal program is technically simpler in Minkowski space

compared to (A)dS, this makes the three dimensional flat space a preferred playground for

the problem of Lagrangian formulation for non-linear HS theories with propagating matter

content.

Still, the systematics of three-linear interactions in d “ 3 is not yet completely known.

Indeed, there are only a handful of works on higher spin interactions in three dimensions

in the metric-like formulation (see e.g. [9–11]).

In this work, we start an investigation in this direction, proposing a classification of

cubic vertices in three dimensions. Let us stress, that in d “ 3 the on-shell S-matrix

methods [35, 37] or light-cone technologies [38–44] do not apply for massless fields with

s ě 2, while the higher dimensional covariant classification [30] has little overlap with the
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three dimensional one, as it will be clear from our analysis.

The main technical difference between the three-dimensional and the higher-dimensional

classifications of cubic vertices for HS fields is that in d “ 3 there exist dimension depen-

dent identities (Schouten identities), that should be taken into account in the cohomological

problem (see e.g. [45]) of finding cubic vertices.

In the case when there are no Schouten identities, the problem of cubic deformations

can be formulated as finding a functional, linear in all three fields, that:

1. is not in the same equivalence class of total derivatives and terms proportional to the

free equations of motion (the latter terms are induced by field redefinitions in the

quadratic action) with zero:

L3 « L3 ` BµJ
µ `

ÿ

i

∆iFi ,ff 0 (1.1)

where Fi denote the free equations of motion of the fields involved.

2. its variation with respect to the gauge symmetry of each field vanishes in the same

equivalence class, i.e. up to total derivatives and terms proportional to the free

equations of motion (these terms induce deformations of gauge transformations):

δ
p0q
i L3 « 0 , (1.2)

Differently, in the presence of Schouten identities, the problem gets reformulated as

the question of finding cubic functionals such that:

1. are not equivalent to zero in equivalence class of total derivatives, free equations of

motion and Schouten identities,

L3«̄L3 ` BµJ
µ `

ÿ

i

∆iFi `
ÿ

k

∆̄kDk ff 0 , (1.3)

where Dk are all the Schouten identities in given dimension.

2. their variation with respect to the gauge symmetry of each field vanishes in the same

equivalence class, i.e. up to total derivatives, terms proportional to the free equations

of motion and Schouten identities.:

δ
p0q
i L3«̄0 , (1.4)

In all cases, one has a well defined cohomological problem, but depending on the

content of the Schouten identities the solution may be different. Solutions that do not take

the Schouten identities into account may be identified as trivial solutions once Schouten

identities are taken into account, therefore cannot be trusted.

The relevance of the properly considered Schouten identities is related to the fact that

we work in Lorentz covariant basis that hides the triviality of certain expressions. In six and

higher dimensions there are no Schouten identities relevant to cubic vertices of symmetric

fields, while in five dimensions, the only Schouten identity is a total derivative.
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Taking the Schouten identities into account has shown to result in less vertices in four

dimensions compared to those in higher dimensions [35]. An illustrative example in four

dimensions is the cubic term in the linearised expansion of Gauss-Bonnet action. It is a

gauge invariant vertex in any dimensions, but turns out to be a total derivative in four

dimensions, up to a Schouten identity. As we will show in this work, the consequences in

d “ 3 are even more drastic.

As shown in [30], the cubic vertices for Fronsdal fields can be constructed order by

order in traces and divergences of the fields involved, starting from the piece that does

not involve any trace or divergence, which is usually referred to as traceless-transverse

(TT) vertex. As demonstrated in [36], these leading pieces of interactions are the same for

Fronsdal and Maxwell-like [36, 46–48] formulations of free HS theory. In a sense, the TT

classification is universal and provides the first step towards the off-shel cubic action for

both Fronsdal and Maxwell-like HS fields. The TT cubic vertex, in a sense, is solving the

problem of quadratic deformation of the wave equations for Fierz, i.e. TT fields [1]. In

this paper we will work at the level of TT fields, without making any distinction between

Fronsdal fields and Maxwell-like fields, bearing in mind that the TT vertices found here

can be completed to off-shell vertices in both approaches. Therefore we do not solve the

problem of finding off-shell vertices, but rather that of classifying them. In a sense, the

results of this paper can be regarded as the three-dimensional analogue of the light-cone

classification in higher dimensions [41].

The paper is organised as follows. In Section 2 we start by a lightning review of the

covariant classification of cubic vertices for massless symmetric fields in d ě 4. In Section

3 we start the investigation of three-dimensional vertices by first deriving special identities

related to cubic vertices that hold only in d ď 3. In Section 4 we derive cubic vertices

involving lower spin fields. These include all interactions involving scalar and Maxwell

fields, as well as gravitational couplings for any spin. In Section 5 we derive the full

classification of vertices involving any spins s1 ě s2 ě s3. We conclude in Section 6 with

some discussion on the implications and on the potential use of our results.

2 Review of Cubic Vertices in Higher Dimensions

We will review here the classification [30] of cubic vertices in dimensions higher than three,

which allows us to introduce notations and conventions and set the stage for interactions

in three dimensions. We will follow simple notations of [34, 35].

Spin s massless field in three dimensions is parametrised by a symmetric s-th rank

tensor φµ1...µs . We will contract all the indices of these fields with auxiliary vector variables,

aµ, to make the symmetry of indices manifest, as well as make the expressions for the

Lagrangian scalar terms more compact, hiding the complexity of index contractions.

φpsqpx, aq “
1

s!
φµ1...µsa

µ1 ¨ ¨ ¨ aµs . (2.1)

Lorentz covariant formulation of massless fields with spin require gauge symmetries, realised
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as gradient transformations,

δp0q
ǫ φpsqpx, aq “ pa ¨ Bqǫps´1qpx, aq , (2.2)

ǫps´1qpx, aq “
1

ps ´ 1q!
ǫµ1...µs´1

. (2.3)

The most conventional formulation of the free theory of massless symmetric fields is the

Fronsdal formulation [2], where the fields φ are double traceless, while the parameters ǫ

are traceless.

We will follow the logic of Noether procedure, assuming existence of action principle

of the full interacting theory, and the Lagrangian can be expanded in a small parameter g:

L “ L
p2q ` gLp3q ` Opg2q (2.4)

The cubic action is a sum of different vertices

L
p3q “

ÿ

si,n

gns1,s2,s3L
n
s1,s2,s3

, (2.5)

for collections of three fields with arbitrary spins s1 ě s2 ě s3, and n is a parameter

that counts independent basis of vertices (number of free parameters, that are not fixed

by the gauge invariance of the interaction between given three fields). At the cubic order,

the existence of a certain vertex does not depend on the full spectrum of the theory, and

the coupling constants in front of each vertex are completely arbitrary. Of course, due

to the requirement of gauge invariance, the number of vertices are much less then the

number of Poincaré invariant vertex monomials one can write. For example, in d ě 5,

this requirement leaves one overall coefficient for each number of derivatives in the allowed

range s1 ` s2 ´ s3, s1 ` s2 ´ s3 ` 2, . . . , s1 ` s2 ` s3. The lowest and highest possible

number of derivatives were established first in light cone classification [41] and are called

Metsaev bounds. As we will see in the following, in three dimensions for each triple of

spins ps1, s2, s3q there is at most one vertex.

Cubic vertex monomials can be written in a compact form, once the building blocks of

them are classified. These building blocks are operators of scalar contractions between the

fields φipxi, aiq, and their derivatives, given by all possible contractions of the operators

Bµai “ B
Baµ

and Biµ “ B
Bxi

. They can be classified into following groups:

Bij “ Bi ¨ Bj , yi “ Bai ¨ Bi`1 , zi “ Bai`1
Bai´1

, Divi “ Bai ¨ Bi , T ri “ Bai ¨ Bai .

(2.6)

At the end we have a local functional in the action, therefore have to integrate over dxiδpx´

xiq. The splitting of the coordinates is useful for keeping track over the derivatives acting

on different fields, but is just a trick and has no physical consequence related to locality.

Also, the Lagrangian monomials are Lorentz scalars, which means that at the end they do

not depend on auxiliary variables used to write them, so we can evaluate all the ai to zero.

Note, that choice of variables already fixed the partial integration freedom, since we chose

to not use linearly dependent operators Bai ¨ Bi´1 « ´yi ´ Divi, since Bµ
1

` Bµ
2

` Bµ
3

« 0.
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When discussing only the TT part of the vertex, we can discard all the terms propor-

tional to divergences and traces of the fields, that are given by the operators Divi and Tri.

We can also fix the field redefinition freedom, requiring that in the TT part of the vertex

there are no operators of the type Bij
1. After all, all the vertices can be written in terms

of variables yi, zi.

L
n
s1,s2,s3

“ V
n
s1,s2,s3

pyi, ziqφ1px1, a1qφ2px2, a2qφ3px3, a3q , (2.7)

where vertex operator Vn
s1,s2,s3

is a polynomial in variables yi, zi. It is easy to show, that

once we fix the field redefinition freedom as described above, TT vertex, containing two

identical fields is either symmetric or antisymmetric in their exchange, depending on the

spin of the third field.

Gauge variation of the field φi, δφi “ ai ¨ Bi ǫi, is given by action of a certain operator

on the vertex. In order to derive this operator, we first note that after gauge variation

we will need to compute commutators of gradient operators ai ¨ Bi with yj and zj . These

commutators are given as:

ryi, ai ¨ Bis “ Bii`1 “ 0 , ryi˘1, ai ¨ Bis “ 0 , (2.8)

rzi, ai ¨ Bis “ 0 , rzi˘1, ai ¨ Bis “ ˘yi¯1 , (2.9)

therefore, the operator of gauge variation, acting on the vertex is:

DiL
p3q ” pyi´1Bzi`1

´ yi`1Bzi´1
q Lp3q “ 0, @i P t1, 2, 3u (2.10)

When the two identical fields (say, s1 “ s2) are exchanged in all monomials of the vertex,

the monomials all pick up the same sign factor p´1qs3 . Then it is straightforward to see that

the variation of the non-zero vertex with respect to two identical fields will be identical, so

vanishing of their sum implies vanishing of separate variations of each of fields. Therefore,

the equation (2.10) is complete. In the case if s3 is odd, the non-trivial vertex requires

Chan-Paton factors, that allow for the first and second fields to have different quantum

numbers.

The solution to (2.10) in any dimensions is given by the following expression:

L
p3q “ Vpyi, Gqφ1φ2φ3 , G “ y1z1 ` y2z2 ` y3z3 . (2.11)

For given spins s1 ě s2 ě s3, we have:

V
n
s1,s2,s3

“ gns1,s2,s3y
s1´n
1

ys2´n
2

ys3´n
3

Gn , n “ 0, 1, . . . , s3 . (2.12)

In four dimensions, there is a Schouten identity (see [35] for more details)

y1y2y3G “ 0 , (2.13)

1It is useful to note, that up to total derivatives, Bii`1 “ 1

2
pB2

i´1 ´ B2

i ´ B2

i`1q, therefore any Bij can be

represented through Laplacian operators acting on the fields, which in turn can be traded with divergence

and trace terms using field redefinition in the free action (or free equations of motion).
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which is responsible for vanishing of all the vertices with 0 ă n ă s3. The simplest example

is Gauss-Bonnet vertex

VGB “ y1y2y3G . (2.14)

The four dimensional Schouten identity (2.13) is of course also a Schouten identity in

three dimensions, but in three dimensions there are more Schouten identities. We will

derive systematically the fundamental Schouten identities in the next section, and use in

classification of cubic vertices in three dimensions.

3 Schouten identities and Three dimensional Vertices

Since in the following we will concentrate on TT vertex, we define a new equivalence class,

that is equivalence up to terms, proportional to total derivatives, operators Bij,Divi, T ri

and all the Schouten identities to be derived in the following. We will completely discard

the terms, proportional to all of these operators in the following and use equality sign “

between two vertex operators that are equivalent modulo these operators. One has to bear

in mind that this way we will only track TT terms. Once the TT vertices are known, one

can use the procedure of [30, 31, 36] for order by order construction of off-shell vertex. We

will leave that for further work.

Dimensional dependent identities (Schouten identities) are constructed by ’over-antisymmetrization’,

i.e. by contracting arbitrary tensors with

δ
µ1...µd`1

ν1...νd`1
” 0 , (3.1)

where d is the space-time dimension. In this manner, all Schouten identities can be sys-

tematically derived. Such identities allow for the existence of additional gauge invariant

vertices, namely those which obey

DiV ” pyi`2Bzi`1
´ yi`1Bzi`2

q V “ Schouten identity terms, @i P t1, 2, 3u (3.2)

These vertices are gauge invariant for the dimension of interest since the Schouten

identities vanish identically.

In dimensions higher than four, Schouten identities are to be created by contracting at

least six antisymmetric indices. This kind of contraction necessarily gives a total divergence

term that is irrelevant in our discussion since we discard boundary terms. Therefore, there

are no Schouten identities relevant to cubic interactions of symmetric fields in d ě 5. As

was mentioned before, in d “ 4, many covariant cubic vertices are proportional to Schouten

identities [35]. There, those vertices get killed, with no others appearing in return. As we

will show in the following, the situation is different in three dimensions — we have large

class of cubic vertices killed by Schouten identities and another large class of non-trivial

vertices that are gauge invariant only up to Schouten identities, therefore are intrinsically

three-dimensional.
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In the following, we will focus on the three-dimensional case. The complete list of

parity even elementary Schouten identities is then given by

pG ´ yiziq
2 “ 0 , yiziG ´ yi´1zi´1yi`1zi`1 “ 0 , (3.3a)

yiyi˘1pG ´ yiziq “ 0 , (3.3b)

y2i y
2

i`1 “ 0 , y2i yi`1yi´1 “ 0 . (3.3c)

Note that we have grouped the identities in two-, three- and four- derivative expressions.

Any other Schouten identity, relevant to our problem can be derived from these elementary

ones. For example, the Schouten identity (2.13) can be found multiplying (3.3b) by yi¯1

and taking into account (3.3c). One can derive many useful consequences. A useful example

is: y4i z
2

i “ 0. We will use all of these identities in the following.

4 Lower spin examples

4.1 Vertices with scalars

To start with, we take the simplest example, where two of the fields are scalars (s2 “ s3 “

0, s1 “ s). It is straightforward to see, that the only Lorentz-invariant expression we can

form in this case, is:

Vs,0,0 “ ys1 , (4.1)

and coincides with generic-dimensional expression (see e.g. [49, 50]). Properties of the

conserved currents, associated to the extension of this vertex to pAqdS3 space, was discussed

in [51].

Next we turn to the case where we have only one scalar field in the cubic vertex

(s3 “ 0, s1 ě s2 ě 1). It can be shown using the Schouten identities, that for s2 ě 2 there

is no vertex of this type, while for s2 “ 1 there is a unique vertex with s1 ` 1 derivatives:

Vs1,1,0 “ ys1
1
y2 , (4.2)

with deformation of gauge transformation for scalar field, unless s1 “ 1.

We find that for the vertices involving scalar fields, the difference in three dimensions

as compared to higher dimensions is the absence of vertices of interactions of the scalar

with two fields of spins s1 ě s2 ě 2. The only vertices are ps, 0, 0q (4.1) and ps, 1, 0q (4.2),

which are given by the same expression as in higher dimensions.

4.2 Vertices with Maxwell fields

Now we turn to the next simple example — vertices with Maxwell fields (s3 “ 1, s1 ě s2 ě

1). We find two non-trivial solutions in this case.

One solution works for s2 “ 1, and is given by the expression that works in any

dimensions — current coupling, studied e.g. in [52–54].

Vs,1,1 “ ys´1

1
G , (4.3)
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that also includes the Yang-Mills vertex for s “ 1 (again, Chan-Paton factors assumed).

The second possibility works only in three dimensions for s1 “ s2 “ s. It has three

derivatives for any s. We shall call it pseudo-minimal coupling to spin one field. It is given

by the expression:

Vs,s,1 “ y1y2y3z
s´1

3
, (4.4)

and includes the F 3 self-interaction for Yang-Mills fields for s “ 1. Note also, that this

expression works in any dimensions only for s “ 1, 2. In higher dimensions, the number of

derivatives rises with s for this type of couplings, while in three dimensions spin one field

addresses all the spins s ě 2 in an equivalent manner, but clearly distinguishes them from

spins s “ 0, 1.

We notice, that the one-derivative minimal coupling to Yang-Mills is absent for fields

with spin higher than one. This coupling is however present (see e.g. [20]), if we assume that

the vector field is not Yang-Mills, but Chern-Simons, with free equations of motion given

by flat (linearised) curvature condition. We will discuss the Chern-Simons interactions

together with parity odd cubic vertices in the forthcoming publication.

4.3 Coupling to gravity

This case is of utmost interest, since it accommodates the vertex of minimal coupling to

gravity, the one that does not exist in higher dimensions (in four dimensions on-shell de-

scriptions allow for minimal coupling [35, 38, 40, 42], while the Fronsdal description does

not accommodate it). This vertex allows for bypassing the Aragone-Deser problem of cou-

pling HS fields to gravity, with the expense of deforming the gauge transformation of the

gravitational field itself. This mechanism is similar to Supergravity situation, when the

minimal coupling of Rarita-Schwinger field to gravity necessitates the fermionic transfor-

mation of the metric, thus leading to supersymmetric extension of the isometry algebra.

Similarly, in three dimensions, coupling of any massless HS bosonic field (including mass-

less spin-two fields) enforces enlarging the isometry algebra to (super)algebras that involve

HS Killing tensors.

The minimal coupling to gravity is given by:

Vs,s,2 “ y3 z
s´1

3
ps y1z1 ` s y2z2 ` y3z3q , (4.5)

which is gauge invariant due to identities (3.3b). Remarkably, this expression makes sense

also for s “ 0, 1, 2. In the latter case, one has to use identities (3.3a) to show that (4.5) is

equivalent to the conventional massless spin two self-interaction (Einstein-Hilbert) vertex,

that is gauge invariant in any dimensions:

V2,2,2 “ G2 “ py1z1 ` y2z2 ` y3z3q2 . (4.6)

We will study more general cases in the following.
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5 General case

It is instrumental to take a careful look at vertices with given number of derivatives, starting

from the lower derivative cases. Since there are no Schouten identities with one derivatives,

it is immediate to see, that there are no vertices with zero derivatives, except for scalar

self-coupling φ3, which is not constrained by gauge invariance.

5.1 One derivative vertices

We are going to look for general solution for a cubic TT vertex with one derivative, assuming

s1 ě s2 ě s3 ě 1 (s3 “ 0 case was completely covered above). One-derivative interactions

are only possible if the sum of the spins in the vertex is odd. We distinguish following two

cases2:

• Triangle inequalities are not satisfied: s1 “ s2 ` s3 ` 1.

The only possible vertex monomial in this case is:

Vs1,s2,s3 “ y1z
s3
2
zs2
3

, (5.1)

which is gauge invariant only for s2 “ s3 “ 0 — cubic vertex of scalar electrodynamics

covered in (4.1).

• Triangle inequalities are satisfied: si ă si´1 ` si`1.

The general ansatz would be:

Vs1,s2,s3 “ pαy1z1 ` βy2z2 ` γy3z3qzn1

1
zn2

2
zn3

3
, (5.2)

ni´1 ` ni`1 ` 1 “ si (5.3)

taking variations and equating to most general expression in terms of identities (3.3a),

we get a unique solution:

α “ β “ γ , n1 “ n2 “ n3 “ 0 Ñ s1 “ s2 “ s3 “ 1 , (5.4)

which corresponds to the familiar Yang-Mills vertex:

V1,1,1 “ αG . (5.5)

We conclude, that there is no one-derivative vertex, if at least one of the spins is bigger

than one.

2Note, that for odd sum of the spins, the triangle inequalities cannot be saturated, while only one

(minimal) violation of triangle inequalities is possible, allowing one-derivative ansatz for the vertex.
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5.2 Two-derivative vertices

Now we will turn to the case of two-derivative vertices. This is applicable to cases when

the sum of the spins in the vertex is even. We will assume now s1 ě s2 ě s3 ě 2, since

the cases s3 “ 0, 1 were already covered above. We consider separately cases, based on the

relations between spins.

• Strict triangle inequalities are satisfied: si`1 ` si´1 ě si ` 2.

Using (3.3a), we can reduce the number of monomials in the most general ansatz for

the two-derivative TT vertex3

Vs1,s2,s3 “ pα1y1z1 ` α2y2z2 ` α3y3z3qGzn1

1
zn2

2
zn3

3
. (5.6)

The gauge variations of this vertex will be three derivative expressions. It is not

hard to see, that using the identities (3.3a) and (3.3b) one can bring any monomial

of these variations into a form, containing all three y’s4

δ1V “ rα1pn2 ´ n3q ` pα2 ´ α3qpn2 ` n3 ` 1qsy1y2y3z
n1`1

1
zn2

2
zn3

3
, (5.7)

δ2V “ rα2pn3 ´ n1q ` pα3 ´ α1qpn3 ` n1 ` 1qsy1y2y3z
n1

1
zn2`1

2
zn3

3
, (5.8)

δ3V “ rα3pn1 ´ n2q ` pα1 ´ α2qpn1 ` n2 ` 1qsy1y2y3z
n1

1
zn2

2
zn3`1

3
, (5.9)

The condition of gauge invariance with respect to all variations has a unique solution,

up to overall constant:

αi “ ni´1 ` ni`1 ` 1 “ si ´ 1 , (5.10)

therefore the vertex can be written as:

Vs1,s2,s3 “ rps1 ´ 1qy1z1 ` ps2 ´ 1qy2z2 ` ps3 ´ 1qy3z3sGzn1

1
zn2

2
zn3

3
, (5.11)

ni “ 1

2
psi´1 ` si`1 ´ siq ´ 1 ě 0 , (5.12)

which involves minimal coupling to spin two (4.5). This can be made manifest,

rewriting the vertex (5.11) in a different, but equivalent form:

Vs1,s2,s3 “ y3z
n1

1
zn2

2
zn3`1

3
rps2 ` s3 ´ 2qy1z1 ` ps3 ` s1 ´ 2qy2z2 ` ps3 ´ 1qy3z3s .

(5.13)

For s3 “ 2, s1 “ s2 “ s, this reproduces the minimal coupling to gravity, given in

(4.5).

We understood now that the minimal coupling to gravity is a part of a bigger family

of two-derivative vertices in three dimensions, that exist for every triple of integer

spins greater than one, with even sum and satisfying strong triangle inequalities. This

result is in contrast with Metsaev classification in higher dimensions. Nevertheless

it is not surprising, since the Chern-Simons theories of HS gravity, rewritten in the

metric-like form, make use of two-derivative vertices [9, 10, 20].

3It is straightforward to show using the identities (3.3a) that the basis of independent monomials, second

order in yizi is given by three monomials yi`1zi`1yi´1zi´1 „ yiziG.
4It is straightforward to show using (3.3a) and (3.3b) that the only independent monomial of third order

in yizi’s is y1z1y2z2y3z3.
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• Triangle inequalities are saturated: s1 “ s2 ` s3.

In this case the general ansatz for cubic vertices will be:

Vs1,s2,s3 “ y1rα1y1z1 ` α2y2z2 ` α3y3z3szs3´1

2
zs2´1

3
, (5.14)

which is only gauge invariant for s1 “ 2 , s2 “ s3 “ 1 , and α1 “ α2 “ α3, and

describes the minimal coupling of Maxwell field to gravity.

• Triangle inequalities are violated: s1 “ s2 ` s3 ` 2.

In this case, the general ansatz for the vertex is:

Vs1,s2,s3 “ y21z
s3
2
zs2
3

, (5.15)

and is not gauge invariant, unless s2 “ s3 “ 0 , s1 “ 2, which then describes standard

scalar coupling to gravity ((4.1) for s “ 2).

It is elementary to check that these cases cover all possibilities, since there are no

candidate vertex monomials with two derivatives for s1 ą s2 ` s3 ` 2.

5.3 Three-derivative vertices

Now we turn to three-derivative vertices, that are minimal possible number in the case

when s1 ě s2 ě s3 ą 1 and s1 ` s2 ` s3 is odd. We again distinguish cases:

• Triangle inequality is satisfied: s1 ă s2 ` s3.

In this case, any three-derivative vertex monomial contains third order polynomials

in yizi’s, and can be uniquely written in the form, containing all the yi’s (we omit

the arbitrary coupling constant in front):

Vs1,s2,s3 “ y1 y2 y3 z
n1

1
zn2

2
zn3

3
, (5.16)

ni´1 ` ni`1 ` 1 “ si , (5.17)

and is gauge invariant due to identities (3.3c). This vertex exists for any spins with

odd sum s1 ` s2 ` s3 and satisfying strong triangle inequalities:

si´1 ` si`1 ą si , (5.18)

Three derivative vertices s ´ s ´ 1 and ps ` 1q ´ s ´ 2 are of this type.

• Triangle inequality is minimally violated: s1 “ s2 ` s3 ` 1.

In this case, the general ansatz for the vertex is given by:

Vs1,s2,s3 “ y21rα1y1z1 ` α2y2z2 ` α3y3z3szs3´1

2
zs2´1

3
, (5.19)

which is gauge invariant only for s2 “ s3 “ 1 , s1 “ 3, and coincides with (4.3).

• Triangle inequality is maximally violated: s1 “ s2 ` s3 ` 3.

The vertex ansatz is given as:

Vs1,s2,s3 “ y31z
s3
2
zs2
3

, (5.20)

and is not gauge invariant, unless s2 “ s3 “ 0, coinciding with (4.1) in the latter

case.

– 11 –



5.4 Vertices with higher number of derivatives

Due to the four derivative Schouten identities (3.3c) any non-trivial vertex term with n ě 4

derivatives contains at least n ´ 1 power of one of the yi’s. Due to other identities that

could be derived by combinations of all the Schouten identities (3.3a), (3.3b) and (3.3c),

we restrict even more the possible vertex monomials with high derivatives.

All candidate expressions for s1 ě s2 ě s3 ě 2 with higher than three derivatives,

satisfying weak triangle inequality s1 ď s2 ` s3, can be shown to be equivalent up to

Schouten identities to expressions, involving y2
1
y2y3, therefore are vanishing due to (3.3c).

The only expressions that are not equivalent to zero up to Schouten identities, are those

for s1 ą s2 ` s3, and can be brought to the form pn ě 3q:

yn1 z
m
2 zk3 , yn1 z1z

m
2 zk3 , yn1 y2z

k
3 , yn1 pαy2z2 ` βy3z3qzm2 zk3 , (5.21)

which all fail to be gauge invariant. One can carefully select all options, and see that all

the gauge invariant cubic vertices with more than three derivatives are those with scalar

and Maxwell fields. We conclude, that there are no non-trivial interactions of fields with

spins s1 ě s2 ě s3 ě 2 with more than three derivatives. Since we already studied in

detail scalar and Maxwell cases, this completes the classification of parity even vertices of

massless fields in three dimensions.

6 Discussion

We have classified all parity even cubic interactions between massless bosonic fields in

three dimensions. A remarkable difference of three dimensional vertices compared to higher

dimensional ones is that for any three spins ps1, s2, s3q there is at most a unique vertex.

We will call massless fields of spin 0, 1, scalar and Maxwell fields, matter fields, since they

carry propagating degrees of freedom in three dimensions. It is interesting to note, that the

classification of cubic vertices in three dimensions departs from the classification in higher

dimensions when there are more than one field of spin s ě 2 in the vertex, or, in other

words, there are less then two matter fields. The vertices that coincide with the higher

dimensional ones are all those containing at least two matter fields, spin two self-interaction

(cubic order of linearised Einstein-Hilbert action, see e.g. [55]) and spin three couplings

p3, s, sq with s ď 3. One more curiosity of this classification is that spin three couples to

all spins through ps, s, 3q couplings “universally” in three dimensions, similarly to spin two

(the latter property is associated to equivalence principle) — all of these vertices have three

derivatives. The difference however is that it requires charged fields for that coupling.

The spin values, for which the vertex is absent in three dimensions involve one matter

field: s1 ě s2 ě 2 , s3 “ 0 and s1 ą s2 ě 2 , s3 “ 1. All the vertices that do not

involve matter fields have two (three) derivatives for even (odd) sum of spins in the vertex.

The only vertex with no derivatives is φ3 scalar self-interaction. The only vertices with

one derivative are scalar coupling to Maxwell and Yang-Mills vertex. ps, 0, 0q and ps, 1, 1q

vertices contain s derivatives, ps, 1, 0q vertex contains s ` 1 derivatives.

Each vertex in flat space can be uplifted to pAqdS space (see e.g. [34, 36]). Therefore,

via the AdS/CFT dictionary the classification of cubic vertices in flat space should conform
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to the structure of three point functions in 2d CFTs, which is indeed the case [56]. For full

dictionary, one needs to derive also parity odd vertices, which is a work in progress.

Maxwell field in three dimensions is dual to a scalar, therefore it may be not so surpris-

ing that scalar and Maxwell fields admit similar current type couplings. One remarkable

difference still exists: Maxwell field allows for ps, s, 1q coupling while there is no ps, s, 0q

coupling for s ě 2. Therefore, dual fields do not admit exact equivalence in their local

interactions. It is worth to note, that if we have only one copy of each spin in the spec-

trum, ps, s, 1q interaction is trivial, therefore at the level of cubic vertices we will not see

difference between scalar and Maxwell fields, but we believe that this difference is crucial

in the full interacting theory, since dualisation is not a local operation. We will discuss

this dualisation aspect more in the forthcoming work, where we classify parity odd cubic

vertices in three dimensions.

We notice also, that the scalar field interaction with higher spins (4.1) requires higher

derivatives. It is a consistent vertex of current interaction type, contains s derivatives and

requires transformation of the scalar field of the following type:

δ1ǫφ “ ǫµ1¨¨¨µs´1Bµ1
. . . Bµs´1

φ , (6.1)

where we suppress Chan-Paton factors, if any.

It can be shown that once one has a scalar field interacting with spin s ě 3 by a

cubic current interaction (4.1), we need to introduce infinite tower of HS fields, to close the

algebra of gauge transformations (6.1) of the scalar field. The argument is analogous to

that of Berends, Burgers and vanDam [57]. It is argued in [58] that the theory with global

symmetries containing finitely many HS killing tensors, cannot have a finite number of

propagating degrees of freedom in pAqdSq3 space, since the corresponding matrix algebras

do not allow for unitary representations with GK dimension 2 (the number of independent

continuous parameters, needed to describe a representation with finite species of particles,

propagating in three dimensions). It remains to see if the special case of sl3 ‘ sl3 algebra

of the “spin two plus spin three” theory, introduced in [14] can allow for scalar coupling.

This case is singled out by having a unitary representation with GK dimension 2 and the

fact that spin three cannot couple to a single real scalar by current coupling (4.1), therefore

may avoid the aforementioned no-go arguments. If such a model exists, the corresponding

matter has to carry trivial irrep of one of the sl3’s and the minimal representation of the

other sl3. It is not clear if this representation can be realised field-theoretically. We leave

this question to the future work.

Acknowledgements

The author thanks Pan Kessel for stimulating discussions that led to the results presented

here. Many useful discussions with Eduardo Conde Pena, Dario Francia, Euihun Joung

and Gabriele Lo Monaco on the subject of this work are also gratefully acknowledged.

The author is also grateful to Eduardo Conde, Euihun Joung, Dario Francia, Eugene

Skvortsov and Stefan Theisen for comments on the draft. The author is also grateful to his

wonderful hosts at Kaustinen during Christmas, the Teirikangas-Rytioja-Valo family, for

– 13 –



the comfortable environment where this work has been completed. This work is supported

by Alexander von Humboldt Foundation.

References

[1] M. Fierz, “Uber die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin,”
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