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2.1 Massless Representations 4

2.2 Massive Representations 5

3 Massless Interactions 7

3.1 Three-point Amplitudes 7

3.2 Cubic vertices 8

3.2.1 Parity-even vertices 9

3.2.2 Parity-odd vertices 9

3.3 Match 11

4 Massive Interactions 14

4.1 Generalities 14

4.2 Two Massless and One Massive 16

4.3 One Massless and Two Equal Massive 18

5 Conclusion 20

A Identifying massive states 22

– i –



1 Introduction

From the dawning of Quantum Field Theory, the relation between local fields and unitary

irreducible representations (UIRs) of Poincaré algebra has provided important guidelines

in constructing field theory Lagrangians as well as in understanding various physical con-

sequences of them. For instance, the relation between free fields and the corresponding

UIRs is very well understood by now: one can either begin with the field equations to

show that their general solutions are in one-to-one correspondence with the UIRs (and

their quantization leads to the Fock multi-particle space which corresponds to the tensor

product representation of the UIR), or reciprocally start from the UIRs and move to the

Fock space, then finally construct the quantum fields as the operators transforming in a

covariant fashion under Poincaré symmetries. Concerning the familiar lower spin cases,

one can find the detailed account e.g. in [1].

For these lower spins, the relation between free fields and UIRs can be further extended

to the interacting level in the sense that all consistent cubic interaction vertices allowed

in a local field theory correspond to tri-linear invariant forms of the UIRs. Since the

UIRs of Poincaré algebra — typically labeled by the mass and spin (m, s) and the spatial

momenta and helicity state (~p, h) — can be directly interpreted as the physical states,

the tri-linear invariant forms admit the interpretation of three-point amplitudes. From

the representation point of view, the Clebsch-Gordan coefficients must enjoy the same tri-

linear invariance condition that the three-point amplitudes satisfy. Hence these two objects

actually coincide up to overall constants depending on (m, s)’s. The latter constants remain

arbitrary for the amplitudes unless the underlying theory is fixed (the non-vanishing ones

correspond, up to linear combinations, to the coupling constants of the theory), but are

fixed for the Clebsch-Gordan coefficients by the completeness condition.

This understanding in lower spins was soon extended towards more general UIRs.

The local free field theories for massive and massless higher-spin representations were con-

structed in [2, 3] and [4, 5]. About the interactions, on the one hand there have been

extensive studies about the Clebsch-Gordan coefficients for the generic UIRs of Poincaré

algebra (see e.g. [6]). On the other hand, from the field-theory point of view, all consis-

tent local cubic interactions of massless fields in four dimensions have been derived in the

light-cone gauge [7, 8] then generalized to higher dimensions [9]. See e.g. [10] for general

discussions of this program. However, due to various no-go results on the flat-space mass-

less interactions [11–13] (see also [14, 15]) and the success of higher-spin theories in AdS

background [16, 17], this direction of research lost its dynamics for a while. A renewed

interest on this issue came from, at least, two different directions.

The first direction is the AdS/CFT duality, which generically involves higher-spin fields

on the AdS side (even massless ones in certain cases, typically when the corresponding

CFT becomes free). Vasiliev’s equations [17, 18] describe the dynamics of massless fields

interacting with each other within the framework of the so-called unfolded formulation.

Even if the latter provides a fully consistent picture, it is still interesting and illuminating

to understand the duality from a more mundane field-theoretical point of view. Therefore,

the interest on the nature of the flat-space cubic interactions was revived: the light-cone
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vertices for massive and fermionic fields were obtained in [19, 20], and the covariant form of

the light-cone vertices was identified first for certain examples, e.g. [21–25], then generalized

in [26–30] to arbitrary spins. For an overview of this line of investigations and an exhaustive

list of references, the reader may consult the review [31].

The second direction is the ongoing progress in calculating scattering amplitudes using

various on-shell methods (see e.g. [32, 33] and references therein). An important ingredi-

ent in exposing the simplicity of certain four-dimensional scattering amplitudes (especially

those involving massless particles) is the use of spinor-helicity variables, as typically ex-

emplified by the Parke-Taylor n-gluon amplitude [34, 35]. Although the helicity-spinor

formalism was developed in the 80’s mainly for phenomenological purposes, it possesses

certain theoretical advantages like making covariant properties manifest; and sparked by

Witten’s twistor string [36], many theorists have adopted it in their works. As a byprod-

uct of this wave of activity, all possible structures of three-point amplitudes of massless

particles were identified in [37] using spinor-helicity variables. Recently, the authors in [38]

have extended the classification to the case involving massive particles.

The methods typically used in the higher-spin and amplitude communities do not share

the same philosophy: whereas Local Field Theory plays a prominent role in the former,

the latter tries to escape from it as much as possible. It is therefore interesting to compare

both methodologies and see what are the points of agreement and disagreement, if any at

all. In this paper, we aim to make an explicit link between the developments in the two

fields.

We consider both massless and massive particles, and show how the local Lagrangian

vertices of Field Theory give rise to the known three-point amplitudes. In doing so, instead

of using the original light-cone form of the vertices, we use their covariant version together

with several generalized Kronecker-delta identities, valid only in four dimensions, to select

the non-trivial vertices. For the completeness of massless interactions, we also rederive all

parity-odd vertices in this way. Regarding massive interactions, although our procedure

is completely general, we focus just on two types of interactions: the first type involving

only one massive particle and two massless ones and the other type involving one massless

particle and two massive particles of equal mass.

Besides providing an explicit link between the two results, we hope that our analysis

helps to understand better the interplay between local Field Theory and the corresponding

representation theory. Moreover, this work may also be considered as a toy exercise of

the AdS/CFT duality where the local fields in flat space mimic those in AdS while the

three-point amplitudes play the role of the three-point correlation functions of the CFT.

In fact, there have been several attempts to get the flat-space S-matrix from AdS/CFT by

taking a proper flat limit (see for instance [39, 40] for a very general prescription).

The organization of the paper is as follows. In Section 2, we review the spinor real-

ization of the massless and massive UIRs of the Poincaré algebra with some discussions

on its generality. In Section 3, we consider the massless case: beginning with the local

cubic vertices, we explicitly calculate the corresponding three-point amplitudes using the

spinor-helicity variables. In particular, we show how the inclusion of both parity-even and

-odd vertices exhaust all possible structures found from the amplitude side, up to some
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subtleties. In Section 4, we move to the massive case: after reviewing the massive cubic

vertices of different types, we focus on two cases. The case of one massive and two massless

fields is analyzed in Section 4.2, while Section 4.3 contains the analysis of the case with two

equal-mass and one massless particle. In all these cases, we find a good agreement with the

result obtained from the amplitude side. After presenting our conclusions in Section 5, we

include in Appendix A some technical details regarding the massive UIRs of the Poincaré

algebra that we use in the manuscript.

2 Spinor Realization of Massless and Massive UIRs of Poincaré Algebra

In this work, we consider two types of UIRs of the Poincaré algebra. The first one is the

massless helicity representation (P 2 = 0) with little group SO(d − 2), and the other one

is the massive representation (P 2 < 0 in the mostly positive signature metric) with little

group SO(d − 1) . These are the only UIRs with a finite number of degrees of freedom

having positive-definite energies.

Typically, these representations are realized in a way that the Poincaré covariance is

not manifest because a certain reference momentum Pµ = pµ must be used to fix the little

group. However in d = 4 dimensions, we can realize these representations in a manifestly

covariant fashion by making use of the spinor representation of the Lorentz algebra. The

price to pay for the covariance is that the representation should be realized on a projective

space. In the following, we shall review this realization, first for the massless UIRs, then

for the massive ones.

Before moving to such details, let us first fix the basic conventions used in this paper.

To construct the Weyl representation of the Lorentz algebra, we use the Pauli matrices σi

to build the following combinations,

(σµ)aḃ = (1, ~σ)aḃ , (σ̄µ)ȧb = ǫȧḋ ǫbc (σµ)cḋ = (1,−~σ)ȧb , (2.1)

(σµν)a
b =

1

4
(σµ σ̄ν − σν σ̄µ)a

b , (σ̄µν)ȧ ḃ = −1

4
(σ̄µ σν − σ̄ν σµ)ȧ ḃ , (2.2)

Here, the spinor indices are lowered and raised as

ψa = ǫab ψ
b , ψa = ǫab ψb , ǫac ǫcb = δab , (2.3)

and equivalently for dotted indices. The matrices σµ, σµν and σ̄µν can be used to express

the components of any vector vµ and anti-symmetric tensor wµν in terms of spinorial ones

as

vµ = −1

2
(σ̄µ)ḃa vaḃ , wµν =

1

2
wab (σ

µν)ab +
1

2
w̄ȧḃ (σ̄

µν)ȧḃ , (2.4)

and vice-versa:

vaḃ = (σµ)aḃ vµ , wab = (σµν)ab wµν , w̄ȧḃ = (σ̄µν)ȧḃwµν . (2.5)

When vµ and wµν are real, the spinorial components should satisfy vaḃ
∗ = vbȧ and wab

∗ =

w̄ḃȧ . Henceforth, we shall use only these spinorial components for the Poincaré generators.
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2.1 Massless Representations

Let us begin the discussion with the massless representation. By making use of a Weyl

spinor λa , one can realize the following representation of the Poincaré algebra iso(3, 1) :

Paḃ = λa λ̃ḃ , Lab = λ(a
∂

∂λb)
, L̃ȧḃ = λ̃(ȧ

∂

∂λ̃ḃ)
, (2.6)

where we should understand that λ̃ and λ are complex-conjugate of each other, as it

corresponds to real momenta. Later on, we shall analytically extend them to complex

values. From the vanishing of the quadratic Casimir:

P 2 = 0 , (2.7)

one can see that (2.6) is a massless representation. One can notice that the sl2’s generated

by Lab and L̃ȧḃ are in fact in the Schwinger representation, hence each of them commutes

respectively with their number operator,

N = λa
∂

∂λa
, Ñ = λ̃ȧ

∂

∂λ̃ȧ
. (2.8)

Given the form of the translation generator Paḃ , only the linear combination

H = N − Ñ , (2.9)

commutes with all the generators of the Poincaré algebra. Therefore, the representation

space V = Fun(C2) can be block-diagonalized with respect to H as

V =
⊕

h∈Z

Vh , (2.10)

where the space Vh, isomorphic to C
2/U(1), is given by

Vh =
{
f(λ, λ̃)

∣∣∣ ∀ eiθ ∈ U(1), f(eiθ λ, e−iθ λ̃) = e−ihθ f(λ, λ̃)
}
. (2.11)

Each space Vh should still carry a faithful representation of Poincaré algebra asH commutes

with iso(3, 1). In fact, Vh carries the massless helicity h representation because H coincides

with the helicity operator:

W0

P0
=

(σ0)
aḃWaḃ

(σ0)aḃ Paḃ

=
1

2
H , (2.12)

where Waḃ is the Pauli-Lubanski vector,

Waḃ = P c
ḃ Lac − Pa

ċ L̃ḃċ . (2.13)

After analytic continuation, the U(1) coset condition will be replaced by the one, f(Ωλ,Ω−1 λ̃) =

Ω−h f(λ, λ̃) for an arbitrary element Ω in C\{0} .
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2.2 Massive Representations

Now let us consider the tensor-product of n copies of the representation (2.6):

Paḃ = λIa λ̃I ḃ , Lab = λI (a
∂

∂λI b)
, L̃ȧḃ = λ̃I(ȧ

∂

∂λ̃I ḃ)
. (2.14)

where I = 1, . . . , n . Since each copy is a Poincaré UIR, their tensor products also carry

unitary representations under Poincaré group, but reducible ones. We can reduce this rep-

resentation into smaller ones by imposing certain conditions compatible with the Poincaré

action. In this way, we may end up with an irreducible representation. Appropriate condi-

tions can be found using differential operators acting on the spinor space which commute

with those in (2.14), which realize the Poincaré generators. We first note that the Lorentz

generators commute with two copies of gln :

N I
J = λIa

∂

∂λJa
, ÑJ

I = λ̃Jȧ
∂

∂λ̃I ȧ
, (2.15)

which are in fact the centralizers of sl2’s (generated by Lab and L̃ȧḃ) within gl2n’s (generated

by λIa
∂

∂λJ
b

and λ̃Iȧ
∂

∂λ̃J

ḃ

). If we extend gl2n — that is, any differential operators bilinear in

λ and ∂/∂λ — to sp4n by including the operators of the type λλ and ∂2

∂λ ∂λ ’s, then the

centralizers are extended with the antisymmetric n× n tensors

M IJ = λIa λ
Ja , M̃IJ = λ̃Iȧ λ̃J

ȧ , (2.16)

and their λ ↔ ∂/∂λ conjugates. The latter commute with M IJ and M̃IJ , however they

have non-trivial commutators with the translation generators. Moreover among N I
J and

ÑJ
I only the combination

KI
J = N I

J − ÑJ
I , (2.17)

commutes with the whole Poincaré algebra. Therefore, we can decompose the spinor space

C
2n in terms of the UIRs of the algebra, to which we shall refer to as An , generated by KI

J ,

M IJ and M̃IJ : it is a semi-direct sum of u(n) (generated by KI
J ) and the antisymmetric

tensor product of fundamental (for M IJ) and anti-fundamental (for M̃IJ) representations.

By choosing a particular UIR of An, we can reduce the tensor product representation of

Poincaré algebra into a smaller one. As in the Poincaré case, the UIRs of An can be

classified according to the value of the quadratic Casimir,

C2(An) = −1

2
M IJ M̃IJ , (2.18)

which in fact coincides with that of the Poincaré algebra:

C2(iso(3, 1)) = P 2 = −1

2
Paḃ P

aḃ = C2(An) . (2.19)

Depending on this value, we may classify the representations of An.
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Case n = 2

For the massive representations, it will be sufficient to consider the n = 2 case, where

we have only one component for each of M IJ = −ǫIJ M and M̃IJ = ǫIJ M̃ . The latter

generators commute with the su(2) ⊂ u(2) generated by KI
J :

KI
J = KI

J − 1
2 δ

I
J K

K
K = N I

J − ÑJ
I , (2.20)

N I
J = N I

J − 1
2 δ

I
J N

K
K , ÑI

J = NI
J − 1

2 δ
I
J ÑK

K , (2.21)

whereas the u(1) part K = KI
I satisfies the commutation relations:

[K,M ] = 2M , [K, M̃ ] = −2 M̃ . (2.22)

We see that K,M, M̃ form an iso(2) algebra. Hence, we see that A2 ≃ su(2) ⊕ iso(2) .

It turns out that the determination of an irreducible representation under iso(2) fixes the

mass value of the Poincaré representation, while choosing an irreducible representation

for su(2) fixes the spin. We can therefore associate the massive little group SO(3) of the

Poincaré group with the su(2) generated by KI
J . One of the simplest ways to see this is

to compute the corresponding Casimir operators. The quadratic Casimir P 2 of Poincaré

algebra is already fixed in this case by (2.19), and given by C2(A2) = C2(iso(2)) = −M M̃ .

Similarly to P 2 , the square of Pauli-Lubanski vector (2.13) commutes with all the other

generators. After a simple manipulation, we get

W 2 = −1

2
WaḃW

aḃ = −1

4
Paḃ P

aḃ
(
Lcd L

cd + L̃ċḋ L̃
ċḋ
)
+ P aċ P bḋ Lab L̃ċḋ , (2.23)

which can be further simplified using the identities, valid only for n = 2,

Lab L
ab = N I

J N J
I , L̃ȧḃ L̃

ȧḃ = ÑI
J ÑJ

I , (2.24)

P aċ P bḋ Lab L̃ċḋ =M M̃ N I
J ÑI

J . (2.25)

Finally, combining the above formulas, we can show that

W 2 = −1

2
M M̃ KI

J KJ
I . (2.26)

This makes it clear that when P 2 = −M M̃ = −m2 < 0 , by taking the ‘spin s’ represen-

tation of su(2) , the corresponding Poincaré representation becomes also that of massive

spin s . To recapitulate, starting from V = Fun(C4) , we get

V =
⊕

m∈R, s∈N/2

Vm,s , (2.27)

where Vm,s, isomorphic to C
4/A2, is given by

Vm,s =




fr,h(λ, λ̃)

∣∣∣∣∣

∀ g ∈ SU(2) , fr,h(g λ, g
−1 λ̃) = Ds

hh′(g) fn,h′(λ, λ̃)

∀ ei θ ∈ U(1) , fr,h(e
i θ λ, e−i θλ̃) = e2 i r θ fr,h(λ, λ̃)

λI a λ
I a fr,h(λ, λ̃) = 2mfr+1,h(λ, λ̃)

λ̃I ȧ λ̃
I ȧ fr,h(λ, λ̃) = 2mfr−1,h(λ, λ̃)




, (2.28)

where Ds
hh′(g) is the Wigner D-matrix. Since this matrix does not depend on the label

r, representations with different values of r can be considered physically equivalent. We

will make use of this fact later on in Section 4. See Appendix A for detailed account of

how (2.28) is related to the standard massive representation.
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3 Massless Interactions

We will match now each local cubic interaction to one of the three-point amplitudes clas-

sified using the spinor-helicity method. We begin this analysis with the case where all

three fields or representations are massless. We restrict to the case of bosonic fields for the

sake of simplicity. Before making an explicit link between them, we review the classifica-

tion of massless three-point amplitudes in spinor-helicity variables and the construction of

gauge-invariant local cubic-interaction vertices.

3.1 Three-point Amplitudes

Let us denote the asymptotic states of the three massless particles by

|λI , λ̃I ;hI〉 , I = 1, 2, 3 . (3.1)

As we discussed in Section 2, each asymptotic state furnishes a representation of iso(3, 1).

The three-particle amplitude carries information about this representation in the sense of

being a function living in the spaces VhI
defined in (2.11). A way to re-state this is by

saying that the helicity operator in (2.9) acts on the amplitude as it acts on the one-particle

states. This fact essentially determines the three-point amplitude up to a coupling constant

[37]. Discarding delta-function contributions (apart from the momentum-conserving delta-

function, that we omit in what follows), the solution to the differential equations that follow

from applying the three helicity operators to the amplitude is

Mh1,h2,h3
3 = 〈1, 2〉h3−h1−h2〈3, 1〉h2−h3−h1〈2, 3〉h1−h2−h3f (〈I, J〉[I, J ]) , (3.2)

with 〈I, J〉 = λIa λ
Ja and [I, J ] = λ̃I ȧ λ̃

ȧ
J . Here, f is an unknown function that can

be determined with three physical requirements. One is that the amplitude should not

be singular. Another is momentum conservation, that implies that either 〈I, J〉 = 0 or

[I, J ] = 0. The remaining one is the fact that whenever h1 + h2 + h3 6= 0, the amplitude

must vanish on the real sheet1. This gives

Mh1,h2,h3
3 =

{
gH 〈1, 2〉h3−h1−h2 〈3, 1〉h2−h3−h1 〈2, 3〉h1−h2−h3 when h1 + h2 + h3 < 0

gA [1, 2]h1+h2−h3 [3, 1]h3+h1−h2 [2, 3]h2+h3−h1 when h1 + h2 + h3 > 0
.

(3.3)

The coupling constants gH, gA above2 are unrelated in a theory with no well-defined parity.

For parity-even or -odd theories, they are equal up to a sign . Let us remark here that if

we drop the non-singular requirement, we could formally have singular amplitudes obey-

ing (3.2) (recall that 〈I, J〉[I, J ] = 0 by momentum conservation). This can make sense

in certain contexts [41], and we will see at the end of this section another example of this

happening.

1In the case h1 + h2 + h3 = 0, the amplitude does not need to vanish a priori for real momenta, which

can line up along a null direction. However, no consistent interactions are known of this type. We will

comment on this point again at the end of this Section 3.
2The subindices H and A stand for holomorphic and anti-holomorphic, referring to their dependence on

the λ and λ̃ spinors respectively.
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Finally note that there is no restriction on the spin of the scattering particles, which

can be arbitrarily large. For given spins s1, s2 and s3, there are generically four types of

amplitudes associated:

(h1, h2, h3) ∈ {(±s1,±s2,±s3) , (∓s1,±s2,±s3) , (±s1,∓s2,±s3) , (±s1,±s2,∓s3)} , (3.4)

which we grouped in parity-conjugated pairs.

3.2 Cubic vertices

Let us now turn to the Lagrangian description of cubic interactions. Local and gauge-

invariant cubic Lagrangians have been completely classified in any D-dimensional space-

time (D ≥ 4). We briefly review here the derivation of covariant cubic vertices in four

dimensions.

As is common practice, to deal with arbitrary higher-spin fields we introduce auxiliary

variables uµ and define the generating functions:

ϕ(x, u) =
∞∑

s=0

1

s!
ϕµ1···µs(x)u

µ1 · · · uµs . (3.5)

The massless system requires gauge symmetries in order to propagate the correct number

of on-shell degrees of freedom, and the gauge transformation takes the following form:

δϕ(x, u) = u · ∂x ε(x, u) + · · · , (3.6)

where the dots contain terms of higher order in the number of fields (namely they contain

the non-linear part of the gauge transformation), which are not needed at cubic level.

Indeed, from the gauge invariance of the full action, it can be shown that the generic cubic

vertex

S(3) =

∫
d4xC(∂xI

, ∂uI
)ϕ1(x1, u1)ϕ

2(x2, u2)ϕ
3(x3, u3)

∣∣∣xI=x
uI=0

, (3.7)

should satisfy

[C(∂xJ
, ∂uJ

), uI · ∂xI
] ≈ 0 , I = 1, 2, 3 , (3.8)

where ≈ means modulo the Frondsal equations of motion [4]. In order to solve equa-

tion (3.8), one has to analyze what are the variables that C can possibly depend on. Since

we will only require the on-shell content of the vertex later on, we can just focus on its

transverse and traceless (TT) part, that we denote by CTT, and which also satisfies equa-

tion (3.8) where ≈ means now modulo the Fierz system:

∂2xI
ϕI ≈ 0 , ∂xI

· ∂uI
ϕI ≈ 0 , ∂2uI

ϕI ≈ 0 . (3.9)

In order to continue the analysis, we need to distinguish the cases where the vertices involve

a Levi-Civita epsilon tensor (hence parity-odd) or not (parity-even).
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3.2.1 Parity-even vertices

Let us begin with the parity-even cases. Since the vertices do not involve any ǫµνρσ tensor,

the vertex function CTT can only depend on the six variables,

YI = ∂uI
· ∂xI+1

, ZI = ∂uI+1
· ∂uI−1

. (3.10)

CTT is then easily determined using the commutators,

[YI , uJ · ∂xJ
] = 0 , [ZI , uI · ∂xI

] = 0 ,
[
ZI , uI±1 · ∂xI±1

]
= ∓YI∓1 . (3.11)

The solution to the equations (3.8) is

CTT =

s1∑

n=0

λ(s1,s2,s3)n Gn Y s1−n
1 Y s2−n

2 Y s3−n
3 , (3.12)

where the λ
(s1,s2,s3)
n ’s are independent coupling constants that ought to be fixed by the

quest for consistency of higher order interactions, and we defined G as the combination,

G = Y1 Z1 + Y2 Z2 + Y3 Z3 . (3.13)

The discussion up to here is actually valid in any space-time dimension. In four dimensions

the variables YI and ZI are not independent, as generalized Kronecker-delta identities in

four dimensions3 imply Y1 Y2 Y3G ≈ 0. This makes the expression (3.12) collapse to just

two possible parity-even vertices:

CTT = gminG
s1 Y s2−s1

2 Y s3−s1
3 + gnon Y

s1
1 Y s2

2 Y s3
3 , (3.14)

where we assumed s1 ≤ s2 ≤ s3 without loss of generality. The first vertex is the minimal

coupling and contains s3 + s2 − s1 derivatives. The second one contains s1 + s2 + s3
derivatives instead, and it is usually called non-minimal coupling. Notice that these two

vertices coincide when s1 = 0.

3.2.2 Parity-odd vertices

The analysis of parity-odd cubic vertices is analogous to the parity-even case, except that

now

CTT =

3∑

I=1

VI F
(V )

I (Y,Z) +WI F
(W )

I (Y,Z) , (3.15)

depends linearly on the variables

VI = ǫµνρσ∂uµ
I+1
∂xν

I+1
∂uρ

I−1
∂xσ

I−1
, WI = ǫµνρσ∂uµ

1
∂uν

2
∂uρ

3
∂xσ

I
. (3.16)

It is important to note here that the expression (3.15) contains in general a redundancy

because the six variables VI ’s and WI ’s are not independent — using Schouten identities

and momentum conservation we get the following six relations:

WI YI ≈ VI+1ZI−1 + VI−1ZI+1 , W1 +W2 +W3 ≈ 0 ,

V1 Y1 ≈ V2 Y2 ≈ V3 Y3 , VI YI G ≈ 0 .
(3.17)

3 More explicitly, we should consider the identity δν1ν2ν3ν4ν5µ1µ2µ3µ4µ5
∂µ1
u1

∂µ2
u2

∂µ3
u3

∂µ4
x1

∂µ5
x2

∂u
ν1

1

∂u
ν2

2

∂u
ν3

3

∂x
ν4

1

∂x
ν5

2

=

0. Hereupon we will refer to these sort of identities as Schouten identities.

– 9 –



The redundancy can be removed by expressing V2, V3 and WI ’s in terms of the other

variables as

VI ≈ V1
Y1
YI
, WI ≈ V1

YI+1ZI+1 + YI−1ZI−1

Y2 Y3
, I = 2, 3 ; W1 ≈ −V1

G+ Y1Z1

Y2 Y3
. (3.18)

Since these relations commute with the gauge variations, removing the redundancy before

solving the gauge invariance condition (3.8) yields a simpler expression for the vertex,

namely CTT = V1 F (Y,Z). Notice however that since the replacements (3.18) involve

negative powers of Y2 and Y3, the function F is allowed to have terms proportional to the

negative powers Y −1
2 , Y −1

3 or (Y2Y3)
−1. Negative powers of YI do not make sense as it

would mean a negative number of contractions, but actually they might be just an artifact

of our procedure, which is purposed to remove redundancies. As we will show below, it is

possible that even when these negative powers show up, the vertex still admits a polynomial

expression if the relations (3.18) can be inverted.

Given that [V1, uI · ∂xI
] = 0, we can immediately see that there are only two possible

gauge-invariant parity-odd vertices:

CTT = gmin,PO V1G
s1 Y s2−s1−1

2 Y s3−s1−1
3 + gnon,PO V1 Y

s1
1 Y s2−1

2 Y s3−1
3 . (3.19)

They respectively have s2 + s3 − s1 and s1 + s2 + s3 derivatives, hence can be naturally

paired with the parity-even minimal and non-minimal coupling vertices. For this reason,

we also refer to these parity-odd vertices as minimal and non-minimal couplings. Let us

note that, similarly to parity-even case, the two vertices coincide for s1 = 0. Notice that the

minimal-coupling vertex has negative powers of YI ’s when s1 = s2 . However, for s2 < s3 ,

it can be brought to a polynomial form using the identities (3.17) as

V1G
s1 Y −1

2 Y s3−s1−1
3 ≈ 1

2
[V1 Z2 − V2 Z1 + (W2 −W1)Y3]G

s1−1 Y s3−s1−1
3 , (3.20)

where we have chosen the form symmetric under exchange of 1 and 2 among various equiv-

alent expressions. About the case with s1 = s2 = s3, it is impossible to remove completely

the negative powers of Y2 and Y3 using (3.17) from the minimal-coupling vertices. There-

fore we conclude that, compared to the parity-even vertices, the parity-odd vertices miss

the minimal ones with all equal spins.

There is another case of coincident spins: s1 < s2 = s3, for which the equation (3.19)

does not contain negative powers of YI ’s. In this case, the vertex operator has symmetry

property with respect to exchange of second and third fields, up to a factor (−1)s1 , which

suggests, similarly to parity-even cases, to include Chan-Paton structures in the case of

odd s1. Instead in the case of s1 = s2 < s3, the vertex (3.20) has the opposite property —

Chan-Paton structures are needed for even s3. This strange difference suggests intuitive

understanding of the case s1 = s2 = s3, which, belonging to both of the above classes

of vertices, should have both symmetric and antisymmetric properties with respect to

exchange of any two fields, which cannot be satisfied by any non-vanishing vertex operator.
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3.3 Match

We will investigate here if the amplitudes (3.3) match the ones obtained from the cubic

vertices (3.14) and (3.19). For that it suffices to translate the Lagrangian vertices into

amplitudes.

Given the form of the vertex (3.7), Feynman rules instruct us to extract the coefficient

of
∏3

I=1

∏sI
k=1 ∂uµk

I
of C(∂xI

, ∂uI
), multiply it by (−i) ei(p1+p2+p3)·x, and contract it with

the polarization tensors of the three external particles. This is equivalent to writing

M̃3 =

∫
d4xCTT(G,Yi, V1)ϕ

1
O-S(x1, u1)ϕ

2
O-S(x2, u2)ϕ

3
O-S(x3, u3)

∣∣∣xI=x
uI=0

, (3.21)

where M̃3 is the formal sum of the position-space amplitudes for all helicity configurations

and all spins, and the O-S subindex refers to the fact that the ϕI should satisfy the equations

of motion. The equivalence holds because the on-shell evaluation of the massless higher-spin

fields yields polarization tensors times plane-wave exponentials:

ϕO-S(x, u) =
∞∑

s=0

1

s!

∫
d4p

(
ϕ−(p) ǫ−µ1···µs

(p) + ϕ+(p) ǫ+µ1···µs
(p)

)
uµ1 · · · uµs eip·x . (3.22)

Therefore, let us start by solving the on-shell conditions (3.9) for a generic ϕ(x, u). We

will do so in terms of spinor variables to connect with (3.3). For that purpose, it is quite

convenient to use light-cone variables:

x± = x0 ± x3 , z = x1 + i x2 ,

u± = u0 ± u3 , ω = u1 + i u2 .
(3.23)

We start by fixing the gauge. We impose the light-cone gauge condition,

∂u− ϕ(x+, x−, z, z̄ ; u+, u−, ω, ω̄) = 0 , (3.24)

which simply implies that ϕ cannot depend on u−. In this gauge, the transverse condition

reads

(−∂u+∂x− + ∂z ∂ω̄ + ∂z̄ ∂ω)ϕ(x
+, x−, z, z̄ ; u−, ω, ω̄) = 0 , (3.25)

which can be easily solved by

ϕ(x+, x−, z, z̄ ; u−, ω, ω̄) = exp

[
u+

∂x−

(∂z ∂ω̄ + ∂z̄ ∂ω)

]
ϕl.c.(x

+, x−, z, z̄ ; ω, ω̄) , (3.26)

where the subindex l.c. refers to light-cone. The next condition to solve is the d’Alembertian

equation, �ϕl.c. = 0, whose solution is a simple superposition of plane waves:

ϕl.c.(x, ω, ω̄)=

∫
d2λd2λ̃

vol(GL(1))
ei(

i
2
xaȧ λI

a λ̃Iȧ) exp

[
λ̃2̇
λ2
ω ∂χ +

λ2

λ̃2̇
ω̄ ∂χ̄

]
φ(λ, λ̃ ; χ, χ̄)

∣∣∣
χ=χ̄=0

,

(3.27)

where we have decided to introduce the second exponential so that the “wave-function” φ

carries helicity representations:

φ(Ωλ,Ω−1 λ̃ ; Ω−2 χ,Ω2 χ̄) = φ(λ, λ̃ ; χ, χ̄) [Ω ∈ C] . (3.28)
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Note that the integrand above becomes singular when the second components of the spinors

are vanishing. This just occurs because we assumed that ∂x−ϕ 6= 0 when imposing the

light-cone condition (3.24). This is equivalent to assuming that λ2λ̃2̇ 6= 0 .

Now, using the relations (3.26) and (3.27), the effect of derivatives and contractions

on the wave-function ϕ are given by

(
∂x+ , ∂x− , ∂z, ∂z̄

)
ϕ ↔ i

(
− λ1 λ̃1̇,−λ2 λ̃2̇, λ1 λ̃2̇, λ2 λ̃2̇

)
φ ,

(
∂u+ , ∂u− , ∂ω, ∂ω̄

)
ϕ ↔

[
(
− λ̃1̇, 0, λ̃2̇, 0

) ∂χ
λ2

+
(
− λ1, 0, 0, λ2

) ∂χ̄
λ̃2̇

]
φ .

(3.29)

From here we can see that the traceless condition ∂2u ϕ = 0 also takes a very simple form:

∂χ ∂χ̄ φ(λ, λ̃ ; χ, χ̄) = 0 ⇒ φ(λ, λ̃ ; χ, χ̄) = φ+(λ, λ̃ ; χ) + φ−(λ, λ̃ ; χ̄) , (3.30)

forbidding mixed contractions. Notice that this gives rise to the decomposition (3.22). In

order to evaluate (3.21), we can just plug (3.26) and (3.27) in there, then use (3.29) to

compactly write the resulting expression. Indeed, the operators that can appear in the

vertex cast nicely as

−4iG ↔ [2, 3]3

[1, 2][3, 1]
∂χ̄1 ∂χ2 ∂χ3 +

[3, 1]3

[2, 3][1, 2]
∂χ1 ∂χ̄2 ∂χ3 +

[1, 2]3

[3, 1][2, 3]
∂χ1 ∂χ2 ∂χ̄3

+
〈2, 3〉3

〈1, 2〉〈3, 1〉 ∂χ1 ∂χ̄2 ∂χ̄3 +
〈3, 1〉3

〈2, 3〉〈1, 2〉 ∂χ̄1 ∂χ2 ∂χ̄3 +
〈1, 2〉3

〈3, 1〉〈2, 3〉 ∂χ̄1 ∂χ̄2 ∂χ3 , (3.31)

−2i YI ↔ [I, J ][I,K]

[J,K]
∂χI

+
〈I, J〉〈I,K〉

〈J,K〉 ∂χ̄I
, (3.32)

−4i V1 ↔ [2, 3]2∂χ2∂χ3 − 〈2, 3〉2∂χ̄2∂χ̄3 . (3.33)

Notice that the expressions above contain singular terms of the form 0
0 when momentum

conservation is taken into account. The operators G,YI , V1 are of course not singular. We

have purposely introduced these singularities by substituting

λJ2
λI2

= − [I,K]

[J,K]
,

λ̃J2

λ̃I2
= −〈I,K〉

〈J,K〉 , (3.34)

in order to make the final expressions more appealing, and also because this will allow us

to make easier contact with (3.2), where momentum conservation is not explicitly imposed.

Using the formulae (3.31)-(3.33), we can easily evaluate the cubic vertices.

Let us start with the non-minimal vertices with (s1 + s2 + s3) derivatives. Omitting

factors of 2 and i, we have, schematically,

CTT = gnon Y
s1
1 Y s2

2 Y s3
3 + gnon,PO V1 Y

s1
1 Y s2−1

2 Y s3−1
3

l
(gnon + gnon,PO) [1, 2]

s1+s2−s3 [2, 3]s2+s3−s1 [3, 1]s3+s1−s2 ∂ s1
χ1
∂ s2
χ2
∂ s2
χ3

+(gnon − gnon,PO) 〈1, 2〉s1+s2−s3 〈2, 3〉s2+s3−s1 〈3, 1〉s3+s1−s2 ∂ s1
χ̄1
∂ s2
χ̄2
∂ s2
χ̄3
.

(3.35)
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In view of equation (3.21), we see that this vertex corresponds to the on-shell ampli-

tude (3.3) in the first helicity configuration of (3.4), identifying the coupling constants

as

gH ∼ gnon − gnon,PO , gA ∼ gnon + gnon,PO . (3.36)

When one of the vertices with well-defined parity is not present, we see that gH and gA are

indeed related.

For the minimal-coupling vertices with s1 < s2 ≤ s3, we get

CTT = gminG
s1 Y s2

2 Y s3
3 + gmin,PO V1G

s1 Y s2−1
2 Y s3−1

3

l

gA
[2, 3]s1+s2+s3

[1, 2]s1+s3−s2 [3, 1]s1+s2−s3
∂ s1
χ̄1
∂ s2
χ2
∂ s3
χ3

+ gH
〈2, 3〉s1+s2+s3

〈1, 2〉s1+s3−s2〈3, 1〉s1+s2−s3
∂ s1
χ1
∂ s2
χ̄2
∂ s3
χ̄3

+gAf2
[3, 1]s1+s2+s3

[1, 2]s2+s3−s1 [2, 3]s1+s2−s3
∂ s1
χ1
∂ s2
χ̄2
∂ s3
χ3

+ gHf2
〈3, 1〉s1+s2+s3

〈1, 2〉s2+s3−s1〈2, 3〉s1+s2−s3
∂ s1
χ̄1
∂ s2
χ2
∂ s3
χ̄3

+gAf3
[1, 2]s1+s2+s3

[2, 3]s1+s3−s2 [3, 1]s2+s3−s1
∂ s1
χ1
∂ s2
χ2
∂ s3
χ̄3

+ gHf3
〈1, 2〉s1+s2+s3

〈2, 3〉s1+s3−s2〈3, 1〉s2+s3−s1
∂ s1
χ̄1
∂ s2
χ̄2
∂ s3
χ3
.

(3.37)

where we have made the identifications:

gH ∼ gmin − gmin,PO , gA ∼ gmin + gmin,PO , (3.38)

and have denoted

f2 =

(〈1, 2〉[1, 2]〈2, 3〉[2, 3]
〈3, 1〉[3, 1]

)s2−s1

, f3 =

(〈3, 1〉[3, 1]〈2, 3〉[2, 3]
〈1, 2〉[1, 2]

)s3−s1

. (3.39)

We see then that the minimal-coupling vertices potentially give the scattering ampli-

tudes (3.3) in the last three helicity configurations of (3.4), completing the match among

cubic vertices and on-shell amplitudes. However, the helicity configurations (±s1,∓s2,±s3)
and (±s1,±s2,∓s3) are problematic as the corresponding amplitudes that come from cubic

vertices are singular as they are dressed with the singular factors f2 or f3 . In order to

get finite amplitudes in these helicity configurations, a certain form of non-locality should

be allowed in the cubic vertex that would absorb the singular factor. However, such non-

locality may well violate other physical requirements, and we shall not pursue this line

here. Notice though that we obtain in this way an indirect explanation of why the theories

with h1 + h2 + h3 = 0 are sick, as these can only be produced in these problematic helicity

configurations (recall we assumed s1 ≤ s2 ≤ s3).

In the special case of s1 = s2 < s3 , the factor f2 becomes one, hence no more singular.

In fact, this case is where the expression (3.19) involving V1 is no longer valid and it should

be replaced by (3.20). A new calculation shows a small deviation: the holomorphic and

anti-holomorphic coupling constants of the second and third line of (3.37) are now related

to gnon and gnon,PO as

gH ∼ gmin + gmin,PO , gA ∼ gmin − gmin,PO , (3.40)
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and the factor f3 differs from that of (3.39) but anyway vanishes for conserved momenta.

The last case left out is when all spins are equal s1 = s2 = s3 . In this case, there is

no parity-odd minimal-coupling vertex whereas the amplitude has the two independent

holomorphic and anti-holomorphic pieces.

The origin of this disparity may be again related to that of the problematic amplitudes

for the helicity configurations (±s1,∓s2,±s3) and (±s1,±s2,∓s3) , where the cubic vertices
do provide the same amplitude structures, but they come with a factor which vanishes

upon imposing momentum conservation. Actually, momentum conservation is what makes

a total derivative vanish from the cubic interaction point of view. In fact, formally, we

can construct many cubic interactions which are boundary terms. If we calculate their

corresponding amplitudes, we would get formulas dressed again with singular factors like

f2 and f3 . In the case of a parity-odd vertex s−s−s with s derivatives, one can find vertices

which are boundary terms and that presumably can reproduce the missing amplitudes with

a singular factor.

As a final remark, we comment on the fact that while (3.3) is a non-perturbative result,

the amplitudes produced from cubic vertices are presumably tree level. Actually, it looks

reasonable that the arguments used to constrain the form of the cubic vertex (3.7) can

be applied to the quantum effective action, as they are based just on gauge and Lorentz

invariance. In such a case, the same non-perturbative conclusion is reached via cubic

vertices.

4 Massive Interactions

In this section we analyze the match between three-point amplitudes and cubic vertices in

the case where some of the particles/fields have a mass. There are three main cases to be

distinguished, namely when only one, two, or the three particles are massive. These cases

are divided into subcases depending on the relation among the masses if there are several

of them. We will start by discussing the general way to proceed, and then illustrate it with

the two simplest examples: when one particle is massive, and when two particles of the

same mass interact with a massless one.

4.1 Generalities

We first quickly review some known facts about three-point amplitudes and cubic vertices

involving massive fields, then show what will be the general strategy to match them.

Amplitudes

On the amplitude side, the classification of three-point amplitudes with the representation

discussed in 2.2 was explicitly considered in [38]. We briefly summarize here the most

salient features of the classification.

When only one particle is massive, the functional form of the amplitude is completely

fixed up to a coupling constant, pretty much as it happens in the massless case. Nonetheless,

there is a restriction on the helicities of the massless particles, say particles 1 and 2,

depending on the spin s3 of the massive particle. Namely, we must have |h1 − h2| ≤ s3.
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This constraint can be physically understood as arising from the conservation of momentum

and angular momentum, since the process is allowed for real kinematics.

If two particles, say 1 and 2, are massive we must separate the cases of equal and

different masses. The equal-mass case is similar to the massless one in the sense that the

process is kinematically forbidden for real momenta. The three-point amplitude contains

2min(s1, s2) + 1 “coupling constants”, each accompanying a different functional structure.

If the masses are different, then the number of structures depends on the precise relation

between h3 and s1, s2. This case is kinematically allowed for real momenta, and as in

the case of the one massive leg, one gets a restriction |h3| ≤ s1 + s2 following from the

conservation laws of momentum and angular momentum.

When the three particles are massive the functional form of the amplitude is much

less constrained, and the number of possible kinematic structures grows quite large, being

bounded by (2si + 1)(2sj + 1) if sk is the biggest spin ({i, j, k} = {1, 2, 3}).

Vertices

The classification of parity-even cubic vertices with massive fields is done exactly as in

Section 3.2, with just a few differences (see e.g. [42] for the details). One is that the gauge

condition (3.8) needs only be imposed when particle I is massless. Another is that the

presence of masses modifies the [YI , uI · ∂xI
] commutator in (3.11) as

[YI , uI · ∂xI
] =

m2
I +m2

I+1 −m2
I−1

2
. (4.1)

The last difference is that the massless Schouten identity Y1 Y2 Y3G ≈ 0 is modified to

Y1 Y2 Y3G+
1

2

(
µ1G

2
1 + µ2G

2
2 + µ3G

2
3

)
+ (µ1 µ2 + µ2 µ3 + µ3 µ1)Z1 Z2 Z3 ≈ 0 , (4.2)

where we are denoting GI = G − YIZI and 2µI = m2
I+1 + m2

I−1 − m2
I . With all these

ingredients it is simple to work out the form of the vertices for each of the cases specified

above. For the sake of simplicity, we shall not complete the analysis with the parity-

odd vertices for massive fields. Hence, we will not be able to check if opposite-helicity

amplitudes can be independently produced from the local vertices.

Match

As done in Section 3.3, we want to extract the three-point amplitudes from the cubic

vertices. For that, we just need to use formula (3.21), which involves the on-shell form

of the fields. For a massless field, this was given in (3.26)-(3.27). Let us derive here the

analogue for an on-shell massive field. We have to impose the two conditions
(
�−m2

)
φO-S(x, u) = 0 , ∂2u φO-S(x, u) = 0 . (4.3)

The solution to the equation of motion is simply given by

φO-S(x, u) =

∫
d4λd4λ̃

vol(U(2))
δ
(
det(λI λ̃I) +m2

)
exp

(
i

2
xaȧ λIa λ̃Iȧ

)
×

× exp

(
uaȧ

∂2

∂χa ∂χ̄ȧ

)
φ̃O-S(λ

I , λ̃I ;χ, χ̄)

∣∣∣∣
χ=0=χ̄

, (4.4)
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where the division by the volume of U(2) means that we quotient by the action of U(2) on

the space of φ̃O-S . This requires to fix an irrep of U(2) = SU(2)×U(1) that the φ̃O-S should

carry. Since the massive particles of the three-point amplitudes considered in [38] were in

their lowest-weight state of SU(2), we also assume here a lowest-weight representation:

K− φ̃O-S =

(
λ1a

∂

∂λ2a
− λ̃2ȧ

∂

∂λ̃1ȧ

)
φ̃O-S = 0 , (4.5)

K0 φ̃O-S = −1

2

(
λ1a

∂

∂λ1a
− λ2a

∂

∂λ2a
− λ̃1ȧ

∂

∂λ̃1ȧ
+ λ̃2ȧ

∂

∂λ̃2ȧ

)
φ̃O-S = s φ̃O-S , (4.6)

where we are combining the SU(2) generators defined in (2.20) as K− = −K1
2 and K0 =

1
2 (K2

2 −K1
1). By imposing these conditions, the field, carrying a massive spin s representa-

tion, has the spin angular momentum −s along the space-like direction:

Qaḃ = λ1a λ̃
1
ḃ
− λ2a λ̃

2
ḃ
. (4.7)

See Appendix A for the details. Finally, by imposing the U(1) condition,4

K φ̃O-S =

(
λIa

∂

∂λIa
− λ̃Ia

∂

∂λ̃Ia

)
φ̃O-S = 0 , (4.8)

the transverse condition,

λIa λ̃Iȧ
∂2

∂χa χ̄ȧ
φ̃O-S(λ

I , λ̃I ;χ, χ̄) = 0 , (4.9)

can be solved by

φ̃O-S(λ
I , λ̃I ;χ, χ̄) =

1

s!

(
χa λ

1 a χ̄ȧ λ̃2
ȧ
)s

φ̃
(s,−s)
O-S (λI , λ̃I) . (4.10)

The wave-function φ̃
(s,−s)
O-S carries now the trivial representation under U(2) . With all the

ingredients above, let us now proceed to perform the explicit match between cubic vertices

and massive three-point amplitudes.

4.2 Two Massless and One Massive

The generic form of the amplitude for the interaction of two massless particles, with he-

licities h1 and h2, with a third massive particle with mass m and spin angular momentum

−s3 along the Q direction (4.7), is given by

M3 = f1(m, 〈3, 4〉) 〈1, 2〉−s3−h1−h2〈2, 3〉h1−h2+s3〈3, 1〉h2−h1+s3 , (4.11)

where we have parametrized the momenta as p1 = λ1λ̃1, p2 = λ2λ̃2 and P3 = λ3λ̃3 + λ4λ̃4.

In [38], the function f1 was fixed to be constant. However, because of the condition (4.8),

4As we discussed below the equation (2.28), this is just a free choice we have in selecting a certain value

for the representation label r . We notice here a small deviation with respect to [38], where instead of (4.8)

the condition K φ̃O-S = K0 φ̃O-S is imposed as it was more natural for the reduction of massive amplitudes

to massless ones. In this paper, we make the choice (4.8), which leads to a simpler expression for the

on-shell fields in terms of the spinor-helicity variables.
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σ = s3−s1−s2 . . . ,−4,−2 . . . ,−3,−1 0 1 2, 3, . . .

n 0 1 0, 2 + σ 1, 2 + σ σ

Table 1. Selection among (4.13) of the possible cubic vertices for the interaction of one massive

and two massless particles in four dimensions. In some cases, two vertices are possible.

here f1 will be instead a homogeneous function of 〈3, 4〉 with weight −s3. This amplitude

is only allowed if

|h1 − h2| ≤ s3 . (4.12)

Let us recover (4.11) and (4.12) from the cubic vertices.

Assuming without loss of generality that s1 ≤ s2, the most general cubic vertex in this

case takes the following form (see [42] for the derivation):

CTT =

s3−s2+s1∑

n=max{0,s3−s2−s1}

λ(s1,s2,s3)n H
s3+s2−s1−n

2
1 H

s3+s1−s2−n

2
2 H

s1+s2−s3+n

2
3 Y n

3 , (4.13)

where we have introduced the following combinations

H1 = Y2 Y3 −
m2

2
Z1 , H2 = Y3 Y1 −

m2

2
Z2 , H3 = Y1 Y2 +

m2

2
Z3 , (4.14)

which are useful because the Schouten identity (4.2) can be recast in this case as

H1H2H3 ≈ H2
3 Y

2
3 . (4.15)

Using this identity, the number of possible vertices for given spins gets reduced to two or

one, as shown in Table 1. These are the vertices that must be now used in (3.21). The

action of the operators HI and Y3 on the on-shell fields casts as

−4H1 ↔ − m4〈3, 1〉2
〈1, 2〉2〈3, 4〉∂χ2 +

m2〈2, 3〉2
〈3, 4〉 ∂χ̄2 , −4H2 ↔ − m4〈2, 3〉2

〈1, 2〉2〈3, 4〉∂χ1 +
m2〈3, 1〉2
〈3, 4〉 ∂χ̄1 ,

−4H3 ↔
m2

〈1, 2〉2 ∂χ1∂χ2 + 〈1, 2〉2∂χ̄1∂χ̄2 , −2iY3 ↔ m2 〈3, 1〉〈2, 3〉
〈1, 2〉〈3, 4〉 .

(4.16)

The factors of m come from the use of momentum conservation, which tells us that a pos-

sible set of kinematically independent spinor products is {〈1, 2〉, 〈2, 3〉, 〈3, 1〉, 〈1, 4〉, 〈3, 4〉}.
The fact that 〈1, 4〉 does not appear in HI , Y3 parallels the fact that it neither appears in

the amplitude (4.11). This is ultimately a consequence of the condition (4.5).

With expressions (4.16) at hand, it is immediate to reproduce the amplitude (4.11)

from the vertices in Table 1. Omitting coupling constants and factors of 2 and i, the

vertices with σ ≤ 1 give

m2s1+2s2+2s3

〈3, 4〉s3 〈1, 2〉−s1−s2−s3 〈2, 3〉s2+s3−s1 〈3, 1〉s3+s1−s2 ∂ s1
χ1
∂ s2
χ2

+ (−1)s2−s1 m2s3

〈3, 4〉s3 〈1, 2〉
s1+s2−s3 〈2, 3〉s1+s3−s2 〈3, 1〉s3+s2−s1 ∂ s1

χ̄1
∂ s2
χ̄2
,

(4.17)
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which correspond to the helicity configurations (h1, h2) = (±s1,±s2). Notice that the two

different off-shell vertices with σ = 0, 1 yield the same three-point on-shell amplitudes.

Considering now the vertices with σ ≥ 2, we get

m2s1+2s2+2s3

〈3, 4〉s3 〈1, 2〉−s1−s2−s3 〈2, 3〉s2+s3−s1 〈3, 1〉s3+s1−s2 ∂ s1
χ1
∂ s2
χ2

+ (−1)s2
m2s1+2s3

〈3, 4〉s3 〈1, 2〉s2−s1−s3 〈2, 3〉s3−s2−s1 〈3, 1〉s1+s2+s3 ∂ s1
χ1
∂ s2
χ̄2

+ (−1)s1
m2s2+2s3

〈3, 4〉s3 〈1, 2〉s1−s2−s3 〈2, 3〉s1+s2+s3 〈3, 1〉s3−s1−s2 ∂ s1
χ1
∂ s2
χ̄2

+ (−1)s2−s1 m2s3

〈3, 4〉s3 〈1, 2〉
s1+s2−s3 〈2, 3〉s1+s3−s2 〈3, 1〉s3+s2−s1 ∂ s1

χ̄1
∂ s2
χ̄2
,

(4.18)

which also contains the helicity configurations (h1, h2) = (±s1,∓s2). Hence, interestingly,

these configurations only occur when s3 ≥ s1 + s2 + 2. This is a restriction not captured

by the amplitude, which allows these configurations also when s1 + s2 = s3 − 1, s3. While

it would seem natural that the extra vertices in Table 1 that appear when σ = 0, 1 would

match these configurations, this does not seem to be the case. We can only conjecture that,

analogously to the massless case, the imposition of momentum conservation is preventing

us from seeing these amplitudes from the cubic vertices.

To finish this subsection, let us also derive the condition (4.12) from the cubic-vertex

analysis. One just needs to consider two cases. As we saw, the case where (h1, h2) =

(±s1,∓s2) only happens when s3 ≥ s1+s2+2, automatically implying that s3 > s1+s2 =

|h1−h2|. In the case where (h1, h2) = (±s1,±s2), we have to check that s3 ≥ s2−s1, which
directly follows from the fact that the exponent of H2 in (4.13) should be non-negative.

4.3 One Massless and Two Equal Massive

Let us start again by stating the result for the three-point amplitude obtained in [38].

We take particles 1 and 2 to have mass m, while particle 3 is massless. The spin angular

momenta along the Q directions (4.7) of the massive particles are fixed to be −s1 and −s2,
while the helicity of the third particle, h3, is free. Without loss of generality, we assume

that the spin of the first massive field is not larger than the second one: s1 ≤ s2 . Denoting

the momenta as P1 = λ1λ̃1 + λ4λ̃4, P2 = λ2λ̃2 + λ5λ̃5 and p3 = λ3λ̃3, the amplitude takes

the following form:

M3 = f2

(
m, 〈1, 4〉, 〈2, 5〉, [4, 5]〈1, 2〉

)
〈1, 2〉s1+s2+h3〈2, 3〉s2−s1−h3〈3, 1〉s1−s2−h3 , (4.19)

with the function f2 equal to5

f2 =

2s1∑

k=0

ck

(〈1, 4〉
m

,
〈2, 5〉
m

)(
1− 〈1, 4〉〈2, 5〉

m2

[4, 5]

〈1, 2〉

)s1+s2+h3−k

, (4.20)

5 In [38] the combination appearing in f2 was
(

1 + 〈1,5〉〈2,4〉

m2

[4,5]
〈1,2〉

)

. The minus sign here is due to the

definition of the angular bracket adopted there, 〈I, J〉 = λI a λJ
a, as opposed to 〈I, J〉 = λI

a λ
Ja here.
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where the free functions ck(x, y) were fixed to be constants in [38], but here the condi-

tion (4.8) will give homogeneous functions of weight −s1 and −s2 in 〈1, 4〉 and 〈2, 5〉 re-

spectively. Notice we have 2s1+1 independent kinematic structures in (4.19), a conclusion

we reproduce below via the analysis of cubic vertices.

In this case, the consistent cubic interaction is given in general dimensions by

CTT =
∑

n,m

λ(s1,s2,s3)n,m Gn Y s1−n−m
1 Y s2−n−m

2 Y s3−n
3 Zm

3 . (4.21)

Involving two parameters n and m , this type of cubic interactions contains many vertices

with different number of derivatives. However, in four dimensions, again thanks to the

Schouten identity (4.2), many of them trivialize. We can see that for two equal-mass

massive particles the identity reduces to

Y1 Y2 Y3G ≈ −m
2

2
(G− Y3 Z3)

2 . (4.22)

Notice that the tensor structures involved in this identity have different number of deriva-

tives. In order to remove the ambiguities due to (4.22), we take the representative vertex

having the least derivatives. In other words, if a certain vertex contains the four-derivative

structure Y1 Y2 Y3G , then we replace it by the RHS of (4.22), having just two derivatives.

Implementing this rule into the general form of interactions (4.21), we are left with three

possibilities:

1. The first case is where the vertices do not involve any G :

CTT =
∑

m

λs1−s2−s30,m Y s1−m
1 Y s2−m

2 Y s3
3 Zm

3 . (4.23)

In this case, the number of vertices are given by the possible values of m : there are

s1 + 1 vertices corresponding to m = 0, 1, . . . , s1.

2. The second case is where the vertices do not involve any Y1 :

CTT =
∑

n

λs1−s2−s3n,s1−n Gn Y s2−s1
2 Y s3−n

3 Zs1−n
3 . (4.24)

The possible vertices are parameterized by n : there are min{s1, s3} vertices corre-

sponding to n = 1, 2, . . . ,min{s1, s3}. We drop the possibility of n = 0 as it overlaps

with the case 1.

3. The final case is where the vertices do not involve any Y3 :

CTT =
∑

m

λs1−s2−s3s3,m Gs3 Y s1−s3−m
1 Y s2−s3−m

2 Zm
3 , (4.25)

which can occur only when s1 ≥ s3 . There are s1−s3 possible vertices corresponding
to m = 0, 1, . . . , s1 − s3 − 1. We drop the possibility of m = s1 − s3 as it overlaps

with the case 2.
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Irrespective of what min{s1, s3} is, we see that there are always 2s1 + 1 possible vertices,

coinciding with the number of different structures in the three-point amplitude. Moreover

it is not difficult to see6 that these vertices give rise to (4.19), with the ck being linear

combinations of the λ
(s1,s2,s3)
s3,m . It is sufficient to use the following expressions for the

operators YI , Z3, G,

−2iY1 ↔
〈1, 2〉〈3, 1〉

〈2, 3〉
m2

〈1, 4〉 ξ , −2iY3 ↔ − m2〈1, 2〉
〈3, 1〉〈2, 3〉 ξ ∂χ3 +

〈3, 1〉〈2, 3〉
〈1, 2〉 ξ−1 ∂χ̄3 ,

−2iY2 ↔
〈1, 2〉〈2, 3〉

〈3, 1〉
m2

〈2, 5〉 ξ , 2Z3 ↔ 〈1, 2〉[4, 5] ,

G↔ − m2〈1, 2〉3
〈3, 1〉〈2, 3〉

m2 ξ

〈1, 4〉〈2, 5〉∂χ3 + 〈1, 2〉〈3, 1〉〈2, 3〉〈1, 4〉〈2, 5〉
m2 ξ

(
[4, 5]

〈1, 2〉

)2

∂χ̄3 ,

(4.26)

where we have denoted

ξ = 1− 〈1, 5〉〈2, 4〉
m2

[4, 5]

〈1, 2〉 . (4.27)

The expressions in (4.26) are obtained by acting the operators YI , Z3 and G on the on-

shell fields (cf. equations (3.26), (3.27) for massless fields and (4.4), (4.10) for the massive

ones), and using momentum conservation to express the twenty spinor products that one

can build in terms of just eight of them. The independent set that we chose is the following:

{〈1, 2〉, 〈3, 1〉, 〈2, 3〉, 〈1, 4〉, 〈1, 5〉, 〈2, 4〉, 〈2, 5〉, [4, 5]}. We can notice that, similarly to what

happened in Section 4.2, the products 〈1, 5〉, 〈2, 4〉 do not appear in (4.26), consistently

agreeing with the fact that the lowest-weight amplitude (4.19) does not depend on them

either.

5 Conclusion

In this paper we have shown how the spinor-helicity three-point amplitudes can be produced

from the local cubic-interaction vertices. Relating on-shell local fields to wave-functions in

the spinor-helicity variables, we could derive the relations between the building blocks of

the vertices such as YI ’s and G to simple rational functions of spinor contractions, 〈I, J〉 or
[I, J ] . These relations were then used to find the precise dictionary between the complete

cubic vertices and three-point amplitudes.

Our result shows that most of the amplitude structures can be reproduced from the

cubic interactions. In particular, the independence between the holomorphic and anti-

holomorphic amplitudes could be obtained by including both parity-even and -odd vertices,

as we have checked through the massless cases. Nonetheless, there remain several ampli-

tudes which do not appear from the cubic interactions if we strictly impose the momentum

conservation condition. However, when the latter condition is relaxed at intermediate lev-

els, we could observe the missing amplitudes do appear but together with some factors

which vanish when the momentum conservation condition is imposed. It seems that from

the Poincaré covariance of the amplitude, the nature of locality is not transparent enough

6 For the comparison, it is better to rewrite (4.20) as f2 = ξ−s1+s2+h3
∑2s1

k=0 ck ξ
k, where what remains

inside the sum is a polynomial in ξ, or alternatively in [4,5]
〈1,2〉

, of order 2s1 + 1.

– 20 –



and there do exist more structures than what is allowed by the locality of the Lagrangian,

although presumably boundary terms may produce these extra structures with singular

factors.

Cubic Vertices in AdSCubic Vertices in Minkowski

CFT Three-Point FunctionsThree-Point Amplitudes

Witten DiagramsFeynman Diagrams

Flat Limit

Figure 1. Schematic relation among flat/AdS Local Field Theories and amplitudes/correlators.

The shaded region in the left-down corner corresponds to the amplitudes which satisfy the invariance

condition but are not realized by Local Field Theory.

This small discrepancy is somewhat curious when viewing the matching procedure

as the flat limit of the AdS/CFT duality. On the one hand, there are exactly the same

number of local cubic interactions in AdS spacetime as in flat spacetime [43, 44] (while

the classification of deforming and non-deforming vertices differs [45]). Actually, the AdS

vertices can be obtained from the flat vertices by adding proper lower derivative terms

required to compensate the non-commutativity of the AdS covariant derivatives. On the

other hand, independent structures of CFT three-point functions can be identified by asking

the invariance under the conformal group, which is isomorphic to the isometry group of

AdS [46, 47]. In a sense, the CFT three-point functions are the AdS analog of the scattering

amplitudes because the way they are determined is the same: by requiring invariance under

the isometry group. It turns out that the number of AdS vertices and the number of CFT

three-point functions exactly match, even though explicit links between them have not

been made yet (see however [48] where massless AdS vertices have been determined from

the three-point functions of free scalar CFT). Hence, it seems that there is no discrepancy

in the AdS case like the one present for flat space. It is not clear what makes the Poincaré

invariance — iso(3, 1) — differ from the AdS invariance — so(3, 2), but we presume that

it is the algebraic nature: the latter algebra is simple but the former is not.
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A Identifying massive states

In this section, we provide an explicit analysis of the n = 2 spinor-helicity representation

considered in Section 2.2. In particular, we will show how a wave-function,

〈λ, µ |Ψ〉 = 〈ρa, αa, βa, γa |Ψ〉 , (A.1)

is related to the usual wave-function of a massive particle. Here, λa and µa denote the two

copies of spinors λIa (I = 1, 2) , which are parameterized by eight variables (ρa, αa, βa, γa)

as
λ1 = ρ1 cosα1 e

iθ1 , λ2 = ρ2 cosα2 e
iθ2 ,

µ1 = ρ1 sinα1 e
iφ1 , µ2 = ρ2 sinα2 e

iφ2 ,
(A.2)

where we have redefined the angular variables as

α± = α1 ± α2 , β± = θ1 − φ1 ± (θ2 − φ2) , γ± = θ1 + φ1 ± (θ2 + φ2) . (A.3)

We take the state vector |Ψ〉 to be the eigenstate of momentum Paḃ and K generators,

|Ψ〉 = | p⊗ r ⊗ ψ 〉 :

Paḃ | p ⊗ r ⊗ ψ 〉 = paḃ | p⊗ r ⊗ ψ 〉 , K | p⊗ r ⊗ ψ 〉 = r | p⊗ r ⊗ ψ 〉 , (A.4)

where |ψ〉 stands for the part of the state which is not yet determined by the Paḃ and K

conditions. For the sake of clarity and simplicity, we assume henceforth the momentum to

be in the rest frame:

paḃ = mδab . (A.5)

This is translated into the following set of equations:

ρ1 = ρ2 =
√
m, cosα+ = 0 , ei β− = −1 . (A.6)

After fixing the kinematic condition (A.6), the functional dependence of the wave-function

reduces to just three angular variables, α = α− , β = β+ , γ = γ−, as

〈ρa, αa, βa, γa | p⊗ r⊗ψ〉 = δ(ρ1 −
√
m) δ(ρ2 −

√
m) δ(cosα+) δ(e

i β− − 1) ei r
γ+
4 〈α, β, γ |ψ〉 .

The actions of the generators K and KI
J are realized by the differential operators K =

−4 i ∂γ+ , and

K0 =
1

2

(
K2

2 −K1
1

)
= 2 i ∂β , K− = −K1

2 = −i e iβ
2 (∂α − 2 i tanα∂β − 2 i secα∂γ) .

(A.7)

The latter enjoy the commutation relations of su(2):

[K+,K−] = 2K0 , [K0,K±] = ±K± . (A.8)

where with our conventions K+ = −K†
−. Now we move to the little group SO(3) operators,

which leave (A.5) invariant. They are the combinations:

J3 = L12 − L̃1̇2̇ = 2 i ∂γ , J− = −L11 − L̃2̇2̇ = −i e iγ
2 (∂α − 2 i tanα∂γ − 2 i secα∂β) ,

(A.9)
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with the commutation relations (again with J+ = −J†
−),

[J+, J−] = 2J3 , [J3, J±] = ± J± . (A.10)

The quadratic Casimir of the above two algebras coincide:

C2 = K0
2 +

1

2
{K+,K−} = J3

2 +
1

2
{J+, J−}

= −∂2α + tanα∂α − 4 sec2 α
(
∂2β + ∂2γ + 2 sinα∂β ∂g

)
. (A.11)

Now, we can fix the state vector |ψ〉 to carry a UIR of Ki and Ji . For instance, we can

choose |ψ〉 = |s, hK, hJ〉 to be an eigenstate of K0 and J0 generators:

C2 |s, hK, hJ〉 = s(s+ 1) |s, hK, hJ〉 , (A.12)

K0 |s, hK, hJ〉 = hK |s, hK, hJ〉 , (A.13)

J3 |s, hK, hJ〉 = hJ |s, hK, hJ〉 . (A.14)

From the expressions (A.8) and (A.9), we can conclude that 〈α, β, γ |s, hK, hJ〉 coincides

with the Wigner function,

〈α, β, γ |s, hK, hJ〉 = 〈s, hK|R(α, β, γ) |s, hJ〉 , (A.15)

where |s, hJ〉 is the eigenstate of su(2) and R(α, β, γ) is an element of SU(2) with (α, β, γ)

related to the Euler angles. The Ki and Ji actions are realized respectively by the left and

right multiplications on the element R(α, β, γ) .

In this paper, we have not diagonalized the state vector with respect to J3, but only

with respect to K0 and C2 , hence it remains as a generic linear combination:

|ψs
hK

〉 =
∑

hJ

chJ
|s, hK, hJ〉 . (A.16)

Defining similarly |ψs〉 = ∑
hJ
chJ

|s, hJ〉 , we get

〈α, β, γ |ψs
hK

〉 = 〈s, hK|R(α, β, γ) |ψs〉 . (A.17)

Even though the state vector |ψs
hK

〉 is an undetermined one, the wave-function 〈α, β, γ |ψs
hK

〉
admits an intuitive interpretation as the ~J · û eigenstate with eigenvalue hK :

〈α, β, γ | ~J · û |ψs
hK

〉 = hK 〈α, β, γ |ψs
hK

〉 , (A.18)

where the unit vector û is the rotation of ê3 by R(α, β, γ) :

~J · û = R−1
J (α, β, γ)J3 RJ(α, β, γ) . (A.19)

Relaxing the rest frame condition (A.5), we can also find the ‘covariant’ form of the four-

vector Q — which reduces to (0,m û) in the rest frame — as

Qaḃ = λa λ̃ḃ − µa µ̃ḃ . (A.20)
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It is space-like and orthogonal to the momentum vector:

Q2 = m2 , PaḃQ
aḃ = 0 . (A.21)

Differently from Paḃ , the vector Qaḃ does not commute with KI
J , and most importantly it

satisfies

QaḃWaḃ = −2m2 K0 , (A.22)

whereas P aḃWaḃ = 0 .
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