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1 Introduction and Summary

Massless higher-spin representations of the Poincaré group require higher-rank tensor gauge

fields for their description. However, from a geometrical viewpoint, these fields have an

unusual field-theoretical implication since they favor higher derivatives, and for instance

the generalized curvature for a rank-s gauge field involves s derivatives [1]. As a result, the

Lagrangian equation of motion constructed from the curvature would propagate not only

spin-s modes but also additional ones including ghosts. For spin-s propagation, one has to

reduce the number of derivatives to two: this can be done either by imposing constraints

on gauge fields and parameters [2], or by introducing auxiliary fields [3, 4] or non-locality

[5]. See e.g. [6–8] for recent reviews on higher-spin gauge theories.

Apart from the higher-spin context, higher-derivative theories have been considered

mainly for the purpose of renormalizable gravity [9]. Again, the downside is the non-unitary

dynamics with propagating ghost modes. Recently higher-derivative theories started to

attract renewed interest, thanks to several observations on how to deal with the ghost

problem. Among them, let us mention the following key points:

• In low dimensions, such ghosts can become pure gauge restoring unitarity. An im-

portant example is the New Massive Gravity [10].1

• The solutions of Einstein gravity with negative cosmological constant can be re-

covered from certain four-derivative gravity theories choosing appropriate boundary

conditions (see e.g. [14–17]).

It is worth noticing that the Weyl symmetry underlies the consistency of these four-

derivative theories, although the Lagrangian is not Weyl invariant in general. More pre-

cisely, in all these theories, the four-derivative part of the action enjoys a Weyl symmetry at

least at the linearized level. In a sense, this symmetry removes the massive scalar from the

spectrum, leaving only massless and massive spin two modes – which are relatively ghost.2

It is instructive to see this point in detail. Around a constant-curvature background ḡµν ,

linearized Weyl gravity admits the factorized expression [21]

S1 =

∫

ddx
√−ḡ

[

G µν
lin (I −1

FP )µν,ρσ G
ρσ

lin + d−2
2(d−1) Λh

µν Glin
µν

]

, (1.1)

in terms of the Fierz-Pauli (FP) mass operator

(IFP)µν,ρσ = ḡµρ ḡνσ − ḡµν ḡρσ (1.2)

Where Glin
µν = Rµν − 1

2 ḡµν R+Λ ḡµν is the linearized cosmological Einstein tensor. Thanks

to the FP operator in S1 , with the addition of a massless spin two action S2 :

S2 = m2

∫

ddx
√−ḡ hµν Glin

µν , (1.3)

1 See also [11–13] and references therein for generalizations.
2General four-derivative gravity propagates a massless spin two, a massive scalar and a massive spin two

ghost [9, 18–20].
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the full action can be easily recast into the difference between massless and massive spin

two actions:

S1 + S2 ≈M2

∫

ddx
√−ḡ

[

h̃µν Glin
µν(h̃)− ϕµν

{

Glin
µν(ϕ) +M2 (IFP)

ρσ
µν ϕρσ

}]

. (1.4)

Here

M2 = m2 + d−2
2(d−1) Λ , (1.5)

and ≈ indicates the equivalence up to the equations of motion for the auxiliary field ϕµν

after performing field redefinition h̃µν = hµν − ϕµν . In three dimensions, the massless

spin two does not propagate, and therefore with an appropriate choice of the sign for

the kinetic term one can retain only ghost-free massive spin two. On the other hand, in

generic dimensional AdS backgrounds, the massless spin two can be selected as the only

propagating mode imposing appropriate boundary conditions.

Turning to the case of higher-spin fields, one may wonder whether Weyl(-like) sym-

metries can still play a similar role in controlling the spectrum of four(or even higher)-

derivative theories. Focusing on the free case, the natural generalization of (linearized)

diffeomorphisms and Weyl transformations to higher spins would be

δ ϕµ1···µs = ∂(µ1
εµ2···µs) + η(µ1µ2

αµ3···µs) , (1.6)

where (µ1 · · ·µs) denotes full symmetrization. In d ≥ 4 , a free action possessing the above

symmetry involves the square of the higher-spin Weyl tensor (the traceless part of the

higher-spin curvature), and thus contains 2s derivatives for a given spin s . For d = 4 , it

coincides with the conformal higher-spin theory3 of [22–24] (see also [25–29]). Although one

can directly consider 2s-derivative theories and study their ghost exorcising mechanisms,

one can still wonder whether interesting theories exist whose number of derivatives lies

between 2 and 2s .

∂2 ∂4 · · · ∂2s−2 ∂2s

Fronsdal ? · · · ? Weyl

Table 1. Hierarchy of higher-derivative actions for higher spins

If these theories exist, we expect that the more derivatives they contain, the more their

symmetries are enhanced. The two ends of this hierarchy of theories correspond to the

Fronsdal and higher-spin Weyl theories that admit, respectively, constrained gauge sym-

metries and unconstrained gauge plus Weyl symmetries, while other members are expected

to possess symmetries that are intermediate between these.

In the present paper we investigate higher-derivative theories of free higher-spin fields

focusing on mainly their symmetries. We begin with familiar two-derivative constrained

3 Conformal spin-s actions in d dimensions contain (d+ 2s− 4)-derivatives. In order to avoid confusion

between the conformal actions and the 2s-derivative Weyl squared actions, we call the latter Weyl action,

as opposed to conformal action, throughout the present paper.

– 2 –



formulations of higher-spin fields: Fronsdal’s theory [2] and transverse invariant setting of

Skvortsov and Vasiliev (SV) [30], recently investigated in a wider context in [31]. Then,

increasing the number of derivatives, we identify the Lagrangians compatible with relaxed

constraints, and in particular those acquiring Weyl(-like) symmetries.

Einstein-like actions We find that increasing the number of derivatives from Fronsdal’s

setting (doubly traceless field: ϕ′′ = 0 , and traceless parameter: ε′ = 0), at each step

there is unique Lagrangian with higher trace constraints. More precisely, the 2n-derivative

Einstein-like actions are determined as

G2n =

∫

ddx ϕµ1···µsG
µ1···µs
2n , (1.7)

where the gauge field is subject to the (n+ 1)-th traceless constraint: ϕ[n+1] = 0 , while

the gauge parameter to the n-th traceless constraint: ε[n] = 0 .

Maxwell-like actions On the other hand, departing from the setting of SV (traceless

field: ϕ′ = 0 and traceless and transverse parameter: ε′ = 0 = ∂ · ε), we obtain the 2n-

derivative Maxwell-like actions

M2n =

∫

ddx ϕµ1···µsM
µ1···µs
2n , (1.8)

whose fields and parameters are subject to the constraints: ϕ[n] = 0 and ε[n] = 0 = ∂ · ε[n−1].

It is worth noticing that the Einstein-like tensors G2n and the Maxwell-like tensors

M2n admit a full factorization in terms of n two-derivative operators, whose first factors

are the Fronsdal and Maxwell ones. It was shown in [32] that the equations G2n ≈ 0 and

M2n ≈ 0 are equivalent to the equations R[n] ≈ 0 and ∂ ·R[n−1] ≈ 0 where R is the linearized

higher-spin curvature.

The Einstein-like actions exist up to 2⌊s/2⌋ derivatives while the Maxwell-like ones to

2⌊(s + 1)/2⌋ derivatives. Hence, they can cover only half of Table 1. The last member of

each set (Einstein-like for even spin and Maxwell-like for odd spin) admits an unconstrained

gauge symmetry and is essentially the local counterpart of the unconstrained non-local La-

grangian of [5]. Although there is no generic symmetry enhancement beyond s derivatives,

we show that for 2s+ d− 4 derivatives Einstein-(Maxwell-)like actions acquire Weyl sym-

metry. They coincide with the linearized conformal higher-spin action since the latter has

the same number of derivatives and the same symmetries.

Weyl-like actions The higher-spin Weyl action involves 2s derivatives and does not

require any constraint on its gauge field and parameters. It turns out that Weyl sym-

metry can be realized also in lower derivative cases (from four to 2s − 2 derivatives) with

constrained parameters. We identify Lagrangians possessing Weyl symmetries with param-

eters, subject to differential constraints. The Weyl-like actions are split into two classes:

the first involves 4n derivatives while the other involves 4n+ 2 derivatives.

• The 4n-derivative Weyl-like actions are obtained through Einstein-like tensors as

W4n =

∫

ddx Gµ1···µs
2n (I −1

F )µ1···µs,ν1···νs G
ν1···νs
2n , (1.9)
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where IF is the mass operator for higher-spin fields considered by Francia [33]. Let

us notice the similarity between these Lagrangians (1.9) and the gravity case (1.1).

Both cases admit a factorization in terms of two Einstein(-like) tensors with the

inverse of the Fierz-Pauli (Francia) mass operator. The constraints on gauge fields

and parameters follow those of the 2n-derivative Einstein-like action G2n , while the

Weyl parameters are subject to new types of constraints – traceless and (2n − 1)-th

divergence-less conditions: α′ = 0 = (∂·)2n−1α .

• The (4n+ 2)-derivative Weyl-like actions are determined using both Einstein-like and

Maxwell-like tensors, as

W4n+2 =

∫

ddx Gµ1···µs
2n (I −1

F )µ1···µs,ν1···νs M
ν1···νs
2n+2 . (1.10)

In this case, the constraints on the gauge fields and parameters follow those of the

(2n+ 2)-derivative Maxwell-like action M2n+2 , while the Weyl parameters satisfy

α′ = 0 = (∂·)2nα .

Note that these Weyl-like actions coincide with the higher-spin Weyl action when n = s/2

or (s− 1)/2, providing a new expression for the Weyl squared action.

The organization of this paper is as follows. In Section 2, we review the generalized

Christoffel symbols à la de Wit and Freedman and construct higher-derivative Einstein-like

and Maxwell-like actions for higher-spin fields. In Section 3, we turn to Weyl-like actions

and show that they are given in terms of Einstein-like and Maxwell-like tensors with a

factor that is an inverse mass operator. Section 4 contains the discussions on the (A)dS

deformations of the Weyl(-like) actions and their expected properties, as well as some

issues on the interacting cases. Finally, Appendices A and B provide the explicit form of

the spin three Weyl action and the spectrum analysis of the four-derivative Einstein (or

Maxwell)-like action.

2 Higher-derivative gauge invariant actions

In this section we discuss higher-derivative actions which admit only (diffeomorphism-like)

gauge symmetries. They are constructed using the deWit-Freedman generalized Christoffel

symbols (GCS) [1], which we review briefly in the following subsection. Before starting our

discussion, let us introduce the generating function (or auxiliary variable) notation for the

higher-spin fields

ϕ(s)(x, u) = 1
s! ϕµ1···µs(x)u

µ1 · · · uµs , (2.1)

which we shall use throughout the present paper. In this notation, the gauge and Weyl

transformations (1.6) are expressed as

δ ϕ(s)(x, u) = u · ∂x ε(s−1)(x, u) + u2 α(s−2)(x, u) , (2.2)

where ε(s−1)(x, u) and α(s−2)(x, u) are the generating functions of the gauge parameters

εµ1···µs−1 and the Weyl parameters αµ1···µs−2 defined analogously to (2.1). Moreover, the
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actions of free higher-spin fields will be represented using the scalar product

〈〈

φ(s)
∣

∣ψ(s)
〉〉

:=

∫

ddx e∂u1·∂u2 φ(s)(x, u1)ψ
(s)(x, u2)

∣

∣

u1=u2=0

=

∫

ddx 1
s! φµ1···µs(x)ψ

µ1···µs(x) . (2.3)

2.1 deWit-Freedman generalized Christoffel symbols

The Christoffel symbol of gravity, linearized around the flat background so that gµν = ηµν − hµν ,

is given by

Γµν,ρ = 1
2 (∂ρ hµν − ∂µ hνρ − ∂ν hµρ) . (2.4)

Rewriting this in the auxiliary-variable notation gives

Γ(s,1)(x, u, v) = Γµν,ρ(x)u
µ uν vρ = (v · ∂x − u · ∂x v · ∂u)ϕ(s)(x, u) , (2.5)

with s = 2 . The general spin case of (2.5) corresponds to the first member of the GCS

hierarchy, and its variation under the gauge transformation results in the double gradient

as

δ Γ(s,1)(x, u, v) = − (u · ∂x)2 (v · ∂u) ε(s−1)(x, u) , (2.6)

while the other members of the hierarchy can be determined recursively by

Γ(s,r)(x, u, v) = (v · ∂x − 1
r u · ∂x v · ∂u) Γ(s,r−1)(x, u, v) , (2.7)

in such a way that their gauge variations give rise to the multiple gradients

δ Γ(s,r)(x, u, v) = (−1)r

r! (u · ∂x)r+1 (v · ∂u)r ε(s−1)(x, u) . (2.8)

In this way, the last member of the hierarchy, called deWit-Freedman curvature,

Γ(s,s)(x, u, v) = 1
s! (u · ∂x v · ∂w − v · ∂x u · ∂w)s ϕ(s)(x,w) , (2.9)

becomes gauge invariant without any constraint on gauge field or parameter.

In the following subsections, we construct higher-derivative gauge invariant actions

making use of these GCS. Our construction essentially follows that of [5], although the

context here is different.

2.2 Einstein-like actions

From the gauge transformations (2.8) , one can see that multiple v-traces of the symbols

F (s)
2n (x, u) := (∂ 2

v )
n Γ(s,2n)(x;u, v) , (2.10)

transform into the multiple traces of the gauge parameters

δ F (s)
2n (x, u) = (u · ∂x)2n+1 (∂ 2

u )
n ε(s−1)(x, u) . (2.11)
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For n = 1 , the object F (s)
2 coincides with the spin-s analogue of the Ricci tensor, given by

the Fronsdal’s operator F2

F (s)
2 (x, u) = F2 ϕ

(s)(x, u) , F2 := ∂ 2
x − u · ∂x ∂u · ∂x + 1

2 (u · ∂x)2 ∂ 2
u , (2.12)

and is invariant under the gauge transformations generated by traceless parameters. For

general n , the F (s)
2n ’s are invariant under gauge transformations with parameters subject

to higher-trace constraints

(∂ 2
u )

n ε(s−1)(x, u) = 0 . (2.13)

For the subsequent analysis, we provide another useful expression for F (s)
2n , which can be

obtained using the identity relating Γ(s,r) and Γ(s,r−2) :

∂ 2
v Γ(s,r)(x, u, v) = Fr Γ

(s,r−2)(x, u, v) . (2.14)

Here we have introduced the generalized Fronsdal operators Fr as

Fr := (∂x − 1
r u · ∂x ∂u) · (∂x − 1

r−1 u · ∂x ∂u)
= ∂ 2

x − 2
r u · ∂x ∂u · ∂x + 1

r(r−1) (u · ∂x)2 ∂ 2
u . (2.15)

After iterations, the Ricci-like tensors F (s)
2n can be factorized as

F (s)
2n (x, u) = F2n F2n−2 · · · F4 F2 ϕ

(s)(x, u) , (2.16)

where the order of the F2r’s is important since they do not commute with each other. The

F (s)
2n ’s satisfy higher-derivative analogues of the Bianchi-like identities

(

∂u · ∂x − 1
2(n+r) u · ∂x ∂ 2

u

)

(∂ 2
u )

r F (s)
2n = 0 , [r = 0, 1, · · · , n− 1] , (2.17)

on the space of the (n+ 1)-th traceless gauge field:

(∂ 2
u )

n+1 ϕ(s)(x, u) = 0 . (2.18)

Let us now construct the actions giving rise to the equations F (s)
2n = 0 . In the two-

derivative (n = 1) case, the spin-s Einstein tensor G(s)
2 can be obtained from the Ricci

tensor by a trace modification:

G(s)
2 = I2 F

(s)
2 , I2 = 1− 1

4 u
2 ∂ 2

u . (2.19)

Imposing the doubly-traceless constraint on fields, the Einstein tensor becomes self-adjoint

and gives the Fronsdal Lagrangian: G2 =
〈〈

ϕ(s)
∣

∣G(s)
2

〉〉

. For the higher-derivative (n ≥ 2)

cases, one can also consider the Einstein-like tensors G(s)
2n by appropriately modifying the

traces of the Ricci-like tensors F (s)
2n as

G(s)
2n = I2n F

(s)
2n , (2.20)

where I2n is an operator of form
∑

k ak (u
2)k (∂2u)

k . One can determine I2n either by

requiring the gauge invariance of the action or the self-adjointness of G(s)
2n . The gauge
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invariance requires that the divergence of G(s)
2n gives the Bianchi-like identities (2.17), and

this gives the condition

∂u · ∂x I2n = Ĩ2n

(

∂u · ∂x − 1
2n u · ∂x ∂ 2

u

)

(2.21)

on the operator I2n , where Ĩ2n is an operator of the same type as I2n . The above condition

fixes uniquely the operator as

I2n =

[s/2]
∑

r=0

1

r! [n]r
(−1

4)
r (u2)r (∂ 2

u )
r , (2.22)

where

[a]r := a(a− 1) · · · (a− r + 1) (2.23)

are descending Pochhammer symbols. As one can see from the pole arising when r = n+1 ,

the (n+ 1)-th traceless condition (2.18) is indispensable for the Einstein-like actions

G2n[ϕ
(s)] =

〈〈

ϕ(s)
∣

∣G(s)
2n

〉〉

. (2.24)

To recapitulate, these actions are compatible with the gauge fields subject to the (n+ 1)-

th traceless constraint (2.18), and they are invariant under the gauge transformations

generated by the n-th traceless gauge parameters (2.13).

2.3 Maxwell-like actions

Coming back to the construction (2.10), instead of taking only traces one can also take a

divergence, obtaining4

L(s)
2n (x, u) := ∂v · ∂x (∂ 2

v )
n−1 Γ(s,2n−1)(x;u, v) , (2.27)

then it transforms under the gauge variation as

δ L(s)
2n (x, u) = (u · ∂x)2n ∂u · ∂x (∂ 2

u )
n−1 ε(s−1)(x, u) . (2.28)

For n = 1 , the object L(s)
2 coincides with the spin-s tensor of transverse-invariant theories

[30, 31], defined in terms of Maxwell operator L ,

L(s)
2 (x, u) = Lϕ(s)(x, u) , L := ∂ 2

x − u · ∂x ∂u · ∂x , (2.29)

4 More generally, one may consider

(∂x · ∂v)
m (∂ 2

v )
n Γ(s,2n+m)(x;u, v) , (2.25)

whose gauge symmetry requires the constraints:

(∂x · ∂u)
m (∂2

u)
n
ε
(s−1)(x, u) = 0 . (2.26)

Let us note that when n = 0 , the tensor (2.25) becomes self-adjoint without any constraint on the field so

directly provides the Lagrangian of the theory, analogously to the reducible transverse-invariant theory of

[31] with m = 1 and the curvature squared theory with m = s which is the local counterpart of [34].
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and it is invariant under the gauge transformations generated by transverse parameter. For

general n , the SV-like tensors L(s)
2n ’s are invariant under the gauge transformations with

the parameters subject to

∂u · ∂x (∂ 2
u )

n−1 ε(s−1)(x, u) = 0 . (2.30)

Moreover, as in the case of F (s)
2n , they can be factorized as

L(s)
2n (x, u) = F2n−1 F2n−3 · · · F5 F3 Lϕ(s)(x, u)

=
(

∂2x − 1
2n−1 u · ∂x ∂x · ∂u

)

F2n−2(x, u) . (2.31)

From the second expression, one can see that on the space of n-th traceless fields, such

that

(∂ 2
u )

n ϕ(s)(x, u) = 0 , (2.32)

they satisfy the Bianchi-like identities:

(

∂x · ∂u − 1
2(n+r) u · ∂x ∂2u

)

(∂2u)
r L2n(x, u) = 0 [r = 0, 1, . . . , n− 1] . (2.33)

To comply with the n-th traceless constraint on the field, it is necessary to impose the

same condition on the gauge parameter:

(∂ 2
u )

n ε(s−1)(x, u) = 0 . (2.34)

Finally the action leading to the equation L(s)
2n = 0 can be determined as

M2n[ϕ
(s)] =

〈〈

ϕ(s)
∣

∣M (s)
2n

〉〉

, M (s)
2n = I2n L

(s)
2n , (2.35)

thanks to the Bianchi-like identities (2.33). To recapitulate, these actions are compatible

with gauge fields subject to the n-th traceless constraint (2.32) and are invariant under

the gauge transformations generated by parameters subject to the constraints (2.30) and

(2.34). One may regard these actions M2n as partially gauge fixed versions of the Einstein-

like actions G2n , with gauge fixing (2.18) to (2.32). As mentioned in Introduction, the

equations of motion of these theories are shown to be equivalent to ones involving higher-

spin curvature [32].

3 Weyl-like actions

In the previous section, allowing higher derivatives in the quadratic action we have con-

structed the 2n-derivative Einstein-like and Maxwell-like actions G2n and M2n . Starting

from n = 1 and increasing the number n , there is an enhancement of the gauge symme-

tries due to the weakening of the constraints (2.13) and (2.30 , 2.34) imposed on the gauge

parameters. However, when 2n ≥ s, these constraints are completely removed, so that the

actions do not acquire any additional symmetry in general. In other words, the hierarchy of

higher-derivative Einstein/Maxwell-like actions with constrained gauge symmetries covers

only half of Table 1. It is worth noticing that the (d+ 2s − 4)-derivative Einstein- and
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Maxwell-like actions are exceptions from this point of view. In fact, the trace modifier I2n

in G2n and M2n become the trace projector when 2n = d+ 2s− 4 :

Id+2s−4 u
2 α(s−2) = 0 . (3.1)

Therefore, these actions acquire additional Weyl symmetry and coincide with the conformal

higher-spin action.

On the other hand, the existence of the 2s-derivative higher-spin Weyl action suggests

that there might be another hierarchy of actions with constrained Weyl (and gauge) sym-

metries. As discussed in the Introduction, the spin-two Weyl action can be written as a

square of the Einstein tensor. This gives a crucial hint that Weyl-like actions can be ob-

tained as products of the Einstein-like or Maxwell-like tensors. In the following, we present

two classes of Weyl-like actions: the first one involves 4n derivatives while the other 4n+2

derivatives.

3.1 4n-derivative Weyl-like actions

Four-derivative case

Let us begin with the linearized Weyl gravity action, which admits a factorized expression:

W4[ϕ
(2)] =

〈〈

G(2)
2

∣

∣

(

1− 1
2(d−1) u

2 ∂2u

)

G(2)
2

〉〉

. (3.2)

Generalizing the spin-2 Einstein tensor G(2)
2 to the spin-s one G(s)

2 , we consider the ansatz:

W4[ϕ
(s)] =

〈〈

G(s)
2

∣

∣A2G
(s)
2

〉〉

, A2 = 1 + a u2 ∂2u , (3.3)

for the higher-spin action with Weyl symmetry. The form of the ansatz through G(s)
2

already guarantees the constrained gauge symmetry when implemented by the Fronsdal

constraints (doubly-traceless/traceless constraint on gauge field/parameter). Turning to

the Weyl symmetry, we first notice that its parameter must be traceless,

∂ 2
u α

(s−2)(x, u) = 0 , (3.4)

for compatibility with the doubly-traceless field. An explicit computation then shows that

the Weyl symmetry arises for a special value of a in (3.3),

a = − 1
2(d+2s−5) , (3.5)

which generalizes the spin-2 case – see the coefficient in (3.2). The crucial novelty of the

higher-spin case (3.3) with respect to the linearized Weyl gravity (3.2) is that the Weyl

symmetry is, in fact, constrained with the transverse constraint

∂x · ∂u α(s−2)(x, u) = 0 . (3.6)

Let us remind the reader that an analogous constraint has been considered for the gauge

parameter in the transverse-invariant theories of [30, 31].
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To recapitulate, we have found that a four-derivative Weyl-like action does exist for

Fronsdal fields of general spin with Weyl symmetry parameter subject to differential con-

straint (3.6). One can obtain the same result starting from the Fronsdal constraints but

without assuming the form of the action: the action (3.3) with a (3.5) is the unique four-

derivative action acquiring Weyl symmetry. In Section 4, we show that the spectrum of this

action consists of two massless spin s (relatively ghost) and a massless spin s − 1 modes,

in analogy with the Weyl gravity.

General case

The form of (3.3) is suggestive, so that we can now generalize it to higher derivative cases.

Replacing the two-derivative Einstein tensor G(s)
2 with the 2n-derivative one G(s)

2n , let us

consider the ansatz:

W4n[ϕ
(s)] =

〈〈

G(s)
2n

∣

∣A2nG
(s)
2n

〉〉

, (3.7)

where A2n is the trace modifier to be determined requiring Weyl invariance. As in the

four-derivative case, the constraints imposed on gauge field and parameter follow those of

the Einstein-like action G2n : (n + 1)-th/n-th traceless gauge field/parameter. Moreover,

considering the Weyl symmetry, its parameter is subject to the n-th traceless constraint:

(∂2u)
n α(s−2)(x, u) = 0 , (3.8)

for compatibility with the (n+ 1)-th traceless gauge field.

The question we want to turn to is whether the action (3.7), with an appropriate choice

of A2n, can admit a Weyl symmetry. To answer it, we first compute the Weyl variation of

the action, then get an equation for the Weyl parameter α(s−2) that eliminates the variation.

This equation defines a constraint for α(s−2) and depends on the form of the operator A2n .

Hence, the point is whether some operator A2n can lead to a reasonable constraint on the

Weyl parameter α(s−2) .

Computing the variation of (3.7) under the α(s−2) transformation, using (2.20), gives

δα W4n[ϕ
(s)] = 2

〈〈

G(s)
2n

∣

∣ C2n δαF
(s)
2n

〉〉

, (3.9)

where C2n is given by

C2n := A2n I2n =

n
∑

k=0

ck (u
2)k (∂2u)

k . (3.10)

Since I2n is fixed and invertible (for 2n 6= d+ 2s − 4), determining C2n is equivalent to

determining A2n . In the following, we first compute the Weyl variation of the Ricci-like

tensor F (s)
2n , and then simplify the expression for C2n δα F

(s)
2n :

• For the computation of δα F
(s)
2n , we make use of the identities

F2r u
2 = u2F2r +

d+2u·∂u−2−4r
r(2r−1) (u · ∂x)2 , (3.11)

F2r (u · ∂x)k = (2r−k)(2r−k−1)
2r(2r−1) (u · ∂x)k F2r−k , (3.12)
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together with the Bianchi-like identities (2.17). Employing these, respectively yields

the Weyl variation of the Ricci-like tensors,

δαF
(s)
2n = F2n · · · F2 u

2 α(s−2)

=
[

− 1
2n−1 (u · ∂x)2

{

2(n− τ) + 1
2(n−1) u

2 ∂2u

}

+ u2 ∂2x

]

F (s−2)

2(n−1)(α) , (3.13)

where τ = (d+ 2s− 4)/2 and

F (s−2)

2(n−1)(α) := F2(n−1) · · · F2 α
(s−2). (3.14)

• Next, we express C2n δα F
(s)
2n in the form of a normal ordered operator acting on

F (s−2)

2(n−1)(α) , using again the Bianchi-like identities (2.17) together with the identity:

(∂ 2
u )

n(u2)m =

min{n,m}
∑

k=0

2k k!

(

n

k

)(

m

k

)

[d+ 2u · ∂u + 2 (n −m+ k − 1)]!!

[d+ 2u · ∂u + 2 (n −m− 1)]!!
×

× (u2)m−k (∂2u)
n−k , (3.15)

which can be proved by induction. One then finds:

C2n δαF
(s)
2n =

n
∑

k=0

n

(2n − 1)(n− k + 1)
×

× (u2)k
[

c♯k ∂
2
x − c♭k (u · ∂x)2 ∂2u

]

(∂2u)
k−1 F (s−2)

2(n−1)(α) , (3.16)

where the c♯k and c♭k are coefficients given in terms of the ck’s

c♯k = (2n − 2k + 1) ck−1 + 4 k (n − k + 1) (2τ − 2k + 1) ck ,

c♭k = 1
n−k [ck−1 + 4 (n − k + 1) (n + k − τ) ck] . (3.17)

The variation (3.16) contains two types of terms: the first type (with coefficients c♯k) does

not involve any overall gradient operators, while the second (with coefficients c♭k) does

involve an overall double gradient operator. Since this Weyl variation is to be contracted

with the Einstein-like tensor G(s)
2n , there is a chance that the terms of the second type vanish

due to the divergence-free nature of G(s)
2n (or equivalently due to the Bianchi-like identities).

On the other hand, the terms of the first type have no chance of vanishing by themselves,

and therefore, we require the c♯k’s to vanish, which gives the following recurrence relation

on the coefficients ck’s:

c♯k = 0 ⇒ (2n− 2k + 1) ck−1 + 4 k (n− k + 1) (2τ − 2k + 1) ck = 0 . (3.18)

This equation (with the choice c0 = 1) uniquely determines the trace modifier C2n , and

consequently A2n .

After fixing c♯k = 0 , the Weyl variation is given by the c♭k terms with an overall double

gradient. One can integrate by parts one of the gradient operators and get a divergence of

the Einstein-like tensor, ∂u · ∂xG(s)
2n , which vanishes only when it is contracted with a n-th

– 11 –



traceless tensor. Hence, Weyl invariance imposes the condition that the n-th trace of the

left-over part (after integrating by part one gradient) be zero:

(∂2u)
n u · ∂x

[

n
∑

k=0

c♭k
n− k + 1

(u2)k (∂2u)
k

]

F (s−2)

2(n−1)(α) = 0 . (3.19)

Due to the n-th traceless constraint on α(s−2) , the above condition reduces to the differential

constraint

∂u · ∂x (∂2u)n−1 F2(n−1) · · · F2 α
(s−2) = 0 . (3.20)

For the four-derivative (n = 1) case, this constraint reduces to the transversality condition

(3.6), while for the other values of n it gives a rather unusual type of constraint containing

Fronsdal-like operators. In fact, for the correct analysis of the constraint, one should take

into account the gauge-for-gauge symmetry:

δ ε(s−1)(x, u) = u2 β(s−3)(x, u) , δ α(s−2)(x, u) = −u · ∂x β(s−3)(x, u) , (3.21)

possessed by the gauge plus Weyl transformations (2.2). Here β(s−3) is the gauge-for-

gauge parameter and satisfies the (n− 1)-th traceless constraint: (∂ 2
u )

n−1β(s−3) = 0 . The

importance of the gauge-for-gauge transformation (3.21) is that using it one can always

make the Weyl parameter α(s−2) traceless:

∂ 2
u α

(s−2)(x, u) = 0 . (3.22)

In other words, the trace part of Weyl transformation can always be expressed as a gauge

transformation. Let us notice also that eq. (3.20) is invariant under the transformation

(3.21) for α(s−2) . Taking into account the condition (3.22), the unusual constraint (3.20)

reduces to the requirement of vanishing multiple divergence:

(∂x · ∂u)2n−1 α(s−2)(x, u) = 0 . (3.23)

3.2 (4n+ 2)-derivative Weyl-like actions

Six-derivative case

Let us begin with the six-derivative spin-3 Weyl action (see Appendix A). Differently from

linearized Weyl gravity, it is not given as an Einstein tensor squared but admits another

type of factorization:

W6[ϕ
(3)] =

〈〈

F (3)
2

∣

∣

[

∂2x − d−2
6(d+1) u · ∂x ∂x · ∂u − d+4

12(d+1) u
2 ∂ 2

x ∂
2
u

]

F (3)
2

〉〉

. (3.24)

Generalizing the spin-3 Ricci tensor F (3)
2 to the spin-s one F (s)

2 , we consider for the Weyl

invariant action the ansatz

W6[ϕ
(s)] =

〈〈

F (s)
2

∣

∣

[

∂2x + a u · ∂x ∂x · ∂u + b u2 ∂ 2
x ∂

2
u

]

F (s)
2

〉〉

, (3.25)

where ϕ(s) is doubly traceless. Note that this ansatz is the most general one satisfying i)

manifest self-adjoint-ness and ii) factorization in terms of two F (s)
2 ’s. More precisely, there
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can be other two-derivative operators inside of the square bracket in (3.25), but they can

be all replaced with the actual ones by the virtue of Bianchi-like identities.

The traceless gauge symmetry of (3.25) is ensured by the presence of the Fronsdal

tensor F (s)
2 . On the other hand, as one can check by explicit computations, the Weyl

symmetry arises only for

a = − d+2s−8
6(d+2s−5) , b = − d+2s−2

12(d+2s−5) , (3.26)

with a parameter subject to the traceless and doubly transverse constraints:

∂ 2
u α

(s−2)(x, u) = 0 , (∂x · ∂u)2 α(s−2)(x, u) = 0 . (3.27)

Notice that the above constraints coincide with the formal 6-derivative interpolation of the

previously found 4n-derivative constraints (3.22 , 3.23), obtained for n = 3
2 .

Turning back to the expression (3.25), one may wonder whether it can be recast into

a simpler form as in the four-derivative case. Given that it involves six-derivatives, the

action cannot be written as a square of Einstein-like or Maxwell-like tensors, but it can, in

fact, be expressed as a product between Einstein and four-derivative Maxwell-like tensors

as

W6[ϕ
(s)] =

〈〈

G(s)
2

∣

∣

(

1− 1
2(d+2s−5) u

2 ∂ 2
u

)

M (s)
4

〉〉

. (3.28)

Let us notice that the trace modifier lying between the Einstein and Maxwell-like tensors

coincides with that of the four-derivative action – see (3.5). Moreover, the expression (3.28)

shows clearly that the action actually admits a larger gauge symmetry: that of the four-

derivative Maxwell-like action M4 (2.30 , 2.34) rather than the Fronsdal one with traceless

parameter.

General case

The (4n+ 2)-derivative Weyl-like action can be obtained generalizing the six-derivative

one (3.28) to

W4n+2[ϕ
(s)] =

〈〈

G(s)
2n

∣

∣A2nM
(s)
2n+2

〉〉

, (3.29)

where the gauge field is subject to the (n+ 1)-th traceless constraint. The kinetic oper-

ator in the above action is self-adjoint: first, the Maxwell-like tensor can be written as

M (s)
2n+2 = K2G

(s)
2n with a two-derivative operator K2 , then A2n K2 can be recast into a man-

ifestly self-adjoint form using the Bianchi-like identities (2.17). From the self-adjointness,

one can see that the gauge symmetry of (3.29) is that of the (2n+2)-derivative Maxwell-like

action M2n+2 . Moreover, the Weyl variation of (3.29) reads simply

δα W4n+2[ϕ
(s)] = 2

〈〈

δαG
(s)
2n

∣

∣A2nM
(s)
2n+2

〉〉

, (3.30)

so that the analysis goes along the same lines as in the 4n-derivative case: requiring the

absence of c♯k terms in the Weyl variation (3.16), the operator A2n is completely determined

by (3.18). The remained c♭k terms are proportional to double gradients, so that integrating

by parts one gradient one gets a divergence of Maxwell-like tensor, ∂u · ∂xM (s)
2n+2 . The

latter vanishes (differently from the 4n-derivative case where one gets ∂u · ∂xG(s)
2n ) when it
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is contracted with a tensor whose divergence of the n-th trace vanishes – see (2.30), so that

the constraint on the Weyl parameter finally reads

(∂u · ∂x)2 (∂2u)n−1 F2(n−1) · · · F2 α
(s−2) = 0 . (3.31)

After using the gauge-for-gauge freedom to reach the traceless condition (3.22), one gets

the multiple divergence constraint

(∂x · ∂u)2n α(s−2)(x, u) = 0 . (3.32)

The Skvortsov-Vasiliev action [30] is a member of this hierarchy with n = 0.

3.3 Emergence of Francia’s mass term

In linearized Weyl gravity (or more generally in the four-derivative Weyl-like actions),

the trace modifier appearing between two Einstein tensors turns out to coincide with the

inverse of the Fierz-Pauli mass term:

(A2)
−1 = IFP = 1− 1

2 u
2 ∂ 2

u . (3.33)

Therefore, one may expect that the trace modifiers A2n’s appearing in the Weyl-like actions

be also inverses of some mass operators. In order to check this idea, one may explicitly

compute the inverse of A2n :

(A2n)
−1 = I2n (C2n)

−1 . (3.34)

However, there is a shortcut. Instead of directly computing (A2n)
−1 , we first conjecture

that they all coincide with the higher-spin analogue of Fierz-Pauli mass term introduced

by Francia in [33],

IF = 1− 1
2 u

2 ∂2u − 1
8 (u

2)2 (∂2u)
2 − · · · − 1

2k k! (2k−3)!!
(u2)k (∂2u)

k − · · · , (3.35)

which is determined by the property:

∂x · ∂u IF = ĨF

(

∂x · ∂u − u · ∂x ∂2u
)

. (3.36)

Here ĨF is some operator of the same type as IF . Rewriting the relation to the mass

operator in a different way

IF = I2n (C2n)
−1 ⇔ IF C2n = I2n , (3.37)

the property (3.36) of IF, together with the property (2.21)5 of I2n, induces a condition on

the operator C2n of (3.10) :

(

∂x · ∂u − u · ∂x ∂2u
)

C2n = C̃2n

(

∂x · ∂u − 1
2n u · ∂x ∂2u

)

, (3.38)

5 From the conditions (2.21) and (3.36), one can see that the Francia mass operator actually belongs to

the class of the trace modifiers In as IF = I1 .
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where C̃2n is again some operator of the same type as C2n . This condition determines

completely the operator C2n with c0 = 1 . To see how this works, let us first consider the

relations

∂x · ∂u C2n =
∞
∑

k=0

(u2)k−1 (∂2u)
k−1

{

2 k ck u · ∂x ∂ 2
u +

[

ck−1 + 4 k (k − 1) ck
]

∂x · ∂u
}

,

u · ∂x ∂ 2
u C2n =

∞
∑

k=0

(u2)k−1 (∂ 2
u )

k−1
[

ck−1 + 2 k (d+ 2u · ∂u − 2k) ck
]

×

×
[

u · ∂x ∂ 2
u − 2(k − 1) ∂x · ∂u

]

, (3.39)

where the ck’s are the coefficients appearing in the expansion of C2n (3.10). The left-hand

side of the difference between two equations in (3.39) coincides with (3.38). Focusing on

the right-hand side, the terms proportional to ∂x · ∂u and u · ∂x ∂ 2
u give respectively

∂x · ∂u ⇒ c̃k−1 = (2k − 1) ck−1 − 4 k (k − 1) (d + 2s− 2k − 3) ck ,

u · ∂x ∂ 2
u ⇒ 1

2n c̃k−1 = ck−1 + 2 k (d+ 2s− 2k − 3) ck , (3.40)

where c̃k’s are the coefficients of C̃2n . Solving for the c̃k’s from the above equations, one

ends up with a recurrence relation between ck−1 and ck , which exactly coincides with

(3.18). This proves the conjecture (A2n)
−1 = IF . Let us comment here that the tensors

S(s)
2n := I −1

F G(s)
2n can be regarded as generalizations of Schouten tensor in the sense that they

transform under the Weyl transformation as double gradient: δα S
(s)
2n = (u · ∂x)2 ( · · · ) .

4 Discussion

In this paper, we have constructed higher-derivative actions for higher spins which are gauge

and Weyl invariant with some constraints. For a given spin s , we have first considered

Einstein-like and Maxwell-like actions involving from 2 to s derivatives. These actions

proved essential for the construction of Weyl-like actions. The latter are associated with

(n + 1)-th traceless gauge fields, such that (∂2u)
n+1 ϕ(s) = 0 , and consist of two classes:

• The first is the 4n-derivative one given by

W4n[ϕ
(s)] =

〈〈

G(s)
2n

∣

∣I −1
F G(s)

2n

〉〉

=
〈〈

ϕ(s)
∣

∣F†
2 · · · F†

2n I2n I −1
F I2n F2n · · · F2 ϕ

(s)
〉〉

, (4.1)

where Fn , I2n and IF are given in (2.15) , (2.22) and (3.35). This action is invariant

under the gauge and Weyl transformations (2.2) with

(∂ 2
u )

n ε(s−1) = 0 , ∂ 2
u α

(s−2) = 0 = (∂u · ∂x)2n−1 α(s−2) . (4.2)

• The second is the (4n + 2)-derivative one given by

W4n+2[ϕ
(s)] =

〈〈

G(s)
2n

∣

∣ I −1
F M (s)

2n+2

〉〉

=
〈〈

ϕ(s)
∣

∣F†
2 · · · F†

2n I2n I −1
F I2n+2 F2n+1 · · · F1 Lϕ(s)

〉〉

, (4.3)
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which is invariant under the gauge and Weyl transformations (2.2) with

(∂ 2
u )

n+1 ε(s−1) = 0 = ∂x · ∂u (∂ 2
u )

n ε(s−1) , ∂ 2
u α

(s−2) = 0 = (∂u · ∂x)2n α(s−2) . (4.4)

Notice that for s = 2n or 2n + 1 , all constraints are dropped, and the action W2s[ϕ
(s)]

coincides with the higher-spin Weyl action.

The Weyl-like actions W2n , being higher-derivative, contain ghost modes in the spec-

trum and, as a result, lead to non-unitary representations of the Poincaré algebra. Although

non-unitary, however, these may still exhibit interesting mathematical properties. Let us

recall that the spin-two Weyl action propagates, around a flat background, two (relatively

ghost) helicity two modes and a helicity one mode [35]. Interestingly, analyzed around an

(A)dS background, the above spectrum groups into two packages: a massless spin two and

a partially-massless spin two [15, 21]. Diagrammatically, this can be expressed as

W4[ϕ
(2)] ⇒

+

2

−
2

1

(4.5)

where each number indicates the corresponding helicity mode while the enclosure means

that the helicities therein become an irreducible set in (A)dS as pertains to a partially-

massless representation [36]. Moreover, the analysis of the spectrum for spin-s Weyl ac-

tion around a flat background shows that it propagates ℓ copies of helicity-ℓ modes with

ℓ = s, s− 1, . . . , 1 [23]. From the analogy of the spin two case, it is natural to expect that,

when deformed to an (A)dS background, all these spectra group into partially-massless

spin-s modes with alternating signs of their kinetic operators. As in the spin two case, this

can be summarized via the following diagram

W2s[ϕ
(s)] ⇒

+

s

−
s

s−1
. . .

±
s

s−1
...

2

∓
s

s−1
...

2

1

(4.6)

where the r-th block corresponds to partially-massless spin s of the r-th point (or, equiv-

alently, of depth r). While each block is irreducible under the (A)dS isometry group, the

entire spectrum provides a non-decomposable representation of the conformal group [23].

This gives a hint for a novel class of non-unitary but interesting representations of the

conformal group, covering all short representations of the isometry group.

One may expect that there exist even a (2r + 2)-derivative action propagating partially-

massless fields from the zero-th (massless) point to the r-th point.

+

s

−
s

s−1 . . .

±
s

s−1
...

s−r

(4.7)
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If this action exists, the (A)dS deformation of the Weyl-like action W2r+2 can be a good

candidate. In fact, it is the case for r = 1 : the four-derivative Weyl-like action around

(A)dS can be obtained as

W
Λ

4 [ϕ(s)] =
〈〈

GΛ(s)
2

∣

∣I −1
F GΛ(s)

2

〉〉

− ηΛ
〈〈

ϕ(s)
∣

∣GΛ(s)
2

〉〉

[

η = 2(d+2s−6)
(d−1)(d−2)

]

, (4.8)

adding a Fronsdal action to the four-derivative part. Here, GΛ(s)
2 = I2 FΛ

2 ϕ
(s) is the spin-

s cosmological Einstein tensor, and the field ϕ(s)(x, u) is contracted with flat auxiliary

variables uα’s and the AdS vielbein ē µ
α as

ϕ(x, u) = 1
s! u

α1 · · · uαs ē µ1
α1

(x) · · · ē µs
αs

(x) ϕµ1···µs(x) . (4.9)

The Fronsdal operator FΛ
2 in (A)dS is given, in terms of the covariant derivative

Dα = ē µ
α ∇µ + 1

2 ω̄
γ

αβ uβ ∂uγ , (4.10)

by

FΛ
2 = D2−u·D∂u ·D+ 1

2 (u·D)2 ∂2u+
2Λ

(d−1)(d−2)

[

u2 ∂ 2
u + s2 + (d− 6) s − 2(d− 3)

]

. (4.11)

Similarly to the spin two case, this action can be recast in the form

W
Λ

4 = ηΛ
[

−
〈〈

ϕ(s)
∣

∣GΛ
2 (ϕ

(s))
〉〉

+
〈〈

χ(s)
∣

∣GΛ
2 (χ

(s))− ηΛ IF χ
(s)

〉〉]

, (4.12)

where the first term corresponds to the spin-s Fronsdal action while the second describes

the partially-massless spin s with the corresponding gauge symmetry:6

δα χ
(s) =

[

(u ·D)2 + Λu2
]

α(s−2) , ∂u ·Dα(s−2) = 0 = ∂ 2
u α

(s−2) . (4.13)

The analysis of the general case becomes involved, since one should deal with derivatives

of arbitrary order. Moreover, the Lagrangian formulation for the partially-massless field of

general spin at a general point is also involved. Hence, it would be important to develop a

proper formulation of Weyl(-like) actions in (A)dS, linking it with partially-massless fields.

See [23, 38] for works in that direction.

The problem of non-unitarity in these theories can be in principle handled as in the

gravity case:

• Since the behavior of the massless fields near the AdS boundary is subdominant

compared to partially-massless ones, one can select only the massless spin s making

use of suitable boundary conditions as in the conformal gravity case.

• In three dimensions, ghosts do not propagate assuming the spectrum (4.7): Weyl

action W2s propagates a single scalar mode, while the other members do not have any

propagating content. Hence, it would be interesting to consider these actions in the

context of AdS3/CFT2 correspondence.

6 The partially-massless spin s of the first point admits a gauge description via doubly-traceless tensors

χ(s) and χ(s−1) , with corresponding traceless gauge parameters α(s−1) and α(s−2) . After gauge fixing the

Stueckelberg field χ(s−1) using α(s−1) and ∂u ·Dα(s−2) , one ends up with the system in (4.12) with the

residual gauge symmetry (4.13). For more details, see e.g. [36–38].

– 17 –



To conclude, let us discuss briefly the generalization of our actions to interacting ones.

Despite many efforts, no deformation of AdS Fronsdal action to fully interacting one is

available, while Vasiliev’s equations [39, 40] describe propagation of an infinite tower of

massless interacting higher spins. On the other hand, the linear conformal higher-spin

action (d = 4Weyl action) can be deformed into a fully non-linear action7 without auxiliary

fields [43, 44] but with the entire tower of higher-spin fields. From the conformal gravity,

one can obtain the Einstein action at the level of interacting theory [14, 15].8 Hopefully,

a similar mechanism can also work for the higher-spin case, providing new insights for a

more conventional action principle9 leading to Vasiliev’s equations.
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A Spin three Weyl action

In this section, we construct spin three Weyl action in a form which is suitable for the

generalization to six-derivative Weyl-like action for any spin.

The variation of the spin three Fronsdal tensor with respect to gauge transformation

δϕµνρ = 3 ∂(µενρ) gives

δFµνρ = 3 ∂µ∂ν∂ρ ε
σ

σ , (A.1)

and therefore the following tensor (antisymmetric with respect to first two indices and

symmetric with respect to second two):

Cµν,ρσ = ∂µFνρσ − ∂νFµρσ (A.2)

is gauge invariant. The spin three Weyl Lagrangian can be conveniently expressed in terms

of Cµν,ρσ as

L = −1
2 Cµν,ρσ C

µν,ρσ + d+4
8(d+1) C

′

µν C
′µν [C

′

µν = C ρ
µν,ρ ] . (A.3)

Up to integration by parts, the above Lagrangian can be recast into this form

L = Fµνρ �Fµνρ − d+4
2(d+1) F

′

µ�F
′µ − d−2

2(d+1) F
µνρ ∂(µ∂

σFνρ)σ [F
′

µ = F ν
µν ] , (A.4)

which has been used in (3.24) for generalization to any spin.

7 The conformal higher-spin action, analogously to the gravity case, might make use of non-linear Weyl

tensor – (appropriately defined) traceless part of non-linear higher-spin curvature. See [41] for an attempt

on the non-linear deformation of the curvature. See also [42] for the cubic interaction in the frame-like

approach.
8 On the other hand, it has been shown that extracting the other component of conformal gravity –

partially-massless spin two – faces a consistency problem associated with the interaction structure [21].
9 See also the recent proposal [45] and references therein.
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B Spectrum of the four-derivative gauge invariant action

In Section 4, we analyzed the spectrum of the four-derivative Weyl-like action. To complete

the study of the spectrum of four-derivative actions considered in this paper, we derive here

the spectrum of the four-derivative Einstein-like action. Since the Maxwell-like actions can

be obtained by partially gauge fixing the Einstein-like ones, the spectrum of the two should

coincide (as in the case of SV and Fronsdal actions).

The four-derivative Einstein-like action G4 gives the equation of motion:

0 = F (s)
4 := F4 F2 ϕ

(s) =
[

(∂ 2
x )

2 − u · ∂xD
]

ϕ(s) , (B.1)

where

D = ∂ 2
x ∂x·∂u− 1

6 u ·∂x
[

∂ 2
x ∂

2
u + 2 (∂x · ∂u)2

]

+ 1
6 (u ·∂x)

2 ∂x·∂u ∂ 2
u − 1

24 (u ·∂x)
3 (∂ 2

u )
2 . (B.2)

The three-derivative operator D satisfies the following properties:

(∂ 2
u )

2 D ϕ(s) = 0 , δε
(

Dϕ(s)
)

= (∂ 2
x )

2 ε(s−1) , (B.3)

analogously to the de Donder operator in Fronsdal’s theory. In particular, the second

property implies that the gauge condition

Dϕ(s) = 0 , (B.4)

is an allowed one. This gauge condition gives for the gauge field and the parameter (asso-

ciated with the residual gauge symmetry) the equations

(∂ 2
x )

2 ϕ(s) = 0 , (∂ 2
x )

2 ε(s−1) = 0 , (B.5)

which are subject to the trace constraints

(∂ 2
u )

3 ϕ(s) = 0 , (∂ 2
u )

2 ε(s−1) = 0 . (B.6)

Now we need first to solve these equations and fix the residual gauge symmetries. We can

then plug back the solutions into (B.4) to obtain the on-shell constraints. Solving the latter

will yield the spectrum of the theory.

The solution of the gauge fixed equation (B.5) is

ϕ(s)(x, u) =

∫

ddp δ(p2)
[

ϕ̃(s)
1 (p, u) + n · x ϕ̃(s)

2 (p, u)
]

eip·x , (B.7)

where nµ is a time-like vector which we choose nµ = δµ0 . The Fourier mode ϕ̃(s)
1 corresponds

to the regular solutions, while ϕ̃(s)
2 to the ghost ones. After a suitable Lorentz transforma-

tion, the momentum can be tuned to (p+, p−, pi) = (k+, 0, 0) in light-cone coordinates:

u± = 1√
2
(u0 ± ud−1) , i = 1, . . . , d− 2 . (B.8)

After solving the same equation for the gauge parameter, we further gauge fix on-shell to

ϕ̃(s)
1,2(k;u

+, u−, ui) = f (s)
1,2(k;u

−, ui) + u+ (u2i )
2 ϕ̃(s−5)

1,2 (k;u+, u−, ui) . (B.9)
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Note that we cannot gauge fix to zero all the components proportional to u+ due to the

trace constraints (B.6). Plugging the solution (B.7) into the gauge condition (B.4), yields

the two equations:

k+ u
+
[

∂2u− − 1
2u

+∂u−∂2u +
1
8 (u

+)2(∂2u)
2
]

ϕ̃(s)
1 +

+
[

∂u− − 1
6 u

+∂2u + 3u+(∂2u − 1
2 u

+∂u−∂2u) +
3
8 (u

+)3(∂2u)
2
]

ϕ̃(s)
2 = 0 , (B.10)

[

∂2u− − 1
2u

+ ∂u−∂2u +
1
8 (u

+)3(∂2u)
2
]

ϕ̃(s)
2 = 0 . (B.11)

Using (B.9) and ∂2u = ∂u+∂u− + ∂2ui , then give

ϕ̃(s−5)
1,2 = 0 , (∂ 2

ui)
2f (s)

1,2 = 0 , ∂u−f (s)
2 = 0 ,

∂u− ∂ 2
ui f

(s)
1 = 0 , ∂ 2

u−f
(s)
1 = 1

12 k+
∂ 2
ui f

(s)
2 , ∂ 3

u−f
(s)
1 = 0 . (B.12)

Finally, one can identify the so(d− 2) polarization tensors of propagating modes:

f (s)
1 (k;u−, ui) = θ(s)

1 (k;ui) + (ui)2 θ(s−2)
1 (k;ui) + u− θ(s−1)

1 (k;ui) + (u−)2 d+2s−6
12 k+

θ(s−2)
2 (k;ui) ,

f (s)
2 (k;u−, ui) = θ(s)

2 (k;ui) + (ui)2 θ(s−2)
2 (k;ui) , (B.13)

which correspond to spin s, s − 1, s − 2 massless regular modes and spin s, s − 2 massless

ghosts.
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