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Abstract

Using Noether’s procedure we present a complete solution for the trilinear inter-
actions of arbitrary spins s1, s2, s3 in a flat background, and discuss the possibility
to enlarge this construction to higher order interactions in the gauge field. Some
classification theorems of the cubic (self)interaction with different numbers of
derivatives and depending on relations between the spins are presented. Finally
the expansion of a general spin s gauge transformation into powers of the field
and the related closure of the gauge algebra in the general case are discussed.
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1 Introduction and notations

The motivation for the investigation of higher spin gauge field (HSF) interac-
tions can be summarized as the following list of the essential three points:

1. The construction of interacting higher spin theories has been considered
as an interesting task for itself and was always in the center of attention
during the last thirty years [1]-[17].

2. Particular attention arose during the last decade after discovering the holo-
graphic duality between the O(N) sigma model in d = 3 space and HSF
gauge theory living in the space AdS4 [18]. This case of holography is espe-
cially important by the existence of two conformal points of the boundary
theory and the possibility to describe them by the same HSF gauge theory
with the help of spontaneous breaking of higher spin gauge symmetry and
mass generation by a corresponding Higgs mechanism [21]-[23].

3. Another still open point is verifying the holographic correspondence on the
level of loop diagrams in the general case, and the possibility to use this
correspondence for real constructions of unknown local interacting theories
on the bulk from more or less well known conformal field theories on the
boundary.

These complicated physical tasks necessitate quantum loop calculations for the
HSF field theory [24], [25],[26] and therefore information about the manifest, off-
shell and Lagrangian formulation of possible interactions for HSF. On the other
hand one loop calculations are mainly interesting in the framework of their ultra-
violet behaviour, when the difference between anAdS and a flat space background
can be neglected at least in the leading order. These motivations caused us during
last years to spend some effort on the construction of possible couplings which we
started in series of articles that involved couplings among different higher spin
fields [2, 3, 4, 19] . In our previous article [1] we directly construct a complete cu-
bic selfinteraction for the case of spin s = 4 in a flat background, and discuss the
cubic selfinteraction for general spin s with s derivatives in the same background.
The leading term of the latter interaction together with the gauge transformation
of first order in the field was presented and investigated.

Here we turn to the trilinear interaction of Fronsdal’s [20] general spin s1, s2, s3
gauge fields in a flat background (Section 2) and present the full solution of
the corresponding Noether’s equation (Section 3). Then we discuss a general
classification theorem for (self)interactions based on our construction and the
relation with other known couplings involving (Weyl) tensors integrated into the
interaction Lagrangians (Section 4). The last section 5 is devoted to a discussion
of gauge transformations that are nonlinear in the gauge field, as they were
invented in the classical paper [7], and the possibility to form Lie algebras of
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gauge transformations for even spin abelian gauge fields and in this context the
construction of the fourth and higher order selfinteractions.

To handle these sections we should introduce here briefly our standard nota-
tions coming from our previous papers about HSF [1, 2, 3, 4, 19]. As usual we

utilize instead of symmetric tensors such as h
(s)
µ1µ2...µs(z) the homogeneous poly-

nomials in the vector aµ of degree s at the base point z

h(s)(z; a) =
∑

µi

(

s
∏

i=1

aµi)h(s)
µ1µ2...µs

(z). (1.1)

Then we can write the symmetrized gradient, trace and divergence ∗

Grad : h(s)(z; a)⇒ Gradh(s+1)(z; a) = (a∇)h(s)(z; a), (1.2)

Tr : h(s)(z; a)⇒ Trh(s−2)(z; a) =
1

s(s− 1)
✷ah

(s)(z; a), (1.3)

Div : h(s)(z; a)⇒ Divh(s−1)(z; a) =
1

s
(∇∂a)h

(s)(z; a). (1.4)

Moreover we introduce the notation ∗a, ∗b, . . . for a contraction in the symmetric
spaces of indices a or b

∗a =
1

(s!)2

s
∏

i=1

←−
∂ µi

a

−→
∂ a

µi
. (1.5)

Then we see that the operators (a∂b), a
2, b2 are dual (or adjoint) to (b∂a),✷a,✷b

with respect to the ”star” product of tensors with two sets of symmetrized indices
(1.5)

1

n
(a∂b)f

(m−1,n)(a, b) ∗a,b g
(m,n−1)(a, b) = f (m−1,n)(a, b) ∗a,b

1

m
(b∂a)g

(m,n−1)(a, b), (1.6)

a2f (m−2,n)(a, b) ∗a,b g
(m,n)(a, b) = f (m−2,n)(a, b) ∗a,b

1

m(m− 1)
✷ag

(m,n)(a, b). (1.7)

In the same fashion gradients and divergences are dual with respect to the full
scalar product in the space (z, a, b)

(a∇)f (m−1,n)(z; a, b) ∗a,b g
(m,n)(z; a, b) = −f (m−1,n)(z; a, b) ∗a,b

1

m
(∇∂a)g

(m,n)(z; a, b).

(1.8)

Analogous equations can be formulated for the operators b2 or b∇.

∗To distinguish easily between ”a” and ”z” spaces we introduce the notation ∇µ for space-
time derivatives ∂

∂zµ .
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Here we will only present Fronsdal’s Lagrangian in terms of these conventions†:

L0(h
(s)(a)) = −

1

2
h(s)(a) ∗a F

(s)(a) +
1

8s(s− 1)
✷ah

(s)(a) ∗a ✷aF
(s)(a), (1.9)

where F (s)(z; a) is the Fronsdal tensor

F (s)(z; a) = ✷h(s)(z; a)− s(a∇)D(s−1)(z; a), (1.10)

and D(s−1)(z; a) is the deDonder tensor or traceless divergence of the higher spin
gauge field

D(s−1)(z; a) = Divh(s−1)(z; a)−
s− 1

2
(a∇)Trh(s−2)(z; a), (1.11)

✷aD
(s−1)(z; a) = 0. (1.12)

The initial gauge variation of order zeroth in the spin s field is

δ(0)h
(s)(z; a) = s(a∇)ǫ(s−1)(z; a), (1.13)

with the traceless gauge parameter for the double traceless gauge field

✷aǫ
(s−1)(z; a) = 0, (1.14)

✷
2
ah

(s)(z; a) = 0. (1.15)

Therefore at this point we can see from (1.13) and (1.14) that the de Donder
gauge condition

D(s−1)(z; a) = 0, (1.16)

is a correct generalization of the Lorentz gauge condition in the case of spin s > 2.
Finally we note that in deDonder gauge (1.16) F (s)(z; a) = ✷h(s)(z; a) and the
field h(s) decouples from it’s trace in Fronsdal’s Lagrangian (1.9).

2 Noether’s theorem in leading order: Trino-

mial coefficients

We consider three potentials h(s1)(z1; a), h
(s2)(z2; b), h

(s3)(z3; c) whose spins si are
assumed to be ordered

s1 ≥ s2 ≥ s3. (2.1)

†From now on we will presuppose integration everywhere where it is necessary (we work
with a Lagrangian as with an action) and therefore we will neglect all d dimensional space-time
total derivatives when making a partial integration.
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For the interaction we make the cyclic ansatz

L
(0,0)
I (h(s1)(a), h(s2)(b), h(s3)(c)) =

∑

ni

Cs1,s2,s3
n1,n2,n3

∫

dz1dz2dz3δ(z3 − z1)δ(z2 − z1)

T̂ (Q12, Q23, Q31|n1, n2, n3)h
(s1)(z1; a)h

(s2)(z2; b)h
(s3)(z3; c), (2.2)

where

T̂ (Q12, Q23, Q31|n1, n2, n3) = (∂a∂b)
Q12(∂b∂c)

Q23(∂c∂a)
Q31(∂a∇2)

n1(∂b∇3)
n2(∂c∇1)

n3,

(2.3)

and the notation (0, 0) as a superscript means that it is an ansatz for terms with-
out Divh(si−1) = (∇i∂ai)h

(si)(ai) and Trh(si−2) = 1
si(si−1)

✷aih
(si)(ai). Denoting

the number of derivatives by ∆ we have

n1 + n2 + n3 = ∆. (2.4)

We shall later determine and then use the minimal possible ∆. As balance equa-
tions we have

n1 +Q12 +Q31 = s1,

n2 +Q23 +Q12 = s2,

n3 +Q31 +Q23 = s3. (2.5)

These equations are solved by

Q12 = n3 − ν3,

Q23 = n1 − ν1,

Q31 = n2 − ν2. (2.6)

Since the l.h.s. cannot be negative, we have

ni ≥ νi. (2.7)

The νi are determined to be

νi = 1/2(∆ + si − sj − sk), i, j, k are all different. (2.8)

These νi must also be nonnegative, since otherwise the natural limitation of the
ni to nonnegative values would imply a boundary value problem which has only a
trivial solution (see below). It follows that the minimally possible ∆ is expressed
by Metsaev’s (see [11] equ. (5.11)-(5.13)) formula (using the ordering of the si).

∆min = max [si + sj − sk] = s1 + s2 − s3. (2.9)
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From now on we choose mainly this ∆min for ∆ remembering that our ansatz for
the interaction describes all other cases with more derivatives also. For example

∆ = 6 for s1 = s2 = 4, s3 = 2. (2.10)

This value and the ordering of the si implies for the νi

ν1 = s1 − s3,

ν2 = s2 − s3,

ν3 = 0. (2.11)

From this result and the experience with the cubic selfinteraction for s = 4 we
can guess that the coefficient C in the ansatz is a trinomial ‡

Cs1,s2,s3
n1,n2,n3

= const

(

s3
n1 − s1 + s3, n2 − s2 + s3, n3

)

, (2.12)

which entails
∑

ij

Qij = ∆−
∑

i

νi,

∑

i

νi = 3/2∆− 1/2
∑

i

si, (2.13)

and the expression (2.9) for ∆min.
For the proof of this equation (2.12) we use Noether’s theorem to derive

recursion relations which are then solved. By variation w.r.t. h(si) we obtain
three currents whose divergences must vanish on shell. We need only do the
explicit variation once:

J (3)(z3; c) =
∑

Cs1,s2,s3
n1,n2,n3

∫

dz1dz2δ(z3 − z1)δ(z3 − z2)

(∂a∂b)
Q12(∂bc)

Q23(c∂)Q31(∂a∇2)
n1(∂b∇3)

n2(c∇1)
n3

h(s1)(z1; a)h
(s2)(z2; b), (2.14)

having the divergence

(∂c∇3)J
(3)(z3; c) =

∑

Cs1,s2,s3
n1,n2,n3

{n3(∇1∇3)(∂a∂b)
Q12(∂bc)

Q23(c∂a)
Q31(∂a∇2)

n1(∂b∇3)
n2(c∇1)

n3−1

+Q23(∂a∂b)
Q12(∂bc)

Q23−1(c∂a)
Q31(∂a∇2)

n1(∂b∇3)
n2+1(c∇1)

n3

+Q31(∂a∂b)
Q12(∂bc)

Q23(c∂a)
Q31−1(∂a∇2)

n1(∂a∇3)(∂b∇3)
n2(c∇1)

n3}

h(s1)(z1; a)h
(s2)(z2; b) | z1 = z2 = z3. (2.15)

‡We use the standard definition
(

s

α, β, γ

)

=
s!

α!β!γ!
, α+ β + γ = s.
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This divergence (and the corresponding divergences of the currents J (1,2)) must
vanish on shell.

We shall develop now a recursive algorithm. First we study the terms not
containing any deDonder expression D(si−1), i = 1, 2, 3:

D(si−1) =
1

si
[(∂ai∇i)− 1/2(ai∇i)✷ai ]h

(si)(zi; ai), ai = a, b, c. (2.16)

We use that
(∇1∇3) = 1/2[✷2 − ✷1 −✷3], (2.17)

and

✷ih
(si)(zi; ai) = F (si)(zi; ai) + siD

(si−1), (2.18)

✷iǫ
(si−1)(zi; ai) = δ

(0)
i D(si−1), (2.19)

where F (si)(zi; ai) is Fronsdal’s gauge invariant equation of motion and can be
dropped on shell. So the n3-term of (2.15) does not contribute to the leading order
terms. On the other hand the Q23-term is purely leading order. The Q31-term
contains

(∂a∇3) = −(∂a∇2)− (∂a∇1). (2.20)

Only the first term yields a leading order contribution, the next one is a divergence
term. A possibility to classify the higher order terms is to count the divergence
and the deDonder operators separately, say by numbers m1, m2 respectively.

In the leading order (l. o.) terms we renumber the powers n1 → n1+1 in the
Q23-term and n2 → n2 + 1 in the l.o. Q31 term. We get

[(n1 + 1− ν1)C
s1,s2,s3
n1+1,n2,n3

− (n2 + 1− ν2)C
s1,s2,s3
n1,n2+1,n3

] (2.21)

(∂a∂b)
n3−ν3(∂bc)

n1−ν1(c∂a)
n2−ν2(∂a∇2)

n1+1(∂b∇3)
n2+1(c∇1)

n3 = 0.

It follows that the factor in the square bracket must vanish. Two analogous
relations follow from the two other currents. The solution of these three recursion
relations is

Cs1,s2,s3
n1,n2,n3

= const

( ∑

ni −
∑

νi
n1 − ν1, n2 − ν2, n3 − ν3

)

, (2.22)

which is equivalent to (2.12) for ∆ = ∆min and therefore ν3 = 0, and describes
also all other ∆ > ∆min cases. Comparison with (2.9), (2.13) proves that we can
present the trinomial coefficient also as

Cs1,s2,s3
Q12,Q23,Q31

= const

(

smin

Q12, Q23, Q31

)

. (2.23)

We see that the number of contractions between indices of our three fieldsQ12, Q23, Q31

define our interaction completely.
Finally we want to make a remark concerning the case where two or all three

of these fields are equal. Then we get only two or one current whose divergences
vanish on shell. But in this case we have a symmetry which restores the result
(2.12), (2.21) and shows that this is correct in all cases.
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3 Cubic interactions for arbitrary spins: Com-

plete solution of the Noether’s procedure

To derive the next terms of interaction containing one deDonder expression we
turn to the Lagrangian formulation of the task and solve Noether’s equation

3
∑

i=1

δ
(1)
i L

0
i (h

(si)(a)),+
3

∑

i=1

δ
(0)
i LI(h

(s1)(a), h(s2)(b), h(s3)(c)) = 0. (3.1)

where

δ
(0)
i h(si)(ai) = si(ai∇i)ǫ

si−1(zi; ai) (3.2)

L0
i (h

(si)(a)) = −
1

2
h(si)(ai) ∗ai F

(si)(ai) +
1

8si(si − 1)
✷aih

(si)(ai) ∗ai ✷aiF
(s)(ai)

(3.3)

Shifting δ
(1)
i by a trace term in the same way as in [1] we obtain the following

functional equation:

3
∑

i=1

δ
(0)
i LI(h

(s1)(a), h(s2)(b), h(s3)(c)) = 0 +O(F (si)(ai)). (3.4)

We solve this equation starting from the ansatz (2.2), (2.3) and integrating level
by level in means of its dependence on deDonder tensors and traces of higher spin
gauge fields.

Actually we have to solve the following equation:

C
{si}
{ni}

T̂ (Qij |ni)[(a∇1)ǫ
(s1−1)h(s2)h(s3) + h(s1)(b∇2)ǫ

(s2−1)h(s3) + h(s1)h(s2)(c∇3)ǫ
(s3−1)]

= 0 +O(F (si)(ai), D
(si−1)(ai),✷aih

(si)(ai)). (3.5)

Taking into account that due to (2.5)

T̂ (Qij |ni)(ai∇i)ǫ
(si−1)(ai) = [T̂ (Qij |ni), (ai∇i)]ǫ

(si−1)(ai), (3.6)

we see that all necessary information for the recursion can be found calculating
these commutators

[T̂ (Qij |ni), (a∇1)] = Q31T̂ (Q12, Q23, Q31 − 1|n1, n2, n3 + 1)

−Q12T̂ (Q12 − 1, Q23, Q31|n1, n2 + 1, n3)

+n1T̂ (Q12, Q23, Q31|n1 − 1, n2, n3)(∇1∇2)

−Q12T̂ (Q12 − 1, Q23, Q31|n1, n2, n3)(∂b∇2), (3.7)
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[T̂ (Qij |ni), (b∇2)] = Q12T̂ (Q12 − 1, Q23, Q31|n1 + 1, n2, n3)

−Q23T̂ (Q12, Q23 − 1, Q31|n1, n2, n3 + 1)

+n2T̂ (Q12, Q23, Q31|n1, n2 − 1, n3)(∇2∇3)

−Q23T̂ (Q12, Q23 − 1, Q31|n1, n2, n3)(∂c∇3), (3.8)

[T̂ (Qij|ni), (c∇3)] = Q23T̂ (Q12, Q23 − 1, Q31|n1, n2 + 1, n3)

−Q31T̂ (Q12, Q23, Q31 − 1|n1 + 1, n2, n3)

+n3T̂ (Q12, Q23, Q31|n1, n2, n3 − 1)(∇3∇1)

−Q31T̂ (Q12, Q23, Q31 − 1|n1, n2, n3)(∂a∇1), (3.9)

where we used relations like (2.18) and (2.20). In these commutators we can use
also the following identities

∇1∇2 =
1

2
(✷3 − ✷2 − ✷1),

∇2∇3 =
1

2
(✷1 − ✷2 − ✷3),

∇3∇1 =
1

2
(✷2 − ✷3 − ✷1). (3.10)

Now we see immediately from the first two lines of (3.7)-(3.9) that these contribute
to (3.4) as leading order terms and yield the same equations for the Csi

ni
coefficients

as (2.21)

(Q31 + 1)Cs1,s2,s3
n1,n2+1,n3

− (Q12 + 1)Cs1,s2,s3
n1,n2,n3+1 = 0, (3.11)

(Q12 + 1)Cs1,s2,s3
n1,n2,n3+1 − (Q23 + 1)Cs1,s2,s3

n1+1,n2,n3
= 0, (3.12)

(Q23 + 1)Cs1,s2,s3
n1+1,n2,n3

− (Q31 + 1)Cs1,s2,s3
n1,n2+1,n3

= 0. (3.13)

with the solution (2.22) or (2.23).
To find the full interaction we follow the same strategy as in the case s = 4 [1]

and introduce the following classification for the higher order interaction terms
in D and h̄ = Trh :

LI =
∑

i,j=0,1,2,3
i+j≤3

L
(i,j)
I (h(s)), (3.14)

where
L

(i,j)
I (h(s)) ∼ ∇s−i(D)i(h̄(s))j(h(s))3−j−i. (3.15)

In this notation the leading term described in the second section is L
(0,0)
I (h(s)).

To integrate Noether’s equation next to the leading term we have to insert
in (3.4) the last two lines of (3.7)-(3.9) and use two important relations (2.18),
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(2.19). Thus we arrive at the following O(D) solution:

L
(1,0)
I =

∑

ni

∫

dzdz1dz2dz3δ(z1 − z)δ(z3 − z)δ(z2 − z)

[

+
s1n1

2
Cs1,s2,s3

n1,n2,n3
T̂ (Qij|n1 − 1, n2, n3)D

(s1−1)h(s2)h(s3)

+
s2n2

2
Cs1,s2,s3

n1,n2,n3
T̂ (Qij|n1, n2 − 1, n3)h

(s1)D(s2−1)h(s3)

+
s3n3

2
Cs1,s2,s3

n1,n2,n3
T̂ (Qij|n1, n2, n3 − 1)h(s1)h(s2)D(s3−1)

]

. (3.16)

The detailed proof of this formula can be found in the Appendix where we describe
also derivations of all other terms.

The next O(D2) and O(D3) level Lagrangians are

L
(2,0)
I =

∑

ni

∫

dzdz1dz2dz3δ(z1 − z)δ(z3 − z)δ(z2 − z)

[

+
s3n3s1n1

2
Cs1,s2,s3

n1,n2,n3
T̂ (Qij |n1 − 1, n2, n3 − 1)D(s1−1)h(s2)D(s3−1)

+
s1n1s2n2

2
Cs1,s2,s3

n1,n2,n3
T̂ (Qij |n1 − 1, n2 − 1, n3)D

(s1−1)D(s2−1)h(s3)

+
s2n2s3n3

2
Cs1,s2,s3

n1,n2,n3
T̂ (Qij |n1, n2 − 1, n3 − 1)h(s1)D(s2−1)D(s3−1)

]

, (3.17)

and

L
(3,0)
I =

∑

ni

∫

dzdz1dz2dz3δ(z1 − z)δ(z3 − z)δ(z2 − z)

[

+
s3n3s2n2s1n1

2
Cs1,s2,s3

n1,n2,n3
T̂ (Qij |n1 − 1, n2 − 1, n3 − 1)D(s1−1)D(s2−1)D(s3−1)

]

.

(3.18)

The remaining terms in the Lagrangian contain at least one trace:

L
(0,1)
I = L

(0,2)
I = 0, (3.19)

L
(0,3)
I =

∑

ni

Cs1,s2,s3
n1,n2,n3

Q12Q23Q31

8

∫

dz1dz2dz3δ(z1 − z)δ(z2 − z)δ(z3 − z)

[

T̂ (Q12 − 1, Q23 − 1, Q31 − 1|n1, n2, n3)✷ah
(s1)

✷bh
(s2)

✷ch
(s3)

]

, (3.20)

L
(1,1)
I =

∑

ni

Cs1,s2,s3
n1,n2,n3

∫

dz1dz2dz3δ(z1 − z)δ(z2 − z)δ(z3 − z)

[

+
s1Q12n2

4
T̂ (Q12 − 1, Q23, Q31|n1, n2 − 1, n3)D

(s1−1)
✷bh

(s2)h(s3)

+
s2Q23n3

4
T̂ (Q12, Q23 − 1, Q31|n1, n2, n3 − 1)h(s1)D(s2−1)

✷ch
(s3)

+
s3Q31n1

4
T̂ (Q12, Q23, Q31 − 1|n1 − 1, n2, n3)✷ah

(s1)h(s2)D(s3−1)
]

,(3.21)
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L
(1,2)
I =

∑

ni

Cs1,s2,s3
n1,n2,n3

∫

dz1dz2dz3δ(z1 − z)δ(z2 − z)δ(z3 − z)

[

+
s1Q12Q23n3

8
T̂ (Q12 − 1, Q23 − 1, Q31|n1, n2, n3 − 1)D(s1−1)

✷bh
(s2)

✷ch
(s3)

+
s2Q23Q31n1

8
T̂ (Q12, Q23 − 1, Q31 − 1|n1 − 1, n2, n3)✷ah

(s1)D(s2−1)
✷ch

(s3)

+
s3Q31Q12n2

8
T̂ (Q12 − 1, Q23, Q31 − 1|n1, n2 − 1, n3)✷ah

(s1)
✷bh

(s2)D(s3−1)
]

,

(3.22)

L
(2,1)
I =

∑

ni

Cs1,s2,s3
n1,n2,n3

∫

dz1dz2dz3δ(z1 − z)δ(z2 − z)δ(z3 − z)

[

+
s2s3Q31n1n2

4
T̂ (Q12, Q23, Q31 − 1|n1 − 1, n2 − 1, n3)✷ah

(s1)D(s2−1)D(s3−1)

+
s1s2Q23n3n1

4
T̂ (Q12, Q23 − 1, Q31|n1 − 1, n2, n3 − 1)D(s1−1)D(s2−1)

✷ch
(s3)

+
s3s1Q12n2n3

4
T̂ (Q12 − 1, Q23, Q31|n1, n2 − 1, n3 − 1)D(s1−1)

✷bh
(s2)D(s3−1)

]

.

(3.23)

So we integrated all cells of the following classification table corresponding to
(3.14)

h̄
D

0 1 2 3

0

1

2

3

hhh Dhh DDh DDD

000

000

h̄h̄h̄

h̄Dh h̄DD

h̄h̄D

(3.24)

and prove that after fixing the freedom of partial integration in the leading term
(i.e. our cyclic ansatz) all other terms of interaction can be integrated in a unique
way when we avoid additional partial integration during recursions.

Summarizing we see that the interaction Lagrangian in deDonder gaugeD(s−1)(z; a) =

11



0 can be expressed as a sum

LdD

I (h(s)) =

3
∑

j=0

L
(0,j)
I (h(s)). (3.25)

and it is nothing else than the first column of this table. Therefore (3.19) means
that in deDonder gauge the traces of the HS fields decouple from the fields as they
do in the free Lagrangian.

4 Classification of gauge invariant cubic vertices

From the recent literature [1], [2], [15] we can first speculatively group the cubic
gauge invariant vertices into four classes depending on the number of Weyl ten-
sors they contain. In [15] vertices with (say even) spins s1, s2, s3 were explicitly
constructed e.g. for the case 4, 4, 2, and the result was presented in a form which
was linear in the (linearized) Weyl tensor of the minimal spin. In the remaining
bracket of terms a second Weyl tensor (say for spin 2) is apparently not hidden.
In [2] the ensemble of vertices constructed contain those of the spin type 2s, s, s,
and these are quadratic in the (linearized) Weyl tensor of the spin s field. In all
these cases the number of derivatives is minimal and equals ∆ = s3+s2−s1, where
s1 is the minimal spin. In this section we order the spins such as s1 ≤ s2 ≤ s3,
because the smaller spins give rise to the Weyl tensors, and these are represented
by differential operators acting from left to right. Abandoning the constraint of
minimality on the number of derivatives, one can construct vertices from three
Riemann tensors by contraction having ∆BI = s1 + s2 + s3 derivatives § (Born-
Infeld interaction). Finally a selfinteracting vertex of spin type s, s, s has been
derived in [1] for s = 4, which apparently did not factorize into any Weyl tensor
at all. If we consider only the leading order terms discussed in Section 2, the Weyl
tensor reduces to the Riemann tensor. The Riemann tensor for spin s gauge field
[27], [28] is best defined for our purpose by the differential expression

R(s)(z; a, b) = [(a∇)(b∂c)− (a∂c)(b∇)]
sh(s)(z; c). (4.1)

With the cyclic ansatz for a vertex of an arbitrary spin type presented in the
preceeding section, we can derive results on the factorization of the l. o. terms
into Riemann tensors. Denoting the powers of the Riemann tensors maximally
appearing by n, and letting the number of derivatives be ∆∗ ≥ ∆ we may define
classes of vertices Vn(∆∗) and characterize them in terms of the spin si. There
remain two tasks. First we may consider all explicitly known vertices for minimal
derivative number ∆ and rewrite their leading orders in terms of the cyclic nota-
tion for the l. o. terms discussed in the preceeding section. This was in all cases

§This case is also described by our general formula for the case ∆ = ∆BI and the triangle
inequality s1 + s2 ≥ s3
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possible. On the other hand we can turn this issue around and derive from the
cyclic ansatz of Section 1 with minimal derivative number the maximum amount
of information possible on the factorization into Riemann tensors, which gives
new general insights on which spin type belongs to which class Vn(∆).

We prove the following theorem: The class V0(∆) consists of those spin types
with s3 < 2s1, the class V1(∆) of the spin types s3 ≥ 2s1, s2 > s1, and the class
V2(∆) of the types s3 ≥ 2s1 = 2s2 . As a corollary we obtain that V0(∆) contains
all selfinteractions.

For the proof we start from (2.4), (2.12). We obtain by replacing n1 = s1 − p
and summing over n2, n3

∑

n2,n3

(

s1
n1, n2 − s2 + s1, n3 − s3 + s1

)

(∂a∇2)
n1(∂b∇3)

n2(∂c∇1)
n3

(∂a∂b)
n3−s3+s1(∂b∂c)

n1(∂c∂a)
n2−s2+s1h(s1)(z1; a)h

(s2)(z2; b)h
(s3)(z3; c)

=

(

s1
p

)

[(∂a∇2)(∂b∂c)]
s1−p(∂c∇1)

s3−s1(∂b∇3)
s2−s1

{(∂c∇1)(∂b∂a) + (∂c∂a)(∂b∇3)}
p h(s1)(z1; a)h

(s2)(z2; b)h
(s3)(z3; c). (4.2)

Since we want to neglect all higher order terms (such as divergences, traces and
contractions of gradients (∇i∇j)

¶), use partial integrations implied by ∇1+∇2+
∇3 = 0, and keep only the l.o. expressions, we can in the square bracket replace
(∂b∇3) by −(∂b∇1). Introducing two arbitrary tangential vectors e, f and the
star product we get

[(∂b∂a)(∂c∇1)− (∂c∂a)(∂b∇1)]
p = [(e∂a)(f∇1)− (f∂a)(e∇1]

p ∗e ∗f [(e∂b)(f∂c)]
p,

(4.3)
where we obtained p differential operator factors acting on h(s1)(z1, a) of a Rie-
mann tensor. The other s1 − p components are produced as follows.

The remaining factors in (4.2) can be reordered by

[(∂a∇2)(∂b∂c)]
s1−p(∂c∇1)

s3−s1(∂b∇3)
s2−s1

= [(∂a∇2)(∂c∇1)]
s1−p(∂b∂c)

s1−p(∂c∇1)
s3−2s1+p(∂b∇3)

s2−s1, (4.4)

which is permitted if s3 − 2s1 ≥ 0, since p runs from 0 to s1. Then the square
bracket can be contracted in the same way with the tangential vectors e, f and
neglecting a contraction (∇1∇2) as of higher order we get

[(e∂a)(f∇1)− (f∂a)(e∇1)]
s1−p ∗e ∗f [(e∇2)(f∂c)]

s1−p. (4.5)

Multiplication of the two products over the square bracket operators (4.3) and
(4.5) yields the Riemann tensor

Rs1(z1; f, e) = [(e∂a)(f∇1)− (f∂a)(e∇1)]
s1h(s1)(z1; a). (4.6)

¶Note that the product of derivatives (∇i∇j) in this case leads also to ✷R(s)(a; b;h(s)(c; z))
which is equal to R(s)(a; b; (c∇)D(s−1)) = 0 on shell due to gauge invariance of the linearized
curvature
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However, in the remaining factors there is still the term

(∂c∇1)
s3−2s1+p, (4.7)

which acts on h(s1) (i.e. the Riemann tensor), but by partial integration and
neglect of divergences as higher order terms, we can let it act on h(s2). Then we
obtain the first Riemann tensor formula

R(s1)(z1; f, e) ∗e ∗f

s1
∑

p=0

(−1)p
(

s1
p

)

(e∂b)
p(e∇2)

s1−p(f∂c)
s1

(∂b∂c)
s1−p(∂c∇2)

s3−2s1+p(∂b∇3)
s2−s1 h(s2)(z2; b)h

(s3)(z3; c). (4.8)

The next construction is also intended to be a Riemann tensor for the spin s1.
For this purpose we construct a homogeneous function in b of degree s1. Using
the appropriate factors from (4.8) we define

H(z2, z3; b, c, f) = (f∂c)
s1(∂b∇3)

s2−s1(∂c∇2)
s3−2s1h(s2)(z2; b)h

(s3)(z3; c), (4.9)

which is homogeneous both in b and c of degree s1. Then we can perform the
sum in (4.8) and get

[(e∇2)(∂b∂c)− (∂c∇2)(e∂b)]
s1H(z2, z3; b, c, f). (4.10)

Concerning the differential operator in front of H this expression looks like a
Riemann tensor R(s1)(z2). But a gauge transformation δh(s2)(z2, b) acts as

(∂b∇3)
s2−s1(b∇2)ǫ

(s2−1)(z2; b) =

(s2 − s1)(∇2∇3)(∂b∇3)
s2−s1−1ǫ(s2−1)(z2; b)

+(b∇2)(∂b∇3)
s2−s1ǫ(s2−1)(z2, b). (4.11)

We conclude that only for s2 = s1 the expression (4.10) can be considered as a
proper Riemann tensor. This completes the proof of the theorem.
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5 Discussion: Towards gauge transformations

as open Lie algebras

If all spins in the cubic interaction are equal s, we can derive the first order gauge
transformation of h(s) from the r. h. s. of Noether’s equation (3.4) taken off shell

[O(F) part of δ0
ǫ(s1−1)LI ]

=
∑

ni

Cs1,s2,s3
n1,n2,n3

∫

dz1dz2dz3δ(z1 − z)δ(z2 − z)δ(z3 − z)

[

−
s1n1

2
T̂ (Qij|n1 − 1, n2, n3)ǫ

(s1−1)F (s2)h(s3)

+
s1Q12n2

4
T̂ (Q12 − 1, Q23, Q31|n1, n2 − 1, n3)ǫ

(s1−1)
✷bF

(s2)h(s3)

+
s3s1Q12n2n3

4
T̂ (Q12 − 1, Q23, Q31|n1, n2 − 1, n3 − 1)ǫ(s1−1)

✷bF
(s2)D(s3−1)

+
s1Q12Q23n3

8
T̂ (Q12 − 1, Q23 − 1, Q31|n1, n2, n3 − 1)ǫ(s1−1)

✷bF
(s2)

✷ch
(s3)

+
s1n1

2
T̂ (Qij|n1 − 1, n2, n3)ǫ

(s1−1)h(s2)F (s3)

+
s1Q12n2

4
T̂ (Q12 − 1, Q23, Q31|n1, n2 − 1, n3)ǫ

(s1−1)
✷bh

(s2)F (s3)

+
s1s2n1n2

4
T̂ (Q12, Q23, Q31|n1 − 1, n2 − 1, n3)ǫ

(s1−1)D(s2−1)F (s3)

−
s1Q12Q23n3

8
T̂ (Q12 − 1, Q23 − 1, Q31|n1, n2, n3 − 1)ǫ(s1−1)

✷bh
(s2)

✷cF
(s3)

]

.

(5.1)

If we assume moreover that the gauge transformations form a Lie algebra of power
series in some ”coupling constant” g, we can following along the ideas of Berends,
Burger and Van Dam in their classical paper [7] derive conclusions on the higher
order interactions. We sum up simple results:

(1) The arguments of these authors to show that such power series algebra
does not exist for s = 3, cannot be generalized to even spins;

(2) the quartic interaction Lagrangian is nonzero and contains 2s− 2 deriva-
tives.

For a given gauge function ǫ(s−1)(z; a) the gauge transformation is a substitu-
tion (classically) with expansion

h→ h + δǫh = h+∇ǫ+
∑

n≥1

gnΘn(h, h, ...h; ǫ), (5.2)

with Θn depending on ǫ linearly and on h in the n’th power. Moreover we assume
that the commutator of two such transformations is given by

[δǫ, δη]h = δC(h;ǫ,η)h, (5.3)
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with the expansion

C(h; ǫ, η) = g
∑

n≥0

gnCn(h, h, ...h; ǫ, η), (5.4)

where each Cn depends on ǫ and η linearly and on h in the n’th power. As
substitutions gauge transformations are associative and their infinitesimals must
satisfy the Jacobi identity. At order g2 this is e.g.

∑

η,ǫ,ζcyclic

{C1(∇ζ ; η, ǫ) + C0(C0(η, ǫ), ζ)} = 0. (5.5)

The commutator can also be expanded

[δη, δǫ] = g(Θ1(∇ǫ; η)−Θ1(∇η; ǫ))

+ g2{[Θ1(Θ1(h; ǫ); η)−Θ1(Θ1(h; η); ǫ)]

+ [Θ2(∇ǫ, h; η)−Θ2(∇η, h; ǫ)]

+ [Θ2(h,∇ǫ; η)−Θ2(h,∇η; ǫ)]}+O(g3). (5.6)

Inserting this expansion into the definition of the functions Cn we obtain

∇C0(η, ǫ) = Θ1(∇ǫ; η)−Θ1(∇η; ǫ), (5.7)

∇C1(h; η, ǫ) = Θ1(Θ1(h; ǫ); η)−Θ1(Θ1(h; η); ǫ)−Θ1(h;C0(η, ǫ))

+ Θ2(∇ǫ, h; η)−Θ2(∇η, h; ǫ) + Θ2(h,∇ǫ; η)−Θ2(h,∇η; ǫ).

(5.8)

Assume that Θ1(h; ǫ) has been extracted from (5.1) for the case of equal spins s.
Then the order of derivations in Θ1 is

♮Θ1(h; ǫ) = s− 1. (5.9)

Inserting this result into (5.5), (5.7) we obtain the number of derivations in C0, C1

as
♮C0(η, ǫ) = s− 2 and ♮C1(h; η, ǫ) = 2s− 3. (5.10)

This implies
♮Θ2(h, h; ǫ) = 2s− 3. (5.11)

Consequently the quartic interaction must contain 2s− 2 derivatives. The argu-
ment can be continued to still higher interactions: For n’th order interactions the
number is (s − 2)(n − 2) + 2. This result is equivalent to introducton a scale L
and dimensions in the following way

[h] = Ls−2, [∇] =
1

L
, (5.12)
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with a dimensionless coupling constant g, so that each term in the power series
has the same dimension. Note that in the case of ∆ = ∆min we obtained in the
previous sections and in [1] the same dimensions for cubic selfinteractions and a
free Fronsdal’s action.

In [7] the argument was presented that for spin s = 3 a Lie algebra of gauge
transformations in the form of power series does not exist, the problem starting
with the second power. The argument was based on the term

(∂a∇2)
s−1ǫ(s−1)(z1; a)h

(s)(z2; b), (5.13)

which exists in Θ1. Such term is present in fact for any spin, as can be inspected
from (5.1). Namely, in the fifth term of the square bracket of (5.1) (this is the
unique localization) we get such expression for n1 = s, n2 = n3 = 0. In equation
(5.8) in the first line we have thus 2s − 2 derivations acting on the field h in
either term. In no other terms of (5.8) such expression appears. Therefore they
must cancel inside this line and they do cancel indeed for even spin only. There
is in this case no obstruction of the power series algebra by these arguments. A
deeper investigation of such algebras will follow in the future.
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[4] R. Manvelyan andW. Rühl, “Conformal coupling of higher spin gauge fields
to a scalar field in AdS(4) and generalized Weyl invariance,” Phys. Lett. B
593 (2004) 253, [arXiv:hep-th/0403241].

[5] F. A. Berends, G. J. H. Burgers and H. van Dam, “Explicit Construction
Of Conserved Currents For Massless Fields Of Arbitrary Spin,” Nucl. Phys.
B 271 (1986) 429;

17

http://arxiv.org/abs/1002.1358
http://arxiv.org/abs/0903.0243
http://arxiv.org/abs/0903.0058
http://arxiv.org/abs/hep-th/0403241


[6] F. A. Berends, G. J. H. Burgers and H. Van Dam, “On Spin Three Selfin-
teractions,” Z. Phys. C 24 (1984) 247;

[7] F. A. Berends, G. J. H. Burgers and H. van Dam, “On The Theoreti-
cal Problems In Constructing Interactions Involving Higher Spin Massless
Particles,” Nucl. Phys. B 260 (1985) 295.

[8] E. S. Fradkin and M. A. Vasiliev, “On The Gravitational Interaction Of
Massless Higher Spin Fields,” Phys. Lett. B 189 (1987) 89.

[9] E. S. Fradkin and M. A. Vasiliev, “Cubic Interaction In Extended The-
ories Of Massless Higher Spin Fields,” Nucl. Phys. B 291 (1987) 141.
M. A. Vasiliev, ”Cubic Interactions of Bosonic Higher Spin Gauge Fields
in AdS5”, [arXiv:hep-th/0106200]. M. A. Vasiliev, ”N = 1 Supersymmet-
ric Theory of Higher Spin Gauge Fields in AdS5 at the Cubic Level”,
[arXiv:hep-th/0206068]

[10] T. Damour and S. Deser, “Geometry of spin 3 gauge theories,” Annales
Poincare Phys. Theor. 47, 277 (1987); T. Damour and S. Deser, “Higher
derivative interactions of higher spin gauge fields,” Class. Quant. Grav. 4,
L95 (1987).

[11] R. R. Metsaev, “Cubic interaction vertices for massive and massless higher
spin fields,” Nucl. Phys. B 759 (2006) 147 [arXiv:hep-th/0512342];

[12] R. R. Metsaev, “Cubic interaction vertices for fermionic and bosonic arbi-
trary spin fields,” arXiv:0712.3526 [hep-th].

[13] A. Sagnotti, “Higher Spins and Current Exchanges,” arXiv:1002.3388
[hep-th]; D. Francia, J. Mourad and A. Sagnotti, “Current exchanges
and unconstrained higher spins,” Nucl. Phys. B 773 (2007) 203
[arXiv:hep-th/0701163]; D. Francia and A. Sagnotti, “Higher-spin geometry
and string theory,” J. Phys. Conf. Ser. 33 (2006) 57 [arXiv:hep-th/0601199];
A. Sagnotti and M. Tsulaia, “On higher spins and the tensionless limit
of string theory,” Nucl. Phys. B 682 (2004) 83 [arXiv:hep-th/0311257];
D. Francia and A. Sagnotti, “On the geometry of higher-spin gauge fields,”
Class. Quant. Grav. 20 (2003) S473 [arXiv:hep-th/0212185].

[14] I. G. Koh, S. Ouvry, “Interacting gauge fields of any spin and symmetry,”
Phys. Lett. B 179 (1986) 115; Erratum-ibid. 183 B (1987) 434.

[15] Nicolas Boulanger, Serge Leclercq, Per Sundell, “On The Uniqueness of
Minimal Coupling in Higher-Spin Gauge Theory,” JHEP 0808:056,2008;
[arXiv:0805.2764 [hep-th]]. Xavier Bekaert, Nicolas Boulanger, San-
drine Cnockaert, Serge Leclercq, “On Killing tensors and cubic ver-
tices in higher-spin gauge theories,” Fortsch. Phys. 54 (2006) 282-290;
[arXiv:hep-th/0602092].

18

http://arxiv.org/abs/hep-th/0106200
http://arxiv.org/abs/hep-th/0206068
http://arxiv.org/abs/hep-th/0512342
http://arxiv.org/abs/0712.3526
http://arxiv.org/abs/1002.3388
http://arxiv.org/abs/hep-th/0701163
http://arxiv.org/abs/hep-th/0601199
http://arxiv.org/abs/hep-th/0311257
http://arxiv.org/abs/hep-th/0212185
http://arxiv.org/abs/0805.2764
http://arxiv.org/abs/hep-th/0602092


[16] A. Fotopoulos, N. Irges, A. C. Petkou and M. Tsulaia, “Higher-Spin Gauge
Fields Interacting with Scalars: The Lagrangian Cubic Vertex,” JHEP
0710 (2007) 021; [arXiv:0708.1399 [hep-th]]. I. L. Buchbinder, A. Fo-
topoulos, A. C. Petkou and M. Tsulaia, “Constructing the cubic inter-
action vertex of higher spin gauge fields,” Phys. Rev. D 74 (2006) 105018;
[arXiv:hep-th/0609082]. Grav. 21 (2004) S1457;

[17] M. A. Vasiliev, “Higher Spin Gauge Theories in Various Dimensions”,
Fortsch. Phys. 52, 702 (2004) [arXiv:hep-th/0401177]. X. Bekaert, S. Cnock-
aert, C. Iazeolla and M. A. Vasiliev, “Nonlinear higher spin theories in
various dimensions”, [arXiv:hep-th/0503128]. D. Sorokin,“Introduction to
the Classical Theory of Higher Spins” AIP Conf. Proc. 767, 172 (2005);
[arXiv:hep-th/0405069]. N. Bouatta, G. Compere and A. Sagnotti, “An
Introduction to Free Higher-Spin Fields”; [arXiv:hep-th/0409068].

[18] I. R. Klebanov and A. M. Polyakov, “AdS dual of the critical O(N) vector
model,” Phys. Lett. B 550 (2002) 213; [arXiv:hep-th/0210114].

[19] R. Manvelyan, K. Mkrtchyan andW. Rühl, “Ultraviolet behaviour of higher
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Appendix

Proof of L
(i,j)
I

The expression for L
(1,0)
I is right if the following remaining group of terms

vanishes:

+
s1n1s3

2
C

(si)
(ni)

[T̂ (Qij |n1 − 1, n2, n3), (c∇3)](ǫ
(s1−1)h(s2)D(s3−1) +D(s1−1)h(s2)ǫ(s3−1)) (A.1)

+
s1n1s2

2
C

(si)
(ni)

[T̂ (Qij |n1 − 1, n2, n3), (b∇2)](D
(s1−1)ǫ(s2−1)h(s3) − ǫ(s1−1)D(s2−1)h(s3)) (A.2)

+
s2n2s1

2
C

(si)
(ni)

[T̂ (Qij |n1, n2 − 1, n3), (a∇1)](D
(s1−1)ǫ(s2−1)h(s3) + ǫ(s1−1)D(s2−1)h(s3)) (A.3)

+
s2n2s3

2
C

(si)
(ni)

[T̂ (Qij |n1, n2 − 1, n3), (c∇3)](h
(s1)D(s2−1)ǫ(s3−1) − h(s1)ǫ(s2−1)D(s3−1)) (A.4)

+
s3n3s2

2
C

(si)
(ni)

[T̂ (Qij |n1, n2, n3 − 1), (b∇2)](h
(s1)D(s2−1)ǫ(s3−1) + h(s1)ǫ(s2−1)D(s3−1)) (A.5)

+
s3n3s1

2
C

(si)
(ni)

[T̂ (Qij |n1, n2, n3 − 1), (a∇1)](ǫ
(s1−1)h(s2)D(s3−1) −D(s1−1)h(s2)ǫ(s3−1)) (A.6)

−s1Q12s2C
(si)
(ni)

T̂ (Q12 − 1, Q23, Q31|ni)ǫ
(s1−1)D(s2−1)h(s3) (A.7)

−s2Q23s3C
(si)
(ni)

T̂ (Q12, Q23 − 1, Q31|ni)h
(s1)ǫ(s2−1)D(s3−1) (A.8)

−s3Q31s1C
(si)
(ni)

T̂ (Q12, Q23, Q31 − 1|ni)D
(s1−1)h(s2)ǫ(s3−1). (A.9)

Indeed calculating commutators in the leading order and using relation (3.12) we
see that

(A.1) + (A.6)

= s1s2(Q23 + 1)Csi
n1+1,n2,n3

T̂ (Q12, Q23, Q31|n1, n2 + 1, n3)D
(s1−1)h(s2)ǫ(s3−1), (A.10)
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which exactly cancels (A.9) after a corresponding shift of n2 and using relation
(3.13). In a similar way we can prove cancellation of the other two sets of three
lines.

To prove formulas for L
(2,0)
I and L

(3,0)
I we should manage the commutators of

T operators with a,b,c, gradients in the following expression

s1s2s3
2

C
(si)
(ni)

[

[n1n3T̂ (Qij |n1 − 1, n2, n3 − 1), (b∇2)](D
(s1−1)D(s2−1)ǫ(s3−1) +D(s1−1)ǫ(s2−1)D(s3−1))

[n2n3T̂ (Qij |n1, n2 − 1, n3 − 1), (a∇1)](D
(s1−1)ǫ(s2−1)D(s3−1) + ǫ(s1−1)D(s2−1)D(s3−1))

[n1n2T̂ (Qij |n1 − 1, n2 − 1, n3), (c∇3)](ǫ
(s1−1)D(s2−1)D(s3−1) +D(s1−1)D(s2−1)ǫ(s3−1))

−n3Q12T̂ (Q12 − 1, Q23, Q31|n1, n2, n3 − 1)(ǫ(s1−1)D(s2−1)D(s3−1) − ǫ(s1−1)D(s2−1)D(s3−1))

−n2Q31T̂ (Q12, Q23, Q31 − 1|n1, n2 − 1, n3)(D
(s1−1)D(s2−1)ǫ(s3−1) −D(s1−1)ǫ(s2−1)D(s3−1))

−n1Q23T̂ (Q12, Q23 − 1, Q31|n1 − 1, n2, n3)(D
(s1−1)ǫ(s2−1)D(s3−1) − ǫ(s1−1)D(s2−1)D(s3−1))

]

,

(A.11)

and use again (3.11)-(3.13) to show that (A.11) is zero.
The remaining terms are:

1

2
C

(si)
(ni)

[

−s1Q12s2(s2 − 1)[T̂ (Q12 − 1, Q23, Q31|ni), (b∇2)]ǫ
(s1−1)h̄(s2−2)h(s3)

−s2Q23s3(s3 − 1)[T̂ (Q12, Q23 − 1, Q31|ni), (c∇3)]h
(s1)ǫ(s2−1)h̄(s3−2)

−s3Q31s1(s1 − 1)[T̂ (Q12, Q23, Q31 − 1|ni), (a∇1)]h̄
(s1−2)h(s2)ǫ(s3−1)

]

, (A.12)

and

s1s2s3
4

C
(si)
(ni)

[

−n3Q12(s2 − 1)[T̂ (Q12 − 1, Q23, Q31|n1, n2, n3 − 1), (b∇2)]

(ǫ(s1−1)h̄(s2−2)D(s3−1) −D(s1−1)h̄(s2−2)ǫ(s3−1))

−n1Q23(s3 − 1)[T̂ (Q12, Q23 − 1, Q31|n1 − 1, n2, n3), (c∇3)]

(D(s1−1)ǫ(s2−1)h̄(s3−2) − ǫ(s1−1)D(s2−1)h̄(s3−2))

−n2Q31(s1 − 1)[T̂ (Q12, Q23, Q31 − 1|n1, n2 − 1, n3), (a∇1)]

(h̄(s1−2)D(s2−1)ǫ(s3−1) − h̄(s1−2)ǫ(s2−1)D(s3−1))
]

, (A.13)
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−
s3s1(s1 − 1)n1

4
C

(si)
(ni)

Q31T̂ (Q12, Q23, Q31 − 1|n1 − 1, n2, n3)

(δh̄(s1−2)h(s2)D(s3−1) + 2(∇D)(s1−2)h(s2)ǫ(s3−1))

−
s1s2(s2 − 1)n2

4
C

(si)
(ni)

Q12T̂ (Q12 − 1, Q23, Q31|n1, n2 − 1, n3)

(D(s1−1)δh̄(s2−2)h(s3) + 2ǫ(s1−1)(∇D)(s2−2)h(s3))

−
s2s3(s3 − 1)n3

4
C

(si)
(ni)

Q23T̂ (Q12, Q23 − 1, Q31|n1, n2, n3 − 1)

(h(s1)D(s2−1)δh̄(s3−2) + 2h(s1)ǫ(s2−1)(∇D)(s3−2)), (A.14)

The last DDh̄ terms coming from our calculation are:

s1s2s3
4

C
(si)
(ni)

[

−(s3 − 1)n1n3Q23T̂ (Q12, Q23 − 1, Q31|n1 − 1, n2, n3 − 1)

(D(s1−1)D(s2−1)δh̄(s3−2) + 2D(s1−1)ǫ(s2−1)(∇D)(s3−2))

−(s2 − 1)n2n3Q12T̂ (Q12 − 1, Q23, Q31|n1, n2 − 1, n3 − 1)

(D(s1−1)δh̄(s2−2)D(s3−1) + 2ǫ(s1−1)(∇D)(s2−2)D(s3−1))

−(s1 − 1)n1n2Q31T̂ (Q12, Q23, Q31 − 1|n1 − 1, n2 − 1, n3)

(δh̄(s1−2)D(s2−1)D(s3−1) + 2(∇D)(s3−2)D(s2−1)ǫ(s3−1))
]

. (A.15)

These terms can be used in the same fashion for proving the remaining part of
L

(i,j)
I to contain traces.
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