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Introduction

The subject of the present work is the principle of analyticity of logic. In order
for the question ‘Is logic analytic?’ to make sense and before trying to find an
answer to this problem, it is obviously necessary to specify two preliminary issues,
namely, the meaning of the term ‘analytic’ and the meaning of the term ‘logic’. The
former issue is somehow justified and expected: after all, analyticity represents one
of the philosophical concepts par excellence and, as such, it has been at the core
of a lively debate throughout the history of the discipline. But, despite possible
appearances to the contrary, the second issue is probably more decisive than the
former in determining the answer to the initial question: both the contents and
the philosophical conceptions of logic play a fundamental role in the study of the
epistemological status of this discipline. We could even say that the clarification
of the concepts of analyticity and of logic constitutes in itself the decision on the
analyticity of logic.

This thesis studies the principle of analyticity of logic through two different,
but related, methodologies, which individuate the two main parts of the work:
the former offers a historical and philosophical reconstruction of the problem; the
latter proposes two formal characterizations of the analytic-synthetic distinction.
The reconstruction of the first part does not presume to be exhaustive and is
restricted to the theories of the following philosophers: Kant, Bolzano, Frege and
Hintikka. The material has been chosen according to the following criteria. First,
this work aims at showing the ‘historical’ nature of the principle of analyticity
of logic, which has a certain genealogy and a precise starting point. Although
after the Vienna Circle this tenet has been taken for granted, there are many
and significant conceptions that criticize it. Theories holding that logic is either
not analytic or synthetic are the main characters of our reconstruction. This
explains, for example, why we have dedicated great attention to Bolzano, while
leaving little margin to the logical empiricist movement, despite the fact that
analyticity is probably more fundamental for the latter’s thought than for the
former’s philosophical construction. As a result of this choice, theories of meaning
and their connection to analyticity are completely overlooked, since they belong
to the logical empiricists’ interpretation of the analytic-synthetic distinction. In
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INTRODUCTION 8

other words, the principle of analyticity of logic and the philosophers arguing for
it are taken as a critical target, but the true focus is on the varieties of reactions
against them.

Second, each author that has been selected might be seen as a symbol for a
peculiar answer to the question of the analyticity of logic: as we will see, each
of them represent a definite approach to the problem. This observation clarifies
why, for example, we have chosen only one author between Bolzano and Mill: al-
though their philosophical presuppositions are completely different, the conclusion
they reach on the status of logic goes surprisingly in the same direction. Last,
but not least, we have chosen our protagonists among the most excellent figures
of the modern and contemporary philosophical panorama for learning purposes.
Despite the indisputable advantages, this choice has exposed our research to the
risk of being too general and of privileging the horizontal rather than the vertical
direction.

We hope we have avoided this danger through an adequate methodological
equipment. First of all, we have offered hopefully accurate textual readings of the
relevant passages of our primary sources. This is the case for the excerpts of Kant’s
Critique of Pure Reason A 6-7/B 10-11 and A 151-152/B 190-191; Bolzano’s The-
ory of Science §148; Frege’s Foundations of Arithmetic §3 and Hintikka’s articles
in Logic, Language-Games and Information. At the same time, we have tried to
take into account a wide selection of secondary literature: we have considered both
the most recent productions, such as, to make just one example, de Jong’s use-
ful article The Analytic-Synthetic Distinction and the Classical Model of Science:
Kant, Bolzano and Frege, and the traditional interpretations, such as Coffa’s The
Semantic Tradition from Kant to Carnap. To the Vienna Station and Proust’s
Questions of Form. Logic and the Analytic Proposition from Kant to Carnap.

Consistently with the reflections expressed above, we have examined, for each
author, first, his characterization of the analytic-synthetic distinction; second, his
conception of logic; and, third, his standpoint on the status of logic with respect
to analyticity. This should be evident through a quick look at the index of the
work, where Hintikka constitutes a partial exception, due to his contemporary
understanding of logic. As a result, the historical and philosophical reconstruction
of the first part of this thesis might be read as the weaving of three micro-stories, in
which the same protagonists are involved. Despite the continuous cross-references
and the unity of purpose, the chapters of the philosophical reconstruction are
ideally autonomous. This means that they both contribute to the overall picture
and are self-contained. Each chapter, while trying to argue for a specific micro-
thesis, is marked by different peculiarities and demands.

The crucial challenge of the first chapter was to provide an accurate reading
of the texts in order to make Kant say what he really said and the target was
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to avoid anachronistic interpretations. To this end, the secondary literature has
proved to be a precious instrument and a valid support. The picture was different
for Bolzano’s case. In the second chapter, space has been left to the exposition of
key concepts necessary to understand the specificity of this author and attention
has been paid in trying to find the right position of Bolzano in the historical and
philosophical panorama. The third chapter intended to distinguish Frege’s posi-
tion from the standpoint defended by the logical empiricists’ movement. For this
reason, the question of the analyticity of logic is clearly separated from the prob-
lems posed by its alleged tautologicity. The aim of the fourth chapter was to offer
a comprehensive interpretation of Hintikka’s work on the Kantian themes. The
objective was to keep the interpretative and philosophical side together with the
technical and formal part of the Finnish philosopher’s proposal and to understand
the influence of Hintikka’s reading of Kant on his logical achievements.

The second part of this thesis is marked by the use of formal logical tools and
by the proposals of a new characterization of the analytic-synthetic distinction.
The reason why we have chosen this method for advancing our contribution must
be searched in the clarity and lucidity of the logical equipment. Two are the
crucial premises for this part of the work: on the one hand, Hintikka’s theory of
distributive normal forms; on the other, D’Agostino and Floridi’s formulation of
Depth Bounded Boolean Logics.

As for the ones that constitute the first part of this thesis, also the last two
chapters might be read independently of one another, although they represent
essential elements for the understanding of this work. The fifth chapter enunciates
the basic definitions of Depth Bounded First-Order Logics. This result is obtained
through the extension of Depth Bounded Boolean Logics to the quantified case
following Hintikka’s suggestions. In this context, great attention has been paid to
the discussion of the possibilities through which this aim could be achieved. While
in chapter five we have exposed this family of logics through a proof-system, the
sixth chapter employs semantic means. Depth Bounded Epistemic Logics are the
result of a shift of focus to epistemic considerations and to the strictly related
problem of logical omniscience. The aim of this chapter is to show that theoretical
reasoning on the principle of analyticity of logic might have practical applications.
This motivates the choice of the muddy children puzzle as a case study. Last, the
appendix provides the formal proofs of the propositions and theorems expressed
in chapter six.

The natural worry that might arise at this point is whether the two parts of
this thesis are connected. We argue that they are strictly interwoven. The last
stage of the reconstruction of the first part has underlined a key reason why the
logic of quantification cannot be said to be analytic. This reason, according to
Hintikka, must be found in the theory of computability. The formal proposals of
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the second part of this work start from this point and, following D’Agostino and
Floridi, move to the field of theoretical computer science to cover both the proposi-
tional and the epistemic contexts. In other words, the historical and philosophical
researches are not only interesting in se; rather, they have offered the indispens-
able bases on which our own answer to the question whether logic is analytic has
been constructed through formal tools.



Summary

The subject of this thesis is the principle of analyticity of logic. Part I offers a
historical and philosophical reconstruction of this principle and takes into account
the conceptions of four authors: Kant, Bolzano, Frege and Hintikka. Part II
proposes two logical systems that provide formal characterizations of the analytic-
synthetic distinction: Depth Bounded First-Order Logics and Depth Bounded
Epistemic Logics.

Chapter 1 is devoted to Kant and it is divided into three main sections. Sec-
tion 1.1 explores Kant’s analytic-synthetic distinction. We provide an overview
of how the relationship between the four criteria of analyticity of the Critique is
explained in the literature (1.1.1). We show that the containment criterion en-
joys a definitional priority over the other versions of the distinctions; we examine
the restrictions on the applicability of this criterion and we deal with the charges
of narrowness, psychologism and obscurity moved against it (1.1.2). We then
consider the remaining criteria of analyticity: clarification, identity and contra-
diction, with special attention to the role played by the latter in Kant’s theory
(1.1.3). Then, we focus on Kant’s notions of synthetic judgments and of intuition
(1.1.4). Section 1.2 studies Kant’s conception of pure general logic. We provide
an overview of both Kant’s logical notions and the topics that constituted the
discipline of logic at the time, clarifying which truths were considered as ‘logical’
truths in Kant’s view (1.2.1). We investigate Kant’s defining features of logic:
pureness, generality and formality (1.2.2). Section 1.3 analyzes the application
and the applicability of the analytic-synthetic distinction to the discipline of logic.
First, we examine Kant’s perspective on the role of logic as an instrument for
both defining and applying the analytic-synthetic distinction (1.3.1). Second, we
analyze the epistemological status of logic in order to provide an answer to the
question of whether logical truths are, following Kant’s definitions, analytic or
synthetic a priori (or neither of them) (1.3.2).

Chapter 2 is dedicated to Bolzano and is organized into three main parts.
Section 2.1 deals with Bolzano’s analytic-synthetic distinction. We introduce
some preliminary concepts of Bolzano’s logic, such as the method of substitution
and the notions of validity and derivability (2.1.1). We examine Bolzano’s dis-
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tinction and we provide a commentary of §148 of the Wissenschaftslehre. First,
we concentrate on the relation between, on the one hand, analyticity and, on
the other hand, truth-values, syntheticity and conceptuality (2.1.2). Second, we
discuss Bolzano’s definition of logical analyticity and its connection with logical
truths (2.1.3). Third, we make some observations on the link between analyticity
and language (2.1.4). We provide an interpretation of Bolzano’s criticism about
the Kantian conception of analysis and of the analytic-synthetic distinction as un-
derstood in the Critique (2.1.5). Section 2.2 focuses on Bolzano’s logic, which
is conceived as a kind of deductive science. We show the role that the ground-
ing relation plays in axiomatic structures and point out the differences between
Bolzano’s notion of synthetic a priori with respect to Kant’s (2.2.1). Then, we
concentrate on distinguishing two ways in which the term ‘logic’ is understood in
Bolzano’s text and we analyze his thesis that logic is synthetic (2.2.2). Section
2.3 offers a global evaluation of Bolzano’s principle of the syntheticity of logic.
We highlight an apparent contradiction in Bolzano’s system and we concentrate
on the pragmatics of analyticity (2.3.1). We reason about the place of Bolzano’s
thesis in the history of analyticity and review the main interpretative trend on this
topic (2.3.2).

Chapter 3 focuses on Frege and logical positivism. Section 3.1 considers
the principle of analyticity of logic. We introduce Frege’s revolution in logic and
his conception of the discipline within his logicist project (3.1.1). We examine
Frege’s analytic-synthetic distinction through an analysis of the §3 of the Founda-
tions of Arithmetic and of its connection to Kant’s conception (3.1.2). We focus
on Frege’s notion of analysis based on the function-argument distinction and we
underline its differences with respect to the traditional theory of concepts (3.1.3).
We investigate whether logical truths are, according to Frege, analytic and pro-
vide an overview of the different positions in the literature (3.1.4). We consider
the principle of analyticity of logic as expressed by the manifesto of the Vienna
Circle and make some observations on Quine and Carnap’s approach to the issue
(3.1.5). Section 3.2 focuses on the related idea that logic is tautologous. We
provide a historical overview on the paradox of analysis and we underline that
both Wittgenstein and the Vienna Circle accept that logic is tautologous (3.2.1).
We show Frege’s position on the fruitfulness of analysis explicated in the Grund-
lagen (3.2.2) and its radical change after the introduction of the Sinn-Bedeutung
distinction (3.2.3). We then consider the psychologistic solution to the paradox
of analysis defended by Hahn, Hempel and Ayer (3.2.4) and Wittgenstein’s em-
ployment of the myth of the perfect language to explain that logical deduction is
uninformative (3.2.5).

Chapter 4 analyses Hintikka’s work and it is divided into three main sections.
Section 4.1 focuses on Hintikka’s peculiar interpretation of Kant’s theory of the
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mathematical method. We first examine Hintikka’s thesis that mathematical intu-
itions are, according to Kant, singular representations (4.1.1). Then, we deal with
Hintikka’s idea that the mathematical method, characterized by the use of geomet-
rical constructions, plays a foundational role in the Kantian distinction between
analytic and synthetic judgments (4.1.2). We investigate Hintikka’s standpoint
that Kant is an heir to the constructional sense of analysis, which is distinguished
from the directional sense of analysis (4.1.3). Section 4.2 is dedicated to the
status of logical truths. We examine the conceptual kernel of Hintikka’s analytic-
synthetic distinction (4.2.1) and we investigate the actual influence of Kant’s con-
ception of syntheticity and Hintikka’s interpretation of it over his theory (4.2.2).
Section 4.3 concerns Hintikka’s arguments against logical positivism elaborated
through formal instruments. We provide a simple reconstruction of Hintikka’s the-
ory of distributive normal forms for first-order logic and of the analytic-synthetic
distinction defined in these terms (4.3.1). We present Hintikka’s theory of proba-
bility and semantic information and we deal in particular with the notion of surface
information (4.3.2). We conclude by offering an evaluation of Hintikka’s overall
work on the epistemological status of logic (4.3.3).

Chapter 5 presents Depth Bounded First-Order Logics and is organized into
three main parts. Section 5.1 is dedicated to the exposition of Depth Bounded
Boolean Logics put forward by D’Agostino and Floridi. We analyze the conse-
quences of the probable intractability of propositional logic (5.1.1). We introduce
the informational semantics through the truth tables and the negative constraints
on admissible partial evaluation (5.1.2). We discuss the notion of virtual infor-
mation and the logics in which its bounded use is allowed (5.1.3). We exhibit
the proof-theoretical characterization of these logics based on the so-called inte-
lim-rules (5.1.4). We examine the relations between, on the one hand, Depth
Bounded Boolean Logics and, on the other hand, Hintikka’s work and Kant’s con-
ceptions (5.1.5). Section 5.2 elaborates the idea of extending Hintikka’s approach
to the propositional case. We outline the project of formulating Depth Bounded
First-Order Logics (5.2.1). We present two attempts made to obtain the desired
result, namely, the idea of reducing the quantificational case to the propositional
one (5.2.2) and of using Skolem functions to provide individuals with a structure
(5.2.3). We propose our notion of quantificational depth and discuss four senses
in which individuals might be said to be reciprocally related (5.2.4). Section 5.3
introduces Depth Bounded First-Order Logics. We first define derivability rela-
tions in which no use of nested virtual information is allowed, but it is possible to
employ the introduction of a bounded number of individuals (5.3.1). Then, we
define derivability relations in which the bounded use of both virtual information
and new individuals is allowed (5.3.2). We give a formal definition of quantifi-
cational depth of an inference (5.3.3). We conclude offering some examples of
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derivations (5.3.4).
Chapter 6 introduces Depth Bounded Epistemic Logics and is divided into

two main parts. Section 6.1 is devoted to the discussion of the problem of logical
omniscience and of classical epistemic logics. We first provide the basic definitions
of classical epistemic logics and we show the formal characterization of the princi-
ple of logical omniscience that they satisfy (6.1.1). We introduce, as a case study,
the muddy children puzzle and its analysis through classical means (6.1.2). We
reason about ideal and realistic agents, as well as on the possible way of represent-
ing their reasoning (6.1.3). We present the philosophical motivations that justify
the notion of degrees of logical omniscience (6.1.4). Section 6.2 is dedicated to
the presentation of Depth Bounded Epistemic Logics. We first introduce the struc-
ture of this family of logics (6.2.1). Then, we enunciate the definitions of language
and model, which are common to every logic of every hierarchy, paying specific
attention to the comparison with the analogous definitions for classical epistemic
logics and Depth Bounded Boolean Logics (6.2.2-6.2.5). We provide three no-
tions of validity in a model, each of which corresponds to a specific hierarchy of
logics (6.2.7) and we give the definitions of validity, each of which characterizes
a specific logic (6.2.8). We discuss the relationships between the logics of this
family (6.2.9). We give a formalization of the muddy children puzzle in Depth
Bounded Epistemic Logics in order to clarify the definitions (6.2.6-6.2.10) and
we conclude by pointing out the way in which the classical solution to the puzzle
varies with our family of logics (6.2.11).



Part I

Historical and philosophical
reconstruction
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Chapter 1

Kant and the foundations of the
analytic-synthetic distinction

1.1 The Kantian analytic-synthetic distinction

The analytic-synthetic distinction is fundamental for Kant’s critical philosophy,
whose main purpose is to show the possibility of synthetic a priori knowledge1.
Although ancestors of the distinction can be found in several authors2, the novelty

1The importance of the distinction is certainly not restricted within the limits of Kant’s
philosophy. As Hanna (2001) points out, the notion of analyticity, which finds in Kant its
founder, is not only crucial for the development of the so-called analytic philosophy, but it also
represents the trait d’union of that multifarious tradition. In Hanna (2001, p. 121)’s words:
“The history of analytic philosophy from Frege to Quine is the history of the rise and fall of the
concept of analyticity, whose origins and parameters both lie in Kant’s first Critique”.

2In a passage of the Prolegomena (Prol., p. 22), Kant recognizes that he has found a ‘hint’ of
the analytic-synthetic distinction only in Locke’s An Essay Concerning Human Understanding.
In the paragraph referred to by Kant (Locke, 1975, Book IV, Chapter 3, parr. 9 and ff.), Locke
distinguishes the connections of ideas via identity and via co-existence. However, as Anderson
(2015, p. 35 and ff.) pinpoints, this ‘hint’ is rather opaque if compared to another passage of
the same work (Locke, 1975, Book IV, Chapter 8, parr. 1 and ff.) that Kant seems to have
neglected, in which Locke identifies a class of truths, called ‘trifling propositions’, which do not
extend knowledge and are based on containment and contradiction.

Although his work is not mentioned by Kant in this respect, Leibniz admits a non-epistemic
distinction between ‘truths of reason’, whose opposite is impossible, and ‘truths of facts’, whose
opposite is possible. Next to these two kinds of truths, Leibniz recognizes also an intermediate
sort truths, which are called ‘mixed truths’. Moreover, he holds that any proposition is true if
and only if the concept of the predicate is somehow contained in that of the subject: in other
words, as we will see in Section 1.1.2, a proposition is true if and only if it is analytic sensu Kant.
The distinction of kinds of truths and the definition of truth as containment lead Leibniz to face
the problem of reconciling analyticity of truth on the one side and contingency on the other: the
proposed solutions, which are not free of difficulties, consist in the analogy with the infinitesimal
calculus and the distinction between absolute and hypothetical necessity.
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of mature Kant’s proposal is strongly claimed by the author3 and can be mostly
appreciated along two fronts. First, Kant employs the terms ‘analytic’ and ‘syn-
thetic’ not only to qualify different methods of proof, but also, and crucially, to
designate two different kinds of judgments. The latter use of these terms is only
indirectly related to the former, which has an older tradition in mathematics and
especially in geometry. Unless otherwise specified, with the expression ‘analytic-
synthetic distinction’ we are going to refer to the latter and new employment of
the terms. Second, the use Kant makes of this distinction far outstrips that of his
predecessors. As Anderson (2015) claims, Kant’s distinction is not merely verbal,
but it rather hides a substantial thesis directed against the German rationalist
metaphysics, especially against Leibniz and the Wolffian tradition: truth is not
exhausted by the containment relation; on the contrary, all important cognition4

cannot be explained in terms of analytic (in the Kantian sense) judgments and
falls on the synthetic side. This thesis, which has probably sounded revolutionary
to contemporary readers, together with the Kantian interest in synthetic a priori
knowledge, gives pride of place in Kant’s philosophy to the notion of syntheticity.
This is one of the reasons for which we are going to conclude this part with a brief
recapitulation of Kant’s notion of synthetic knowledge5 (Section 1.1.4), even if our
main concern is Kant’s theory of analyticity (Sections 1.1.1-1.1.3), the definition
of which is essential to deal with the issue of this Chapter.

Last, Hume (1975, Section IV, Part I) in his An Enquiry concerning Human Understanding
distinguishes between ‘relations of ideas’ and ‘matters of facts’. While the former can be known
through intuition or demonstration, the latter can be justified only through experience; while
the negation of the former implies a contradiction and cannot be clearly conceived, the denial
of the latter does not lead to a contradiction and can be easily conceived. This distinction,
known as ‘Hume’s fork’, receives no further development in that work, which is mainly focused
on reasoning about matters of fact.

3For example, in the Introduction to the second edition of the first Critique, Kant says: “That
metaphysics has until now remained in such a vacillating state of uncertainty and contradictions
is to be ascribed solely to the cause that no one has previously thought of this problem [i.e. the
possibility of synthetic a priori judgments] and perhaps even of the distinction between analytic
and synthetic judgments” (CPR, B 19).

4This is clearly stated in the Introduction to the first Critique, where Kant says that:
“Judgments of experience, as such, are all synthetic” (CPR A 7-8/B 11-12);
“Mathematical judgments are all synthetic” (CPR, B 14); “Natural science [. . . ] con-
tain within itself synthetic a priori judgments as principles” (CPR, B 17-18) and “In
metaphysics [. . . ] synthetic a priori cognitions are supposed to be contained” (CPR,
B 18).

5Hanna (2001, p. 181 and ff.) notices a common trend in the discussions of the analytic-
synthetic distinction, which he calls the ‘privileging of the analytic’. While the analytic tradition
usually defines the synthetic as what is not analytic, this is not the case for Kant. We think
that a reason for this peculiarity of Kant’s thought, which goes beyond Kant’s interest in the
synthetic a priori and beyond his thesis against rationalist metaphysicians, is that his distinction
is not exhaustive. This will be clarified in the following.
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1.1.1 Criteria for analyticity

The distinction between analytic and synthetic judgments in the Critique of Pure
Reason is not unambiguous: instead of providing a unique definition, Kant seems
to propose no less than four criteria of analyticity. Two are the main loci of the
first Critique in which Kant extensively deals with this issue. The former presents
the analytic-synthetic distinction and can be found in the fourth paragraph of
the Introduction; the latter, situated in the second Chapter of the Analytic of
Principles, concerns the “supreme principle of all analytic judgments”. It is worth
quoting these passages at length:

In all judgments in which the relation of a subject to the predicate
is thought (if I consider only affirmative judgments, since the applica-
tion to negative ones is easy) this relation is possible in two different
ways. Either the predicate B belongs to the subject A as something
that is (covertly) contained in this concept A; or B lies entirely outside
the concept A, though to be sure it stands in connection with it. In
the first case I call the judgment analytic, in the second synthetic.
Analytic judgments (affirmative ones) are thus those in which the con-
nection of the predicate is thought through identity, but those in which
this connection is thought without identity are to be called synthetic
judgments. One could also call the former judgments of clarifica-
tion, and the latter judgments of amplification, since through the
predicate the former do not add anything to the concept of the subject,
but only break it up by means of analysis into its component concepts,
which were already thought in it (though confusedly); while the latter,
on the contrary, add to the concept of the subject a predicate that
was not thought in it at all, and could not have been extracted from it
through any analysis (CPR, A 6-7/B 10-11).

[. . . ] if the judgment is analytic, whether it be negative or affir-
mative, its truth must always be able to be cognized sufficiently in
accordance with the principle of contradiction. [. . . ] we must also
allow the principle of contradiction to count as the universal and
completely sufficient principle of all analytic cognition (CPR, A
151-152/B 190-191).

In the excerpt taken from the Introduction, we find three criteria of analyticity,
which can be roughly summarized as follows.

1. In an analytic judgment the concept of the predicate is contained in the
concept of the subject (containment criterion).
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2. In an analytic judgment the connection between the concept of the predicate
and that of the subject is thought through the principle of identity (identity
criterion).

3. In an analytic judgment the concept of the predicate does not add anything
to that of the subject: the already existing components of the subject concept
are clarified through the processes of analysis (clarification criterion).

Each of these definitions is contrasted with a correspondingly standard of syn-
theticity, which is not our concern here.

The quotation from the Analytic seems to add another definition to our list:
an analytic judgment is one that can be known through the only means of the
principle of non contradiction, which is said to be the supreme principle of analytic
judgments (contradiction criterion).

The many-sided presentation of the notion of analytic judgments raises serious
problems about the relationship between the criteria put forward by Kant. One key
observation is that these definitions are not all equivalent: although Kant probably
took them to coincide in extension, they (or at least some of them) individuate
different classes of judgments. To make an example that will be further examined,
the judgment ‘man is man’ seems to be analytic according to the identity crite-
rion: however, it turns out to be non-analytic following the clarification criterion
because, although the concept of the predicate does not add anything to that of
the subject, still the clarification of the components of the subject concept does
not need to take place through analysis. Even the relationship between the iden-
tity and contradiction criteria is still debated6. This remark about the differences
in extension of the four definitions, together with the doubts about the number
of non-redundant criteria7, leads to some related issues. Critics have discussed on
whether the set of Kant’s formulations is after all consistent, possibly because each

6Hanna (2001, Chapter 3) proposes an interpretation of the contradiction criterion that makes
its extension wider than that of the identity formulation (and that of containment as well). This
means that, according to Hanna, there is a class of propositions that are analytic according to
the contradiction criterion and non-analytic following the identity one. This class of propositions
includes, in Hanna’s view, all the logical truths of monadic predicate logic. Against the idea of
a difference between the two criteria just mentioned, Proops (2005) talks of the ‘identity-and-
contradiction criterion’. Discussing about the motivations of the pre-eminence of the contradic-
tion criterion over the identity one in Kant’s reasoning about the principle of analytic judgments,
Proops recognizes the contradiction formulation has a wider applicability than the identity one.
Less problematic seems to be Anderson’s (2015, p. 13) identification of the two criteria.

7There is no unanimous consensus about which criteria can be taken to be, strictly speaking,
definitions of analyticity and which formulations are after all redundant. For example, Hanna
(2001) does not include the clarification criterion in his list; Proops (2005) holds that the con-
tradiction formulation is not a characterization of analyticity at all and the same perspective is
taken by de Jong (1995); Anderson (2015) identifies the contradiction and the identity criteria.
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definition merely specifies different points of view on the same matter8, or rather
Kant’s criteria cannot be reconciled or fit together and stand as evidence of the
historical development of the notion of analyticity in Kant’s thought. The latter
position usually invites interpreters to identify, among the criteria, one definition
as fundamental, either because it would represent Kant’s mature position or be-
cause of its conceptual centrality. Thus, the remaining formulations are read as
alternative specifications of the central one or as elements that endured despite an
alleged development of Kant’s position on that matter9.

8According to Hanna’s (2001, p. 124) interpretation, “while Kant does indeed employ several
distinct formulations of his doctrine of analyticity, his use of these formulations is not after all
incoherent, because each merely brings out a different aspect of a single, internally consistent,
defensible Kantian theory”. Roughly put, Hanna arranges Kant’s formulations in this order:
containment, identity and contradiction; and holds that each criterion both includes and extends
the definition that precedes it in the list. In other words, each formulation solves some problems
that the previous in that hierarchy could not solve. As a result, Hanna maintains that the most
comprehensive definition of analyticity is that based on contradiction (or rather on a peculiar in-
terpretation of it). Hanna (2001)’s interpretation is quite peculiar in the review of the secondary
literature: most of the other readings we have considered tend to reconcile these different for-
mulations of analyticity through an historical inquiry. Most notably, Anderson (2015) proposes
a particularly accurate analysis of the emergence of Kant’s analytic-synthetic distinction in the
second part of his book.

9Anderson (2015, p. 16) states that “it is hard to avoid the conclusion that concept con-
tainment [. . . ] served Kant himself as the fundamental idea behind analyticity”. This point is
crucial for Anderson’s main thesis, that we have already mentioned, according to which Kant’s
analytic-synthetic distinction underwrites a strong criticism against the expressive limitation
of the rationalist pre-Kantian metaphysics. The centrality of the containment criterion is also
maintained by de Jong (1995) who, as we will see, defends the clarity of this characterization.
In the following, we are going to opt for this position too.

After having shown that the contradiction criterion does not count, properly speaking, as a
definition of analyticity, Proops (2005) argues instead that “the identity-and-contradiction char-
acterization must be recognized as the most central and fundamental conception of analyticity
in the first Critique”. This thesis is based on the fact that identity can account for a class of
judgments wider than those delimited by the other criteria. However, Proops recognizes that
from the Prolegomena onward Kant tends to put more weight on the clarification criterion.

Allison (2004, p. 89 and ff.) sides instead with the clarification criterion: “Although it
hardly resolves all of these difficulties, the second version [i.e. that based on the opposition
between clarification and ampliativeness] is superior to the first [i.e. that founded on containment]
because in it the notion of a synthetic judgment, the real focus of Kant’s concern, wears the
trousers”. According to Allison, Kant accords his preference to the third criterion, especially
after Eberhard’s critics, because it underlines the relationship between synthetic judgments and
real objects.

Last, the contradiction criterion has often been considered very attractive on the ground that
it is the most inclusive and is not restricted to a certain subclass of judgments (such as the
categorical ones). This is for example the Kneale and Kneale’s (1962, p. 357) interpretation:
“Such characterization of analytic judgments [i.e. that based on the principle of contradiction] is
undoubtedly more suitable for Kant’s purpose than that with which he began [i.e. that grounded
on containment], since it is with this definition to divide all true judgments between the headings
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In this Section, we analyse Kant’s theory of analyticity examining the four
criteria one by one. The main thesis that will be supported is that the containment
criterion is the fundamental definition of analyticity in Kant’s first Critique.

1.1.2 Containment

The containment criterion seems to enjoy a definitional priority over the other
versions of the analytic-synthetic distinction (at least in Kant’s first Critique). As
Anderson (2015, p. 16) points out, in the passage quoted above (CPR, A 6-7/B
10-11), the containment criterion benefits of a privileged position: it is announced
first and the other two formulations of the distinction seem to be inferred from
it. In particular, Kant’s wording seems to highlight through the particle ‘thus’
that the role assigned to the identity criterion is that of a consequence of the
containment one: “Analytic judgments [. . . ] are thus those in which the connection
is thought through identity”; similarly, the clarification criterion is introduced
as an alternative version that can be simply derived from the first one: “One
could also call the former [i.e. analytic judgments defined through containment]
judgments of clarification” (emphasis added). Last, it’s important to notice
that the contradiction criterion is presented only much later in Kant’s Critique.
This textual evidence testifies of a priority of the containment criterion as the
exposition requires: this is but a hint of its conceptual centrality, which however
can be argued only through an analysis of the criterion itself and of the other
formulations.

As we have seen, the containment definition asserts that the relation of the
subject A to the predicate B in an analytic judgment is such that “the predicate B
belongs to the subject A as something that is (covertly) contained in this concept
A”. It’s crucial to observe that this criterion cannot be adopted on any proposition
whatsoever: Kant imposes several important restrictions on its applicability.

First, although Kant is not explicit on this point, the analytic-synthetic dis-
tinction in terms of the containment criterion applies only to true judgments. This
is because a sufficient ground for the truth of a judgment is its being analytic ac-
cording to the containment criterion. As Kant explains10, a judgment like ‘All
bodies are extended’ is analytic because an analysis of the concept corresponding
to ‘body’ reveals that the predicate ‘extended’ is contained in it. But this con-
dition also guarantees the truth of that judgment, for it is impossible that the
concept ‘extended’ be contained in the concept ‘body’ and at the same time that
the judgment ‘All bodies are extended’ be false11. The idea of analytic falsehood,

analytic and synthetic”.
10In CPR A 7/B 11.
11Proops (2005) argues for this thesis dealing also with synthetic a priori judgments. Kant,

saying that “the predicate B belongs to the subject A as something that is (covertly) contained
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although hints of it can be found in some Kantian reflexions12, is thus completely
absent from Kant’s Critique.

The second restriction imposed on the applicability of the distinction defined
in terms of containment is instead more evident, for Kant explicitly states: “I con-
sider only affirmative judgments, since the application to negative ones is easy”.
Proops (2005, p. 591) maintains that “the idea of containment is merely one appli-
cation of a more general idea that is equally applicable to negative judgments” and
individuates that idea in the “thought that analytic truth can be characterized in
terms of relations of containment and exclusion”. Kant’s introduction of exclusion
as a complementary element of the notion of containment is clearly justified by
the following passage of the Analytic of Principles :

In the analytic judgment I remain with the given concept in order to
discern something about it. If it is an affirmative judgment, I only
ascribe to this concept that which is already thought in it; if it is a
negative judgment, I only exclude the opposite of this concept from it
(CPR, A 154/B 193).

As Proops explains, the opposite of a concept is the negation of one of its con-
stituent marks; so, a negative judgment such as ‘Every body is not simple’ is ana-
lytic because it excludes from the concept ‘body’ the opposite of what is thought
in it, that is the predicate ‘simple’, which is the opposite of one of the constituent
marks of body, such as ‘extended’. Proops’ convincing proposal underlines that
the containment criterion per se cannot be applied to negative judgments: only
an extension of its definition could avoid this second restriction.

The third restriction, which is more problematic in many respects, asserts that
the analytic-synthetic distinction formulated via containment can only be applied
to categorical judgments, i.e. judgments of the subject-predicate form. This is the
meaning of the very beginning of the passage quoted above (CPR, A 6/B 10), where
Kant states: “In all judgments in which the relation of a subject to the predicate is

in this concept A” (emphasis added), suggests that a concept B may belong to a concept A
without being contained in it. The problem of the possibility of synthetic a priori judgments is
accordingly that of explaining the possibility of the truth of a judgment in which the predicate
concept is not contained in that of the subject. From this, Proops concludes that to say that
one concept ‘belongs’ to another means that they are related in a true universal judgment and
that “the idea behind the containment criterion must be that an affirmative analytic truth is a
judgment whose truth is owed to the obtaining of a relation of containment between the subject
and predicate concepts, while an affirmative synthetic truth is an affirmative judgment whose
truth is not so explained”.

12Proops (2005) argues that the idea of analytic falsehood is present in Kant’s essay Attempt
to Introduce the Concept of Negative Magnitude into Philosophy and indicates that in the 6327
Reflexion Kant describes the judgment “a resting body is moved” as “analytic and false”.
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thought [. . . ] this relation is possible in two different ways [. . . ]” (emphasis added).
This limitation is one of the major reasons for which Kant’s theory of analyticity
has been criticized: its formulation soon appeared too narrow. For example Frege
(FA, par. 88, pp. 99-100), in his The Foundations of Arithmetic, finds in this
restriction one of the reasons for what he took to be Kant’s misunderstanding of the
status of arithmetical judgments and concludes that “Kant obviously - as a result,
no doubt, of defining them too narrowly - underestimated the value of analytic
judgments”. Moreover, Frege adds to his interpretation of Kant’s position that
‘What he is thinking of is the universal affirmative judgment; there, we can speak
of a subject concept and ask - as his definition requires - whether the predicate
concept is contained in it or not” and points at some cases in which there can be
no question of a subject concept in Kant’s sense.

This kind of criticisms led some scholars to deny the very fact that Kant in-
tended the analytic-synthetic distinction to be applied only to categorical judg-
ments13. This denial is carried out according to two main strategies. On the one
hand, it has been maintained that, although it is surely restricted to categorical
judgments, the containment criterion is but a part of Kant’s theory of analyticity,
which is extended by more comprehensive criteria. On this account, the limitation
would turn out to be an accidental feature of the containment formulation14. On
the other hand, some critics simply balance the weight of the textual evidence
given by the passage quoted above (CPR, A 6/B 10) with other Kantian loci,
which are usually interpreted in a way apt to justify Kant’s supposed intention of
applying his distinction to any kind of judgments15. The strongest texts that are
usually cited against the third restriction are the following:

[. . . ] judgments may have any origin whatsoever, or be constituted
in whatever manner according to their logical form, and yet there is
nonetheless a distinction between them according to their content, by
dint of which they are either merely explicative and add nothing to the

13For example, Kneale and Kneale (1962, p. 357): “As it stands, Kant’s explanation refers
only to judgments of the subject-predicate form; but he can scarcely have intended his distinction
to be limited to them in its application, for he goes on to talk as though he were dealing with
the whole field of possible knowledge”.

14Hanna (2001, p. 145) holds that Kant’s theory of analyticity via the identity formulation
avoids the limitation to categorical judgments. In his words: “despite misleading appearances,
Kant’s focus on categorical propositions in his theory of analyticity is only an expository con-
venience, but not a necessary or substantive feature of the theory”. He then concludes that
“Kant grants a certain primacy to the subject/predicate structure in his theory of judgement
by treating it as generatively basic. But his theory of analyticity, construed in terms of his
identity formulation, does not entail that every analytic truth be categorical in its gross logical
or grammatical form”.

15Anderson (2015, p. 20) follows this path.
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content of the cognition, or ampliative and augment the given cogni-
tion; the first may be called analytic judgments, the second synthetic
(Prol., p. 16).

[. . . ] every existential proposition is synthetic (CPR, A 598/B 626).

The first excerpt, taken from the second Section of the preamble of the Prolegom-
ena, is read by most scholars as saying that the analytic-synthetic distinction is
not grounded on the logical form of judgments, but rather on their intension16. In
other words, Kant seems here to be asserting that the distinction can be applied
not only to categorical, but also to other kinds of judgments. The second state-
ment, which can be found in the Transcendental Dialectic, seems to suggest that
there are some judgments that are at the same time not categorical, in so far as
they have an existential import, and synthetic. Proops (2005) proposes alternative
and convincing readings of the two quotations above. The phrase ‘logical form’
in the text of the Prolegomena is employed, according to Proops, not in its con-
temporary sense, but as meaning ‘degree of distinctness’. This use is well attested
through Kant’s works, including also the first Critique, and fits with the context
in which it is inserted.

As far as the second quotation is concerned, Proops argues that Kant does not
take existential judgments to lack subject-predicate form. An immediate objection
against this interpretative thesis put forward by Proops might be the observation
that Kant criticizes the ontological argument for the existence of God exactly on
the basis of the rejection of the claim that existence is a property of an object.
Nevertheless, Proops points out that what Kant actually says is that existence is
not “a real predicate, i.e., a concept of something that could add to the concept
of a thing”17; but he does not say that existence is not a logical predicate. On
the contrary, continues Proops, Kant maintains that “anything one likes can serve
as a logical predicate”18. Regarding the logical form of existential judgments,
Kant maintains, in The Only Possible Argument in Support of a Demonstration of
the Existence of God, that when in common speech we appear to be predicating
existence of a thing we are really predicating it of the concept of that thing:
following this principle, every proposition of the form ‘Existence belongs to x’ is
more perspicuously expressed by ‘The concept x is a concept that represents an
existent thing’ or ‘The concept x is instantiated’. But the latter two expressions
are of the subject-predicate form: thus, concludes Proops, existential sentences
are not counterexamples to the third restriction.

16This is, for example, Allison’s (1973, p. 56) reading.
17CPR, A 599/B 627.
18CPR, A 598/B 626.
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As far as textual evidence is concerned, we have seen on the one hand that the
strongest excerpts taken in support of the thesis that Kant intended to apply the
analytic-synthetic distinction via containment to judgments other than categorical
are not overwhelming; and on the other hand that Kant explicitly confines his
discussion to subject-predicate judgments (CPR, A 6/B 10). But, we think, the
decisive motivation for maintaining Kant’s acceptance of the third restriction on
the containment criterion is of a conceptual nature: the crucial motivation is that
it is not possible to apply the containment criterion to judgments that are not of
the subject-predicate form. As de Jong (1995, p. 617) observes, “only in the case
of a categorical judgment is the relation of thought in judgment that of subject to
predicate”. In disjunctive and hypothetical judgments, which are examples of non-
categorical judgments, the relation of thought is that of judgment to judgment(s),
not that of two concepts, those of the subject and of the predicate19.

Now, if Kant had intended to apply his distinction via containment to all kinds
of judgments, he could have worked out a strategy to reduce a judgment whatsoever
to a categorical one. This move would not have been absurd: Leibniz, for example
in his Elementa Calculi, holds that ‘A is B’ is the canonical form of any judgment
and thus tries to formulate a systematic algorithm to turn every proposition into
its canonical form20. But this, we think, is not Kant’s position: hypothetical and
disjunctive propositions are both enumerated under the heading ‘relation’ in the
table of judgments and Kant insists that all the twelve forms of judgments must
be recognized as primitive. As a result, hypothetical and disjunctive judgments,
being not reducible to categorical judgments, cannot be said to be analytic on the
basis of the containment criterion.

To sum up, the analysis carried out on the three kinds of restrictions leads us
to maintain that Kant intended to apply the analytic-synthetic distinction defined
through the containment criterion only to true affirmative categorical judgments.
By extending the criterion with the notion of exclusion, analyticity can be at-
tributed to negative judgments, but this is the only extension allowed. In other
words, Kant’s distinction via containment is not exhaustive and, as a consequence,
there are some judgments which are neither analytic nor synthetic21. Kant’s lack

19See CPR, A 73-74/B 98-100.
20Leibniz shows, following the scholastics, that, first, any proposition can be turned into

subject-copula-predicate form: for instance, ‘Socrates runs’ and ‘It rains’ become, respectively,
‘Socrates is running’ and ‘Rain is falling’. And then he puts forward, for example in the essay
De Abstracto et Concreto, his new proposal of translating any proposition of the form ‘if A is B,
then C is D’ into one of the form ‘the being B of A is the being D of C’. The two components of
this sentence are the so-called ‘logical abstracts’, the former of which, i.e. ‘the being B of A’ (or
‘the B-ness of A’), functions as a subject and the latter of which, i.e. ‘the being D of C’ (or ‘the
D-ness of C’), functions as a predicate.

21This conclusion, which is highly contrasted by the scholars, has been recently held by de
Jong (1995) and Proops (2005). The latter underlines Kant’s awareness of the consequences of
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of interest in the exhaustiveness of the analytic-synthetic distinction can be justi-
fied starting from the employments he designed for it. First, as Proops (2005, p.
610) underlines, Kant’s “chief concern is to argue for the syntheticity of certain
judgments”, such as the claims of mathematics, natural sciences and metaphysics,
“that in his days would have been assumed to have subject-predicate form. The
need for a classification that applies to all judgments is very much a late nine-
teenth and early twentieth-century concern”. Second, if Anderson (2015)’s thesis
that Kant’s aim is to reject the metaphysics based on the Leibnizian predicate-
in-subject theory is correct, and given the strict link between containment and
subject-predicate judgments, then it is sufficient for Kant to focus on categori-
cal proposition, to show that their truth cannot be justified on the basis of the
containment criterion alone.

The charge of narrowness against Kant’s theory of analyticity due to its con-
finement to categorical judgments is not the only criticism moved against it: the
containment criterion has been accused of both psychologism and obscurity. An
analysis of these two criticisms will lead us to gain important elements of the
containment characterization.

According to the first charge, which has been advanced soon after the publi-
cation of the Critique, the analyticity or the syntheticity of a certain judgment
depends on the subject that considers that judgment. In particular, it relies on
the features that the individual involved associates both to the subject and to
the predicate concepts of that judgment, on the basis of which it can be deduced
whether the relation of containment holds or not. This charge can be easily dis-
missed by recalling, as Hanna (2001, p. 155 and ff.) does, the important Kantian
distinction between subjective (or phenomenological) and objective (or semantic)
elements of representations. Beside the subjective act of attaching to a given con-
cept some characteristics, which of course varies from individual to individual,
there is also the objective element of the representation of that concept, which
instead determines the conceptual marks that are objectively contained in it: the
analyticity or syntheticity of a judgment depends on this latter aspect.

The second charge has a long history: it has been put forward by Kant’s
contemporaries and frequently evoked even in recent times. For example, Bolzano
(1973, par. 148, p. 196), in his Wissenschaftslehre, states that “the explications of
this distinction one encounters, whether in Kant’s own writings or those of others,
still fall somewhat short of logical precision” and, talking about the author of the
Critique, he adds that “these are in part merely figurative forms of expression
that do not analyze the concept to be defined, in part expressions that admit of
too wide an interpretation”. The obscurity of Kant’s containment criterion for

his definition: “the distinction is intended to have a narrow scope: it applies - and is intended
to apply - only to judgments of subject-predicate form” (Proops, 2005, p. 589).
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distinguishing analytic from synthetic judgments, which is said to be caused by a
figurative or metaphorical language, has become a stereotype after Quine (1951, p.
21)’s attack in his influential paper Two Dogmas of Empiricism: “Kant conceived
of an analytic statement as one that attributes to its subject no more than is
already conceptually contained in the subject. This formulation [. . . ] appeals to
a notion of containment which is left at a metaphorical level”.

Against the charge of obscurity some scholars have recently argued that the
containment criterion, far from being a metaphorical formulation, is instead a
precise notion. Anderson (2015, Part I), who, together with de Jong (1995), can be
considered as the main representative of this interpretational trend, maintains that
for Kant and his contemporaries the standard notion of containment is rigorously
articulated through the appeal to the theory of logical division of concepts and
to the Porphyrian concept hierarchies. This thesis deserves a closer examination.
As Anderson explains, the standard notion of containment is twofold: on the one
hand, each genus is said to be ‘contained in’ its species; on the other, each specie is
said to be ‘contained under’ its genus. A concept’s content is what is contained in
it, i.e. more general concepts; a concept’s extension is what is contained under it,
i.e. more specific concepts22. For the traditional theory of concepts, then, concepts
have the same extension if and only if they have the same content and containment
relations establish a hierarchy. In Anderson’s (2015, p. 55) words, conceptual
content and logical extension are ‘strongly reciprocal’ and ‘hierarchically ordered’.
Higher and lower concepts are identified as genera and species:

The higher concept, in respect to its lower one, is called genus, the
lower concept in regard to its higher ones species (JL, par. 96, p. 594).

As a result, containment relations are ordered in a hierarchy of genera and species,
where each genus is contained in its species and each species is contained under its
genus. It is precisely due to this link between containment and the theory of genus
and species that, according to Anderson, the rules of logical division can be applied
to the standard notion of containment, with the positive consequence of regulating
and specifying a quite technical notion of containment. The divisions, which are
based on the Aristotelian definitions, are governed by the rules that the species
exhaust the divided genus and that the species exclude one another: in other words,
divisions are exclusive and exhaustive disjunctions. Therefore, the relation of two
concepts whatever is either that of complete inclusion or that of total exclusion:
partial overlaps are not admitted in these concepts hierarchies. Thus, as Anderson

22Anderson (2015, p. 50) underlines that Kant treats logical extension intensionally, in the
sense that a concept’s extension does not consist of individuals as in the modern interpreta-
tions, but rather of concepts. As a result, “the entire theory of conceptual contents and logical
extensions is in fact based on ideas about concept containment”.
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underlines, the judgment that connects any two concepts will be either true, in
the case of complete inclusion, or false, in the case of total exclusion: tertium non
datur. The rules of divisions not only govern the relation between concepts, but
also help to identify the content of a given concept: it is sufficient to add from its
genus a differentia that marks its peculiarity. The process of division then turns out
to be the inverse of that of logical abstraction via analysis. The picture conveyed
by de Jong (1995) and Anderson (2015), although it is not free of difficulties23, is,
on balance, convincing: containment, for Kant and his contemporaries, is not a
mere metaphor, but a quite technical notion.

1.1.3 Clarification, identity and contradiction

We have seen in the previous paragraph that the containment criterion applies
only to true, affirmative, categorical judgments and is neither psychologistic nor
obscure. We now turn to the remaining criteria of analyticity in the Critique,
focussing in particular on their relation with the containment version. For ease of
exposition, we will start from the clarification version of the distinction; we will
move then to the identity criterion and conclude with the contradiction one.

As Proops (2005) emphasises, the characterization of analyticity in terms of
clarification, as it is put forward by Kant in the excerpt of the Introduction to
the Critique quoted above (CPR, A 7/B 11), combines both a negative and a
positive requirement. The negative point is that analytic judgments “through the
predicate [. . . ] do not add anything to the concept of the subject”; the positive
feature is that analytic judgments break the concept of the subject up “by means
of analysis into its component concepts, which were already thought in it (though
confusedly)”24.

We hold that the clarification criterion can be reduced to the containment one,
which constitutes its fundamental idea. The deep link between the two versions
of analyticity can be mostly appreciated considering the positive feature of the
definition above: the clarification of the concepts’ intensions involved in a cer-
tain analytic judgment, which is obtained through conceptual analysis, consists of
showing that the predicate concept is contained in that of the subject. In spite of
the immediacy of this argument, some scholars have suggested that clarification

23Proops (2005, p. 599) argues that the notion of containment that emerges from this picture,
far from being clear tout court, is “as clear as the general notion of the relation of a genus or
differentia to a species”, which, according to him, “is not well explained”. Proops consequently
concludes that “Quine’s charge that Kant’s explanation of analyticity rests on unclear metaphor
is, on balance, justified”.

24This duplicity of the clarification criterion is reaffirmed in the Prolegomena (Prol., p. 16),
where Kant explains that “Analytic judgments say nothing in the predicate except what was
actually thought already in the concept of the subject, though not so clearly nor with the same
consciousness”.
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is not completely reducible to containment because the former would be charac-
terized by an epistemic flavour that the latter would lack25. For example, Proops
(2005, p. 602) maintains that clarification restricts the range of applicability of
the containment criterion: while the latter applies to true judgments, the former
would concern only judgments that are known to be true. He thus concludes that
“the characterization in terms of the explicative-ampliative contrast is a classifica-
tion of items of knowledge”. The epistemic perspective of Kant’s analyticity, which
would be pointed out by the positive requirement of the clarification definition, is
that analytic judgments are not cognitively empty, but are rather illuminating as
they extend our knowledge.

While it is undeniable that analytic judgments according to Kant do have a
cognitive content, we think that clarification merely emphasises the epistemic con-
sequences of the analytic-synthetic distinction via containment that are already
acting in the containment formulation. In other words, we concede the epistemic
flavour of the clarification criterion: but this epistemic flavour is not given, in our
opinion, by the epistemological force of the distinction itself, because the distinc-
tion via clarification (and amplification) is still a distinction between two kinds of
propositional content, as it is for the containment criterion, and not of two kinds
of cognitive procedures26. The point is that clarification is a characterization in
epistemic terms of a logical distinction27. Moreover, the reason for which the pro-

25For example, Allison (2004, p. 90) on the one hand rejects the containment formulation
precisely on the ground that this version of the analytic-synthetic distinction “suggests that the
distinction is a logical one, concerning the relation between the subject and predicate concepts in
a judgment”; on the other hand argues for the centrality of the clarification version of analyticity
because “it indicates that the two species of judgments differ in their epistemic functions”.

26This subtle distinction, which is due to Anderson (2015), has perhaps eluded also Kant’s
accusers of psychologism, for whom the exposition of the clarification criterion in CPR, A 7/B
11 has to be read as an evidence, even stronger than that of the containment criterion, that
analyticity and syntheticity depend on the mental and subjective act of judgment. As for the
case of containment, the charge of psychologism against clarification has to be rejected.

27The analytic-synthetic distinction is said to be ‘logical’ when it distinguishes between judg-
ments or propositions on the basis of the logical relation among their constituents; as a result,
analyticity and syntheticity turn out to be objective properties of the items considered, which
remain fixed independently of the individual possibly involved in expressing a judgment or in
thinking of a proposition. The logical conception of the distinction can be contrasted with both
the methodological and the epistemological conceptions. This is what Anderson (2015, Chapter
1.3 and Part II) proposes, although he restricts himself to Kant’s theory and developments of the
distinction. The analytic-synthetic distinction of methodological nature is a distinction between
two kinds of concept formations, analysis and synthesis, which are two traditional procedures or
approaches for acquiring knowledge. This type of distinction can be extended only derivatively
to judgments. The distinction is instead said to be ‘epistemological’ if it discerns between two
different ways of knowing (and by extension, but again only derivatively, between two different
types of judgments so known). This conception of the distinction concerns not only the genera-
tion of judgments, but also their epistemic justification. Nevertheless, both the methodological
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cess of clarification has a cognitive content, that is, the analysis of the concepts
involved in analytic judgments brings to light their conceptual marks that “were
already thought in it (though confusedly)” (CPR, A 7/B 11), can be found ulti-
mately and again in the containment criterion, in which the predicate-concept is
explicitly said to be “covertly” (CPR, A 6/B 10) contained in the subject concept.

Now, if analytic judgments are illuminating and endowed with cognitive con-
tent, in so far as the process of analysis explicates the concepts involved by making
distinct their conceptual marks, then analytic judgments are not trivial or tautol-
ogous, as they will be taken to be later on, especially in the Twenty-First century.
As a result, this seems to require at least the predicate concept being different from
the subject concept, for otherwise there is no room for any kind of clarification
whatever. This is the main reason for which the identity criterion cannot be fully
reduced to the containment one. For consider again, as an example, the judgment
‘man is man’: here “the connection of the predicate is thought through identity”
(CPR, A 7/B 10) and thus the judgment is surely said to be analytic according to
the identity criterion; nevertheless, the concept of the predicate is not ‘covertly’
contained in that of the subject and thus the judgment, strictly speaking, can-
not be said analytic following the containment formulation. Both in the Critique
(CPR, B 17) and in the Prolegomena (Prol., p. 19), Kant clearly asserts that the
tautologous judgment ‘a = a’ is analytic. The thesis of the analyticity of identical
judgments, however, is explicitly rejected in other loci of Kant’s work28 and this
has led scholars to quarrel on the interpretation of Kant’s position29. Notice that

and the epistemological conceptions of the analytic-synthetic distinction, as Anderson repeat-
edly underlines, are founded on the way in which individuals relate to judgments and are thus
subject-dependent. As a result, according to these two conceptions, analyticities can be turned
to syntheticities and vice versa.

28For example, in a plan for a Preisschrift über die Fortschritte der Metaphysik (after 1791),
Kant states that: “Analytic judgments are grounded on identity indeed and can be resolved in
it, but they are not identical. Analytic judgments need an analysis and in this way they serve
to explain concepts; while on the contrary identical judgments, idem per idem, do not explain
anything” (PM, XX 322).

29Hanna (2001) includes in his list of the propositions said by Kant to be analytic also ‘man is
man’, taken from the Jäsche Logic, thus assuming the analyticity of tautological propositions. De
Jong (2010), reporting some doubts of the authenticity of that work and quoting as evidence the
first text cited in the note above as well as others, goes against Hanna’s conclusion. In particular,
de Jong (1995, pp. 629-630) maintains that: “Tautological judgments are strictly speaking
neither analytic nor synthetic [. . . ] tautological judgments form according to Kant anything but
ideal-typical examples of analytic judgments; to the extent that he regards such judgments as
analytic, he sees them at most as dubious or degenerate cases of analyticity”. Proops (2005)
proposes a diachronical reading of Kant’s position that accounts for his oscillations in his work:
according to his interpretation, at the beginning Kant includes identical judgments among the
analyticities because he understands his analytic-synthetic distinction as a classification of true
judgments aimed against the Leibnizian; then, he comes to regard the distinction as focussed
on knowledge-advancing judgments and thus he holds that identical judgments, being empty of
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the issue at stake here is, once again, Kant’s choice of one criterion as the funda-
mental basis for his theory of analyticity; for there is a class of judgments, that
consisting of tautological judgments, whose analyticity or syntheticity depends on
the selected criterion.

Although identity and containment differ for the treatment of tautologous judg-
ments, they are nevertheless strictly connected. This is evident if we consider the
fact that the identity criterion classifies as analytic not only tautologous judgments
like ‘a = a’, but also partial identities like ‘all bodies are extended’. In a judg-
ment of the latter kind the predicate concept is partially identical with the subject
concept because the relation of full identity subsists only between the conceptual
notes that constitute the predicate concept and some but not all the conceptual
marks of the subject (in the example above, ‘extension’ is one of the conceptual
notes of ‘body’). But this is only another way of saying what is asserted by the
containment criterion, because the predicate concept, being a part of the subject
concept, is contained in the subject concept. Therefore, we can conclude that
containment is the fundamental idea behind the identity criterion. The difference
noted above between the two criteria is only a consequence of the fact that identity
is a purely logical distinction in that it exclusively concerns the components of a
judgment: as a result, it excludes any consideration of epistemic nature; but it is
exactly on the basis of this kind of considerations that the containment criterion
prevents tautologous judgments from being analytic.

As we will see, things are radically different for the contradiction criterion.
The latter has been frequently indicated as the best among Kant’s versions of an-
alyticity and often recognized as the true Kantian account. The supposed reasons
for its superiority are its inclusiveness, since, unlike the containment definition,
it does not seem to be restricted to categorical propositions; and its affinity with
the contemporary appeal to the class of logical truths in providing a definition
of analyticity30. While both of these motivations are, as it will be clarified soon,
unjustified, the latter is in addition anachronistic, in that it presumes to find in
Kant’s texts ideas conceived only later on. Kant introduces the relation between
the principle of contradiction and the issue of analyticity in the second Chapter
of the Analytic of Principles, in a paragraph entitled On the Supreme Principle of

cognitive content, cannot be said to be analytic.
30For example Kneale and Kneale (1962, pp. 357-358), talking about the contradiction crite-

rion, maintain that “Such a characterization of analytic judgments is undoubtedly more suitable
for Kant’s purposes than that with which he began [i.e. containment], since it is possible with
this definition to divide all true judgments between the headings analytic and synthetic”. And
conclude by saying: “we find it [i.e. the word ‘analytic’] in many modern works with an explana-
tion which makes it a synonym for ‘true on logical grounds alone’. This usage can be defended
by the argument that it maintains contact with tradition and renders Kant’s intention better
than he ever succeeded in doing for himself”.
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all Analytic Judgments, which is now time to quote in its context:

Now the proposition that no predicate pertains to a thing that contra-
dicts it is called the principle of contradiction, and is a general though
merely negative criterion of all truth, but on that account it also be-
longs merely to logic, since it holds of cognitions merely as cognitions
in general, without regard to their content, and says that contradiction
entirely annihilates and cancels them.
But one can also make a positive use of it, i.e., not merely to ban false-
hood and error (insofar as it rests on contradiction), but also to cognize
truth. For, if the judgment is analytic, whether it be negative or
affirmative, its truth must always be able to be cognized sufficiently
in accordance with the principle of contradiction. For the contrary of
that which as a concept already lies and is thought in the cognition
of the object is always correctly denied, while the concept itself must
necessarily be affirmed of it, since its opposite would contradict the
object.
Hence we must also allow the principle of contradiction to count as
the universal and completely sufficient principle of all analytic cog-
nition; but its authority and usefulness does not extend beyond this,
as a sufficient criterion of truth. For that no cognition can be opposed
to it without annihilating itself certainly makes this principle into a
conditio sine qua non, but not into a determining ground of the truth
of our cognition (CPR, A 151-152/ B 190-191, underlining added).

In this excerpt, Kant is distinguishing between two functions of the contradiction
criterion. On the one side, the principle is a “negative criterion of all truth”: it is
a negative criterion of truth because it serves to “ban falsehood and error” and,
crucially, it applies to all kinds of truth, that is, to both analytic and synthetic
judgments. In other words, the requirement of not violating the principle of non-
contradiction is a necessary condition for truth in general, for opposing to it means
“annihilating itself”. However, Kant explicitly denies that that requirement serves
as a sufficient reason for the truth of a judgment in general: that is, there exists
a class of judgments that are not true even though they fulfill the principle. This
possibility is explicitly acknowledged by Kant in the paragraph that precedes the
quotation above, where he says that “even if there is no contradiction within our
judgment, it can nevertheless combine concepts in a way not entailed by the object,
or even without any ground being given to us either a priori or a posteriori that
would justify such a judgment”. On the other side, the principle functions as a
“positive” criterion for the cognoscibility of analytic truth: it is positive because it
serves to “cognize truth”, and it does not apply to any kind of judgments, but only



CHAPTER 1. KANT 34

to analytic ones. Clearly this requirement is stronger and more restricted than the
former. In particular, the sentence that “if the judgment is analytic, whether it
be negative or affirmative, its truth must always be able to be cognized sufficiently
in accordance with the principle of contradiction” can be paraphrased by saying
that the sufficient cognoscibility in accordance with the principle of contradiction
is a necessary condition for a judgment to be analytic. But this is only a more
convoluted way of stating that the principle of contradiction is a necessary and
sufficient condition for the cognoscibility of analytic judgments. The goodness of
this reading is confirmed by the sentence at the beginning of the third paragraph:
the principle has to count as the “universal”, that is, necessary in this context,
and “completely sufficient principle of all analytic cognition”31.

In the textual analysis above, we have omitted to emphasize an important
aspect of Kant’s exposition: the principle of contradiction is invoked as an in-
strument for knowing the truth of analytic judgments and is appointed with a
fundamental epistemological function. This aspect emerges clearly from the ex-
cerpt in the Analytic: the phrases that we have underlined show Kant’s insistence
on two main points. First, the principle is a criterion of truth: whether of truths
in general or of analytic truths, this means that it is an instrument that establishes
the truth of other propositions. Second, Kant is always careful in stating that the
principle serves for the cognoscibility of something: in particular, he does never
say that contradiction is the principle of analysis or of analyticity, but that it is the
“principle of all analytic cognition” (emphasis added). From the epistemological
function of contradiction some scholars have correctly inferred that, traditional
interpretations notwithstanding, the principle is not a definitional criterion of an-
alyticity. For example, de Jong (1995) distinguishes a “notion of analyticity” from
an “epistemological criterion for analyticity” and Proops (2005, p. 603) explains
that “Kant is thus making a point about the epistemology of analytic and syn-
thetic judgments, and in doing so he is presupposing an understanding of the terms
‘analytic’ and ‘synthetic’. He cannot therefore mean to be simultaneously char-
acterizing analytic judgments as those that are cognizable in accordance with the
principle of contradiction”.

While the epistemological function of the principle is confirmed by the textual
evidence shown above, the thesis that Kant would not intend to appeal to contra-
diction for defining analyticity is supported by a series of other elements. First,

31Proops (2005) seems to confine his interpretation to the hypothetical statement quoted above
and concludes that “Kant does not say - or even imply - that analyticity consists in being
knowable on the basis of the principle of contradiction. Instead, he states a necessary condition
for analyticity: if something is an analytic judgment then it must be knowable (or “cognizable”)
in a certain way”. We think that his deduction is wrong, because Kant explicitly holds that the
truth of an analytic judgment also has to be sufficiently cognized according to the principle and
he restates this point in closure of the passage we have quoted.
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the claim that contradiction is “the principle of all analytic cognition” follows the
assertion that contradiction is a necessary condition for truth in general; that is,
that claim is inserted in a list of the uses that the principle can have, which con-
veys the idea of its instrumental nature. Second, Kant’s explanation of the role of
the principle of contradiction is not located in the Introduction, together with the
other three definitions that we have examined; rather, it is isolated and arrives only
later in the Critique32. Third, as Proops (2005) underlines, this definition would
have been quite atypical if compared with the others, since it does not mention any
restriction to categorical propositions: this does not imply, as the Kneales would
have wanted, that Kant intended to extend his analytic-synthetic distinction to
any kind of judgments; but rather this entails that the principle of contradiction
is not appealed to for defining analyticity.

The exact way in which the principle of contradiction can be employed as an
epistemic instrument for knowing the truth of analytic judgments is more per-
spicuous in the following excerpt taken from the Prolegomena than in that of the
Critique quoted above:

For since the predicate of an affirmative analytic judgment is already
thought beforehand in the concept of the subject, it cannot be denied of
that subject without contradiction; exactly so is its opposite necessarily
denied of the subject in an analytic, but negative, judgment, and indeed
also according to the principle of contradiction (Prol., p. 17).

This passage clearly excludes the widespread and anachronistic interpretation ac-
cording to which that a judgment is known in accordance with the principle of
contradiction means that it is possible to derive an explicit contradiction from
the negation of the judgment involved. The idea is rather that in an affirmative
analytic judgment the contradiction rests with the concept of the subject and the
concept of the negation of the predicate; while, in the negative case, contradic-
tion rests with the concepts of the subject and of the predicate. This is because
the predicate is “already thought beforehand in the concept of the subject”, for
if the predicate were not thought in that of the subject, then the denial of the
former would not contradict the latter. In other words, the ultimate reason for
the epistemic function of the principle of contradiction in knowing the truth of
analyticities is the relation of containment between the concepts involved in ana-
lytic judgments. Thus, although the principle of contradiction does not function,

32Actually, the principle of contradiction is mentioned in the fourth paragraph of the second
edition of the Introduction to the Critique. But even this mention is separated from the definitions
of the analytic-synthetic distinction and indicates its instrumental role, since it says that in
analytical judgments the concept of the predicate is extracted from that of the subject via the
principle of contradiction.
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strictly speaking, as a definition of analyticities, the possibility of its employment
as a tool of knowledge is granted by the fundamental idea of containment that
grounds Kant’s notion of analyticity.

1.1.4 Syntheticity and intuition

The importance of avoiding the ‘privileging of analyticity’ in a treatise about the
Kantian analytic-synthetic distinction can be correctly justified by appealing to
the need of a philological and conceptual adherence to the original texts. But the
indisputable centrality of the synthetic a priori in Kant’s system is not our concern
here. Rather, we need to clarify the main defining features of syntheticity because
we have seen that Kant’s distinction is not exhaustive: as a result, in order to
establish that a judgment is synthetic, it is no more sufficient to show that it is
not analytic.

A natural point to start with are the counterparts of the four criteria of analyt-
icity examined above. From the excerpt of the fourth paragraph of the Introduction
to the Critique (CPR, A 6-7/B 10-11) we learn, first, that in synthetic judgments
the concept of the predicate “lies entirely outside” the concept of the subject,
“though to be sure it stands in connection with it”; second that this “connection
is thought without identity” and third that synthetic judgments can also be called
“judgments of amplification” because they “add to the concept of the subject a
predicate that was not thought in it at all, and could not have been extracted from
it through any analysis” (CPR, A 6-7/B 10-11). Moreover, Kant, in the paragraph
entitled On the Supreme Principle of all Synthetic Judgments of the second Chap-
ter of the Analytic of Principles, explains that any synthetic judgment can be
denied without obtaining a contradiction and specifies that:

In synthetic judgments, however, I am to go beyond the given concept
in order to consider something entirely different from what is thought
in it as in a relation to it, a relation which is therefore never one of
either identity, or contradiction, and one where neither the truth nor
the error of the judgment can be seen in the judgment itself (CPR, A
154-155/B 193-194).

The main idea behind these passages is that in synthetic judgments the concept of
the predicate is not contained in the concept of the subject: rather, the former is
‘outside’ or ‘beyond’ the latter. Nevertheless, in order for grounding and justifying
the truth of synthetic judgments, there must be some kind of connection between
the two concepts involved. This connection cannot be thought through identity or
contradiction and cannot be explicated through analysis exactly because it is not
founded on containment. As a result, this connection cannot be but indirect in
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that it has to link the two concepts to one another by connecting them to a third
and different element. In Kant’s words33: “if it is thus conceded that one must
go beyond a given concept in order to compare it synthetically with another, a
third thing is necessary in which alone the synthesis of two concepts can originate”
(CPR, A 155/B 194). But what does this third element consist of34? The third
element that is always necessary for the truth of synthetic judgments is an object
in which “the synthetic unity of their concepts could establish objective reality”
(CPR, A 157/B 196). The relation of the concepts to the objects always has to
be mediated by intuition35, which for all human beings can only be sensible, in
that it is necessarily related to the faculty of sensibility, and never intellectual36.
For this reason, intuition dependence turns out to be the main feature of synthetic
judgments as opposed to the analytic ones:

If one is to judge synthetically about a concept, then one must go
beyond this concept, and indeed go to the intuition in which it is given.
For if one were to remain with that which is contained in the concept,
then the judgment would be merely analytic, an explanation of what
is actually contained in the thought (CPR, A 721/B 749).

Intuition, which plays a fundamental role in Kant’s notion of syntheticity, is a
kind of cognition37, whose main defining features38 are immediacy and singular-

33Kant affirms the need for a third element for connecting the two concepts involved in a
synthetic judgment in several passages of the Critique. For example, in the Introduction he states
that “in synthetic judgments I must have in addition to the concept of the subject something
else (X) on which the understanding depends in cognizing a predicate that does not lie in that
concept as nevertheless belonging to it” (CPR, A 8) and asks “What is the X here on which the
understanding depends when it believes itself to discover beyond the concept of A a predicate
that is foreign to it and that is yet connected with it?” (CPR, A 9/B 13).

34Or, in Kant’s words: “Where is the third thing that is always requisite for a synthetic propo-
sition in order to connect with each other concepts that have no logical (analytical) affinity?”
(CPR, A 259/B 315).

35For example, at the beginning of the Transcendental Aesthetic, Kant maintains that “In
whatever way and through whatever means a cognition may relate to objects, that through
which it relates immediately to them, and at which all thought as a means is directed as an end,
is intuition” (CPR, A 19/B 33).

36This is clearly stated in the following excerpt: “The capacity (receptivity) to acquire rep-
resentations through the way in which we are affected by objects is called sensibility. Objects
are therefore given to us by means of sensibility, and it alone affords us intuitions; but they
are thought through the understanding, and from it arise concepts. But all thought, whether
straightaway (directe) or through a detour (indirecte), must, ¡by means of certain marks,¿ ulti-
mately be related to intuitions, thus, in our case, to sensibility, since there is no other way in
which objects can be given to us” (CPR, A 19/B 33). On this point see also CPR, A 51/B 75.

37Kant explains that: “A perception that refers to the subject as a modification of its state
is a sensation (sensatio); an objective perception is a cognition (cognitio). The latter is either
an intuition or a concept (intuitus vel conceptus)” (CPR, A 320/B 377).

38Hanna (2001, p. 194 and ff.) identifies, through some textual evidence, five features that go
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ity39. These characteristics can be better appreciated if compared to the opposite
ones that go to identify concepts. First, while intuition refers to objects directly,
the connection of the concept to the object is always “mediate, by means of a
mark”; second, while intuition refers to one and only one object, a concept is a
general representation, because the mark through which it refers to an object “can
be common to several things” (CPR, A 320/B 377). It is possible to distinguish
between two kinds of intuitions: empirical and pure. Judgments based on the for-
mer are synthetic a posteriori: this is the easiest case, which involves an appeal to
experience. Judgments based on the latter are synthetic a priori : this is the most
interesting case, because “synthetic a priori judgments are contained as principles
in all theoretical sciences of reason” (CPR, A 10/B 14).

1.2 Kant’s pure general logic

In the previous Sections, we have dealt with the Kantian analytic-synthetic dis-
tinction. We have argued that, despite the many-sidedness presentation of the
distinction, the fundamental definition is based on containment (and possibly ex-
clusion) and classifies as analytic all and only true, (affirmative), categorical judg-
ments in which the concept of the predicate is (covertly) contained in the concept
of the subject. The determination of the class of judgments that Kant regarded as
analytic is not enough to establish the position Kant assigns to logic in connection
to the analytic-synthetic distinction. It’s clear that in order to define the status
of logical truths, we first need to examine Kant’s conception of logic. But which
is the logic we are concerned with?

This question is not trivial, since in the introduction to the Transcendental

to identify Kantian intuitions. Beyond immediacy and singularity, we have that first, intuitions
are related to sensibility because the reference to an object presupposes sensibility as the mode
in which human beings are affected by objects; second, any intuition can be given prior to all
thinking, since an object can be intuited without being conceptualized; third, intuitions depend
upon the (current or former) presence of an object. From these characteristics, Hanna concludes
that Kantian intuitions are essential indexical.

39Scholars have debated which of these two criteria works as fundamental. As we will examine
later in details, Hintikka (1972) argues that Kantian intuitions are characterized in the first place
by their singularity: upon this premise, he maintains the so-called ‘logical interpretation’ of the
role of intuition in mathematics, according to which intuitions are essential for mathematical
inferences. On the contrary, Parsons (1983) regards immediacy as the fundamental feature of
intuition from which the other one simply follows; accordingly, he argues that intuitions, as far
as they bring the spatio-temporal structure to the mind, provide the evidence and the certainty
that are typical of mathematical reasoning. As Anderson (2015, p. 214 and ff.) accurately
retraces, the logical and phenomenological interpretations of the role of intuition in mathematics
have been later resumed and placed on a more sophisticated basis. Moreover, recent works have
tried to reconcile different aspects of the two interpretations.
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Logic of the Critique, Kant recognizes four different kinds of logic: pure general
logic, applied general logic, special logic and transcendental logic. The first dis-
tinction introduced is that between general and special logics. While the former
“contains the absolutely necessary rules of thinking, without which no use of the
understanding takes place, [. . . ] without regard to the difference of the objects
to which it may be directed”, the latter “contains the rules for correctly thinking
about a certain kind of objects”: as a result, we find that each special logic acts
as an “organon of this or that science” (CPR, A 52/B 76) because “there is, for
example, a use of the understanding in mathematics, in metaphysics, morals, etc.”
(JL, par. 12, p. 528). The second distinction proposed in the introduction to
the Transcendental Logic is that between pure and applied logics. The former ab-
stracts “from all empirical conditions under which our understanding is exercised,
e.g., from the influence of the senses, from the play of imagination, the laws of
memory, the power of habit, inclination, etc.”; the latter undergoes “the subjec-
tive empirical conditions that psychology teaches us” (CPR, A 53/B 77). Applied
logic is “a representation of the understanding and the rules of its necessary use in
concreto, namely under the contingent conditions of the subject, which can hinder
or promote this use, and which can all be given only empirically” (CPR, A 54/B
78-79): the term ‘applied’ seems to refer ultimately to empirical psychology. With
the third distinction, which is the most fundamental one for the Critique, Kant
introduces his radical innovation of a transcendental logic (as opposed to the gen-
eral one). Transcendental logic investigates the origin and the objective validity
of the cognition of pure understanding and pure reason, through which we think
objects completely a priori. The central point here is that transcendental logic,
unlike general logic, can be seen as a special science because it has content and it
is related to some peculiar non-empirical objects, namely the pure concepts of the
understanding40.

Pure general logic41 is the discipline that gets closer to our modern conception

40Tolley (2012, pp. 313-314) underlines the importance of transcendental logic next to tradi-
tional logic and holds that the introduction of the former testifies that Kant saw the necessity of
providing a supplement of the latter. Tolley writes: “[. . . ] having some sort of content (‘relation
to an object’) forms part of the essence of thinking. Yet since it is the task of logic as such
to provide the analysis of the essence of thinking ‘in general’, logic’s task will remain deeply
incomplete so long as it restricts itself to the approach delineated by the traditional logic, since
it abstracted entirely from the content of thinking. The task of logic can only be completed,
therefore, by the introduction of a science of the content of thought - that is, by Kant’s new
transcendental logic”.

41Kant summarizes its main features as follows: “1) As general logic it abstracts from all
contents of the cognition of the understanding and of the difference of its objects, and has to
do with nothing but the mere form of thinking. 2) As pure logic it has no empirical principles,
thus it draws from psychology (as one has occasionally been persuaded), which therefore has no
influence at all on the canon of the understanding. It is a proven doctrine, and everything in it
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of logic and that is the focus of our discussion: from now on, unless specified
otherwise, the term ‘logic’ will thus refer to pure general logic. Two are the issues
that we are going to investigate in this Section. First, we provide an overview on
both Kant’s logical notions and the topics that went in those times to constitute
the discipline of logic. This will clarify which truths were considered as ‘logical’
truths in Kant’s view. Second, we are going to investigate Kant’s defining features
and conception of this discipline. This will set the indispensable basis for our
conclusion regarding the application and the applicability of the analytic-synthetic
distinction to logic.

1.2.1 The topics of pure general logic

Logic is a constant presence in Kant’s intellectual life. During his academic edu-
cation, Kant attended several logical courses and seminars; enhanced his logical
notions while preparing the dissertation for obtaining the venia legendi ; held nu-
merous courses in logic in his forty-year teaching in Königsberg; and also wrote
about this discipline42. The importance of logic in Kant’s cultural horizon seems
also to emerge from his Critique: the division of the work into a Doctrine of El-
ements and a Doctrine of Method follows a logical partition; then, at the very
beginning of the Preface to the second edition, logic is pointed at for having trav-
elled the “secure course of a science” (CPR, B vii-viii); last, in the Transcendental
Analytic Kant derives the table of categories from the classification of judgments

must be completely a priori” (CPR, A 54/B 78).
42In the Collegium Federicianum, during the years 1732-1740, Kant already received some

kind of logical education: he was taught at least about the basic principle of the discipline. It
was during his university period (1740-1746) in Knigsberg however that Kant could improve his
skills thanks to a wide logical didactic offer (Wolffism enriched with several other trends). In
particular, Martin Knutzen, extraordinarius professor in logic and metaphysics with a Wolffian
preparation mitigated by a strongly critical spirit, taught Kant about more advanced instruments
of logic, as it is proven by the Elementa Philosophiae Rationalis seu Logicae, which is the written
outcome of his long teaching. After his degree and a brief work experience as preceptor, Kant
obtains his venia legendi in 1755 with a dissertation, the Nova Dilucidatio, which mainly dealt
with the logical principles of contradiction and sufficient reason. The readings of Kant’s aspiring
teacher included the works of Christian August Crusius, a famous anti-Wolffian, and of Joachim
Georg Darjes, a member of the logical school of Jena. Kant taught in Knigsberg from 1755 to
1796 and in 1770 obtained the chair in logic and metaphysics. Among the courses that he held
in those forty years, those on logic were the most numerous: Emil Arnoldt’s reconstruction talks
about no less than 56 biannual courses on logic, 32 of which have surely been held and 24 of
which are certified only by their announcement. He adopted as handbook for his lessons the
Auszug aus der Vernunftlehre by Georg Friedrich Meier. Kant’s logical courses produced almost
2000 Reflexionen ber Logik, the brief treatise Die Falsche Spitzfindigkeit der vier syllogistischen
Figuren erweisen (1762), the Nachricht (1765), the numerous notes of his students and the
handbook edited by Jsche. The reconstruction of the present footnote benefits from the work of
Capozzi (2002, pp. 59-113).
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according to their logical form.
These hints notwithstanding, scholars are unanimous in claiming that Kant’s

knowledge of logic, especially of its technical notions, is incomplete and elementary.
For example, Kneale and Kneale (1962, p. 354) maintain that Kant’s interest in
traditional logic is “superficial”; Lapointe (2012, p. 11) agrees with the Kneales
and adds that “his treatment of logical questions per se is often seen as relatively
inconsequential”; then, Hazen (1999, p. 92) charges Kant of having “a terrifying
narrow-minded, and mathematically trivial, conception of the province of logic”.
These accuses cannot be easily dismissed. The superficiality of Kant’s interest in
logic can be intuited through a closer examination of Kant’s first Critique. First,
the clues pointed at above are, on balance, quite restricted. Second, Kant dedicates
only few pages of his main theoretical work to investigating pure general logic and
his discussion aims primarily at introducing the innovation of a transcendental
logic. Third, Kant’s idea of the history of logic, which is sketched for example in
the Preface of the second edition of the Critique, is totally static and completely
unaware of the latest ideas and developments43.

But the fundamental issue here is that Kant’s knowledge of logic consists of (a
restricted version of) the Aristotelian syllogistic with a simple theory of disjunctive
and hypothetical propositions added on44. This latter point clearly arises from an

43In the Preface to the second edition of the Critique, Kant affirms that “What is further
remarkable about logic is that until now it has also been unable to take a single step forward,
and therefore seems to all appearance to be finished and complete” (CPR, B viii) and, in the
Jäsche Logic, Kant arrives to dismiss any logical research project by holding that “In present
times there has not been any famous logician, and we do not need any new inventions for logic,
either, because it contains merely the form of thought” (JL, par. 21, p. 535). Kant’s historical
reconstruction from the antiquity to modern times follows a widespread stereotype. Aristotle is
always recognized not only as the founder but also the finisher of logic and, at the same time,
he is covertly accused of having introduced trivial subtleties in the discipline: “That from the
earliest times logic has traveled this secure course can be seen from the fact that since the time
of Aristotle it has not had to go a single step backwards, unless we count the abolition of a few
dispensable subtleties or the more distinct determination of its presentation, which improvements
belong more to the elegance than to the security of that science” (CPR, B viii). As Capozzi
(2002, p. 271 and ff.) explains, the reason for this charge is the connection of the Aristotelian
doctrines to the Aristotelianism of the scholastics, which was interpreted as the cultural mask of
the Papist tyranny. The evaluation of the most recent logic is instead original and the judgments
are quite variable in Kant’s writings: this is the case, for example, of Locke’s, Leibniz’s and
Wolff’s estimate. The picture that emerges from Kant’s historical reconstructions is at least
reductive and for sure immune to the latest, new and promising ideas, such as that of a logical
calculus.

44MacFarlane (2002, p. 26) underlines the expressive limitations of Kant’s logic with respect to
Frege’s logic. He holds that “the most dramatic difference is that Frege’s logic allows us to define
concepts using nested quantifiers, while Kant’s is limited to representing inclusion relations”. The
point is that Frege can express with a logical vocabulary what Kant thought could be represent
only with the aid of intuition (e.g., infinitude and natural numbers). As a result, Kant’s logical



CHAPTER 1. KANT 42

analysis of the so-called Jäsche Logic, a handbook that a student and friend of
Kant, Gottlob Benjamin Jäsche, edited in 1800 on the basis of his teacher’s notes
and lessons45.

The central part of the work, which is entitled Universal Doctrine of Elements,
is divided into three Sections: Of Concepts, Of Judgments, Of Inferences. This
was a common practice in Kant’s times: as Anderson (2015, p. 51) shows, the
same arrangement can be seen in Port Royal Logic, in the Wolffian Deutsche Logik
and in Meier’s Auszug der Vernunftlehre. The first Section is entirely devoted to
the theory of concepts: among the topics treated in this context, we find all the
tools that turned out to be necessary for the formulation of analyticity according
to the containment criterion. In particular, we have the definitions of ‘content’ and
‘extension’ of concepts and of their relationship46. Moreover, we learn in an explicit
way the connection between higher and lower concepts on the one hand and genus
and species on the other. Last, we have that the processes of logical abstraction
and logical determination are clearly compared and indicated as ways for obtaining
in the former case higher concepts and in the latter lower concepts47. The theory
of concepts enjoys an expositional priority because of its role of cornerstone for
the topics dealt with in the remaining two Sections of the Doctrine of Elements.

The second part is dedicated to the theory of the logical form of judgments,
which is traced back, as it is in the Analytic of Concepts in the Critique, to
the four principal moments of quantity (universal, particular, singular), quality
(affirmative, negative, infinite), relation (categorical, hypothetical and disjunctive)
and modality (problematic, assertoric and apodeictic). Kant strongly emphasises
the irreducibility of the hypothetical and disjunctive judgments to the categorical
ones and justifies this assertion by appealing to the different logical functions of
the understanding that each kind of judgment would request48.

tool, which is the essentially monadic traditional logic, lacks the expressive power to represent
arithmetic structure. And this will have important consequences, as we will see later on.

45The material that Jäsche used to compile the logical handbook is constituted of the notes
that Kant wrote on his copy of Meier’s Auszug during his forty-year teaching in logic.

46Kant’s definition sounds as follows: “Every concept, as partial concept, is contained in the
representation of things; as ground of cognition, i.e., as mark, these things are contained under
it. In the former respect every concept has content, in the other an extension. The content and
extension of a concept stand in inverse relation to one another. The more a concept contains
under itself, namely, the less it contains in itself, and conversely” (JL, par. 95, p. 593).

47It is interesting to underline Kant’s observation that “the greatest possible abstraction yields
the highest or most abstract concept”; while the logical determination “can never be regarded
as completed” because thoroughly determinate cognitions can only be given as intuitions and
never as concepts (JL, par. 99, pp. 596-597).

48In an observation, Kant stresses: “Categorical judgments constitute the matter of the re-
maining judgments, to be sure, but one must not on this account believe, as several logicians
do, that both hypothetical and disjunctive judgments are nothing more than various clothings
of categoricals and hence may be wholly traced back to these latter. All three kinds of judg-
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The third and last Section of the Doctrine of Elements concerns the theory of
inferences. First, Kant discusses the inferences of the understanding, which are
said to be characterized by their immediacy, since a judgment is here derived by
another without the need of a third mediating judgment. The inferences discussed
are those structured in the Aristotelian square of opposition, such as ‘ab universali
ad particulare valet consequentia’, or by conversion of the subject to the predicate.
Second, Kant introduces the inferences of reason, which are “the cognition of the
necessity of a proposition through the subsumption of its condition under a given
universal rule” (JL, par. 120, p. 614). Here we find the Aristotelian syllogistic,
which of course deals only with categorical judgments: after having introduced
the appropriate terminology, Kant exposes the four figures and the reduction of
the three latter figures to the first. Then, Kant suggests only modus ponens and
modus tollens as far as hypothetical judgments are concerned and modus ponendo
tollens and modus tollendo ponens as far as disjunctive judgments are concerned.
The Section is closed by the third kind of inference, namely that of the power of
judgment, which allows inferring from the particular to the universal and thus is
not a function of the determinative power of judgment, but rather of the reflective
one.

In the Jäsche Logic, the Universal Doctrine of Elements is followed by a shorter
Universal Doctrine of Method, which deals with the form of a science in general, i.e.
with the “ways of acting so as to connect the manifold of cognition in a science”
(JL, par. 139, p. 630). Here we find, among several other topics, also some
remarks on both notions of ‘analytic and synthetic definitions’ and of ‘analytic and
synthetic methods’49. The two are only indirectly related to the notion of analytic
and synthetic judgments. It’s interesting further to notice that in the Doctrine
of Method we also find that the concept of logical division is defined as “the
determination of a concept in regard to everything possible that is contained under
it, insofar as things are opposed to one another, i.e., are distinct from one another”
(JL, par. 146, p. 636). The general rules of logical division, which are put forward
in the next paragraph, clearly prescribes exclusive and exhaustive disjunctions
and dichotomy is said to be the only division based on a priori principles (while
politomy is always empirical).

ments rest on essentially different logical functions of the understanding and must therefore be
considered according to their specific difference” (JL, par. 105, p. 601).

49Analytic definitions are “of a concept that is given”; synthetic definitions are “of a concept
that is made”: in both cases however concepts can be given or made both a priori and a posteriori
(see JL, par. 141, pp. 631-632). The two methods are instead contrasted on the basis that
analytic method “begins with the conditioned and grounded and proceeds to principles”, while
synthetic method “goes from principles to consequences or from the simple to the composite”
(see JL, par. 149, p. 639).



CHAPTER 1. KANT 44

The two doctrines follow a long Introduction50, in which Kant discusses several
topics connected to the status of the discipline and gives the fundamental defini-
tions. There we find a taxonomy of kinds of logic and a history of logic on which
we have already paused; the position of logic in the horizon of philosophy and
knowledge in general and the perfections of logic. But the paragraph that we need
to investigate in depth is the first one, which is dedicated to the concept of pure
general logic.

1.2.2 The conception of pure general logic

As we have seen in the introduction to the present Section, the two qualifying
features of the kind of logic we are concerned with are its pureness and its gener-
ality. Kant argues with the former that logic is not concerned with the empirical
conditions of the subject in his employment of the rules of the understanding and
that it is distinguished from applied logic; with the latter that the discipline “con-
tains the absolutely necessary rules of thinking” (CPR, A 52/B 76) and that it
is different from special logics. The meaning of the term ‘necessary’ in describing
the generality of logic is not univocal, as the following passages testify:

All rules according to which the understanding operates are either nec-
essary or contingent. The former are those without which no use of the
understanding would be possible at all, the latter those without which
a certain determinate use of the understanding would not occur. [. . . ]
The rules of this particular, determinate use of the understanding in
the sciences mentioned are contingent, because it is contingent whether
I think of this or that object, to which these particular rules relate.
If now we put aside all cognition that we have to borrow from objects
and merely reflect on the use just of the understanding, we discover
those of its rules which are necessary without qualification, for every
purpose and without regard to any particular objects of thought, be-
cause without them we would not think at all (JL, p. 528, par. 12).

In logic, however, the question is not about contingent but about neces-
sary rules; not how we do think, but how we ought to think. The rules

50The length of the Introduction (it is almost the half of the entire work) is mainly due to the
fact that Jäsche, as he explains in the Preface, wanted in his edition to respect Kant’s prescription
that “nothing more may be taken up in the proper treatment of logic, and in particular in its
Doctrine of Elements, than the theory of the three essential principal functions of thought:
concepts, judgments, and inferences”. Hence, Jäsche continues, “everything that deals with
cognition in general and with its logical perfections, and which in Meier’s textbook precedes the
doctrine of concepts and takes in almost half of the whole, must accordingly be reckoned to the
introduction” (JL, par. 4, p. 521).
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of logic must thus be derived not from the contingent but from the nec-
essary use of the understanding, which one finds in oneself apart from
all psychology. In logic we do not want to know how the understanding
is and does think and how it has previously proceeded in thought, but
rather how it ought to proceed in thought. Logic is to teach us the
correct use of the understanding, i.e., that in which it agrees with itself
(JL, p. 529, par. 14).

The rules of special logics are contingent not in the sense that they can be oth-
erwise, but rather because they concern objects that can be thought or not and
thus they are applied only in specific cases. We could infer by contraposition that
the rules of general logic are necessary because they have to be applied no mat-
ter what are the objects we are thinking about. As Lapointe (2012, pp. 15-16)
observes, Kant seems to give two interpretations to the meaning of the necessity
of the logical rules just specified. On the one hand, as it is underlined in the first
excerpt quoted above, the rules of logic are constitutive of the understanding, in
the sense that we cannot think at all without them. On the other hand, as it is
emphasised in the second passage above, the rules of logic are normative in the
weaker sense that they prescribe how we have to think if we want to think cor-
rectly. While according to the second interpretation even violating the norms of
logic we are still thinking, although committing mistakes, the first reading of the
meaning of the term ‘necessity’ completely excludes the possibility of a thought
elaborated without employing logical rules51.

In a recent work, Tolley (2013) claims that according to Kant the generality
of logic, understood in terms of its being constitutive for thought, is absolutely
unrestricted. The starting point of this reading, which will be useful for our con-
clusions, is the observation that Kant is deeply committed to the essential unity of
the theoretical and practical reason and that the objects of the theoretical under-
standing and of practical reason are both objects of the understanding. As a result,
according to Tolley (2013), “Kant takes logic to be concerned with anything that

51Although scholars agree about the constitutive role of logic for thinking in Kant’s view,
some interpreters deny the weaker reading according to which Kant would claim the normativity
of logic for thought. For example, Tolley (2006) maintains that there are good reasons for
holding that normative interpretations of the generality of logic compel Kant to accept certain
premises, which directly conflict with other Kantian beliefs. Tolley (2006, p. 375)’s conclusion
is thus that “for Kant, normativity is at best an externally conferred, rather than essentially
inherent, property of logical law”. Mac Farlane (2002, p. 43 and ff.)’s interpretation of Kant’s
generality tends to line up with the constitutive reading. Although he talks about a normative
generality, his explanation of the necessity of the rules of logic does not appeal to mistakes or
correctness of thought, but rather to the possibility of thinking tout court : “The necessary rules
are ‘necessary’, not in the sense that we cannot think contrary to them, but in the sense that
they are unconditionally binding norms for thought - norms, that is, for thought as such”.
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can be understood [. . . ] Kant clearly takes the scope of both understanding and
also judgment to extend well beyond the theoretical sphere, to both practical acts
of issuing and heeding commands and even to expressions of aesthetic satisfaction.
Because of this, the sphere of logic itself - at least a truly ‘universal or general
[allgemeine]’ logic - must also comprise within itself much more than the forms
and laws of the theoretical use of understanding alone”. Following this interpre-
tation, Kant would have thus envisioned a peculiar notion of absolute generality
for logic that his successors, despite a verbal agreement, would have lost: Frege
for instance, subscribing a truth-theoretic understanding of the subject-matter of
logic, proposes what Kant would have called a ‘special logic’.

An aspect closely related to the generality of logic is its formality. According
to Kant, logic is formal in the sense that it abstracts from the semantical content
of thought. This is a feature that logic shares with grammar52. The latter is the
science of the rules of a language and studies the form of a language; similarly, the
former is the science of the rules of thinking and studies the form of thoughts and
cognition:

General logic abstracts [. . . ] from all content of cognition, i.e. from
any relation of it to the object, and considers only the logical form in
the relation of cognitions to one another, i.e., the form of thinking in
general (CPR, A 55/B 79).

An immediate consequence of the formality of logic, i.e. of the fact that logic
completely overlooks the content of thoughts, is that logic alone cannot yield an
extension of knowledge about reality or objects:

But since the mere form of cognition, however well it may agree with
logical laws, is far from sufficing to constitute the material (objective)
truth of the cognition, nobody can dare to judge of objects and to
assert anything about them merely with logic without having drawn
on antecedently well-founded information about them from outside of
logic [. . . ] (CPR, A 60/B 85).

This point is further clarified by Kant’s introduction of the division of general logic
into analytic and dialectic53. The part of logic that concerns the form of thought
and both the understanding and the reason in general is called ‘analytic’: it is
said to be the negative condition of truth, because, as we have seen, it cannot deal
with the content and the objects of knowledge. But when we forget that formal
logic has no content, then we illegitimately turn it into an organon that produces

52JL, parr. 12-13, p. 528.
53CPR, A 57/B 82 - A 62/B 86.
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completely arbitrary contents: this “logic of illusion” is called “dialectic”. Kant
is clear in stating that the presumption of employing general logic as a tool for
extending our knowledge, i.e. its dialectical use, “comes down to nothing but
idle chatter, asserting or impeaching whatever one wants with some plausibility”
(CPR, A 61/B 86).

It has been recently argued that Kant was the first modern philosopher to
claim that logic is formal54: MacFarlane (2002, pp. 44-46) shows that the tradition
against which Kant was reacting accepted the generality, but not the formality of
logic. In particular, on the neo-Leibnizian’s perspective, although logic is said to
be general in the sense that it is not restricted to a certain kind of objects, at
the same time it is not completely formal, since, while it abstracts from particular
contents (like those of ‘red’ or ‘cat’), it does not abstract from the contents of
highly general concepts (like those of ‘being’ or ‘unity’). As the following passages
suggest, the innovative thesis on the formality of logic turns out to be, according
to Kant, only a consequence of the generality of this discipline:

The former [i.e. the logic of the general use of the understanding] con-
tains the absolutely necessary rules of thinking, without which no use
of the understanding takes place, and it therefore concerns these rules
without regard to the difference of the objects to which it may be di-
rected (CPR, A 52/B 76).

And from this [i.e. from the generality of logic] it follows at the same
time that the universal and necessary rules of thought in general can
concern merely its form and not in any way its matter. Accordingly,
the science that contains these universal and necessary rules is merely
a science of the form of our cognition through the understanding, or of
thought (JL, p. 585, par. 12).

In the first excerpt the definition of the formality of logic is introduced through a
‘therefore’ after Kant’s spelling of the feature of generality; in the second, formality
is presented as a consequence of the necessity of the rules of the understanding.
The logical dependence of the feature of formality on that of generality has led some
scholars to argue that the two notions, given some Kantian premises, ultimately
collapse55.

54Lapointe (2012, p. 13) and especially MacFarlane (2002, pp. 44 - 46).
55For example, Lapointe (2012) argues that Kant does not provide independent criteria for

generality and formality, because establishing the necessity of a rule amounts to establishing
that that rule concerns the mere form of thought. As a result, according to Lapointe, the
two notions collapse. MacFarlane (2002) claims that according to Kant the two features are
ultimately different ways of expressing the same. He proposes a reconstruction of a Kantian
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Another fundamental feature of pure general logic is that logic is, according
to Kant, a canon for thinking. In the Transcendental Doctrine of Method of the
Critique, Kant explains that the term ‘canon’ signifies in general a body of rules or
a priori principles that govern the use of certain faculties and specifies that pure
general logic in its analytical part can be said to be a canon, because it amounts
to

the sum total of the a priori principles of the correct use of [. . . ] un-
derstanding and reason in general, but only as far as form is concerned
(CPR, A 796/B 824).

The thesis that logic is a canon in the precise sense explicated above can be seen
as a synthesis of Kant’s conception of pure general logic, because its premises are,
we think, exactly the three features of the discipline that we have just mentioned:
its pureness, its generality and its formality56. In the first place, from the fact that
logic is pure, i.e. that it is not concerned with the empirical conditions involved
in applying the rules of the understanding and reason, it can be deduced that the
rules of the correct use of those faculties are a priori and are not derivable from
any kind of experience57. In the second place, the thesis that logic is general, i.e.
that it contains the absolutely necessary rules of thinking, means, as we have seen,
that it is both constitutive and normative for thinking. But this in turn indicates
that logic is composed of the rules for the employment of the faculties involved.
This point is made clear in Kant’s Introduction to the Jäsche Logic:

As a science of the necessary laws of thought, without which no use
of the understanding or of reason takes place at all, laws which conse-
quently are conditions under which the understanding can and ought
to agree with itself alone - the necessary laws and conditions of its
correct use - logic is, however, a canon (JL, par. 13, p. 529).

The normative side of the generality of this discipline clearly emerges from Kant’s
definition of logic as a canon: for not only logic is said to give the correct use of

argument from the generality to the formality of logic and concludes that “Formality is not,
for Kant, an independent defining feature of logic, but rather a consequence of the Generality
of logic, together with several auxiliary premises from Kant’s critical philosophy” (MacFarlane,
2002, p. 32).

56Of course, for what has been said before, the premise that logic is formal is redundant in so
far as it can be deduced from the fact that it is general.

57This is the meaning of the following excerpt: “A general but pure logic therefore has to do
with strictly a priori principles, and is a canon of the understanding and reason, but only in
regard to what is formal in their use, be the content what it may (empirical or transcendental)”
(CPR, A 53/B 77).
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the understanding and of reasoning, but also Kant used to call this discipline a
“cathartic” and a “critic” before introducing the term ‘canon’58. Last, from the
fact that logic is formal, i.e. that it abstracts from the content, it follows that logic,
in its analytical part, can only be a canon, not an organon59. As Kant explains in
the Jäsche Logic (JL, par. 13, pp. 528-529), an organon is “a directive as to how
certain cognition is to be brought about”, which presupposes “exact acquaintance
with the sciences, their objects and sources”. But logic, being formal, cannot
present any content and thus cannot anticipate the matter of any science. When
used to produce effective knowledge, when used as an organon, pure general logic
is no more analytic, but dialectic: the “logic of illusion”.

The conception of logic as a canon and as a discipline characterized by the
features of pureness, generality and formality has a fundamental role, as it will be
soon clarified, in Kant’s stance on the status of pure general logic in relation to
the analytic-synthetic distinction.

1.3 The relationship between analyticity and lo-

gic

The issue about the relationship between analyticity and logic comprises, we think,
two different matters, which must be kept distinct. On the one hand, we have to
examine Kant’s perspective on the role of logic as an instrument for both defining
and applying the analytic-synthetic distinction (Section 1.3.1). On the other hand,
we need to analyse the epistemological status of logic in order to provide an answer
to the question of whether logical truths are, following Kant’s definitions, analytic
or synthetic a priori (or neither of them) (Section 1.3.2).

1.3.1 Logic as an instrument

Section 1.1.2 shows that recent scholars have brought to light the fact that Kant’s
notion of containment, far from being an obscure metaphor, is based on several
concepts that were perfectly intelligible for Kant’s contemporaries. The processes
involved are, as we have seen, those of logical division of concepts and logical ab-
straction via analysis; notions of being ‘contained in’ and ‘contained under’ and

58Capozzi (2002, pp. 203-204) shows that the term “Kanon” appears quite late in the Kantian
lexicon and that before its introduction (certified around the first half of the Seventies) Kant
used expressions such as ‘cathartic’ or ‘critic’. While a cathartic can only correct mistakes, a
canon can also impose rules, which in turn do have a normative impact.

59This point is explicated in the Jäsche Logic: “Just because it does abstract wholly from all
objects, however, it also cannot be an organon of the sciences” (JL, par. 13, p. 528).
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the related ones of ‘concepts containment’ and ‘concept extension’; last, the con-
cepts of species and genera. Now, in Section 1.2.1, we have underlined, through
our review of the Jäsche Logic, that all these elements, according to Kant, are
part of pure general logic. Not only are these notions ‘logical’, but the theory
of concepts, to which these notions belong, is essentially the theory of concept
containment and, as Anderson (2015, pp. 51-54) explains, both the theories of
judgments and of inferences are grounded on it. In other words, the fundamen-
tal notions of Kant’s definition of analyticity via containment are at the core of
(traditional and) Kantian logic. If we add to this result the facts that, as we have
argued through all Section 1.1, the definition of analyticity via containment is the
central one and that all the other criteria are based on the latter60, we have all the
elements to conclude that logic is the fundamental instrument that Kant employs
for drawing his analytic-synthetic distinction, since it provides the basic notions
for his definition61.

Kant’s pure general logic is an instrument not only for defining the analytic-
synthetic distinction, but also for applying it. In Section 1.1.3, we have shown
that the principle of non-contradiction, which is, needless to say, a fundamental
principle of logic (even from Kant’s point of view, as for example our review of the
Jäsche Logic in Section 1.2.2 testifies), is an instrument for ascertaining the truth
of analytic judgments and is appointed with an epistemological function. In other
words, the principle of contradiction allows us to establish the truth of analytic
judgments and, in so doing, to conclude that certain judgments are analytic: this
is because, as we argued above, in an affirmative analytic judgment we find a
contradiction between the concept of the subject and the concept of the negation
of the predicate.

1.3.2 The status of logic

Once we have completed our investigation about logic as an instrument, we move
to analyze the more complex issue about the status that Kant ascribes to pure
general logic as far as the analytic-synthetic distinction is concerned. The majority
of Kant’s scholars maintains, and often takes for granted, that pure general logic
is, according to Kant, analytic. Recent examples of this interpretational trend
are those of Hanna (2001, p. 140), who claims that “Kant also holds that all the
truths of logic - that is, all the truths of what he regarded as logic - are analytically
true”, and Anderson (2015, p. 103), who explicitly states, while examining the
problems that emerge accounting for logical truth, that “Kant’s formal general

60Either because they can be reduced to it (clarification); or because they are based on it
(identity); or because they are not, strictly speaking, definitions (contradiction).

61This is the same conclusion attained by Anderson’s (2015) and de Jong’s (2010) works.
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logic [. . . ] is analytic”. Moreover this reading of Kant’s position, which soon
became traditional, traces back to first eminent interpreters of the Critique, such
as Bolzano and Frege. The former holds, in de Jong’s (2010, p. 249) translation
of an excerpt in Section 315 of his Wissenschaftslehre, that “as regards logic,
Kant claims that it [that is, pure general logic] consists of nothing but analytic
propositions and thus needs no intuitions for its cognition”.

That logic is, according to Kant, analytic is a conclusion that is usually (and
incorrectly) deduced either from the fact that logic is the fundamental instrument
Kant uses to draw the analytic-synthetic distinction (see Section 1.3.1) or from the
fact that the principle of contradiction, which is the grounding principle of logic, is
said by Kant to be the “supreme principle of all analytic judgments” (see Section
1.1.3). But a closer inspection reveals that this kind of deductions is non sequitur
and that neither of the two premises is sufficient to infer that logic is analytic.

Nor are the excerpts usually quoted in support of this view. Hanna (2001, p.
140) refers to the following passages of the Critique: CPR, A 59-60/B 83-84 and
CPR, A 151-152/B 190-191. In the former Kant is dealing with the distinction
between ‘analytic’ and ‘dialectic’ in pure general logic. After having said that
logic is formal, Kant asserts that the part of logic that concerns the formal rules of
the understanding and of reason “can therefore be called an analytic” (emphasis
added). That part of logic is said to be an analytic in contraposition to the dialec-
tic: here Kant follows the tradition, as he explicitly states (although the meaning
of the term ‘dialectic’ that Kant attributes to the ancient philosophers is contro-
versial). The second excerpt is that dedicated to the principle of contradiction as
the supreme principle of analytic judgments, which we have already analyzed in
Section 1.1.3.

Anderson (2015, p. 103) calls instead the following excerpts in support of the
traditional thesis: CPR, A 65-66/B 90-91; CPR, A 76/B 102; and CPR, A 151-
154/B 190-193. In the first passage, Kant is simply stating, we think, that logic
concerns the decomposition via analysis of concepts: but, again, this is different
from saying that logical judgments are analytic according to Kant. In the second
passage, Kant claims that “general logic abstracts from all content of cognition,
and expects that representations will be given to it elsewhere, wherever this may
be, in order for it to transform them into concepts analytically”. The point here is
that logic is formal and that the process of forming concepts from representation
does not need any appeal to intuitions. The third passage is again that about the
principle of contradiction, the lines added concern the formulations of the principle
and, again, do not affirm that logical judgments are analytic.

The reason why scholars cannot display excerpts in which Kant holds without
a doubt that logic is analytic is, we argue, the fact that Kant does not apply
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the analytic-synthetic distinction to logic at all62. While he explicitly affirms that
judgments of experience, mathematics, natural science and metaphysics are all
synthetic (see note 4), Kant does not speak about the status of logic. We think,
first, that this silence indicates that, according to Kant’s view, the distinction
cannot be applied to logic or that this application does not yield interesting results
and, second, that the grounds for this reticence must be searched in Kant’s peculiar
conception of pure general logic as a canon (that is, as consequence of the features
of generality, formality and pureness that we have described in Section 1.2.2). In
particular, we propose two arguments: the former starts from the generality; the
latter from the formality of logic.

First, recall Tolley (2013)’s interpretation of Kant’s notion of the generality
of logic (as it is explained in Section 1.2.2). If this reconstruction is right, then
Kant does not share with Frege the idea that logic is concerned with thoughts
understood as what is capable of being true and thus does not maintain that logic
regards exclusively what can be true. On the contrary, Kant’s logic contemplates
for example also imperatives and aesthetic assessments. But we have seen in
Section 1.1 that the analytic-synthetic distinction is meant to apply only to true
judgments: as a result, one of the reasons for Kant’s reticence in applying the
distinction to logic is that true judgments are only a proper subset of logic. Second,
as we have shown in Section 1.2.2, the formality of logic means that logic abstracts
from the content of thinking and implies that logic cannot extend our knowledge
of reality, of objects. Although it is a science, logic as propadeutic is not a kind of
knowledge:

[. . . ] hence logic as a propadeutic constitutes only the outer courtyard,
as it were, to the sciences; and when it comes to information, a logic
may indeed be presupposed in judging about the latter, but its acqui-
sition must be sought in the sciences properly and objectively so called
(CPR, B ix).

Logic is a propadeutic because it precedes any kind of knowledge: its rules have to
be learnt and respected as a conditio sine qua non of any cognitive enterprise. This
could be another reason for Kant’s silence on the status of logic, for in drawing his
analytic-synthetic distinction, Kant’s interests seem to stay with doctrines having
a content of knowledge, such as mathematics or sciences63.

Although Kant, as a matter of fact, does not apply his analytic-synthetic dis-
tinction to logic, we can still ask ourselves whether logical judgments are analytic

62This is the same conclusion put forward by de Jong (2010, p. 250), who states: “for Kant,
in the end the distinction between analytic and synthetic judgments does not apply to logic”.

63A similar perspective is put forward by de Jong (2010, p. 250).
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or synthetic a priori following Kant’s definitions of the terms and beyond his rea-
sons for leaving the matter unsolved. In other words, we now move from the actual
application to the possible applicability of the distinction to logical judgments: we
are going to attempt an analysis that, as we have shown, Kant did not want to
pursue. Two are the main theses that we support in this regard: following Kant’s
definitions, we have that, first, no logical judgment is synthetic; second, at least
some logical truths are not analytic.

The first claim could seem trivial for what has been said until now, but it needs
to be proved, for it has been strongly criticized. As we will see in due course,
Hintikka (1973) holds that logical arguments deploying existential instantiation
would count, according to Kant’s perspective, as synthetic a priori : as a result,
Kant would have classified as synthetic a well-defined subset of logical truths of
what we now call ‘polyadic quantification theory’. Analogous suggestions can be
found in recent work put forward by D’Agostino (2013), who individuates a class
of propositional truths that can be said to be synthetic and briefly hints that this
conception could offer a “partial vindication” of Kant’s view64.

The thesis that according to Kant logical judgments are not synthetic is a
conclusion that can be supported by the following two arguments65. The first
piece of evidence results from checking whether Kant’s definition of true synthetic
a priori judgments applies to logical judgments. In Section 1.1.4, we have seen that
in a synthetic judgment the relation of the subject to the predicate cannot be but
indirect and it consists in linking the two concepts to one another by connecting
them to a third different element. The third element, which is indispensable for
the truth of any synthetic judgment, is for Kant an object. But the appeal to
an object for a logical judgment is what is explicitly excluded by the feature of
formality that characterizes logic: as we have seen in Section 1.2.2, that logic is
formal according to Kant means that this discipline abstracts from any relation to
objects.

The second argument is ad absurdum and shows that if logic were synthetic,
then the analytic-synthetic distinction would collapse66. Assume that logic is syn-
thetic: then it follows that the principle of non-contradiction is synthetic too. Now,
we have seen in Section 1.1.3, that Kant regards the principle of non-contradiction

64The two works mentioned above will be amply discussed in this thesis. The point that we
want to underline is that we do not hold, against Hintikka and D’Agostino, that logical truths are
analytic. Rather, we maintain that that some logical truths are synthetic a priori is a Kantian
position not in the strict sense that it is a thesis that Kant has or would have subscribed, but
only in the loose sense that it employs notions and concepts that have been formulated in the
Critique.

65In due course, we will also provide our reasons against Hintikka (1973)’s interpretation of
Kant’s position, which will strengthen our argument.

66A similar argument can be found in de Jong (2010, p. 249).
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as the supreme principle of analytic judgments, since the judgments in that class
can be proved on the basis of that principle. From the hypothesis ad absurdum
together with this premises it follows that analytic judgments can be proved from
a synthetic principle. Now we take, as a third assumption, something that Kant
explicitly states in the Introduction to the first Critique (CPR, B 14), namely that
what can be proved from a synthetic judgment is itself synthetic. But then we
have as a conclusion an absurdity, namely that analytic judgments are synthetic.

The two arguments show that holding that logical judgments are synthetic
explicitly contradicts some Kantian thesis: on the one hand, either the definition
of synthetic judgments itself or the conception of logic as formal; on the other hand,
either the idea that the principle of non-contradiction is the supreme principle of
analytic judgments or the rule that what can be proved from a synthetic judgment
is itself synthetic.

The second claim, that is, the thesis that according to Kant at least some
logical truths are not analytic67, has been variously acknowledged68. The crucial
point is that Kant’s definition of analytic judgments via containment is restricted,
as we have argued in Section 1.1.2, only to categorical propositions, while there
are logical truths that do not have69 and cannot be reduced70 to such a form. The
first class of truths that are not analytic in so far as irreducible to the form ‘S is
P’ includes all those validities turning essentially on relations. While this kind of
truths is clearly part of modern logic, traditional logic was instead, as we have seen
in Section 1.2.1, intrinsically monadic in character, since it was not equipped with
dedicated instruments for handling relations. The obstacle to the development of a
logic of relations in the proper sense must be searched in the ontology of relations.
For, since the Middle Ages, it was generally refused that polyadic expressions of

67Notice that while it is possible to give a compact (and, as we have seen, negative) answer
to the question of whether logical judgments are synthetic a priori, the answer to the issue of
whether logical judgments are analytic requires a subdivision of logical judgments into classes.
De Jong (2010, p. 249) proposes instead an argument for the whole class of logical judgment
that, we maintain, is fallacious. De Jong holds that if logical principles were analytic, then there
would be a violation of the rule that Kant puts forward in his Introduction to the Critique for
which theoretical science a priori must be founded on synthetic principles a priori. However,
we think that the assumption of the analyticity of logic does not lead to the conclusion that de
Jong pinpoints, but rather to the conclusion, in accordance with the rule mentioned above, that
logic is not a theoretical, but a practical science (since for sure it is a priori). But de Jong in
the following page of his article uses the practical character of logic not to infer its analyticity,
but rather to claim the inapplicability of the analytic-synthetic distinction to logic.

68See, for example, Anderson (2015, Section 4.2).
69The problem of accounting for logical truths is one of the main issues that led interpreters

to reject the very restriction of Kant’s definition using the strategies that we have indicated in
Section 1.1.2. On this point see for example Hanna (2001, p. 145 and ff.).

70Kant’s reasons for maintaining the irreducibility of non-categorical propositions to categorical
ones has been explained in Section 1.1.2.
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the language referred to some kind of polyadic property of the external world71.
As a result, truths turning essentially on relations are not analytic, in so far as
they cannot be reduced to categorical propositions; but it is still possible for them
to be synthetic, in so far as they were excluded from the domain of the logical,
which is, as we have argued above, the domain of the non-synthetic.

But non-analytic truths are not only truths that Kant would not have con-
sidered as logical: for there is a second class of truths that are not reducible to
categorical propositions and at the same time do indeed belong to pure general
logic even for Kant. This is the class that includes propositional truths such as
modus ponens. Propositional truths cannot be turned into categorical judgments
because the truth of the former relies on the relation between judgments inde-
pendently of the concepts involved. Nevertheless, inferences as modus ponens or
modus tollens and the like are for sure logical arguments: as our review of the
Jäsche Logic in Section 1.2.2 has shown, Kant includes them into the theory of
inferences that he presents in the Universal Doctrine of Elements. As a result,
there is at least one class of logical truths that are neither analytic nor synthetic
or, equivalently, to which the analytic-synthetic distinction does not apply72.

Most scholars at this point plainly close affirming that all but non-categorical
logical truths are analytic according to Kant73. However, we think that this con-
clusion is not completely justified. For example, we have seen in Section 1.1 that
the fundamental criterion behind Kant’s notion of analyticity is that of contain-
ment and we have underlined that judgments that are said to be analytic according
to the containment criterion (as well as according to the clarification one) must
have a cognitive content: they are not trivial or tautologous. As a consequence,
not only non-categorical truths, but also categorical and identical truths would
count, according to Kant, as neither analytic nor synthetic. And no argument so
far has excluded the possibility that there are other classes of logical truths that
are neither analytic nor synthetic.

To sum up, against the traditional view according to which Kant maintains
that logic is analytic, we have argued that Kant does not apply his analytic-
synthetic distinction to logic and that the grounds for this silence about the status
of logic has to be searched in Kant’s peculiar conception of the discipline. Even

71See Mugnai (2016).
72After having stated that logical truths based on relations and hypothetical truths as modus

ponens are not analytic according to Kant’s distinction founded on containment, Anderson (2015,
p. 107) concludes that “many truths of our formal logic - especially, as we have seen, in polyadic
quantification theory count as synthetic, given Kant’s version of the distinction”. We think that
this conclusion is too quick (and, as we have claimed, wrong): in order to reach this result,
Anderson should have proved that those kinds of inferences are synthetic and not simply non-
analytic. The two are not equivalent exactly because the distinction is not exhaustive.

73This is for example Anderson (2015, p. 107)’s conclusion: “analyticities express only a
fragment of general logic”.
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attempting an analysis that Kant did not think it was worth pursuing, we have
maintained that no logical judgment is synthetic a priori and that some (if not all)
logical judgments are not analytic. In other words, following Kant’s definition of
the analytic-synthetic distinction, we have the unexpected result that many logical
judgments are neither analytic nor synthetic.



Chapter 2

Bolzano and the syntheticity of
logic

2.1 Bolzano’s analytic-synthetic distinction

2.1.1 Preliminary notions: the method of substitution, va-
lidity, derivability

One of the most innovative conceptions of Bolzano’s work concerns the aim and
the domain of logic. At his time, most philosophers did not recognize any clear
boundary between logical investigations and psychological considerations on the
way in which logical knowledge is to be attained. This was for example also Kant’s
case. Against this psychologistic trend in the study of logic, Bolzano is very careful
in distinguishing the purely logical domain from the epistemological perspective.
This attention is also reflected in the articulation of his main logical text, the
Wissenschaftslehre, published in 1837, which can be seen as divided into two halves:
the former, made up of the Fundamentallehre and the Elementarlehre, concerns
logic as a science independent of human understanding; the latter, constituted by
the theory of knowledge, the art of discovery and the theory of science in the strict
sense, focuses on logic as an object of human knowledge. As a result of his anti-
psychologistic assumptions, Bolzano postulates a logical realm of purely logical
objects, which has to be distinguished from both the world of material objects
and the world of mental entities. Among the inhabitants of this ‘World 3’, which
exist despite their non-mental and non-linguistic nature, we find the protagonists
of the Theory of Science: ‘propositions in themselves’ (Sätze an sich) and their
parts, ‘ideas in themselves’ (Vorstellungen an sich). Subjective propositions, such
as judgments, and subjective ideas are of course related to propositions and ideas
in themselves respectively, for the latter are the matter of the former; similarly,

57



CHAPTER 2. BOLZANO 58

sentences, that are sequences of signs of a certain language, are but expression of
the meaning of propositions. Nevertheless, logical objects in themselves have a
different ontological status.

Bolzano finds the most interesting properties of propositions in themselves
through a new and fruitful procedure: the method of substitution. It consists
in studying how the variation of one or other of the ideas occurring in a propo-
sition affects its truth value: the result of this analysis is the determination of
different types of semantic regularities. According to Bolzano, this idea is just a
systematization of a common way of reasoning about context-sensitive sentences1:

[E]ven if [. . . ] we do suppose certain ideas in a given proposition to
be variable, often without being clearly aware of it, and then consider
the relation to the truth that follows for this proposition upon filling
those variable places with whatever different ideas, it is always worth
the trouble to do this consciously and with the definite intention of
becoming the more precisely acquainted with the nature of the given
propositions by observing this relation of theirs to the truth. Namely, if
we consider in a given proposition not merely whether it is itself true or
false, but also what relation to the truth follows for all the propositions
that develop out of it when we assume certain of the ideas present in
it to be variable and permit ourselves to exchange them for whatever
other ideas, we shall be led to discover many extremely remarkable
properties of propositions (TS, §147).

It is necessary to make some observations to specify Bolzano’s method of substi-
tution. First of all, the logical properties that are defined through the variation
procedure must to be predicated of sets of propositions, not of propositions taken
singularly: in other words, these regularities characterize propositional forms, that
is to say, entire sets of propositions that share the property of being the result of
varying the same idea in the same proposition2. Moreover, it is worth noticing
that every proposition admits of different propositional forms, for in a proposition
there is usually more than just one idea that can be varied. Second, there must
obviously be some constraints on admissible substitutions, although Bolzano is
not always explicit on this issue3. For example, the result of replacing an idea for

1On Bolzano’s account, sentences whose truth-value depends on particular contexts are un-
derdetermined because they do not reveal their Sinn of the proposition completely. In order
to make them explicit, they must be paraphrased by sentences that express their propositional
content explicitly. More on Bolzano’s paraphrastic approach will follow.

2Once we have specified this point, we are going to use the term ‘proposition’ to refer not
only to single propositions, but also to propositional form. This abuse of terminology, which is
widespread in the literature, is justified by expositional reasons.

3These observations are due to Künne (2006).
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something else must still be a proposition: ideas cannot be replaced by a string of
symbols whatever. But neither the idea to be replaced can be chosen randomly:
in particular, a notion that has proper parts that occur in the proposition is not a
good candidate. Then, in theWissenschaftslehre it is usually admitted simultane-
ous substitutions of more than one notion at a time. Third, Bolzano imposes two
requirements on what counts as a variant of a proposition with respect to some of
its ideas. The former is that the subject idea of the proposition that results from
the substitution must be ‘objectual’ (gegenständlich) or non-empty: this means
that it must have, represent or refer to one or more objects. The objectuality
constraint is a consequence of Bolzano’s theory of truth, according to which every
proposition with objectless ideas is simply false. The latter restriction is that in
order to be counted as a variant of a proposition, ideas cannot be replaced by
notions that are equivalent to the original ones or to the ones characterizing other
variants4.

The objectuality and non-equivalence constraints play a fundamental role in
the first logical property that Bolzano defines on the basis of the method of substi-
tution. The ‘degree of validity’ of a proposition relative to a certain set of variable
notions is given as the ratio of the number of true variants to the number of objec-
tual and non-equivalent substitution instances. To put it another way, the degree
of validity amounts to the probability of a certain proposition and it is a fraction
between 0 and 1. For example, the proposition ‘the ball numbered 8 will be among
those drawn in the next lottery’ has degree of validity 5/90 = 1/18, if five balls
are drawn, “for then among all of the 90 propositions that come into the picture
in this case, there are only 5 which are true”5.

A proposition is said to be ‘universally valid’ (allgemeingültig) if its degree of
validity equals 1 and it is said to be ‘universally invalid’ (allgemeinungültig) if its
degree of validity is 0. So, the proposition ‘The man Caius is mortal’ is universally
valid with respect to ‘Caius’, because all the objectual substitutions of ‘Caius’,
such as ‘Sempronius’ and ‘Titus’, make the proposition true; while the proposition
‘The man Caius is omniscient’ is universally invalid with respect to ‘Caius’, because
no matter what notion is substituted for ‘Caius’ the resulting proposition is false.
Notice that without the objectuality constraint it would be possible in virtually
every case to generate false variants of a true proposition, with the result that there
would not be any proposition universally valid with respect to its subject idea.
Similarly, the non-equivalence constraint is fundamental in computing the effective
number of all possible and objectual substitution instances of a proposition, that
is to say, the denominator of the ratio that defines the degree of validity of that

4Another feature of the variation procedure that it is worth to mention is that it requires
the exhaustiveness and uniformity of substitutions. Nevertheless, Rusnock (2013, p. 324) shows
that Bolzano’s example includes cases where only some occurrences of a given idea are varied.

5TS, §147.
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proposition: without this requirement, the variants with the same meaning could
be counted several times to the effect of decreasing the degree of validity of the
proposition.

Bolzano uses the method of substitution not only for defining logical properties
of propositions (or propositional forms), as in the case of validity, but also for spec-
ifying inferential notions that concern sets of propositions (or sets of propositional
forms). The first step of this generalization from propositions to sets of propo-
sitions is the notion of compatibility. Propositions A,B,C,D, . . . are ‘mutually
compatible’ (verträglich) with respect to the ideas i, j, . . . that occur conjointly in
them if there is a sequence of ideas that could be set in the place of i, j, . . . that
make these propositions all true at the same time. The propositions ‘This flower
has a red bloom’, ‘This flower smells good’ and ‘This flower belongs to the 12th
class of Linnaeus’ system’ are compatible with respect to ‘This flower’, for all three
propositions become true if ‘This flower’ is replaced by the idea of a rose6. The
fundamental logical notion of derivability (Ableitbarkeit) is given as a special case
of compatibility:

I say that the propositions M,N,O, . . . are ableitbar from the proposi-
tions A,B,C,D, . . . with respect to the variable parts i, j, . . . if every
set of ideas that can be put in the place of i, j, . . . and that makes all
of A,B,C,D, . . . true, also make all of M,N,O, . . . true (TS, §155).

Many are the differences between Bolzano’s notion of derivability and the modern
one7. First, as a consequence of the dependence of the notion of derivability
on that of compatibility, it turns out that it is impossible to take as premises
contradictory (and thus objectless) propositions, although it is still possible to
deduce from false but non-contradictory premises. Second, since it allows not to
vary non-logical concepts, Bolzano’s relation of Ableitbarkeit does not distinguish
between arguments that preserve truth and argument that do so by virtue of their
form8. Third, the relation defined in the Wissenschaftslehre is not monotonic and,
while it does not validate the law of contraposition, it guarantees the validity of
the principle of subalternation9.

2.1.2 Bolzano’s conception of analyticity

Bolzano’s anti-psychologistic conception of propositions in themselves, the method
of substitution, the notions of validity and derivability are indispensable elements

6TS, §154.
7The historical significance and the interpretative trends of Bolzano’s work is largely discussed

in Section 2.3.2.
8More on this issue will be said when discussing the notion of ‘logical analyticity’.
9These considerations are analyzed in Lapointe (2011, pp. 77-80).
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to understand the analytic-synthetic distinction as defined in §148 of the Theory
of Science. This Section is structured into three paragraphs and four notes. We
are going to consider one portion of the text at a time: for each of them, we first
provide a summary and then a commentary articulated in several observations.

In the first paragraph, Bolzano gives the definition of analytic and synthetic
propositions in the following terms:

But suppose there is just a single idea in it [i.e., in a proposition] which
can be arbitrarily varied without disturbing its truth or falsity, i.e. if all
the propositions produced by substituting for this idea any other idea
we pleased are either true altogether or false altogether, presupposing
only that they have denotation. This property of the proposition is
already sufficiently worthy of attention to differentiate it from all those
propositions for which this is not the case. I permit myself, then, to call
propositions of this kind, borrowing an expression from Kant, analytic.
All the rest, however, i.e. in which there is not a single idea that can be
arbitrarily varied without affecting their truth or falsity, I call synthetic
propositions (TS, §148).

According to this definition, a propositional form P is analytic with respect to the
ideas i, j, . . . if and only if either every objectual variant of P with respect to
i, j, . . . is true or every objectual variant of P with respect to i, j, . . . is false;
it is synthetic otherwise. As a result, a proposition P is analytically true with
respect to the ideas i, j, . . . if and only if it is universally valid with respect to
the same ideas; similarly, a proposition P is analytically false with respect to the
ideas i, j, . . . if and only if it is universally invalid with respect to the same ideas.
So, for example, the propositions ‘A morally evil man deserves no respect’ and
‘A morally evil man nevertheless enjoys eternal happiness’ are both analytic with
respect to the idea ‘man’ (the former is analytically true, the latter is analytically
false), while the propositions ‘God is omniscient’ and ‘A triangle has two right
angles’ are both synthetic (the former is true, the latter is false, but for neither of
them there exist some ideas, which could be arbitrarily varied without affecting
their truth value).

We organize our comment on the incipit of §148 around three main issues: first,
the relation between analyticity and truth values; second, the connection between
analyticity and syntheticity; third, the link between analyticity and conceptual-
ity. The last point is the crucial one and requires a detour explaining Bolzano’s
conception of the a priori -a posteriori distinction.

Analyticity and truth values. A characteristic feature of Bolzano’s defini-
tion is that the analyticity and syntheticity of a given proposition P depends on
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the behavior of P with respect to its truth value (once certain variations in P
occur). As Proust observes, “the relationship of the analytic to truth is exactly
reversed”10. In the Critique, not only the analytic-synthetic distinction applies
solely to true propositions, but also the very fact of being analytic implies for a
proposition that it is true, for a proposition in which the predicate is contained
in the subject cannot be false. Thus, for Kant, analytic propositions are a subset
of true propositions. On the contrary, Bolzano admits false propositions among
analyticities (and syntheticities) and explicitly recognizes that this is an innova-
tion proper of his account11. False analyticities and syntheticities are possible in
Bolzano’s approach because his definition does not link this distinction to the no-
tion truth, but rather to the concepts of validity and, crucially, invalidity given
through the substitution method.

Analyticity and syntheticity. Another distinctive consequence of Bolzano’s
definition is that there is a close relationship between analytic and synthetic propo-
sitions: in particular, analytic propositions can be derived from synthetic ones and,
vice versa, synthetic propositions can be derived from analytic ones. As an exam-
ple of the former type of derivation, Bolzano shows that the synthetic truth ‘In
each triangle the sum of its angles equals two rights’ entails ‘In each equilateral
triangle the sum of its angles equals two rights’12. As an example of the lat-
ter type of derivation, Künne shows that the synthetic proposition ‘There was at
least one Roman Catholic’ is ableitbar from the analytic truth ‘Professor Bolzano
who took part in a secret meeting in Tiechobus in September 1838 was Roman
Catholic’ with respect to ‘Roman Catholic’13. The reciprocal Ableitbarkeit of an-
alytic and synthetic propositions is even more remarkable if we remind that Kant
in the Introduction of the first Critique clearly states that synthetic propositions
can be derived only from synthetic truths. We will see in Section 2.3.1 that this
characteristic of Bolzano’s account plays a decisive role in his philosophy of logic.

As far as the relations between analyticity and syntheticity are concerned, it
is worth mentioning two more facts already stressed in the literature. First, two
propositions may necessarily have the same truth value although one is synthetic
and the other analytic. For example, while the proposition ‘In each 3-angle the
sum of its angles equals 2 rights’ is synthetic, the proposition ‘In each 3-angle the
sum of its angles equals (3− 2)× 2’ is analytic with respect to ‘3’14. Second, the

10Proust (1989, p. 62).
11“I thought it useful to interpret both concepts, of analytic as well as synthetic propositions,

so broadly that not only true but false propositions could be included under them” (TS, §148).
12TS, §116.
13Künne (2006, p. 195).
14This example is due to Künne’s (2006, pp. 194-195) interpretation of a passage in Hugo

Bergmann’s monograph on Bolzano dated 1909.
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result of incorporating an analytic statement as part of a more complex statement
is likewise analytic15. For example, if P is analytic with respect to the idea i and
Q is synthetic, then P ∨Q is analytic provided that i does not occur in Q. With
this feature, Bolzano distances himself once more from the Kantian tradition.

Analyticity and conceptuality. According to Bolzano, ideas, which are parts
of propositions that are not themselves propositions, can be distinguished with
respect to their extension (the objects that fall under them) and to their content
(the parts of which they are composed). Intuitions are defined as ideas that are
singular with respect to extension, that is to say, they only have one single object
as their extension, and simple with respect to content, that is to say, they do
not have parts. There are three kinds of complex ideas: first, complex ideas
made up solely of intuitions and called ‘pure intuitions’; second, complex ideas
in which no intuition occurs and that are called ‘concepts’; third, ‘mixed ideas’,
that are complex ideas in which both intuitions and concepts occur. Two kinds
of propositions can be individuated on the basis of the type of ideas that occur in
them. On the one hand, ‘conceptual propositions’ are defined as propositions that
are composed only out of concepts and do not contain any intuition; on the other
hand, ‘empirical propositions’ are propositions in which at least one constituent is
an intuition and that contain demonstratives, indexicals, proper names of natural
kind terms.

As Bolzano explicitly acknowledges, Kant’s a priori-a posteriori distinction cor-
responds to his conceptual-empirical division. With an essential proviso however.
The Kantian concepts belong to the ordo cognoscendi and are predicated primar-
ily of knowledge: cognitions are said to be a priori if they can take place without
experience and a posteriori otherwise. As Roski correctly underlines, “Kant thus
clearly starts his analysis on the level of judgments [. . . ] and uses a distinction
drawn there to introduce a related one on the level of propositions”16. On the
contrary, Bolzano, who is completely aware of this feature of Kant’s distinction,
believes that the attention paid to the epistemological side should not “suppress
another one which does not depend on the mere relationship of propositions to
our cognitive faculties, but on their intrinsic character”17. For this reason, he
elaborates the conceptual-empirical distinction, which applies primarily to propo-
sitions and depends on the constituents of propositions. Only once this objective
distinction has been drawn, it can be used to explain the epistemic properties of
those judgments, whose matter are conceptual or empirical propositions. This also
explains how the Kantian and the Bolzanian distinctions are related. In Bolzano’s

15This observation is given in Hale and Wright (2015, pp. 339-340).
16Roski (2013, p. 105).
17TS, §133.
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words:

Now, it happens, however, that this division of our knowledge almost
coincides with the division of propositions into conceptual and empir-
ical propositions, since the truth of most conceptual propositions can
be decided by mere thought without any experience, while propositions
that include an intuition can in general be judged only on the basis of
experience (TS, §133).

On the one hand, the truth value of empirical propositions can be discovered only
a posteriori : experience is indispensable to grasp intuitions because the latter have
empirical import and imply causal epistemic transaction with the world. On the
other hand, Bolzano suggests that conceptual truths are to be known a priori, if
they can be known at all18.

This detour was essential to understand a fundamental feature of the conception
of analyticity in the Wissenschaftslehre: the analytic-synthetic distinction and the
conceptual-empirical distinction are conceived in such a way that they cut across
one another. As a result, in Bolzano’s system there is space not only for conceptual
analyticities and empirical syntheticities, but also for two other controversial kinds
of propositions: conceptual syntheticities and, crucially, empirical analyticities.
Examples of the former kind are propositions such as ‘Each proposition contains
at least three parts’ and ‘Some notions are complex’: each of these propositions
lacks an idea, which can be arbitrarily varied without affecting its truth-value,
and, at the same time, can be known a priori because no intuition occurs in
it. Although he harshly criticizes the doctrine of pure intuition of the Critique,
Bolzano retains Kant’s category of the synthetic a priori and, as we will see in
Section 2.2.1, its central role for deductive sciences.

But the most innovative concept in Bolzano’s system is the analytic a posteriori.
Examples of this kind of propositions are the following ‘This, which is a drake, is
male’ and ‘This triangle has the property that the sum of its angles equals two
right angles’19: the idea expressed by ‘this’ can be varied salva veritate (and thus
the propositions are analytic) and, at the same time, is an intuition (and thus
the propositions are empirical). Analytic a posteriori propositions can be true (or
false) by virtue of whatever is the case, contingent facts or states of affairs. For
instance, in order to know that the proposition ‘Albino Luciani, who was a Pope of
the Twentieth century, had white skin’ is analytic with respect to ‘Albino Luciani’,

18As Lapointe (2014a, p. 102) has emphasized, this conclusion is not uncontroversial, because
in certain passages Bolzano suggests that some mathematical truths can be known only by
induction, that is, by a kind of experience. But excerpts like these can be read as concessions to
the limitations of human capacity.

19The first example is due to Roski (2010, p. 108) and the second to Proust (1981, p. 226).
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it is not sufficient to know the meaning of the terms, but it is also necessary to
have some historical cognitions.

The category of the ‘analytic a posteriori ’ represents a radical break within the
philosophical tradition: in so doing, Bolzano interrupts the privileged connection
between, on the one hand, analyticity and, on the other hand, both apriority
(as far as the epistemological side is concerned) and necessity (if seen from the
metaphysical perspective). The same destiny is shared, after all, also by the notion
of Ableitbarkeit, that may pick out inferences that are merely materially valid
or have mere empirical generality. This feature of the Wissenschaftslehre has
been frequently read as the major mistake of Bolzano’s logical work. The critics’
disappointment has been efficaciously summarized by Lapointe in the following
terms:

By admitting ‘analytic’ propositions that would be known a posteri-
ori, Bolzano seems to have missed an important point about what we
usually take to be the nature of analytic knowledge. The notion of
analyticity should aim at providing an objective criterion on the basis
of which one may account for cognitions whose justification is entirely
independent of empirical data. But this is precisely the insight which
Bolzano’s broader notion of analyticity would seem unable to capture
(Lapointe, 2011, p. 66).

The appraisal and the interpretation of this characteristic of Bolzano’s notion of
analyticity has been at the core of a lively debate that we are going to examine in
Section 2.3.2.

2.1.3 The notion of logical analyticity

We now return to §148 of the Theory of Science. In the second paragraph, Bolzano
provides several examples of analytic propositions, namely, ‘A is A’, ‘A, which is B,
is A’, ‘A, which is B, is B’, ‘Every object is either B or not B’, and acknowledges
that propositions of the form ‘A is A’ are usually called identical or tautological. In
the third paragraph, Bolzano maintains that the examples of the second paragraph
are different from those of the first one, inasmuch:

Nothing is necessary for judging the analytic nature of the former be-
sides logical knowledge, because the concepts that make up the invari-
ant part of these propositions all belong to logic.

He then proposes to call propositions such as those of the second paragraph ‘logi-
cally analytic’ or ‘analytic in the narrow sense’ and propositions such as those of
the first paragraph ‘analytic in the broader sense’, although he recognizes that the
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distinction proposed is ambiguous “because the domain of concepts belonging to
logic is not so sharply demarcated that no dispute could ever arise over it”.

In our comment, we distinguish two different questions. The former concerns
the way in which Bolzano gives this definition and specifies some features of the
concept of logical analyticity. The latter deals with the role of logic and logical
truths with respect to the narrow version of Bolzano’s analyticity.

Bolzano’s definition of logical analyticity. Some commentators suggest that
the third paragraph of §148 “has no definitional value” because the distinction
between analyticities in the broader sense and analyticities in the narrow sense is
“founded not ‘in itself’ but with respect to our mode of acquiring knowledge”20.
Now, we think that the reason brought in support for this thesis is mistaken. As we
have seen in Section 2.1.1, Bolzano usually pays great attention to the distinction
between the ordo essendi and the ordo cognoscendi and the way in which ‘logical
analyticity’ is defined makes no exception. He offers both an epistemological and
a logical criterion to individuate logical analyticities: the former states that logical
knowledge is sufficient to judge about these entities; the latter affirms that “the
concepts that make up the invariant part of these propositions all belong to logic”.
Moreover, Bolzano underlines with the conjunction ‘because’ the fact that the way
in which logical analyticities are known is a consequence of the way in which these
entities are defined.

The reason why Bolzano’s discourse on logical analyticity might lack a defini-
tional value is, as the author makes explicit, the difficulty in establishing which
concepts belong to logic and which do not. Notice that by saying that “the con-
cepts that make up the invariant part of these propositions all belong to logic”,
Bolzano is claiming, contrary to what some scholars have suggested, that only but
not necessarily all logical concepts remain invariant. For example21, the proposi-
tion ‘A man, who is rich and powerful, is rich and powerful’ is logically analytic
with respect to ‘man’ and ‘rich and powerful’ because only logical concepts remain
invariant, but notice that not all logical concepts are invariant: the conjunction
‘and’ that links the two adjectives ‘rich’ and ‘powerful’ is a logical concept, but
occurs in a varying part of the proposition.

A consequence of this feature that has been variously acknowledged in the
literature22 is that a proposition can be logically analytic only if it contains at
least one non-logical notion. For example, the propositions ‘∃x∃y¬(x = y) ∨
¬∃x∃y¬(x = y)’, ‘Every object is an object’ and ‘Every proposition, which is true,
is true’ are not logically analytic because, according to Bolzano, there are no non-

20Proust (1989, p. 81).
21This example is due to Rusnock (2013, p. 326).
22See, for instance, Rusnock (2013) and Künne (2006).
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logical concepts occurring in them that can be varied. This is the case even if the
respective propositional forms ‘Either B or not B’, ‘A is A’ and ‘A, which is B, is
B’ are explicitly said to be logically analytic in the third paragraph of §148. These
examples points out in addition that Bolzano’s understanding of what amounts
to be a logical concept is so broad (although not sharply demarcated) that the
ideas ‘object’, ‘true’ and ‘proposition’ are included in the category. In general,
Bolzano classifies as ‘logical’ not only concepts expressed by logical constants, but
also notions of formal ontology and metalogical concepts23.

A traditional and widespread interpretation of Bolzano’s text tends to exag-
gerate the role of ‘logical analyticity’ at the expense of the notion of ‘analyticity
in the broader sense’. The reasons behind this critical trend and the historical
problems it poses will be amply examined in Section 2.3.2. By now it is suffi-
cient to underline that this kind of readings is hindered by some evident textual
elements. First, Bolzano’s talking of logical analyticity may be regarded as an
imperfect kind of definition because the logical criterion is founded on a notion,
that of logical concept, which is not clearly demarcated. Second, a proposition,
which is logically analytic, is ipso facto analytic in the broader sense and not vice
versa. Third, Bolzano’s discussion of logical analyticity appears only in the third
and last paragraph of the Section dedicated to the analytic-synthetic distinction.
For these motives, we do agree with Proust’s words:

Set in the general context of §148, the third subsection appears to
have the function of an explanatory commentary on the examples of
analytic propositions given. If we take Bolzano literally, the distinction
he introduces here has only a clarifying value [. . . ] Consequently, in
the third paragraph there is no indication of anything else but a casual
remark, the equivalent of which we find again concerning derivability
(Proust, 1989, p. 81).

Logical analyticity and logical truths. If we examine whether logical truths
are logically analytic or, viceversa, logical analyticities are logically true, we arrive
at the following results24. On the one hand, some propositions are logically analytic
but do not belong to logic. This is the case for propositions, such as the one
already mentioned ‘A man, who is rich and powerful, is rich and powerful’, that
do not involve solely purely logical concepts. On the other hand, some propositions
belong to logic but are not logically analytic. The examples Bolzano brings for this
second class are not only propositions made up of concepts that we, unlike Bolzano,
would not count as belonging to logic, such as ‘There is at least one notion’ and

23See Künne (2006, p. 200).
24This point has been deeply investigated by Künne (2006, p. 201).
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‘Some notions are complex’. But there are also cases that invoke propositions
that are logical par excellence, such as the syllogistic rule of Barbara that “out of
two propositions of the form A is B, and B is C, follows a third of the form A
is C”25, which is said to be synthetic (and thus not only non-logically analytic,
but also non-analytic tout court). These observations lead us to a turning point
of the present Chapter, which will be further specified in the following Sections:
according to Bolzano, logic and (logical) analyticity do not coincide. This tenet is
a characterizing feature of Bolzano’s position and it can be surprising only if read
from the logical positivistic perspective that logic is analytic.

But this is not the only feature of Bolzano’s theory that would disappoint a
logical positivist. According to the author of the Wissenschaftslehre, logical ana-
lyticity does not coincide with triviality. For sure, some logically analytic propo-
sitions are also trivial: this is the case for instances of the propositional forms
‘A, which is A, is B’ and ‘A is A’. But it is clear that, if we stick to the defini-
tion, many logical analyticities turn out to be instructive: this is the case for any
propositional form that exceeds certain levels of complexity. Bolzano recognizes
this point when he claims that “[n]ot every analytic truth goes without saying, so
that trying to communicate it to anyone would be entirely superfluous”26. The
lack of any reliable connection between logical analyticities and triviality can be
explained by the fact that Bolzano’s logical analyticity is not an epistemic notion:
it is primarily defined in objective terms, whose reflection in the ordo cognoscendi
does not invoke the trivial-instructive opposition, but rather the distinction among
logical and non-logical concepts.

2.1.4 Language independence and synonymy

We now return to the Bolzanian text and start analyzing the notes of §148 of the
Wissenschaftslehre. In the first note, Bolzano warns that “[M]aking a judgment as
to whether a proposition as it is expressed in language is analytic or synthetic often
demands more than a cursory glance at the words”. On the one hand, he points
out that a proposition can be analytic without any indication of it by its verbal
expression: this is the case of the proposition ‘Every effect has a cause’. On the
other hand, he recognizes that some propositions are synthetic in meaning even if
they sound analytic or tautological: the meaning of the tautological proposition
‘Even a learned man is a man’ is that even a learned man is fallible. The second
and third notes are devoted to identical propositions. After having specified that
identity is an intrinsic property of some propositions, while equivalence is a relation
that holds between propositions, Bolzano claims that the definition of identical

25TS, §315.
26TS, §115.
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propositions in terms of propositions in which subject and predicate are the same
ideas must be rejected because “the proposition, A is A, does not have the idea A
for its predicate idea, but rather the corresponding abstractum”.

We now deal with the commentary of these passages. Bolzano assumes that
every proposition, no matter of its linguistic expression, is of the form ‘A has b’ and
therefore has exactly three parts: a subject idea ‘A’, a predicate idea ‘b’ and the
copula ‘has’ (or another form of the verb ‘to have’). Bolzano chooses this copula
instead of the more traditional forms of ‘to be’ because the former represents better
than the latter that every proposition is the attribution of a property or a relation
to a subject and therefore every predicate idea ‘b’ is the idea of an attribute (either
a property or a relation). This explains the reason why Bolzano rejects the common
definition of identical proposition. However, although Bolzano defines analyticity
for propositions, not for sentences, and propositions are all conceived in the ‘A
has b’ form, the first note of §148 makes clear that the property of analyticity as
given in the Wissenschaftslehre is independent of language and of the way in which
propositions are expressed. The point is that Bolzano’s analyticity is not bounded
to a particular logical form and the recognition that a proposition is analytic is
not constrained by a determinate syntactic structure.

Moreover, the observations concerning hidden and apparent analyticities make
clear that the resources Bolzano uses to define analyticity are not restricted to
the notions of truth and uniform substitution. For, in order to recognize that
the proposition in itself expressed by the sentence ‘Every effect has a cause’ is
analytic, it is necessary to understand that the meaning of the term ‘effect’ is
‘what is effected by something else’. But this would require Bolzano to explain
why the latter expression is the meaning of the former or, in other words, it would
require an account of synonymy. As we will show later on, the recognition of this
fact would have subjected Bolzano’s theory to Quine’s famous attack against the
analytic-synthetic distinction put forward in the well-known article Two Dogmas
of Empiricism.

2.1.5 Criticisms against Kant’s analysis and analytic-syn-
thetic distinction

In the fourth and last note of §148, Bolzano compares his conception of analyt-
icity and syntheticity with some definitions of his predecessors and makes some
observations on his own distinction. After having mentioned Aristotle, Bolzano
discusses Locke’s concept of ‘trifling propositions’ and criticizes his idea on several
points. The author of the Wissenschaftslehre then moves to analyze Kant’s work,
to whom he recognizes an eminent role in the history of the distinction. Bolzano
accuses Kant’s explanation of “fall[ing] somewhat short of logical precision”: while
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the identity criterion “is applicable to identical propositions at most”, the contain-
ment criterion makes use of “figurative forms of expression that do not analyze the
concept to be defined”. In particular, Bolzano argues that the Kantian definition
is too broad, because it includes among the class of analyticities also propositions
that are intuitively synthetic. For example, the proposition ‘The father of Alexan-
der, King of Macedon, is King of Macedon’ turns out to be analytic according to
Kant, because the predicate idea, simply repeating one of the components of the
subject idea, is a part of, and thus contained in, the subject. At the same time,
Kant’s definition is, according to Bolzano, too narrow, because its applicability
is restricted to propositions of the subject-predicate form. Bolzano adds that the
importance of analytic judgments rests on the fact that their truth or falsity “does
not depend on the particular ideas of which they are constituted, but remains the
same no matter what changes are made in some of them”. Moreover, contrary to
the positions of many authors before him, he maintains that the analytic-synthetic
distinction is not subjective and does not depend on the definitional choice of the
individuals.

The examination of the last portion of §148 of the Theory of Science is struc-
tured into two parts. First, we are going to examine Bolzano’s conception of
analysis as opposed to the Kantian decompositional one. Second, we offer an
interpretation of Bolzano’s criticisms of Kant’s analytic-synthetic distinction.

Bolzano’s criticisms of Kant’s conception of analysis. As Lapointe has
repeatedly shown27, Bolzano criticizes the Kantian analytic-synthetic distinction,
because he rejects the decompositional conception of analysis on which Kant’s the-
ory of containment is based. We have seen in Chapter 1 that the traditional theory
of concepts assumes that concepts are made up of constituents. The constituents
of a concept must be individuated through a process of analysis that is understood
in terms of decomposition or resolution and that starts from the initial concept
and arrives to its simple elements. This process of decomposition is framed and
regulated by the traditional theory of logical division of concepts that aims at
producing Porphyrian hierarchies, in which concepts and their constituents are
organized with respect to the notion of containment or inclusion: each genus is
contained in its species and each species is contained under its genus. An essen-
tial principle of this theory is that conceptual content and logical extension are
connected by a relation of inverse proportion.

Bolzano, demonstrating a significant and modern view, rejects the latter tenet
pointing out that it is not the case that every idea A, which has a larger content
than an idea B, has a smaller extension than B and vice versa. He proposes

27See, for example, Lapointe (2010, p. 265), Lapointe (2014, p. 220 and ff.), Lapointe (2011,
Chapter 2).
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the following counterexample. The proposition ‘A man who understands all living
European languages’ has at the same time a greater content and a larger extension
than the proposition ‘A man who understands all European languages’. But the
main flaw of the decompositional conception of analysis is found by Bolzano in
one of its assumptions: the correspondence between a concept and its object.
The idea Bolzano attacks is an unsophisticated form of representationalism, which
assumes that concepts are pictures of the objects they represent and, in particular,
that properties of objects correspond to constituents of concepts. Bolzano sides
decisively against this perspective:

I maintain not only that there are various parts of an idea that do not
express properties of the corresponding object at all, but that in every
object there are also properties, which - even though they belong to
it of necessity insofar as it is supposed to fall under a certain idea as
object - are by no means conceived of as among the idea’s components
(TS, §64).

As far as the first claim is concerned, Bolzano argues that the idea of an object
requires not only the ideas of its properties, but also some other ideas that serve
to connect the latter. In other words, the theory of concepts that results from
this assumption is doomed to characterize conceptual contents in terms of un-
structured entities, that is, of non-ordered sums of constituents. Numerous are
arguments proposed by Bolzano to support the second part of his thesis, but the
most efficacious is the following example. The concept of an equilateral triangle
does not include the concept of equiangularity, although it may be the case that
the latter occurs to us spontaneously in connection with the former.

Bolzano does not restrict himself to the pars destruens, but he also proposes an
account of analysis alternative to the decompositional conception. As Lapointe has
highlighted28, Bolzano’s idea consists in assuming that every sentence utterance
can be paraphrased into a proposition that expresses its complete meaning: the
process of Auslegung or interpretation provides a complete analysis of the initial
sentence. Many are the requirements on adequate paraphrases, but the most
important of them are the following ones. First, only a proposition, in which no
context-relative elements occur, can express the complete meaning of sentences;
second, an adequate paraphrase must have the standard form ‘A has b’; third,
a proposition is an adequate translation of a certain sentence only if it is not
redundant.

Bolzano’s criticisms of Kant’s analytic-synthetic distinction. We now
examine the criticism against Kant’s notion of analyticity that Bolzano puts for-

28See, in particular, Lapointe (2007).
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ward in §148 of the Wissenschaftslehre and that we have summarized above. The
charge of “fall[ing] somewhat short of logical precision” and the accuse of being
too broad are closely interconnected. We have seen that Bolzano, in order to sup-
port his latter claim, shows that the proposition ‘The father of Alexander, King
of Macedon, is King of Macedon’ would be regarded as synthetic by everyone and
analytic only following Kant’s definition. On the one hand, everyone would agree
that the phrase ‘King of Macedon’ that occurs in the subject idea ‘The father of
Alexander, King of Macedon’ does not signify a property of Philip II, Alexander’s
father, but a property of Alexander. Moreover, the two properties of Philip II
mentioned in the proposition under question, namely, being Alexander’s father
and being King of Macedon, do not seem to be interconnected from a conceptual
point of view, but they can be predicated of the same man only as a matter of
fact. For these reasons, the example shows a proposition that also Kant himself
would have probably been ready to classify as synthetic. On the other hand, the
idea ‘King of Macedon’ occurs in the proposition both as the predicate and as a
part of the subject: as a result, the predicate is contained in the subject and the
proposition is analytic in the Kantian sense of the term.

Bolzano’s example aims to prove that Kant’s definition of analyticity is un-
derdetermined: it does not explain the manner in which the predicate must be
contained in the subject and does not impose any restriction on the way in which
a predicate can be a part of the subject in order for the resulting proposition to
be analytic. In other words, according to Bolzano, Kant’s notion of analyticity
is too broad because the notion of containment on which it is based is left at a
metaphorical level and is not completely explained. However, we think that, in
elaborating this criticism, Bolzano probably misses the point. As we have seen in
Chapter 1 and we have recapitulated above, Kant’s notion of containment is not a
metaphor, but a precise and technical notion founded on the traditional theory of
concepts. In this theoretical frame, which probably prevents to call ‘King of Mace-
don’ a part of the concept ‘The father of Alexander, King of Macedon’, Bolzano’s
example would be mistaken.

Another charge that Bolzano moves against Kant’s notion of analyticity is
that it would be too narrow and could apply only to propositions of the form ‘A,
which is B, is B’. This criticism highlights a feature of Kant’s definition that
many scholars will regard as problematic: as we have already shown in Chapter
1, the analytic-synthetic distinction of the Critique applies only to propositions of
the subject-predicate form and, as a consequence, many sentences turn out to be
neither analytic nor synthetic. As we have shown in the previous Section, Bolzano
does not accept this characteristic of Kant’s theory: according to the author of
the Theory of Science, analyticity and syntheticity must be independent of the
logical form in which propositions are expressed and every proposition must be
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either analytic or synthetic.
Bolzano completes the review and criticisms of Kant’s work drawing the fol-

lowing conclusion:

In general it seems to me that all these definitions fail to place enough
emphasis on what makes this sort of judgment really important. This,
I believe, consists in the fact that their truth or falsity does not depend
on the particular ideas of which they are constituted, but remains the
same no matter what changes are made in some of them, presupposing
only that the proposition’s denotative character is not itself destroyed
(TS, §148).

With this observation, Bolzano wants to underline the fundamental difference be-
tween Kant’s and his own conception of analyticity. On the one hand, Kant as-
sumes that there are two ways in which a subject and a predicate are connected in
a sentence: in the analytic case, the predicate is contained in the subject concept;
in the synthetic case, the two concepts are connected through an object given in
intuition. It is the method of analysis, conceived in terms of the decomposition
of concepts, that plays a central role and establishes that a sentence is analytic.
In this approach, the content of the concepts occurring in a certain sentence is of
course fundamental. On the other hand, Bolzano does not distinguish the ways in
which concepts are connected in analytic and synthetic propositions. Analysis has
no role in establishing which propositions are analytic and which are synthetic no
matter if it is understood in the decompositional or the paraphrasitic terms. The
real innovation of Bolzano’s work on analyticity is that he defines this property
of propositions through the substitutional method. A result of this procedure is
that the analyticity of a proposition does not depend on the content of the ideas
occurring in it, but, on the contrary, on the truth value of that proposition when
some of its ideas are varied.

2.2 The science of logic

2.2.1 Grounding, deductive sciences and synthetic a priori

The notion of Ableitbarkeit that we have examined in Section 2.1.1 does not ex-
haust Bolzano’s account of consequence. To play an equally important role in
Bolzano’s theory29 is the concept of Abfolge, which is usually translated as ‘ground-
ing’, ‘ground and consequence relation’ or ‘entailment’ and takes up much of the

29The relevance of this concept is immediately suggested by the way in which it is introduced:
“Of all the relations that hold between truths, the one most worthy of attention in my opinion
is that of ground and consequence, by virtue of which certain propositions are the ground of
certain other propositions and the latter are consequences” (TS, §198).
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third Chapter of the Elementarlehre. Despite its centrality in the Theory of Sci-
ence, Bolzano was never satisfied with his own definition of grounding. He even
arrived to suspect that this relation could not find a complete explication30 and
he settled for individuating its fundamental properties by comparison with other
notions31. In this Section, we are interested in providing an overview of the main
features of this notion and in showing the aim for which it has been devised,
namely, that of ordering scientific truths into axiomatic systems.

Bolzano introduces the relation of grounding by way of the following example.
Consider the propositions ‘The thermometer is higher in summer than in winter’
and ‘It is warmer in summer than in winter’. Not only is the former ableitbar
from the latter; but also vice versa, for no matter what ideas we substitute for
them, only those which make the latter proposition true also make the former
true. However, Bolzano argues:

All the same, it could never occur to anyone to consider the latter
of these two propositions as a consequence flowing from the former,
and that as its ground, even if they are both true. No one will say
that the true ground of its being warmer in the summer than in the
winter is located in the fact that the thermometer mounts higher in
the summer than in the winter. Instead, everyone regards the fact that
the thermometer climbs as a consequence of the higher heat level, and
not the other way around (TS, §162).

To sum up, the proposition ‘It is warmer in summer than in winter’ is the ground
of the proposition ‘The thermometer is higher in summer than in winter’, which
is its consequence, and not vice versa. Bolzano admitted that, in elaborating
his notion of grounding, he was looking to Aristotle’s distinction in the Analytica
Posteriora between the demonstration that something is the case and the demon-
stration why something is the case or, to use the scholastics’ terminology, between
demonstratio quia and demonstratio propter quid. The example above, together

30For example, in §195, Bolzano admits that “Almost everything I advance in this part is
tinged with uncertainty and, on many topics I have not reached any decision, and at best my
inquires are only fragments and suggestions which will have attained their goal if they provide
others with the stimulus to reflect further on these matters”.

31In §203, the author of the Wissenschaftslehre argues the following: “If we are not in a
position, whether because of ignorance or because it is impossible in itself, to analyze the concept
of the relation of ground and consequence into other simpler concepts, it becomes all the more
necessary for its correct interpretation for us to describe the distinctive features of this relation
in a series of special theorems. And since it is the relation of derivability above all that could be
confused with that of ground and consequence, because of the similarity between them, it will be
useful to define the distinctive features of the latter concept by way of a comparison with those
of the former”.
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with this historical antecedent, suggests that the main difference between Abfolge
and Ableitbarkeit is thus that the former but not the latter has an explanatory
pretension. But there are also other relevant differences.

First, while the relation of derivability can involve also false propositions,
grounding holds solely between true propositions and, in particular, between a
set of truths and their immediate consequences. Second, contrary to Ableitbarkeit,
the grounding relation is unique. This is because each truth has only one ground,
which is made up of all the truths of which the initial truth is a consequence.
Each of these premises singularly considered is called a partial ground of the
grounded truth. Moreover, although different grounds can have common partial
consequences, they cannot have the same complete consequence. Third, Abfolge is
anti-reflexive (for no truth can be the ground of itself) and anti-symmetrical (for
no truth can be the ground of its own consequence), while derivability is reflexive
and admits of symmetric instances. Fourth, simplicity and generality are the two
features that often (but not always) characterize the ground with respect to its
consequences and that do not pertain to the propositions connected by the relation
of derivability. On the one hand, the ground of a proposition should not be more
complex than its consequences, in the sense that it cannot have a higher number
of simple concepts occurring in it. On the other hand, the ground should be more
general than its consequences, in the sense that the extension of the subject and
predicate ideas of the ground should be broader than that of its consequences.
The requirement of simplicity is taken to be prior to that of generality. Last,
as the example above has made clear, a certain proposition can be at the same
time derivable from and grounded in the same premises: if this is the case, the
grounding relation is said to be formal, otherwise it is said to be material.

If it is true that the notion of grounding must not be confused with the relation
of derivability, it is also important to underline the differences between Abfolge
and causality. According to Bolzano, the former concerns propositions, while the
latter deals only with real things. As a result, the two notions can work in the
same direction if propositions about empirical facts are taken into account. But of
course the relation of causality plays no role at all when the focus is, for example,
on mathematical truths standing in a grounding relation.

The grounding relation is the fundamental notion of the account of scientific ex-
planation proposed in the Wissenschaftslehre, for it is at the core of both Bolzano’s
conception of deductive sciences and his definition of axiomatic structures32. The

32The tight connection between grounding and axiomatic systems is argued by Bolzano in the
following explicit terms: “I occasionally doubt whether the concept of ground and consequence,
which I have above claimed to be simple, is not complex after all; it may turn out to be none
other than the concept of an ordering of truths which allows us to deduce from the smallest
number of simple premises the largest possible number of the remaining truths as conclusions”
(TS, §221).
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relation of Abfolge (and, notice, not that of derivability) is what turns a body of
truths into a theory or a science. The truths of deductive sciences are ordered
according to the grounding relation, which assigns every truth to its proper place
with respect to the remaining propositions of that science. In particular, each
proposition is either a basic truth or is grounded on basic truths. Basic truths are
conceived no more as evident propositions, but just as starting points of proofs in
deductive theories. Bolzano was one of the first thinkers to introduce an axiomatic
perspective in the conception of science and devises axiomatic systems as theories
characterized by a grounding order, that is to say, as theories in which proposi-
tions relate as grounds to their consequences. The properties of Abfolge that we
have mentioned above determine the axiomatic structure of sciences ordered by the
grounding relation. For example, each proposition has a unique Abfolge hierarchy
that leads to fundamental propositions. In this context, Bolzano proposes, prob-
ably for the first time in the history of logic, proof trees, that is to say, diagrams
showing the dependence of propositions with respect to their grounds.

According to Bolzano, deductive sciences, understood as axiomatic systems
ordered by the relation of grounding, are mainly synthetic a priori and, as it will
be clarified in the next Section, analytic propositions may occur in them, but
only in a subordinated role. This is for sure a Kantian stance on Bolzano’s side,
since also the author of the Critique famously argued that all important cognition
cannot be explained in terms of analytic judgments and falls on the synthetic
side. Nevertheless, we cannot forget that the two philosophers have two different
answers to the questions of what the synthetic a priori is and how it can be
justified. The possibility of this kind of judgments is the central issue of the first
Critique and Kant’s solution relied on the concept of pure intuition; while Bolzano
firmly rejects the Kantian postulation of pure intuitions33 and solves the problem
raised by Kant’s work in a rather hasty way:

Especially here, where K. envisages a difficulty, there seems nothing
incomprehensible to me. “What justifies the understanding to connect
a subject A with a predicate B foreign to the concept of A?” Nothing
else, I say, than that the understanding has and knows the concepts A
and B. In my opinion, from the mere fact that we have certain concepts,
we must also be in a position to judge about them. For to say that
someone has certain concepts A, B, C,... is indeed to say that he knows
and differentiates them. But to say that he knows and differentiates
them is again only to say that he asserts something about the one that

33According to Bolzano, the reason why Kant falls for the seduction of the doctrine of pure
intuition is that he misunderstood the notion of grounding and held that intuitions could serve
as grounds for synthetic truths (TS §315).



CHAPTER 2. BOLZANO 77

he does not want to assert about the other; it means therefore to say
that he judges about them (TS, §380).

As Roski’s reading makes clear34, Bolzano in this passage is claiming that one can
come to know a conceptual truth of the form ‘A is B’ if one knows the concepts
A and B and that to know the concepts A and B means to form judgments of a
certain kind about A and B. Bolzano’s point here is, we think, that the truth of
a priori propositions can be apprehended by virtue of the concepts occurring in
them only if they are embedded in axiomatic structures (and, as a consequence
of this fact, are synthetic). Since basic truths defines concepts implicitly, to know
the concepts that occur in a true proposition amounts to know the grounding
chain that leads from that proposition to some given basic truths. This simple
observation is what should probably be taken as Bolzano’s justification of the
synthetic a priori.

2.2.2 Bolzano’s thesis that logic is synthetic

Bolzano conceives logic as a theory of science that aims at formulating rules “by
which we must proceed in the division of truth generally into particular sciences
and their presentation in their own treatises, if we would proceed in a manner
genuinely suited to the purpose”35. The structure of this discipline is reflected in
the index of Bolzano’s Wissenschaftslehre, where the Theory of Science Proper is
but the summit of a stratified construction made up of a sequence of disciplines,
each of which is founded on the preceding. First, the guidance of the theory of
science proper for writing scientific treatises and classifying sciences “would be
superfluous if we were not clever enough to acquire knowledge in the first instance
of a significant quantity of truths that belong to this or that science”36. As a
result, the Theory of Science Proper depends first of all on the Art of Discovery
or Heuristic. Second, both of these disciplines presuppose the Theory of (Human)
Knowledge, whose business is to give the laws that govern the recognition of truth
and to explain the nature of human cognitive capacity. Third, the inquires of the
Wissenschaftslehre examined up to this point crucially depend on the Theory of
Elements, which collects the properties of propositions and truths in themselves.
Bolzano claims that:

Without having acquired knowledge of the various relations of deriv-
ability and consequentiality that hold between propositions generally;
without having heard all about that particular manner of connection

34Roski (2010, p. 110).
35TS, §1.
36TS, §15.
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that obtains between truths when they are related to one another as
premises and conclusions; without having any acquaintance with the
different kinds of propositions and with the different kinds of ideas as
those components into which propositions are directly analyzed; we are
surely in no position to define the rules as to how new truths are to
come to be known from truths that are given [. . . ]; whether it belongs
to this or that science; in what order and connection to other proposi-
tions it has to be adduced in a scholarly treatise [. . . ] and so on (TS,
§15).

Last, all of these investigations presuppose the Theory of Fundamentals, which
constitutes the beginning of any course and proves that there are truths as such.

As this overview has clarified, Bolzano’s theory of science is a discipline char-
acterized by broad boarders. In particular, the second half of the book, that is
made up of the Theory of Knowledge, the Art of Discovery and the Theory of Sci-
ence Proper, includes in the realm of logic also methodological, pedagogical and
epistemological considerations. The three disciplines just mentioned are however
subordinated to the observations proposed in the first half of the work, which is
free from any psychological insight and concerns propositions and ideas taken in
themselves, that is, from an objective point of view. Now it is necessary to under-
line that, beyond the broad conception of logic understood as a theory of science
that is typical of his times, Bolzano individuates also a narrow notion of logic,
which is closer to the modern conception of formal logic. The latter coincides
with the Theory of Elements and, as the quotation above specifies, treats ideas,
propositions, truths and inferences.

Bolzano maintains that logic in the narrow sense is a deductive science. This
assumption, together with the principle that axiomatic systems are constituted by
synthetic a priori truths, naturally leads Bolzano to derive the inevitable (but, for
some, surprising) conclusion that logic is synthetic:

In my opinion not even one principle in logic, or in any other science,
should be a merely analytic truth. For I look upon merely analytic
propositions as much too unimportant to be laid down in any science
as a proper theorem of it. Who would want to replenish geometry, for
example, with propositions like: an equilateral triangle is a triangle, or
is an equilateral figure, etc.? (TS, §12)

Here we see that Bolzano’s thesis that logic and analyticity do not coincide is
developed in an extreme way: in logic there seems to be no place for analytic
propositions. Similarly, not only logical analyticity does not coincide with trivial-
ity; but, according to this quotation, trivial propositions seems to be completely
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excluded from this discipline. The theses that emerged in our investigation of
Bolzano’s conception of logical analyticity in Section 2.1.3 seem to experience a
radicalization if we examine the same matter from the perspective of Bolzano’s
theory of deductive sciences. This twist raises some interpretative problems, that
we are going to discuss in the next Section.

2.3 An evaluation

2.3.1 A contradiction in Bolzano’s system? The pragmat-
ics of analyticity

In the previous Sections, we have suggested that Bolzano’s account of consequence
is twofold. On the one hand, we have explained in Section 2.1.1 that the notion of
Ableitbarkeit or derivability is, according to Bolzano, the “most important concept
of logic”37. This relation is meant to provide an account of truth-preservation, be
it by virtue of form or not, and is defined through the substitution procedure as a
special case of compatibility. On the other hand, we have shown in Section 2.2.1
that the notion of Abfolge or grounding plays a fundamental role in the Bolzanian
epistemology. It is aimed at defining axiomatic structures in which propositions
relate as grounds to consequences and show their explanatory order. The ground-
ing relation, exhibiting the objective connection among true propositions, is what
turns a mere collection of truths into a theory or a deductive science.

Many are the differences that Bolzano individuates between the two concep-
tions of consequence, the most evident of which is that the relation of Abfolge,
contrary to derivability, has an explanatory function. Nevertheless, the exact con-
nections between the two are not as clearly defined and Bolzano himself recognizes
the point38. For sure, grounding is a kind of derivability and not vice versa. But
this observation does not seem to resolve the question and finds no demonstration.
According to Lapointe, “Bolzano gives the impression that he is seeking a notion
to bridge the gap between the two notions when he defines the notion of ‘exact’
(genaue) Ableitbarkeit”, but one cannot avoid to admit that “[i]n the Theory of
Science, Bolzano’s definition of exact Ableitbarkeit remains incidental”39. As a
result, the account of consequence in the Wissenschaftslehre seems to be irremedi-
ably split into two parts. This observation may drag an unwelcome doubt. Since
Ableitbarkeit and Abfolge are the two most important notions of Bolzano’s logic
and epistemology respectively, isn’t it the case that also these two areas of the
theory of science are not properly connected?

37Bolzano (2004, p. 54).
38TS, §200.
39Lapointe (2011, pp. 88-89).
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This insinuation may seem to find support in considering the status of logi-
cal propositions in relation to the analytic-synthetic distinction that emerges in
Bolzano’s system. As we have seen in Section 2.1, analyticity is a notion of invari-
ance under some classes of transformations, that, like universal (in)validity and
Ableitbarkeit, is defined on the basis of the substitutional procedure. According
to this account of analyticity, there seems to be several propositions that at the
same time are analytic (or logically analytic) and belong to the discipline of logic.
This is the case, for example, of the following propositions, whose analyticity is
explicitly mentioned in the Theory of Science40: ‘A is A’ is analytic with respect
to ‘A’; ‘Every object is either B or non-B’ with respect to ‘B’ and ‘If all men are
mortal and Caius is a man, then Caius is mortal’ with respect to ‘men’, ‘mortal’
and ‘Caius’. However, we have shown in Section 2.2 that if we turn to the epis-
temological observations relative to deductive sciences and based on the notion of
grounding, we learn that “not even one principle in logic [. . . ] should be a merely
analytic truths”41. On this point Bolzano is crystal-clear and his words cannot be
misunderstood.

Appearances notwithstanding, there is no contradiction in the Wissenschaft-
slehre as far as the issue mentioned above is concerned. But how can Bolzano
keep the two perspectives together? The idea is simple. Bolzano distinguishes in
logic between the rule and its application, or, in other words, between the general
statements and their particular instantiations. Now, we have seen in Section 2.1.2
that analytic propositions can be derived from synthetic ones. As a special case of
this property, consider the proposition Ac → Bc, which is an instantiation of the
general principle ∀x(Ax→ Bx). The former is derivable (ableitbar) from the lat-
ter and is analytic, because c can be arbitrarily varied without affecting the truth
value of that proposition. The latter is instead synthetic, for we may assume that
there are substitutions on A and B that change the truth value of that proposition.
In general, we have that any instance of a true general statement is at the same
time a consequence of that general principle and an analytic proposition even if
the premise is synthetic, for the singular term occurs inessentially in it. To clarify
this point, Bolzano deals with the following example:

Logic too contains a considerable number of synthetical propositions.
[. . . ] Even the well-known rules of syllogistics are wrongly conceived as
analytical propositions. It is true that the proposition: if all men are
mortal, and Caius is a man, then also C[aius] is mortal may be called
analytic in the broad sense [. . . ]; but the rule itself, that out of two
propositions of the form A is B, and B is C, follows a third of the form
A is C, is a synthetical truth (TS, §315).

40The former two examples are taken from §148 of the TS; the latter from §315.
41TS, §12.
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Bolzano’s idea is that, although both the general rules (e.g., the rules of the syl-
logistics) and their instantiations (e.g., the particular instances of the syllogisms)
belong to the discipline of logic, analyticities and syntheticities play two definitely
distinct roles. It is the pragmatics of analyticity and syntheticity, which will be
discussed below, that explains why Bolzano does not contradict himself although
he both offers some examples of analytic and logical propositions and maintains
that logic is synthetic.

We have shown in Section 2.1.1 that one of the tools that Bolzano uses against
the psychologistic trend in logic is the distinction between what it is and what
it is known and we have highlighted in Section 2.2.2 that Bolzano’s Theory of
Science comprises, beyond the study of logic in the narrow sense, also an Erken-
ntnislehre. De Jong (2001) and Proust (1989), whose researches represent inter-
esting viewpoints in the literature, stress that the metaphysical and epistemolog-
ical levels must be distinguished also when discussing the roles of analytic and
synthetic propositions in deductive sciences. From the perspective of the ordo es-
sendi, Bolzano agrees with Kant in holding that scientific propositions are mainly
synthetic and that analyticities play a secondary and modest role: to use Proust’s
words, “[t]he Bolzanian definition of analytic propositions presents synthetic truths
as forming the final authority of the truth of a theory”42. Analytic propositions
are usually grounded in synthetic ones43 and only the latter manage to express
scientific principles and theorems.

Analyticities acquire a more valuable position if we move to consider the level
of the ordo cognoscendi : in the presentation and in the development of a deductive
science, analytic propositions are needed, according to de Jong, for “the clarifica-
tion of the objective structure of propositions and the finding of possible grounds
from which a truth could be demonstrated”44. Proust adds the observation that “in
the realm of knowledge, it is not possible to be satisfied with universal statements;
a delicate balance has to be found between impenetrable generality and redun-
dant detail [. . . ], a balance in which analytic propositions constitute an essential
element”45. He maintains that the freedom with which analytic propositions are
used depends on three factors: first, the nature of discipline under study; second,
the capacity of the subject; third, the objective of the authors of treatises.

To sum up, in the Theory of Science two different perspectives coexist: the
logico-metaphysical and the epistemological. Sometimes the two levels don’t seem

42Proust (1989, p. 106).
43De Jong (2001) suggests that Bolzano initially intended to link the analytic-synthetic dis-

tinction to the notion of grounding assuming that any analytic truth finds its (complete) ground
in a synthetic proposition. The reasons why Bolzano did not complete his reasoning must be
searched in his difficulties in defining the notion of grounding.

44De Jong (2001, p. 348).
45Proust (1989, p. 105).
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to be properly connected: as we have seen, this is the case for example of the
two notions of consequence, Ableitbarkeit and Abfolge. But what is important to
underline is that, appearances notwithstanding, there are no reasons to maintain
that the two perspectives go to contradict one another: they just complement each
other when dealing with the same object. This is probably the case for the status
of logical propositions in connection to the analytic-synthetic distinction. On the
one hand, the examples of analyticities belonging to logic presented by Bolzano
are only instances of more general and synthetic propositions or, in any case,
propositions that play a role only in the presentation of logic; on the other hand,
when Bolzano asserts that logic is synthetic, he is just assuming the metaphysical
perspective, omitting the way in which the discipline of logic has to be presented
and taught.

This conclusion raises two other relevant questions. First, we have seen that
analyticity, being detached from apriority and necessity, cannot give an account
of knowledge by virtue of meaning. This could lead to suppose that the notion
of analyticity serves a rather trivial purpose in Bolzano’s system. But this is not
true. For we have already shown, following de Jong (2001) and Proust (1989),
that “for Bolzano the analytic-synthetic distinction has to distinguish the proper
propositions of a science from propositions that have some role in its presentation,
especially in demonstration, but are not constitutive for the science concerned”46.
For the ones who think that this is a still too insignificant objective, we could notice
with Lapointe (2014b) that Bolzano’s analyticity is the first systematic account of
generality and quantification in general, because ‘is analytic with respect to . . . ’
is, like the universal quantifier of first-order logic, an operator that binds a variable
to express generality. The pragmatics of analyticity is thus an essential aspect in
Bolzano’s theory.

Second, the objectives of analyticity in the Theory of Science may suggest
how to answer a question that is ubiquitous in the literature: why did Bolzano
introduce two notions of analyticity instead of one and did not restrict himself to
logical analyticity? First, the two kinds of analyticity have the same role in the
presentation of two different kinds of science: if a proposition is a logical analyt-
icity, then its ground will be a synthetic proposition of logic; if a proposition is a
non-logical analyticity, then its ground will be a synthetic proposition belonging
to any science. In this sense, it is obvious that logical analyticity is only a special
kind of analyticity in the broader sense. Second, Bolzano introduces his notion
of analyticity in the broader sense not only because of his “habitual striving for
maximal generality”47, but also because, as de Jong (2010) suggests, “it is pre-
cisely the notion of analyticity ‘in its broad sense’ which would be important for

46De Jong (2010, p. 255).
47Rusnock (2013, p. 323).
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the presentation of a science”48: the epistemological and pedagogical relevance
rests with non-logically analytic truths, for their grounds in synthetic and general
propositions are usually more hidden than what happens for logical analyticities49.

2.3.2 A deceptive terminological choice? Bolzano’s place
in the history of analyticity

Bolzano’s analytic-synthetic distinction enjoys an eminent role in the literature
for two classes of reasons. First, the significancy of this definition consists in
the novelty with respect to the modern tradition: as we have highlighted above,
Bolzano’s substitutional procedure represents for sure a great breakthrough and a
herald of important anticipations. Second, much of the attention that Bolzano’s
definition received is due to its bizarre and apparently incomprehensible features,
especially if these characteristics are compared with the perspectives put forward
by other philosophers on the same matter.

The traditional interpretative trend cannot make sense of the fact that Bolzano’s
analyticity does not entertain any reliable connection with apriority and necessity
and maintain that Bolzano’s admission of empirical analyticities demonstrates a
relevant deficiency in the understanding of the core of Kant’s notion. It cannot be
read but as a great mistake in the Wissenschaftslehre. The worry that troubles this
interpretation is Bolzano’s alleged misuse of the new and powerful logical tools he
elaborated: his substitutional procedure and his insights in the theory of proposi-
tions could have served Bolzano better in his elaboration of central concepts such
as that of analyticity. Moreover, this narrative classifies Bolzano’s view on ana-
lyticity as an anomaly in a supposed linear and progressive history of this notion
from Kant to the logical positivists. It assumes that every philosopher that is part
of this story improves the understanding of the analytic-synthetic distinction and
moves closer and closer to the acme of this development that is individuated in
the positivists’ conception of this notion. This picture, however, cannot assimilate
Bolzano’s theory, because the latter seems to point toward a different direction.
To avoid a complete isolation of Bolzano’s theory in this kind of historical recon-
structions, most of these critics exaggerate the importance of logical analyticity in
the Theory of Science at the expense of the broader notion of analyticity offered
in Section 148: with this interpretative stretching, Bolzano’s work is forcefully in-
cluded into the tension towards formality that characterizes this supposed history
of the notion of analyticity.

48De Jong (2010, p. 253).
49This perspective is put forward also by Proust (1981, p. 224): “Bolzano mentions the differ-

ence between the two kinds of analytic propositions because he wants to show the epistemological
relevance of those analytic propositions whose analyticities may remain unnoticed. It is when
the analyticity is hidden that it becomes truly fruitful to bring it to the fore”.
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Examples of this interpretational trend are Kneale and Kneale (1962) and
Bar-Hillel (1970). The former dub as “curious” a number of features proper to
Bolzano’s notion of analyticity, such as for example the definition of false analyt-
icities, and, as far as some employments of the related notion of derivability is
concerned, the Kneales say that “it is interesting to ask why a philosopher who
was so obviously gifted for logical studies should have failed to make progress in
this part of his work”50. The latter holds the anachronistic thesis that “Bolzano’s
aim, in §148, was to define a concept which could serve as an adequate explication
for what is now commonly termed logical truth”51 and, as far as the notion of
analyticity in the broader sense is concerned, comments as follows:

The reader [...] must have become convinced of the almost ridiculous
inadequacy of Bolzano’s definition of ‘analytic’. [...] We can only won-
der about the lack of perspective which caused him to believe that his
definition is only “somewhat broader”, but even in this case, we must
ask, what prevented him from looking for a more adequate definition?
(Bar-Hillel, 1970, p. 10)

On the basis of these presuppositions, Bar-Hillel assembles a rather complicate
narrative around the two notions of analyticity that appear in Bolzano’s text. He
conjectures that the author of the Wissenschaftslehre realized the inadequacy of
the broader notion he offered and found only “at the very last moment, perhaps
during the printing52” that the conception of logical analyticity represented the
solution to all his problems. For this reason the interpreter thinks that “we are fully
entitled” and “morally obliged”53 to refer to Bolzano’s logical analyticity with the
term ‘analyticity’ tout court. According to Bar-Hillel, Bolzano thus managed to
insert the third subsection of §148 dedicated to logical analyticity without having
enough time to revise his work. As a result, not only “several parts, written at
different times, probably years apart, were embodied side by side, without the
necessary adjustments”, but also the “far-reaching consequences” of Bolzano’s
notion of logical analyticity “for the whole section, even for the whole Bolzanian
logic, were not worked out”54.

This interpretational trend has been attacked by recent scholars on two main
fronts: the anachronism of the historical presuppositions and the negligence in
reading the Bolzanian texts. The latest critics agree in the reconstruction sketched
above: while Proust (1981) calls Bar-Hillel’s interpretation into question and high-
lights the contradiction of the reading proposed, Rusnock (2013) warns that the

50Kneale and Kneale (1962, p. 366 and p. 371).
51Bar-Hillel (1970, p. 3).
52Bar-Hillel (1970, p. 11).
53Bar-Hillel (1970, p. 12).
54Bar-Hillel (1970, p. 13).
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problem of finding a role for Bolzano’s work in the development of the notion of
analyticity does not lie with the author of the Wissenschaftslehre, but rather with
the historical frame presupposed above. In general, recent interpreters are careful
about underlining the peculiarity and the specificity of Bolzano’s proposal. Never-
theless, even this approach is not free of risks. In some but not all cases, this trend
achieves the opposite result of depicting Bolzano’s work on the analytic-synthetic
distinction as something completely different from his predecessors and successors.
In so doing, the notions exposed in the Theory of Science turn out to be isolated in
the philosophical landscape. As a result, it is sometimes suggested that Bolzano’s
terminological choice is deceptive and tendentious55: he employs a Kantian term,
but with a different meaning. This is the radical position held by an acute reader
of Bolzano such as Künne:

Bolzano’s explanation of how ‘analytic’ in his mouth is to be under-
stood and Kant’s explanation(s) of how he wants this word to be under-
stood are explanations of different concepts (with different extensions).
Unlike ‘true’ and ‘necessary’, the word ‘analytic’ is a philosopher’s term
of art (Künne, 2006, p. 219).

The extreme consequences put forward by some recent scholars threaten the rele-
vance of one of the most interesting aspects of Bolzano’s theory, namely, his thesis
that logical theorems are synthetic a priori. For if it is true that the meaning
Bolzano attaches to the term ‘synthetic’ is so distant from our conception of this
notion, then also the thesis of the syntheticity of logic maintained in the Wis-
senschaftslehre risks to have a different meaning than what it is usually assumed.

Against this conclusion, we hold the following theses that we support with
several observations. First, taken for granted its peculiarities, Bolzano’s notion
of analyticity is less ‘alien’ than what it is supposed to be, but it rather shares
decisive features with the definitions elaborated by other philosophers included
in the ‘semantic tradition’. Second, Bolzano’s thesis that logic is synthetic is a
substantial view, which is grounded in fundamental convictions on the nature and
aims of the discipline of logic.

In order to support the former thesis, we now focus on the filiation, analogies
and connections between Bolzano’s and Kant’s notions of analyticity. First of all,
we must consider that, in early writings such as the Beyträge zu einer begründeteren
Darstellung der Mathematik (1810) and Etwas aus der Logik (1812), Bolzano en-
dorses with no objections Kant’s analytic-synthetic distinction56. Then, if it is
true, as we have shown in Section 2.1.5, that Bolzano criticizes many aspects of
the distinction as it is put forward in the Critique, it is also fair to underline that

55See Rusnock (2013, p. 333).
56This aspect has been emphasized by Lapointe (2011, p. 59).
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in several occasions the author of the Theory of Science praises and recognizes his
debt with Kant’s work57. For example, in Section 148, he holds that “[E]ven if it is
true that this distinction was mentioned before at times, nevertheless it was never
properly pinned down and fruitfully applied. The merit of having been the first to
have done that indisputably belongs to Kant”58. Moreover, as it has been noted
by several scholars59, sometimes Bolzano prefers to make use of Kant’s definition
instead of his own: this happens even after Section 148 of the Wissenschaftslehre,
that is, after Bolzano has already introduced and discussed his version of the same
notion.

But beyond these considerations, which may be also interpreted as homages
paid by Bolzano to his bright predecessor, the important point is that every ana-
lyticity à la Kant turns out to be analytic according to Bolzano’s definition, but
not vice versa: in other words, the effect of Bolzano’s definition is simply to widen
the extension of Kant’s notion. For if in a Kantian analyticity the predicate is
contained in the subject, then that predicate occurs inessentially in the proposi-
tion under examination, while, for example, every Bolzanian analyticity that is
not of the subject-predicate form cannot be said to be analytic according to Kant.
That’s not all. If it is true that, generally speaking, analyticity and apriority are
not correlated in any predictable way, things seem to be different if we focus on
logical analyticities60. On the one hand, “nothing is necessary for judging the
analytic nature” of them “besides logical knowledge”; on the other hand, logic is
said to be a conceptual science. As a consequence, one may conclude that logical
analyticities can only be known a priori, because the invariant parts of these propo-
sitional forms are made up by logical concepts (and not intuitions). This result,
if correct61, may be counted as another similarity between Kant’s and Bolzano’s
analytic-synthetic distinction62.

Not only is Bolzano’s notion of analyticity strictly interwoven with Kant’s

57On this point, see Siebel (2011, p. 100).
58TS, §148.
59Siebel (2011, p. 100), de Jong (2001, p. 334) and Künne (2006, p. 235).
60See Rusnock (2013, pp. 329-330).
61The only objection against this conclusion that we manage to think of is the following. In

order to check that the objectuality constraint is satisfied by a certain variant, it may be the
case that the recourse to experience turns out to be essential. The proposition ‘A table, which
is an object, is an object’ is both logically analytic with respect to ‘table’ and conceptual, for it
does not contain any intuition. However, in order to check the truth value of its variant ‘This,
which is an object, is an object’ one has to resort to experience, because of the indexical ‘this’.
Nevertheless, this counter-argument goes against Bolzano’s assertion that logical knowledge is
sufficient to recognize that a certain proposition is logically analytic, and not against the idea
that if a proposition is logically analytic, then it is conceptual.

62At the same time, it gives an additional reason why the traditional interpretational trend
focuses on Bolzano’s narrow notion of analyticity at the expense of the broader conception.
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definition. The conception exposed in the Wissenschaftslehre anticipates in many
respects fundamental insights of successive philosophers that are usually included
in the history of the notion in question, although it is necessary to point out that
the modest impact of Bolzano’s theories on intellectual developments prevents to
speak of a direct influence produced by his anticipatory insights and that most
of the innovative tools and conceptions he elaborated have been re-discovered
independently63.

First, as we have underlined in Section 2.2.2, Bolzano’s attention to the dis-
tinction between the ordo essendi and the ordo cognoscendi finds an important ex-
pression in his conception of logic. The discipline, understood in the narrow sense,
has nothing to do with psychology and deals only with properties of propositions
and ideas in themselves. In so doing, Bolzano anticipates the anti-psychologistic
stances of Frege and Husserl. Moreover, it is this conception of logic that leads the
author of the Wissenschaftslehre to draw an analytic-synthetic distinction that, as
he himself is proud to underline at the end of §148, is completely independent from
the individuals’ definitional choices and is characterized by an objective nature.

Second, Bolzano’s criticism of the decompositional conception of analysis at the
basis of the Critique is an innovative viewpoint, which has been independently re-
formulated in the subsequent decades. Bolzano was probably the first post-Kantian
author to feel uncomfortable with the decompositional conception of analysis, that
had become dominant by the end of the early modern period and which ties Kant
to the rationalist perspective he wanted to criticize and to the Leibnizian theo-
ries. As we have highlighted in Section 2.1.5, several are the anticipatory insights
connected with Bolzano’s rejection of that paradigm of analysis.

Not only did Bolzano attack the näıve representationalism at the basis of Kant’s
approach, but he also extended the analytic-synthetic distinction beyond the lim-
its of categorical judgments, so as to release it from the boundaries of a particular
syntactical form and language. As we have seen before, Bolzano complains that
Kant’s explication “fall[s] somewhat short of logical precision” and makes use of
“figurative forms of expression that do not analyze the concept to be defined” and

63In the Introduction to her book, Lapointe (2011, p. 1 and ff.) lists a number of reasons
that explain why Bolzano’s work has not enjoyed a favorable critical fortune. First of all, the
Austrian academic policy was characterized by obscurantism and absolutism: teachers had no
intellectual freedom and were obliged to use certain textbooks. Moreover, Bolzano was accused of
subversive activities: he was discharged from the University and was banned from public scientific
and clerical activities. To this oppressive situation, one must also add a bad management of his
unpublished works and Bolzano’s own obsolete literary style. As a result, it is not a surprise that,
despite the undeniable similarities, it is difficult to document any direct or indirect connection
between on the one hand Bolzano’s ideas and on the other Frege’s work on meaning, Tarski’s
study of logical consequence and Quine’s reflections on logical truths. However, as Morscher
(2013) is careful to emphasize, it is fair to mention that Bolzano’s philosophy had some indirect
impact on the Polish school of logic and on Brentano’s students.
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of “expressions that admit of too wide an interpretation”64; similarly, as we have
already shown in the previous Chapter, Quine’s Two Dogmas of Empiricism fa-
mously maintain that the Kantian formulation “appeals to a notion of containment
which is left at a metaphorical level”65 and Frege66 accuses Kant of having mis-
understood the status of arithmetical judgments because of this restriction, that
would have led the author of the Critique to underestimate the value of analytic
judgments. Moreover, Bolzano’s alternative to Kant’s decompositional account of
analysis, the so-called paraphrastic approach, is a revolutionary intuition in the
history of analysis and anticipates in many respects the transformative or inter-
pretative dimension of analysis that is commonly assumed to characterize analytic
philosophy67.

Third, Bolzano’s analyticity is a formal property of propositions. To be a formal
property, in the Theory of Science, simply means to be a property defined through
the method of substitution68. The substitutional account of form establishes that
formal properties convey certain features that are common to a whole kind of
propositions. For this reason, to say that logic is formal amounts to maintain that
that discipline studies certain semantic regularities that can be found in classes of
propositions and not in individual propositions:

Logic (at least in its doctrines - it can be otherwise in the examples)
never considers a fully determinate proposition, i.e. one in which the
subject, predicate, and copula are fully specified, but, rather, a whole

64TS, §148.
65Quine (1951, p. 21).
66Frege (1980, par. 88, pp. 99-100).
67See, for example, the classification put forward by Beaney (2018).
68Bolzano distinguishes several meanings of the word ‘form’ (TS §81) and accuses Kant and

his followers of vagueness and evasiveness on this point. In the sense specified above, the term
‘formal’ can be predicated of properties, such as validity and analyticity, only if the latter are
defined through the substitutional method. This meaning of the word ‘formal’ must be distin-
guished, we think, from another sense, which is nowadays more wide-spread than the Bolzanian
one and says that a proposition (not a property) is formal only if it contains solely concepts that
express logical constants.

While, according to Bolzano’s meaning of the term, analyticity turns out to be formal, propo-
sitions that are analytic or even logically analytic, following Bolzano’s definitions, may not be
formal if we take the meaning of the latter term to be the one just sketched. For example, the
proposition ‘Every long proposition is a proposition’ is logically analytic with respect to ‘long’,
because every objectual variant of it is true and the only invariant concepts of it belong to
Bolzanian logic. But at the same time, this proposition is not formal because of the occurrence
of the term ‘proposition’, which is not a logical constant. In other words, Bolzano’s notion of
analyticity does not provide an account of what it means to be true or valid by virtue of form
alone, because Bolzano has a wide understanding of the realm of logical concepts.

As a result, the efforts made by the traditional interpretational trend to introduce Bolzano’s
work into a progressive history that tends towards formality are doomed to encounter resistance.
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class of propositions, i.e. all propositions collectively, which, if some of
their components are completely fixed, the remainder can be read in
this or that way. [...] If one calls such classes of propositions general
forms of propositions [...] then one can say that logic concerns only the
forms of propositions, never individual propositions (TS, §12).

To consider analyticity as a formal property amounts to a great revolution. Kant
held that a judgment was analytic because of its content, that is, because the
predicate was contained into the subject; on the contrary, Bolzano maintains that
analyticity is a matter of form, that is, what is important now is not the content of
a proposition, but the invariance of truth-value under variation of content, namely,
under variation of certain ideas occurring in the proposition69.

After Bolzano, other philosophers have used the substitutional procedure to
define formal notions in logic. One of them is Tarski70, whose definition of logical
consequence has been initially given in variational terms and seems to be a para-
phrase of Bolzano’s definition of derivability. To associate Bolzano with Tarski is
also the common concern regarding a definitional detail of the substitution method,
namely, the problem to individuate which concepts can be classified as ‘logical’ and
can be held as fixed71. Another example of this procedure is Quine’s definition of
the notion of logical truth72. The analogy between Quine’s notion and Bolzano’s
conception of logically analytic propositions can be spelled out in the following
terms: “for Bolzano, a proposition is logically analytically true if and only if it
is true and only logical ideas or concepts occur in it essentially; while for Quine,
a statement is logically true iff it is true and contains only logical expressions es-
sentially”73. This similarity is founded on the substitutional method on which the
concepts of occurring and containing essentially are based. The recent scholars’
observations about the differences between, on the one hand, Bolzano’s derivability
and Tarski’s logical consequence and, on the other hand, Bolzano’s logical analyt-
icities and Quine’s logical truths74 do not undermine the point that most interests

69This observation has been noted by Rusnock (2011, p. 483).
70Tarski (1936).
71See Section 2.1 above.
72Quine (1960).
73Hale and Wright (2015, p. 329).
74The main differences can be summarized as follows. As far as Tarski’s logical consequence

is concerned, Šebestik (2017) observes that, first, while Tarski defined logical consequence for
formalized languages, Bolzano’s propositions and ideas that occur in the definition of Ableitbarkeit
are expressed in natural language; second, Tarski, unlike Bolzano, rejected the condition of
compatibility of the premises, that is, the requirement that they represent at least one object
in common; third, Bolzano, unlike Tarski, does not generalize both over interpretations and
domain. With regard to Quine, Künne (2006, p. 226) notes that first, while certain hidden
analyticity are logically analytic according to Bolzano, they are not logical truths following
Quine’s definition; second, unlike Quine, Bolzano defines logical analyticity not for sentences but
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us here, namely the fact that the substitutional account of formal properties is an
instrument widely employed by the logicians of the Twentieth century.

To sum up, we have offered some observations on the similarities between
Bolzano’s notion of analyticity and both Kant’s conception of the analytic-synthetic
distinction and the perspective put forward by later analytic philosophers. These
considerations are not meant to let one forget that Bolzano’s analyticity (in the
broader sense) is not directly linked to necessity and apriority and thus does not
amount to the positivistic notion of truth by virtue of meaning. On the contrary,
these are essential features that mark the specificity of the definition proposed
in the Wissenschaftslehre. Nevertheless, the remarks above should have demon-
strated that Bolzano belongs with full right to the same coté that gathers the
authors we are examining in this thesis: for sure, at least, the way in which the
word ‘analytic’ is used by Bolzano echoes in many respects the manners in which it
is employed by the thinkers of this tradition. Then, to establish whether ‘analytic’
is a “philosopher’s term of art” is, we hold, just a question of appraisal.

Once we have proved that the analytic-synthetic distinction in the Theory of
Science is less unheimlich than what it is supposed to be, also the doubts sketched
above on the significance of Bolzano’s thesis that logic is synthetic turn out to
be less pressing. However, we would like to add some more observations on this
issue. In Section 2.2.2, we have shown that Bolzano agrees with Kant in holding
that deductive sciences are mainly synthetic a priori in the sense that the analytic
propositions that occur in them play at best a modest role. Bolzano not only fully
accepts the controversial Kantian notion of synthetic a priori and the centrality of
this concept in deductive sciences. He also pushes Kant’s reasoning even beyond
Kant’s own conclusions and extends this insight to logic75. This is the sense in
which Morscher maintains that “Thus - and this certainly comes as a surprise -
concerning the fundamental problem of the synthetic a priori, Bolzano turns out to
be ultimately not anti-Kantian at all, but - quite the contrary - even more Kantian
than Kant himself, i.e. a Super-Kant, so to speak”76.

The reason why Bolzano’s insight that logic is synthetic a priori turns out to
be a substantial conception and not a mere terminological trick is that it hides an
important thesis on the nature of this discipline. By saying that logical theorems
are not analytic, what Bolzano is actually holding is that logic is a body of truths
like any other deductive science. This intuition finds the following textual support:
every time Bolzano puts forward the thesis that logic is synthetic, he always makes

for propositions; third, Quine’s logical particles are expressions (connectives, quantifiers and the
identity predicate), whereas Bolzano’s logical particles are notions.

75This issue has been already emphasized by de Jong (2010, p. 251): “Like Kant, Bolzano
conceives of scientific propositions first and foremost as synthetic, and he too allocates a very
restricted role to analytic propositions. But unlike Kant, he also applies this insight to logic”.

76Morscher (2006, p. 261).
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reference to other sciences. This is the case, for example, in this passage of the
New Anti-Kant :

[. . . ] we have to agree with him [i.e., Kant] when he claims that “syn-
thetic a priori judgements are contained as principles in all theoretical
sciences of reason” (46/B14). However, judgements of this kind are
not only to be found in mathematics, the pure natural sciences, and
metaphysics, as Kant demonstrates uncontestably. They are also to be
found in logic, and indeed not only among those doctrines which only
belong to it according to a broader concept of the discipline, i.e. if one
conceives of it, with Bolzano, as a theory of science, but even in that
part of it which is called analytic and which has been worked on since
Aristotle (Pr̂́ıhonský, 2014, pp. 52-53)77.

Unlike Kant, who, as we have seen in Chapter 1, maintains that logic is a canon, a
set of rules that govern our thinking, Bolzano’s viewpoint is that logic is a science
on its own. Moreover, Bolzanian logic cannot even be said an organon in Kant’s
sense, for it does not direct certain cognitions that deal with given objects, but
it primarily concerns propositions in themselves and, only in its broader form, it
considers how propositions relate to judgments and cognitions. In Chapter 1, we
have suggested that one of the reasons that motivates Kant’s lack of interest in
applying his analytic-synthetic distinction to logic was that this discipline was a
sort of propaedeutic that precedes any kind of knowledge, but it is not itself a kind
of knowledge. What allows Bolzano to apply the analytic-synthetic distinction also
to logic and its theorems and to maintain that logic is synthetic is precisely that
the author of the Theory of Science has managed to release logic from the Kantian
verdict on its alleged special status.

77See also the quotations from the Wissenschaftslehre in Section 2.2.2.
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Chapter 3

Frege and logical positivism: the
golden age of the principle of
analyticity of logic

3.1 Logic is analytic

3.1.1 Logic in Frege’s logicism

Frege motivates his work on the foundations of arithmetic with the belief that
the most fundamental concepts of that discipline are not properly understood by
the mathematicians and philosophers of his days. The paradigmatic case of this
situation is that, according to the German philosopher, no one can give a coherent
definition of the notion of natural number. The same happens also for the nature
of calculation. But Frege sees it as a “scandal” that arithmetic cannot give a
proper definition of its fundamental and simplest concepts and he feels obliged to
perform the “imperative task” to investigate the matter more closely until these
difficulties are overcome1.

Famously this investigation leads Frege to devote his intellectual life to the
realization of his logicist project of reducing arithmetic to logic. This program
can be seen as made up of the following different theses2. First, every proposition
of arithmetic can be shown to be derivable from logical axioms; second, the rules
used by mathematicians to prove their theorems can be shown to be logical in
character; and third, arithmetical concepts can be shown to be definable in terms
of logical concepts. But Frege’s logicist project has also an important philosoph-
ical counterpart. As we shall see in the next sections, the program of reducing

1FA, Introduction, p. ii.
2See de Jong (1996).
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arithmetic to logic amounts to showing that the truths of arithmetic are analytic a
priori. This is a radical thesis. On the one hand, in holding that arithmetic is an-
alytic, Frege criticizes the well-known Kantian thesis that arithmetic is synthetic
and founded on the pure intuition of time. On the other hand, in maintaining
that arithmetic is a priori, Frege is rejecting the empiricist position of John Stuart
Mill that mathematical truths are known on the basis of experience and are thus
a posteriori.

It soon becomes clear to Frege that his project of reducing arithmetic to logic
could not have the slightest chance of success unless logic itself were not properly
developed. The dominant logic of the time was still Aristotle’s syllogistic based on
subject-predicate judgments and, beyond this tradition, Boole’s algebra of logic.
However, these logical tools proved to be completely inadequate for expressing
certain kinds of mathematical reasoning. As a result, the first obstacle for the
realization of his logicist program was to create a new and more powerful logical
system.

This is what Frege manages to achieve in his Begriffsschrift (1879). In this
book, he provides the basis of modern logic, proposing essentially what is known
today as classical second-order logic with identity and embracing both the logic
of propositions and the logic of quantification. In particular, Frege presents his
calculus in an innovative symbolism, the concept script, for he believes that nat-
ural language is not precise enough for establishing the true nature of arithmetic.
Moreover, he intends to devise a symbolic notation that can be useful in every field
of knowledge in which logical proofs were required. However, the idiosyncrasy and
bi-dimensionality of this notation is perhaps responsible for the scarce success of
his work. One of Frege’s fundamental ideas in his Begriffsschrift is to reject the
traditional analysis of judgments into a subject and a predicate and to substitute
these notions with the logical concepts of argument and function. Borrowing a
mathematical usage, he analyzes propositions into a variable and a constant part
and, in so doing, provides a more flexible method for bringing out logically relevant
similarities between sentences beyond their linguistic presentation.

The introduction of the function-argument model allows Frege to formulate
the first complete systematization of logical quantification and to overcome one of
the principal difficulties of traditional syllogistic, viz. to deal with judgments with
nested quantifiers. To this purpose, he presents a new notation to express gen-
erality, while he takes the existential quantifier as a derivative notion. Moreover,
he defines also the negation, the conditional and the identity signs, as well as the
notion of second-order function. Frege formulates his calculus in nine propositions
that are declared to be axioms. The former three are devoted to the conditional;
three other propositions are dedicated to the negation sign; two axioms govern the
identity relation and the latter law concerns the universal quantifier. Axioms are
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justified, in Frege’s eyes, by their expressing self-evident truths. All other logical
propositions can be derived from Frege’s axioms by virtue of two inference rules,
namely modus ponens and the rule of generalization, that the author states explic-
itly, together with another rule, i.e. substitution, that Frege invokes implicitly.

Logic is for Frege the powerful system that he himself proposed in the Begriff-
sschrift. It is this notion of logic that lies, at the same time, both at the basis
of his logicist project and, as we shall see in the next sections, at the core of his
definition of analyticity. But what is Frege’s conception of the discipline of logic3?
According to Frege, logic has the task to elaborate and prove certain true state-
ments, the logical laws. A law can be normative, if it prescribes what one ought to
do and it represents a standard that has to be achieved; or it can be descriptive,
if it describes the way in which things are. For Frege, logical laws are descriptive
in their content, but imply norms for thinking4. On the one hand, logical laws are
descriptive in the same way physical laws are: they do not prescribe how things
ought to be, but they rather illustrate how they are. Any logical law is a claim
about concepts and objects and their relations: it does not affirm that such and
such ought to be the case. On the other hand, logical laws imply prescriptions
about thinking, judging and asserting: they represent an evaluative standard of
rationality to which individuals ought to relate.

The characterizing feature of logical laws is, according to Frege, their gener-
ality. How should the term ‘generality’ be understood in connection with Frege’s
logic? MacFarlane5 rejects two tempting but anachronistic explanations. First,
it is not the case that Frege, by characterizing logic as the maximally general
science, intends that its truths are not about anything in particular. On the con-
trary, logic is concerned with particular concepts and relations, namely identity,
negation, conditional. The point is that although these notions are used in every
discipline, they are investigated only in the discipline logic. Second, it is not the
case that with generality Frege means that logical laws are insensitive to the dif-
ferences between particular objects. This standpoint would be incompatible with
his logicism: since each number has its own peculiarities, logical notions cannot
be distinguished by their permutation invariance.

But what, then, does Frege mean by saying that logic is general? The generality
of logic for Frege consists in the unlimited range of applicability of its norms.
Logical laws are general because they pertain to the universal domain and apply
to the set of all thinkable objects. This feature distinguishes logic from all the
special sciences, which deal only with restricted domains. A consequence of this
conception of generality is that, in Frege’s eyes, the traditional distinction between

3The answer to this question that we propose below greatly benefited from two masterful
articles: Goldfarb (2010) and MacFarlane (2002).

4This observation is due to MacFarlane (2002, p. 36).
5MacFarlane (2002, pp. 33-34).
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domain-specific and non-specific principles amounts to the distinction between
non-logical and logical principles6. Examples of special sciences are, according to
Frege, geometry, that deals with the laws of space, and physics, that concerns the
physical world. On the contrary, Frege’s thesis that arithmetic can be reduced
to logic is a substantial thesis on the nature of arithmetic7, namely, that this
discipline is marked by generality and can be applied to all thinkable objects:

The basis of arithmetic lies deeper, it seems, than that of any of the
empirical sciences, and even than that of geometry. The truths of
arithmetic govern all that is numerable. This is the widest domain
of all; for to it belongs not only the actual, not only the intuitable,
but everything thinkable. Should not the laws of number, then, be
connected very intimately with the laws of thought? (FA, §14, p. 21)

As we have seen above, Frege’s thesis that arithmetic is analytic contradicts Kant’s
conception of that discipline. This contradiction is substantial and it is not a
merely verbal change in subject because, as MacFarlane (2002) has shown in his
persuasive text, the two philosophers essentially share the same conception of logic.
The basis of this agreement can be found in the generality of logic. For also Kant
believed that logic is general. Generality for the author of the Critique means,
as we have shown in Chapter 1 of this thesis, that logic “contains the absolutely
necessary rules of thinking”8 or, in other words, that it contains the rules that
have to be applied no matter of what are the objects we are thinking about.

However, while Kant from the generality of logic, together with other principles,
infers that logic is formal, Frege is clear in denying the formality of the discipline9.
The author of the Critique maintains the innovative claim that logic is formal in
the sense that it abstracts from the semantical content of thought and from all
content of cognition. A consequence of this perspective is that pure general logic for
Kant cannot yield an extension of knowledge about reality or objects. Contrary to
Kant, Frege cannot hold that logic is formal without contradiction. For, as we will
clarify below, he believes that logic can supply with substantive knowledge about
objects such as numbers and that logical deduction can extend our knowledge.

6See de Jong (1996, pp. 314-317).
7This is the reason why Dummett (1991, p. 43) holds that “Grundlagen in fact advances

two distinguishable theses about arithmetical truths: that they are analytic, and that they are
expressible in purely logical terms. On his own principles, neither implies the other”.

8CPR, A 52/B 76.
9MacFarlane (2002) shows that although Kant holds that logic is formal and Frege denies

this, they share the same conception of logic based on generality. The reason for this is that it is
just in the context of Kant’s other philosophical commitments that generality implies formality.
But Frege can reject Kant’s commitments and hold that logic is general in the same sense as
Kant’s, but, at the same time, that it is not formal.
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According to Frege, logic cannot abstract from all semantic content, but it must
attend at least to the semantic content of the logical expressions. This is explicitly
mentioned in an article on geometry written against the formalist position put
forward by David Hilbert:

Logic is not unrestrictedly formal [. . . ] If it were, then it would be
without content. Just as the concept point belongs to geometry, so
logic, too, has its own concepts and relations; and it is only in virtue
of this that it can have a content. Toward what is thus proper to it, its
relation is not at all formal. No science is completely formal; but even
gravitational mechanics is formal to a certain degree [. . . ] To logic, for
example, there belong the following: negation, identity, subsumption,
subordination of concepts (FG, p. 338).

As this quotation makes clear, the feature of formality in a science contradicts
the requirement of having its own objects and contents. While Kant, accepting
the formality of logic, considers that discipline to be a canon, a body of rules,
Frege rejects formality in favor of content. Logic, in his conception, is a body
of substantive truths and not of empty schemata. In one word, logic is a proper
science: its distinctive mark is unrestricted generality.

To sum up, we have seen that logic has a central role in Frege’s logicist project.
In order to realize the latter, Frege has to create a new and powerful system in
the Begriffsschrift, characterized by the function-argument analysis of judgments
and by a complete account of quantification. Generality (and not formality) is the
defining characteristic of Frege’s logic, which is conceived as a body of substantial
truths. In the following, we are going to show that logic is fundamental also for
Frege’s conception of analyticity.

3.1.2 Frege’s analytic-synthetic distinction

The words ‘analytic’ and ‘synthetic’ appear very rarely in Frege’s published writ-
ings. Except for two more occurrences in the remaining works10, Frege employs
these terms only in the Grundlagen der Arithmetik (1884). However, in the third
paragraph of this book, the analytic-synthetic distinction is not only mentioned,
but it is also given the following definition:

The problem becomes, in fact, that of finding the proof of the propo-
sition, and of following it up right back to the primitive truths. If, in

10De Jong (1996, pp. 291-292) examines the two passages (the former taken from the Begriff-
schrift and the latter from Frege’s article Über Sinn und Bedeutung) and notes that both the
excerpts regard the proper interpretation of the identity sign and the problem of the cognitive
content of this kind of expressions.
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carrying out this process, we come only on general logical laws and on
definitions, then the truth is an analytic one, bearing in mind that we
must take account also of all the propositions upon which the admissi-
bility of any of the definitions depends. If, however, it is impossible to
give the proof without making use of truths which are not of a general
logical nature, but belong to the sphere of some special science, then
the proposition is a synthetic one (FA, §3, p. 4).

The common reading of this passage suggests that, according to Frege, a proposi-
tion is analytic if it can be proved with help of general logical laws from definitions
only11; otherwise, that is, if the laws of logic are not sufficient to go back to the
definitions and the proof requires extra-logical truths, the proposition is synthetic.
This interpretation finds further support in a letter that Frege wrote in 1882 prob-
ably to his colleague Anton Marty, where, talking about the principles of compu-
tation, he says that they “can be proved from definitions by means of logical laws
alone” and so they can be regarded as analytic judgments12. However, in reading
Frege’s reflection on the analytic-synthetic distinction, several considerations must
be taken in account.

First of all, the context in which this definition is stated. The passage quoted
above is part of a discussion on the notion of proof in mathematics and the propo-
sitions of which a proof has to be found, that are mentioned there, belong to
the sphere of mathematics. This is certainly no coincidence. Frege introduces
his analytic-synthetic distinction as the philosophical counterpart of his logicist
project13: demonstrating that arithmetic can be reduced to logic amounts to show-
ing that it is analytic. As a result and despite appearances to the contrary, analyt-
icity plays a decisive role in Frege’s thought, because, as Proust rightly observes,
“the significance of analyticity is now attached to a concrete project: it must be
the mortar for building up the system of arithmetic”14. But this observation may
be pushed one step further. The way in which Frege distinguishes between ana-
lytic and synthetic propositions might be seen as strongly influenced by his logicist
program: analytic propositions are defined as those that can be proved through
logical means alone, because Frege’s aim was to show that arithmetic could be
proved from logic alone. A consequence of this hypothesis, that will be examined
below, is that Frege’s use of the words ‘analytic’ and ‘synthetic’ might be more
faithful to his intellectual project, than to the traditional meaning of the terms.

A second important issue is whether the third paragraph of the Foundations of

11See, for example, Mayer (2003, p. 67).
12LTM, p. 79.
13This point has been variously acknowledged. See for example de Jong (1996, p. 321) and

Mayer (2003, p. 67).
14Proust (1989, p. 111).
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Arithmetic contains a proper definition of ‘analiticity’ and ‘syntheticity’. Doubts
might arise not only considering, as we have just seen, that Frege is talking here
about a specific kind of propositions, namely the mathematical ones. A more se-
rious problem derives from observing that Frege uses a conditional, or, in other
words, that he seems to give a sufficient but not a necessary condition for a propo-
sition to be analytic or synthetic. Burge15 proposes several reasons for thinking
contrary to the literal reading of the passage in question. For example, he points
out that the author of the Grundlagen elsewhere uses ‘if’ where ‘if and only if’ is
meant and he holds that Frege’s conception is close to the view on analyticity put
forward by Leibniz, whose characterization was necessary and sufficient. However,
we think that these motivations are not convincing and do not overweigh the tex-
tual evidence. As a consequence, we agree with Bar-Elli in holding that it is left
open “the possibility of there being an analytic truth that is not proved, and may
even be unprovable”16.

Third, in order to understand Frege’s conception of analyticity, it is necessary
to make sense of the specification that “we must take account also of all the
propositions upon which the admissibility of any of the definitions depends”17.
What are admissible definitions? And what are the propositions upon which their
admissibility depend? These questions are not easy to answer for at least two
related reasons. First, the author’s silence on that matter: as Dummett18 puts it,
“in Grundlagen, Frege simply takes it for granted that we know a correct definition
when we see one”. Second, as we will see in detail below, Frege’s conception of
what counts as an admissible definition significantly varies with the development
of his thought, so that we are not allowed to use another text to explain what
he really meant in this passage of the Foundations. Although it is impossible
to rely on Frege’s explicit statements on this point, we can nevertheless examine
his practice throughout his book. This leads us to acknowledge that most of
Frege’s efforts are directed towards a definition of arithmetical concepts in terms
of logical concepts. This is the case, for example, of the well-known notion of
natural number. This observation suggests, as de Jong19 has rightly recognized,
that a definition is admissible only if it is expressed in logical terms. As a result,
Frege’s logicist program requires to show not only that propositions of arithmetic
can be proved from logical truths and through logical methods, but also, and
crucially, that the fundamental concepts of arithmetic can be defined in terms of
logical concepts20.

15Burge (2005, pp. 359-360).
16Bar-Elli (2010, p. 167).
17FA, §3, p. 4.
18Dummett (1991, p. 31).
19See de Jong (1996, pp. 309-310 and pp. 313-314), de Jong (2010, p. 257).
20De Jong (1996, p. 314) observes that Frege explicitly recognizes this point for the first
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More on Frege’s analytic-synthetic distinction can be understood examining
the remarks expressed by the author of the Grundlagen on the relations of his
conception with the one put forward by Kant. The first clue in this sense can be
found again in the third paragraph of the Foundations of Arithmetic, short before
the reflections on the analytic-synthetic distinction:

Now these distinctions between a priori and a posteriori, synthetic and
analytic, concern, as I see it∗, not the content of the judgment but the
justification for making the judgment. Where there is no such justifi-
cation, the possibility of drawing the distinctions vanishes. [. . . ] When
a proposition is called a posteriori or analytic in my sense, [. . . ] it is a
judgment about the ultimate ground upon which rests the justification
for holding it to be true.

∗ By these I do not, of course, mean to assign a new sense to
these terms, but only to state accurately what earlier writers, Kant
in particular, have meant by them (FA, §3, p. 3).

The difference between Frege and Kant on this point is not without importance.
While the two philosophers agree in believing that the a priori -a posteriori dis-
tinction concerns the way in which propositions are justified, they disagree as far
as the analytic-synthetic distinction is concerned. As we have seen in Chapter 1,
Kant maintains that the latter distinction concerns the relationship between the
subject and the predicate of a statement, or, in other words, the content of a judg-
ment. In particular, in an analytic judgment, the predicate is (covertly) contained
in the subject concept; in a synthetic judgment, the predicate lies entirely outside
the subject concept. Here Frege is instead claiming that the analytic-synthetic
distinction concerns the justification of judgments, namely, not the way in which
people do in fact know the proposition to be true, but the justification that could
be given for that proposition.

Why, then, does Frege feel the need to add a footnote claiming that his con-
ception is simply an accurate reformulation of the traditional definition of these
terms? The first thing that we would like to underline is that Frege’s footnote is
restricted to his insight that the analytic-synthetic distinction concerns the justi-
fication of judgments and does not apply to the analytic-synthetic distinction as a
whole. This observation, which is missed rather frequently by interpreters of Frege,
is essential to understand the relationship between Frege and Kant’s conceptions.

time one year after the publication of the Grundlagen in his On Formal Theories of Arithmetic
(1885), where he says: “if arithmetic is to be independent of all particular properties of things,
this must also hold true of its building blocks: they must be of a purely logical nature. From
this there follows the requirement that everything arithmetical be reducible to logic by means of
definitions” (FTA, p. 114).
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Now, one persuasive answer to question regarding Frege’s footnote has been
suggested by de Jong, who maintains that the author of the Grundlagen “is more
likely to have Kant’s epistemological criterion for analyticity in mind than his
original characterization of the distinction”21. We have seen in Chapter 1 that
Kant’s contradiction criterion is not, strictly speaking, a definition, but it is rather
endowed with an epistemological function: it is the necessary and sufficient condi-
tion for the cognoscibility of analytic judgments. If Frege took the contradiction
criterion to be equivalent to Kant’s definition of analyticity based on the contain-
ment criterion, then his conception based on justification would have been not
so distant from the traditional one. Moreover, he could have underestimated the
difference between his proposal and the definition of the Critique on the basis of
the strict relationship between the general laws of logic that contribute to Frege’s
definition of analyticity and the principle of contradiction that occur as the the
supreme principle of analytic judgments in Kant.

If it is now clear that the analytic-synthetic distinction is a matter of jus-
tification, it is time to ask what counts as a justification for the author of the
Foundations. Although it is difficult to find open remarks on this issue, the in-
terpreters unanimously agree on this point22, except for the interesting theory of
Bar-Elli (2010) that we shall examine below: the only kind of justification is, for
Frege, proofs that are deductive in character. If this were the case, only propo-
sitions that admit of a deductive proof might be classified as analytic, for Frege
is explicit that his analytic-synthetic distinction applies only to propositions that
can find a justification: “Where there is no such justification, the possibility of
drawing the distinctions vanishes”. This feature of Frege’s definition shall bear
with it an apparent difficulty in understanding his texts.

Although it is based on the notion of justification, Frege’s analytic-synthetic
distinction does not coincide with the other epistemological contraposition par
excellence, namely that between a priori and a posteriori. The latter is defined in
the Foundations of Arithmetic using the following terms:

For a truth to be a posteriori, it must be impossible to construct a
proof of it without including an appeal to facts, i.e., to truths which
cannot be proved and are not general, since they contain assertions
about particular objects. But if, on the contrary, its proof can be
derived exclusively from general laws, which themselves neither need
nor admit of proof, then the truth is a priori (FA, §3, p. 3).

Frege’s conception is very close to Kant’s theory, for in the Critique, a priori
knowledge is said to be necessary and independent of experience, while a pos-

21De Jong (1996, p. 296).
22See, for example, Dummett (1991, p. 23).
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teriori knowledge is instead cognized empirically23. The two philosophers agree
that analytic truths cannot be but a priori : according to Frege, since ‘general
logical laws’ are a kind of ‘general laws’, it turns out that if a proposition can
be derived from definitions with only the help of general logical laws, then its
proof can be obtained exclusively from general laws. Similarly, the author of the
Grundlagen agrees with Kant that syntheticity and a posteriori knowledge do not
coincide. For, although both of them concern, according to Frege, the justification
of propositions, their difference consists in the level of generality. For example,
Frege accepts with Kant that geometrical propositions are synthetic a priori24:
they are said to be a priori, because they can be proved exclusively from general
laws; but, at the same time, they cannot be classified as analytic, because these
laws are not the ones of general logic, but rather belong to the sphere of a special
science, geometry.

3.1.3 Frege’s notion of analysis

The affinity with Kant’s thought that Frege expresses in the footnote of the third
paragraph of his Grundlagen is balanced by some critical remarks put forward
in the conclusion of the same book. Frege’s critical attitude towards Kant’s work
takes the steps from a widespread charge, that we have already examined in Chap-
ter 1:

Kant obviously - as a result, no doubt, of defining them too narrowly
- underestimated the value of analytic judgments [. . . ] On the basis
of his definition, the division of judgments into analytic and synthetic
is not exhaustive. What he is thinking of is the universal affermative
judgment; there, we can speak of a subject concept and ask - as his
definition requires - whether the predicate concept is contained in it or
not. But how can we do this, if the subject is an individual object? Or
if the judgment is an existential one? In these cases there can simply be
no question of a subject concept in Kant’s sense (FA, §88, pp. 99-100).

Like Bolzano before him25, Frege complains that Kant’s definition in terms of
containment is too narrow because it is restricted to judgments of the subject-
predicate form and can be applied only to categorical judgments: but what about

23“Such universal cognitions, which at the same time have the character of inner necessity,
must be clear and certain for themselves, independently of experience; hence one calls them a
priori cognitions: whereas that which is merely borrowed from experience is, as it is put, cognized
only a posteriori or empirically” (CPR, A2/B2).

24“In calling the truths of geometry synthetic and a priori, he [Kant] revealed their true nature.
And this is still worth repeating, since even to-day it is often not recognized” (FA, §3, pp. 101-
102).

25See Chapter 2.
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other kinds of judgments? This criticism is, of course, related to the enormous
advancements in logic presented in the Begriffsschrift. Kant’s definition had been
elaborated in the logical epoch of the traditional syllogistic, where judgments were
all of the subject-predicate form. Now that Frege has developed his logical tools, he
feels that he cannot profitably employ Kant’s distinction for his logicist program.
But inventing a new logic was not enough for Frege. He needed to invent a new
kind of analysis. And this is the deepest reason for criticizing Kant’s approach.

In Chapter 1 we have seen that Kant’s conception of analysis is founded on the
traditional theory of logical division of concepts. According to this perspective,
each concept is assumed to be made up by constituents, each of which finds its
place in a hierarchy organized with respect to the notions of containment and
inclusion: each genus is contained in its species and each species is contained
under its genus. Analysis is thus understood in terms of a decompositional or
resolutive process that, starting from the initial concepts, aims at arriving at its
simple elements. This kind of analysis is based on the Aristotelian definitions and
divisions are taken to be exclusive and exhaustive disjunctions. A characteristic
feature of this theory of analysis, that we have not underlined before, is that
the division is a univocal process: each propositional content admits of a unique
ultimate analysis into simple constituents.

Frege’s attack against Kant’s conception of analysis is different from Bolzano’s
criticisms, according to which, as we have seen in Chapter 2, the traditional theory
of concepts was founded on an unsophisticated form of representationalism that
had to be rejected. Two are the starting points of Frege’s reflections on Kant’s
notion of analysis. First, the traditional theory of conceptual analysis takes the
steps from concepts and, only at a later stage, considers the judgments in which
they occur. In other words, this theoretical framework prescribes first of all the
decomposition of the subject and predicate concepts: only once this passage has
been completed, it is possible to determine the relation between the two26. This
observation is a further element that confirms the strong dependence of the tra-
ditional conception of analysis on the Aristotelian syllogistic: the judgments con-
templated are only categorical propositions of the subject-predicate form. Thus,
Frege’s critical consideration can be traced back to the general logic used by Kant.

Second, Frege notices that Kant “seems to think of concepts as defined by
giving a simple list of characteristics in no special order”: but, according to the
author of the Grundlagen, “of all way of forming concepts, this is one of the least
fruitful”27. Later shall we examine in detail the fundamental issue regarding the
fruitfulness of concept formation. By now, it is sufficient to underline that, in

26See, for instance, the unpublished text entitled Boole’s logical Calculus and the Concept-
script that Frege wrote in 1880-1881 (BLC).

27FA, §88, p. 100.
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Frege’s eyes, the constituents that form a given concept according to this frame-
work are not linked by particular connections and are given a linear but random
disposition. This criticism, we think, does not justice to the sophisticated and
technical principles that founded the traditional conception of analysis, namely
the so-called Porphyrian concept hierarchies that we have discussed in Chapter
1. Nevertheless, Frege restates this point on several occasions and in different
shapes. For example, in the unpublished text entitled Boole’s logical Calculus and
the Concept-script written in 1880-1881, Frege discusses Boole’s logical notation
and deductive machinery. But his treatment of Boole’s concept formation antici-
pates the spirit and the main kernel of the criticism against Kant’s conception of
analysis put forward in the Grundlagen in 1884. In fact, Frege notices that Boole’s
language allows to form concepts only by taking the logical sums, products and
complements of already existing concepts.

The conception of analysis that Frege sets against the traditional and Kantian
framework is probably better introduced by seeing it at work in an example taken
from the Begriffsschrift. The proposition ‘Cato killed Cato’ can be analyzed into
a constant and a variable part, a function and an argument respectively. But this
analysis can be carried out in different ways:

If we here think of ‘Cato’ as replaceable at its first occurrence, ‘to kill
Cato’ is the function; if we think of ‘Cato’ as replaceable at its second
occurrence, ‘to be killed by Cato’ is the function; if, finally, we think of
‘Cato’ as replaceable at both occurrences ‘to kill oneself’ is the function
(BS, §9, p. 22).

Frege replaces the traditional analysis of propositions into subject and predicate
concepts with a function-argument analysis that is possible thanks to the logical
advancements that he made in the Begriffsschrift. Changing the underlying logic
implies changing the conception of analysis. But that’s not all. As it is made clear
by the example, Frege’s analysis starts out from judgements and their contents and
not from concepts. This might be seen as a natural consequence of the context
principle, one of the three fundamental tenets that the author of the Grundlagen
enunciates in the introductory section of his book, viz. “never to ask for the mean-
ing of a word in isolation, but only in the context of a proposition”28. Another
essential feature of Frege’s proposal is that, unlike the traditional and Kantian
conception, the analysis of a proposition is not univocal: as in the case of ‘Cato
killed Cato’, every propositional content admits of distinct decompositions, none
of which has a privileged role over the other. We shall come back to this charac-
teristic of Frege’s analysis, for it shall be essential in understanding the notion of
fruitfulness of mathematical definitions. Last, it is easy to check that the result of

28FA, Introduction, p. x.
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Frege’s analysis is different from the Kantian one in that it is structured and not
merely a juxtaposition of constituents.

It is worth mentioning at this point the well-known interpretation put forward
by Michael Dummett on Frege’s conception of analysis29. Dummett’s starting
point is the recognition that Frege endorses the idea that the thought expressed by
a sentence is a whole, whose parts are sense expressed by the words in that sentence.
This perspective, according to the English philosopher, forces Frege to commit to
the principle that the only way for grasping the thought expressed by a sentence is
by grasping the senses expressed by the words in that sentence. But, according to
Dummett and other interpreters, this part-whole model is not compatible with the
function-argument model30. This leads Dummett to distinguish in Frege’s thought
between two sorts of analysis of propositional content: the former, like the Kantian
one, would yield unique results and accomodate the part-whole model; the latter,
as the one that we have attributed to Frege above, would produce different results
and accomodate the function-argument model31. Although recent scholars have
rejected Frege’s commitment to both conceptions of analysis, and in particular to
the one connected to the part-whole model32, Dummett has the merit of having
shown the peculiarity of the analysis based on the function-argument pattern.

We have seen that Frege formulates his analytic-synthetic distinction in a way
that is adjusted to his logicist program, in which the concept of analyticity plays
a significant philosophical role. His intellectual project conditioned Frege’s re-
formulation of the distinction so as to differentiate it in many respects from the
Kantian one. To sum up, we have shown that the first important difference con-
sists in Frege’s concern with the justification of a proposition as opposed to the
Kantian interest in the content of a judgment: in other words, Frege could have
taken Kant’s epistemological criterion based on the principle of contradiction as a
definition of the terms ‘analytic’ and ‘synthetic’. Second, Frege criticizes Kant’s
distinction for being too narrow: its applicability only to categorical judgments is
seen as an overwhelming flaw that must be solved. Third, Frege does not accept
Kant’s conception of analysis, because it is strictly interwoven with the traditional
subject-predicate logic. His pars construens is a notion of analysis that is founded

29See, for example, Dummett (1981, pp. 62-66). In what follows, I rely on Levine (2002)’s
reconstruction of Dummett’s argument.

30To see this point is sufficient to notice that the parts of a given propositional content cannot
be the functions and arguments into which that content may be decomposed unless we are ready
to accept the idea that analysis is not univocal.

31Dummett calls the first method simply ‘analysis’ and the second ‘decomposition’. To be
more precise, he interprets Frege as accepting the part-whole model and rejecting the function-
argument pattern. However, he holds more broadly that once analysis and decomposition are
distinguished, there is no conflict in Frege’s using both the part-whole and the function-argument
model: the problem is in using the latter pattern for talking about analysis.

32See, for example, Levine (2002).
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on the function-argument distinction, gives priority to judgments over concepts
and yields different results, each of which is on the same level with the others.

But did Frege conceive his definition as a clarification of Kant’s conception?
We have seen that in a footnote to the third paragraph of the Grundlagen, Frege
minimizes the distance between Kant’s and his own conceptions saying that the
analytic-synthetic distinction concerns the justification, rather than the content,
of a judgment. A similar behaviour can be highlighted as far as a more radical
distance between the two philosophers is concerned:

I have no wish to incur the reproach of picking petty quarrels with a
genius to whom we must all look up with grateful awe; I feel bound,
therefore, to call attention also to the extent of my agreement with
him, which far exceeds any disagreement. To touch only upon what
is immediately relevant, I consider Kant did great service in drawing
the distinction between synthetic and analytic judgments. In calling
the truths of geometry synthetic and a priori, he revealed their true
nature. And this is still worth repeating, since even to-day it is often
not recognized. If Kant was wrong about arithmetic, that does not
seriously detract, in my opinion, from the value of his work. His point
was, that there are such things as synthetic judgments a priori; whether
they are to be found in geometry only, or in arithmetic as well, is of
less importance (FA, §89, pp. 101-102).

Frege’s thesis that arithmetic is reducible to logic contradicts Kant’s idea that
arithmetic is synthetic a priori. Both these principles are at the core of the philoso-
phers’ thoughts and, as we have seen in Section 3.1.1, there is no change in subject.
Nevertheless, in this passage Frege acknowledges the value of Kant’s work and un-
derplays the difference. Why? An interesting explanation comes again from de
Jong33. He suggests that Frege was “less than fully aware” of the implications of his
reformulation of the Kantian analytic-synthetic distinction and realizes the deep
dissonance between the two conceptions of analyticity only later on. This would
clarify the fact that after the Grundlagen Frege never returned to his analytic-
synthetic distinction and preferred to describe the goal of his logicist program as
that of reducing arithmetic to logic, instead of showing that arithmetic is analytic.

The most evident element of continuity between the two conceptions of analyt-
icity is that both of them find in the process of analysis the method for discovering
analytic propositions and their justifications. As we will see below, Frege treats
definitions as a kind of concept formation and deduction as the process that ren-
ders explicit what is contained in a concept34. In other words, as we will discuss

33De Jong (1996, p. 322).
34This observation is due to Horty (1992, p. 236).
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in the next sections, Frege identifies Kant’s analysis of the subject concept with
the analysis needed in the definition of this concept. However, despite this impor-
tant point of similarity, it cannot be forgotten that Frege’s underlying notion of
analysis is different from Kant’s traditional conception of analysis. This, we think,
together with the requirement that admissible definitions must be expressed in
logical terms, explains why the most part of Kant’s examples of analyticities turns
out to be synthetic according to Frege.

3.1.4 Frege on the analyticity of general logical laws

As it is widely recognized in the literature35, Frege’s definition of analyticity of
the third paragraph of the Grundlagen does not seem to specify whether general
logical laws, through which analytic propositions are brought back to definitions,
are themselves analytic or synthetic. Nor does Frege return explicitly to the issue
elsewhere. Two are the main readings of this fact proposed by the scholars.

The first interpretative trend holds that, although he is not explicit on this
point, Frege maintains that logical truths are analytic. This is, for example, Dum-
mett’s perspective. The English philosopher believes that “With uncharacteristic
carelessness, Frege has framed his definition so as not to cover the initial premises
themselves”, but adds that “an obvious extension of his definition would rate [. . . ]
the general logical laws as analytic”36. Burge recognizes that Frege “neglects to
formulate his notions of analyticity and apriority so as to either include or rule
out the foundations of logic”, but he agrees with Dummett that Frege’s behaviour
can be interpreted as a “harmless oversight”37. A slightly different explanation of
Frege’s silence on the analyticity of logical laws is provided by Proust, who holds
that the “analyticity of logical propositions is not itself in question, but is rather
presupposed by the problem Frege has to solve: he is not concerned with knowing
what an analytic truth is [. . . ] he is concerned whether the truths of a science can
be clearly identified as analytic or synthetic”38. The idea is that Frege’s logical
laws are analytic, but he takes this point for granted, because his interest rests
with the status of truths of other sciences.

The second reading of Frege’s treatment of logic in connection to the issue of
analyticity is that, according to the author of the Grundlagen, general logical laws
are neither analytic nor synthetic. This is the position put forward by Burge,
who, in his Postscript to ‘Frege on Apriority’ 39, withdraws his previous thesis

35See, for example, Dummett (1991, p. 24), Burge (2005, p. 322, pp. 388-389), Shieh (2008,
p. 1010), Bar-Elli (2010), Proust (1989, p. 112).

36Dummett (1991, p. 24).
37Burge (2005, p. 322, p. 388).
38Proust (1991, p. 112).
39Burge (2005, pp. 388-389).
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that Frege’s silence was an oversight of no great significance. He now observes
that, as we have seen in Chapter 1, “omission of basic logical axioms from the
category analyticity goes back to Kant’s own formulations” and maintains that
Frege intentionally follows Kant in saying that the analytic-synthetic distinction
does not apply to logic. The reason for excluding the class of logical laws from
analyticities is, according to Burge, that “such laws are not subject of analysis”,
while “both Kant’s definition and Frege’s, however, take analyticity to consist in
being subject to analysis”.

We think that this second reading must be rejected for several reasons. First of
all, we have seen in Chapter 1 that the main reason why Kant is not interested in
applying the analytic-synthetic distinction to logic must be found in his conception
that logic is a general body of rules that govern the use of certain faculties. In being
a canon, logic is, according to Kant, a propedeutic and not a kind of knowledge.
But we have shown in Section 3.1.1 that Frege does not follow Kant on this point.
For the author of the Grundlagen, as for Bolzano40, logic is a body of truths and
a science in the strict sense of the term. Why, then, should Frege have avoided to
apply the analytic-synthetic distinction to logic, given his concern with a priori
sciences? The second motivation41 against Burge’s proposed interpretation is that
Frege was aware of the possibility of equivalent but alternative axiom systems42.
But that, which is a logical axiom or a general logical law in a certain system, may
become a provable theorem in another axiomatic system to the effect that the
same proposition turns out to be neither analytic nor synthetic in the first system,
while analytic in the second one. However, it is highly implausible that Frege’s
analyticity (as well as of apriority) is a notion relative to a system. The third
reason Burge puts forward in order to support his thesis is that logical laws are
not subject to analysis: but, as we will see below, according to Frege the process
of analysis amounts to the process of concept formation and it is not clear why
logical laws should be extraneous to analysis understood in this sense.

Once we have rejected the second interpretation of Frege’s reticency on the
analyticity of logic, we now turn to the first reading. However, before embracing
the thesis that, according to Frege, logical laws are analytic, we must get rid
of the following problem that arises in its connection. On the one hand, as we
have highlighted above, the author of the Grundlagen affirms that the possibility
of drawing the analytic-synthetic distinction, such as the a priori -a posteriori
distinction, vanishes when there is no justification for making the judgment. In

40See Chapter 2.
41This reflection is quite common in the literature. See, for example, Bar-Elli (2010, p. 168).
42In the Begriffsschrift, §13, p. 29, talking about his logical system, Frege says: “Now it must

be admitted, certainly, that the way followed here is not the only one in which reduction can be
done [. . . ] There is perhaps another set of judgments from which, when those contained in the
rules are added, all laws of thought could likewise be deduced”.
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other words, the notions of analyticity and apriority can be applied only to those
propositions that can be justified. On the other hand, in the very same passage
in which the analytic-synthetic distinction is introduced, Frege states that general
laws “neither need nor admit of proof”43. This means that logical laws, that are a
special case of general laws, do not admit of proof and that logical laws cannot be
seen as special cases of one-line proof44. If we put together the two observations,
it seems that we obtain the conclusion that general laws are neither analytic, nor
synthetic, neither a priori, nor a posteriori. In particular, it seems that we reach
the unacceptable conclusion that logical laws are neither analytic nor a priori and
that geometrical axioms are neither synthetic nor a priori.

The unwelcome conclusion is unavoidable unless we are able to show that jus-
tification is not a synonym of proof, or, in other words, that proof is not taken
to be the only pertinent way of justification. For suppose that logical laws are
justified by some kind of justification j that is not a proof. In this case, Frege can
affirm at the same time that 1) the analytic-synthetic and the a priori -a posteriori
distinctions apply only to justifiable judgments; 2) general laws do not admit of
proof and 3) logical laws, being justifiable by j, are analytic and a priori. But what
does j stand for? The possibility of the existence of such a kind of justification j
that is different from deductive proof is left open by Frege’s choice to use, as we
have seen, a conditional instead of a biconditional in giving the definition of the
analytic-synthetic distinction suggesting that there may exist analytic truths that
cannot be proved.

For sure, deductive proof is the kind of mathematical and logical justification
par excellence. However, in his compelling article, Bar-Elli (2010) suggests that
justification is not, for Frege, only deductive or inferential, but that there is also
an epistemic kind of justification, in which statements are justified “in expressing
aspects or features of the ways ‘their objects’ are given to us, or, in other words,
by the modes of presentation or senses (Sinne) of the things their are about”45.
The idea is that the way in which fundamental objects are given is central to
the justification of the axioms of a system. This is what Frege suggests in the
geometrical case in a posthumous essay: “So long as I understand the words
‘straight line’, ‘parallel’ and ‘intersection’ as I do, I cannot but accept the parallel
axiom [. . . ] Their sense is indissolubly bound up with the axiom of parallels”46.
Bar-Elli standpoint is the more convincing the more we read it as a clarification of
Frege’s Euclideanism about axioms47: to put it roughly, the justification of general

43FA, §3, p. 4.
44This is observed by Dummett (1991, p. 24).
45Bar-Elli (2010, p. 173).
46LM, p. 247.
47Burge (2005)’s tenth chapter entitled Frege on Knowing the Foundations underlines, beyond

the familiar picture of Frege’s indebtedness to the Eucliean tradition, also the elements in Frege’s
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laws (and, in particular, of logical laws) is their self-evidence or, to avoid seemly
psychological allusions, their independence of other truths.

To sum up, we believe that, in Frege’s theory, logical laws are analytic, despite
the absence of an explicit statement of the author. We have shown that, first,
what discriminates Frege’s position from the Kantian one and leads us to conclude
that logic is analytic only for the former and not for the latter, although both of
them are not explicit on this point, is the difference in the underlying conception of
logic. Second, the laws of logic that are chosen as axioms of the system are analytic
because of their self-evidence; logical theorems are instead analytic in that they
can be proved through logical laws only. Third, the analyticity of logic is taken for
granted by the author of the Grundlagen. Frege has solved in the initial paragraphs
of his book the problem of reformulating Kant’s analytic-synthetic distinction in a
way that was suitable to his logicist program, but his real concern, viz. the thesis
that he believes in need of proof, is the status of arithmetical propositions, not
that of basic logical laws48.

3.1.5 Analyticity of Logic in Logical Empiricism

The fundamental role of the principle of analyticity of logic in the theories of the
logical empiricist movement is clearly expressed in the manifesto of the Vienna
Circle written in 1929 by Rudolf Carnap, Hans Hahn and Otto Neurath. The
Wissenschaftliche Weltauffassung is characterized by two features: it holds that
there is knowledge only from experience and it finds in logical analysis the method
of clarification of philosophical problems. Metaphysics is rejected because it relies
on the ambiguity of natural language and it claims that it can produce knowledge
on its own sources without using any empirical material. Logical analysis shall
overcome not only traditional forms of metaphysics, but also “the hidden meta-
physics of Kantian and modern apriorism”49. Kant’s synthetic a priori, which
had already been impoverished by Frege’s thesis that arithmetic is analytic, is
here rejected in toto:

The scientific world-conception knows no unconditionally valid knowl-
edge derived from pure reason, no ‘synthetic judgments a priori’ of
the kind that lies at the basis of Kantian epistemology [. . . ] It is pre-
cisely in the rejection of the possibility of synthetic knowledge a priori
that the basic thesis of modern empiricism lies. The scientific world-
conception knows only empirical statements about things of all kinds,
and analytical statements of logic and mathematics (VC, p. 308).

thought that apparently differ from this framework.
48As we have mentioned above, this observation is due to Proust (1989).
49VC, p. 308.
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Following the neo-positivistic perspective, two aspects that from Kant on were kept
separated do now coincide: the analytic-synthetic distinction on the one hand, the
a priori -a posteriori distinction on the other. This is because synthetic statements
are always grounded in facts and analytic statements are known a priori. What
is crucial for our reconstruction is that logical laws, together with mathematical
statements, are, according to this movement, the paradigmatic examples of ana-
lytic judgments and this is true despite the definition of analyticity is not exactly
the same for all the authors that belong to this cultural milieu50. The princi-
ple of analyticity of logic, which was implicitly accepted by Frege, finds in this
philosophical movement the most fertile ground.

Willard Van Orman Quine’s well-known paper Two Dogmas of Empiricism51

represents the strongest attack against the logical positivists’ epistemology and, in
particular, against the analytic-synthetic distinction and the theory of reduction-
ism. As far as the first dogma is concerned, the American philosopher gives the
following characterization of analytic statements:

Statements which are analytic by general philosophical acclaim [. . . ]
fall into two classes. Those of the first class, which may be called
logically true, are typified by: (1) No unmarried man is married. [. . . ]
But there is also a second class of analytic statements, typified by:
(2) No bachelor is married. The characteristic of such a statement
is that it can be turned into a logical truth by putting synonyms for
synonyms; thus (2) can be turned into (1) by putting ‘unmarried man’
for its synonym ‘bachelor’. We still lack a proper characterization of
this second class of analytic statements, and therewith of analyticity
generally, inasmuch as we have had in the above description to lean
on a notion of synonymy which is no less in need of clarification than
analyticity itself (Quine, 1951, p. 23).

The definition that a statement is analytic if it is either a logical truth or can be
turned into a logical truth by putting synonyms for synonyms can be taken as a
good representative of the modern and empiricist account of the matter, which
is different not only to Kant’s analytic-synthetic distinction, but also to Frege’s
approach. The problem rests with the so-called material analyticities52, of which
the judgment ‘All bachelors are unmarried man’ is the standard example. For,

50As anticipated in the introduction to this thesis, we are not interested here in the reconstruc-
tion of the different conceptions of analyticity held by the philosophers that declare themselves
to be logical empiricists, for our main focus is on those accounts that contrast this traditional
paradigm and argue that logic is not analytic.

51Quine (1951).
52On this point see Mayer (2003, p. 68) and de Jong (1996, pp. 317-318 and 322-323).
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as we have seen in Section 3.1.2, Frege’s analyticities are propositions that can
be derived from definitions with the help of logical laws only; but the definitions
themselves must be expressed through logical means. However, concepts of natural
language are usually ambiguous: therefore, their definition cannot be taken as
admissible according to Frege’s requirements. This difference can be explained as
a result of the context and the aims that pushed Frege to formulate his analytic-
synthetic distinction, namely, his logicist project to reduce arithmetic to logic.
This is the reason why he, unlike logical positivists, restricts this notion to formal
proofs.

As the text above makes clear, Quine’s criticism against the notion of analyt-
icity in general is motivated by the impossibility of giving a non-circular charac-
terization of the second class of analytical statements, the material ones: for this
kind of sentences, the concept of analyticity as truth in virtue of meaning pre-
supposes the idea of synonymy, but the latter in turn cannot be defined without
the former. In other words, Quine’s epochal criticism spares completely the first
class of analyticities made up of logical truths. In holding that logical truths are
non-questionable cases of analyticities, the author of the Two Dogmas agrees with
his main critical target, Rudolf Carnap.

Although his account of analyticity underwent several significant modifications,
Carnap’s formulations are characterized by a common feature, namely, the idea
that the notion of analytic truth is relative to a certain language or, to be more
precise, that analytic truths define what makes something into a language. The
principle of tolerance53, which is one of the most radical changes of The Logical
Syntax of Language, implies the thesis that analyticity is a relative notion and that
analytic truths are the rules and the consequences of a given particular language.
In Carnap’s conception, ‘logical’ is simply treated as a synonym with ‘analytic’:
“By means of the concept ‘analytic’, an exact understanding of what is usually des-
ignated as ‘logically valid’ or ‘true on logical grounds’ is achieved [. . . ] In material
interpretation, an analytic sentence is absolutely true whatever the empirical facts
may be. Hence, it does not state anything about facts”54. This attitude towards
the relationship between logic and analyticity does not change during the devel-
opment of Carnap’s philosophy: his move to the semantic setting is accompanied
by the abandonment of his Syntax method for defining ‘analytic’, but not of the
belief that logical truths belong to the pre-philosophical explicandum of analytic-
ity. According to his final account of analyticity, which can be found in his paper
Meaning Postulates (1951), a sentence of a specified formal language is analytic in

53“In logic, there are no morals. Everyone is at liberty to build up his own logic, i.e., his own
form of language, as he wishes. All that is required of him is that, if he wishes to discuss it, he
must state his methods clearly, and give syntactical rules instead of philosophical arguments”
(Carnap, 1934, p. 52).

54Carnap (1934, p. 41).
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that language just in case it is logically implied by the meaning postulates of the
language, which are part of the specification of the linguistic framework.

3.2 Logic is tautologous

3.2.1 The paradox of analysis

The term ‘paradox of analysis’ was first used by Cooper H. Langford in his 1942
article entitled The Notion of Analysis in Moore’s Philosophy. After having no-
ticed that analysis plays a decisive role in determining the character of Moore’s
philosophy, Langford supposes that the significance of analysis may be denied on
the ground of the paradox of analysis, which may be formulated as follows:

Let us call what is to be analyzed as the analysandum, and let us call
that which does the analyzing the analysans. The analysis then states
an appropriate relation of equivalence between the analysandum and
the analysans. And the paradox of analysis is to the effect that, if the
verbal expression representing the analysandum has the same meaning
as the verbal expression representing the analysans, the analysis states
a bare identity and is trivial; but if the two verbal expressions do not
have the same meaning, the analysis is incorrect (Langford, 1942, p.
323)55.

The paradox of analysis is here described as the incompatibility of two desirable
properties, correctness and informativity, and its scope is the widest possible: it af-
fects any kind of analysis and the whole philosophy, if this discipline is interpreted
in terms of analysis. The paradox notwithstanding, many would be tempted to
say that we have numerous examples of successful analysis, which are both intu-
itively correct and significantly informative: this puzzle must find a solution. The
natural way out of the paradox seems to be the distinction between two levels of
discourse, the former aimed at justifying the correctness of analysis and the latter
its informativeness, and this strategy founds many attempts made to solve the
problem.

Being so pervasive, the paradox of analysis is as old as Western philosophy and
Langford’s formulation has many historical precedents. We now mention four of

55In his reply to Langford, Moore confesses he is unable to solve the puzzle and gives the
following suggestion: “I think that, in order to explain the fact that, even if ‘To be a brother is
the same thing as to be a male sibling’ is true, yet nevertheless this statement is not the same as
the statement ‘To be a brother is to be a brother’, one must suppose that both statements are
in some sense about the expressions used as well as about the concept of being a brother. But
in what sense they are about the expressions used I cannot see clearly; and therefore I cannot
give any clear solution to the puzzle” (Moore, 1968, p. 666).
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them. In one of the most well-known passages of Plato’s Meno, Socrates proposes
to Meno to inquire into what they do not know and his interlocutor’s answer is to
pose an epistemological challenge to the very possibility of inquiry: “And how will
you inquire into a thing when you are wholly ignorant of what it is? Even if you
happen to bump right into it, how will you know it is the thing you didn’t know?”56.
Socrates rephrases the question and says: “[A] man cannot search either for what
he knows or for what he does not know [. . . ] He cannot search for what he knows
- since he knows it, there is no need to search - nor for what he does not know, for
he does not know what to look for”57. Meno’s challenge is but an epistemological
version of the paradox of analysis and it prompts Socrates to introduce the theory
of recollection: in learning something, we do not come to know something we did
not already know; what we do is recollect and this is proven by Socrates through
the examination of the slave boy.

Another formulation of the paradox of analysis can be read in the work Quod
nihil scitur, written by the doctor and philosopher Francisco Sanchez in 1581.
Founding his skepticism on a rejection of Aristotelianism and an epistemological
analysis of knowledge, he holds that all definitions are merely nominal and are not
related with the object considered. A man is a single thing and yet it is described
by several names, such as being, substance, body, animal. But, he continues, “if
they refer to the same thing, then they are too many of them; but if they mean
different things, then a man is not a single thing possessing identity”58.

The third statement of the paradox of analysis that we would like to mention
is put forward by Frege in his 1894 review of Husserl’s Philosophie der Arithmetik.
Frege first concentrates on ideas and then on definitions:

If words and combinations of words mean ideas, then for any two of
them there are only two possibilities: either they designate the same
idea or they designate different ideas. In the former case it is pointless
to equate them by means of a definition: this is ‘an obvious circle’;
in the latter case it is wrong [. . . ] A definition is also incapable of
analysing the sense, for the analysed sense just is not the original one.
In using the word to be explained, I either think clearly everything I
think when I use the defining expression: we then have the ‘obvious
circle’; or the defining expression has a more richly articulated sense,
in which case I do not think the same thing in using it as I do in using
the word to be explained: the definition is then wrong (RH, p. 199).

Both Sanchez and Frege’s formulations focus on definitions. But definitions do
not exhaust the paradox of analysis, for, as we have seen, the problem affects

56Meno, 80D.
57Meno, 80E.
58Sanchez, p. 175.
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everything that is essentially based on analysis. This might be the case also for
logical inferences, if we read the conclusion of an inference as resulting from the
analysis of its premises. In 1934, Cohen and Nagel express the paradox of inference
in the following terms:

If in an inference the conclusion is not contained in the premises, it
cannot be valid; and if the conclusion is not different from the premises,
it is useless; but the conclusion cannot be contained in the premises
and also possess novelty; hence inferences cannot be both valid and
useful (Cohen and Nagel, 1934, p. 173).

It is clear that this paradox is nothing more than a consequence of the paradox of
analysis: an inference cannot be both valid and useful at the same time, because
analysis cannot be both correct and informative at the same time.

The connection between the paradox of analysis and our research on the episte-
mological status of logic is immediate. In Section 3.1 we have seen the development
of the principle of analyticity of logic from Frege to the Vienna Circle. Holding
that logic is analytic amounts to say that logic is the result of some kind of analysis:
for example, the conclusion of a logical inference is the result of the analysis of its
premises. But here the paradox does show all of its force: if logic is analytic, then
(or so it seems) it must be trivial. In other words, the principle of analyticity of
logic, together with the paradox of analysis, implies the principle of tautologicity
of logic: since it is correct, logic cannot yield new information.

The logical empiricist movement accepts the paradox and its seemly inescapable
consequence that logic and mathematics are tautologous. In the Wissenschaftliche
Weltauffassung, Carnap, Hahn and Neurath write:

Logical investigation [. . . ] leads to the result that all thought and in-
ference consists of nothing but a transition from statements to other
statements that contain nothing that was already in the former (tauto-
logical transformation) [. . . ] The conception of mathematics as tauto-
logical in character, which is based on the investigation of Russell and
Wittgenstein, is also held by the Vienna Circle (VC, pp. 308, 311).

This thesis held by the Vienna Circle is influenced by the Tractatus ’ analysis of
logical truth. While Frege treats logical truths as universal laws applying to any
statement, Wittgenstein believes that the laws of logic are tautologies, which, in
themselves, do not say anything. According to the Austrian philosopher, tautolo-
gies, which cannot be false, do not tell us how the world in fact is: “tautologies and
contradictions show that they say nothing. A tautology has no truth-conditions,
since it is unconditionally true [. . . ] (For example, I know nothing about the
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weather when I know that it is either raining or not raining.)”59. As a result,
tautologies, as well as contradictions, lack sense.

The thesis that logic is tautologous raises some problems. The conclusion
obtained through a long deductive chain might appear as an actual novelty with
respect to its premises and the recognition that a particularly complex sentence
is a tautology might appear as a true discovery. Similarly, it is difficult to regard
the results of mathematics as sterile and to dismiss the fact that it is impossible
to know all the logical consequences of what we know. Thus, a legitimate question
is then how do philosophers, who hold that logic is analytic and trivial, deal with
the intuitive idea that logical deduction is fruitful? Or how can the paradox of
analysis be overcome?

In Section 3.2.2, we point out that in the Grundlagen, Frege implicitly denies
the paradox of analysis: he maintains that logic is analytic, correct and informative
at the same time. Roughly put, the idea is that ‘A is B’ is correct in so far as
A and B have the same content and fruitful to the extent that the content of A
and B is split up differently. In Section 3.2.3, we show that Frege’s position on
the fruitfulness of definitions undergoes a radical change after the introduction of
the Sinn-Bedeutung distinction. Initially, he tries to use this distinction to solve
the paradox of analysis: in brief, ‘A is B’ is correct because A and B share the
same reference and it is informative because A and B have different senses. Then,
he seems to recognize the inadequacy of this answer and tries to avoid definitions
based on analysis. In Section 3.2.4, we examine a solution common in the logical
positivistic milieu. Both the principle of analyticity of logic and the paradox of
analysis are accepted and, as a consequence, logic is said to be tautologous. ‘A
is B’ is correct and trivial, because A and B have the same meaning: the only
kind of novelty contained in an analytical statement is psychological in character.
In Section 3.2.5, we consider Wittgenstein’s solution: the author of the Tractatus
accepts that logic is both analytic and tautologous, but he finds in the language
an objective reason why logical inferences seem to be informative despite their
triviality.

3.2.2 Frege against the “legend of the sterility of pure
logic”

Frege offers an original solution to the problem posed by the paradox of analysis.
In the Grundlagen der Arithmetik, he maintains that “propositions which extend
our knowledge can have analytic judgments for their content”60 and, as a special
case of this fact, he holds the thesis that logic is, at the same time, analytic and

59Wittgenstein (1921, 4.461).
60FA, §91, p. 104.
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informative.
His starting point seems to be, once more, his logicist position that arithmetic

can be reduced to logic. According to the author of the Grundlagen, if his logicist
bet proved to be winning, “the truths of arithmetic would then be related to those
of logic in much the same way as the theorems of geometry to the axioms”61.
In other words, the relationship between logic and arithmetic would be so close
that the former would contain, albeit in a concentrated format, all the theorems
of the latter discipline. At the same time, Frege assumes as a matter of fact
that arithmetic cannot be charged of sterility: the results of this discipline are so
evident and exceptional that nobody could seriously maintain that arithmetical
propositions are uninformative or tautologous. The natural result of combining
these two premises is that the fruitfulness of arithmetic expands to cover logic, so
that also the latter discipline must be equally seen as capable of extending our
knowledge:

Can the great tree of the science of number as we know it, towering,
spreading, and still continually growing, have its roots in bare identi-
ties? And how do the empty forms of logic come to disgorge so rich a
content? (FA, §16, p. 22)

[. . . ] the prodigious development of arithmetical studies, with their
multitudinous applications, will suffice to put an end to the widespread
contempt for analytic judgments and to the legend of the sterility of
pure logic (FA, §17, p. 24).

However, the connection between logic and arithmetic cannot be considered as an
explanation in itself and a way out of the paradox of analysis. How does Frege
manage to keep analyticity and informativeness together? The answer must be
searched in the notion of definition proposed at the beginning of the Eighties. In
this period, Frege characterizes definitions as a kind of concept-formation through
the process of analysis. We have seen above that Frege’s conception of analysis can
be read as opposed to the Kantian paradigm: while the latter is characterized by
the subject-predicate pattern, Frege’s notion of analysis is based on the function-
argument model, takes the steps from judgments and not from concepts and it is
not univocal. It is now time to see these two conceptions of analysis at work in
constructing definitions, viz. in forming concepts.

In the already mentioned unpublished text Boole’s Logical Calculus and the
Concept-Script, Frege criticizes Boole’s concept formation with the following words:

In this sort of concept formation, one must, then, assume as given
a system of concepts, or speaking metaphorically, a network of lines.

61FA, §17, p. 24.
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These really already contain the new concepts: all one has to do is to
use the lines already there to demarcate complete surface areas in a
new way. It is the fact that attention is principally given to this sort
of formation of new concepts from old ones, while other more fruitful
ones are neglected which surely is responsible for the impression one
easily gets in logic that for all our to-ing and fro-ing we never leave the
same spot (BLC, p. 34).

Frege explains that, according to Boole’s perspective, the definition of homo in
terms of animal rationale corresponds to logical multiplication and illustrates that
the extension of homo is the intersection of two circles, the former representing the
extension of the concept animal and the latter of rationale. Moreover, he notices
that concepts can be formed in Boolean logic not only through multiplication, but
also through addition. This is the case, for example, of the the definition of ‘capital
offence’ as ‘murder or the attempted murder of the Kaiser or of the rules of one’s
own Land or of a German prince in his own Land ’. The extension of the concept
‘capital offence’ is given as the union of two circles, the former representing the
extension of ‘murder’ and the latter of the second disjunct of the definition above.
Addition and multiplication are the familiar ways of forming concepts but, as the
quotation makes clear, they are characterized by the same method of using old
lines to demarcate new surfaces. This kind of concept-formation is, in Frege’s
eyes, responsible for the idea that logic is sterile.

We have underlined in Section 3.1.3 that one of the most original feature of
Frege’s notion of analysis is that it can yield more than one result. This is a con-
sequence of the possibility of choosing in different ways which parts of a judgment
to consider as variable and which to consider as constant. Now, the function-
argument analysis not only yields a plurality of results. It also provides a fruitful
method of concept-formation. One of Frege’s examples62 considers the equation
24 = 16. This judgment can be decomposed in several ways. First, if we consider
number 2 to be variable, which may be indicated as x4 = 16, we obtain the concept
‘4th root of 16’. Second, if we consider number 4 to be variable, so that we may
write 2x = 16, we obtain the concept ‘logarithm of 16 to the base 2’. Third, if we
consider both 2 and 16 to be replaceable and we indicate this by the expression
x4 = y, we obtain the relation of a number to its 4th power. The point is that the
concepts that have been formed in this way are actually new and fruitful:

There’s no question here of using the boundary lines of concepts we
already have to form the boundaries of new ones. Rather, totally new
boundary lines are drawn by such definitions - and these are the scien-
tifically fruitful ones. Here too, we use old concepts to construct new

62BLC, pp. 16-17.
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ones, but in so doing we combine the old ones together in a variety of
ways by means of the sign for generality, negation and the conditional
(BLC, p. 34).

In modern terms, we could say that the fruitfulness of the process described by
Frege consists in the individuation of a quantificational structure in logically un-
structured judgments or, in other words, in the recognition of certain patterns,
such as predicates and relations, in given propositions63. The problem is to estab-
lish which is the pattern, among the many options available in every proposition,
that better suits the demonstration. Moreover, it is the work of extracting these
structures from judgments that yields an extension of knowledge.

In the Grundlagen, Frege’s criticism of Kant’s notion of analysis echoes the
words he spent for Boole in the text written in 1880-188164. He states that Kant’s
definitions are mere lists of unordered characteristics composing concepts and com-
plains that this concept formation is not fruitful. On the contrary, every element of
the definitions presented in the Foundations are, according to Frege, “intimately”
and “almost organically” connected one to the other65. In this work, Frege makes
one step further, for he says that it is precisely due to this new concept-formation
that produces fruitful definitions that analytic judgments can extend our knowl-
edge:

What we shall be able to infer from it [i.e., from the more fruitful
type of definition], cannot be expected in advance; here, we are not
simply taking out of the box again what we have just put into it. The
conclusions we draw from it extend our knowledge, and ought therefore,
on Kant’s view, to be regarded as synthetic; and yet they can be proved
by purely logical means, and are thus analytic. The truth is that they

63Dummett explains this point with the following example: “If we define ‘x is intermediate in
size between y and z’ to mean ‘Either y is larger than x and x is larger than z, or z is larger than
x and x is larger than y’, we need, if we are to draw the conclusion ‘There is a body intermediate
in size between Jupiter and Mars’, to be able to recognize the complex three-place predicate as
extractable from the proposition ‘Either Jupiter is larger than Neptune and Neptune is larger
than Mars, or Mars is larger than Neptune and Neptune is larger than Jupiter’: we have to
discern that pattern in it” (Dummett, 1991, p. 42).

64In particular, Frege uses again the geometrical metaphor: “If we represent the concepts
(or their extensions) by figures or areas in a plane, then the concept defined by a simple list
of characteristics corresponds to the area common to all the areas representing the defining
characteristics; it is enclosed by segments of their boundary lines. With a definition like this,
therefore, what we do - in terms of our illustration - is to use the lines already given in a new
way for the purpose of demarcating an area. Nothing essentially new, however emerges in the
process. But the more fruitful type of definition is a matter of drawing boundary lines that were
not previously given at all” (FA, §88, p. 100).

65FA, §88, p. 100.



CHAPTER 3. FREGE AND LOGICAL POSITIVISM 120

are contained in the definitions, but as plants are contained in their
seeds, not as beams are contained in a house (FA, §88, pp. 100-101).

Here, Frege is explaining two main points: first, the passage from the fruitfulness
of definitions to the fertility of deductions; second, the link between analyticity
and informativeness. As far as the first issue is concerned, Frege is saying that con-
clusions that can be drawn from fruitful definitions extend our knowledge exactly
because of the fertility of those definitions and despite the fact that conclusions
can be proved by purely logical means alone. In other words, in this excerpt Frege
maintains that the fruitfulness of definitions makes deductions that take the steps
from them informative and this happens even in the case in which deductions
employ only general logical laws and, thus, produce analytic conclusions.

The second matter receives another, albeit metaphorical, explanation. On
the one hand, deductions are knowledge-extending processes because conclusions
are contained in the premises, i.e. the initial definitions, only in posse, but not
in esse. It is in the transition from potentiality to actuality, viz. from seeds
to plants, that the informativeness of deductive reasoning finds its place. This
is a resource-consuming process: as Dummett puts it, this is not a mechanical
procedure, but it has a rather creative component due to the requirement of pattern
recognition66. On the other hand, however, the conclusion of a deductive process
is analytic: there is no need of any other tool than the logical ones to prove it,
since the conclusion is, although only potentially, already contained in the given
definitions. Informativeness and analyticity are thus two unavoidable consequences
of the way Frege characterizes the notion of deduction and its dependence on
fruitful definitions. This is well explained by Dummett in the following terms:

Since it has this creative component, a knowledge of the premisses
of an inferential step does not entail a knowledge of the conclusion,
even when we attend to them simultaneously; and so deduction can
yield new knowledge. Since the relevant patterns need to be discerned,
such reasoning is fruitful; but, since they are there to be discerned, its
validity is not called in question (Dummett, 1991, p. 42).

The solution to the paradox of analysis that Frege offers at the beginning of the
Eighties is fascinating. It has the merit of breaking the connection between tau-
tologicity and analyticity. The basic idea is that the recognition of a certain
pattern and the extraction of a quantificational structure from a given judgment
is, by itself, a creative process. Logical deduction is seen as a knowledge-extending
procedure because theorems are concentrated into basic definitions and a resource-
consuming procedure of extraction is needed.

66Dummett (1991, p. 42).
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3.2.3 Frege after the Sinn-Bedeutung distinction

Between the Grundlagen der Arithmetik (1884) and the first volume of the Grundge-
setze der Arithmetik (1893), Frege introduces his well-known distinction between
Sinn (sense) and Bedeutung (reference, meaning, significance). First presented in
the 1891 article Function and Concept, the distinction was developed in another
paper entitled Sense and Reference (1892). Roughly put, the reference of a proper
name is the objects it indicates, while its sense is said to be the expression of the
name. Thus, the sense of different names is different even if they have the same
referent, as in the case of ‘Hesperus’ and ‘Phosphorus’. Similarly, the reference of
a sentence is its truth value, the True or the False, while its sense is the thought
it expresses. For instance, the two sentences ‘The morning star is a body illumi-
nated by the Sun’ and ‘The evening star is a body illuminated by the Sun’ express
different thoughts, but have the same reference, because the morning star is the
evening star.

The introduction of the distinction between sense and reference has important
consequences on the Grundlagen’s conception of definitions. In particular, the
fruitfulness of good definitions devised in the Foundations is substituted by a
view that confines their usefulness to an abbreviatory and simplificatory function.
In other words, after 1884, definitions are, from a logical point of view, “wholly
inessential and dispensable”67 and are devoid of any creative power: “Just as a
geographer does not create a sea when he draws boundary lines and say: the part
of the ocean’s surface bounded by these lines I am going to call the Yellow Sea, so
too the mathematician cannot really create anything by his defining”68. But this
radical change in view as far as definitions are concerned brings along an equally
drastic change in Frege’s response to the paradox of analysis. Two are the main
sources in which Frege explicitly addresses the problem: the Review of Husserl’s
Philosophie der Arithmetik I published in 1894 and the posthumous text entitled
Logic in Mathematic dated 1914.

In his work, Husserl criticizes the cases of equivalence of the Grundlagen on
the basis that they would not embody identity of content, but only equivalences
in extension. In Frege’s definitions of the Grundlagen, the definiendum and the
definiens are only logically equivalent, but are articulated through different con-
cepts and are thus neither intensionally nor epistemically equivalent. To use Frege’s
terminology, Husserl’s point seems to be that a definition is correct just in case
the sense of the definiens is identical to that of the definiendum. After having
clearly stated the paradox of analysis with the words quoted above, Frege replies
to Husserl’s attack by distinguishing in the treatment of definitions the attitudes of
psychological logicians and of mathematicians. The former, among which Husserl

67LM, p. 208
68GGA I, p. xiii.
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seems to be included, are interested in the sense of the words, which they fail to
discern from the ideas. On the contrary, mathematicians’ main concern is with
the thing itself, viz. the meaning of the words:

The reproach that what is defined is not the concept but its extension
actually affects all mathematical definitions. For the mathematician,
it is no more right and no more wrong to define a conic as the line of
intersection of a plane with the surface of a circular cone than to define
it as a plane curve with an equation of the second degree in parallel
coordinates. His choice of one or the other of these expressions have
neither the same sense nor evoke the same ideas. I do not mean by
this that a concept and its extension are one and the same, but that
coincidence in extension is a necessary and sufficient criterion for the
occurrence between concepts of the relation that corresponds to the
identity between objects (RH, p. 200).

According to Frege, mathematical definitions are correct if the definiens and the
definiendum share the same reference, but it is not necessary that they share the
same sense. Frege’s distinction between sense and reference, which disambiguates
the notion of meaning, is here exploited in the obvious way to solve the paradox of
analysis: definitions are correct because the two terms share the same reference,
but at the same time they are informative because they express different senses.
This suggests that the fruitfulness of mathematical definitions understood in this
way consists in the discovery that two different concepts expressed through two
different senses have the same referent. This can be regarded as a genuine extension
of knowledge.

However, this attempt to solve the paradox of analysis through the sense-
reference distinction proves to be inadequate. As several scholars underline69, the
problem is that analyses and definitions seem to capture more than just sameness
of reference: the sameness of truth-values between the sentence A and B cannot
be sufficient to conclude that the latter is an analysis or a definition of the former.
Consider the key example Frege proposes in the Grundlagen70 in order to introduce
his definition of number, namely the sentences ‘Line a is parallel to line b’ and ‘The
direction of line a is identical with the direction of line b’. When the former is
true, then the latter is true and viceversa: the two statements share the same
Bedeutung. But this cannot be all of the story: they seem to share the same
sense, on some conception of sense. The same happens, according to Dummett71,
for Frege’s definition of equinumerosity: here again, the sameness of Bedeutung

69See, for example, Beaney (2005, p. 295) and Shieh (2008, p. 1001).
70FA, §64, p. 74.
71Dummett (1991, pp. 148-154).
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is not sufficient. Frege acknowledges this conclusion in several passages of his
production and an explicit endorsement of this thesis is offered in the first volume
of the Grundgesetze: “By means of a definition we introduce a new name by
stipulating that it is to have the same sense and the same Bedeutung as a name
composed of already known signs”72.

In his posthumous writing Logic in Mathematics, Frege distinguishes between
two kinds of definitions, which he calls ‘constructive’ (aufbauende) and ‘analytic’
(zerlegende) respectively. In the first kind of definitions, “we construct a sense
out of its constituents and introduce an entirely new sign to express this sense”73.
Constructive definitions are in fact stipulations for shortenings of complicated
expressions and are thus clearly uninformative: they are at the same time “wholly
inessential and dispensable”74 and the only proper kind of definitions, as it is
suggested by Frege’s proposal to call them “definitions tout court”75.

Analytic definitions are definitions of terms “with a long established use”76,
whose senses, albeit partially known, need to be clarified. This kind of definitions
are the results of logical analysis, not of mere stipulations, because the definiendum
already has a sense. Here, Frege supposes the identity not only of reference, but
also of sense. But two cases must be distinguished in this respect. First, the
sense of the definiens and of the definiendum is identical and this fact can be
recognized by an “immediate insight”77. As a result, “it is better to eschew the
word ‘definition’ altogether in this case, because what we should here like to call a
definition is really to be regarded as an axiom”78. Thus, the first kind of analytic
definitions are, properly speaking, axioms.

The second kind of analytic definitions is characterized by the fact that the
two terms A and C that are equated in the definition ‘A is C’ do not obviously
have the same sense. In this case, “we are not certain whether the analysis is
successful”79 and “we do not have a clear grasp”80 of A, although it is a term that
has been in use for a long time. What we have to do here, according to Frege, is to
choose a fresh sign B and to stipulate its sense through the constructive definition
that ‘B is C’. Then, in order to bypass the question of whether A and B have the
same sense, we have to construct a new system from the bottom up by replacing
all the occurrence of A in the old system with the new term B.

72GG, §27.
73LM, p. 210.
74LM, p. 208.
75LM, p. 210.
76LM, p. 210.
77LM, p. 210.
78LM, p. 210.
79LM, p. 210.
80LM, p. 221.
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What does Frege aim to achieve with this procedure? First of all, he rejects
definitions based on logical analysis. For we have seen that constructive definitions
are a kind of stipulation; the first kind of analytic definitions are not, properly
speaking, definitions, but axioms; and the second kind of analytic definitions is
again turned into a kind of constructive definitions. By rejecting definitions based
on logical analysis, Frege hopes to give a response to the paradox of analysis.
However, what he actually does is to avoid the paradox. For, although analysis is
now precedent to systematic construction, the question of the relationship between
the old term in use, A, and the fresh stipulated one, B, is still legitimate and has
not been given a proper answer. As Beaney puts it, “The building stones may have
to be prepared carefully, by conferring clear sense on the simple terms, but do these
senses not have to bear some recognized relation to the senses (however vague or
inadequately grasped they may be) of the ordinary terms that the new terms
replace?”81 The inadequacy of the response given by Frege through the notion of
analytic definitions is even more evident if we consider his logicist project. Assume
that Frege has replaced existing arithmetic, the fundamental notions of which were
unclear to mathematicians of his days, with a new science that assigns new senses
to the key arithmetical terms. Then, what is the epistemological significance of
showing that this entirely new logic is analytic and can be reduced to logic?

Frege’s notion of analytic definitions does not solve the paradox of analysis.
But what about constructive definitions? At first sight, this kind of definitions is,
as we have seen, entirely uninformative, for they result from a mere stipulation.
Nonetheless, in the same manuscript Logic in Mathematics, Frege seems to suggest
a way in which stipulative definitions may be useful:

Definition is, after all, quite inessential. In fact considered from a
logical point of view it stands out as something wholly inessential and
dispensable. [. . . ] I want to stress the following point. To be without
logical significance is still by no means to be without psychological
significance. [. . . ] So if from a logical point of view definitions are
at bottom quite inessential, they are nevertheless of great importance
for thinking as this actually takes place in human beings (LM, pp.
208-209).

In this passage, the distinction between two levels, the logical and the psycho-
logical, allows Frege to propose another solution to the paradox of analysis. Def-
initions are correct, because the definiens and the definiendum are taken to be
identical through a stipulative act; at the same time, they find their usefulness
at the psychological level. Frege’s starting point of his surprising suggestion is
the (reasonable) assumption that when a word is present to our consciousness, we

81Beaney (2005, p. 303).
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are not able “to call to mind everything appertaining to the sense of this word”,
because “our minds are simply not comprehensive enough”82. Definitions prove
useful exactly in solving this problem. Signs are interpreted as a “receptacle for
the sense”, which may very well be complex. The intermediary between signs and
consciousness are definitions, which are needed “so that we can cram this sense
into the receptacle and also take it out again”83.

As Horty has underlined84, this psychologistic solution to the paradox of anal-
ysis is a consequence of the representationalist view of thinking that emerges in
Frege’s later writings, albeit never with a systematic treatment. According to this
perspective, our grasping of thoughts is not directed, but mediated through the
linguistic items with which they are associated. This standpoint explains the sense
in which our minds are not comprehensive enough to accomodate complex senses:
the size of their linguistic expression is simply too large to fit our mental capaci-
ties. Definitions are thus useful because they manage to compact and modify the
structure in which we represent thoughts.

3.2.4 Logical empiricism and the psychologistic solution

The psychologistic solution to the paradox of analysis that Frege seems to suggest
in Logic in Mathematics is extensively developed and explicitly defended in the
logical positivistic milieu. In this Section, we provide an analysis of the contri-
butions to the discussion offered by Hans Hahn, Carl Gustav Hempel and Alfred
Jules Ayer.

In his pamphlet Logic, Mathematics and Knowledge of Nature written in 1933,
Hans Hahn recognizes that there are two sources of knowledge, experience and
thinking, and reconstructs the controversy in the history of philosophy about the
relationship between the two. While rationalism failed because its fruits lacked
nourishing value, the earlier empiricists committed the error of interpreting the
propositions of logic and mathematics as mere facts of experience. Thus, ac-
cording to the neo-empiricist mathematician, a different conception of logic and
mathematics is needed. Hahn argues that “logic does not by any means treat of the
totality of things, it does not treat of objects at all but only of our way of speak-
ing about objects”85: in other words, logic is generated by language. Moreover,
influenced by Wittgenstein, he holds that the statements of logic, that express the
way in which the rules that govern the application of words to facts depend upon
each other, are tautologies: “they say nothing about objects and are for this very

82LM, p. 209.
83LM, p. 209.
84Horty (1992, p. 243 and ff.).
85Hahn (1959, p. 152).
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reason certain, universally valid, irrefutable by observation”86. In conveying this
interpretation of logic, Hahn is thus choosing one horn of the paradox of analysis,
namely, that logic is correct and uninformative. But, at the same time, he offers
an answer to the question as to what purpose logic serves:

Thus logical propositions, though being purely tautologous, and logi-
cal deductions, though being nothing but tautological transformations,
have significance for us because we are not omniscient. Our language
is so constituted that in asserting such and such propositions we im-
plicitly assert such and such other propositions – but we do not see
immediately all that we have implicitly asserted in this manner. It is
only logical deduction that makes us conscious of it. [. . . ] The propo-
sitions of mathematics are of exactly the same kind as the propositions
of logic (Hahn, 1959, pp. 157-158).

According to Hahn, logic and mathematics are not objectively new or informative.
They are instruments that simply compensate for our limitations and our inability
to see immediately the consequences of what we know: “an omniscient being has
no need for logic and mathematics”87. Using the words that Hintikka chooses to
criticize this position88, we could say that “all that is involved is merely psycholog-
ical conditioning, some sort of intellectual psychoanalysis, calculated to bring us
to see better and without inhibitions what objectively speaking is already before
our eyes”89. Logic and mathematics make us conscious of the consequences of our
premises that we are not intelligent enough to recognize by mere inspection.

A similar position is put forward by the mathematician and philosopher Carl
Gustav Hempel. In his article On the Nature of Mathematical Truth first published
in 1945, he holds that the validity of mathematics depends neither on it alleged
self-evidential character, nor on any empirical basis, but derives by virtue of defi-
nitions and stipulations which determine the meaning of the terms. Mathematical
and logical statements are called analytic and their truth is independent of any
experiential evidence. However, the price paid for the theoretical certainty of these
disciplines is very high: they convey no factual information. In another text of the
same year, Geometry and Empirical Science, Hempel suggests that logic might be
psychologically useful along the same lines indicated by Hahn:

Logical deduction – which is the one and only method of mathematical
proof – is a technique of conceptual analysis: it discloses what asser-
tions are concealed in a given set of premises, and it makes us realize

86Hahn (1959, p. 153).
87Hahn (1959, p. 159).
88See Section 4.3.2.
89Hintikka, 1973, X, p. 223.
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to what we committed ourselves in accepting those premises; but none
of the results obtained by this technique ever goes by one iota beyond
the information already contained in the initial assumptions [. . . ] a
mathematical theorem, such as the Pythagorean theorem in geome-
try, asserts nothing that is objectively or theoretically new as compared
with the postulates from which it is derived, although its content may
well be psychologically new in the sense that we were not aware of its
being implicitly contained in the postulates (Hempel, 2001, pp. 20-21).

A slightly different perspective on the same issue is given by Alfred Jules Ayer,
who dedicates the fourth chapter of his book entitled Language, Truth and Logic
written in 1936 to answer to the traditional objection that it is impossible on
empiricist principles to account for our knowledge of necessary truths. After having
recognized the problem posed by the paradox of analysis90, he argues that, on the
one hand, analytic propositions do not give us new knowledge, for they are devoid
of factual content and consequently they say nothing. Nevertheless, he maintains,
on the other hand, that there is a sense in which analytic propositions might add
something to our knowledge: “although they give us no information about any
empirical situation, they do enlighten us by illustrating the way in which we use
certain symbols”91. Ayer’s idea is that logical deduction calls attention to the
implications of a certain linguistic usage, such as the convention which governs
our employment of the connectives, of which we might otherwise not be conscious.
Hempel and Hahn found that the power of logic to surprise us depended on the
recognition of the consequences that could not be immediately grasped because
of human limitations; Ayer is more specific and maintains that logical deduction
sheds new light in particular on the functioning of certain linguistic items and,
ultimately, of our logical systems. This difference notwithstanding, Ayer solution
to the paradox of analysis is as psychologistic in character as the previous ones,
because also the British philosopher holds that the novelty of the result of a logical
deduction depends on the limitation of our reason:

A being whose intellect was infinitely powerful would take no interest
in logic and mathematics. For he would be able to see at a glance
everything that his definitions implied, and, accordingly, could never
learn anything from logical inference which he was not fully conscious

90“The empiricist must deal with the truths of logic and mathematics in one of the two following
ways: he must say either that they are not necessary truths, in which case he must account for
the universal conviction that they are; or he must say that they have no factual content, and
then he must explain how a proposition which is empty of all factual content can be true and
useful and surprising. If neither of these courses proves satisfactory, we shall be obliged to give
way to rationalism” (Ayer, 1958, p. 73).

91Ayer (1958, p. 80).
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of already. But our intellects are not of this order. It is only a minute
proportion of the consequences of our definitions that we are able to
detect at a glance (Ayer, 1958, pp. 85-86).

We now propose some observations. First, Ayer’s thesis that logical deduction
provides us with new information concerning our logical system does not, by itself,
imply that linguistic and conceptual information cannot be perfectly objective and
non-psychological. The viability of this theoretical option is shown by the work of
Hintikka, which will be discussed in the next chapter. Second, the idea that logic
is useful in so far as it makes us conscious of consequences that we are not able
to grasp immediately due to our limitations might be read as a reformulation of
Wittgenstein’s theory that philosophy is the activity of clarification of thought92.
This conception of philosophy, which is attested also in the second Wittgenstein93

and is unconditionally accepted by the Vienna Circle94, will be distinctive of the
analytic tradition. Third, the psychologistic flavor of Hahn, Hempel and Ayer’s
solution is not completely satisfying. The obstacle that prevents us to derive
all the consequences of what we know cannot be a subjective incapability of the
individuals, but it rather seems to be an objective barrier. The insight at the
basis of this criticism, which will be fully developed in the next Chapters of this
thesis, is connected to certain results coming from the theories of computation and
computational complexity.

3.2.5 Wittgenstein and the myth of the perfect language

Frege’s reflection on the sterility of analysis put forward in Logic in Mathematics
might be read as an anticipation not only of the psychologistic solution strenuously

92For example, proposition number 4.112 of the Tractatus states that: “Philosophy aims at
the logical clarification of thoughts. Philosophy is not a body of doctrine but an activity. A
philosophical work consists essentially of elucidations. Philosophy does not result in ‘philosoph-
ical propositions’, but rather in the clarification of propositions. Without philosophy thoughts
are, as it were, cloudy and indistinct: its task is to make them clear and to give them sharp
boundaries”.

93As Kuusela (2011) observes, Wittgenstein writes in the Big Typescript in the early 1930s:
“As I practice philosophy, its entire task consists in expressing myself in such a way that certain
disquietudes [. . . ] disappear”, “If I am correct, philosophical problems must be completely
solvable” and “The problems are solved in the actual sense of the word, like a lump of sugar in
the water”.

94In the manifesto of the movement written in 1929, Carnap, Hahn and Neurath argue that
“Clarification of the traditional philosophical problems leads us partly to unmask them as pseudo-
problems, and partly to transform them into empirical problems and thereby subject them to
the judgment of experimental science. The task of philosophical work lies in the clarification of
problems and assertions, not in the propounding of special philosophical pronouncements. The
method of this clarification is that of logical analysis” (VC, 1973, p. 306).
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defended by the logical positivists, but also of another way out of the paradox of
analysis that finds an eminent supporter in Ludwig Wittgenstein. As before, we are
not suggesting a direct influence of Frege’s passage on Wittgenstein’s perspective
on the paradox of analysis, but only, so to speak, a ‘family resemblance’ between
the two points of view95.

We have seen that in the unpublished manuscript dated 1914 Frege’s starting
point is a representationalist view of thinking, according to which linguistic items
are essential mediators of our grasping thoughts and human beings do think in
language. Moreover, he holds that in signs “we conceal a very complex sense as
in a receptacle”96 and that signs as such play a fundamental role in “calling to
mind everything appertaining to a word”97. A radicalization of the idea that signs
are essential for our thinking might be seen in the insight that a suitable logical
or mathematical notation makes our thinking itself superfluous. This observation
has been already proposed in the Introduction to the Grundlagen:

It is possible, of course, to operate with figures mechanically, just as it
is possible to speak like a parrot: but that hardly deserves the name
of thought. It only becomes possible at all after the mathematical
notation has, as a result of genuine thought, been so developed that it
does the thinking for us, so to speak (FA, p. iv).

As Carapezza and D’Agostino (2010) have underlined, Frege’s words express the
ideal of the logically perfect language and its relation to the myth of instant ratio-
nality. In a suitable notation, all logical relations become visible and thinking turns
out to be superfluous. Frege’s standpoint is clearly influenced by the Leibnizian
tradition, to whom he explicitly refers. In the preface of the Begriffsschrift, he
points out that Leibniz recognized the advantages of an adequate system of nota-
tion and holds that his own ideography is a characterization of Leibniz’s “universal
characteristic” and of “a calulus philosophicus or ratiocinator”98. Moreover, after
being accused by Ernst Schröder of creating not a universal language, but a calcu-
lus ratiocinator, he restates that his own Begriffsschrift is a lingua characteristica
in Leibniz’s sense99.

95For the Fregean influences on Wittgenstein’s thought see Kienzler (2001).
96LM, p. 209.
97LM, p. 209.
98BF, p. 6.
99The dispute between Frege and Schröder has been interpreted in different ways. According

to Van Heijenoort (1967), Frege holds that his Begriffsschrift is a lingua characteristica and
that Boole’s calculus is a calculus ratiocinator, because, while in the latter the propositions
remain unanalyzed, the former, with help of predicate letters, variables and quantifiers, manages
to articulate propositions so as to let them express a meaning. Sluga (1987) challenges Van
Heijenoort’s interpretation and argues that the distinction between the two approaches is that in
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There are manifold Leibnizian echoes also in Wittgenstein’s thought. In par-
ticular, the author of the Tractatus Logico-Philosophicus deals with the problem
of an adequate logical notation that he characterizes in terms of the perfect coin-
cidence of the grammatical and the logical structures of a sentence. Each sentence
expressed through an adequate notation shall immediately show its sense, which is
given by the conditions in which it is true or false. As a result of the use of a perfect
language, every tautology shall be recognized immediately as a sentence that is
true no matter the interpretation, and the validity of every inference shall be clear
at first sight. With an adequate notation, logical deduction shall be completely
superfluous, for a mere inspection of even complex sentences shall be sufficient to
grasp their sense. As Wittgenstein (1921) puts it:

5.13 When the truth of one proposition follows from the truth of oth-
ers, we can see this from the structure of the propositions.

6.122 [. . . ] in a suitable notation we can in fact recognize the formal
properties of propositions by mere inspection of the propositions them-
selves.

6.127 [. . . ] Every tautology itself shows that it is a tautology.

But does anything like an adequate logical notation exist according to the author
of the Tractatus? As Carapezza and D’Agostino (2012) show, Frege and Russell’s
proof system is criticized by Wittgenstein because the criterion according to which
some tautologies are chosen to play the role of axioms, namely, self-evidence, is
shared by every single tautology and is thus useless. Moreover, not only the same
proposition, that for the Austrian philosopher is identifiable with the possibility
of its being true or false, can be expressed through different signs, due to the
interdefinabilty of logical connectives; but also logical derivability itself might turn
into an extremely complex task. According to Wittgenstein, these features of Frege
and Russell’s proof system are harmful to the immediate visibility of propositions
and this means that they didn’t manage to find an adequate logical notation.

But Wittgenstein’s reflection on the adequate notation is also endowed with a
pars construens. The so-called ‘truth tables’, introduced in the Tractatus for the
first time100, are, according to their inventor, an adequate way to express proposi-
tions. The Tractatus distinguishes between elementary and complex propositions,

the Begriffsschrift concepts results from analyzing judgments and not viceversa as in the case of
Boole’s logic. Peckhaus (2004) maintains that the distinction is based on the superior expressive
power of Frege’s concept-script, while Korte (2010) argues that Frege’s reason for regarding his
work as a lingua characteristica must be searched in his logicist program and in his thesis that
judgments of arithmetic are analytic.

100See Wittgenstein 1921, 4.31 and 4.442.
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the latter being made up by the former: while the truth of an elementary propo-
sition depends on the existence of certain facts of the world, the truth value of a
complex proposition depends on the elementary constituents of which it is con-
structed. The truth table of a complex proposition not only shows in an explicit
way the truth conditions of that proposition, but it is in itself a propositional sign,
viz. it serves as a proposition.

In which way does the myth of the perfect language offer a solution to the
paradox of analysis? As we have seen in Section 3.2.1, Wittgenstein, as well as
logical positivists, holds that logic is both analytic and tautological. However,
while the psychologistic perspective à la Hempel, although denying an objective
usefulness of the deductive reasoning, accepts that the conclusion of a valid in-
ference might be psychologically new with respect to its premises, Wittgenstein
rejects the usefulness of logical deduction tout court. According to the insights
conveyed in the Tractatus, once propositions are expressed through an adequate
notation, i.e., in terms of their truth tables, logical deduction shall be replaced by
the mere inspection of the propositions. Wittgenstein has thus chosen one horn of
the dilemma, namely, analysis is not informative. At the same time, he offers an
explanation of the apparent novelty of the conclusion of an inference with respect
to its premises in terms of the inadequacy of our logical language.

However, Wittgenstein position might be attacked on two fronts. On the one
side, the solution proposed in the Tractatus is restricted to propositional logic and,
crucially, Church-Turing’s undecidability theorem (1936) excludes the possibility
of finding a similar perfect notation for first-order logic101. On the other side, there
is probably no feasible translation from the ordinary language to the adequate no-
tation, for its existence would also imply the existence of an efficient deterministic
algorithm to solve the tautology problem. But unfortunately, the currently ac-
cepted conjecture in theoretical computer science that P 6= NP, which shall be
examined in Section 6.1.1, excludes the tractability of the tautology problem.

101Carapezza and D’Agostino (2010) underline that this negative result does not exclude the
possibility of an ‘almost-perfect’ language working reasonably well in all practical contexts.
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Chapter 4

Hintikka’s modern reconstruction
of Kant’s theory: against the
traditional paradigm

According to Creath1, “W. V. O. Quine’s Two Dogmas of Empiricism is perhaps
the most famous paper in the twentieth-century philosophy”. Be that as it may,
Quine’s paper has raised a huge interest in the analytic-synthetic distinction, which
nevertheless mainly focused on material analyticities, rather than on the status of
logical truths. Beyond Quine’s followers, who rejected the notion of analyticity as
a whole, and Quine’s critics, such as Grice and Strawson (1956)’s, among the ma-
jor trends in this discussion we find the upsurge in the scientific study of natural
languages that led to defend a version of analyticity2; the externalist theories of
meaning that concentrate on studying the relations between words and phenom-
ena3; the rehabilitation of metaphysics together with the insistence upon an inner
faculty of intuition4.

However, our interest concerns mainly the first class of supposed analyticities,
which are called by Quine ‘logically true’. During the Seventies, Quine5 himself
seems to be open to change his mind on this point. The persistent disagreement
on some logical laws (such as the excluded middle) leads the American philosopher
to doubt that logical validities can be learnt simply by the learning of words and
to suggest that logical laws “should perhaps be seen as synthetic”6. However, far
from developing this idea further, in some retrospective positions Quine (1991)

1Creath (2004, p. 47).
2Chomsky (1968) and, later, Katz (1992) could be read along these lines.
3Putnam (1975) and Kripke (1972) are two of the most relevant contributions to this trend.
4On this point, see, for example, Lewis (1972).
5Quine (1974).
6Quine (1974, p. 80).
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restates his initial commitment to the analyticity of logical laws.
The most thorough post-Quinean investigation on the epistemological status

of logic has been carried out by Hintikka, although his work is usually excluded
by the most common reconstructions of the history of the notion of analyticity7.
The Finnish philosopher attacks the principle of analyticity of logic and proposes a
modern reconstruction of Kant’s analytic-synthetic distinction according to which
there exists a class of quantified and polyadic logical truths, which express a kind
of mathematical reasoning, that are synthetic and not tautological. Hintikka’s
philosophical premises consists of a peculiar interpretation of Kant’s conception of
analyticity and syntheticity, but his work not only gets back the Kantian heritage;
it also adds to the debate some modern means and direct them against the logical
empiricists. This Chapter is entirely devoted to analyze the different components
of Hintikka’s work and the way in which they interact.

4.1 Kantian premises of Hintikka’s work

The philosophical foundation of the thesis that a definite class of first-order logical
truths are synthetic must be searched in the peculiar interpretation that Hintikka
offers of Kant’s theory of the mathematical method. This sophisticated critical
work has been presented by Hintikka in a series of papers and books mainly written
during the Sixties and the first part of the Seventies, as well as in some later
responses and retrospective considerations in the Eighties8. The kernel of this
interpretational theory has been summarized in the usually clear style by Hintikka
himself as follows:

By intuition (Anschauung), Kant meant a representative (Vorstellung)
of a particular entity in the human mind. By construction, Kant meant
the introduction of such a particular to instantiate a general concept.
The gist of the mathematical method apud Kant was the use of such

7See, for example, Rey (2018), Ebbs (Forthcoming), Juhl and Loomis (2010) and the historical
background provided in the Introduction in Russell (2008). Reasons for this reticency may be
the strong use of formal tools and, above all, the choice to defend a minor position.

8Hintikka’s first study on Kant’s conception of the mathematical method has been published
in 1959 (“Kantin oppi matematiikasta: tutkimuksia sen perusksitteist, rakenteesta ja esikuvista,”
Ajatus 22: 5-85. “Kant’s Theory of Mathematics: Studies in its Basic Concepts, Structure, and
Precedents” ), while the last systematic work on this interpretational theory appears in 1984
(“Kant’s Transcendental Method and His Theory of Mathematics,” Topoi 3: 99-108). In the
discussion of the present Section, we will consider with particular attention, beyond extempo-
raneous references to other texts, the following contributions: Hintikka (1966), Hintikka (1967),
Hintikka (1969), Hintikka (1972), Hintikka (1973, IX), Hintikka (1974, VI), Hintikka (1982) and
Hintikka (1984).
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constructions (a modern logician would say ‘the use of rules of instanti-
ation’). A mathematical argument is synthetic if it involves the use of
‘auxiliary constructions,’ i.e., the introduction of new particulars over
and above those given in the conditions of the argument (sometimes
given in the premises and sometimes given in the premises or in the
purported conclusion). A mathematical truth is synthetic if it can be
established only by such synthetic arguments (Hintikka, 1982, p. 201).

The Hintikkian reading of Kant’s work is based, we think, on two main elements.
As it will be soon pointed out, both of the two premises have proved to be con-
troversial and have been widely criticized by several scholars for different reasons.
The first one concerns the nature of Kantian intuitions. Hintikka holds that Kant
defines intuitions as singular representations and that, in so doing, he maintains
that intuitions always represent (or even are) individual objects (Section 4.1.1).
The second point concerns Kant’s conception of syntheticity and the tradition
which his thought would refer to. Hintikka holds that Kant is “an heir to the
constructional sense of analysis”9 and that the notion of syntheticity is founded
on the necessary employment of constructions (Section 4.1.3). These two theses
are not only the basis of Hintikka’s interpretation of the Kantian material, but
they are also indispensable as philosophical premises for Hintikka’s modern theory
regarding the syntheticity of logic. The way in which these two readings are em-
ployed in the modern framework and the relation between the interpretative and
the logical works presented by Hintikka will be clarified only in the next Section
(Section 4.2).

4.1.1 Mathematical intuitions as singular representations

Hintikka’s well-known interpretation of Kant’s notion of mathematical intuitions
can be reconstructed, we think, as consisting in the following moments:

1. There are two stages in the development of Kant’s conception of mathe-
matical intuition. The former is reflected in the Prize Essay, in the first
paragraphs of his Lectures of Logic and, above all, in the Critique Introduc-
tion and its Doctrine of Method ; the latter is represented by the Critique
Transcendental Aesthetic. The former stage is logically prior to the latter.

2. In the former stage, mathematical intuitions are simply defined as represen-
tations of individuals.

3. In the latter stage, mathematical intuitions are connected to sensibility.

9Hintikka (1973, IX, p. 205).
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4. The former stage can be detached from the latter, which represents a mistake
on Kant’s side and must be criticized.

We now analyze the four steps of Hintikka’s reading one by one. The thesis ex-
pressed by the first point is what Hintikka regards as his “main suggestion” toward
an interpretation of the Kantian materials: the idea is that Kant’s theory of the
mathematical method described at the end of the first Critique, together with the
conception of intuition on which it is based, is “not posterior but rather system-
atically prior to the Transcendental Aesthetic”10. The reasons Hintikka invokes in
support of the “primacy thesis”11 are the following12. First, the dependence of the
latter step on the former is made explicit in the Prolegomena, that is the text in
which Kant wanted to clarify the structure of his theoretical philosophy: in this
work, the argument that corresponds to the Transcendental Aesthetic is articu-
lated through the explicit reference to the theory of the mathematical method as
exposed at the end of the Critique. Second, in the Aesthetic the definition of intu-
ition as individuality is taken for granted and used as a premise by Kant. Third,
the author of the Critique’s starting point is his precritical position expressed in
the 1764 Prize Essay that the mathematical method is based on the use of general
concept in the form of individual instances: therefore, Hintikka argues, the intro-
duction of intuition for explaining the mathematical method, which is proper to
the critical framework, could not be but related to the notion of individuality. Be-
yond the question regarding the persuasiveness of the textual evidence presented,
the primacy thesis is taken by Hintikka as the fundamental premise of his reading
of Kant’s theory: “Whether or not intuitions there means something more than a
particular idea, in any case this reading is the one which we have to start from in
trying to understand Kant’s view on mathematics”13.

The content of the Kantian definition of intuition that characterizes the first
and prior stage depicted above is expressed by the second point of our recon-
struction. In Hintikka’s words: “For Kant, an intuition is simply anything which
represents or stands for an individual object as distinguished from general con-
cept”14 and “Everything [. . . ] which in the human mind represents an individual
is an intuition”15. Hintikka acknowledges that the notion of intuition as individual-
ity gives rise to the paradoxical situation that “the ‘intuitions’ Kant contemplated
were not necessarily very intuitive”16, in so far as they do not display any connec-
tion to imagination or to direct perceptual evidence. But after all these features,

10Hintikka (1967, p. 355).
11This name is due to Russell (1990).
12These reasons are put forward in Hintikka (1967, pp. 356 and ff.).
13Hintikka (1967, p. 357).
14Hintikka (1974, VI, p. 130).
15Hintikka (1967, pp. 354-355).
16Hintikka (1974, VI, p. 130).
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according to Hintikka’s reading, are not required by Kant’s explanation of the
mathematical method nor of its syntheticity: on the contrary, the assumption
that intuition simply means individuality would facilitate the clarification of some
obscure passages of Kant’s philosophy of mathematics, such as the idea that al-
gebra itself is based on intuitions. As Hintikka makes clear, “because the gist of
the mathematical method according to Kant is to deal with particular objects, the
relevant objects of mathematical knowledge are for him particulars”17.

Nevertheless, Hintikka registers that later in the system Kant makes intuitions
intuitive again, by holding that all human intuitions are bound up with sensible
perception: this is precisely the second stage of the Hintikkian reading of Kant’s
development of intuitions as described by point three of our reconstruction. How
does Hintikka explain Kant’s need to create a connection between sensibility and
mathematical intuition? He argues that Kant needed to justify the reason why
mathematical results obtained through the employment of intuitions could be ap-
plied to all experience. But why sensibility? To understand this point, Hintikka
recalls Kant’s Copernican revolution and its transcendental assumption that rea-
son “must adopt as its guide [. . . ] that which has itself put into nature”18. From
this premise, it follows, according to Hintikka, that the “only satisfactory expla-
nation of the applicability of our mathematical arguments to all experience is to
assume that we have ourselves put into objects the properties and relations with
which these arguments deal”19. On the one hand, as we have seen, the relevant
objects of mathematics are particulars; on the other, a long tradition wants that
sense perception is the only way in which we can come to know individuals. The
outcome of this proof is Kant’s famous conclusion that the knowledge obtained
through mathematical means applies to objects only in so far as they are objects
of sensation.

We now turn to Hintikka’s evaluation of the two stages of Kant’s development
of intuition, which is the fourth and last point of our reconstruction. The Finnish
interpreter regards the latter stage as a mistake: Kant’s assumption that sense-
perception is the process by means of which we become aware of the existence of
individuals is considered by Hintikka as “deeply wrong” and pointed at as “Kant’s
basic fallacy in the first Critique”20. In assuming the connection between sen-
sibility and individuality, Kant would have surrendered himself to the classical
tradition, in particular to the Aristotelian conception put forward in the Analytica
Posteriora, at the expense of his own principles: the fallacy he has succumbed to
is profoundly un-transcendental, for it assumes that knowledge is a passive affair
and that we can “in general sit back and wait until particular objects show up

17Hintikka (1987, p. 29).
18CPR, B xiv.
19Hintikka (1974, VI, p. 131).
20Hintikka (1984, p. 102).
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in our passive sense-perception”21. To repair to Kant’s un-Kantian mistake, Hin-
tikka proposes the activity of seeking and finding instead of sense-perception for
the role of reaching information about individuals and develops a corresponding
game-theoretical approach. Hintikka is careful in showing that this difficulty does
not threaten the whole construction, because the conception of intuition as individ-
uality (first stage), which represents the core of Kant’s theory of the mathematical
method, can be detached from its later relation to sensibility (second stage). In
particular, Hintikka underlines that the “connection between sensibility and in-
tuition was for Kant something to be proved, not something to be assumed”22

and concludes that this link can only be assumed in those parts of Kant’s system
that are logically posterior to the Transcendental Aesthetic, where this proof is
exhibited.

Hintikka’s interpretation of Kant’s mathematical intuitions has been at the core
of an enduring debate, a famous chapter of which is represented by Charles Par-
sons’ criticism and the Finnish philosopher’s responses. Against Hintikka’s thesis
that the essential feature of intuition must be searched in its individuality, Parsons
maintains that intuitions are defined on the basis of the immediacy criterion. Both
of the two features invoked find textual confirmation in the Critique, where Kant,
defining intuitions in contrast to concepts, affirms “The former [i.e., intuition] is
immediately related to the object and is singular; the latter [i.e., concept] is medi-
ate, by means of a mark, which can be common to several things”23. On the one
side, Hintikka’s position about the relationship between the two criteria remains
essentially anchored to the notion of individuality, although it’s possible to under-
line a kind of development motivated by the received criticisms. Initially, Hintikka
does not distinguish the two features and holds that “another way of saying that
Anschauungen have an immediate relation to their objects is to say that they are
particular ideas”24; then, he maintains that immediacy is just a ‘corollary’25 of
the individuality criterion, because immediacy is the proper mode of reference of
singular objects. On the other side, Parsons argues that the reason for which Kant
added the feature of immediacy next to that of individuality in his definition of
intuition is that the former is significantly different from the latter. The scholar
goes on to describe immediacy in perceptual terms, as a phenomenological pres-
ence to the mind, and accuses Hintikka’s reading and its reduction of intuitions to
particulars of being responsible for not doing justice to the spatio-temporal content
of intuition and to the distinctive role it plays in mathematics.

Hintikka and Parsons’ positions have come to be known respectively as the

21Hintikka (1987, p. 29).
22Hintikka (1967, p. 355).
23CPR, A 320/B 377. See Section 1.1.4 of this work for the nature of intuitions apud Kant.
24Hintikka (1969, p. 42).
25Hintikka (1982, p. 202).
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‘logical’ and ‘phenomenological’ interpretations of Kant’s intuitions26. Different
scholars have sided with one or the other reading, presenting acute arguments
to strengthen the respective position: to mention the most important of them,
Michael Friedman has developed further the logical tradition and answered to
Parsons’ criticisms, while Emily Carson has sided with the phenomenological side.
However, we are not interested in the details of this famous debate, but rather in
one of the outcomes it offered, namely that the position originally proposed by
Hintikka turned out to be too radical and in need of assimilating some insights of
the competing phenomenological view. Friedman’s most recent works express the
belief that “this dichotomy is artificial” and that “a truly adequate interpretation
of Kant’s philosophy of mathematics [. . . ] must make room for elements from both
the ‘logical’ and ‘phenomenological’ approaches”27 and propose an attempt in the
direction of healing the two perspectives. His reconciliation is based on the idea
that geometrical intuition is fundamentally kinematical and, in so doing, connects
the geometrical space to the perspectival space: the former can be acquainted
through geometrical constructions, the latter is the form of sensibility.

Beyond the content of Friedman’s interpretation, the strongest reason for charg-
ing Hintikka of radicalism is, we argue, the way in which he treats the Kantian
text. Parsons is right, we think, in noting that “Many of the passages Hintikka
cites also mention the immediacy criterion, and it is not clear why Hintikka thinks
it nonessential”28. We consider a single, but telling example. As we have seen
above, in supporting the primacy thesis (first point of our reconstruction), Hin-
tikka maintains that (second textual evidence) in the Critique Transcendental Aes-
thetic Kant’s reasoning proceeds from the assumption that intuitions are individ-
ual representations. Nevertheless, Kant opens that Chapter of his work by a clear
reference to the immediacy criterion, which has been completely overlooked by
Hintikka: “In whatever way and through whatever means a cognition may relate
to objects, that through which it relates immediately to them, and that which
all thought as a means is directed as an end, is intuition”29. Although in a late
article Hintikka complains that the criticisms his interpretation received payed no
attention to the doctrinal context, but rather focused on his reading of particular
passages30, we hold that these textual criticisms cannot be dismissed as a kind of
pedantry because of the role that these passages play in a proper understanding
of the Kantian materials. We now move to analyze the second element of Hin-
tikka’s reading of Kant’s theory of the mathematical method on which the Finnish
philosopher founds his modern proposal about the syntheticity of logic.

26The debate has been organized along these lines by Friedman (2000).
27Friedman (2010, p. 586).
28Parsons (1969, p. 570).
29CPR, A 19/B 33.
30Hintikka (1982, pp. 202-203).
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4.1.2 From the mathematical method to the analytic-syn-
thetic distinction

The premise at the basis of Hintikka’s interpretation is that the model Kant em-
ploys in developing his theory of mathematics is provided by Euclid’s system of
elementary geometry and its eighteenth-century variants. This assumption is jus-
tified by the allusion to the readings and interests of the young Kant and to the
historical background characterized by the centrality of that paradigm31.

According to Proclus, the solution to a problem or a proof of a theorem in
Euclid’s Elements consisted of six main parts (although not all of them always
appeared). First, we find the enunciation or protasis of the general proposition,
which is followed by the application of its content to a particular figure that is
usually drawn. The fundamental proviso in the choice of the figure prescribed by
this step, which is called setting-out or ecthesis, is that its particular determina-
tions must be completely indifferent to the proof of the proposition or, in other
terms, we cannot assume anything about the particular figure introduced except
what is already given in the enunciation. The third passage is the definition or
specification (diorismos), in which the figure set out in the ecthesis is determined
more precisely. The fourth passage, which is closely related to the previous ones, is
the so-called preparation or machinery. It consists in completing the figure drawn
in the setting-out with certain additional points, lines and circles: these supple-
ments are going to be essential for the proof proper or apodeixis, in which the
construction of any other element is completely forbidden. In the last passage the
conclusion about the particular figure is extended to the general case.

Not only does Hintikka recognize that most of these steps turn up also in Kant’s
conception of the geometrical procedures. He also maintains that Kant’s overall
picture of the mathematical method is influenced by two specific moments of the
six parts in which an Euclidean proof was articulated: the ecthesis and the machin-
ery. Hintikka gleans textual evidence in support of his point from some passages
of the Doctrine of Method, where Kant draws a comparison between philosophical
and mathematical methods. The centrality of the setting-out is demonstrated by
Kant’s idea that mathematics cannot deal with general concepts, but needs to
reason in concreto and nonetheless reaches results that hold in general32. The rel-
evance of the machinery is shown by Kant’s claim that the mathematical method
proves to be better than philosophical procedures in certain tasks (such as deter-

31Hintikka (1967, pp. 360-361) and Hintikka (1982, pp. 203-204).
32Kant claims that mathematics “cannot do anything with the mere concepts but hurries

immediately to intuition, in which it considers the concept in concreto, although not empirically,
but rather solely as one which it has exhibited a priori, i.e., constructed, and in which that which
follows from the general conditions of the construction must also hold generally of the object of
the constructed concept” (CPR, A 715/B743 - A 716/B744).
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mining the relation between the sum of the angles of a triangle and right angle)
thanks to the fact that geometers, unlike philosophers, can draw actual figures and
carry out proofs in terms of such figures33.

What is exhibited by the two moments of setting-out and machinery that occur
in an Euclidean proof are constructions in the usual sense of the term: the sig-
nificance these two steps assume in Kant’s perspective on geometrical procedures
determines, according to Hintikka, that the essence of the geometrical method in
Kant’s theory is exactly the use of constructions. But that’s not all: constructions
are the characteristic feature not only of geometry, but also of mathematics as a
whole. Using words from the Prolegomena: “The essential feature of pure mathe-
matical cognition, differentiating it from all other a priori cognition, is that it must
throughout proceed not from concepts, but always and only through the construc-
tion of concepts”34. On which basis does Kant apply the Euclidean paradigm of
geometrical constructions also to arithmetic and algebra? The missing ingredient
is, according to Hintikka, Descartes’ new geometry: “Descartes sees the essence
of his mathematical method in a systematic and comprehensive analogy between
geometrical constructions and algebraic operations. It was precisely by means of
this analogy that Kant was able to think of the concepts he had first formulated by
reference to geometrical constructions as being applicable to all mathematics”35.
In support of this interpretation, Hintikka shows that Kant, in his analysis of sim-
ple arithmetical equations such as 7+5=12, employs the Euclidean model based
on constructions.

Hintikka’s interpretation of Kant’s theory of the mathematical method does
not restrict itself to the thesis that the essential feature of Kant’s mathematical
method is the use of geometrical constructions. It goes on to claim that the theory
described in these terms plays a foundational role in the Kantian distinction be-
tween analytic and synthetic judgments. We think that it is precisely in this second
step, that is, in this leap from the mathematical method to the analytic-synthetic
distinction, that Hintikka’s interpretation of the Kantian framework shows hesita-
tions and weaknesses36. In order to reach his conclusion on the connection between

33Kant’s description goes as follows: “he [i.e., the geometer] begins at once to construct a
triangle [. . . ] he extends one side of his triangle, and obtains two adjacent angles that together
are equal to two right ones. Now he divides the external one of these angles by drawing a line
parallel to the opposite side of the triangle, and sees that here there arises an external adjacent
angle which is equal to an internal one, etc. in such a way, through a chain of inferences that
is always guided by intuition, he arrives at a fully illuminating and at the same time general
solution of the question” (CPR, A 716/B 745 - A 717/B 745).

34Prol., p. 20.
35Hintikka (1982, p. 206).
36This point has been recognized and deeply analyzed by de Jong (1997), who reaches this

conclusion following a different line of reasoning: “The point of my argument concerns the way
in which Hintikka self-evidently connects these theses regarding, in particular, the method of
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the method of proof of mathematics and the Kantian sense of the terms ‘analytic’
and ‘synthetic’, Hintikka’s reasoning needs two interpretational premises:

P1. The use of constructions makes a method synthetic.
P2. The use of synthetic (analytic) methods in their proof makes judg-
ments synthetic (resp. analytic).

The need of these two assumptions is evident. The former guarantees that, ac-
cording to Kant, there is a linkage between the methods that use constructions,
such as the mathematical one, and the notions of analyticity and syntheticity. The
latter provides a solid bridge that connects (the analyticity and syntheticity of)
methods to (the analyticity and syntheticity of) judgments. But are these two in-
terpretational premises faithful readings of Kant’s texts or necessary consequences
of Kant’s theory?

We first consider premise P2. Hintikka’s assumption of this premise, which has
already been emphasized by some scholars37, amounts to suppose that the Kantian
distinction between analytic and synthetic judgments is founded on the distinction
between analytic and synthetic methods. In other words, the idea is that according
to Kant the difference between the two kinds of judgment must be explained in
terms of the methods according to which these two sorts of propositions would be
proved: synthetic (analytic) judgments are those which can be shown to be true
by synthetic (resp., analytic) methods. Hintikka is neither explicit in assuming P2,
nor careful in justifying his ascription of it to Kant: nonetheless, P2 is a widespread
and essential element in Hintikka’s interpretation of the Kantian analytic-synthetic
distinction. In several context, Hintikka does not even appeal directly to the notion
of method or proof, but rather speaks of analytic and synthetic ‘argument steps’38.

This assumption highlights, we think, an important difficulty: Hintikka’s work
is in the first place an interpretation of Kant’s theory of mathematics, but, at
the same time, it presumes to explain the analytic-synthetic distinction not only
for mathematical judgments. Now, P2 is, as de Jong rightly emphasizes, “fairly
plausible” in the domain of mathematics; however, “in the light of Kant’s entire
philosophical edifice a serious difficulty immediately presents itself: namely, mu-
tatis mutandis a number of things seem to fit in much less well for metaphysics or
philosophy”39. Moreover, although it seems to be compatible especially with some
Kantian passages about mathematical judgments40, no overwhelming textual evi-

proof of mathematics with Kant’s use of the paired terms ‘analytic’ - ‘synthetic’ and ‘analysis’ -
synthesis’, or, as the case may be, interprets this method of proof with the help of these terms”.

37See, for example, de Jong (1997, p. 145) and Brittan (2015, p. 55).
38See, for example, the different senses of analyticity that are listed in Hintikka (1973, VI, p.

148).
39De Jong (1997, p. 146).
40See, for example, CPR, B 15-16.
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dence seems to confirm the ascription of P2 to the author of the Critique41. This
means that the second premise of Hintikka’s argument is neither completely jus-
tified by Kant’s assertions, nor free from difficulties. We now turn to examine the
most complex question regarding premise P1.

4.1.3 Kant as “an heir to the constructional sense of anal-
ysis”

P1 is the result of a generalization. Hintikka assumes that the use of geometrical
constructions makes the mathematical method synthetic and extends this insight
by holding that the use of constructions makes a method synthetic. As we have
seen above, he needs this extension because he wants his reconstruction of the
analytic-synthetic distinction to apply not only to mathematical judgments, but
also to other kinds of judgments. This generalization is based on the insight
that geometrical constructions are analogous to another wider and abstract notion
of construction that Kant employs throughout his work42. This second ‘abstract’
concept of construction is based on the notion of intuition and is defined as follows:
“to construct a concept means to exhibit a priori the intuition corresponding to
it”43. Through constructions, it is possible to move from a general concept to a

41See, for example, the pertinent passages in the Transcendental Doctrine of Method of the
Critique (CPR, A 734-735/ B 762-763) and de Jong’s considerations on this point (de Jong,
1997, pp. 161-162).

42Although the analogy between abstract and geometrical constructions seems to be rather
clear, a legitimate question is, we maintain, the following: which of the two notions of construction
has a conceptual or logical priority over the other one? On the one hand, Hintikka suggests that
Kant, in formulating his general and abstract notion of construction, has primarily in mind the
constructions of geometers (Hintikka, 1967, p. 353) and claims that “Kant’s wider notion of a
construction is thus nothing but a generalization from the constructions which make geometrical
arguments synthetic” (Hintikka, 1973, IX, p. 207). On the other hand, Hintikka argues that it
is the reference to intuition occurring in the abstract notion of construction that allows Kant
to justify the use and the possibility itself of geometrical constructions in the Transcendental
Aesthetic or, in Hintikka’s (1967, p. 353) words, “Kant’s appeal to intuition is designed to
furnish a better foundation to the geometrical constructions”. At a certain point, Hintikka (1967,
p. 362) seems even to hint that the two notions are independent or, at least, not connected by
a logical link of priority, when he says that “setting-out and preparation were the two parts of a
Euclidean proposition where constructions in the usual sense of the word were made; and [. . . ]
these two parts were also the ones in which constructions in Kant’s abstract sense of the word
were needed”. So, Hintikka’s explanations of the conceptual priority regulating the two notions
of construction is not univocal: the abstract conception is, at the same time, a generalization
and a foundation of geometrical constructions, as well as an unrelated idea. Nevertheless, we
think that the only possible relation between the two notions is that geometrical constructions
are a kind of abstract constructions: this is not only a consequence of the definitions of the two
concepts, but also a clarification needed for the sake of Hintikka’s argument itself.

43CPR, A713/B 741.
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non-empirical intuition that represents that concept. The analogy between the
two notions of construction is quite evident: geometrical constructions introduce
in the argument geometrical figures, which are singular and individual objects,
in order to represent the general concept of a certain kind of figure; similarly,
constructions in general introduce in the argument intuitions, which, according
to the Hintikkian reading of Kant that we have emphasized in Section 4.1.1, are
individuals, in order to represent general concepts. The analogy notwithstanding,
the generalization from the mathematical domain to an unrestricted field seems
to be in need of further justifications, which are nevertheless not provided by
Hintikka. In what follows we are not going to distinguish between P1 and its
restriction anymore.

The analogy between the two kinds of construction, together with Kant’s claim
that intuition dependence is the main feature of synthetic judgments44, could lead
to think that P1 is not a further premise of Hintikka’s reconstruction, but rather a
consequence of his reading of Kant’s mathematical method. To be more specific,
from the premises that abstract constructions, in so far as they are analogous
to the geometrical ones, are at the basis of the mathematical method and are
at the same time what makes a judgment synthetic, one could infer that the
mathematical method itself is synthetic. But this deduction is not correct, because,
again, nothing justifies the leap between methods and judgments: we know that
constructions make judgments, not methods, synthetic. One could reply that
the needed bridge is provided by P2. But this is not the case. P2 not only
establishes a connection between methods and judgments, but it also suggests
the direction of this linkage: from methods to judgments. Here, nevertheless,
the notion of syntheticity should be transferred from judgments to methods and
thus the direction sought would be the opposite one. However, that P1 is not
a deductive consequence of Kant’s theory of the mathematical method is not a
sufficient reason to reject it. Hintikka could assume P1 in his interpretation on the
basis of strong textual evidence found in the Kantian materials. This is exactly
what Hintikka does, this time explicitly, in at least two occasions. But both of
them deserve a close examination, because the Kantian texts he appeals to do not
admit a univocal interpretation.

The first occasion is given by his article entitled Kant and the Tradition of
Analysis, in which Hintikka maintains that Kant is “an heir to the constructional

44See the analysis drawn in Chapter 1, especially as far as the link between syntheticity and
intuitions is concerned (Section 1.1.4), as well as Kant’s explanation of this point: “If one is to
judge synthetically about a concept, then one must go beyond this concept, and indeed go to
the intuition in which it is given. For if one were to remain with that which is contained in
the concept, then the judgment would be merely analytic, an explanation of what is actually
contained in the thought” (CPR, A 721/B 749).
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sense of analysis”45 and opposes the constructional sense of analysis to the direc-
tional one. Both conceptions originate from the same text, Pappus’ Mathematical
Collection46, which, although composed around 300 A.D., is the most complete and
reliable exposition of the meaning assigned to these words by the ancient Greeks.
One of the main interpretative difficulties that this text poses regards the direction
of analysis as compared with the direction of relations of logical consequence: but
in his work with Unto Remes, Hintikka claims that, appearances notwithstanding,
Pappus’ reconstruction is after all consistent. Analysis is understood in the re-
gressive sense as the route in the direction of the principles or axioms: it assumes
the desired end (“what is sought”) and argues backwards, following the opposite
direction drawn by relations of logical or causal consequence. Synthesis follows a
progressive path along the same steps as analysis but in the other way around, that
is, from principles towards what is grounded on them: synthesis follows logical or
causal relation in the usual order.

However, Hintikka regards the directional sense of analysis and synthesis as “a
pale reflection of the richness of the ideas involved in the original Greek concepts”
and claims that it “has nothing to do with the heuristic method of analysis”. Ac-
cording to Hintikka, the preoccupation with the direction of analysis has caused
the serious side effect that subtler ingredients of the Greek method of analysis and
synthesis have been overlooked for centuries, at least until the end of the Middle
Ages47. The most prominent element among those that have been obscured by di-
rectional problems is, of course, the role of constructions and the importance of the
‘machinery’ needed to carry out the demonstration. Following the constructional
tradition then, “a method or a procedure is analytic if in it we do not introduce
any new geometrical entities, in brief, if we do not carry out any constructions. A
procedure is synthetic if such constructions are made use of, i.e., if new geometrical
entities are introduced into the argument”48. The constructional interpretation of
the terms ‘analysis’ and ‘synthesis’ is suggested, according to Hintikka, not only

45Hintikka (1973, IX, p. 205).
46The excerpt considered is the following: “Now analysis is a method of taking that which

is sought as though it were admitted and passing from it through its consequences in order to
something which is admitted as a result of synthesis; for in analysis we suppose that which is
sought to be already done, and we inquire what it is from which this comes about, and again
what is the antecedent cause of the latter, and so on until, by retracing our steps, we light upon
something already known or ranking as a first principle; and such a method we call analysis, as
been a solution backwards.
But in synthesis, proceeding in the opposite way, we suppose to be already done that which
was last reached in the analysis, and arranging in their natural order as consequents what were
formerly antecedents and linking them one with another, we finally arrive at the construction of
what was sought; and this we call synthesis” (Hintikka, 1973, IX, pp. 199-200).

47Hintikka and Remes (1974, Chapter II).
48Hintikka (1973, IX, p. 203).
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by the general definition of analysis provided by Pappus, in which it is explicitly
stated that ‘what is sought’ must be assumed as admitted, but also by the de-
scription he gives of the so-called ‘theoretical analysis’ (i.e., the analysis applied
to theorems)49, where it is restated that the desired conclusion must be assumed
as true and existent. Hintikka explains that in these formulations the assump-
tion of the sought end could amount to the admission that the sufficient auxiliary
constructions have already been made.

Three are the Kantian loci that Hintikka invokes in support of his thesis that
Kant is “an heir to the constructional sense of analysis”, that is to say, in support
of the ascription of P1 to Kant. In the former two, Hintikka actually shows that
the directional sense is rejected by Kant; in the latter, he positively proves that
Kant is inspired by the constructional tradition. The first text is taken from a
footnote of the Prolegomena50. Here Kant is pointing out at the risks that arise
when traditional terms are employed for describing new concepts: he distinguishes
between the meanings that the words ‘analytic’ and ‘synthetic’ assume if applied
to judgments rather than methods and proposes, in order to avoid confusions, to
refer to the latter with the adjectives ‘regressive’ and ‘progressive’. From the fact
that the two methods are described through directional terms, Hintikka concludes
that, in applying the analytic-synthetic distinction to judgments, Kant is referring
to the constructional tradition of the terms. Now, Hintikka’s conclusion seems
to be liable, we think, of two charges that aim to opposite directions. First, it
illegitimately assumes, beyond P2, the premise that there are only two traditions
of analyticity to which Kant could appeal. Second, as de Jong51 underlines, it does
not take Kant at his words when he says that his distinction between analytic and
synthetic judgments founds a new meaning of the terms. No matter which way is
chosen, Hintikka’s reading of this excerpt is far from being persuasive.

The second passage is taken from a footnote at the beginning of the Inaugural
Dissertation52, where Kant is dealing with a double meaning of the words ‘anal-

49Pappus’ description goes as follows: “In the theoretical kind, we suppose what is sought
to exist and to be true, and then we pass through its consequences in order, as though they
were also true and established by our hypothesis, to something which is admitted” (Hintikka,
1973, IX, p. 200). Theoretical analysis is contrasted with problematical analysis, i.e. analysis as
applied to problems. The difference between the two is not relevant in this context, for Hintikka
maintains that the constructional sense applies to theoretical as well as problematical analysis
and the distinction between the two thus vanishes.

50“The analytic method, insofar as it is opposed to the synthetic, is something completely
different from a collection of analytic propositions; it signifies only that one proceeds from that
which is sought as if it were given, and ascends to the conditions under which alone it is possible.
In this method one often uses nothing but synthetic propositions, as mathematical analysis ex-
emplifies, and it might better be called the regressive method to distinguish it from the synthetic
or progressive method” (Prol., p. 28).

51De Jong (1997, p. 159).
52“A double meaning is commonly assigned to the words ‘analysis’ and ‘synthesis’. Thus
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ysis’ and ‘synthesis’: the qualitative and quantitative senses. The structure of
Hintikka’s interpretation is similar to the reading of the previous passage. Since
qualitative synthesis and analysis are described along the lines of the directional
sense and their use is plainly rejected by Kant, Hintikka thinks it to be ‘obvious’
that the meaning chosen by the author of the Dissertation for the terms ‘analysis’
and ‘synthesis’ cannot be but the constructional one. Again, de Jong is right in
emphasizing that not only the qualitative, but also the quantitative sense of anal-
ysis and synthesis mirrors the directional meaning of the terms. This conclusion
is suggested by the use of the notions of ‘progression’ and ‘regression’ in talking
of the qualitative acceptation and by the context in which no proof or method is
mentioned. For the second time, we must admit that Hintikka’s interpretation is
not satisfying.

Last, the only positive evidence in support of the ascription of the construc-
tional sense of analysis and synthesis to Kant comes from the interpretation of
a particularly debated passage of the Critique53 (CPR, B14) where he maintains
that “the inferences of the mathematicians all proceed in accordance with the prin-
ciple of contradiction”. But this claim raises some problems, since the principle of
contradiction is, as we have seen in Chapter 1 of this thesis, the supreme principle
of analytical judgments. Hintikka holds that the affirmation in question can be
clarified along the constructional interpretation, if we understand it as referring
only to a single part in the proof of a proposition, namely, the apodeixis : the
proof proper is in fact analytic, because the synthetical element of a geometrical
proposition rests only with the auxiliary constructions.

Hintikka’s reading seems to be consistent, but nevertheless it is not overwhelm-
ing: several are the alternative, competing and persuasive readings proposed for
this sentence. For example, according to the ‘evidentialist’ interpretation of this
passage54, Kant is appealing here to the syntheticity of the axioms of mathematics

synthesis is either qualitative, in which case it is a progression through a series of things which are
subordinate to each other, the progression advancing from the ground to that which is grounded,
or the synthesis is quantitative, in which case it is a progression within a series of things which
are co-ordinate with each other, the progression advancing from a given part, through parts
complementary to it, to the whole [. . . ] Here we use both ‘synthesis’ and ‘analysis’ only in their
second sense” (Diss.).

53“Mathematical judgments are all synthetic. This proposition seems to have escaped the
notice of the analysts of human reason until now, indeed to be diametrically opposed to all of
conjectures, although it is incontrovertibly certain and is very important in the sequel. For since
one found that the inferences of the mathematicians all proceed in accordance with the principle
of contradiction (which is required by the nature of any apodictic certainty), one was persuaded
that the principles could also be cognized from the principle of contradiction, in which, however,
they erred; for a synthetic proposition can of course be comprehended in accordance with the
principle of contradiction, but only insofar as another synthetic proposition is presupposed from
which it can be deduced, never in itself” (CPR, B14).

54With the adjective ‘evidentialist’, Brittan (2006) refers to those classical and widespread
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as a clarification for the syntheticity of all mathematical theorems: this would
explain Kant’s claim that “a synthetic proposition can of course be comprehended
in accordance with the principle of contradiction, but only insofar as another syn-
thetic proposition is presupposed from which it can be deduced, never in itself”.
Another interesting perspective is that in this passage Kant is underlining, against
the Leibnizians, that the principle of non-contradiction can be used only as a neg-
ative criterion of truth. A virtue of this position is that B14 is read in the same
interpretative framework that is provided by Kant’s discussion of the principle
of non-contradiction in the paragraph of the Critique entitled The System of the
Principle of Pure Understanding55.

The second occasion in which Hintikka appeals to textual evidence in support
of P1 can be found in his article An Analysis of Analyticity. Here Hintikka main-
tains that the following definition “approximates rather closely Kant’s notion of
analyticity”: “An argument step is analytic if and only if it does not introduce
any new individuals into the discussion”56. He then contrasts this definition with
other conceptions of analyticity and syntheticity. The most widespread meaning
of the terms is the notion of analyticity as conceptual truth: although it has been
specified in numerous and different directions, Hintikka holds that its basic idea
is that “a sentence is analytically true if and only if its truth can be established
by the sole means of conceptual analysis, without recourse to experience”57. The
Finnish philosopher argues that, although there is a certain similarity between
Kant’s notion of analyticity and analyticity as conceptual truth, “this similarity is
largely an illusion”58. He supports his thesis by invoking another debated passage
of the Critique59 (CPR, B17), where Kant seems to claim that the truth of mathe-
matical judgments depends on a relationship between concepts (“necessity already

readings of Kant’s theory of the mathematical method according to which “intuitions provide
indispensable evidence for the truth of mathematics”. These positions are contrasted by the
‘objectivist’ interpretations, according to which intuitions provide semantic vehicles of singular
reference and objective reality.

55CPR, A 148/B 187 and ff. Recall also the interpretation of these passages given in Section
1.1.1. of this thesis. See on this point also de Jong (1997, pp. 164-165).

56Hintikka (1973, VI, pp. 136-137). The claim that Kant’s notion of analyticity is the one
expressed above clearly amounts to assume again premise P1.

57Hintikka (1973, VI, p. 126).
58Hintikka (1973, VI, p. 129).
59“What usually makes us believe here that the predicate of such apodictic judgments already

lies in our concept, and that the judgment is therefore analytic, is merely the ambiguity of the
expression. We should, namely, add a certain predicate to a given concept in thought, and this
necessity already attaches to the concepts. But the question is not what we should think in
addition to the given concept, but what we actually think in it, though only obscurely, and
there it is manifest that the predicate certainly adheres to those concepts necessarily, though
not as thought in the concept itself, but by means of an intuition that must be added to the
concept” (CPR, B 17).
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attaches to the concepts”) and that nonetheless they are said to be synthetic. In
other words, Hintikka thinks, there are conceptual truths that are not analytic and
this is a sufficient reason for Hintikka to conclude that Kant’s notion of analyticity
cannot be understood in terms of conceptual truth.

Now, Hintikka’s conclusion is neither justified nor convincing. First of all, the
obscurity of B17 does not make completely clear that the synthetic truths Kant is
speaking of are conceptual truths, because, at the end of the same paragraph, the
author of the Critique specifies that “it is manifest that the predicate certainly
adheres to those concepts necessarily, though not as thought in the concepts itself,
but by means of an intuition that must be added to the concept”. This specification
added to the description of conceptual truths raise some doubts about the nature of
the result. Nevertheless, even if we concede that in this excerpt he is really claiming
that at least some conceptual truths are synthetic truths, we must emphasize that
Kant is by no means holding that there are analytic propositions that are not
conceptual truths. This observation is crucial: B17 does not support Hintikka’s
thesis. What may perhaps go against the interpretation of Kant’s analyticity
in terms of conceptual truth can only be premise P2, that is to say, Hintikka’s
interpretation is internally coherent. Nonetheless, we have shown in Chapter 1
of this thesis that Kant’s theory of analytic and synthetic judgments receives its
justification exactly from its appeal to the theory of logical division of concepts: the
containment criterion, which is the essential notion that founds Kant’s analyticity,
loses its apparent obscurity only in this framework, in which analytic truths are
defined in terms of conceptual truths.

To sum up, we have proved that all the Kantian passages that Hintikka invokes
to support premise P1, that is, his thesis that Kant’s conception of analyticity is
inscribed in the constructional tradition, are not persuasive. Neither the direc-
tional sense of analysis nor the notion of analyticity as conceptual truth can be
said to have been ruled out by Hintikka’s evidence. On the other hand, premise
P2, which is strictly interwoven with the former assumption, cannot be said to
have been vindicated by textual evidence or arguments. We have to conclude
that the connection Hintikka wanted to establish between Kant’s theory of the
mathematical procedures and his distinction between analytic and synthetic judg-
ments is not free of difficulties and to underline that also the second premise of
Hintikka’s reading of Kant, as well as the first one on the nature of intuitions, is
not grounded on solid bases. Nevertheless, Hintikka’s reading of Kant’s theory of
the mathematical method remains convincing and his attempt to inscribe Kant
in the constructional tradition of analysis and synthesis, though not persuasive,
impressive.



CHAPTER 4. HINTIKKA 150

4.2 Hintikka’s main thesis: synthetical logical

truths

We now focus on Hintikka’s main thesis that there exists a class of quantified and
polyadic logical truths, which are synthetic and express a kind of mathematical
reasoning. This thesis can be considered from two different perspectives. First, it
can be regarded as a modern theory that Hintikka defends on independent logical
grounds. Second, following the repeated indications of the Finnish philosopher, it
can be considered as a modern reconstruction of Kant’s philosophy of mathematics.
In the present Section, we take into account both of these points of view: first,
we are going to analyze the conceptual kernel of Hintikka’s main thesis, which is
simply the result of a peculiar definition of the analytic-synthetic distinction; then,
we are going to show the actual influence of Kant’s conception of syntheticity and
Hintikka’s interpretation of it over this theory. We conclude by pointing out at
some difficulties.

4.2.1 Hintikka’s analytic-synthetic distinction

Hintikka’s thesis that some logical truths are synthetic is but a consequence of
the way in which the analytic-synthetic distinction has been defined. For this
reason we are going to concentrate on the different ways in which Hintikka gives
this definition and in which this notion can be explained and understood. The
first formulation of Hintikka’s analytic-synthetic distinction that we are going to
examine is the following, which we are going to call D1:

Synthetic steps are those in which new individuals are introduced into
the argument; analytic ones are those in which we merely discuss the
individuals which we have already introduced (Hintikka, 1973, IX, p.
210)60.

In choosing this sense of the terms, Hintikka wants to avoid the difficulties that
would arise when concepts are involved. Instead of talking about analysis of con-
cepts, this proposal deals with the analysis of individuals and “the new sense can
be understood better than the old one to the extent the notion of an individual
object can be understood better than that of a general concept”61.

At several points of his work62, Hintikka adds to this characterization a further

60This is the third sense of analyticity discussed in Hintikka (1973, VI, p. 136): “An argument
step is analytic if and only if it does not introduce any new individuals into the discussion”.

61Hintikka (1973, VI, pp. 136-137).
62For example, Hintikka (1965a, p. 199): “Natural deduction methods are interesting from

our point of view because the synthetic element in them may be reduced to a single rule”. See
also Hintikka (1973, IX, p. 210).
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explanation by suggesting that the paradigmatic synthetic method in first-order
logic is the natural deduction rule of existential instantiation63. By this rule, a
free individual symbol is introduced to replace the occurrences of a certain bound
variable: this rule allows to infer from an existentially quantified sentence (∃x)p
a sentence instantiating it, e.g. p(a/x), where a is a free individual symbol and
p(a/x) the result of replacing x by a in p. The fact that this rule introduces
new representatives of individuals in the proof is due to the requirement that
the instantiating symbol a must be different from all the free individual symbols
occurring earlier in the proof64. Hintikka remarks that “the problem about the use
of such instantiation methods is that in them we introduce a representative of a
particular entity a priori, without there being any such entity present or otherwise
given to us”65.

The appeal to the natural deduction rule of existential instantiation does not
exhaust Hintikka’s investigation of the way in which individuals are introduced
into logical arguments. In his article An Analysis of Analyticity, he maintains that
“if individuals are introduced into one’s logical arguments by free singular terms,
they are likewise introduced by quantifiers, too”66. Hintikka explains his claim by
suggesting that “the existential quantifier (∃x) should be read somewhat as follows:
‘there is at least one individual (call it x) such that’ and the universal quantifier
(∀x) should be read: ‘each individual (call it x) is such that’. This observation
should support the conclusion that “although the bound variable ‘x’ does not stand
for any particular individual, each quantifier invites us to consider one individual
in addition to the other ones which may have been introduced earlier” however
indefinite this individual may be. Two are the consequences that can be drawn
from the unspecified character of the individuals to which quantifiers refer. First,
a reasonable question about a certain argument step that involves quantifiers is
not if it introduces new individuals into the argument, but rather if it increases the
number of individuals we have considered so far in their relations to each other.
Second, quantifiers, whose scopes do not overlap, do not add to the number of
individuals that have to be considered in their relation to one another.

The recognition that the quantifiers refer to the individuals, together with the
two remarks above, leads Hintikka to define the maximal number of individuals
that are considered together in a quantificational sentence F , which is called the
degree of F , as the sum of two numbers: 1. the number of the free singular terms
of F ; 2. the depth of F , that is the maximum of the lengths of nested sequences
of quantifiers in F . The notion of depth of a formula is fundamental for the next
Chapters of the present work and we will discuss it further. By now, it is sufficient

63Beth talked about the rule of universal generalization, but the two are of course closely allied.
64Later on we consider further specifications on this requirement.
65Hintikka (1984, p. 101).
66Hintikka (1973, VI, p. 140).
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to notice that the depth of a sentence is just the number of bound individual
symbols that are needed to understand that sentence, provided that quantifiers
with overlapping scopes always have different variables bound to them. Another
explanation of the notion of depth comes from underlining its difference with the
number of individuals the existence of which is asserted in a sentence. As Hintikka
shows67, in the sentence ‘all men admire Buddha’, ∀x(Mx → Axb), the number
of the individuals considered in their relation to each other is two (Buddha, b,
and each man at a time, just take an arbitrary individual, say a, to instantiate
the variable x), while reference is somehow made to all individuals of the domain
(∀x).

The notions of depth and degree of a sentence, which have been formulated to
clarify the issue of the introduction of individuals into arguments, allow a further
specification of D1, that is, the sense of the analytic-synthetic distinction that
Hintikka has chosen as a basis for his thesis. The definition that results is the
following one, which we are going to call D2:

A proof of F2 from F1 is analytic if and only if the degree of each of the
intermediate stages is smaller than, or equal to, the degree of either F1

or F2 (Hintikka, VI, 1973, p. 144).

This is just a reformulation of the definition D1, because in asking that the degree
of each intermediate step is not bigger than those of the premises68, it requires
not to add any new individual into the argument. Nevertheless, it both highlights
some problems of the explanation based on the rule of existential instantiation
and makes another important aspect of Hintikka’s notion of analyticity come to
light: the idea of analysis as ‘analysis of configurations’. Let’s examine the two
consequences.

If it is true that quantifiers invite us to consider exactly one individual, no
matter how indefinite it may be, then, from this perspective, it is not always
the case that an application of the rule of existential instantiation, that Hintikka
indicates as the paradigm of the synthetic method, introduces new individuals
into our reasoning. For in the sentence (∃x)Px, the quantifier does somehow
already invite you to consider an object that has the property P and all the rule
does is but to give it a name, usually expressed by a parameter, and to allow to
reason in ‘propositional terms’, once the quantifier has been removed. But the

67Hintikka (1965a, p. 187).
68The reason why it is required that the degree of the intermediate stages of a proof is not

bigger also than the degree of the conclusion and so the reason why the direction of the proof is
not taken into account is a simple and technical matter. The point is that by contraposing all
the steps of a proof of F2 from F1 we obtain a proof of ¬F1 from ¬F2 and, without the condition
involving the conclusion, we could reach the undesirable situation in which one of the two proofs
is analytic and the other synthetic.
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information that a certain individual has the property P is, in a certain sense,
already contained in the premise to which the rule applies and, as a consequence,
it is not necessary for the rule to increase the number of individuals considered.
In other words, the definition D2 reveals that the explanation based on the rule
of existential instantiation is more complex than what it seemed and in need of
further specification69.

Nonetheless, D1 indicates in the idea of configurations a replacing intuitive
guide in understanding Hintikka’s use of the analytic-synthetic distinction and its
key notion of introduction of individuals. This concept is presented by Hintikka
in his article with Unto Remes Ancient Geometrical Analysis and Modern Logic70,
where, talking about the ancient method of analysis as described by Pappus, it is
said that the proofs obtained by the analytical method “can be thought of as deal-
ing with one specific kind of constellation of individuals (member of our universe
of discourse) [. . . ] [and] conceived of as a study of the interdependencies within
this configuration of individuals” and that “this thesis may be dubbed analysis as
analysis of configurations”71. Here analysis is seen as the study of the configura-
tions of individuals given by the free singular terms and the quantifiers occurring in
the premises and the conclusion of a certain argument. However, it could happen
that these configurations do not suffice, in the sense that during the deduction it
is necessary to resort to argument steps, in which the configurations of individuals
are more complex than those that describe the problem. These argument steps
makes the proof synthetic, for, following the definition D2, their degree is bigger
than the degrees of the premises and the conclusion of the deduction.

An example72 will clarify the role of configurations in understanding the dif-
ference between analytic and synthetic methods. Consider the argument from the
premises P1, P2 and P3 to the conclusion C:

P1 : ∀x∀y(Rxy → ∃z(Gxz ∧Gzy))
P2 : ∀x∀y(Gxy → ∃z(Bxz ∧Bzy))
P3 : ∀x∀y((Bxy ∧ Cx)→ Cy)
C : ∀x∀y((Rxy ∧ Cx)→ Cy).

The first premise says that every time two points are connected by a red arrow
(the relation R) from the left to the right, then we have to interpolate another

69We are going to specify the cases in which the rule of existential instantiation adds a genuinely
new individual through formal tools in the next Chapter of this work.

70Hintikka and Remes (1976). In this interesting article, the authors put forward the thesis
that the old method of analysis is almost a special case of the modern techniques in symbolic
logic called natural deduction methods.

71Hintikka and Remes (1976, p. 266). The authors holds that it is the configurative nature of
analytical arguments rather than their direction that is heuristically essential.

72This example is a simplification of the case presented in Hazen (1999, p. 86 and ff.), which
in turn is a miniaturized version of the example from Boolos (1984).
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Figure 4.1: Configurations of the premises and conclusion of the example.

point, with green arrows (the relation G) from the first original point to the new
one and from the new one to second original point. In order to understand P1,
it is convenient to draw a configuration of three individuals that are in relation
to each other, where, for example, a is an arbitrary individual instantiating the
variable x, b instantiates y and c instantiates z, while the red arrow represents the
relation R and the green arrows the relations G. The result may be thus the one in
Figure 1(a). The second premise is similar to the first one, but now the relations,
and so the colors of the arrows, are different: P2 can be understood thanks to
the diagram in Figure 1(b), that represents a configuration of three individuals.
The third premise says that the colored marker ink spreads along blue arrows,
that is to say, whenever two points are connected by a blue arrow from the left
to the right and the leftward point is colored (or has the property C), then also
the rightward point is colored. This premise can be depicted by a configuration
of three individuals as in Figure 1(c). From the premises P1, P2 and P3 it follows
the conclusion C, which says that the colored marker ink spreads along red arrows
too, that is to say, whenever two points are linked by a red arrow from the left to
the right and the leftward point is colored, then also the rightward point is colored.
The conclusion can be represented by the configuration of two individuals in Figure
1(d), that is similar to that of P3 except for the color of the arrow.

Which is the reasoning that leads us from the premises to the conclusion? How
can we represent it? We could start from the configuration described by the first
premise and drawn in Figure 1(a). Then, we could use premise P2 and reason
as follows. Since a and c are connected by a green arrow, then there is another
individual d, which is linked to a and c by blue arrows; similarly, since also c and
b are connected by a green arrow, then there is a fifth point e, which is linked
to c and b by blue arrows. The visual counterpart of this reasoning is given in
Figure 2(a). Then, given the premise P3, if a is colored, then also d is colored
(because they are connected by a blue arrow); for the same reason and given that
d is colored, then also c is colored; again, since c is colored then also e is colored;
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(b) Intermediate step 2.

Figure 4.2: Configurations of the intermediate steps of the example.

last, we get that b is also colored. In this way and since we didn’t assume anything
about the instantiating individuals, we reach the general conclusion that that the
colored marker ink spreads along red arrows too. This last step can be depicted
as in Figure 2(b). This argument is synthetic, because the complexity of at least
one of the intermediate steps (in this case of both of them) exceeds that of the
configurations that depict the premises and the conclusion. The degree of the two
intermediate steps is five, because five is the number of individuals in relation to
each other that are considered, while the degree of P1 and P2 is three and the
degree of P3 and of C is two.

This example completes our exposition of the conceptual kernel of the analytic-
synthetic distinction that grounds Hintikka’s thesis that some logical validities are
synthetic. This proposal, as we explain it in the next Section, will be extended
by a theory of information and a logical counterpart. But before moving to these
topics, we need to investigate the link between Hintikka’s main thesis and his
historical and philosophical work on Kant. In which sense is Hintikka’s theory a
modern reconstruction and a vindication of Kant’s conception?

4.2.2 A vindication of Kant’s conception?

In Section 4.1, we have argued that Hintikka’s interpretation of Kant’s philoso-
phy of mathematics is based on the two theses that Kant conceived the analytic-
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synthetic distinction in constructional terms and that intuitions are first and fore-
most defined in the Critique as singular individuals. We now show the way in
which these two interpretational theses are employed and translated in Hintikka’s
modern theory about logic.

First, the theory that it is the use of constructions that makes a mathematical
argument step synthetic, which is premise P1 of Hintikka’s reasoning as recon-
structed in Section 4.1, is translated in modern terms by the theory that it is the
use of the rule of existential instantiation of modern first-order logic that makes a
logical argument step synthetic. To focus on the other side of the analytic-synthetic
distinction, we could say, using Hintikka’s formulation, that “a geometrical argu-
ment in the course of which no new geometrical entities are ‘constructed’ - that is,
introduced into the discussion - will normally be converted into a quantificational
argument in the course of which no new free individual symbols are introduced”73.
Hintikka’s interpretation of Kant’s analytic-synthetic distinction is translated into
modern logic thanks to the parallelism between, on the one hand, the use of con-
struction, interpreted as a tool for shifting from a general concept to an intuition
which represents the concept, and, on the other hand, the use of the rule of exis-
tential instantiation, understood as a tool for introducing new individuals. What
is essential for Hintikka’s parallelism (and, a fortiori, for his employment of Kant’s
conception of the analytic-synthetic distinction in logic) is that the notion of con-
struction is not considered in its representative character, but rather in its power
to introduce new individuals. But the step of a solution to a problem or a proof of
a theorem in Euclid’s Elements in which new individuals are introduced is, as we
have seen in Section 4.1, the setting-out or ecthesis, which requires that nothing
can be assumed about the particular figure introduced except for what is already
contained in the enunciation. As a result, the parallelism between constructions
and applications of the rule of existential instantiation that grounds Hintikka’s
loan of Kant’s notion of syntheticity in the context of modern logic can be made
even more precise by saying, as Hintikka repeatedly does, that ecthesis becomes
“identical”74 with the rule of existential instantiation.

Second, the theory that what is exhibited in the mathematical constructions,
that is, intuitions, are simply individuals is translated in modern terms by the fact
that the things introduced through the rule of existential instantiation are simply
individuals. It is due to Hintikka’s choice for the singularity criterion of intuition
that synthetical arguments in first-order logic are identified as arguments involving
singular terms. The identification between, on the one hand, Kant’s intuitions
and, on the other hand, singular terms of first-order logic can be expressed by
saying that quantificational reasoning is, according to Hintikka, an intuitive kind

73Hintikka (1973, VII).
74Hintikka (1967, pp. 368-369).
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of reasoning.
These two steps allow Hintikka to conclude that both Kant’s constructional

sense of the analytic-synthetic distinction and his own formulation D2 that grounds
his logical theory are but different versions of one and the same idea D1 that an
argument is synthetic when new individuals are introduced into it75. This means
that Hintikka’s distinction between analytic and synthetic proofs in first-order logic
wants to be a modern employment of Kant’s original distinction. But this is not
all. The employment of the Kantian heritage in the formulation of the analytic-
synthetic distinction leads Hintikka to defend one of the most characteristic and
controversial principles of Kant’s philosophy of mathematics, that is to say, its
syntheticity: “We can now vindicate Kant. What he meant when he held that
mathematical arguments are normally synthetic was quite right”.

Why should Hintikka’s talking of logic be a vindication of Kant’s talking of
mathematics? Simply because “by mathematical arguments he [i.e., Kant] meant
modes of reasoning which are now treated in quantification theory”76. In other
words, the point is that the contemporary boundaries between mathematics and
logic are not the Kantian ones. Modern first-order logic includes modes of reason-
ing that Kant wouldn’t have called logical, but mathematical, and it is precisely
this kind of derivations that Hintikka considers to be synthetic. As we have seen
in Chapter 1 of this thesis, Kant distinguished between pure general logic, that
consisted in the Aristotelian syllogistic and some propositional pattern of reason-
ing, and mathematics, the inferences of which are paradigmatic examples of the
synthetic reasoning. Similarly, according to Hintikka, the inferences of modern
first-order logic can be divided in two classes: the former is composed by the
analytic inferences of monadic logic; the latter by the synthetic inferences that
translated a typical mathematical way of reasoning. To sum up, Kant’s influence
on Hintikka’s work regarding modern logic does not only involve the definition
of analyticity and syntheticity, but it also concerns the conclusion regarding the
status of mathematics.

There are no doubts that Hintikka’s work is Kantian in spirit and probably
captures Kant’s fundamental intentions. Nevertheless, we would like to underline
some distances and important gaps between the original framework and the pro-
posed modern reconstruction. First, some inferences that are synthetic according
to Kant are analytic following Hintikka’s definition. This is also the case of the
well-known Kantian example ‘7+5=12’, that can be turned into a quantificational
derivation in which the degree of the conclusion is higher than the degree of any
intermediate stage. However, if one notices that this difference can be attributed

75This is one of the theses Hintikka (1973, VI) puts forward in his article An Analysis of
Analyticity. Here (p. 137), he maintains that “Sense III [i.e., our D1] approximates rather
closely Kant’s notion of analyticity”.

76Hintikka (1973, VIII, p. 182).
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to technicalities that do not involve the sameness of inspiration of the two distinc-
tions77 and accepts, as Hazen does, the fact that “logical theory has advanced too
much since Kant’s day for his views to have any precise application to it”78, this
observation turns out to be less alarming than what it seemed. Second, in Chapter
1 of this thesis, we have shown that Kant does not apply his analytic-synthetic
distinction to logic and, attempting the analysis that Kant did not think it was
worth pursuing, the result is that many logical judgments are neither analytic nor
synthetic. This suggests that Hintikka’s vindication of Kant is only partial and
confined to the status of mathematics: as far as logic is concerned, the Finnish
philosopher ascribes to the author of the Critique perspectives that he never put
forward, that is, that monadic first-order logic (or, in Kantian terms, pure general
logic) is analytic. The third difficulty we would like to highlight is the most serious
one and regards the interpretational basis of Hintikka’s work. In Section 4.1, we
have pointed at the hesitations and weaknesses of Hintikka’s reading of the Kantian
material: in particular, the characterization of Kantian intuitions in terms of sin-
gular representations was too radical; the leap from the mathematical method to
the analytic-synthetic distinction found no convincing basis on the Kantian texts;
and Hintikka’s thesis that Kant’s conception of analyticity was inscribed in the
constructional tradition was unjustified. In this Section, we have shown that the
same interpretational passages are at the core of Hintikka’s modern translation of
Kant. As a result, these considerations cannot be but an important point against
the view that Hintikka’s work is a faithful reconstruction of the Kantian positions.

4.3 Against logical positivism through modern

means

We have seen in Section 3.2.1 that the authors of the Wissenschaftliche Weltauf-
fassung reject the existence of synthetic a priori judgments and hold that logic
and mathematics are both analytic and tautological. Hintikka’s thesis that there
exists a class of synthetic quantified logical truths, or, in other words, that the
‘synthetic a priori ’ is a non-empty category, is thus a vindication through modern
means of the main principles of Kant’s philosophy against the criticisms moved by
the logical positivists: it is at the same time a (supposed) reconstruction of Kant’s
theory and an open attack against the perspectives held by the Vienna Circle.

77The technicalities to which we are referring are the ones exposed in note 69. Hintikka
(1973, VIII, pp. 195-196) explains this gap in terms of the difference between the following two
questions: 1. In thinking of the number 12 distinctly are we already thinking of the numbers 5
and 7?; 2. Can we from the concept of 7 and 5 analytically arrive at the concept of 12? Only
the latter question can be attributed to Kant according to Hintikka’s reading.

78Hazen (1999, p. 97).
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It is this second aim of Hintikka’s theory that explains, we think, the two most
serious weaknesses of his interpretation of the First Critique that we have individ-
uated above. On the one hand, Hintikka’s ascription to Kant of the idea that pure
general logic (or, in modern terms, monadic first-order logic) is analytic is nothing
but a piece of the positivistic heritage spared by the Finnish philosopher’s critical
fury. On the other hand, the interpretative ‘stretching’ that we have highlighted
on several points of Hintikka’s reconstruction of the Kantian material can be ex-
plained as an anachronistic way to let Kant speak the same modern language of
the logical positivists: in this way, the modern tools used by Hintikka to answer
to the criticisms of the Vienna Circle can be passed off as Kantian means and
Hintikka’s work can be seen as Kant’s defense of himself through his own means.

However, the synthetic and a priori character of a class of first-order logical
inferences is vigorously argued by Hintikka on strong grounds that could seem to
be independent from Kant’s premises or, at least, distant developments of seeds
proposed in the Critique. This Section wants to provide a complete overview of
these arguments. Section 4.3.1 provides a simple reconstruction of Hintikka’s the-
ory of distributive normal forms for first-order logic and of the analytic-synthetic
distinction defined in these terms. Section 4.3.2 expounds Hintikka’s theory of
probability and semantic information and deals in particular with the notion of
surface information. Section 4.3.3 draws conclusions and offers an evaluation of
Hintikka’s work on the epistemological status of logic.

4.3.1 The theory of distributive normal forms

The first issue that we have to consider concerns the problem of finding a plausible
linguistic counterpart to a certain possible world. This question is only apparently
far from our starting point, namely the epistemological status of logic, because,
together with the criticism Hintikka puts forward against Carnap’s proposal, it
leads the Finnish philosopher to define the theory of distributive normal forms
for first-order logic that gives a procedure to discern which logical inferences are
analytic and which are synthetic according to the sense of the terms exposed by
definition D2.

At the very beginning of his book entitled Meaning and Necessity79, Carnap,
in order to introduce the key concept of ‘L-truth’80, defines the notion of ‘state
description’ as follows. First, a set of singular terms and predicative symbols is
assumed. Second, the relevant set of atomic sentences is given in the obvious way

79Carnap (1947, p. 9). In this work, Rudolf Carnap lays the foundations for the semantic of
modal logics and proposes a new method for the semantical analysis of the meaning of linguistic
expressions, according to which the latter designate their intentions and extensions.

80According to Carnap, this notion is meant as an explicatum for what Leibniz called necessary
truth and Kant analytic truth.
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as the set of all the atomic sentences which can be formed from these singular terms
and predicate symbols. Then, a state description is said to be a class of sentences,
which contains for every atomic sentence defined above either this sentence or its
negation, but not both, and no other sentence. Carnap’s state descriptions are the
most complete descriptions that can be given of a possible state of the universe of
individuals and extend to first-order logic the same approach used in propositional
logic.

In several articles81, Hintikka criticizes Carnap’s notion of ‘state description’ on
the basis that, in order to be able to specify a state description, we should be able
first of all to name each individual in our universe82. But this requirement proves
to be a great disadvantage from many perspectives. First of all, it shows that
Carnap’s proposal has no concrete applications. Moreover, “as long as one sticks
to such full descriptions, one gains no major advantage by considering descriptions
of worlds instead of worlds themselves”83. Last, Carnap’s conception goes against
one of the most important principles of Hintikka’s philosophy, namely that part
of the scientific enterprise “is to come to know the universe in which we live, and
a part of this task is to find out what individuals there are in the world and how
many they are”84.

Hintikka individuates two paths to overcome the drawbacks of Carnap’s no-
tion85. The former proposal abandons the scope of giving an exhaustive descrip-
tion of the possible worlds in favor of a partial one, which anyway suffices to show
that the state represented is not contradictory. This is the idea that grounds the
model set technique. The latter alternative is to provide a description of the states
of affairs that is as complete as possible given a suitable restriction on the expres-
sive means. Hintikka’s acute choice of the restrictions to impose on the means
of expression is what provides the premise for linking his theory of distributive
normal forms to his reasoning on the analytic-synthetic distinction. The idea is to
restrict the complexity of the configurations of individuals that can be considered:
as we have seen above, this amounts to limit the length of sequence of quantifiers
of a given sentence or, in Hintikka’s term, its depth. This is the principle that

81In particular, in Hintikka (1973, I); Hintikka (1973, VII) and Hintikka (1987).
82Hintikka (1973, VII, p. 158) specifies this point as follows: “formally speaking, the whole

approach, including the notion of a state-description, is relative to a given set of free singular
terms. (It is also relative to a set of predicates, but that fact is of lesser importance.) Informally
speaking, the possible worlds or possible kinds of worlds which Carnap contemplates are specified
by specifying the individuals there are in the world in question. In order to describe such a world,
we must know all its individuals; moreover, we must know that they are all the individuals there
are in the world in question. In order to say what such a description looks like, we have to know
how many individuals there are, i.e., what the size of our universe of discourse is”.

83Hintikka (1987, p. 13).
84Hintikka (1973, VII, p. 158).
85See, for example, Hintikka (1973, I).
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guides the theory of distributive normal forms for first-order logic, which is our
concern here86.

This theory is an extension of the theory of distributive normal forms for propo-
sitional logic and monadic first-order logic. Let F be a first-order formula charac-
terized by the following parameters:

P1) the set of all the predicates occuring in it;
P2) {a1, . . . , ak}, which is the set of all the free individual symbols
occurring in it;
P3) d, which is the maximal length of sequences of nested quantifiers
occurring in it (its depth).

The distributive normal form of F with the same parameters is a disjunction of
conjunctions called constituents, Cd

i :

F d = DNF d(F ) =

j∨
i=1

Cd
i (a1, . . . , ak). (4.1)

Each constituent Cd
i (a1, . . . , ak) characterized by certain parameters P1), P2) =

{a1, . . . , ak} and P3) = d represents a possible world that can be described by the
sole means of these parameters. The disjuncts that occur in the distributive normal
form of the formula F represent all and only the descriptions of the possible worlds
that are not excluded by F . Before giving a definition of the constituents, we first
need to explicate some notations and to define the crucial notion of attributive
constituent. Given a set of predicates P1), let Ai(a1, . . . , ak) be all the atomic
formulae that can be formed by the members of P1) and from the individual
symbols {a1, . . . , ak} and Bi(a1, . . . , ak) be all the atomic formulae so defined that
contain at least one occurrence of ak. It follows87 that:

∧
i=1

r Ai(a1, . . . , ak) =
∧
i=1

s Ai(a1, . . . , ak−1) ∧
∧
i=1

t Bi(a1, . . . , ak). (4.2)

An attributive constituent, written Ctd(a1, . . . , ak), with parameters P1), P2) =
{a1, . . . , ak} and P3) = d can be recursively defined in terms of attributive con-
stituents of depth d− 1 as follows88:

86The works in which the author presents and discusses the theory of distributive normal forms
for first-order logic are the following ones: Hintikka (1953), Hintikka (1965b), Hintikka (1970a),
Hintikka (1970b), Hintikka (1973 X), Hintikka (1973 XI) and Hintikka (1973).

87For each given r and for suitably chosen (with respect to r) s and t.
88Here it is assumed that indices are used to distinguish different attributive constituents with

the same parameters from one another. The index r is a function of s and t. This dependence
will be assumed also in the expressions that follow.
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Ctdr(a1, . . . , ak) =
∧
i=1

s Bi(a1, . . . , ak) ∧
∧
i=1

t ∃xCtd−1
i (a1, . . . , ak, x). (4.3)

Intuitively speaking, if constituents represent possible worlds, attributive consti-
tuents describe possible kinds of individuals. The attributive constituent shown
in the expression 4.3 represents the complex attribute of the individual referred to
by ak and describes this individual by the sole means of P1), the ‘reference-point’
individuals a1, . . . , ak and at most d layer of quantifiers. We now examine the
components of the equation 4.3 one by one. The first conjunct

∧
i=1 s Bi(a1, . . . , ak)

specifies the way in which ak is in relation with the individuals a1, . . . , ak−1: it is a
conjunction of all the atomic formulae that can be formed from P1) and P2) that
contain ak. Then, for every i, Ctd−1

i (a1, . . . , ak, x) provides a list of all the kinds
of individuals that can be specified through the parameters P1), the individuals
a1, . . . , ak and d − 1 layers of quantifiers. For each such kind of individual, the
expression

∧
i=1 t ∃x specifies whether individuals of that particular kind exist or

not.
The notion of a constituent with parameters P1), P2) = {a1, . . . , ak} and P3)

= d is simply defined on the basis of attributive constituents with the same pa-
rameters as follows89:

Cd(a1, . . . , ak) =
∧
i=1

Ai(a1, . . . , ak−1) ∧ Ctd(a1, . . . , ak). (4.4)

Hintikka proves that every first-order formula F with certain parameters can be
converted into its distributive normal form with the same parameters or with
certain fixed larger ones. As a special case, every constituent with depth d and
some parameters P1) and P2) can be converted into a disjunction of constituents,
called ‘subordinate’, with the same parameters P1) and P2) but greater depth
d+ e for some natural number e.

The theory of distributive normal forms, the elementary notions of which we
have just sketched above90, is very articulated and has several employments. We

89Here the indexes of Cd,
∧

and Ctd have not been specified, but of course the first depends
on the other two.

90Hintikka provides a second and equivalent formulation of the key notions of constituents
and attributive constituents. Following this alternative, an attributive constituent with the
parameters P1), P2) = {a1, . . . , ak} and P3) = d is defined as:

Ctdr(a1, . . . , ak) =
∧
i=1

s Bi(a1, . . . , ak) ∧
∏
i=1

t ∃xCtd−1
i (a1, . . . , ak, x)∧

∧ ∀x
∑
i=1

t Ctd−1
i (a1, . . . , ak, x)

(4.5)
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have introduced it as an instrument that Hintikka elaborates in conflict with Car-
nap’s proposal and we now want to show the way in which Hintikka uses it to prove,
against the positivists, that some inferences of first-order logic are synthetic. The
Finnish philosopher’s starting point is a result of the computability theory, namely,
Church’s theorem that establishes the undecidability of first-order logic:

In propositional logic and in monadic first-order logic distributive nor-
mal forms yield a decision method: if a formula has a non-empty normal
form, it is satisfiable, and vice versa; it is logically true if and only if
its normal form contains all the constituents with the same parameters
as it. In view of Church’s undecidability result they cannot do this
in the full first-order logic (with or without identity). It is easily seen
that this failure is possible only if some of our constituents are in this
case inconsistent. In fact, the decision problem of first-order logic is
seen to be equivalent to the problem of deciding which constituents are
inconsistent. More explicitly, the decision problem for formulae with
certain fixed parameters is equivalent to the problem of deciding which
constituents with these parameters are inconsistent (Hintikka, 1973,
XI, p. 255).

The bridge built from the decidability problem to the problem of finding which con-
stituents are inconsistent is fundamental. Hintikka thus distinguishes between in-
consistent constituents that are trivially inconsistent and inconsistent constituents
that are not trivially inconsistent. While the former are blatantly self-contradictory
and satisfy some of the inconsistency conditions put forward by Hintikka, the in-
consistency of the latter can be detected only by increasing their depth. In other
words, it is shown that for every inconsistent constituent Cd there is some natural
number e such that all the subordinate constituents of depth d + e are trivially
inconsistent. The point is that we do not know which depth we should reach in
order to acknowledge that a certain constituent is inconsistent because first-order
logic is undecidable.

where the Π-operator and the Σ-operator indicate the conjunction and the disjunction of the
non-negated members of

∧
i=1 t ∃xCtd−1

i (a1, . . . , ak, x) respectively. Instead of listing all the
different kinds of individuals that exists and also all the different kinds of individuals that do not
exist as in the first formulation 4.3, 4.5 lists all the existing ones and then adds that they are all
the existing ones. On the basis of this second formulation attributive constituent, an alternative
definition of the notion of constituent can be given in the obvious way:

Cd(a1, . . . , ak) =
∧
i=1

Ai(a1, . . . , ak) ∧
∏
i=1

t ∃xCtd−1
i (a1, . . . , ak, x)∧

∧ ∀x
∑
i=1

t Ctd−1
i (a1, . . . , ak, x).

(4.6)
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Once the issue of consistency has been clarified, a disproof procedure and a
method of proof from assumptions can be easily defined. First, the disproof proce-
dure for inconsistent constituent can be described in the following terms. Suppose
that we want to disproof a certain constituent Cd. If it is not trivially inconsistent,
we have to expand it into a disjunction of a number of subordinate constituents
of depth d+ 1. If some of them are not trivially inconsistent, we have to keep on
expanding Cd into a disjunction of subordinate constituents of greater depth d+e.
Then, for a certain natural number e, if Cd is inconsistent, then all its subordinate
constituents of depth d+ e will turn out to be trivially inconsistent.

Second, in order to prove G from F , we combine the parameters P1) and P2)
of F and G, take the maximum (say d) of their depths, and convert F and G into
their distributive normal forms F d andGd with the parameters just obtained. Then
we expand F d and Gd by splitting their constituents into disjunctions of deeper
and deeper constituents and at each step we omit all the trivially inconsistent
constituents. Then, if G follows from F , there will be an e such that all the non-
trivially inconsistent members of F d+e obtained by these procedure are among the
non-trivially inconsistent members of Gd+e obtained through the same procedure.
A proof of G from F will thus follow the steps described below:

F ↔ F d ↔ F d+1 ↔ · · · ↔ F d+e → Gd+e ↔ Gd+e−1 ↔ · · · ↔ Gd. (4.7)

What interests us most here is that this method of proof from assumptions
gives us a way to discern which inferences are analytic and which are synthetic
according to the sense D2 put forward by Hintikka. In the former, no increase
in depth is needed: the elimination of trivially inconsistent constituents of depth
d is sufficient to show that all the constituents of F d are among those of Gd. In
the latter, in order to bring out the desired relationship between F and G, an
increase of depth is required and we need to consider configurations of individuals
of greater complexity than those that represent the premises and the conclusion
of the argument. This classification of logical inferences allows Hintikka to give a
characterization of syntheticity as a matter of degree: an inference from G from
F is synthetic of degree e if and only if we need to expand the normal forms of
F and G by splitting their constituents into disjunctions of depth d+ e. In other
words, the degree of syntheticity of an inference counts the number of individuals
that we need to include in the initial configurations in order to be able to derive
the conclusion from the premises.

4.3.2 Probability and semantic information

The theory of distributive normal forms can be used as a basis to define a theory
of probability and a theory of semantic information, which provide an answer to
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the question of how much information is conveyed by a certain first-order sentence.
The conceptual steps to obtain the desired result with those means can be roughly
summarized as follows, where parameters P1 and P2 are assumed to be fixed:

1. For every depth d, let Xd be the set of constituents in the polyadic predicate
calculus that can be described at depth d: it is clear that the probability
of the disjunction of the members of Xd is one, p(∨Xd) = 1, because the
disjunction of the members of Xd includes all the possible alternatives that
can be specified with that expressive restriction91.

2. The probability of sentence F d, written p(F d), is thus the sum of the prob-
abilities assigned to the constituents in Xd that are included in its normal
form DNF d(F d), for the latter specifies what the basic alternatives are by
listing all the possible worlds that are admitted by F and can be specified
with no more than d individuals mutually related.

3. Once the probability of every sentence F has been defined, the content mea-
sure, cont(F ), and the information measure, inf(F ), of F can be easily de-
fined using the following equations, which are very common in the theories of
information and embodies the principle that information equals elimination
of uncertainty92:

inf(F ) = − log p(F ) (4.8)

cont(F ) = 1− p(F ). (4.9)

The procedure that we have outlined above lacks an important specification. While
it is obvious that trivially inconsistent constituents must be excluded from Xd (or,
equivalently, must be assigned a zero weight), because they do not represent viable
alternatives, it is not clear whether non-zero weights must be assigned only to
consistent constituents or also to constituents that are not trivially inconsistent at
a certain depth (but can possibly reveal their inconsistency at a higher depth). The
observation, which is made possible by the theory of distributive normal forms,
that there are two possibilities concerning the probability assignment to first-order
constituents leads Hintikka to define two notions of information conveyed by a
certain polyadic sentence.

91The way in which the probability to each constituent is assigned does not matter here. We
could assume a ‘purely logical’ probability, that is, we could simply let all the constituents have
an equal weight.

92The idea is that the more alternatives a sentence admits of, the more probable it is and the
less information it gives us. For example, the sentence ‘either it rains or it does not rain’ admits
of all the alternatives, it has probability one and it gives us no information (as Wittgenstein puts
it, ‘I know nothing about the weather when I know that it is either raining or not raining’).
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‘Depth information’ is the measure obtained by assigning a positive proba-
bility weight only to the consistent constituents of the polyadic calculus. It is a
reconstruction of the notion of semantic information chosen by Bar-Hillel and Car-
nap93 for their theory, although the latter is based on state descriptions and thus
suffers from the problems connected with this notion94. An essential feature of
depth information is its non-recursive character. This amounts to say that depth
information is not calculable in practice and that in general there is no decision
procedure through which the initial distribution of probability can be assigned.
The reason for the non-recursive character of depth information is that we cannot
effectively isolate the inconsistent constituents because first-order logic is undecid-
able95. Hintikka considers this feature a major disadvantage of depth information:

But measures of information which are not effectively calculable are
well-nigh absurd. What realistic use can there be for measure of infor-
mation which are such that we in principle cannot always know (and
cannot have a method of finding out) how much information we pos-
sess? One of the purposes the concept of information is calculated to
serve is surely to enable us to review what we know (we have informa-
tion about) and what we do not know. Such a review is in principle
impossible, however, if our measure of information are non-recursive
(Hintikka, 1973, X, p. 228).

The non-recursive character of depth information is seen by Hintikka as a good
reason to react against the conception of information elaborated by Bar-Hillel
and Carnap that become the traditional option and to formulate an alternative
measure of information that he calls ‘surface information’. The latter is obtained by
assigning non-zero weights to all the constituents that are not trivially inconsistent
at a certain depth96. The result of this assignment is a measure of information that

93Bar-Hillel and Carnap (1953).
94Carnap (1962, p. 294 and ff..) assigns an equal probability weight to every ‘structure-

descriptions’, that is to say, to every disjunction of all the state-descriptions which can be
transformed into each other by permuting free singular terms; this probability weight is then
divided evenly among the members of the structure-description in question. The semantic infor-
mation conveyed by a certain sentence can then be defined as the sum of the weights of all the
state-descriptions excluded by that sentence.

95Another name Hintikka uses to refer to depth information is ‘post-logical’ information, be-
cause, in order to assign this measure, we need to use the tools of logic to discover the constituents
whose consistency was only apparent. We think however that the adjective coined by Hintikka
is quite misleading, for it does not take into account the practical limits of the logical tools we
are considering.

96It is possible for all the constituents of depth d+ 1, that are subordinate to the non-trivially
inconsistent constituent Cd, to be trivially inconsistent. In this case, Hintikka (1973, X, p.
229) prescribes to redistribute probability weights in the following way. We have to find the
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is calculable in practice and that is more realistic than the depth one, because it
takes into serious account the fact that it is practically impossible to individuate
among the non-trivially inconsistent constituents those that are inconsistent tout
court and accepts this restriction97.

An important feature of surface information, which is not shared by depth in-
formation, is that it can be increased by logical deduction: this tool enables us to
find that certain alternatives about the world were only apparently viable or, to
put it more formally, it enables us to find that certain non-trivially inconsistent
constituents were nevertheless inconsistent at a greater depth. But what is surface
information information about? According to the Finnish philosopher98, surface
information has a double nature: on the one hand, it is information about reality,
because it allows to exclude the existence of (mutually related) individuals; on
the other hand, it is conceptual information, because the existence of non-trivially
inconsistent constituents is a feature proper to the conceptual system, that is to
say, to the relation between the first-order sentences and the reality they speak
of. This observation leads Hintikka to maintain that in first-order logic, due to its
undecidability, conceptual information is inseparable from factual information, for
the elimination of only apparently consistent constituents, which cannot be effec-
tively isolated, improves our knowledge both of the reality and of our conceptual
system.

In Chapter 4, we have seen that the logical positivists’ favorite solution to the
paradox of analysis was psychologistic in nature and affirmed that the conclusion of
a valid inference is not objectively new or informative with respect to its premises:
the incompatibility between validity and informativity highlighted by the paradox
was solved in favor of the former. One of the consequences of Hintikka’s main thesis
that (part of) logic is synthetic a priori is of course the rejection of the positivists’
answer to the paradox of analysis, that the Finnish philosopher openly attacks
dubbing it “the scandal of deduction”, and the claim that logic is informative:

If no objective, non-psychological increase of information takes place
in deduction, all that is involved is merely psychological condition-
ing, some sort of intellectual psychoanalysis, calculated to bring us

constituent, call it Ce, to which Cd is subordinate, that has the greater possible depth e < d
and that has some non-trivially inconsistent constituent of depth d + 1. Once we have isolated
Ce, we have to redistribute the weight of Cd between all the subordinate constituents of Ce of
depth d+ 1.

97Sometimes Hintikka uses a different name for surface information: ‘pre-logical information’.
The reason for this is that “the depth information of a sentence is its surface information after
we have subjected it to the whole treatment logic puts at our disposal” (Hintikka, 1973, X, p.
230). Again, the couple ‘post-logical’ and ‘pre-logical’ is, we think, not appropriate in a context
in which logical tools play a decisive role.

98See, for example, Hintikka (1973, X, p. 230 and ff.).
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to see better and without inhibitions what objectively speaking is al-
ready before our eyes. Now most philosophers have not taken to the
idea that philosophical activity is a species of brainwashing. They are
scarcely any more favourably disposed towards the much far-fetched
idea that all the multifarious activities of a contemporary logician or
mathematician that hinge on deductive inference are as many thera-
peutic exercises calculated to ease the psychological blocks and mental
cramps that initially prevented us from being, in the words of one of
these candid positivists, ‘aware of all that we implicitly asserted’ al-
ready in the premises of the deductive inference in question (Hintikka,
1973, X, p. 223).

Hintikka’s solution to the paradox of analysis makes use of the two notions of
information that he had elaborated on the basis of the theory of distributive normal
forms. While the logical positivists’ perspective is vindicated by the recognition
that depth information is not increased by logical deduction, the idea that logic
is not merely an ‘intellectual psychoanalysis’ is justified by the fact that surface
information can be increased during a deduction. The latter kind of information
provides an objective and non-psychological sense in which logic is informative.
As it can be proved if the corresponding notions are suitably defined, the depth
information of a sentence is the limit to which its surface information converges
when it is expanded into deeper normal forms or, equivalently, when all the possible
logical work has been carried out.

4.3.3 An evaluation

In this Chapter, we have deeply analyzed Hintikka’s attack against the logical pos-
itivists’ tenet that logic is analytic. We have seen that the Finnish philosopher’s
main thesis that there exists a class of polyadic logical inferences that are synthetic
is defended through a modern reconstruction of Kant’s positions and the elabora-
tion of a theory of semantic information based on the theory of distributive normal
forms. In Section 4.1, we have highlighted what we regarded as the main difficulties
of Hintikka’s peculiar reading of the Kantian material: a too radical interpretation
of the nature of Kantian intuitions; an unjustified leap from the Critique account
of the mathematical method to the Kantian analytic-synthetic distinction; and
an unpersuasive positioning of Kant’s work into the constructional tradition. In
Section 4.2, we have argued that there are important gaps and distances between
the original Kantian framework and Hintikka’s supposed modern reconstruction of
it: first, Hintikka’s vindication of Kant’s theory is confined to the status of math-
ematics and, as far as logic is concerned, misses completely the point; second, the
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interpretative difficulties shown above are at the core of Hintikka’s translation of
Kant.

It’s now time to evaluate the most modern part of Hintikka’s proposal, which
has been presented in this Section. To sum up, we have shown that, first, a
criticism against the notion of state-description that Carnap has offered to provide
a linguistic counterpart of possible worlds leads Hintikka to formulate the theory
of distributive normal forms for first-order logic. This theory allows Hintikka to
give a formal definition of the analytic-synthetic distinction based on the principle
exhibited in D2 and to show, against one of the dogmas of the Vienna Circle,
that some polyadic inferences are synthetic a priori. Second, against Bar-Hillel
and Carnap’s theory of semantic information and on the basis of his theory of
distributive normal forms, Hintikka elaborates the notion of surface information,
which gives a non-psychologistic solution to the paradox of analysis and a tool to
avoid the positivists’ scandal of deduction.

We believe that two are the main limits of Hintikka’s formal equipment. First
of all, the disproof method via distributive normal forms is rather complex or, to
use Rantala and Tselishchev words99, it is “not very practical” in practice. Now,
this feature calls Hintikka’s success in having explicated the amount of semantic
information generated by deductive inferences into question. Even if we agreed
with Sequoiah-Grayson’s caveat that “Hintikka understands his disproof method
as an auxiliary process that allows us to identify and measure the informativeness
of deductive inferences and logical truths irrespectively of the actual proof procedure
used in their derivation”100, still Hintikka’s proposal would not be free of difficul-
ties. The calculation of the surface information of an inference depends on the
form of the particular formula involved: as a result, we could make one inference
more informative than another by simply adding in irrelevant steps. Moreover,
surface probability is only assigned to closed constituents: this means that Hin-
tikka does not define the notion of surface information for formulae containing free
variables101.

The second worry about Hintikka’s theory is perhaps more serious than the
former one. The set of formulae that turn out to be analytic following Hintikka’s
definitions is much less restricted than what it might first appear102. It includes,

99Rantala and Tselishchev (1987, p. 89).
100Sequoiah-Grayson (2008, p. 87, emphasis added). This observation corrects Rantala and

Tselishchev (1987, p. 87)’s claims that the connection between surface information and the
method of disproof must be understood as being very strict: “So it seems that what is given
to us by Hintikka by means of surface information is a way to measure [. . . ] only the kind of
information which is attainable by means of this specific method of proof”.

101The two technical points mentioned above have been noticed by Rantala and Tselishchev
(1987, pp. 87-88).

102This observation has been mentioned by both Sequoiah-Grayson (2008, p. 88 and ff.) and
D’Agostino and Floridi (2009, p. 278).
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beyond many polyadic deductions, also the entire set not only of propositional
logic, but also of monadic logic, because both the propositional and the monadic
calculus contain only consistent constituents. The inferences included in this set
fail to increase surface information and are said by Hintikka to be analytic. This
conclusion seems however too strict and liable to be attacked by the criticisms that
Hintikka himself directed against the logical positivists. Are these kind of infer-
ences really uninformative? Isn’t this conclusion still a (perhaps more restricted)
“scandal of deduction”? Is philosophical activity in this context really a “species
of brainwashing”?

The two main limits of Hintikka’s formal proposal, together with the questions
it leaves open, will be addressed in the next Chapter. Now, we would like to un-
derline an important aspect of Hintikka’s work. The kernel of the formal theory
comes from the field of computability: the undecidability of first-order logic is a
fundamental observation for the development of both the theory of distributive
normal forms and the theory of semantic information. The fact that we have to
expand a given constituent at a certain depth in order to acknowledge its inconsis-
tency grounds Hintikka’s notion of degree of syntheticity and the fact that we do
not know which depth the expansion has to reach in order to achieve the desired
result represents the main motivation towards Hintikka’s formulation of the notion
of surface information. The brilliant idea behind these constructions is that the
definition of the analytic-synthetic distinction must take into account the result
that some inferences are ‘more difficult’ than others and require a greater com-
putational effort and that useful measures of information must be realistic and
must envision that in general there is no decision procedure for determining which
constituents are inconsistent.

Needless to say, the undecidability result of first-order logic was completely
unknown to Kant. What is more interesting to notice perhaps is that even the
intuitive idea of the ‘difficulty of a reasoning pattern’ seems to be at the periphery
of the analytic-synthetic distinction presented in the Critique103. This observa-
tion confirms our suggestion that a certain component of Hintikka’s theory, which
is more important than what the Finnish philosopher would probably be ready
to admit, is not Kantian and has been elaborated as a direct response to some
principles put forward by the positivists of the Vienna Circle.

103On this point, see Chapter 1.
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Chapter 5

Depth Bounded First-Order
Logics

5.1 Depth Bounded Boolean Logics

5.1.1 Is propositional logic really uninformative?

In Section 4.3.3, we have seen that Hintikka’s work classifies as analytic a wide
class of logical inferences that includes many polyadic deductions, as well as the
entire sets of propositional and monadic inferences. On that occasion, we have
raised doubts on the completeness of this result: on the one hand, it seemed to be
only a partial vindication of the intuitive idea that logical deduction can increase
our knowledge; on the other hand, it could be charged of the same criticisms that
Hintikka himself formulated against the logical positivists’ dogma of the analyticity
of logic.

D’Agostino and Floridi (2009) have recently argued that these doubts con-
cerning the analyticity of propositional logic find a confirmation in the theory of
computational complexity, a branch of the theory of computation in theoretical
computer science that at the time of Hintikka’s proposal was at the beginning of
its flourishing1. In this context, decision problems can be classified according to
their resource-based complexity. The class P includes all the decision problems
that can be solved in polynomial time by a deterministic Turing machine and that
are said to be tractable or solvable in practice, while the class NP is made up by
decision problems that can be solved in polynomial time by a non-deterministic
Turing machine. The most important unsolved problem in theoretical computer
science concerns the relationship between these two classes and asks whether P is
identical with NP or not. The most part of researchers assume that the two classes

1See Garey and Johnson (1979).
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are not identical, that is to say, that P 6= NP and that no deterministic Turing
machine can be found to solve problems in the class NP.

As far as Boolean logic is concerned, it is possible to identify three decision
problems that are strictly connected. First, the Boolean satisfiability problem
(SAT), which is the problem of determining whether there exists an interpreta-
tion that satisfies a given propositional formula, was proven2 to be NP-complete,
that is to say, one of the most difficult problems in NP. Second, the problem of
determining whether a given Boolean formula is a tautology (TAUT) is NP-hard,
that is to say, it is not known whether it belongs to NP and every problem in
NP can be reduced to it in polynomial time. Third, the problem of determining
whether a Boolean inference is correct or not can be reduced to TAUT from both
a deterministic and a non-deterministic point of view. This means that, if the
widely accepted conjecture P 6= NP turns out to be true, then SAT, TAUT and
the inference problem are intractable, viz. not decidable in practice. As D’Ago-
stino (2010) underlines, this amounts to say that any real agent, even if equipped
with an up-to-date computer running a decision procedure for Boolean logic, may
never be able to feasibly recognize that certain Boolean sentences logically follow
from sentences that she regards as true. Hintikka considered the undecidability of
first-order logic as a strong reason to hold that polyadic logical truths are not an-
alytic. Similarly, this conjecture of the computational complexity is a reasonable
justification to reject the logical positivists’ and Hintikka’s thesis on propositional
logic: if the decision problem for Boolean logic is (most probably) intractable, how
is it possible to maintain that it is uninformative and analytic?

The probable intractability of propositional logic leads D’Agostino and Floridi
(2009) to formulate an innovative non-classical semantic, called ‘informational
semantic’, according to which the class of synthetic propositional inferences is
not empty. Following this account, the conclusion of an analytic inference de-
pends solely on the informational meaning of the logical operators occurring in its
premises and conclusion, while synthetic inferences are characterized by the use of
some intuitions, called ‘virtual information’, which represent the kind of tempo-
rary assumptions needed in every reasoning by cases and in the well-known natural
deduction rule for the introduction of the conditional. The notion of synthetic in-
ference is moreover given a gradual characterization. The degree of syntheticity of
an inference or the depth of an inference is said to be k if and only if k is the low-
est number of nested pieces of virtual information needed to obtain the conclusion
from the premises. The depth of an inference is thus a formal translation of the
intuitive idea of the degree of difficulty of an inference and depends on the cogni-
tive effort and on the computational resources needed to recognize the validity of
that inference. The fundamental idea of the authors is that the intractability of

2Cook (1971).
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classical logic depends exactly on the unbounded use of virtual information.
From a formal point of view, D’Agostino and Floridi (2009)’s approach consists

of the formulation of a hierarchy of new logical systems, which are called ‘Depth
Bounded Boolean Logics’. These logics, which are based on the informational
semantics, provide an incremental characterization of classical propositional logic
that results as the limit of this infinite sequence of weaker and tractable logics.
This hierarchy of logics represents increasing levels of depth or informativeness of
classical reasoning, where the increase of the degree of computational complexity
is associated with the depth at which the use of virtual information is allowed.

We shall now discuss the basic notions of the semantics (Section 5.1.2 and
Section 5.1.3), as well as the a particularly elegant proof-theoretic presentation
of these logics (Section 5.1.4). We shall rely on the expositions carried out in
the following articles: D’Agostino and Floridi (2009), D’Agostino (2010), D’Ago-
stino (2013a), D’Agostino (2013b), D’Agostino (2014a), D’Agostino (2014b) and
D’Agostino (2015).

5.1.2 Informational semantics

The informational semantics is based on two primitive notions: ‘agent a actually
possesses the information that B is true’ and ‘agent a actually possesses the infor-
mation that B is false’. These two notions replace the classical and alethic ones:
‘B is true’ and ‘B is false’. According to its primitive notions, the informational
semantics is grounded on the following principle:

(IS) The informational meaning of an n-ary logical operator ? is
determined by specifying the necessary and sufficient conditions for an
agent a to actually hold the information that a sentence of the form
?(ϕ1, . . . , ϕn) is true, respectively false, in terms of the information that
a actually holds about the truth or falsity of ϕ1, . . . , ϕn (D’Agostino,
2013a, p. 50).

The informational meaning of the logical operators is given by the informational
3-valued matrices for the Boolean operators represented in Figure 5.1. These
matrices have been anticipated by Quine (1974) in his dispositional theory of the
meaning of the logical operators. As the matrices make clear, the informational
semantics is three-valued, not truth-functional and weaker than the classical one.
These three features are justified by the following reasons.

First, the classical principle of bivalence, interpreted in informational terms,
says that for any sentence B, every agent possesses either the information that B
is true or the information that B is false: indeed, it is too strong and thus it is
rejected. This is conveyed by the use of a third truth value, ∗, which indicates
that agent a neither possesses the information that B is true, nor that B is false.
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¬
1 0
0 1
∗ ∗

∧ 1 0 ∗
1 1 0 ∗
0 0 0 0
∗ ∗ 0 ∗,0

∨ 1 0 ∗
1 1 1 1
0 1 0 ∗
∗ 1 ∗ ∗,1

→ 1 0 ∗
1 1 0 ∗
0 1 1 1
∗ 1 ∗ ∗,1

Figure 5.1: Informational three-valued matrices for the Boolean operators (D’A-
gostino, 2013a, p. 39).

Second, according to the authors, truth-functionality is an unwelcome property
for an informational semantics. Consider the necessary and sufficient classical
conditions, interpreted in informational terms, for the truth of a disjunction: 1)
if agent a actually possesses the information that B ∨ C is true, then a actually
possesses either the information that B is true or the information that C is true; 2)
if agent a actually possesses the information that B is true or that C is true, then
a actually possesses the information that B ∨C. While the second clause respects
(IS), the first requirement is too strong: as the authors suggest, it is possible for a
to actually have the information that the sentence ‘either the roulette ball will fall
into a red pocket or it will fall into a black pocket’ is true, even when a does not hold
any information about the truth or falsity of its immediate components. Similar
arguments can be given both for the falsity of a conjunction and for the truth of
an implication. The informational matrices of Figure 5.1, rejecting the principle of
truth-functionality, represent an example of a non-deterministic semantics, whose
general theory has been extensively studied by Avron and Zamansky (2001). This
feature can be easily seen by detecting that in some cells of the matrices there are
two admitted values.

Third, the informational meaning of the logical operators is weaker than the
classical one because the informational matrices are an extension of the classical
truth tables.

Let LP be the set of Boolean formulae. D’Agostino3 defines a 3ND-valuation
as a function v : L −→ {1, 0, ∗}, which satisfies the following conditions for every
B,C ∈ LP :

i. v(¬B) = f̂¬(v(B))

ii. v(B ◦ C) ∈ f̂◦(v(B), v(C))

where ◦ stands for ∧,∨ or →; f̂¬ is the deterministic function defined by the
informational matrix for ¬ and f̂◦ is the non-deterministic function4 defined by

3D’Agostino (2014a, p. 39).
4By saying that f̂◦ is a non-deterministic function, we mean that f̂◦ : V × V −→ 2V \ ∅.
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¬A A
1 1
0 0

A ∨B A B
1 0 0
0 1 1
0 1 0
0 1 ∗
0 0 1
0 ∗ 1

A ∧B A B
1 0 1
1 0 0
1 0 ∗
1 1 0
1 ∗ 0
0 1 1

A→ B A B
1 1 0
0 1 1
0 0 1
0 ∗ 1
0 0 0
0 0 ∗

Figure 5.2: Negative constraints on admissible partial evaluations. Each line rep-
resents a forbidden configuration of values. D’Agostino (2010, p. 257).

the informational matrix for ◦ in Figure 5.1. A 3ND-valuation is called a 0-depth
informational state or, equivalently, shallow informational state. A sentence C
is a 0-depth consequence of a set of formulae Γ, written Γ �0 C, if and only if
v(C) = 1 for every shallow state v such that v(B) = 1 for everyB ∈ Γ. The 0-depth
consequence relation is Tarskian. The logic �0 is the basic element of the hierarchy
of Depth Bounded Boolean Logics. �0 does not allow to use virtual information
and thus includes all and only those classical inferences that can be derived solely
in virtue of the informational meaning of the logical operators. In other words, the
inferences valid in �0 are analytic according to the informational meaning of the
operators. Crucially, D’Agostino e Floridi (2009) prove that this logic is tractable,
that is, decidable in practice: this means that there exists a feasible procedure
to establish whether C is an analytical consequence or, equivalently, a 0-depth
consequence of a set of sentences Γ.

The informational semantics, which we have presented in this Section through
the informational three-valued matrices proposed in D’Agostino (2013a), D’Agosti-
no (2014b) and D’Agostino (2015), is expressed in a different manner in D’Agostino
and Floridi (2009) and D’Agostino (2010). We briefly point out the main features
of this alternative formulation, which is essentially based on the so-called single
candidate principle.

A partial evaluation v : LP −→ {0, 1} is said to be admissible if and only
if it does not violate the negative constraints shown in Figure 5.2, each line of
which represents a forbidden configuration of values in agreement with the positive
constraints of the informational three-valued matrices of Figure 5.1. Let A be the
set of all the admissible partial evaluation of LP and let LP∗ be the evaluated
language based on LP , i.e. the set of all ordered pairs 〈B, i〉 such that B ∈ LP and
i ∈ {0, 1}. Then, 0 is defined as a relation on A×LP∗ that satisfies the following
condition, that is called the single candidate principle: v 0 〈B, i〉 if and only if
v ∪ {〈B, |i − 1|〉} /∈ A. A 0-depth informational state is defined as an admissible
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partial evaluation that is closed under 0 and the 0-depth consequence relation
is defined as truth preserving over 0-depth informational states. As D’Agostino
(2010) points out, the single candidate is a structural principle that prescribes to
infer that B is true (false) if the other option is immediately ruled out by some of
the accepted constraints that define the meaning of the logical operators.

The semantics resulting from these definitions is essentially the same as the
informational semantics based on the informational three-valued matrices. The
only difference concerns the idempotent laws: B turns out to be a 0-depth conse-
quence of B ∧B (B ∨B) according to the semantics based on the single candidate
principle, but not according to the formulation through the matrices. This gap
between the two formulations is slight, due to the dubious semantic sense made by
formulae like B ∧B and B ∨B, and can be easily closed following two strategies.
First, one might add a side condition to the formulation through the matrices,
which says that if A and B are indeterminate, then A ∧ B (A ∨ B) is false (resp.
true) if and only if A 6= B. Second, one might define logical language so as to
exclude formulae such as B ∧ B and B ∨ B for any formula B. This can be done
by saying that the well-formed formulae of the language comprise all, and only,
the strings of symbols that can be generated recursively from the propositional
parameters by the following rule:

If A and B are formulae, then


¬A is a formula
A ∧B is a formula provided that A 6= B
A ∨B is a formula provided that A 6= B
A→ B is a formula.

5.1.3 Virtual information

Since �0 is weaker than Boolean logic, there are some classically valid propositional
inferences that are not valid in �0. For instance, while p ∨ q,¬p ∨ q �C q, the
inference from p∨ q,¬p∨ q to q is not valid in �0: a counterexample can be given
by any 3ND-valuation such that v(p ∨ q) = v(¬p ∨ q) = 1 and v(p) = v(q) = ∗.
Although it does not follow immediately from the informational meaning of the
logical operators that occur in the premises, the truth of q seems to be implicitly
contained in the truth of p ∨ q and ¬p ∨ q. To obtain the information that q is
true, an agent is compelled to go temporarily beyond the information that she has
about the truth values of the premises and to reason by cases in the following way:

i. Proposition p is either objectively true or objectively false, although this piece
of information is not available.

ii. Assume that p is true. Then, ¬p is false. Since ¬p ∨ q is true and ¬p is false,
q is true.
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iii. Assume that p is false. Since p ∨ q is true and p is false, q is true.

iv. In both cases q is true, independently of the objective truth value of p: the
information that q is true is implicitly contained in the premises.

The sense in which the truth of q is ‘implicitly contained’ in the truth of p ∨ q
and ¬p ∨ q is different from the sense in which, for instance, the truth of s is
‘implicitly contained’ in the truth of r ∨ s and ¬r. In the latter case, s is an
analytical consequence of the premises, since it is derivable only in virtue of the
informational meaning of the operators ¬ and ∨ that occur in the premises. On
the contrary, in the former case, the truth of q is obtained introducing virtual
information (in steps ii. and iii.), viz. through the temporal assumption of the
truth of p and the falsity of p. As D’Agostino (2010) says:

These steps [ii. - iii.] cannot be internally justified on the basis of the
agent’s actual information state, but involve simulating the possession
of definite information about the objective truth-value of p, by enu-
merating the two possible outcomes of the process of acquiring such
information, neither of which is deterministically dictated by v. The
inference displays, intuitively, a deeper reasoning process than the one
displayed by disjunctive syllogism, and we relate this depth to the ne-
cessity of manipulating virtual information concerning p (D’Agostino,
2010, p. 259).

Inferences that employ pieces of virtual information are said to be synthetic be-
cause they increase the initial information requiring the use of some intuitions,
pieces of virtual information, which go beyond the informational meaning of the
logical operators and which are essential to obtain the conclusion.

The notion of synthetic inference admits a gradual characterization, which for-
mally translates the intuitive idea of the degree of logical difficulty of an inference
or depth of deductive process. In order to deduce the truth of q from the truth of
p∨q and ¬p∨q, one piece of virtual information, which concerns the objective value
of p, is needed. This inference turns out to be valid because p, p∨q,¬p∨q �0 q and
¬p, p∨ q,¬p∨ q �0 q: the depth of this inference, that is its degree of syntheticity,
is one because one is the number of pieces of virtual information necessary to ob-
tain the conclusion from its premises. If both steps ii. and iii. employed in turn
one piece of virtual information to obtain a shared conclusion, then that process
of inference would have depth two. Iterating this reasoning, the authors obtain a
classification of classical inferences according to their logical depth or their degree
of syntheticity.

From a formal point of view, D’Agostino and Floridi (2009) recursively intro-
duce the notion of k-depth consequence relation, written �k, for every k ∈ N. In
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the logic �k, all the analytic inferences and the inferences of depth at most k are
valid. For every k ∈ N, a sentence C is k-depth consequence of a set of sentences
Γ, written Γ �k C, if and only if there exists a propositional letter p such that
Γ∪ {p} �k−1 C and Γ∪ {¬p} �k−1 C. Again, each k-depth consequence relation is
Tarskian.

Since �0 is monotonic, �j⊆�k for every j ≤ k. The transition from �k to �k+1

corresponds to the increasing of the depth at which the employment of virtual
information is allowed. The authors prove the fundamental result that the de-
ducibility of depth k, for every fixed k, is a tractable problem, that is to say,
a problem that is decidable in practice, although its complexity grows with the
increasing of k.

Last, classical propositional logic is defined as the limit of the infinite sequence
of logics of depth k, each of which is tractable and weaker than the following one
in the hierarchy:

�C=
⋃
k∈N

�k.

Therefore, classical propositional logic allows an unbounded use of virtual infor-
mation.

As D’Agostino (2015) underlines, the notion of k-depth consequence depends
not only on the depth at which the use of virtual information is allowed, but also
on the definition of the virtual space, that is the subset of formulae on which the
introduction of virtual information is allowed. It is essential that the dimension
of the virtual space should be given some constraints: otherwise, every classical
validity turns out to be derivable at depth one. The definition above, which
requires p to be a propositional letter, is not the only possibility: for example, in
D’Agostino (2014a), we find the virtual space of an inference defined as the set
of subformulae of the premises and the conclusion. The former proposal is more
restrictive than the latter and turns out not to be structural: while it validates
�1 p ∨ ¬p, the minimum depth at which �1 σ(p ∨ ¬p) holds depends on the
substitution σ. The result presented in D’Agostino, Finger and Gabbay (2013)
and in D’Agostino (2015) generalizes the one mentioned above, which is taken
from D’Agostino and Floridi (2009), establishing that every k-depth consequence
is tractable provided that the size of the virtual space, defined as a function of
the set consisting of the premises and of the conclusion of a given inference, is
polynomially bounded.

5.1.4 Tableaux rules for Depth Bounded Boolean Logics

We now move from the discussion of the semantics to the presentation of the
main features of the proof-theoretical characterization for Depth Bounded Boolean
Logics.
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First of all, we have to pinpoint that the main reason why proof systems for
propositional classical logic cannot be adequate for Depth Bounded Boolean Logics
is that they allow an unbounded use of virtual information, through the so-called
‘discharge rules’. The latter admit temporary assumptions of some propositions
that are discharged before the derivation has come to an end. Examples of such
rules in natural deduction system are the elimination rule for the disjunction [∨E]
and the introduction rule for the conditional [→ I]:

Γ
Π0

A ∨B

∆, [A]x

Π1

C

Λ, [B]y

Π2

C
C

∨E(x,y)

Γ, [A]w

Π0

B
A→ B

→I(w)

where the sentences in square brackets ([A] and [B]) are information that are not
contained in the premises of the derivations (X, ∆ e Λ).

As a result of this observation, no discharge rule is admitted in the proof-
theoretical characterization of the 0-depth consequence relation �0 given by D’A-
gostino and Floridi (2009) by means of a set of introduction and elimination rules
for the connectives. These rules are called intelim rules and are shown in Figures
3 and 4. They are formulated in terms of signed formulae, that are expressions of
the kind TA and FA and that are intuitively interpreted as meaning that formula
A is, respectively, true and false5. Let ϕu be the unsigned translation of the signed
formula ϕ, namely, A if and only if ϕ = TA; ¬A if and only if ϕ = FA. Therefore,
the translation of the intelim rule in terms of unsigned formulae is immediate.
D’Agostino (2014a) defines the notion of 0-depth derivability, written `0, in the
following way:

• An intelim sequence for a set of signed formulae X is a sequence of signed
formulae ψ1, . . . , ψn such that, for every i = 0, . . . , n, either ψi ∈ X or is the
conclusion of the application of an intelim rule to preceding formulae.

• An intelim proof of ϕ from X is an intelim sequence for X such that ϕ is
the last formula in the sequence.

• A signed formula ϕ is intelim derivable from X if and only if there is an
intelim proof of ϕ from X.

• ϕ is 0-depth derivable from X, written X `0 ϕ, if and only if ϕ is intelim
deducible from X.

5Hereinafter, following the convention adopted by D’Agostino (2010), we shall use capital
Greek letters, Γ,∆,Λ, . . . , as variables for sets of unsigned formulae; first capital letters of the
latin alphabet, A,B,C, . . . , for arbitrary unsigned formulae; lower case letters of the latin alpha-
bet, p, q, r, . . . , for atomic propositions; last capital letters of the latin alphabet, W,X, Y, . . . , for
sets of signed formulae and lower case Greek letters, ϕ,ψ, χ, . . . , for arbitrary signed formulae.
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FA

TA→ B
[T → I1]

TB

TA→ B
[T → I2]

TA
FB

FA→ B
[F → I]

TA

TA ∨B
[T ∨ I1]

TB

TA ∨B
[T ∨ I2]

FA
FB

FA ∨B
[F ∨ I]

TA
TB

TA ∧B
[T ∧ I]

FA

FA ∧B
[F ∧ I1]

FB

FA ∧B
[F ∧ I2]

TA

F¬A
[F¬I]

FA

T¬A
[T¬I]

Figure 5.3: Introduction rules for the connectives (D’Agostino, 2010, p. 264).

Consider, by way of example, the 0-depth derivation of the ex falso quodlibet prin-
ciple (Tp ∧ ¬p `0 Tq):

1. Tp ∧ ¬p [Ass.]
2. Tp [T ∧ E 1]
3. T¬p [T ∧ E 1]
4. Fp [T¬E 3]
5. Tp ∨ q [T ∨ I 2]
6. Tq [T ∨ E 4,5]

Three are the fundamental features of the derivability relation `0 demonstrated
by the authors. First, the relations �0 and `0 are coextensional, that is to say, for
every set of signed formulae X and every signed formula ϕ, Xu �0 ϕ

u if and only if
X `0 ϕ. This amounts to say that the intelim rules reflect the informational mean-
ing of the logical operators, in an analogous way in which, for example, Gentzen’s
NK system reflect the classical meaning of the connectives. Second, the notion
of 0-depth derivability allows for a particularly strong normalization procedure:
every 0-depth derivation that do not use explicitly contradictory premises do sat-
isfy the subformula property. Third, the 0-depth derivability problem is tractable.
Telling whether a formula ϕ is derivable or not at depth 0 from a set of premises
X is a problem that can be decided in time O(n2).
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TA→ B
TA

TB
[T → E1]

TA→ B
FB

FA
[T → E2]

FA→ B

TA
[F → E1]

FA→ B

FB
[F → E2]

TA ∨B
FA

TB
[T ∨ E1]

TA ∨B
FB

TA
[T ∨ E2]

TA ∨ A
TA

[T ∨ E3]

FA ∨B
FA

[F ∨ E1]
FA ∨B
FB

[F ∨ E2]

TA ∧B
TA

[T ∧ E1]
TA ∧B
TB

[T ∧ E2]

FA ∧B
TA

FB
[F ∧ E1]

FA ∧B
TB

FA
[F ∧ E2]

FA ∧ A
FA

[F ∧ E3]

F¬A
TA

[F¬E]
T¬A
FA

[T¬E]

Figure 5.4: Elimination rules for the connectives (D’Agostino, 2010, p. 264).
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In the preceding Sections, we have seen that the notion of k-depth consequence
relation is introduced in a recursive way. Something similar happens also for the
general proof-theoretic presentation of the logics `k with k > 0, whose definition
is given by D’Agostino (2014) in the following terms:

ϕ is k-depth derivable from X, written X `k ϕ, if and only if X ∪
{TA} `k−1 ϕ and X ∪ {FA} `k−1 ϕ for some formula A that is a
subformula of the unsigned parts of the signed formulae in X ∪ {ϕ}6.

Derivations of depth k > 0 admit of the use of k nested applications of the following
rule, called PB after the principle of bivalence:

...

TA [PB]
...
ψ

FA [PB]
...
ψ

ψ

...

The general structure of the derivation of ϕ from X at depth k ≥ 0 can be conve-
niently represented as illustrated in Figure 5.5; while an example of a derivation
of depth 1 is shown below, where q is derived from ¬p ∨ q and p ∨ q:

1. T¬p ∨ q [Ass.]
2. Tp ∨ q [Ass.]

3. Tp [PB]
4. F¬p [T¬I 3]
5. Tq [T ∨E 2,4]

Fp [PB]
Tq [T ∨E 2,3]

6. Tq

As for the derivability relation `0, D’Agostino proves, for every k ∈ N, that, first,
the relations �k and `k are coextensive, viz. for every X and every ϕ, Xu �k ϕ

u if
and only if X `k ϕ, and, second, the k-depth derivability problem is tractable, for
telling whether a formula ϕ is derivable or not at depth k from a set of premises
X is a problem that can be decided in time O(n2k+2).

6The definition of the formula A depends on the determination of the virtual space, viz. the
subset of formulae on which the introduction of virtual information is allowed. A definition
alternative to the one proposed above and put forward in D’Agostino and Floridi (2009, p. 381)
is to require A to be a propositional formula. On this point see the conclusive remarks of Section
5.1.3.
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X
...

TA1 [PB]
...
ψm+1

FA1 [PB]
...
ψm+1

ψm+1

...

ψm+i

TAi+1 [PB]
...
ψm+i+1

FAi+1 [PB]
...
ψm+i+1

ψm+i+1

...

ϕ

Figure 5.5: General structure of the derivation of ϕ from X at depth k ≥ 0. Each
box leading to ϕm+j (with j = 1, . . . , n) contains a derivation of depth k − 1.
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5.1.5 Observations on the relation with Hintikka’s work
and Kant’s conceptions

At several points of his work, D’Agostino suggests that his proposal is, on the one
hand, “orthogonal” to Hintikka’s view on the informativity of quantification logic7

and, on the other hand, “a partial vindication of the Kantian notion of ‘synthetic
a priori’ even in the allegedly trivial domain of propositional logic”8. We now
examine these two statements in order to place D’Agostino’s approach inside the
historical and philosophical reconstruction of the principle of analyticity of logic
that we have offered in the previous part of this thesis.

As far as the first claim is concerned, several observations confirm the idea that
D’Agostino’s approach is a continuation in the field of propositional logic of the
work Hintikka carried out in the context of the polyadic calculus. First, D’Ago-
stino draws a methodological distinction between analytic and synthetic inferences
and, in so doing, accepts the hypothesis P2 that Hintikka formulated in reading
the Kantian materials, according to which synthetic judgments (or inferences) are
those that can be proved by synthetic methods9. As a result, both Hintikka and
D’Agostino speak in the first place of analytic and synthetic inferences (or infer-
ence steps) and then, thanks to the deduction theorem, of analytic and synthetic
validities. Second, D’Agostino follows the Finnish philosopher in employing results
belonging to the computability theory to attack the neo-positivistic dogma of the
analyticity of logic and in linking the notions of syntheticity and informativity to
the cognitive and computational resources that are needed in carrying out logical
inferences.

Third, both the approaches impose definite limits on the complexity of the
resources that are available: on the one side, Hintikka restricts the complexity of
the configurations of individuals or, equivalently, the number of the individuals
mutually related, that can be employed in giving the linguistic counterpart of
possible worlds; on the other side, D’Agostino limits the complexity of the nested
pattern of virtual information that can be used in obtaining a conclusion from a
given set of premises. The term ‘depth’, that in Hintikka’s work indicated the
maximum of the lengths of nested sequences of quantifiers of a certain sentence10,
is used in D’Agostino’s account to refer to the lowest number of nested pieces of
virtual information needed to obtain the conclusion from the premises of a certain
inference.

Fourth, the two notions of ‘synthetic argument steps’ have a common structure:
they stand for a preparatory phase that is followed by an analytical proof. In the

7D’Agostino (2016).
8D’Agostino (2013b).
9On this point see Section 4.1.2.

10See Section 4.2.1.
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Finnish philosopher’s definition, it is first necessary to introduce an appropriate
new individual into the reasoning and then it is possible to expand the constituents
to a higher depth and to check the relations between the expanded constituents
of the premises and of the conclusion. In D’Agostino’s construction, it is first
necessary to introduce an appropriate piece of virtual information and then it is
possible to employ it in the derivation. Fifth, D’Agostino follows Hintikka’s insight
that syntheticity and informativity are matters of degree linked to the amount of
computational and cognitive effort.

The relations that D’Agostino’s approach maintains with Kant’s conceptions
are more complex than those it has with Hintikka’s work and there are several ele-
ments that need to be discussed in this regard. As far as the notion of syntheticity
and the role of virtual information are concerned, the author makes the following
suggestions:

This use of virtual information, which is not contained in the data and
so may not be actually held by any agent who holds the information
carried by the data, appears to qualify this kind of argument as ‘syn-
thetic’ in a sense close to Kant’s sense, in that it forces the agent to
consider potential information that is not included in the information
‘given’ to him. [. . . ] synthetic ones [i.e., synthetic inferences] are those
that are ‘augmentative’, involving some intuition that goes beyond this
meaning, i.e., involving the consideration of virtual information (D’A-
gostino, 2013a, pp. 55-56).

Virtual information in D’Agostino’s theory plays the role that intuitions have in
Kant’s conception: both of them go beyond the concept of the subject (or beyond
what is contained in the premises), cannot be found through analysis and are es-
sential elements to prove the truth of a synthetic judgment (or the validity of a
synthetic inference step). While the role of virtual information is surely Kantian,
their nature cannot be compared to the intuitions presented in the Critique. Pieces
of virtual information are simply propositional formulae and this cannot be recon-
ciled neither with Parsons’ phenomenological interpretation, nor with Hintikka’s
logical reading11 of Kantian intuitions. Second, unlike Hintikka, Depth Bounded
Boolean Logics do not defend Kant’s debated principle that mathematics is syn-
thetic a priori. Third, although D’Agostino contributes in the struggle against the
logical positivists and in favor of the synthetic a priori, we must remember that
Kant does not apply the distinction to classical propositional logic at all, because
Kant’s notion of analyticity as conceptual truth does not apply to sentential logic
(where the relation studied is not between concepts, but between judgments)12.

11See Section 4.1.1.
12See Chapter 1.
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To sum up, while it is clear that D’Agostino’s approach is the development of
Hintikka’s results in the field of propositional logic, its relations with the Kantian
materials is more troubled. As we have shown, Depth Bounded Boolean Logics are
based on a fruitful and constant dialogue with Kant’s principles and motivations
and, nevertheless, some of their details turn out to be profoundly un-Kantian: they
can be regarded as a strong vindication of Kant’s synthetic a priori even beyond
and sometimes against Kant.

5.2 The idea of extending Hintikka’s approach

5.2.1 The project of Depth Bounded First-Order Logics

On the one hand, we have seen13 that one of the main drawbacks of Hintikka’s work
is that it seemed to be only a partial vindication of the idea that logical deduction
is informative, for it classified as analytic the entire set of propositional validities.
On the other hand, we have analyzed14 the numerous reasons why D’Agostino’s
approach concerning propositional logic can be said to be orthogonal to Hintikka’s
standpoint on quantificational logic. At this point, our task is clear enough. In
order to provide logical systems that represent a complete vindication of the thesis
that logic is synthetic, we need to unify Hintikka and D’Agostino’s approach, viz.
to extend Hintikka’s view on quantificational logic to the propositional case or to
extend D’Agostino’s perspective on propositional logic to the first-order case. The
logics we want to provide shall obviously be called ‘Depth Bounded First-Order
Logics’. But how should these logics look like?

Our idea is to construct Depth Bounded First-Order Logics as an infinite hi-
erarchy of logics. In this thesis, we are going to identify each logic with its corre-
sponding derivability relation: we are going to propose a proof-theoretical account
of this family of logical systems leaving aside issues connected with the semantics.
Each derivability relation (viz. each logic) is identified by two parameters, k and
q, that measure two different kinds of syntheticity. As a result, each derivability
relation will be indicated in the following way: `k,q, for some k, q ∈ N. What do
these parameters stand for?

• Parameter k measures the propositional depth of a derivation, namely, the
number of nested pieces of virtual information that can be introduced in a
derivation. It represents the maximum propositional depth of the derivations
that are valid in logics `k,q for any q. As it is clear, this parameter is
inherited from Depth Bounded Boolean Logics. As such, it will be defined

13See Section 4.3.3.
14See Section 5.1.5.
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`0,... `1,... `2,... `3,... `...,...
. . .

`0,3 `1,3 `2,3 `3,3 `...,3
q = 3

`0,2 `1,2 `2,2 `3,2 `...,2
q = 2

`0,1 `1,1 `2,1 `3,1 `...,1
q = 1

`0,0 `1,0 `2,0 `3,0 `...,0
q = 0

k = 0 k = 1 k = 2 k = 3 . . .

Figure 5.6: The hierarchy of Depth Bounded First-Order Logics.

in a recursive way and will correspond to the maximum number of nested
applications of the bivalence rule PB (see Section 5.3.2).

• Parameter q measures the quantificational depth of a derivation. The defini-
tion of the latter notion will be the result (Section 5.3.3) of several attempts
and discussions (Sections 5.2.2, 5.2.3 and 5.2.4). By now, it is sufficient to
say that this notion aims to capture Hintikka’s idea of the number of new
and related individuals that must be introduced in a derivation to obtain the
conclusion from the premises.

Although each logic will present the two parameters at the same time, we have
chosen to keep these two measures distinct. The reason why we have presented
them in the same context is they share the same structure and describe a synthetic
pattern of reasoning; the motivation why we have kept them distinct is that we
think that these two parameters refer to two different kinds of computational and
cognitive efforts with different contents. This should be clear from our analysis
of the relations between Hintikka and D’Agostino’s approaches in the previous
Section.

However, to sum up, the idea is to construct definitions of derivability relations
along the following lines. The formula ϕ can be derived from the set of formulae
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X in logic `k,q, written X `k,q ϕ, if and only if we need to use at most k pieces
of virtual information and at most q new individuals, that is, individuals that are
not necessary to represent the premises and the conclusion, in order to obtain the
conclusion from the premises. To put it in another way, we will say that X `k,q ϕ
if and only if the derivation of ϕ from X has propositional depth at most k and
quantificational depth at most q. The problem now is the formal translation of this
project and the greatest difficulty concerns the notion of quantificational depth.

The most straightforward way to construct Depth Bounded First-Order Logics
may seem, at first glance, to resort to Hintikka’s theory of distributive normal
forms and, in particular, the refutation procedure put forward in Logic, Language
Games and Information. An idea in this direction is to say that Γ `k,q A if and
only if:

• The distributive normal forms at depth d of the elements in Γ and A,
DNF d(Γ)15 and DNF d(A), must be expanded to reach depth d + q in or-
der to show that all the members of DNF d+q(Γ) are included in those of
DNF d+q(A), where d is the maximum depth of the formulae in Γ ∪ {A}.

• In order to convert Γ and A into their distributive normal forms at depth
d+ q, it necessary to use at most k nested pieces of virtual information.

This method would probably be the most faithful to Hintikka’s work. Nevertheless,
as we have underlined in Section 4.3.3, this disproof method is too complicated to
be used in practice and we believe that this is a sufficient reason to search for an
alternative way.

A natural option is to look at the proof-theoretical approach proposed by D’A-
gostino and to implement the set of intelim rules with those for the quantifiers.
For what has been said in Chapter 4, the definition of the elimination rule of the
existential quantifier is the most delicate one: it is (primarily but not exclusively)
through this rule that new individuals can be introduced during derivations. Two
are the major difficulties in giving this definition. First, finding the right ‘dosage’,
namely, allowing the introduction of actually necessary individuals and avoiding
that of superfluous ones; second, finding a mechanism such that new individuals
introduced in this manner can be ‘counted’. In the following, we propose two
methods to solve this problem (Sections 5.2.2 and 5.2.3). Both of them satisfy the
desiderata just mentioned, but cannot be accepted for other reasons. However, the
analysis of these proposals will draw us near the final solution and comprehension
of quantificational depth (Section 5.2.4).

15Let this notation be a shorthand for DNF d(B1), DNF d(B2), . . . , DNF d(Bn), where
B1, B2, . . . , Bn ∈ Γ.
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5.2.2 First attempt: Propositionalization

The first method that could be employed to define Depth Bounded First-Order
Logics is to reduce the quantificational case to the propositional one. Consider
Depth Bounded First-Order Logics with quantificational depth q = 0, that is
to say, logics in which no new individuals can be employed. The feature that
characterizes these logical systems is that the domain of a derivation is bounded
and contains all and only the names of the terms that occur in the premises and
the conclusion of that derivation. In these contexts, the universal quantifier can
be defined in terms of a conjunction and the existential quantifier can be defined
in terms of a disjunction as follows:

T∀xA(x) =def TA(c1) ∧ A(c2) ∧ · · · ∧ A(cn)
F∀xA(x) =def FA(c1) ∨ A(c2) ∨ · · · ∨ A(cn)

T∃xA(x) =def TA(c1) ∨ A(c2) ∨ · · · ∨ A(cn)
F∃xA(x) =def FA(c1) ∧ A(c2) ∧ · · · ∧ A(cn)

where {c1, . . . , cn} is the set of all and only the terms that denote the individuals
in the finite domain. As a result of the abbreviations above, the rules for the
introduction and elimination of the quantifiers are nothing but the rules for the
introduction and elimination of the conjunction and the disjunction.

However, three are the main drawbacks of the propositionalization approach.
First, the method proposed, being nothing more than a translation from the quan-
tificational to the propositional case, is not particularly interesting. The role that
the quantifiers play in this context turns out to be limited: they are necessary only
if the domain of discourse is unknown before going through the derivation. Second,
following this approach, we are compelled to take into account in our reasoning
all the individuals of the domain even in situations in which it is not necessary.
For example, the derivation in the propositionalization approach of the formula
T∀xAx from the premise T∀x(Ax ∧Bx) would look like as follows:

T∀x(Ax ∧Bx)
T (Ac1 ∧Bc1) ∧ (Ac2 ∧Bc2) ∧ · · · ∧ (Acn ∧Bcn)

T (Ac1 ∧Bc1)
TAc1

T (Ac2 ∧Bc2)
TAc2

...
T (Acn ∧Bcn)

TAcn
TAc1 ∧ Ac2 ∧ · · · ∧ Acn

T∀xAx
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Not only does this derivation increase with the increasing of n. But it is also
counterintuitive, for the natural kind of reasoning in this case is to take into
account a generic individual, to show that if it has both the properties A and B,
then it has also the property A and to deduce that the conclusion is valid for any
individual.

Third, in the propositionalization approach, we have defined the existential
quantifier in terms of a disjunction; as a result, the elimination of the existential
quantifier ∃xAx amounts to simplify the expression TA(c1) ∨A(c2) ∨ · · · ∨A(cn).
Now, it might be the case that the formula TA(c1) does not occur above in the
derivation. In this situation, we are compelled to use an instance of the PB rule
and to go through the following reasoning by cases: either A is satisfied by c1

(TA(c1)) or it is not (FA(c1)). The same obviously might happen also for c2, c3

and so on. This observation suggests that the use of the propositionalization
method might increase the propositional depth of an inference even in cases in
which this is not necessary, for the natural kind of reasoning for eliminating the
existential quantifier, especially when the domain is unknown, does not involve the
propositional depth of an inference, but amounts to consider just one and fresh
individual and not every term one by one. These motivations are strong enough
to reject the propositionalization method and to look for something else.

5.2.3 Second attempt: Skolem functions

A second promising approach consists in providing the individuals with a structure
capable of showing their genealogy through the elimination rule for the existential
quantifier. This plan could be efficiently fulfilled using Skolem functions16 in the
following manner:

F∀xA(x)

FA(f(t1, . . . , tn))
[F∀E]

T∃xA(x)

TA(f(t1, . . . , tn))
[T∃E]

where {t1, . . . , tn} is the set of all open terms (variables) and closed terms (con-
stants and Skolem terms) that occur in the formula A and f is a fresh function,
viz. a function not occurring on the branch. The fundamental idea of these rules
is quite simple. An unknown individual that has the property A is denoted by a
Skolem term that is a function of the terms occurring in A: f(t1, . . . , tn).

16If A(x1, . . . , xn, y) is a predicate formula with individual variables x1, . . . , xn, y whose do-
mains are sets X1, . . . , Xn, Y , respectively, then a function f : X1 × · · · × Xn −→ Y is called
a Skolem function of the formula ∃y(A(x1, . . . , xn, y)) if and only if, for all x1 ∈ X1, . . . ,
xn ∈ Xn, ∃y(A(x1, . . . , xn, y)) −→ A(x1, . . . , xn, f(x1, . . . , xn)). f is called a Skolem function
and A(x1, . . . , xn, f(x1, . . . , xn)) is called a Skolem term.



CHAPTER 5. DEPTH BOUNDED FIRST-ORDER LOGICS 193

Thanks to the structure of the individuals introduced through the elimination
rules expressed by Skolem functions, it is possible to formulate the new notions of
‘depth of an individual’ and ‘weighted degree of a formula’ (points 3 and 4), that
we enunciate after having recalled Hintikka’s definitions of ‘depth of a formula’
and ‘degree of a formula’ (points 1 and 2):

1. The notion of ‘depth of a formula A’, d(A), is recursively defined17 as follows:

• d(A) = 0 whenever A is atomic;

• d(¬A) = d(A);

• d(A1 ∧ A2) = d(A1 ∨ A2) = d(A1 → A2) = the greater of the numbers
d(A1) and d(A2);

• d(∀xA(x)) = d(∃xA(x)) = d(A) + 1.

2. The notion of ‘degree of a formula A’ is given by Hintikka18 as the sum of
the depth of A and the number of terms that occur in A.

3. The notion of ‘depth of an individual a’, δ(a), could be recursively defined
as follows:

• δ(a) = 0 if and only if a is a constant or a variable;

• δ(a) = n+ 1 if and only if, for some function f , a = f(t1, . . . , tk) and n
is the maximum depth of the terms t1, . . . , tk.

4. The notion of ‘weighted depth of a formula A’ could be given as the sum of
the depth of A and of the depths of all the individuals occurring in A.

The idea of using Skolem functions to structure individuals gives the possibility to
contemplate several and interesting ways to define the quantificational depth of a
derivation, that is, to count the individuals that are effectively introduced in that
derivation. However, upon closer inspection, we encounter some problems that
lead to the conclusion that all of these proposals are not completely satisfying.

The most immediate way to define the notion of quantificational depth within
the approach based on Skolem functions is focused on the structure of the indi-
viduals introduced through the elimination rule for the existential quantifier. This
idea can be expressed in several forms:

1. First, we could define the quantificational depth of an inference as the max-
imum depth of new individuals that have been introduced in the derivation.
Despite appearances, this solution does not work. The problem is that the

17Cf. Hintikka (1973, VI, pp. 141-142).
18Hintikka (1973, VI, p. 141).
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depth of a certain individual measures the number of applications of the
rules T∃E and F∀E that are necessary to define that individual. But not
every application of the rules T∃E and F∀E introduces in the derivation
effectively new individuals or, equivalently, individuals that are not already
thought of by thinking of the premises.

2. Second, we could define the quantificational depth of an inference as the
maximum of the arities of the functions that have been introduced in the
derivation. However, also this proposal must be rejected. The arity of a
Skolem function f is the number of the individuals on which f depends.
But this number is nothing else than the number (minus one) of the nested
quantifiers (or the depth) of the premise, which originates f through the
elimination of the quantifiers, plus (possibly) the number of individual terms
occurring in that premise.

3. Third, we could define the quantificational depth of an inference as the num-
ber of individuals with the maximum depth among the individuals that have
been introduced or as the number of individuals that are represented by Skolem
function with the maximum arity among the functions that have been intro-
duced. For the same reasons expressed above, also these measures are not
satisfying.

These proposals share the same fundamental difficulty: the structure of the indi-
viduals involved is not sufficient by itself to reveal the quantificational depth of a
derivation. The number of new individuals that are necessary for the derivation
seems to be rather the result of a comparison between, on the one hand, the number
of the individuals that are already thought of in the premises and conclusion and,
on the other hand, the number of individuals introduced during the derivation.
This observation motivates the following set of attempts, which takes advantage
of the peculiarities of the approach based on Skolem functions and, at the same
time, takes into account those individuals that have already been thought in the
premises and conclusion of a certain derivation.

1. First, we could define the quantificational depth of an inference as the differ-
ence between the maximum degree of the intermediate steps and the maximum
degree of premises and conclusion. This measure does not work because, even
if a certain derivation is synthetic and requires the construction of configu-
rations of individuals that are more complex than the initial ones, this does
not imply that there exists a step in the derivation in which all the new
individuals occur at the same time.

2. Second, we could define the quantificational depth of an inference as the
difference between the maximum weighted degree of the intermediate steps



CHAPTER 5. DEPTH BOUNDED FIRST-ORDER LOGICS 195

and the maximum weighted degree of premises and conclusion. But this
proposal cannot be accepted for the same reasons as above.

3. Third, we could define the quantificational depth of an inference as the num-
ber of steps with (weighted) degree greater than the (weighted) maximum
degree of premises and conclusion. This latter attempt must be rejected,
because there usually are several steps in a derivation that are, at the same
time, not particularly significative and marked by a high (weighted) degree.

This second set of proposals is marred by the following problem: it is difficult to
find among the steps of a derivation a single step in which all the new individuals
occur at the same time. On the contrary, a derivation usually presents steps in
which a proper subset of the terms occurs or different steps in which the same
terms occur.

5.2.4 Final attempt: What is quantificational depth?

We have seen the way in which two promising approaches did not succeed in giving
a definition of quantificational depth. How, then, is it possible to count actually
new individuals introduced in a derivation?

Intuitively, we could say that an inference is characterized by quantificational
depth q > 0 if, during the derivation, the configuration of individuals representing
one or more premises is reiterated so as to produce a new configuration that is
more complex than the initial one. Recall the explanation of the example given
in Section 4.2.1. Following this suggestion, we could say that the derivation from
premises:

P1 : ∀x∀y(Rxy → ∃z(Gxz ∧Gzy))
P2 : ∀x∀y(Gxy → ∃z(Bxz ∧Bzy))
P3 : ∀x∀y((Bxy ∧ Cx)→ Cy)

to the conclusion:

C : ∀x∀y((Rxy ∧ Cx)→ Cy)

has quantificational depth equal to two, because the configuration of premise P2

has been reiterated twice and with a common individual to the effect that a new
and more complex configuration has been introduced during the derivation (see
Figure 1 and Figure 2 of Section 4.2.1).

Nevertheless, this intuition can hardly be translated into a general definition.
One attempt in this sense could be to define the quantificational depth of an
inference as the number of times in which the premise with the maximum degree
has been used. But this proposal does not work, because it assumes two unjustified
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hypotheses: first, that the premise that has to be reiterated is the one characterized
by the maximum degree; second, that the reiterated configurations have individuals
in common. Similarly, for the other attempts. To conclude, this intuition cannot
be generalized, because the reiterated premises and the way in which they have
been reiterated must be checked case by case.

Once also this hypothesis has been discussed and rejected, we enunciate at
last the definition of quantificational depth that we think must be preferred over
the other proposals by virtue of its faithfulness to Hintikka’s reasoning (see also
Definition 18, Section 5.3.3):

The quantificational depth of a derivation is the difference between the
number of related individuals used in that derivation and the maximum
degree of premises and conclusion. If this number is negative, then the
quantificational depth of the corresponding derivation is zero.

So, for example, the quantificational depth of the inference examined in Section
4.2.1 is two, because its derivation needs to consider five related individuals, while
the maximum degree of premises and conclusion is three.

Of course, this definition is incomplete until we do not fix the conditions in
which individuals can be said to be related. This issue is not trivial. To simplify
the matter, we start by discussing when two individuals are related. Moreover, we
restrict to a logical language with no free variables and no individual constants
and, as a result of this assumption, we take individuals to be represented only
by individual variables. We hold that there are at least four senses in which two
individual variables might be said to be mutually related:

Sense 1: Two individual variables are related if and only if they occur
in the same sentence.

Sense 2: Two individual variables are related if and only if the quan-
tifiers bounding them are nested.

Sense 3: Two individual variables are related if and only if the quan-
tifiers bounding them are nested and connected.

Sense 4: Two individual variables are related if and only if they occur
as arguments of the same relation.

The four senses are described from the weakest to the strongest. As we show
below, this means that if two individual variables are related according to sense
n, for n = 2, 3, 4, then they are also related according to sense n − 1. Moreover,
which of these four senses has to occur in our definition of quantificational depth
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is purely a matter of choice. Each of them is legitimate. For this reason, we are
going to choose the criterion that we believe to be the most faithful to Hintikka’s
original idea.

Sense 1 is the most trivial one. Unlike the other senses specified above, accord-
ing to the first meaning, individual variables x and y are related even in a formula
like F1 = ∃x∃zPxz∧∃yQy. But, we think, sense 1 is too broad, because it seems to
relate individuals merely on the ‘subjective’ ground of being thought or mentioned
in the same sentence and not on the basis of the ‘objective’ relations among them.
For example, in the sentence ‘there are two individuals that play tennis together
and there exists an individual that loves painting’, the only relation among the
couple of individuals and the third agent is that they have been mentioned in the
same sentence.

Sense 2 is close to what Hintikka has proposed by defining the depth of a
formula as the the maximum of the lengths of nested sequences of quantifiers (see
Section 4.2.1). Two quantifiers are nested if and only if the scope of one of them is
included in the scope of the other. On the one hand, according to sense 2, variables
x and y are not related in formula F1, because the existential quantifier bounding
y is not included in the scope of the quantifier bounding x. On the other hand,
variables x and y are related in the formula F2 = ∃x∃z∃y(Pxz ∧Qy), because the
third quantifier bounds y and is within the scope of the first quantifier bounding
x. However, the latter example poses some problems.

Although in formula F2 the three existential quantifiers are nested, the way
in which y is related to x seems to be somehow artificial. In particular, it seems
to be too close to the way in which x and y were said to be related according to
sense 1 in formula F1, of which F2 is a consequence. In other words, the way in
which one individual of the couple is related to the third agent in the sentence
‘there are three individuals, two of them play tennis together and the third loves
painting’ is not different, from an intuitive point of view, to the way in which they
are related in the sentence ‘there are two individuals that play tennis together and
there exists an individual that loves painting’. Hintikka himself recognized that
sense 2 is too broad and this led him to formulate sense 3, which is based on the
notion of connectedness.

Sense 3 is explicitly introduced by Hintikka in the footnote number 33 on page
142 of his Logic, Language-Games and Information:

It is obvious, however, that the individuals that nested quantifiers in-
troduce into our considerations may not be related to each other in
any direct or indirect way in the sentence F in question. Hence a
sharper definition may be obtained by considering only such bound
variables x1, xk as invite us to consider individuals that are related
to each other in the sentence in the sense that there is a sequence of
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bound variables x1, x2, . . . , xk−1, xk with the following properties: for
each i = 1, . . . , k−1, xi and xi+1 occur in the same atomic subsentence
or identity of F ; each variable xi is bound to a quantifier occurring
within the scope of the wider of the two quantifiers to which x1 and xk
are bound. Let us call such variables and the quantifiers to which they
are bound connected. (It may be assumed for simplicity that different
quantifiers have typographically different variables to bound them in
F ) (Hintikka, 1973, VI, p. 142).

In this passage, Hintikka observes that sense 2 contemplates individuals that are
not ‘properly’ connected and proposes what we have called sense 3 of the notion
of ‘being related to’. According to the latter, in order for x and y to be related, it
is not sufficient that the quantifiers that bound x and y are nested, they must also
be connected. The notion of connectedness can be clarified constructing a graph
for each formula, in which vertices are individuals and edges are logical relations
between individuals. Two individuals are said to be connected in a certain formula
if and only if there exists a path made up of edges that connects the vertices that
represent those individuals. A similar definition obtains for connectedness in a
derivation instead of a formula. As a result, individuals x and y are connected
according to sense 3 in formula F3 = ∃x∃z∃y(Pxz∧Qzy), but are not connected in
formula F2. For, consider the graphs of the two formulas represented in Figure 5.7.
In the graph for F2, no path can be traced from x to y: individual y is somehow
isolated. In the graph for F3 instead, there is a path from x to y, which is made
up by the edges P from x to z and Q from z to y. We choose sense 3 of the
expression ‘being related to’ for our definition of quantificational depth, because
we believe that it embodies Hintikka’s final point of view on the matter. In Section
5.3.3, we are going to drop the limitations we have imposed above, namely, that
the relation is restricted to two individuals and that individuals are represented
only by variables, and thus we generalize the definition of ‘being related to’ (see
Definition 13).

Sense 4 is indeed too strict to be chosen. It says that two individual variables
are related if and only if they occur as arguments of the same relation. If we use
the graphs we have explicated above, this amounts to asking that the vertices are
related if and only if there exists an edge linking them. It turns out that, according
to sense 4, x and y are related in formula F4 = ∃x∃y∃z(Pxz ∧ Qxy), due to the
relation Q in which both x and y occur, but the two individual variables are not
related in formula F3, for no edge directly connects x and y.

To conclude, notice that the rejection of sense 2 as a basis for our definition of
quantificational depth amounts to reject once more and in a final way the usefulness
of Skolem functions for the true existential quantifier. This is because the structure
of a Skolem function indicates precisely which are the individuals that are related
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Figure 5.7: Graphs for F2 = ∃x∃z∃y(Pxz ∧ Qy) and F3 = ∃x∃z∃y(Pxz ∧ Qzy)
respectively.

according to sense 2 with that function. For example, the function f(a, b) says
that the individual f is related according to sense 2 with the individuals a and
b. But why is this relation, in general, defined according to sense 2? Because the
function f(a, b), that we assume occurs in the formula A, has been introduced by
the elimination rule for the existential quantifier from the formula ∃xA, in which
not only x, but also the individuals a and b occur:

T∃xA[x, a, b]

TA[f(a, b), a, b]
[T∃E]

but it is clear that in the formula A the individuals f(a, b), a and b could occur
in whatever way, even in an unconnectedness way, because it is necessary neither
that f(a, b), a and b occur as arguments of the same logical relation nor that there
exists a path of edges connecting them. Consider, as an example, the following
application of the elimination rule for the existential quantifier:

T∃x(Pxa ∧Qb)
TP (f(a, b), a) ∧Qb

[T∃E]

The function f(a, b) suggests that the individual f is related with the individual
b, but this is the case only if the notion of relation is understood following sense
2 and not sense 3, because, if we examine the conclusion of this rule, we find that
f(a, b) and b never occur as arguments of the same logical relation nor as vertices
of a path.

At this point, once we have individuated the best way to measure the quan-
tificational depth of a derivation, we are ready to define at last Depth Bounded
First-Order Logics.
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Are x and y related in
Sense of ‘being re-
lated to’

∃x∃zPxz ∧ ∃yQy? ∃x∃z∃y(Pxz ∧Qy)? ∃x∃z∃y(Pxz ∧Qzy)? ∃x∃z∃y(Pxz ∧Qxy)?

Sense 1: Two indi-
vidual variables are
related if and only
if they occur in the
same sentence

Yes Yes Yes Yes

Sense 2: Two indi-
vidual variables are
related if and only
if the quantifiers
bounding them are
nested

No Yes Yes Yes

Sense 3: Two
individual variables
are related if and
only if the quan-
tifiers bounding
them are nested
and connected

No No Yes Yes

Sense 4: Two indi-
vidual variables are
related if and only if
they occur as argu-
ments of the same
relation

No No No Yes

Figure 5.8: Four senses of ‘being related to’.
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5.3 Depth Bounded First-Order Logics

As we have anticipated in Section 5.2.1, Depth Bounded First-Order Logics are a
hierarchy of logical systems, each of which is characterized by the two parameters
k and q, measuring the propositional and the quantificational depth respectively.
In this thesis, we are going to characterize this family of logics solely through the
proof-theoretical account based on the tableaux rules. The exposition of Depth
Bounded First-Order Logics is structured as follows:

1. In Section 5.3.1 we define derivability relations `0,q with q ≥ 0, that is to
say, derivability relations in which no use of nested virtual information is
admitted, but it is possible to employ the introduction of q new individuals,
for a fixed q greater than or equal to zero. In particular, we will show
that a derivation with propositional depth k = 0 and quantificational depth
q ≥ 0 is a sequence of signed formulae, each of which is either a premise,
the conclusion or the result of applying one of the intelim rules. These
rules are classified as introduction and elimination rules for connectives and
quantifiers.

2. In Section 5.3.2 we define derivability relations `k,q with k > 0 and q ≥ 0,
that is to say, derivability relations in which it is possible to use both k > 0
nested pieces of virtual information and q ≥ 0 new individuals for some k and
q fixed. The definition proposed has a recursive character and specifies that,
given a fixed quantificational depth q, a derivation that has propositional
depth k+ 1 can be obtained by a derivation of propositional depth k with an
application of the bivalence rule PB, that introduces in the derivation one
piece of virtual information.

3. In Section 5.3.3 the exposition of Depth Bounded First-Order Logics is com-
pleted by giving a definition of the parameter q, that is to say, of quantifica-
tional depth. Unlike parameter k, q is not defined in a recursive way. As we
have established above, q measures the difference between the number of re-
lated individuals used in a derivation and the maximum degree of premises
and conclusion and indicates the number of actually new individuals that
must be introduced in a derivation in order to get the conclusion from the
premises.

4. In Section 5.3.4 we propose some examples and derivations in order to clarify
the definitions expressed above.
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5.3.1 Derivability relations `0,q with q ≥ 0 and intelim rules

In this Section, we provide the basic definitions of the derivability relations with
propositional depth equal to zero. As a matter of fact, many of the following
definitions are taken from D’Agostino’s exposition of Depth Bounded Boolean
Logics: the choice of using signed formulae, the definition of derivation and the
intelim rules for the connectives. What is peculiar to the first order family of
logics is, of course, the introduction and the elimination rules for the quantifiers
and the related notions of general and critical terms. As we have anticipated above,
the most delicate definition is that of the elimination rule for the true existential
quantifier.

Definition 1 (Signed formulae). Let Ls be the signed language based on L,
that is to say, the set of all the expressions of the kind TA and FA with A ∈ L.
The elements of Ls are called ‘signed formulae’: intuitively, TA means that A is
true and FA that A is false. Given a signed formula SA, with S equal to T or
F , let SA be its conjugate, that is, FA if S = T and TA if S = F . Following
the convention adopted by D’Agostino (2010), we shall use capital Greek letters,
Γ,∆,Λ, . . . , as variables for sets of unsigned formulae; first capital letters of the
latin alphabet, A,B,C, . . . , for arbitrary unsigned formulae; last capital letters of
the latin alphabet, W,X, Y, . . . , for sets of signed formulae and lower case Greek
letters, ϕ, ψ, χ, . . . , for arbitrary signed formulae.

Definition 2 (Derivations `0,q with q ≥ 0). For every q ≥ 0, a derivation
in the logic `0,q of the signed formula ϕ from the set of signed formulae X is a
sequence of signed formulae ψ1, . . . , ψn such that:

• ψn = ϕ;

and for every intermediate element of the sequence ψi such that 1 ≤ i < n, one of
the following conditions is satisfied:

• ψi ∈ X;

• ψi is the conclusion of an application of an intelim rule, whose premises
precede ψi in the sequence.

Definition 3 (Intelim rules). Intelim rules are the set of introduction and
elimination rules for connectives and quantifiers specified in the following para-
graphs (Definitions 4-7).
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Definition 4 (Introduction rules for the connectives).

FA

TA→ B
[T → I1]

TB

TA→ B
[T → I2]

TA
FB

FA→ B
[F → I]

TA

TA ∨B
[T ∨ I1]

TB

TA ∨B
[T ∨ I2]

FA
FB

FA ∨B
[F ∨ I]

TA
TB

TA ∧B
[T ∧ I]

FA

FA ∧B
[F ∧ I1]

FB

FA ∧B
[F ∧ I2]

TA

F¬A
[F¬I]

FA

T¬A
[T¬I]

At this point, one could think that we have to introduce some restrictions to avoid
that these rules are used to introduce in the reasoning new individuals. We could
require, for the rules T → I2, T ∨ I2 and F ∧ I2, that all the individuals occurring
in A have previously occurred on the branch; and, for the rules T → I1, T ∨ I1

and F ∧ I1, that all the individuals occurring in B have previously occurred on
the branch. At a closer look, however, these requirements turn out to be too
restrictive.

Consider the following example, although its details could be completely under-
stood only after Definition 12. The derivation of the formula ∃y∃x(A(x)→ B(y))
from premise ∃xB(x), with no restriction imposed on the introduction rules for
the connectives, would have propositional depth k = 0:

1. T∃xB(x) [Ass.]
2. TB(c) [T∃E 1]
3. TA(d)→ B(c) [T →2 I 2]
4. T∃x(A(x)→ B(c)) [T∃I 3]
5. T∃y∃x(A(x)→ B(y)) [T∃I 4]

On the contrary, if we choose to impose the restrictions discussed above, the
same derivation would have propositional depth k = 1. The third step would be
blocked by those restrictions. As a result, from the fact that B(c) is true, we could
not derive that B(c) is true even in the case in which A(d) is true. Therefore,
in order to obtain even in these conditions the truth of A(d) → B(c), we should
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resort, in quite a counter-intuitive way, to the reasoning by cases and to the PB
rule. In other words, instead of deriving the truth of the implication from the
truth of the consequent, with these restrictions it would be necessary to assume,
first, the truth and, then, the falsity of the antecedent, in order to conclude that
in both of these cases the implication is true. However, the latter way seems to be
a trick, rather than the reproduction of the kind of reasoning at the base of this
derivation.

Definition 5 (Elimination rules for the connectives).

TA→ B
TA

TB
[T → E1]

TA→ B
FB

FA
[T → E2]

FA→ B

TA
[F → E1]

FA→ B

FB
[F → E2]

TA ∨B
FA

TB
[T ∨ E1]

TA ∨B
FB

TA
[T ∨ E2]

TA ∨ A
TA

[T ∨ E3]

FA ∨B
FA

[F ∨ E1]
FA ∨B
FB

[F ∨ E2]

TA ∧B
TA

[T ∧ E1]
TA ∧B
TB

[T ∧ E2]

FA ∧B
TA

FB
[F ∧ E1]

FA ∧B
TB

FA
[F ∧ E2]

FA ∧ A
FA

[F ∧ E3]

F¬A
TA

[F¬E]
T¬A
FA

[T¬E]

Definition 6 (Introduction rules for the quantifiers).

• c is a general term (for a clarification of this notion see Definition 8):

TA(c)

T∀xA(x)
[T∀I]

FA(c)

F∃xA(x)
[F∃I]

• c is whatever term:

FA(c)

F∀xA(x)
[F∀I]

TA(c)

T∃xA(x)
[T∃I]
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Definition 7 (Elimination rules for the quantifiers).

• c is whatever term:

T∀xA(x)

TA(c)
[T∀E]

F∃xA(x)

FA(c)
[F∃E]

• c is a term occurring on the branch satisfying simultaneously the following
requirements:

1. c has not been previously introduced through F∀E or T∃E;

2. c does not occur in A;

3. no term occurring in A has been previously introduced through F∀A
or T∃E;

if such a term does not exists, then c is a fresh term, viz. a term not occurring
previously on the branch, called critical term (for a clarification of this notion
see Definition 8):

F∀xA(x)

FA(c)
[F∀E]

T∃xA(x)

TA(c)
[T∃E]

Discussion on the rules F∀E and T∃E. The formulation of the rules F∀E
and T∃E just given makes sure that new individuals are introduced in a derivation
only if they are really necessary. As Smullyan (1995, p. 55) explains, the idea is
as follows. Suppose in the course of an argument we prove the sentence T∀xP (x)
and then we conclude TP (c) through an application of the rule T∀E. In this case,
the term c is not the name of a particular individual because P (c) holds for every
value of c. So if we subsequently prove that T∃xQ(x), we are in the position to
apply the rule T∃E, to choose again the same term c and to conclude that TQ(c):

...
T∀xP (x)
TP (c)
. . .
T∃xQ(x)
TQ(c)
...

The requirements that the term c has to satisfy in order to be a term that, at
the same time, occurs on the branch and is introduced by the elimination rules
above prevent the following patterns of wrong reasoning:
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1. The first requirement prevents to obtain the conclusion that ‘someone in-
vented penicillin and landed on the moon’ from the premise that ‘someone
invented penicillin and someone landed on the moon’. Formally, the last step
of this derivation must be rejected because the term c has been previously
introduced through an application of the rule T∃E (step 4):

1. T∃xP (x) ∧ ∃xQ(x) [Ass.]
2. T∃xP (x) [T ∧ E 1]
3. T∃xQ(x) [T ∧ E 1]
4. TP (c) [T∃E 2]
5. TQ(c) [T∃E 3]

2. The second requirement prevents to obtain the conclusion that ‘someone
loves himself’ from the premise that ‘everybody loves somebody’. Formally,
the last step of this derivation cannot be accepted because the term c occurs
in R(c, x):

1. T∀x∃yR(x, y) [Ass.]
2. T∃yR(c, y) [T∀E 1]
3. TR(c, c) [T∃E 2]

3. The third requirement prevents to obtain the conclusion that ‘x has been
robbed by c’ from the premise that ‘c is a thief and x has been robbed by
y’. Formally, the last step of this derivation does not work because the term
d occurs in R(d, y) and has been previously introduced by an application of
the rule T∃E:

1. TQ(c)∧ ∃x∃yR(x, y) [Ass.]
2. TQ(c) [T ∧ E 1]
3. T∃x∃yR(x, y) [T ∧ E 1]
4. T∃yR(d, y) [T∃E 3]
5. TR(d, c) [T∃E 4]

Definition 8 (General and critical terms).

• A term is called critical if and only if it is fresh (that is to say, it does not
previously occur on the branch) and has been introduced by the rules F∀E
and T∃E.

• The elimination rules F∀E and T∃E are thus called critical rules.
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• A term is general if and only if it is not critical and does not occur in the
premises of the derivation. Asking that a general term be not critical prevents
the step from the elimination of the existential quantifier to the introduction
of the universal one, that is to say, this requirement blocks the last step of
the following wrong derivation:

1. T∃xA(x) [Ass.]
2. TA(c) [T∀E 1]
3. T∀xA(x) [T∃I 2]

• We say that term c is general for A when we apply rule T∀I on TA(c) to
obtain T∀xA(x). Similarly, term c is general for ¬A when we apply rule
F∃I on FA(c) to obtain F∃xA(x). Intuitively, saying that a certain term
c is general for A means that all the individuals in the domain satisfy the
property A.

• The introduction rules T∀I and F∃I are called general rules.

5.3.2 Derivability relations `k,q with k > 0 and q ≥ 0 and
the PB rule

In this Section, we provide the definitions for the remaining derivability relations,
namely, `k,q with k > 0 and q ≥ 0. As above, the definition of derivation, the
introduction of the PB rule and the notion of propositional depth are due to D’A-
gostino’s work. In the first-order, however, an important restriction on the intro-
duction rule for the true universal quantifier must be introduced. This restriction
permits to avoid fallacies in Depth Bounded First-Order Logics with propositional
depth greater than zero.

Definition 9 (Derivations `k,q with k > 0 and q ≥ 0). For every k > 0 and
q ≥ 0, a derivation in the logic `k,q of the signed formula ϕ from the set of signed
formulae X is a sequence of signed formulae ψ1, . . . , ψn such that:

• ψn = ϕ;

and for every element of the sequence ψi such that 1 ≤ i < n, one of the following
conditions is satisfied:

• ψi ∈ X,

• ψi is the conclusion of an application of an intelim rule, whose premises
precede ψi in the sequence;
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• ψi is derivable in the logic `k−1,q from ψ1, . . . , ψi−1, TA and from ψ1, . . . , ψi−1,
FA for some formula A that is a subformula of the unsigned parts of the
signed formulae in X ∪ {ϕ};

• ψi is derivable in the logic `k−1,q from ψ1, . . . , ψi−1, SA for some formula A
that is a subformula of the unsigned parts of the signed formulae in X ∪{ϕ}
such that ψ1, . . . , ψi−1, SA is inconsistent.

Definition 10 (PB rule). A derivation with propositional depth k ≥ 0 can be
defined in a non-recursive but equivalent way as a derivation in which k nested
applications of the following rule, called PB rule, are needed:

...

TA [PB]
...
ψ

FA [PB]
...
ψ

ψ

...

Similarly to what has been said about the introduction rules of the connectives (see
Definition 4), one could think that we should avoid that the PB rule introduces
fresh terms that have not occurred above. But also in this case, the restriction
turns out to be counter-intuitive, because reasoning by cases works independent
of the nature of the chosen formula and of the terms occurring in it.

Definition 11 (Propositional depth: parameter k). Parameter k measures
the propositional depth of a derivation of a formula ϕ from a set of formulae X,
that is, the number of nested application of the principle of bivalence (PB rule) or,
equivalently, the number of nested pieces of virtual information needed to derive
the conclusion from the premises.

Definition 12 (Restriction on T∀I and F∃I for the derivations `k,q with
k 6= 0). In Depth Bounded First-Order Logics with propositional depth k 6= 0,
namely, when the PB rule is admitted, it is necessary to impose the following
restriction on general rules, that is, on T∀I and F∃I. For every formula A and
every term c:

T∀I is applied on TA(c) or F∃I is applied on FA(c)
if and only if

F∃I is not applied on FA(c) and T∀I is not applied on T¬A(c)
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The formulation of this restriction seems to be complicated only because we have
chosen to use signed formulae. On the contrary, if we had employed unsigned
formulae, the condition would have sounded as follows. For every formula A and
every term c:

∀I is applied on A(c) if and only if ∀I is not applied on ¬A(c)

This remark should shed light on the meaning of this restriction, that is, the
requirement that terms cannot be used as general for a formula and for its negation
also on different branches of the same derivation.

Discussion on the restriction on T∀I and F∃I for the derivations `k,q
with k 6= 0. The restriction on T∀I and F∃I for the derivations with k 6= 0 is
necessary to avoid wrong patterns of reasoning like the following one, where c is a
fresh term:

...

TA(c) [PB]
T∀xA(x) [T∀I]
...

FA(c) [PB]
T¬A(c) [T¬I]
T∀x¬A(x) [T∀I]
...

...

In this case, the PB rule introduces in the derivation the fresh term c and the
general rule T∀I is thus applied on both the formula TA(c) that occurs on the
left branch and on its negation T¬A(c) that occurs on the right branch. Why is
this pattern of reasoning mistaken? The rule of bivalence allows, by its nature, to
consider two complementary cases, such that the latter assumption is the negation
of the former. In the example that we are examining, the application in sequence
of the PB and T∀I rules on the two branches violates this fundamental feature of
the rule of bivalence, because, on the first branch, we assume that c is general for
A, while, on the second branch, we assume that c is general for ¬A: but the two
assumptions are not contrary to each other. Indeed, denying that c is general for
A, that is, denying that all the individuals have the property A, means affirming
that there exists an individual that does not satisfy the property A. But this is
different from assuming that c is general for ¬A, viz. from assuming that all the
individuals do not satisfy A. In other words, the correct derivation would sound
as follows:
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...

TA(c) [PB]
T∀xA(x) [T∀I]
...

FA(c) [PB]
T¬A(c) [T¬I]
T∃x¬A(x) [T∃I]
...

...

Notice that the restriction just discussed does not block the following derivations,
since the T∀I rule is applied on the same formulae on both branches:

...

TA(c) [PB]
...
TB(c) [. . . ]
T∀xB(x) [T∀I]
...

FA(c) [PB]
...
TB(c) [. . . ]
T∀xB(x) [T∀I]
...

...

...

TA(c) [PB]
TA(c) ∨ ¬A(c) [T ∨ I]
T∀x(A(x)∨¬A(x)) [T∀I]
...

FA(c) [PB]
T¬A(c) [T¬I]
TA(c) ∨ ¬A(c) [T ∨ I]
T∀x(A(x)∨¬A(x)) [T∀I]
...

...

Moreover, the proposed restriction cannot be substituted by requiring that each
term be general for only one formula also on different branches. This formulation
seems to be too general and to exclude correct derivations like this one:
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1. T∀x(A(x) ∧B(x)) [Ass.]
2. TA(c) ∧B(c) [T∀E 1]
3. TA(c) [T ∧ E 2]
4. TB(c) [T ∧ E 2]
5. T∀xA(x) [T∀I 3]
6. T∀xB(x) [T∀I 4]
7. T∀xA(x)∧∀xB(x) [T ∧ I 5,6]

5.3.3 Quantificational depth and parameter q

In this Section, we complete the definition of Depth Bounded First-Order Logics.
In particular, we focus on the notion of quantificational depth: up to this point,
we have always taken parameter q to be fixed without specifying its reference. The
definition of q requires some preliminary notions. On the one hand, we determine
when a group of individuals can be said to be reciprocally related. This definition
is the result of generalizing sense 3 of the notion of ‘being related to’ that we
have discussed in Section 5.2.4: we extend it from two to n individuals and take
constants into account. On the other hand, we work on Hintikka’s notion of degree
of a formula. In particular, we include in his definition of depth of a formula the
requirement of connectedness, that Hintikka himself has suggested and that we
have clarified in Section 5.2.4. As a result, the notions of depth of a formula and
degree of a formula that we use for our definition of parameter q is slightly different
from those used in Logic, Language Games and Information.

Definition 13 (Related individuals). Individuals a1, . . . , am are related in the
derivation (of any depth) of ϕ from X if and only if, for any pair of individuals
ai, aj ∈ {a1, . . . , am}, there exists a sequence of logical relations of the following
kind:

R1(c〈1,1〉, c〈2,1〉, . . . , c〈p,1〉)
R2(c〈1,2〉, c〈2,2〉, . . . , c〈q,2〉)
. . .
Rn(c〈1,n〉, c〈2,n〉, . . . , c〈r,n〉)

such that:

• the sequence of logical relations has one or more elements (n ≥ 1);

• every relation occurs in the derivation of ϕ from X and is preceded by the
prefix T ;

• ai = c〈k,1〉 for some k such that 1 ≤ k ≤ p;
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ba c d eRR S T
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ba c d eRR T
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R

Figure 5.9: The individuals a, b, c, d, e are connected in the former, but not in the
latter configuration.

• aj = c〈k,n〉 for some k such that 1 ≤ k ≤ r;

• for every relation of the sequence Ri, such that 1 ≤ i < n, there exists an
individual c, such that c occurs as an argument in both Ri and Ri+1.

Discussion on the definition of related individuals. Intuitively, Definition
13 holds that the individuals of a group are related if there exists a path from the
former to the latter individual of any pair of individuals arbitrarily chosen from
that group. The elements of the path are relations occurring in the derivation.
The former individual of the pair must occur in the first element of the path;
the latter individual must occur in the latter element of the path. Moreover, two
elements of the path are in succession if and only if there exists an individual
that occurs in both of the relations. In order to be related, it is not sufficient
for the elements of a group to be such that each of them is related with some
other individuals. For example, the individuals a, b, c, d, e are related only in the
former of the configurations depicted in Figure 5.9, but not in the latter, where it
is impossible to move from d to c, although each individual is related to someone
else.

Definition 14 (Connectedness). The variables x1, . . . , xk and the quantifiers
bounding these variables are connected in the formula A if and only if these re-
quirements are simultaneously satisfied:

• for each i = 1, . . . , k − 1, xi and xi+1 occur in the same atomic subsentence
of A;

• each variable xi is bound to a quantifier occurring within the scope of the
wider of the two quantifiers to which x1 and xk are bound.
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Definition 15 (Depth of a formula). Absorbing the connectedness require-
ment in Hintikka’s definition of depth (see Section 4.2.1 and Section 5.2.3), we
obtain the following alternative definition of depth of a formula A:

• d(A) = 0 whenever A is atomic;

• d(¬A) = d(A);

• d(A1 ∧A2) = d(A1 ∨A2) = d(A1 → A2) = the greater of the numbers d(A1)
and d(A2);

• d(Q1x1Q2x2 . . . QnxnB) = d(B) + n, if there exists a number n of variables
xi ∈ {x1, . . . , xk} that are connected to the quantifiers that bound them and
B is any formula that does not start with a quantifier Q.

Definition 16 (Degree of a formula). The degree of a formula A is the sum of
the depth of A together with the number of constants and free variables occurring
in A.

Definition 17 (Quantificational depth: parameter q). Parameter q mea-
sures the quantificational depth of a derivation of a formula ϕ from a set of formulae
X, that is, the difference between the number of related individuals used in that
derivation and the maximum degree of premises and conclusion. If this differ-
ence is negative, then the quantificational depth of the corresponding derivation
is assumed to be zero.

5.3.4 Examples

In this Section, we are going to present and discuss some derivations in Depth
Bounded First-Order Logics. The examples that we have chosen are summarized
in Table 5.1.

The first set of derivations (Examples 1-3) are all carried out in the logic
`0,0, viz. the basic element of Depth Bounded First-Order Logics. In this logical
system, no virtual information and no new individual is allowed: only analytical
inferences are valid. In the Example 1, individual a has been introduced at step
2 through an application of the elimination rule for the existential quantifier. But
this individual does not count as an actually new individual, because it is somehow
already thought in the premise affirming that there is some individual that has
both the property A and B. This case confirms the importance of our observation
made in Section 5.2.3 that counting the individuals occurring in a derivation is
not by itself sufficient to determine the quantificational depth of an inference: we
rather need to compare that result with the information contained in the premises
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Example Premises Conclusion Logic

Example 1 T∃x(Ax ∧Bx) T∃xAx ∧ ∃xBx `0,0

Example 2 T∃x∃yPxy T∃y∃xPxy `0,0

Example 3 T∃y∀xPxy T∀x∃yPxy `0,0

Example 4 - T∃y(∃xPx→ Py) `1,0

Example 5 T∀x∀y(Rxy → Ryx) T∀x∀y(Rxy → Rxx) `1,0

T∀x∀y∀z((Rxy ∧Ryz)→ Rxz)
Example 6 T∀x∀y(Pxy → Pyx) F∃x(Rx ∧ ¬Bx) `1,0

T∀x(Rx↔ ∃yPxy)
T∀x(Bx↔ ∃yPyx)

Example 7 T∃x(∃yAy → Bx) T∃yAy → ∃xBx `1,0

Example 8 T∀x∀y(Rxy → ∃z(Gxz ∧Gzy)) T∀x∀y((Rxy ∧ Cx)→ Cy) `2,2

T∀x∀y(Gxy → ∃z(Bxz ∧Bzy))
T∀x∀y((Bxy ∧ Cx)→ Cy)

Example 9 ∀x∀y∀z((Bxy ∧Byz)→ Bxz) ∀x∀y∀z((Cxy ∧ Cyz)→ Cxz) `5,3

∀x∀y(Cxy ↔ ∃w∃z(Fwx ∧ Fzy ∧Bwz))
∀x∀y∀z((Fxy ∧ Fzy)→ Bxz)

Table 5.1: Examples of derivations in Depth Bounded First-Order Logics.

and conclusion. After all, the quantificational analyticity of this derivation should
come as no surprise, for the monadic part of first order logic cannot be synthetic.

Therefore, we now move to examine some cases involving polyadic predicates.
Consider Example 2 and Example 3, which are the only valid quantifier shifts
involving the existential quantifier. Again, in both of them, we find that the
individuals occurring in the derivations do not exceed the number of those already
thought in the premises. To put it in another way, the number of individuals that
is necessary to understand the premise ‘there exists somebody that loves someone
else’ is also sufficient to derive from this sentence the conclusion that ‘there exists
somebody that is loved by someone else’. However, it is fair to mention that
this result, viz. that the quantifier shifts are analytic inferences from not only the
propositional but also the quantificational side, contradicts one passage in Hintikka
(1973, VIII, 8, p. 193). Here, the Finnish philosopher suggests that the only ‘easy’
inferences of first-order logic that are also synthetic are exactly the quantifiers
shifts, but he does not explain in details this affirmation that, we think, seems to
be against his point of view on this matter that prevails in his corpus.

Example 3 gives us the opportunity to underline another important issue. In-
dividual b is introduced at step 3 through an application of the T∀E rule, which,
recall, can be used with whatever term. If we had introduced a instead of b,
we would have obtained the formula TPaa: but then, at step 4, we would have
obtained the formula T∃yPyy because of the uniformity requirement on substitu-
tions. And if that wasn’t enough, we could not have applied rule T∀I at step 5,
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because the individual a was critic and not generic.
The second set of derivations (Examples 4-7) are all carried out in the logic

`1,0. Since there are no premises, the derivation shown in the Example 4 cannot
start but with an application of the PB rule introducing a new individual, that
we have named a. This derivation shows the importance of not having given in
to the temptation of imposing restrictions on the terms occurring in the formula
introduced by PB that we have discussed in Section 5.3.2. For here the introduction
of a through PB is the only reasonable way to start this deduction. Moreover, this
example underlines that in the definition of the notion of quantificational depth
it is essential to consider the maximum degree not only of the premises, but also
of the conclusion of the derivation. Examples 5, 6 and 7 propose other cases in
which the employment of one piece of virtual information cannot be avoided, but,
at the same time, the quantificational depth is still equal to zero.

The third set of derivations (Examples 8-9) is the most interesting one, because
not only propositional depth, but also quantificational depth is greater than zero.
The first of these derivations is the formal translation of the kind of reasoning that
solved the example that we have discussed in Section 4.2.1:

P1 : ∀x∀y(Rxy → ∃z(Gxz ∧Gzy))
P2 : ∀x∀y(Gxy → ∃z(Bxz ∧Bzy))
P3 : ∀x∀y((Bxy ∧ Cx)→ Cy)
C : ∀x∀y((Rxy ∧ Cx)→ Cy).

This confirms the heuristic value of the reasoning pattern through configura-
tions of individuals that has been suggested by Hintikka. Example 919 proposes a
slightly more complicated situation, for the quantificational depth is five instead
of three:

P1: ∀x∀y∀z((Bxy ∧Byz)→ Bxz)
P2: ∀x∀y(Cxy ↔ ∃w∃z(Fwx ∧ Fzy ∧Bwz))
P3: ∀x∀y∀z((Fxy ∧ Fzy)→ Bxz)
C: ∀x∀y∀z((Cxy ∧ Cyz)→ Cxz).

But the representation of the configurations of the individuals involved in the
premises, the conclusion and the intermediate step could be used as a guide through
the derivation (see below).

19The justification for each step is not reported due to space constraints.
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1. T∃x(Ax ∧Bx) [Ass.]
2. TAa ∧Ba [T∃E 1]
3. TAa [T ∧ E 2]
4. TBa [T ∧ E 2]
5. T∃xAx [T∃I 3]
6. T∃xBx [T∃I 4]
7. T∃xAx ∧ ∃xBx [T ∧ I 5,6]

Example 1

1. T∃x∃yPxy [Ass.]
2. T∃yPay [T∃E 1]
3. TPab [T∃E 2]
4. T∃xPxb [T∃I 3]
5. T∃y∃xPxy [T∃I 4]

Example 2

1. T∃y∀xPxy [Ass.]
2. T∀xPxa [T∃E 1]
3. TPba [T∀E 2]
4. T∃yPby [T∃I 3]
5. T∀x∃yPxy [T∀I 4]

Example 3
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1. TPa [PB]
2. T∃xPx→ Pa [T → I 1]
3. T∃y(∃xPx→ Py) [T∃I 2]
4.

FPa [PB]
F∃xPx [F∃I 1]
T∃xPx→ Pa [T → I 2]
T∃y(∃xPx→ Py) [T∃I 3]

5. T∃y(∃xPx→ Py)

Example 4

1. T∀x∀y(Rxy → Ryx) [Ass.]
2. T∀x∀y∀z((Rxy ∧Ryz)→ Rxz) [Ass.]
3. T∀y(Ray → Rya) [T∀E 1]
4. TRab→ Rba [T∀E 3]
5. T∀y∀z((Ray ∧Ryz)→ Raz) [T∀E 2]
6. T∀z((Rab ∧Rbz)→ Raz) [T∀E 5]
7. T (Rab ∧Rba)→ Raa [T∀E 6]

8. TRab [PB]
9. TRba [T → E 4,8]
10. TRab ∧Rba [T ∧ I 8,9]
11. TRaa [T → E 7,10]
12. TRab→ Raa [T → I 11]

FRab [PB]
TRab→ Raa [T → I 8]

13. TRab→ Raa
14. T∀y(Ray → Raa) [T∀E 1]
15. T∀x∀y(Rxy → Rxx) [T∀I 14]

Example 5
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1. T∀x∀y(Pxy → Pyx) [Ass.]
2. T∀x(Rx↔ ∃yPxy) [Ass.]
3. T∀x(Bx↔ ∃yPyx) [Ass.]
4. T∀y(Pay → Pya) [T∀E 1]
5. TPab→ Pba [T∀E 4]
6. TRa↔ ∃yPay [T∀E 2]
7. TBa↔ ∃yPya [T∀E 3]

8. TRa [PB]
9. T∃yPay [T ↔ E 6,8]
10. TPab [T∃E 9]
11. TPba [T → E 5,10]
12. T∃yPya [T∃I11]
13. TBa [T ↔ E 7,12]
14. F¬Ba [F¬I 13]
15. FRa ∧ ¬Ba [F ∧ I 14]

FRa [PB]
FRa∧¬Ba [T ∧ I 8]

16. FRa ∧ ¬Ba
17. F∃x(Rx ∧ ¬Bx) [T∃I 16]

Example 6

1. T∃x(∃yAy → Bx) [Ass.]
2. T∃yAy → Ba [T∃E 1]

3. T∃yAy [PB]
4. TBa [T → E 2,3]
5. T∃xBx [T∃I 4]
6. T∃yAy → ∃xBx [T → I 5]

F∃yAy [PB]
T∃yAy → ∃xBx [T → I 3]

7. T∃yAy → ∃xBx
Example 7
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1. T∀x∀y(Rxy → ∃z(Gxz ∧Gzy)) [Ass.]
2. T∀x∀y(Gxy → ∃z(Bxz ∧Bzy)) [Ass.]
3. T∀x∀y((Bxy ∧ Cx)→ Cy) [Ass.]
4. T∀y(Ray → ∃z(Gaz ∧Gzy)) [T∀E 1]
5. TRab→ ∃z(Gaz ∧Gzb) [T∀E 4]

6. TRab [PB]
7. T∃z(Gaz ∧Gzb) [T → E 5,6]
8. TGac ∧Gcb [T∃E 7]
9. TGac [T ∧ E 8]
10. TGcb [T ∧ E 8]
11. T∀y(Gay → ∃z(Baz ∧Bzy)) [T∀E 2]
12. TGac→ ∃z(Baz ∧Bzc) [T∀E 11]
13. T∃z(Baz ∧Bzc) [T → E 9,12]
14. TBad ∧Bdc [T∃E 13]
15. TBad [T ∧ E 14]
16. TBdc [T ∧ E 14]
17. T∀y(Gcy → ∃z(Bcz ∧Bzy)) [T∀E 2]
18. TGcb→ ∃z(Bcz ∧Bzb) [T∀E 17]
19. T∃z(Bcz ∧Bzb) [T → E 10,18]
20. TBce ∧Beb [T∃E 19]
21. TBce [T ∧ E 20]
22. TBeb [T ∧ E 20]
23. T∀y((Bay ∧ Ca)→ Cy) [T∀E 3]
24. T (Bad ∧ Ca)→ Cd [T∀E 23]

25. TCa [PB]
26. TBad ∧ Ca [T ∧ I 15,25]
27. TCd [T → E 24,26]
28. T∀y((Bdy ∧Cd)→ Cy) [T∀E 3]
29. T (Bdc ∧ Cd)→ Cc [T∀E 28]
30. TBdc ∧ Cd [T ∧ I 16,27]
31. TCc [T → E] 29,30
32. T∀y((Bcy ∧ Cc)→ Cy) [T∀E 3]
33. T (Bce ∧ Cc)→ Ce [T∀E 32]
34. TBce ∧ Cc [T ∧ I 21,31]
35. TCe [T → E] 33,34
36. T∀y((Bey ∧ Ce)→ Cy) [T∀E 3]
37. T (Beb ∧ Ce)→ Cb [T∀E 36]
38. TBeb ∧ Ce [T ∧ I 22,35]
39. TCb [T → E 37,38]
40. T (Rab ∧ Ca)→ Cb [T → I 39]

FCa [PB]
FRab ∧ Ca [F ∧ I 25]
T (Rab∧Ca)→ Cb [T → I 26]

41. T (Rab ∧ Ca)→ Cb

FRab [PB]
FRab ∧ Ca [F ∧ I 6]
T (Rab∧Ca)→ Cb [T → I 7]

42. T (Rab ∧ Ca)→ Cb
43. T∀y(Ray ∧ Ca)→ Cy [T∀I 42]
44. T∀x∀y(Rxy ∧ Cx)→ Cy [T∀I 43]

Example 8
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(a) Premise P1.
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(c) Premise P3.
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(d) Conclusion C.
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(e) Intermediate step

Configuration of individuals of the Example 9.
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1. T∀x∀y∀z(Bxy ∧Byz → Bxz) [Ass.]
2. T∀x∀y(Cxy ↔ ∃w∃z(Fwx ∧ Fzy ∧Bwz)) [Ass.]
3. T∀x∀y∀z((Fxy ∧ Fzy)→ Bxz) [Ass.]
4. T∀y(Cay ↔ ∃w∃z(Fwa ∧ Fzy ∧Bwz))
5. TCab↔ ∃w∃z(Fwa ∧ Fzb ∧Bwz)
6. TCab
7. ∃w∃z(Fwa ∧ Fzb ∧Bwz)
8. ∃z(Fda ∧ Fzb ∧Bdz)
9. Fda ∧ Feb ∧Bde
10. TFda
11. TFeb
12. TBde
13. T∀y(Cby ↔ ∃w∃z(Fwb ∧ Fzy ∧Bwz))
14. TCbc↔ ∃w∃z(Fwb ∧ Fzc ∧Bwz)
15. TCbc
16. T∃w∃z(Fwb ∧ Fzc ∧Bwz)
17. T∃z(Ffb ∧ Fzc ∧Bfz)
18. TFfb ∧ Fgc ∧Bfg
19. TFfb
20. TFgc
21. TBfg
22. T∀y∀z((Fey ∧ Fzy)→ Bez)
23. T∀z((Feb ∧ Fzb)→ Bez)
24. T (Feb ∧ Ffb)→ Bef)
25. TFeb ∧ Ffb
26. TBef
27. T∀y∀z((Bdy ∧Byz)→ Bdz)
28. T∀z((Bde ∧Bez)→ Bdz)
29. T (Bde ∧Bef)→ Bdf)
30. TBde ∧Bef
31. TBdf
32. T∀z((Bdf ∧Bfz)→ Bdz)
33. T (Bdf ∧Bfg)→ Bdg)
34. TBdf ∧Bfg
35. TBdg
36. TCac↔ ∃w∃z(Fwa ∧ Fzc ∧Bwz)
37. TCac
38. T (Cab ∧ Cbc)→ Cac
39.
40.
41.
42.
43.
44.
45.
46.
47.

FCac
F∃w∃z(Fwa∧Fzc∧Bwz)
F∃z(Fda ∧ Fzc ∧Bdz)
F (Fda ∧ Fgc ∧Bdg)

TFda
F (Fgc ∧Bdg)

TFgc
FBdg
x

FFgc
x

x

FFda
x

x

48. T (Cab ∧ Cbc)→ Cac

FCbc
FCab ∧ Cbc
T (Cab∧Cbc)→ Cac

49. T (Cab ∧ Cbc)→ Cac

FCab
FCab ∧ Cbc
T (Cab∧Cbc)→ Cac

50. T (Cab ∧ Cbc)→ Cac
51. T∀z((Cab ∧ Cbz)→ Caz)
52. T∀y∀z((Cay ∧ Cyz)→ Caz)
53. T∀x∀y∀z((Cxy ∧ Cyz)→ Cxz)

Example 9



CHAPTER 5. DEPTH BOUNDED FIRST-ORDER LOGICS 222



Chapter 6

Depth Bounded Epistemic Logics

6.1 Analyticity of logic and logical omniscience

The assumption of the traditional tenet that logic is analytic and tautological
amounts, in the epistemic context, to the assumption of the principle of logical
omniscience, which states that:

(LO) Individuals know all the logical consequences of what they know.

If we admit that logical inferences are true in virtue of the meaning of the logical
operators and do not have informational content because the information conveyed
by their conclusion is contained in the premises, then we shall assume that agents
are able to derive immediately all the consequences of the information they possess
and, thus, to know them. In other words, we are obliged to accept that individuals
are logical omniscient if we maintain that carrying out logical inferences does not
require any kind of cognitive effort. If the conclusion of an inference is contained
in the premises, why should an agent ignore the conclusion once she is aware of
the premises?

In the previous Chapter we have proposed a family of logical systems that vin-
dicated the idea that logic is synthetic. We now aim at realizing the same project
in the epistemic field, that is, we shall criticize the principle of logical omniscience
and shall provide a characterization of knowledge free of that assumption.

6.1.1 Classical epistemic logics and logical omniscience

In this Section, we provide the basic definitions of classical epistemic logics and we
show the formal characterization of the principle of logical omniscience that they
satisfy.

The idea behind classical epistemic logics is that of representing the ignorance
of an agent in terms of the situations that she considers possible, which are called

223
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the epistemic alternatives of the agent. So, for instance, the fact that individual i
doesn’t know whether she has turned off the gas or not is described by saying that
i considers exactly two situations as possible, the former in which the gas is on,
the latter in which it is off. This intuition is formally conveyed using Kripke’s se-
mantics: thus classical epistemic logics are extensions of the normal modal system
K, which interprets modal operators in epistemic terms.

The alphabet A of classical epistemic logics consists of: a finite set of agentsA =
{1, 2, 3, . . . , n}; an enumerable set of propositional parameters P = {p1, p2, . . . }; a
set of connectives C = {¬,∧,∨,→}; a set of epistemic operators O = {Ki | i ∈ A}
and a set of auxiliary symbols S = {( , )}. The set L of well-formed formulae is
recursively defined as follows:

• L0 = P

• Ln+1 = {¬B,KiB,B ∨ C,B → C,B ∧ C|B,C ∈ Ln and i ∈ A}

• L =
⋃
n∈N
Ln

A Kripke model for n agents over P is defined as a tuple M = (S, v, R1, . . . , Rn),
where S is a set of states of affairs or possible worlds; v is function relative to a
state that assigns to each propositional parameter a truth value (true or false);
for every agent i, Ri is i’s accessibility relation defined as a binary relation on
S. Given a certain situation s ∈ S, the epistemic alternatives of an agent i at u
are represented by all those states u that are accessible for i from s through the
relation Ri.

The systems we are considering are distinguished by the requirements imposed
on the accessibility relations Ri:

• If we require that the relations Ri are reflexive (∀i ∈ A,∀s ∈ S, (s, s) ∈ Ri),
we obtain the logical system T . This constraint amounts to the introduction
of the T -axiom: `T KiB → B. This axiom requires the truth of what is
known.

• If we require that the relations Ri are not only reflexive, but also transitive
(∀i ∈ A, ∀s, t, u ∈ S, if (s, t) ∈ Ri and (t, u) ∈ Ri, then (s, u) ∈ Ri), we
obtain the logical system S4. This constraint amounts to the introduction,
beyond the T -axiom, also of the S4-axiom: `S4 KiB → KiKiB. This is
called ‘positive introspection axiom’ and requires agents to know what they
know.

• If we require that the relations Ri are not only reflexive and transitive, but
also symmetric (∀i ∈ A,∀s, t ∈ S, if (s, t) ∈ Ri, then (t, s) ∈ Ri), we obtain
the logical system S5. This constraint amounts to the introduction, beyond
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the T -axiom and the S4-axiom, also of the S5-axiom: `S5 ¬KiB → Ki¬KiB.
This is called ‘negative introspection axiom’ and requires agents to know the
information they ignore1.

In what follows, we will employ the system S5. This logic is particularly simple and
intuitive: accessibility relations turns out to be equivalence relations that split the
set of states of affairs into classes of equivalence, whose members are reciprocally
accessible. Each class of equivalence represents a set of worlds that are epistemic
alternatives one of the other.

The recursive definition of what it means for a formula A to be satisfied (or to
hold) at a given state s in a model M (written (M, s) � A) is as follows:

• (M, s) � p (for p ∈ P) if and only if v(s)(p) = true

• (M, s) � ¬A if and only if (M, s) 2 A

• (M, s) � A ∨B if and only if (M, s) � A or (M, s) � B

• (M, s) � A→ B if and only if (M, s) 2 A or (M, s) � B

• (M, s) � A ∧B if and only if (M, s) � A and (M, s) � B

• (M, s) � KiA if and only (M, u) � A for all u ∈ S such that (s, u) ∈ Ri.

Although she could be uncertain about the nature of the actual world, agent i has
no doubt about the truth value of formula A at state s because A is true in all
her epistemic alternatives. In this sense, we could really say that i knows that A
is true.

Then, a formula A is said to be satisfiable in a model M if and only if it holds
at some state in M and it is said to be valid in a model M, written M � A, if and
only if it holds at all states in M. For Γ ⊆ L and A ∈ L, the notions of logical
consequence and logical validity are defined as follows:

• A is a logical consequence of Γ, written Γ � A, if and only if M � A for all
models M such that M � B for every B ∈ Γ;

• A is a logical validity, written ∅ � A, if and only if M � A for all models M.

Every classical epistemic logic that we have examined so far satisfies the prin-
ciple of omniscience, which has been formally defined by van Ditmarsch, van der
Hoek and Kooi (2007) as the set of the following propositions:

(LO1) ` (KiB ∧ Ki(B → C))→ KiC
1However, S4-axiom is redundant and can be derived from the other ones.
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(LO2) If ` B, then ` KiB

(LO3) If ` B → C, then ` KiB → KiC

(LO4) If ` B ↔ C, then ` KiB ↔ KiC

(LO5) ` (KiB ∧ KiC)→ Ki(B ∧ C)

(LO6) ` KiB → Ki(B ∨ C)

These assumptions are inevitable consequences of the use of normal modal logics
to characterize the notion of knowledge. For LO1 is equivalent to the distribution
axiom (` Ki(B → C)→ (KiB → KiC)) that, together with the necessitation rule
LO2, is at the basis of all the systems we have mentioned so far and LO3-LO6
follow from the combination of LO1 and LO2.

6.1.2 The muddy children puzzle in S5

In this Section, we introduce, as a case study, the muddy children puzzle, which
is the subject of a considerable amount of logical and philosophical literature and
a good example of the subtleties that can arise when considering knowledge in
groups of individuals. This puzzle, which is a variant of the well known wise men
and the cheating wives puzzles2, goes as follows:

The muddy children puzzle. Imagine n children playing together.
The mother of these children has told them that if they get dirty there
will be severe consequences. So, of course, each child wants to keep
clean, but each would love to see the others get dirty. Now it happens
during their play that some of the children, say k of them, get mud on
their foreheads. So, of course, no one says a thing. Along comes the
father, who says, ‘At least one of you has mud on your forehead’, thus
expressing a fact known to each of them before he spoke (if k > 1). The
father then asks the following question, over and over: ‘Does any of
you know whether you have mud on your forehead?’ Assuming that all
the children are perceptive, intelligent, truthful, and that they answer
simultaneously, what will happen?

Classical solution. The first k−1 times the father asks the question,
all the children will say ‘No’, but then the kth time the children with
muddy foreheads will answer ‘Yes’ (Fagin, Halpern, Moses and Vardi,
1995, p. 4).

2See Dolev, Halpern and Moses (1986).
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We now explain the classical solution to the puzzle through the means of the
logical system S5. This will give us the opportunity to clarify the definitions given
in Section 6.1.1 and, above all, to show the assumption of logical omniscience at
work. This analysis is taken from Fagin, Halpern, Moses and Vardi (1995) with
minor modifications. We are going to consider the case in which there are four
children, so A = {1, 2, 3, 4}.

Since we are interested in whether or not a given child’s forehead is muddy, we
take P = {pi | i ∈ A}, where each pi stands for ‘child i has a muddy forehead’,
and we use P as a shorthand notation for (((p1 ∨ p2) ∨ p3) ∨ p4) ∈ L, which says
‘at least one child has a muddy forehead’.

Then, we have to distinguish the following moments of the story:

t0 is before the father speaks
t1 is after the father has said that P
t2 is after all the children have answered ‘No’ to q1

t3 is after all the children have answered ‘No’ to q2

t4 is after all the children have answered ‘No’ to q3

where qm is the father mth question ‘Does any of you know whether you have mud
on your forehead?’.

First, the situation before the father speaks (time t0) can be characterized by
a Kripke model Mt0 = (S, v, R1, R2, R3, R4) defined as follows:

• A possible state s ∈ S can be described as a tuple of 0’s and 1’s of the form
(x1x2x3x4), where xi = 1 if child i is muddy and xi = 0 otherwise. Thus, for
example, (0101) says that precisely child 2 and child 4 are muddy. The set
S consists of 24 states, one for each of the possible tuples (x1x2x3x4).

• The evaluation v is defined so that (M, (x1x2x3x4)) � pi if and only if xi = 1;
it follows that (M, (x1x2x3x4)) � P if and only if xi = 1 for some xi.

• Last, we have to define the Ri relations. Suppose that the actual situation is
described by the tuple (0101). Since child 1 can see the foreheads of all the
children except herself, her only doubt is about whether she has mud on her
own forehead: thus, child 1 considers two situations as possible, (0101) and
(0100). In general, at a certain state s, child i has two epistemic alternatives,
which agree in all components except the ith component. As a result, we
take (s, u) ∈ Ri if and only if s and u agree in all components except the ith

component. This definition makes every Ri an equivalence relation.

Mt0 has the graphical representation given in Figure 6.1. Each node represents a
state (x1x2x3x4); a green edge linking the states s and u indicates that both (s, u)
and (u, s) are included in R1; an orange edge indicates that both (s, u) and (u, s)
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(0000)

(0001)

(0010)

(0011)

(0100)

(0101)

(0110)

(0111)

(1000)

(1001)

(1101)

(1100)

(1010)

(1110)

(1011)

(1111)

Figure 6.1: Kripke model Mt0 for the muddy children puzzle with n = 4 at time
t0.

are included in R2; a blue edge indicates that both (s, u) and (u, s) are included
in R3 and a red edge indicates that both (s, u) and (u, s) are included in R4. We
have omitted self loops: nonetheless, each couple (s, s) is included in each Ri.

It turns out that in model Mt0 , according to the intuitions, each child knows
which of the other children have muddy foreheads, but none of the children knows
whether her own forehead is muddy or not, since at any state every child considers
the other alternative possible. Thus, if the father does not announce that P , the
muddy children will never be able to conclude that their foreheads are muddy.
For instance, we have that (Mt0 , (1010)) � K1p3, since when the actual situation is
(1010), child 3 is muddy in both worlds that child 1 considers possible. Nonetheless,
we have that (Mt0 , (1010)) � ¬K1p1: child 1 does not know that she is muddy
because at the other world that she considers possible, (0010), her forehead is not
muddy.

Consider then what happens at time t1, that is, after the father speaks. Assume
that at the actual state there is only one child with a muddy forehead: that child
sees that no one else is muddy and, since she knows that there is at least one
muddy child, she concludes that she must be the one. The situation at time t1
can be represented by model Mt1 , which is exactly the same as Mt0 except for the
accessibility relations, which get ‘truncated’. All the edges between the node (0000)
and the nodes with exactly one 1 disappear, since after the father speaks every child
will not consider it possible that no one has a muddy forehead. Mt1 is represented
in the first graph of Figure 6.2. As a result, we have that (Mt1 , (1000)) � K1p1,
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Figure 6.2: Kripke models Mt1 and Mt2 for the muddy children puzzle with n = 4
at time t1 and t2 respectively.

(Mt1 , (0100)) � K2p2, (Mt1 , (0010)) � K3p3 and (Mt1 , (0001)) � K4p4.
Notice that the public nature of the father’s announcement not only let every

child know that P , but it also let every child know that every child knows that P ,
but it also let every child know that every child knows that every child knows that
P and so on. In one word, after the father speaks it becomes common knowledge
that at least one child has a muddy forehead. To appreciate the difference between
simple knowledge and common knowledge notice that in the states in which there
are at least two muddy children, every child knows that at least one child has a
muddy forehead even before the father speaks: however, at time t1, the information
that P becomes common knowledge among the children. This point is crucial for
the next moments of the story.

Consider what happens at time t2, that is, after all the children have answered
‘No’ to the father’s first question. This information changes the state of knowledge.
The result of this change can be represented through another model, Mt2 , which is
exactly the same as Mt1 , except for the accessibility relations, which get ‘truncated’.
All the edges between all the nodes with exactly one 1 and all the nodes with
exactly two 1 all disappear. Mt2 is represented in the second graph of Figure 6.2.

The justification goes as follows. If the actual situation were described by the
tuple (1000), then before the father speaks child 1 would consider both (1000) and
(0000) possible. Once the father speaks it is common knowledge that (0000) is
not possible, so every child knows that child 1 would then know that the situation
is described by (1000), that is to say, that her forehead is muddy. Once everyone
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Figure 6.3: Kripke models Mt3 and Mt4 for the muddy children puzzle with n = 4
at time t3 and t4 respectively.

answers ‘No’ to the father’s first question, it is common knowledge that the situ-
ation cannot be (1000), for otherwise child 1 would have spoken. The same goes
for the other nodes with exactly one 1.

So, for example, (Mt2 , (1100)) � K1p1 and (Mt2 , (1100)) � K2p2: in state (1100),
child 1 and child 2 recognize the fact that they are muddy. Both 1 and 2 answer
‘No’ to q1, because of the mud on the other. But when 2 says ‘No’, 1 realizes that
she must be muddy, for otherwise 2 would have known that the mud was on her
forehead and would have answered ‘Yes’ the first time. 2 goes through the same
reasoning. The same happens for all the other states in which there are exactly
two muddy children.

As a result, it turns out that after all the children have answered ‘No’ to the
father’s first question, it is common knowledge that at least two children have
muddy foreheads.

As Fagin, Halpern, Moses and Vardi (1995) point out, similar arguments can
be used to show that the model Mtk that characterizes the situation at time tk
(which is after the children have answered ‘No’ to the father’s k − 1th question)
can be obtained from the model Mtk−1

that characterizes the situation at time tk−1

(which is after the children have answered ‘No’ to the father’s k − 2th question)
simply disconnecting the nodes with at most k−1 ones from the rest of the graph.
Mt3 and Mt4 are depicted in Figure 6.3. If, in some node s, it becomes common
knowledge that a node t is impossible, then for every node u reachable from s,
the edge from u to t is eliminated. So, at time tk, that is, after k − 1 rounds of
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questioning, it is common knowledge that at least k children have mud on their
foreheads and all of them will recognize that they are dirty and will speak. This
result holds for an arbitrary n.

The analysis of the muddy children puzzle through the means of classical epis-
temic logic S5 is made possible by a number of assumptions over and above the
hypothesis explicitly stated in the story that ‘the children are perceptive, intel-
ligent and truthful’. Indeed, the analysis just concluded makes also use of the
following assumptions:

1) It’s common knowledge among the children that the father is truthful;

2) It’s common knowledge among the children that every child is truthful;

3) It’s common knowledge among the children that every child can and does see
the others;

4) It’s common knowledge among the children that every child can and does hear
the father and the others;

5) It’s common knowledge among the children that none of the children can see
her forehead;

6) It’s common knowledge among the children that none of the children tells the
others whether they are muddy or not.

For suppose that 1) does not hold because the father is not truthful: then, at time
t1 the children cannot use the information that P . If 1) does not hold because the
information that the father is truthful is not common knowledge, then at time t2
and at state (1100), child 1 cannot realize that she is muddy: she cannot exclude
that 2 has answered ‘No’ to q1 because she lacks the information that P . Then,
suppose that it’s not common knowledge that every child can and does see the
others, against 5). Again, at time t2 and at state (1100), child 1 cannot realize
that she is muddy, that is, she cannot exclude her epistemic alternative (0100):
indeed, 2 could have answered ‘No’ to q1 because 2 could have not seen that all
the other children were clean. Similar arguments can be used to show that the
other features are indeed assumed.

But, of course, the assumption that interests most us here is the following:

(LOc): It’s common knowledge that every individual is logically om-
niscient.

Roughly put, it is clear that if the children were not omniscient, they could not
conclude that their forehead is muddy; at the same time, if their logical omniscience
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were not common knowledge, they could not employ the negative answer that the
others give to the father as the sign that it is their forehead to be muddy. The
precise result of weakening the (LOc) assumption will be amply discussed in Section
6.2 (see especially Section 6.2.11).

6.1.3 Ideal and realistic agents

It is clear that classical epistemic logics, in so far as they validate the principle of
logical omniscience, characterize a notion of knowledge which is possible only for
ideal agents, viz. imaginary entities with unbounded resources, time, memory and
computational capacities. It is a matter of fact that no concrete individual can
know all the logical consequences of what she knows. For instance, an individual
could know the rules of chess without knowing whether the White has a winning
strategy or could know all the axioms of Peano arithmetic without knowing all of
its theorems. The muddy children puzzle itself is a clear example of the unrealistic
feature of this assumption: it is sufficient to take an arbitrary large number of
muddy children k to imagine that concrete individuals will not be able to figure
out that they ‘knew’ that their foreheads were muddy, even though in principle
they have enough information to do so.

However, it is sometimes suggested3 that the study of logically omniscient
agents could be indirectly useful to understand the behavior of realistic individ-
uals. First, any idealization could be interpreted as the equilibrium state that a
certain system could attain without the pressure of external forces: this is the case,
for example, of the study of frictionless planes in physics. Seen in this perspec-
tive, concrete individuals might fail to derive the consequences of what they know
because of external obstacles, such as the arrival of new information, but, neverthe-
less, they tend toward the equilibrium at which they satisfy conditions of perfect
rationality. Second, the behavior of ideal agents might be taken as the normative
ideal that concrete agents should approximate: the divergence between ideal and
real is interpreted as a deficiency that concrete individuals should minimize.

These motivations are not particularly convincing. The limits on computational
resources cannot be simply considered as external forces: realistic agents not only
are not omniscient, but also cannot be omniscient. In other words, the standard
represented by ideal agents is a normative ideal that cannot be attained in practice.
Some scholars go one step further and maintain that logical omniscience cannot
even play the role of a regulative ideal, because it is not a desirable property:

Even if a genie could grant us the capacity for arithmetical omniscience,
it’s not clear we’d have reason to accept it. Only a small number of the
theorems are likely to be of any practical or theoretical use to us; why

3See Stalnaker (1991).
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must we clutter up our minds with all the rest? (MacFarlane, 2004, p.
11)

The so-called ‘clutter avoidance principle’, which has been put forward by Harman
(1986) to support his rejection of the normative character of logic for human
reasoning, holds that an agent should not clutter his mind with trivial consequences
derived from the information she possesses. A similar insistence on the practical
consequences of logical omniscience can be found in Gabbay and Woods (2003),
who maintain that the logical validity of an inference is not a sufficient reason for
its normativity:

Consider the case in which John comes home and sees smoke pouring
from an open door (S, for short). John then reasons as follow: ‘Since
S, then S or 2+2=4; since S or 2+2=4, then S or Copenhagen is the
capital of Denmark’. Meanwhile John’s house burns to the ground
(Gabbay and Woods, 2003, p. 608).

Although the latter criticisms seem to be too extreme to be accepted4 (for who
would really deny the opportunity to be logically omniscient?), it should be clear
at this point that classical epistemic logics can be profitably used to study neither
directly nor indirectly realistic agents. This is what led numerous scholars to
formulate nonstandard logics that aim at characterizing the kind of knowledge
held by bounded individuals. We now consider three of them by way of example.

First, in order to avoid the assumptions of logical omniscience, Rantala (1982)
modifies the notion of possible worlds and introduces, among the states, a set of
worlds that are called ‘impossible’ or ‘non-normal’5, in which classical logical rules
do not hold and everything can happen. For instance, it could be the case that in
an impossible world two sentences are true, but their conjunction is not. The idea
is that these worlds, although logically impossible, could be regarded as possible.
Impossible worlds are interpreted as fictions created by the agents and, as such,
are used only as epistemic alternatives, while the notions of logical consequence
and validity are defined only on possible worlds. Here, the assumption of logical
omniscience does not work. For suppose that C is a logical consequence of B and
that an individual knows that B: in this case, B is true in every epistemic alterna-
tive of the individual, but in an impossible world C could be false, notwithstanding
the truth of B.

Second, Fagin, Halpern and Vardi (1995) propose the ‘Nonstandard Propo-
sitional System’ (NPL) as an attempt to weaken the ‘logical’ aspects of logical
omniscience. NPL modifies the classical notion of truth through a nonstandard

4It is not clear to us why a logically omniscient agent should have storage capacity problems
and difficulties in recalling the information she needs.

5This notion is due to Hintikka (1975).
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propositional logic that is strictly interwoven with relevant and four-values logics;
at the same time, it preserves the traditional definition of knowledge as truth in
all possible worlds. The result is a logical system that assumes the principles of
logical omniscience, but these principles are now relative to a nonstandard logic.

Third, the ‘systems of awareness’ presented by Fagin and Halpern (1987) in-
troduce a new modal operator for every agent of the system, where CiA means
that ‘agent i is aware that A’. The idea is that truth in every possible world is
a necessary, but not a sufficient condition for knowledge: in order to know that
certain sentence is true, agents must be aware of that sentence. As a result, two
are the notions of knowledge for every agent proposed by these systems: on the one
hand, ‘implicit knowledge’, which corresponds to the definition given by classical
epistemic logics; on the other hand, ‘explicit knowledge’, which is defined through
the notion of awareness. Depending on the restrictions imposed on the operator
C, it is clearly possible to avoid the principles of logical omniscience.

In what follows, we are going to propose a nonstandard system to avoid the
classical assumptions of logical omniscience. In particular, we shall follow Fagin,
Halpern and Vardi (1995) in weakening the principles of logical omniscience by
relying on a nonstandard propositional logic; at the same time, the systems we
present can be interpreted as the result of imposing certain requirements on the
notion of awareness introduced by Fagin and Halpern (1987).

6.1.4 Degrees of logical omniscience

At the beginning of this Chapter, we have seen that the principles of logical om-
niscience are epistemic consequences of the traditional tenet that logic is analytic
and tautological. In agreement with the thesis of this work that logic is not an-
alytic, we are now going to present a new family of logical systems, that we call
‘Depth Bounded Epistemic Logics’, where the classical assumptions of logical om-
niscience are rejected. How could this project be carried out? The answer to this
question can be found in the basic idea of depth bounded logics.

On the one hand, we have seen in the previous Chapter that not every logical
inference can be said to be analytic, because most of them require a remarkable
computational effort; for this reason, we have assumed that syntheticity is a matter
of degree and that every logical inference is characterized by a certain degree of
syntheticity. On the other hand, if we move to the epistemic context, we could say
that not every individual can be said to be logically omniscient, because most of
them do not have the necessary resources to derive all the logical consequences of
what they know; for this reason, we could assume that logical omniscience itself
is a matter of degree and that every agent is characterized by a certain degree of
logical omniscience. Intuitively, the idea is that an agent’s ability of computing the
information that she actually possesses can be given a gradual characterization:
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the greater an agent’s ability, the more similar to an ideal agent. In other words,
the assumption of logical omniscience holding in classical epistemic logics:

(LO) Individuals know all the logical consequences of what they know.

shall thus be replaced in Depth Bounded Epistemic Logics by this assumption:

(LODBELs) Every individual’s degree of logical omniscience is at least
k, for some fixed k ∈ N.

How then could the ‘degree of omniscience of an individual’ be defined? Again,
we turn to the notion of ‘depth of an inference’ put forward by D’Agostino and
Floridi (2009) to obtain the following equivalent definitions:

(DO) Agent i has a degree of logical omniscience equal to k or, equiv-
alently, agent i’s depth is k if and only if:

• i can carry out all the propositional synthetic inferences of degree
k;

• i can carry out all the propositional inferences of depth k;

• i can manage in her reasoning at most k nested pieces of virtual
information;

• i’s propositional reasoning follows the consequence relation of
depth k.

The relationship between the notions of ‘depth of an inference’ and of ‘agent’s
depth’ can be established as follows. While the depth of an inference is a mea-
sure of the objective difficulty of an inference, the agent’s depth is a measure of
the subjective capability of an individual. Notice that, although the two primitive
notions of the informational semantics do have an epistemic flavour (see Section
5.1.2), Depth Bounded Boolean Logics are propositional logics: they lack both a
definition of knowledge and a definition of the interaction between agents’ knowl-
edge. Nonetheless, these two features are necessary to analyze situations, such as
that of the muddy children puzzle, focused on the notion of knowledge in group of
agents.

As we have seen in Section 6.1.2, classical epistemic logics assume not only
(LO), but also:

(LOc): It’s common knowledge that every individual is logically om-
niscient.

But also this hypothesis is an idealization. Therefore, in line with our handling
of assumption (LO), we are going drop assumption (LOc) and we are going to
study each of the following cases:
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(u) None of the individuals knows that every individual’s depth is
at least k, for some fixed k ∈ N;
(e) Every individual knows that every individual’s depth is at least
k, for some fixed k ∈ N;
(c) It’s common knowledge that every individual’s depth is at least
k, for some fixed k ∈ N.

According to (u), each agent ignores that the other agents’ depth is at least k
and assumes that it is zero. (e) assumes that every agent knows the other agents’
depth, but does not know whether this is common knowledge or not: that is to
say, the agents’ depth has been privately announced. Therefore every agent, while
knowing that the other agents’ depth is k, assumes that the other agents do not
have this information and that they assume that the other agents’ depth is zero.
According to (c), the agents’ depth is common knowledge, that is to say, it has been
publicly announced. Therefore every agent knows that the other agents’ depth is
at least k and knows that all the other agents have this piece of information.

6.2 Depth Bounded Epistemic Logics

6.2.1 The structure

Depth Bounded Epistemic Logics are both modal epistemic logics, because they
characterize the notion of knowledge employing a semantics with accessibility re-
lations and states, and depth bounded logics, because they characterize the notion
of knowledge in a gradual way on the basis of the computational resources of the
individuals and thus avoid the problem of logical omniscience. The structure of
this family can be described as follows.

We propose three infinite hierarchies of logics: DBELu, DBELe and DBELc.
Every hierarchy DBELx (where x is one of u, e and c) consists of an infinite chain
of logics, which starts with a basic element, called DBELx0, and continues with
DBELx1, DBELx2, . . . , DBELxk, DBELxk+1, . . . .

Every logic shares with all the other logics in each hierarchy the same definitions
of language and model. In particular, it is useful to say in advance some features
of these models. First, every model characterizes each agent with two parameters:
her set of initial information and her depth. Second, the class of all the models is
calledM0. Third, for every k ∈ N,Mk is the class of models in which each agent
has at least depth k. Thus it follows that for every k ∈ N, Mk+1 ⊆Mk.

We then define three notions of validity in a model: DBELu-validity in M,
DBELe-validity in M and DBELc-validity in M. Every logic shares with all the
other logics in the same hierarchy the same notion of validity in a model. The first
notion of validity rests on the assumption (u); the second on (e); the third on (c).



CHAPTER 6. DEPTH BOUNDED EPISTEMIC LOGICS 237

Logics Common notions
DBELu0 DBELu0 validity

DBELu DBELu1 DBELu validity DBELu1 validity
DBELu... in M DBELu... validity
DBELun DBELun validity
DBELe0 DBELe0 validity

DBEL DBELe DBELe1 Language DBELe validity DBELe1 validity
DBELe... Model in M DBELe... validity
DBELen DBELen validity
DBELc0 DBELc0 validity

DBELc DBELc1 DBELc validity DBELc1 validity
DBELc... in M DBELc... validity
DBELcn DBELcn validity

Figure 6.4: Notions shared by Depth Bounded Epistemic Logics.

The first hierarchy, DBELu, whose logics share the same notion of validity in a
model, DBELu-validity in M, is construed as follows. Each logic in the hierarchy is
characterized by a different notion of validity. In the basic logic of DBELu, called
DBELu0, the notion of validity, called DBELu0-validity, is defined as DBELu-validity
in all the models M ∈ M0. Then, in the first logic of DBELu, called DBELu1, the
notion of validity, called DBELu1-validity, is defined as DBELu-validity in all the
models M ∈M1. In general, in the kth logic of DBELu, called DBELuk, the notion
of validity, called DBELuk-validity, is defined as DBELu-validity in all the models
M ∈ Mk. It follows that every logic DBELuk+1 is an extension of previous logic
DBELuk in the hierarchy: the set of models for DBELuk+1, Mk+1, is a subset of
the set of models for DBELuk,Mk and the set of all the DBELuk-valid formulae is
a subset of the set of all the DBELuk+1-valid formulae.

The other two hierarchies of logics are construed in the same way. Each logic
in the hierarchy DBELe, while sharing the same notion of validity in a model
with the other logics in the hierarchy, DBELe-validity in M, is characterized by a
specific notion of validity, DBELek-validity. Every logic DBELek+1 is an extension
of previous logic DBELek in the hierarchy DBELe. And each logic in the hierarchy
DBELc, while sharing the same notion of validity in a model with the other logics in
the hierarchy, DBELc-validity in M, is characterized by a specific notion of validity,
DBELck-validity. Every logic DBELck+1 is an extension of previous logic DBELck
in the hierarchy DBELc.

Each logic DBELxk is thus characterized by two assumptions. The first assump-
tion is one of (u), (e) and (c) and indicates to which hierarchy DBELxk belongs.
The second assumption, which determines at which level of the hierarchy DBELxk
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stands, regards the lowest depth admitted. To sum up:

DBELxk is the Depth Bounded Epistemic Logic, whose assumption
regarding the knowledge of the agents’ depth is (x), for (x) one of
(u), (e) and (c) and whose assumption regarding the agents’ depth is
that every child’s depth is at least k.

Last, Depth Bounded Epistemic Logics assume a prescriptive point of view,
that is to say, they characterize the kind of knowledge that a rational individual
could and ought to have given some initial information. This characterization ac-
counts for the computational and cognitive limits of the agents involved and thus,
unlike classical epistemic logics, it is not a normative ideal unattainable for realist
agents. In particular, the assumptions of logical omniscience are unproblematic:
they ask an individual to know the logical consequences that she is able to derive
from what she knows in virtue of her computational resources. This characteri-
zation is neither descriptive: the focus is not on what realistic agents do actually
know, but rather on what they could and thus ought to know.

6.2.2 Language and grammar

In this and in the following Sections (6.2.2, 6.2.3, 6.2.4 and 6.2.5), we introduce the
notions of language and model for Depth Bounded Epistemic Logics paying specific
attention to the comparison with the analogous definitions for classical epistemic
logics on the one hand and Depth Bounded Boolean Logics on the other. All the
definitions and the propositions of the Sections just mentioned are common to
every logic of each of the three hierarchies.

The alphabet A and the language L for Depth Bounded Epistemic Logics are
exactly the same as those for classical epistemic logic (see Section 6.1.1), except
that the alphabet is augmented with a set of prefixes T = {t, f}. These two notions
will be referred to as Definition 1 and Definition 2 respectively. Moreover, we
will use the following abbreviations:

1. ¬n is a shorthand notation for
n times︷ ︸︸ ︷¬ . . .¬ for any n ∈ N.

2. LA is a shorthand notation for
n⋃

m=1

Am = A×A2× · · · ×An = A∪{A×A}

∪ · · · ∪ {A× · · · × A}. So for instance (3) ∈ LA and (7, 4) ∈ LA. Intuitively,
LA is the set containing all the singletons, couples, triples, . . . , n-tuples of
agents.

3. For every i ∈ A, CAPi is a shorthand notation for (℘(P)×{i})×(℘(P)×A).
So for instance ((∅, 1), ({p, q}, 3)) ∈ CAP1 and (({p, q}, 3), (∅, 1)) ∈ CAP3.
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Intuitively, for every agent i, CAPi is a set of couples, whose elements are
themselves couples. The first couple is composed by a subset of proposi-
tional parameters and agent i; the second couple is composed by a subset of
propositional parameters and an agent in A.

4. For every i ∈ A, LAPi is a shorthand notation for
n⋃

m=1

(℘(P)×{i})× (℘(P)×

A)m. So for instance (({p, q}, 3), (∅, 1)) ∈ LAP3 and ((∅, 8), ({q, r, s}, 7),
({r}, 4)) ∈ LAP8. Intuitively, for ever agent i, LAPi is a set of n-tuples, whose
first element is a couple composed by a subset of propositional parameters
and agent i and the other elements are couples composed by a subset of
propositional parameters and an agent in A. As a result, for each i ∈ A,
CAPi ⊆ LAPi.

5. For any list of agents (j1, j2, . . . , jm) ∈ LA, K(j1,j2,...,jm) is a shorthand notation
for Kj1Kj2 . . .Kjm . So for instance K(3) abbreviates K3 and K(7,4) abbreviates
K7K4.

6. K is a shorthand notation for any (possibly empty) string Kj1Kj2 . . .Kjm
where j1, j2, . . . , jm ∈ A.

7. L is a shorthand notation for any (possibly empty) string Lj1Lj2 . . . Ljm where
j1, j2, . . . , jm ∈ A and each Lji is one of Kji and ¬Kji .

We prefer to shift from formulae to signed formulae, that is to say, expressions
of the kind tB and fB where B is any sentence in L. The symbols in T are
not new logical operators, since they cannot be used inside a sentence, nor can
they be iterated. They can only be used to prefix a sentence: they stand in front
of a sentence and their scope is the entire sentence that follows. Their intuitive
meaning is that the prefixed sentence is evaluated as true and false respectively.
So for instance tB is read it’s true that B and fKiB is read it’s false that i knows
that B. Formally:

Definition 3 (Set of signed well-formed formulae). The set Ls of signed
well-formed formulae based on L consists of all and only the expressions of the
form sB such that B ∈ L and s ∈ T . s̄B is the conjugate of sB, that is, fB if
s = t and tB if s = f .

6.2.3 Intermezzo I

Before introducing the notion of a model, we need some preliminary definitions.
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Definition 4 (Coherent set). A coherent set Γ is a set of signed well-formed
formulae (Γ ⊆ Ls), such that for no B ∈ L, sB and s̄B are both in Γ. G is the set
of the coherent sets Γ.

Definition 5 (Admissible set). For any B,C ∈ L and for any j ∈ A, a coher-
ent set Γ is an admissible set if and only if Γ violates all of the following conditions:

1. t¬B ∈ Γ and tB ∈ Γ
2. f¬B ∈ Γ and fB ∈ Γ

3. tB ∨ C ∈ Γ, fB ∈ Γ and fC ∈ Γ
4. fB ∨ C ∈ Γ and tB ∈ Γ
5. fB ∨ C ∈ Γ and tC ∈ Γ

6. tB → C ∈ Γ, tB ∈ Γ and fC ∈ Γ
7. fB → C ∈ Γ and fB ∈ Γ
8. fB → C ∈ Γ and tC ∈ Γ

9. fB ∧ C ∈ Γ, tB ∈ Γ and tC ∈ Γ
10. tB ∧ C ∈ Γ and fB ∈ Γ
11. tB ∧ C ∈ Γ and fC ∈ Γ

12. tKKjLB ∈ Γ and fKLB ∈ Γ
13. tKjB ∈ Γ and fKjKjB ∈ Γ

A ⊆ G is the set of the admissible sets Γ.

A coherent set Γ ∈ G is a set of sentences that is not immediately contradictory and
an admissible set Γ ∈ A is a set of sentences which is not immediately inconsistent.
The conditions listed above define in a negative way the informational meaning of
the connectives and the operators following the main idea that grounds the second
formulation of the informational semantics for Depth Bounded Boolean Logics
presented in Section 5.1.2. In order to count as admissible, a set cannot include any
instantiation of these conditions, because each of these instantiations is a case of
explicit or analytic inconsistency, that is to say, an inconsistency that anyone, who
understands the informational meaning of the connectives and of the operators,
can and has to recognize as such. In other words, each condition represents an
inconsistency that can be detected without drawing upon any reasoning based on
virtual information. In particular, conditions 1.-11. determine the informational
meaning of the connectives rephrasing the definition offered by D’Agostino and
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Floridi (2009) for signed sentences and we argue that conditions 12. and 13. are
natural completions of the previous ones in a modal epistemic context, as far as
they define the informational meaning of the epistemic operators.

Let’s start with condition 12. First, suppose that both K and L are empty. In
this case, the requirement, saying that it is inadmissible a situation in which it’s
true that some agent j knows that B (tKjB) and it’s false that B (fB), rules out
as inadmissible the falsity of one’s and others’ knowledge. In this specific case,
the analogy with the T axiom of classical epistemic logic is made evident. Axiom
T , also known as the knowledge or truth axiom, characterizes the weakest system
of epistemic interest: it demands the truth of what is known (KiB → B) and
corresponds to the reflexivity of the accessibility relation (∀s ∈ S, (s, s) ∈ Ri).
Now, requirement 12. is more general: it also classifies as inadmissible cases such
as the one in which tK1K2¬K3B and fK1¬K3B. If it’s true that 1 knows that 2
knows that 3 does not know that B, then it’s inadmissible that it’s false that 1
knows that 3 does not know that B, and vice versa.

We turn now to condition 13. This requirement rules out as inadmissible
situations in which it’s true that some agent j knows that B (tKjB) and it’s false
that j knows that she knows that B (fKjKjB). This condition is analogous to
the S4 axiom of classical epistemic logic. Axiom S4, also known as the positive
introspection axiom, captures another desirable property of knowledge: it demands
knowledge of what is known (KiB → KiKi B) and corresponds to the transitivity
of the accessibility relation (∀s, t, u ∈ S, if (s, t) ∈ Ri and (t, u) ∈ Ri, then
(s, u) ∈ Ri).

Notice that the property of negative introspection, for which an agent has to
know that she doesn’t know that B and which is captured by axiom S5 of classical
epistemic logic (¬KiB → Ki¬KiB), is not incorporated into the inadmissibility
requirement. Negative introspection does not contribute to define the informa-
tional meaning of the epistemic operator because it’s a too strong requirement: it
is indeed plausible that agent i has both the piece of information that it’s false that
j knows that B and that it’s false that agent j knows that she doesn’t know that
B. However we will see that once agent i can derive from her set of information
that fKiB, that is to say, once that she is aware of her ignorance regarding the
truth value of B, i has to conclude that tKi¬KiB.

Notice that a set Γ can be admissible without being classically consistent. For
instance Λ1 = {tp ∧ q, fp ∨ q} and Λ2 = {tp ∧ q, t¬p} are admissible, because
they do not satisfy any of the conditions above, although they are both classically
inconsistent.

Proposition 1 establishes the properties of reflexivity and monotonicity for
admissible sets.
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Proposition 1. For any Γ,∆ ⊆ Ls and B ∈ L:

1. if sB ∈ Γ, then Γ ∪ {s̄B} /∈ A;

2. if Γ ∪ {sB} /∈ A, then Γ ∪∆ ∪ {sB} /∈ A.

Definition 6 is essential to introduce the notion of an accessibility relation.

Definition 6 (Refinement of an admissible set).

1. For any Γ ∈ A, the set of the refinements of Γ, RΓ, is defined as follows:

RΓ = {∆ ∈ A | Γ ⊆ ∆}

2. For any Γ ∈ A and for any (possibly empty) set of propositional parameters
J = {q1, . . . , qj} ∈ ℘(P), the set of the refinements of Γ on J , RJΓ, is defined
as follows:

RJΓ = {∆ ∈ RΓ | s1q1, . . . , sjqj ∈ ∆ for si ∈ T and qi ∈ J}

3. For any Γ ∈ A and for any (possibly empty) set of propositional parameters
J = {q1, . . . , qj} ∈ ℘(P), ∆ is a minimal refinement of Γ on J if and only if
∆ ∈ RJΓ and |∆| ≤ |Λ| for every Λ ∈ RJΓ.

4. For any k ∈ N, the set of sets of refinements of admissible sets on at most k
propositional parameters, Rk, is defined as follows:

Rk = {RJ∆ | J ∈ ℘(P), 0 ≤ |J | ≤ k and ∆ ∈ A}

Definition 6.1 says that a refinement of an admissible set Γ is a superset of Γ
which is itself admissible. So for instance, let Γ = {tp ∧ q}. Then, ∆1 = Γ, ∆2 =
{tp∧q, fr}, ∆3 = {tp∧q, fp∨q} are refinements of Γ, while ∆4 = {tp∧q, fp} and
∆5 = ∅ are not. Definition 6.2 says that a refinement of Γ on a set of propositional
parameters J is an admissible superset of Γ which includes an evaluation of J . So
for instance, for Γ as above and J = {r}, ∆2 = {tp∧ q, fr}, ∆6 = {tp∧ q, tr} and
∆7 = {tp ∧ q, fr, tr ∨ s} are refinements of Γ on J , while ∆8 = {tp ∧ q, tr ∨ r} is
not. Definition 6.3 says that the minimal refinements of Γ on a set of propositional
parameters J are smallest refinements of Γ on a set of propositional parameters
J . So for instance, for Γ and J as above, ∆2 and ∆6 are minimal, while ∆7 is
not. Definition 6.4 says that Rk is a set that consists of all and only the sets
of refinements of admissible sets on at most k propositional parameters. So for
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instance, for Γ as before and k = 1, R
{r}
Γ , R

{p}
Γ and R

{q}
Γ∪{tp} are all included in R1,

while R
{p,q}
Γ is not.

Proposition 2 establishes some properties regarding the refinements that are
going to be used later on. In particular, it states the properties of reflexivity (1.),
monotonicity (2. and 3.) and transitivity (4.).

Proposition 2. Let J = {q1, . . . , qj} ∈ ℘(P), L = {r1, . . . , rl} ∈ ℘(P) and
N = {r1, . . . , rl, rl+1, . . . , rn} ∈ ℘(P), where L ⊆ N . For any Γ,Γ∪{sA},∆,Λ ∈ A
and for any A ∈ L:

1. Γ ∈ R∅
Γ .

2. If ∆ ∈ RJΓ∪{sA}, then ∆ ∈ RJΓ.

3. If ∆ ∈ RNΓ , then ∆ ∈ RLΓ.

4. If ∆ ∈ RJΓ and Λ ∈ RL∆, then Λ ∈ RJΓ, Λ ∈ RLΓ and Λ ∈ RJ∪LΓ .

6.2.4 Models

Given the preliminary definitions of the first intermezzo, we are now ready to
introduce the notion of a model.

Definition 7 (Model, M). A model for n agents over P is a tuple M =
(A, ϕM, δM, I1, I2, . . . , In), where:

1. A is the set of admissible sets;

2. ϕM : A −→ A.
ϕM is a function that assigns to each agent i an admissible set Γ. We will
write ϕM

i as a shorthand for ϕM(i).

3. δM : A −→ N.
δM is a function that assigns to each agent i a natural number k. We will
write δMi as a shorthand for δM(i).

4. For all i ∈ A, Ii = (ϕM
i ,RδMi ).

We now explain the elements that contribute to the definition of a model for Depth
Bounded Epistemic Logics.

For every i ∈ A, ϕM
i is interpreted as the initial set of information available to i.

The codomain of ϕM is A, that is to say, the set of initial information that an agent
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is given has to be admissible. For suppose that an agent is given from some external
source an inadmissible set of information: since it is assumed her understanding
of the informational meaning of the connectives and of the operators, she is going
to recognize the inadmissible set as such and, to quote Dummett (1991, p. 209),
“once the contradiction has been discovered, no one is going to go through it: to
exploit it to show that the train leaves at 11:52 or that the next Pope will be a
woman”.

We now start a comparison between epistemic classical logics and the proposed
approach focusing first of all on the incompleteness of the information possessed by
an agent. Epistemic classical logics give a characterization of knowledge of ideal
agents who have incomplete information and unbounded computational power.
The incompleteness of the information possessed by an agent is represented in
classical epistemic logics by the individual’s uncertainty in recognizing the actual
world (see Section 6.1.1): possible worlds depict epistemic alternatives and the
accessibility relation of an agent indicates which are the epistemic alternatives of
that individual at a certain state. In Depth Bounded Epistemic Logics instead, the
possible incompleteness of an agent’s information is represented by the fact that
her initial set of information is by no means bounded to include for each sentence
C ∈ L either tC or fC. In other words, any admissible set can be represented by
an evaluation that satisfies certain constraints: the incompleteness of an agent’s
information is given by the fact that such an evaluation is partial, that is to say,
it allows epistemic gaps. These gaps are exactly the pieces of information that the
agent does not actually possess.

The second point of the comparison between the classical approach and the
present account concerns the evaluations. Each model for classical epistemic logics
includes an evaluation v (see Section 6.1.1), which is relative to a certain world
and which assigns to every propositional parameter a truth value. In our context
however the focus is not on the alethic property of a certain proposition, but rather
on its informational ones, that is to say, on its being or not really possessed by
certain agents. This is the reason for which the classical evaluation v, which is
relative to a certain model, is substituted in our account by a plenty of evaluations,
each of which is not only relative to a certain model, but also to a specific agent.
These evaluations are expressed as admissible sets determined by the function ϕ.

Then, for every i ∈ A, δMi represents agent’s i depth according to M as defined
and discussed in Section 5.1.2. As a result, for every model M, the functions ϕM

and δM together give a complete characterization of the agents in A. The idea
that this construction tries to convey is that an agent’s knowledge depends not
only on the information that she has, as in classical epistemic logics, but also
on her capacity to compute the initial information available to her. This crucial
point is reflected by the definition of an agent’s interpretation, which is completely
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determined by the two functions discussed above. For all i ∈ A, the interpretation
of agent i is given as a couple: its former element is the initial set of information
available to i, ϕM

i ; its latter element is the set of the accessibility relations of agent
i, which consists of the set of sets of refinements on at most δMi propositional
parameters. In other words, an agent, whose depth is k, is and has to be able to
access to all the refinements on at most k propositional parameters.

The last point of our comparison between epistemic classical logics and the
present approach regards the accessibility relations. In epistemic classical logics,
possible worlds and accessibility relations are used to describe an agent’s ignorance;
as we have seen, in Depth Bounded Epistemic Logics, an agent’s epistemic gaps are
conveyed by the possible incompleteness of the initial set of information. Thus, in
the latter logics, the accessibility relations are employed to reach a different aim,
that of characterizing the computational resources available to an individual.

Definition 8 introduces different classes of models and it is essential to present
the extensions of the basis of each of the three hierarchies.

Definition 8 (Class of models, Mk). For every k ∈ N, Mk is the class of
models M satisfying the following condition:

for every i ∈ A, δMi ≥ k.

Mk is the class of models in which each agent’s depth is at least k and it follows
by definition that for every k ∈ N, Mk+1 ⊆Mk and Mk ⊆M0.

6.2.5 Intermezzo II

In this second intermezzo, we introduce two concepts that are needed to define the
three notions of validity in a model on which the three hierarchies are grounded
respectively.

Definition 9 specifies which are the information in a set Γ that are available to
a list of agents g.

Definition 9 (Set of information in Γ available to g). For any Γ ⊆ Ls,
B ∈ L, g ∈ LA and n,m ∈ N:

Σg(Γ) = {t¬2mB | tKg¬2nB ∈ Γ} ∪ {f¬2mB | tKg¬2n+1B ∈ Γ}

Consider the case in which Γ is the initial set of information of some agent i
of some model M (Γ = ϕM

i ). Σj(ϕ
M
i ) is the set of information that agent i can

legitimately assume that j possesses: in other words, Σj(ϕ
M
i ) represents i’s set

of information concerning j’s information or the information that i knows that j
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possesses. So, in general, Σg(Γ) is the set of information that Γ allows to suppose
that the list of agents g has. For instance, let Γ = {tK3K2B, tK3¬C}. Then,
tK2B, t¬C, fC, f¬¬C ∈ Σ(3)(Γ) and tB ∈ Σ(3,2)(Γ).

Definition 10 introduces in a recursive way the notion of the analytic conse-
quences of an admissible set.

Definition 10 (Set of analytic consequences of Γ). For any Γ ⊆ Ls, the
set of analytic consequences of Γ, W(Γ), is the subset of Ls recursively defined as
follows:

• W0(Γ) = Γ

• Wn+1(Γ) = {sB | Wn(Γ) ∪ {s̄B} /∈ A}∪
∪
⋃
g∈LA
{tKg¬2nB | Σg(Wn(Γ)) ∪ {f¬2mB} /∈ A}∪

∪
⋃
g∈LA
{tKg¬2n+1B | Σg(Wn(Γ)) ∪ {t¬2mB} /∈ A}

• W(Γ) =
⋃
n∈N

Wn(Γ)

W(Γ) includes only sentences that follow from Γ in virtue of the informational
meaning of the connectives and the operators under the assumption that the other
agents are aware of this meaning too. Consider the recursive step of this definition
(Wn+1(Γ)). The first set of the union is construed on the basis of the single candi-
date principle put forward by D’Agostino (2010) and presented in Section 5.1.2: it
includes those sentences whose conjugate added to Wn(Γ) makes the resulting set
inadmissible. The second and the third sets of the union that define Wn+1(Γ) rest
on the assumption that the other agents are aware of the informational meaning
of the connectives and of the operators and that they use the single candidate
principle too. One has to conclude that it is true that j knows that A (¬A) if the
falsity (resp. the truth) of A is immediately ruled out by the information that j is
known to possess together with some of the accepted constraints that define the
meaning of the logical operators.

Consider the set Λ = {tp ∧ q, t¬p}. Λ ∈ A because Λ does not satisfy any
of the inadmissibility conditions of Definition 5. However, W(Λ) /∈ A. Indeed,
fp ∈ W1(Λ) because W0(Λ) ∪ {tp} /∈ A since tp ∈ W0(Λ) ∪ {tp} and t¬p ∈
W0(Λ) ∪ {tp} satisfy the inadmissibility condition 1. Nonetheless, W1(Λ) /∈ A,
because fp ∈ W1(Λ) and tp ∧ q ∈ W0(Λ) ⊆ W1(Λ) satisfy the inadmissibility
condition 10. By the property of monotonicity of admissible set (Proposition
1.2) it follows that W(Λ) /∈ A. This is an example of an admissible set whose
set of analytic consequence is inadmissible and we say that sets of this kind are
analytically inconsistent.
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Proposition 3 establishes the property of reflexivity (1.), monotonicity (2.) and
transitivity (3.) of W, while Proposition 4 states several facts, which are going to
be useful later on, regarding some interactions between the structures we have seen
so far.

Proposition 3. For any Γ,∆ ⊆ Ls and B,C ∈ L:

1. If sB ∈ Γ, then sB ∈ W(Γ)

2. If sB ∈ W(Γ), then sB ∈ W(Γ ∪∆)

3. If sB ∈ W(Γ) and sC ∈ W(Γ ∪ {sB}), then sC ∈ W(Γ)

Proposition 4. For any Γ ⊆ Ls, B ∈ L, n ∈ N and g ∈ LA:

1. If Γ /∈ A, then W(Γ) /∈ A

2. If W(Γ) /∈ A, then sB ∈ W(Γ) for any B ∈ L

3. If sB ∈ Wn(Γ), then sB ∈ Wn+1(Γ)

4. W(Γ) ∪ {s̄B} /∈ A if and only if sB ∈ W(Γ).

5. W(Γ) = W(W(Γ))

6. Σg(Γ) ⊆ W(Γ)

7. If sB ∈ W(Σg(Γ)), then, for s = t, tKgB ∈ W(Γ) and, for s = f , tKg¬B ∈
W(Γ)

8. If sB ∈ W(∆) for any minimal refinement ∆ of Γ on J , then sB ∈ W(Λ) for
every Λ ∈ RJΓ.

Proposition 4.1 says that an inadmissible set is analytically inconsistent. Proposi-
tion 4.2 states that anything follows from an analytically inconsistent set. Propo-
sitions 4.3, 4.4 and 4.5 clarify relevant features of the structure of W. Propositions
4.6 and 4.7 deal with interaction between Σg(Γ) and W(Γ): the former states that
the set of information that Γ allows to suppose that the list of agents g has is a
subset of the analytic consequences of Γ itself; the latter says that if a sentence
belongs to the analytic consequences of the set of information that Γ allows to
suppose that the list of agents g has, then the fact that g knows that sentence is
an analytic consequence of Γ. Proposition 4.8, which is essential for the three no-
tions of satisfiability that follow, establishes that a sentence, which is an analytic
consequence of every minimal refinement of Γ on J , is an analytic consequence of
any refinement of Γ on J .
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6.2.6 The muddy children puzzle in Depth Bounded Epis-
temic Logics I

In this Section, we are going to see the definitions above at work in the formal-
ization of the muddy children puzzle in the case in which there are four agents.
The assumptions regarding A and P are the same as those made for the system
S5 (see Section 6.1.1). Now, consider the following sets of signed sentences:

U = {tP, fp2, fp3, fp4}
X = {tK1P, t¬p2 → K1¬p2, tK1¬p3, tK1¬p4, fK1p1}
Y = {tK2K1P, tK2(¬p2 → K1¬p2), t¬p3 → K2K1¬p3, tK2K1¬p4,

tK2¬K1p1, fK2p2}
Z = {tK1K2K3P, tK3K2(¬p2 → K1¬p2), tK3(¬p3 → K2K1¬p3),

t¬p4 → K3K2K1¬p4, tK3K2¬K1p1, tK3¬K2p2, fK3p3}

(6.1)

Each set in (6.1) is both coherent and admissible, since none of the inadmissibility
conditions is satisfied. Moreover, we have that:

tp1 ∈ W(U) (6.2)

This result comes from the following steps:

• t(p1 ∨ p2) ∨ p3 ∈ W1(U) because Λ1 = W0(U) ∪ {f(p1 ∨ p2) ∨ p3} /∈ A, since
tP, fp4, f(p1 ∨ p2) ∨ p3 ∈ Λ1 satisfying the inadmissibility condition 3;

• tp1 ∨ p2 ∈ W1(U) because Λ2 = W1(U) ∪ {fp1 ∨ p2} /∈ A, since t(p1 ∨ p2) ∨
p3, fp3, fp1 ∨ p2 ∈ Λ2 satisfying the inadmissibility condition 3;

• tp1 ∈ W2(U) because Λ3 = W2(U) ∪ {fp1} /∈ A, since tp1 ∨ p2, fp2, fp1 ∈ Λ3

satisfying the inadmissibility condition 3;

• tp1 ∈ W(U)

The following example is slightly more complex:

tp2 ∈ W(∆) for ∆ = X ∪ {fp2} (6.3)

• t¬p2 ∈ W1(∆) because Λ1 = W0(∆) ∪ {f¬p2} /∈ A, since fp2, f¬p2 ∈ Λ1

satisfying the inadmissibility condition 2;

• tK1((p1∨p2)∨p3) ∈ W1(∆) because tP, fp4 ∈ Σ1(W0(∆)) and Λ2 = Σ1(W0(∆))∪
{f(p1 ∨ p2) ∨ p3} /∈ A, since tP, fp4, f(p1 ∨ p2) ∨ p3 ∈ Λ2 satisfying the inad-
missibility condition 3;
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• tK1¬p2 ∈ W2(∆) because Λ3 = W0(∆) ∪ {fK1¬p2} /∈ A, since t¬p2, t¬p2 →
K1¬p2, fK1¬p2 ∈ Λ3 satisfying the inadmissibility condition 6;

• tK1(p1 ∨ p2) ∈ W2(∆) because t(p1 ∨ p2) ∨ p3, fp3 ∈ Σ1(W1(∆)) and Λ4 =
Σ1(W1(∆))∪{fp1∨p2} /∈ A, since t(p1∨p2)∨p3, fp3, fp1∨p2 ∈ Λ4 satisfying
the inadmissibility condition 3;

• tK1p1 ∈ W3(∆) because tp1 ∨ p2, fp2 ∈ Σ1(W2(∆)) and Λ5 = Σ1(W2(∆)) ∪
{fp1} /∈ A, since tp1 ∨ p2, fp2, fp1 ∈ Λ5 satisfying the inadmissibility condi-
tion 3;

• tK1p1, fK1p1 ∈ W(∆): this means that, although ∆ ∈ A, W(∆) /∈ A. By
Proposition 4.2, it follows that tp2 ∈ W(∆).

A model for the muddy children puzzle with four agents is a structure of the
kind M = (A, ϕM, δM, I1, I2, I3, I4). Every model has to characterize the information
and the computational resources of each child at a specific time t (see Section
6.1.1). Notice that although each agent can individually fail to recognize that a
given situation is the actual one, the group of children has distributed knowledge
of it: if they had been allowed to talk to each other pooling their initial set of
information together, the children would have recognized the actual situation. As
a result, every model for the muddy children puzzle describes a specific situation:
however, this feature is not valid in general. We are going to consider the following
situations, which do not exhaust all the possibilities: sA = (1000), sB = (1100),
sC = (1110) and sD = (1111).

In Section 6.2.10, which is again devoted to the muddy children puzzle, we are
going to work with the models presented below, which again do not exhaust all
the possibilities.

M1 sA t1 ϕM1

1 = U , tp1 ∈ ϕM1

z ∀z ∈ A− {1} δM
1

1 = 0

M2 sB t2 ϕM2

2 = X, tp2 ∈ ϕM2

z ∀z ∈ A− {2} δM
2

1 = δM
2

2 = δM
2

3 = δM
2

4 = 0

M3 sB t2 ϕM3

2 = X, tp2 ∈ ϕM3

z ∀z ∈ A− {2} δM
3

2 = 1

M4 sC t3 ϕM4

3 = Y , tp3 ∈ ϕM4

z ∀z ∈ A− {3} δM
4

1 = δM
4

2 = δM
4

3 = δM
4

4 = 1

M5 sC t3 ϕM5

3 = Y , tp3 ∈ ϕM5

z ∀z ∈ A− {3} δM
5

3 = 2, δM
5

1 = δM
5

2 = 0

M6 sC t3 ϕM6

3 = Y , tp3 ∈ ϕM6

z ∀z ∈ A− {3} δM
6

3 = 2, δM
6

2 = 1

M7 sD t4 ϕM7

4 = Z, tp4 ∈ ϕM7

z ∀z ∈ A− {4} δM
7

1 = δM
7

2 = δM
7

3 = δM
7

4 = 2

M8 sD t4 ϕM8

4 = Z, tp4 ∈ ϕM8

z ∀z ∈ A− {4} δM
8

1 = δM
8

2 = δM
8

3 = 1, δM
8

4 = 3

M9 sD t4 ϕM9

4 = Z, tp4 ∈ ϕM9

z ∀z ∈ A− {4} δM
9

2 = 1, δM
9

3 = 2, δM
9

4 = 3
(6.4)

Consider the first line of (6.4), which describes only the relevant features of M1.
M1 is a model that characterizes situation sA at time t1, because child 1’s initial
set of information is U (see (6.1)) and the other children have the information that
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tp1. Since at time t1 the information that at least one of the children is muddy has
been publicly announced, we have that tP ∈ ϕM1

1 . fp2, fp3, fp4 ∈ ϕM1

1 because it
is assumed that each child can see the others. Moreover, in M1, child 1’s depth is
zero. The same goes for the other models.

So, for instance, M6 is a model that characterizes situation sC at time t3,
because child 3’s initial set of information is Y (see (6.1)) and the other children
have the information that tp3. tK2K1P ∈ ϕM6

3 , because at time t1 the information
that at least one of the children is muddy has been publicly announced; tK2(¬p2 →
K1¬p2), t¬p3 → K1K2¬p3, tK2K1¬p4 ∈ ϕM6

3 because of the assumption that it is
common knowledge that each child can see the others; tK2¬K1p1 ∈ ϕM6

3 because
at time t2 child 1 has publicly announced her ignorance about p1 and fK2p2 ∈ ϕM6

3

because at time t3 child 2 has publicly announced her ignorance about p2. Notice
that ϕM6

3 includes only those formulae, which are relevant for child 3’s reasoning.
Moreover, in M6, child 3’s depth is two and child 2’s depth is one.

6.2.7 Three notions of validity in a model

In classical epistemic logics (see Section 6.1.1), once the notion of model M =
(S, v, R1, . . . , Rn) has been given, it is defined what it means for a formula to hold
at some state s in a model M. A formula is then said to be satisfiable in M if it
holds at some state s of M and it is said to be valid in M if it holds at all state s
of M. The definitions below for Depth Bounded Epistemic Logics follow the same
path, except for two fundamental elements.

First, for what has been said in Section 6.2.4 concerning the comparison be-
tween models for classical epistemic logics and models for Depth Bounded Epis-
temic Logics, instead of the definition of holding at some state in a model, we need
to determine the notion of holding in some interpretation in a model. The shift
from states in a model to interpretations in a model is a coherent consequence of
the shift of the focus from the alethic property of sentences to the informational
ones. We are no more interested of what it means for a formula to hold at a
certain state: our aim here is to define what it means for a formula to hold in the
interpretation of an agent.

Second, instead of one notion of validity in a model, we define simultaneously
three notions of validity in a model (Definition 15): DBELu-validity in a model,
DBELe-validity in a model and DBELc-validity in a model.

The first notion is shared by all and only the logics of the first hierarchy DBELu
and rests on the definition of DBELu-holding at some interpretation Ii (Definition
11): DBELu-validity in a model characterizes those situations in which every agent
ignores the other agents’ depth according to assumption (u) as clarified in Section
6.2.1. As a result, the only kinds of reasoning that an agent i can and ought to
carry out are the following ones:
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(W) Analytical reasoning;
(V) Synthetic reasoning according to i’s depth.

The second notion of validity in a model, namely DBELe-validity in a model, is
shared by all and only the logics of the second hierarchy DBELe and rests on
the definition of DBELe-holding at some interpretation Ii (Definition 12): DBELe-
validity in a model characterizes those situations in which every agent knows the
other agents’ depth according to assumption (e) as clarified in Section 6.2.1. As a
result, the only kinds of reasoning that an agent i can and ought to carry out are
(W), (V) and

(S) Synthetic reasoning that simulates the synthetic reasoning held by
any agent j according to j and i’s depth.

The third notion of validity in a model, namely DBELc-validity in a model, is shared
by all and only the logics of the third hierarchy DBELc and rests on the definition of
DBELc-holding at some interpretation Ii (Definition 13): DBELc-validity in a model
characterizes those situations in which the agents’ depth is common knowledge
according to assumption (c) as clarified in Section 6.2.1. As a result, the only
kinds of reasoning that an agent i can and ought to carry out are (W), (V), (S)
and

(C) Synthetic reasoning that simulates the synthetic reasoning held by
any agent j that simulates the synthetic reasoning held by any agent
k and so on, according to the agents involved and i’s depth.

The formal definitions go as follows:

Definition 11 (Set of formulae DBELu-satisfied by the interpretation Ii,
Cnu(Ii)). For any model M ∈M0 and interpretation Ii ∈ M, the set of formulae
DBELu-satisfied by Ii, Cnu(Ii), is recursively defined as follows:

• Cnu0(Ii) = ϕM
i

• Cnun+1(Ii) = W(Cnun(Ii)) ∪ V(Cnun(Ii))

• Cnu(Ii) =
⋃
n∈N

Cnun(Ii)

where, for every n ∈ N, V(Cnun(Ii)) consists of all and only formulae of the kind
tKiB such that there exists some J ∈ ℘(P) for which:

1. |J | ≤ δMi and

2. for any ∆ ∈ RJCnun(Ii)
, tB ∈ W(∆).
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For any model M ∈ M0, interpretation Ii ∈ M and formula B ∈ L, we say that
Ii DBELu-satisfies sB or equivalently that sB DBELu-holds at Ii if and only if
sB ∈ Cnu(Ii).

The basic step, Cnu0(Ii), is the initial set of information given to i in M. Consider
the recursive step, Cnun+1(Ii). The former element of the union, W(Cnun(Ii)), is
the set of the analytic consequences of the previous step which formally translates
the kind of reasoning described in (W).

The latter element of the union, V(Cnun(Ii)), is the set of the synthetic conse-
quences of the previous step that i can and has to derive in virtue of her depth, that
is, the kind of reasoning indicated by (V). A formula tKiB belongs to V(Cnun(Ii))
if and only if tB is an analytic consequence of all the refinements of Cnun(Ii) on a
certain set of propositional parameters J , whose cardinality cannot be greater than
i’s depth. The idea behind this definition is that in order for B to be known by
agent i there should exists a set J which, no matter how its formulae are evaluated,
allows i to derive by analytical means that B is true from Cnun(Ii). Intuitively, J
represents the set of virtual information needed to derive B from Cnun(Ii). Notice
that |J | cannot be greater than δMi : this clause makes sure that i’s set of accessi-
bility relations RδMi includes RJ

ϕM
i

and RJCnuk(Ii)
for any k ∈ N. Moreover, according

to Proposition 4.8, in order to check whether a formula tB is an analytical con-
sequence of all the refinements of a certain Cnuk(Ii) on a given J , it is sufficient
to check whether tB is an analytical consequence of all the minimal refinements
of Γ on J . The last step of the definition assures that Cnu(Ii) is closed under the
operations described by the recursive step.

Definition 12 (Set of formulae DBELe-satisfied by the interpretation Ii,
Cne(Ii)). For any model M ∈ M0 and interpretation Ii ∈ M, the set of formulae
DBELe-satisfied by Ii, Cne(Ii), is recursively defined as follows:

• Cne0(Ii) = ϕM
i

• Cnen+1(Ii) = W(Cnen(Ii)) ∪ SV(Cnen(Ii))

• Cne(Ii) =
⋃
n∈N

Cnen(Ii)

where, for every n ∈ N, SV(Cnen(Ii)) consists of all and only formulae of the kind
tKiB such that there exists some J = ((L, i), (J, j)) ∈ CAPi for which:

1. δMi ≥ δMj
δMi ≥ |L|+ |J |
δMj ≥ |J |
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2. ∃A2 ∈ L
(
tB ∈ W(Cnen(Ii) ∪ {tKiA2}) ∧ ∀Λ ∈ RLCnen(Ii)

(
tA2 ∈ W(Λ) ∨

∃A1 ∈ L
(
tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))

(
tA1 ∈ W(∆)

))))
.

For any model M ∈ M0, interpretation Ii ∈ M and formula B ∈ L, we say that
Ii DBELe-satisfies sB or equivalently that sB DBELe-holds at Ii if and only if
sB ∈ Cne(Ii).

The latter element of the union of the recursive step, SV(Cnen(Ii)), contains both
the synthetic consequences that i can and has to derive in virtue of her depth (the
kind of reasoning described by (V)) and the synthetic consequences that i can
and has to derive simulating the synthetical reasoning that any agent is granted
to perform in virtue of her depth, which is known by i (the kind of reasoning
described by (S)).

In order for tKiB to be included in SV(Cnen(Ii)) the following conditions have
to hold. The second requirement says that, for some A2 (which can well be B
itself), tB follows analytically from Cnen(Ii) together with the fact that i knows
that A2 and for every refinement Λ of Cnen(Ii) on L, one of the following two
holds. Either tA2 is an analytical consequence of Λ (in which case tB is a synthetic
consequence of the information i has); or, (and in this case i simulates j’s synthetic
reasoning) for some A1 (which again can well be B itself), tA2 analytically follows
from Λ together with the fact that j knows that A1 and for all the refinements ∆
of the set of information that Λ allows to suppose that j has, Σj(W(Λ)), tA1 is an
analytical consequence of ∆. The first condition establishes that: first, i’s depth
has to be greater than j’s depth, that is the depth of the agent whose synthetic
reasoning is simulated by i; second, i’s depth has to be greater than the sum of
the cardinalities of J and L, which represent the sets of virtual information on
which i refines and j refines respectively; third, j’s depth has to be greater than
the cardinality of J , on which j refines. This clause makes sure that i’s set of
accessibility relations RδMi includes RLCnek(Ii)

for any k ∈ N and RJΣj(W(Λ)) for any Λ

in any RLCnek(Ii)
. Moreover, according to Proposition 4.8, in order to check whether

a formula tB is an analytical consequence of all the refinements of a certain set on
a given J , it is sufficient to check whether tB is an analytical consequence of all
the minimal refinements of that set on J .

Definition 13 (Set of formulae DBELc-satisfied by the interpretation Ii,
Cnc(Ii)). For any model M ∈ M0 and interpretation Ii ∈ M, the set of formulae
DBELc-satisfied by Ii, Cnc(Ii), is recursively defined as follows:

• Cnc0(Ii) = ϕM
i

• Cncn+1(Ii) = W(Cncn(Ii)) ∪ CSV(Cncn(Ii))
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• Cnc(Ii) =
⋃
n∈N

Cncn(Ii)

where, for every n ∈ N, CSV(Cncn(Ii)) consists of all and only formulae of the
kind tKiB such that there exists some J = ((L, i), (J1, j1), . . . , (Jn, jn)) ∈ LAPi for
which:

1. δMi ≥ δMj1
δMi ≥ |L|
∀m = 1, . . . , n, δMm ≥

n∑
k=m

|Jk|;

2. and for An ∈ L:

∃An+1

(
tB ∈ W(Cncn(Ii) ∪ {tKiAn+1}) ∧ ∀∆0 ∈ RLCncn(Ii)

(
tAn+1 ∈ W(∆0)

∨
∃An

(
tAn+1 ∈ W(∆0 ∪ {tKj1An}) ∧ ∀∆1 ∈ RJ1Σj1

(W(∆0))

(
tAn ∈ W(∆1) ∨

...
∃A3

(
tA4 ∈ W(∆n−3 ∪ {tKjn−2A3}) ∧ ∀∆n−2 ∈ R

Jn−2

Σjn−2
(W(∆n−3))

(
tA3 ∈

W(∆n−2) ∨
∃A2

(
tA3 ∈ W(∆n−2 ∪ {tKjn−1A2}) ∧ ∀∆n−1 ∈ R

Jn−1

Σjn−1
(W(∆n−2))

(
tA2 ∈

W(∆n−1) ∨
∃A1

(
tA2 ∈ W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJnΣjn (W(∆n−1))

(
tA1 ∈ W(∆n)

))
. . .
)

.

For any model M ∈ M0, interpretation Ii ∈ M and formula B ∈ L, we say that
Ii DBELc-satisfies sB or equivalently that sB DBELc-holds at Ii if and only if
sB ∈ Cnc(Ii).

The latter element of the union of the recursive step, CSV(Cncn(Ii)), contains the
synthetic consequences that i can and has to derive in virtue of her depth (the
kind of reasoning described by (V)), the synthetic consequences that i can and
has to derive simulating the synthetical reasoning that any other agent is granted
to perform in virtue of her depth, which is known by i (see (S)), and the synthetic
consequences that i can and has to derive simulating the synthetical reasoning of
any other agent j1 who is simulating the synthetic reasoning of any other agent j2

and so on (see (C)). The dimension of this chain of simulations depends in the first
place on i’s depth and also on the other agents’ depth, which is common knowledge
among the individuals. This definition is just an extension of the previous one for
SV(Cnen(Ii)).
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Proposition 5. For any Ii = (ϕM
i ,RδMi ) in any model M ∈M0, let:

• M1 ∈M0 be exactly the same as M except for the fact that I1i ∈ M1 6= Ii ∈ M

since ϕM1

i = ϕM
i ∪ {sA} for some A ∈ L, although RδM

1

i = RδMi .

• M2 ∈M0 be exactly the same as M except for the fact that I2i ∈ M2 6= Ii ∈ M

since RδM
2

i = RδMi +1, although ϕM2

i = ϕM
i .

Fix x as one of u, e, c. Then, for any B ∈ L:

1. If sB ∈ ϕM
i , then sB ∈ Cnx(Ii)

2. If sB ∈ Cnx(Ii), then sB ∈ Cnx(I1i )

3. If sB ∈ Cnx(Ii), then sB ∈ Cnx(I2i )

This proposition is valid for each of the three definitions of DBELx-holding at some
interpretation. Proposition 5.1 states that the initial information that i has in M
is included in set of formulae DBELx-satisfied by her interpretation. Proposition
5.2 shows that every sentence DBELx-satisfied by i’s interpretation in M is also
DBELx-satisfied by i’s interpretation in M1, where i is given a richer initial set
of information than before. Proposition 5.3 shows that every sentence DBELx-
satisfied by i’s interpretation in M is also DBELx-satisfied by i’s interpretation in
M2, where i is assigned a greater depth than before.

We conclude this Section with the simultaneous formal definition of the three
notions of DBELx-satisfiability in a model and DBELx-validity in a model.

Definition 14 (sB is DBELx-satisfiable in M). Fix x as one of u, e, c. For any
model M ∈M0 and formula sB ∈ Ls, we say that sB is DBELx-satisfiable in M if
and only if, for some Ii ∈ M, sB ∈ Cnx(Ii).

Definition 15 (sB is DBELx-valid in M, sB ∈ Cnx(M)). Fix x as one of u, e, c.
For any model M ∈ M0 and formula sB ∈ Ls, we say that sB is DBELx valid in
M, written sB ∈ Cnx(M), if and only if, for every Ii ∈ M, sB ∈ Cnx(Ii).

6.2.8 Infinite notions of validity and the logics DBELxk

Each logic DBELxk shares with all of the other Depth Bounded Epistemic Logics the
same notions of language and models and with all of the other logics of the same
hierarchy the same notion of validity in a model. What distinguishes DBELxk from
the other logics of the same hierarchy is, of course, a notion of logical consequence
and a derived concept of validity. We simultaneously define all of these notions as
follows:
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Definition 16 (sB is a DBELxk-consequence of Γ, sB ∈ Cnxk(Γ)). Fix x as
one of u, e, c and fix k ∈ N. For any sB ∈ Ls and Γ ∈ A, we say that sB is a
DBELxk-consequence of Γ, written sB ∈ Cnxk(Γ), if and only if, for all M ∈ Mk,
if Γ ⊆ Cnx(M), then sB ∈ Cnx(M).

Definition 17 (sB is DBELxk-valid, sB ∈ Cnxk(∅)). Fix x as one of u, e, c
and fix k ∈ N. For any sB ∈ Ls, we say that sB is DBELxk-valid, written
sB ∈ Cnxk(∅), if and only if, for all M ∈Mk, sB ∈ Cnx(M).

We now establish some properties of the relations defined above:

Proposition 6. Fix x as one of u, e, c and fix k ∈ N. For any sB ∈ Ls and
Γ ∈ A, sB is a DBELxk-consequence of Γ if and only if for all M ∈Mk and for all
Ii ∈ M, if Γ ⊆ Cnx(Ii), then sB ∈ Cnx(Ii).

Proposition 6 intuitively means that sB is a DBELxk-consequence of Γ if and only
if any agent, whose interpretation is included in any model of the classMk, is able
to derive sB from Γ under the assumption (x).

The following Proposition 7 shows that each notion of DBELxk-consequence,
Cnxk, is Tarskian: it is reflexive, monotonic and transitive.

Proposition 7. Fix x as one of u, e, c and fix k ∈ N. For all Γ,Γ ∪ {sA} ∈ A
and sA, sB ∈ Ls:

1. If sB ∈ Γ, then sB ∈ Cnxk(Γ)

2. If sB ∈ Cnxk(Γ), then sB ∈ Cnxk(Γ ∪ {sA})

3. If sA ∈ Cnxk(Γ) and sB ∈ Cnxk(Γ ∪ {sA}), then sB ∈ Cnxk(Γ)

Proposition 8. Fix x as one of u, e, c. There are no DBELx0-valid formulae.

Proposition 8 states that, for x as any of u, e, c, DBELx0 has not valid formulae
(tautologies). This is a feature that the notions of DBELx0 share with the basic
logic of the hierarchy of Depth Bounded Boolean Logics, �0. D’Agostino (2010)’s
explanation for the lack of tautologies in his system can be rephrased to justify
the inexistence of DBELx0-valid formulae:

�0 [read: DBELx0], like Belnap’s four-valued logic and the NPL system
of Fagin, Halpern and Vardi (1995), has no tautologies. This is not
surprising, however, since a tautology is a sentence that is a ‘logical
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consequence of the empty set of assumptions’ and so, in order to estab-
lish its truth [. . . ], we must make essential use of virtual information,
to the effect that the information state itself cannot be of depth 0 [read:
an agent whose depth is zero is not able to derive it].

Proposition 9 formally expresses the principle of logical omniscience, for which
if tB is a DBELxk-consequence of Γ and i, whose depth is at least k, knows the
sentences in Γ, then i knows that B is true under the assumption (x).

Proposition 9. Fix x as one of u, e, c and fix k ∈ N. For any B ∈ L, Γ ∈ A,
M ∈ Mk and Ii ∈ M, let KiΓ = {tKiC | tC ∈ Γ} ∪ {tKi¬C | fC ∈ Γ}. Then: if
tB ∈ Cnxk(Γ) and KiΓ ⊆ Cnx(Ii), then tKiB ∈ Cnx(Ii).

D’Agostino and Floridi (2009) have shown that the property of logical omniscience
of classical logic turns out to be problematic precisely because the consequence
relation of classical logic is intractable. And they have also shown that the in-
tractability of classical propositional logic is determined by an unbounded use of
virtual information. Now, since it makes use of bounded virtual information, each
DBELxk is tractable: this points out that the property of logical omniscience in
DBELxk is not problematic, in that it simply asks agents to know all the con-
sequences of what they know, which they are able to derive in virtue of their
computational resources.

6.2.9 Relationships between the logics DBELxk

The relationships between Depth Bounded Epistemic Logics are summarized by
the following propositions:

Proposition 10. Fix x as one of u, e, c. For all k ∈ N, Γ ∈ A and B ∈ L: if
sB ∈ Cnxk(Γ), then sB ∈ Cnxk+1(Γ).

Proposition 11. For all Γ ∈ A and for all k ∈ N:

1. Cnuk(Γ) ⊆ Cnek(Γ) ⊆ Cnck(Γ)

2. Cnu0(Γ) = Cne0(Γ) = Cnc0(Γ)

Proposition 10 concerns the relationship between logics of the same hierarchy. It
states that every logic DBELxk+1 is an extension of previous logic DBELxk in the
hierarchy: the set of models for DBELxk+1, Mk+1, is a subset of the set of models
for DBELxk, Mk and, for every Γ ∈ A, the set of all the DBELxk-consequences of
Γ is a subset of the set of all the DBELxk+1-consequences of Γ. Intuitively, this
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means that a formula true for all the agents with depth at least k is true for all
the agents with depth at least k + 1, under the same assumption (x).

Proposition 11 deals with the relationship between logics of different hierar-
chies. Proposition 11.1 says that formula DBELuk-valid is also DBELek-valid and
that a formula DBELek-valid is also DBELck-valid. The former part intuitively
means that a formula true for all agents that do not know the other agents’ depth
is also true for all agents that know the other agents’ depth, under the same as-
sumption that the agents’ depth is at least k. The latter part intuitively means
that a formula true for all agents that know the other agents’ depth is also true
for all agents among which the other agents’ depth is common knowledge, under
the same assumption that the agents’ depth is at least k.

Proposition 11.2 says that the basic logics of the three hierarchies are the same
logic, which is defined in three different ways. This result corresponds to the intu-
itions. The former part, which says that Cnu0(Γ) = Cne0(Γ), means that that a
formula true for all agents, whose depth is zero, that do not know the other agents’
depth is also true for all agents, whose depth is zero, that know the other agents’
depth. This is because an agent, who can reason only analytically, cannot simu-
late any synthetic reasoning of any other individual: thus, the information that she
has concerning the other agents depth is useless. The latter part, which says that
Cne0(Γ) = Cnc0(Γ), means that that a formula true for all agents, whose depth is
zero, that know the other agents’ depth is also true for all agents, whose depth is
zero, under the assumption that the agents’ depth is common knowledge. This is
because an agent, who can reason only analytically, cannot simulate any synthetic
reasoning of any other agent who is simulating any other synthetic reasoning: thus,
the information that the agents’ depth is common knowledge is useless.

6.2.10 The muddy children puzzle in Depth Bounded Epis-
temic Logics II

In order to clarify the definitions of the previous Sections, we consider again the
muddy children puzzle with four agents. As far as the set of formulae DBELx-
satisfied by an interpretation is concerned (Def. 11, Def. 12 and Def. 13), we have
that:

tp1 ∈ Cnu(I11) for I11 ∈ M1 (6.5)

tp2 /∈ Cnu(I22) for I22 ∈ M2 (6.6)

tp2 ∈ Cnu(I32) for I32 ∈ M3 (6.7)

tp3 /∈ Cne(I43) for I43 ∈ M4 (6.8)

tp3 /∈ Cne(I53) for I53 ∈ M5 (6.9)
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Depth Bounded Epistemic Logics
Hierarchy DBELu Hierarchy DBELe Hierarchy DBELc

DBELu0 = DBELe0 = DBELc0
∩ ∩ ∩

DBELu1 ⊂ DBELe1 ⊂ DBELc1
∩ ∩ ∩

DBELu2 ⊂ DBELe2 ⊂ DBELc2
∩ ∩ ∩
...

...
...

∩ ∩ ∩
DBELun ⊂ DBELen ⊂ DBELcn
∩ ∩ ∩
...

...
...

Figure 6.5: The relationships between Depth Bounded Epistemic Logics.

tp3 ∈ Cne(I63) for I63 ∈ M6 (6.10)

tp4 /∈ Cnc(I74) for I74 ∈ M7 (6.11)

tp4 /∈ Cnc(I84) for I84 ∈ M8 (6.12)

tp4 ∈ Cnc(I94) for I94 ∈ M9 (6.13)

(6.5) is justified as follows. We have seen that ϕM1

1 = U (6.4) and that tp1 ∈
W(U) (6.2). By Def. 11, we have that ϕM1

1 = U = Cnu0(I11) and that tp1 ∈
W(U) ⊆ Cnu1(I11) ⊆ Cnu(I11). (6.5) shows that the interpretation of child 1 in
model M1 DBELu-satisfies tp1, because tp1 analytically follows from 1’s initial
set of information. (6.7) is a case of synthetic reasoning, which results from the
following steps.

• X = ϕM3

2 = Cnu0(I32) because of (6.4) and Def. 11

• tK2p2 ∈ V(Cnu0(I32)) ⊆ Cnu1(I32) because for J = {p2}, we have that:

1) |J | = 1 is equal to δM
3

2 = 1 (see (6.4))

2) tp2 ∈ W(Λ) for Λ = X ∪ {tp2} by Prop. 3.1

3) tp2 ∈ W(∆) for ∆ = X ∪ {fp2} because of (6.3)

4) Λ and ∆ are the only minimal refinements of Cnu0(I32) on J

5) for all Φ ∈ RJ
Cnu0(I32)

, tp2 ∈ W(Φ) because of 2), 3), 4) and Prop. 4.8.

• tp2 ∈ W(Cnu1(I32)) ⊆ Cnu2(I32) because Σ = Cnu1(I32) ∪ {fp2} /∈ A, since
tK2p2, fp2 ∈ Σ satisfying the inadmissibility condition 12.
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• tp2 ∈ Cnu(I32)

(6.6) is a case of a failure of a synthetic reasoning due to the fact that δM
2

2 = 0.
In other words, the interpretation of child 2 defined in model M2 cannot DBELu-
satisfy tp2, because 2 can reason only analytically, while in order to conclude that
tp2 it is necessary to use a virtual information, as (6.7) shows.

(6.10) can be obtained noticing that first, Cne0(I63) = ϕM6

3 = Y ; second, tK3p3 ∈
SV(Y ) and thus tp3 ∈ Cne(I63). The second step is justified as follows. For J =
(({p3}, 3), ({p2}, 2)) ∈ CAP3 we have that:

1. δM
6

3 = 2 is greater than δM
6

2 = 1; δM
6

3 = 2 is equal to |{p3}| + |{p2}| = 2;
δM

6

2 = 1 is equal to |{p2}| = 1

2. and for pi ∈ L:
for p3(tp3 ∈ W(Y ∪ {tK3p3}) ∧ ∀∆ ∈ R

{p3}
Y (tp3 ∈ W(∆)∨

for p2(tp3 ∈ W(∆ ∪ {tK2p2}) ∧ ∀Λ ∈ R
{p2}
Σ2(W(∆))(tp2 ∈ W(Λ)))))

The last fact can be shown through the following steps:

1. ∆1 = Y ∪ {tp3} and ∆2 = Y ∪ {fp3} are the only minimal refinements in

R
{p3}
Y

2. Λ1 = Σ2(W(∆2))∪{tp2} and Λ2 = Σ2(W(∆2))∪{fp2} are the only minimal

refinements in R
{p2}
Σ2(W(∆2))

3. tp3 ∈ W(Y ∪ {tK3p3}) because Ψ1 = Y ∪ {tK3p3} ∪ {fp3} /∈ A since
tK3p3, fp3 ∈ Ψ1 satisfying condition 12

4. tp3 ∈ W(∆1)

5. tp3 ∈ W(∆2 ∪ {tK2p2}) because tK2p2, fK2p2 ∈ ∆2 ∪ {tK2p2} and Prop. 4.2

6. tp2 ∈ W(Λ1)

7. tp2 ∈ W(Λ2)

(6.10) shows an example of an agent who reasons synthetically simulating another
agent who is reasoning synthetically. (6.8) is a case of failure of a simulation of a
synthetic reasoning due to the fact that δM

4

3 = 1. In other words, the interpretation
of child 3 defined in model M4 cannot DBELe-satisfy tp3 because child 3 can use
at most one piece of nested virtual information, while in order to conclude that
tp3 it is necessary to employ two pieces of nested virtual information, the second
of which is used to simulate child 2’s synthetic reasoning. (6.9) is another case of
a failure, which is now determined by the fact that δM

5

2 = 0. In other words, the
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interpretation of child 3 cannot DBELe-satisfy tp3 because in model M4 child 2 can
only reason analytically: as a result, child 3, who is informed of 2’s depth, cannot
use the public announcement of child 2 that 2 doesn’t know whether she is muddy
or not to rule out the possibility that 3 is not muddy. For, if child 3 had been not
muddy, child 2, because of her depth, wouldn’t have known that 2 was muddy.

(6.13) can be obtained noticing that first, Cnc0(I94) = ϕM9

4 = Z; second, tK4p4 ∈
CSV(Z) and thus tp4 ∈ Cnc(I94). The second step is justified as follows. For
J = (({p4}, 4), ({p3}, 3), ({p2}, 2)) ∈ LAP4 we have that:

1. δM
9

4 = 3 is greater than δM
9

3 = 2; δM
9

4 = 3 is greater than |{p4}| = 1; δM
9

3 = 2
is equal to |{p3}|+ |{p2}| = 2; δM

9

2 = 1 is equal to |{p2}| = 1

2. and for pi ∈ L:
for p4(tp4 ∈ W(Z ∪ {tK4p4}) ∧ ∀Φ ∈ R

{p4}
Z (tp4 ∈ W(Φ)∨

for p3(tp4 ∈ W(Φ ∪ {tK3p3}) ∧ ∀∆ ∈ R
{p3}
Σ3(W(Φ))(tp3 ∈ W(∆)∨

for p2(tp3 ∈ W(∆ ∪ {tK2p2}) ∧ ∀Λ ∈ R
{p2}
Σ2(W(∆))(tp2 ∈ W(Λ))))))

The last fact can be shown through the following steps:

1. Φ1 = Z ∪ {tp4} and Φ2 = Z ∪ {fp4} are the only minimal refinements in

R
{p4}
Z

2. ∆1 = Σ3(W(Φ2))∪{tp3} and ∆2 = Σ3(W(Φ2))∪{fp3} are the only minimal

refinements in R
{p3}
Σ3(W(Φ2))

3. Λ1 = Σ2(W(∆2))∪{tp2} and Λ2 = Σ2(W(∆2))∪{fp2} are the only minimal

refinements in R
{p2}
Σ2(W(∆2))

4. tp4 ∈ W(Z ∪ {tK4p4}) because Ψ1 = Z ∪ {tK4p4} ∪ {fp4} /∈ A, since
tK4p4, fp4 ∈ Ψ1 satisfying condition 12

5. tp4 ∈ W(Φ1)

6. tp4 ∈ W(Φ2 ∪ {tK3p3}) because tK3p3, fK3p3 ∈ Φ2 ∪ {tK3p3} and Prop. 4.2

7. tp3 ∈ W(∆1)

8. tp3 ∈ W(∆2 ∪ {tK2p2}) because fK2p2 ∈ Σ3(W(Φ2)), tK2p2, fK2p2 ∈ ∆2 ∪
{tK2p2} and Prop. 4.2

9. tp2 ∈ W(Λ1)

10. tp2 ∈ W(Λ2)
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(6.13) shows an example of an agent who reasons synthetically simulating another
first agent who is reasoning synthetically simulating another second agent who is
reasoning synthetically. (6.11) is a case of failure of a simulation of a synthetic
reasoning due to the fact that δM

7

4 = 2. In other words, the interpretation of child
4 defined in model M7 cannot DBELc-satisfy tp4 because child 4 can use at most
two piece of nested virtual information, while in order to conclude that tp3 it is
necessary to employ three pieces of nested virtual information, the second of which
is used to simulate child 3’s synthetic reasoning and the third of which is used to
simulate child 3’s reasoning that simulates child 2’s reasoning. (6.12) is another
case of a failure, which is now determined by the fact that δM

8

2 = δM
8

3 = 1. In other
words, the interpretation of child 4 cannot DBELc-satisfy tp4 because in model M8

child 3 can only use one piece of virtual information and thus cannot simulate 2’s
synthetic reasoning: as a result, child 4, who is informed of 3’s depth, cannot use
the public announcement of child 3 that 3 doesn’t know whether she is muddy or
not to rule out the possibility that 4 is not muddy. For, if child 4 had been not
muddy, child 3, because of her depth, wouldn’t have known that 3 was muddy.

As far as DBELx-satisfiability and DBELx-validity in a model are concerned
(Def. 14 and Def. 15), we have that:

tp1 is DBELu-satisfied by M1 and tp1 ∈ Cnu(M1) (6.14)

tp2 is DBELu-satisfied by M2 and tp2 /∈ Cnu(M2) (6.15)

tp3 is DBELe-satisfied by M6 and tp3 ∈ Cne(M6) (6.16)

tp3 is DBELe-satisfied by M5 and tp3 /∈ Cne(M5) (6.17)

tp4 is DBELc-satisfied by M9 and tp4 ∈ Cnc(M9) (6.18)

tp4 is DBELc-satisfied by M8 and tp4 /∈ Cnc(M8) (6.19)

(6.14) shows an example of a formula that is both DBELu-satisfied in a model (see
(6.5)) and DBELu-valid in a model (see (6.5) and (6.4)). (6.15) shows a case in
which a formula is DBELu-satisfied in a model, since for instance tp2 ∈ Cnu(I21)
(see (6.4)), but it is not DBELu-valid in a model (see (6.6)). Similarly for the other
couples of cases proposed.

Then, regarding the notion of DBELxk-consequence relation (Def. 16), we can
state several facts:

tp1 ∈ Cnu0(U) (6.20)

tp2 /∈ Cnu0(X) (6.21)

tp2 ∈ Cnu1(X) (6.22)

tp3 /∈ Cnuk(Y ) for any k ∈ N (6.23)
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tp3 ∈ Cne2(Y ) (6.24)

tp3 /∈ Cne1(Y ) (6.25)

tp4 /∈ Cnek(Z) for any k ∈ N (6.26)

tp4 ∈ Cnc3(Z) (6.27)

tp4 /∈ Cnc2(Z) (6.28)

(6.20) is an example of a DBELu0-consequence: ∀M ∈ M0 and ∀Ii ∈ M, if U ⊆
Cnu(Ii), then for some n ∈ N, U ⊆ Cnun(Ii). And, since tp1 ∈ W(U) (see (6.2)),
tp1 ∈ W(Cnun(Ii)) ⊆ Cnun+1(Ii) ⊆ Cnu(Ii). So tp1 ∈ Cnu0(U). (6.21) is an
example of a non DBELu0-consequence, which is justified by (6.4), for which we
have that M2 ∈ M0, and by the fact that X ⊆ Cnu(I22) and tp2 /∈ Cnu(I22) (see
(6.6)). (6.22) says that in the situation in which there are two muddy children
and at the time after all the individuals have answered ‘No’ to the father’s first
question, the second child recognizes that she is muddy if and only if her depth
is equal or greater than 1. It can be proved using Prop. 5.3 and (6.6). (6.23)
states that in the situation in which there are three muddy children and at the
time after all the individuals have answered ‘No’ to the father’s second question,
the third muddy child cannot recognize that she is muddy if she doesn’t know the
other agents depth.

(6.24) says that in the situation in which there are three muddy children and at
the time after all the individuals have answered ‘No’ to the father’s second question,
the third child recognizes that she is muddy if her depth is equal or greater than 2
and if she knows the other agents’ depth. (6.24) can by proved using Prop. 5.3 and
(6.10). (6.25) says that the former conditions are also necessary and it is justified
by (6.4), for which we have that M4 ∈M1, and by the fact that Y ⊆ Cnu(I43) and
tp3 /∈ Cnu(I43) (see (6.8)). (6.26) states that in the situation in which there are
four muddy children and at the time after all the individuals have answered ‘No’
to the father’s third question, the fourth muddy child cannot recognize that she is
muddy if the agents’ depth is not common knowledge.

(6.27) says that in the situation in which there are four muddy children and at
the time after all the individuals have answered ‘No’ to the father’s third question,
the fourth child recognizes that she is muddy if her depth is equal or greater than
3 and if she the agents’ depth is common knowledge. (6.27) can by proved using
Prop. 5.3 and (6.13). (6.28) says that the former conditions are also necessary
and is justified by (6.4), for which we have that M7 ∈ M2, and by the fact that
Z ⊆ Cnu(I74) and tp4 /∈ Cnu(I74) (see (6.11)).
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Agents’
depth

Logic Muddy
children

Solution

0 DBELu0
1 The only muddy child answers

‘Yes’ to q1

m > 1 Themmuddy children do not rec-
ognize that they are muddy

k ≥ 1 DBELuk
m ≤ 2 The m muddy children answer

‘Yes’ to qm
m > 2 Themmuddy children do not rec-

ognize that they are muddy

Table 6.1: Solution to the muddy children puzzle under the assumption that every
child ignores the other children’s depth.

6.2.11 Different conclusions

In this Chapter, we have moved to the epistemic context and we have considered
the notion of knowledge. We have criticized the classical assumptions of logical
omniscience with the same reasons that led us in the present work to reject the
traditional tenet that logic is analytic, namely, the cognitive and computational
effort required by propositional inferences. In so doing, we have focused on the
behavior of realistic individuals, rather than ideal agents, and we hope to have
suggested that our study on the analyticity of logic provides fruitful applications
beyond the strictly philosophical field.

We have chosen as a case study the muddy children puzzle because it presents
a number subtleties regarding reasoning about knowledge in groups of agents. We
have seen that the classical solution of the puzzle, which says that the first k − 1
times the father asks whether anyone is aware of being muddy, all the children
will say ‘No’, but then the kth time the children with muddy foreheads will answer
‘Yes’, is obtained through the means of classical epistemic logics precisely because
these systems assume that it’s common knowledge among the agents involved that
every individual is logically omniscient. Now, what happens in the story if the
children are taken to be realistic, rather than idealized agents? After the analysis
with four children brought through the means of Depth Bounded Epistemic Logics
(see Sections 6.2.6 and 6.2.10), we are now ready to give an answer for the general
case.

First, under the assumption that every child ignores the other children’s depth,
we have that if there is only one muddy child, she will recognize that she is muddy
and will answer ‘Yes’ to the father’s first question. This is because, as we have
seen in Section 6.2.10, tp1 ∈ Cnu0(U) and this result holds in DBELu0, mutatis
mutandis, for every child involved. Notice that, since DBELu0 is the basic element
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of the first hierarchy, this result holds also for agents with higher depth and, since
DBELu0 is equivalent to DBELe0 and DBELc0, this result holds also if we strengthen
the assumption regarding the state of knowledge of the children about the others’
depth. The kind of reasoning involved in the one muddy child case is analytic: any
muddy individual, who knows the informational meaning of the logical operators,
can and has to derive that she is muddy from the fact that she sees that all the
other children are clean.

Then, again under the assumption that every child ignores the other children’s
depth, we have that if every child’s depth is one and if there are at most two muddy
children, the muddy children will recognize that they are muddy and will answer
‘Yes’ to the father’s first question or to the father’s second question, if there is only
one muddy child or two muddy children respectively. This is because, as we have
seen in Section 6.2.10, tp1 ∈ Cnu1(U) and tp2 ∈ Cnu1(X), and these results hold
in DBELu1, mutatis mutandis, for every child involved. Notice that, since DBELuk
for any k > 1 extends DBELu1, these results hold also for agents with higher
depth and, since DBELe1 and DBELc1 extend DBELu1, these results hold also if we
strengthen the assumption regarding the state of knowledge of the children about
the others’ depth. The kind of reasoning involved in the two muddy children case
is synthetic of degree one and does not require any reasoning about the other
children’s knowledge. For this reason, if a child can reason only analytically, then
she will not recognize that she is muddy in the two muddy children case.

Last, it turns out that if the muddy children are more than two, they will never
recognize that they are muddy if every child ignores the other children’s depth.
This is because, as it is made clear in the second hierarchy of logics, the kind of
reasoning involved in the case in which there are more than two muddy children
requires reasoning about the other children’s knowledge, which depends on their
depth.

The situation under the assumption that every child ignores the other children’s
depth is represented in Table 6.1. We now move to examine the solutions to the
muddy children puzzle under the assumption that every child knows the other
children’s depth, which are depicted in Table 6.2. The cases in which the muddy
children are at most two, which are represented in the first four rows of the table,
are justified by the discussion above. Under the assumption that every child knows
the other children’s depth, if every child’s depth is at least two and there are three
muddy children, then the muddy children will recognize that they are muddy
and will answer ‘Yes’ to the father’s third question. This is because, as we have
seen in Section 6.2.10, tp3 ∈ Cne2(Y ) and this result holds in DBELe2, mutatis
mutandis, for every child involved. The kind of reasoning involved in the three
muddy children case is synthetic of degree two and requires simulating another
child’s synthetic reasoning: thus, the assumption that every child knows the other
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Agents’
depth

Logic Muddy
children

Solution

0 DBELe0
1 The only muddy child answers

‘Yes’ to q1

m > 1 Themmuddy children do not rec-
ognize that they are muddy

1 DBELe1
m ≤ 2 The m muddy children answer

‘Yes’ to qm
m > 2 Themmuddy children do not rec-

ognize that they are muddy

k ≥ 2 DBELek
m ≤ 3 The m muddy children answer

‘Yes’ to qm
m > 3 Themmuddy children do not rec-

ognize that they are muddy

Table 6.2: Solution to the muddy children puzzle under the assumption that every
child knows the other children’s depth.

children’s depth is essential. For this reason, if a child’s depth is lower than two or
if she is not informed about the other children’s depth, then she will not recognize
that she is muddy in the three muddy children case.

Moreover, if the muddy children are more than three, they will never recognize
that they are muddy if the other children’s depth is not common knowledge. This
is because, as it is made clear in the third hierarchy of logics, the kind of reasoning
involved in the case in which there are more than three muddy children requires
simulating another child’s reasoning, which is simulating in turn another child’s
reasoning.

The situation under the assumption that the other children’s depth is common
knowledge is represented in Table 6.3. The cases in which the muddy children are
at most three, which are represented in the first six rows of the table, are justified
by the discussions above. Under the assumption that the other children’s depth
is common knowledge, if every child’s depth is three and there are four muddy
children, then the muddy children will recognize that they are muddy and will
answer ‘Yes’ to the father’s fourth question. This is because, as we have seen in
Section 6.2.10, tp4 ∈ Cnc3(Z) and this result holds in DBELc3, mutatis mutandis,
for every child involved. The kind of reasoning involved in the four muddy children
case is synthetic of degree three and requires simulating another child’s reasoning,
which is simulating in turn another child’s reasoning: thus, the assumption that
the other children’s depth is common knowledge is essential. For this reason, if a
child’s depth is lower than three or if she is not informed that all the other children
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Agents’
depth

Logic Muddy
children

Solution

0 DBELc0
1 The only muddy child answers

‘Yes’ to q1

m > 1 Themmuddy children do not rec-
ognize that they are muddy

1 DBELc1
m ≤ 2 The m muddy children answer

‘Yes’ to qm
m > 2 Themmuddy children do not rec-

ognize that they are muddy

2 DBELc2
m ≤ 3 The m muddy children answer

‘Yes’ to qm
m > 3 Themmuddy children do not rec-

ognize that they are muddy

3 DBELc3
m ≤ 4 The m muddy children answer

‘Yes’ to qm
m > 4 Themmuddy children do not rec-

ognize that they are muddy

k > 3 DBELck
m ≤ k + 1 The m muddy children answer

‘Yes’ to qm
m > k + 1 Themmuddy children do not rec-

ognize that they are muddy

Table 6.3: Solution to the muddy children puzzle under the assumption that the
other children’s depth is common knowledge.
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Muddy
children

Weakest logic
to obtain CS

Weakest assumptions to obtain CS

1 DBELu0 Every child’s depth is zero and this is un-
known to the others.

2 DBELu1 Every child’s depth is one and this is un-
known to the others.

3 DBELe2 Every child’s depth is two and this is
known to the others.

4 DBELc3 Every child’s depth is three and this is
common knowledge among the others.

k ≥ 4 DBELck−1 Every child’s depth is k − 1 and this is
common knowledge among the others.

Table 6.4: Assumptions needed to obtain the classical solution CS.

know the others’ depth, then she will not recognize that she is muddy in the four
muddy children case.

This result can be easily generalized: under the assumption that the other
children’s depth is common knowledge, if every child’s depth is k and there are
k+1 muddy children, then the muddy children will recognize that they are muddy
and will answer ‘Yes’ to the father’s k + 1 question. Otherwise, this result does
not hold.

We can compare the solution of the muddy children puzzle obtained through
the means of Depth Bounded Epistemic Logics to that proposed through classical
epistemic logics. The classical solution can be obtained, in the one muddy child
case, only if every child’s depth is at least zero and even if the other children’s
depth is unknown to the children. It can be obtained, in the two muddy children
case, only if every child’s depth is at least one and even if the other children’s
depth is unknown to the children. It can be obtained, in the three muddy children
case, only if every child’s depth is at least two and only if every child knows the
others’ depth. It can be obtained, in the four muddy children case, only if every
child’s depth is at least three and only if the others’ depth is common knowledge
among the children. And, in the general case, the classical solution holds in the k
muddy children case for k ≥ 4, only if the children’s depth is at least k−1 and only
if the others’ depth is common knowledge among the children. This comparison
is summarized in Table 6.4.



Conclusions

Prelude

In the Introduction to this work, we have argued that the clarification of the
notions of analyticity and of logic provides in itself an answer to the question of
whether logic is analytic. This is why we now reason on the conclusions we have
reached as far as some micro-stories are concerned, which are unavoidable premises
to decide on the principle of analyticity of logic. In other words, the history of
the analytic-synthetic distinction, of the notion of analysis, of the conceptions of
logic and of the principle of tautologicity of logic stand in as the prelude to the
discussion about the principle of analyticity of logic, which will be the focus of the
conclusion in the strict sense of the term.

Analytic-synthetic distinction. Our starting point has been Kant’s analytic-
synthetic distinction. Although ancestors of this distinction can be found in several
authors, the major novelty of Kant’s approach must be searched in the leading
role it plays in his philosophical system. Kant provides four criteria of analyticity:
containment, clarification, identity and contradiction. We have argued that the
former criterion, which states that in analytic judgments the predicate is (covertly)
contained in the subject, applies only to judgments that are true, affirmative and,
crucially, categorical: this means that Kant’s distinction via containment is not
exhaustive and, as a consequence, there are some judgments which are neither
analytic nor synthetic. Against the criticisms that have been moved against it, we
have held that the containment criterion is neither psychological nor obscure: on
the contrary, it is a technical notion founded on the theory of concepts.

Containment is the fundamental criterion for Kant’s conception of analyticity,
for we have shown that the other ones might be generally reduced to it. First, clari-
fication of the concepts’ intensions involved in a certain analytic judgment, which
is obtained through conceptual analysis, consists in showing that the predicate
concept is contained in that of the subject. Moreover, clarification is a character-
ization in epistemic terms of a logical distinction. Second, although the identity
criterion cannot be fully reduced to the containment one due to the class of tau-
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tologous judgments, the latter amounts to the former as far as partial identities
are concerned. Third, in an affirmative analytic judgment the contradiction rests
with the concept of the subject and the concept of the negation of the predicate
because the predicate is already thought beforehand in the concept of the sub-
ject. The principle of contradiction is a necessary and sufficient condition for the
cognoscibility of analytic judgments and we have pointed out that it is invoked as
an epistemological instrument for knowing the truth of analytic judgments. Tradi-
tional interpretations notwithstanding, the principle is not a definitional criterion
of analyticity.

The true innovation of Bolzano’s work on analyticity is, we think, that he
defines this property of propositions through the substitutional method, which is
a fruitful instrument that will be used by other philosophers, such as Tarski and
Quine, to define other formal notions in logic. According to Bolzano, a proposition
is analytically true with respect to some ideas if and only if every objectual variant
of that proposition with respect to those ideas is true. While in Kant’s approach
the content of the concepts occurring in a certain sentence is fundamental for
establishing its status, which depends on the kind of connection between its subject
and its predicate, we have shown that the analytical character of a proposition,
for Bolzano, does not involve the content of the ideas occurring in it, but, on
the contrary, only the truth value of that proposition when some of its ideas are
varied. As a result, Bolzano’s analyticity is not bound to a particular logical
form and the recognition that a proposition is analytic is not constrained by a
determinate syntactic structure.

The analytic-synthetic distinction that emerges in the Wissenschaftslehre has
some peculiarities, of which traditional interpretations often could not make sense.
First, contrary to Kant, Bolzano admits false propositions among analyticities (and
syntheticities) because his definition does not link this distinction to the notion
of truth, but rather to the concepts of validity and invalidity given through the
substitution method. Second, in Bolzano’s system there is room not only for con-
ceptual syntheticities, but also for empirical analyticities: analyticity does not
entertain any reliable connection with apriority and necessity. Along with false
and empirical analyticities, we have argued that Bolzano’s reflections produced
also some ideas that will play an eminent role in the subsequent literature. First
of all, the Bohemian philosopher complained about the obscurity of Kant’s con-
tainment criterion: this criticism, which is strictly interwoven with the attack
against the traditional conception of analysis, will be restated by both Frege and
Quine. Second, Bolzano, like Frege and many others after him, underlines the nar-
rowness of Kant’s analytic-synthetic distinction. Not only does Bolzano attack the
näıve representationalism at the basis of Kant’s approach, but he also extends the
analytic-synthetic distinction beyond the limits of categorical judgments, so as to
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release it from the boundaries of a particular syntactical form and language. Last,
Bolzano’s notion of ‘logical analyticity’, whose position in his thought has been
erroneously overstated, anticipates in many respect Frege’s definition, although,
following the account of the Wissenschaftslehre, some propositions belong to logic
but are not logically analytic and some logical analyticities do not belong to logic.

We have shown that the way in which Frege distinguishes between analytic
and synthetic propositions is strongly influenced by his logicist program: analytic
propositions are defined as those that can be proved from definitions with help
of logical laws, because Frege’s aim was to show that arithmetic could be proved
from logic alone. This explains, we think, the differences between Kant and Frege’s
analytic-synthetic distinction. The most important of them is the disagreement
of the underlying notion of analysis. Another essential difference is that Frege is
concerned with the justification of a proposition as opposed to the Kantian interest
in the content of a judgment. We have noticed that, although it is based on the
notion of justification, Frege’s analytic-synthetic distinction does not coincide with
the other epistemological contraposition par excellence, namely that between a
priori and a posteriori that, this time, is defined in Kantian terms, for the two
differ in the level of generality.

As Bolzano before him, Frege complains about the narrowness of Kant’s dis-
tinction and this criticism is, of course, related to the enormous advancements in
logic presented in the Begriffsschrift. Frege seems to believe that his position is an
accurate restatement of Kant’s distinction, although it is not. This is probably due
to the fact that he took the contradiction criterion, with its epistemological flavor,
to be at the core of Kant’s characterization. Nevertheless, the most evident ele-
ment of continuity between the two conceptions of analyticity is that both of them
find in the process of analysis the method for discovering analytic propositions and
their justifications: Frege identifies Kant’s analysis of the subject concept with the
analysis needed in the definition of this concept. A position that is different not
only to Kant and Bolzano’s approaches, but also to Frege’s standpoint is the one
held by the logical empiricists’ movement, that can be represented by the idea
that a statement is analytic if it is either a logical truth or can be turned into a
logical truth by putting synonyms for synonyms. In this way, the new linkage be-
tween analyticity and meaning introduces in the picture also the so-called material
analyticities.

Hintikka’s analytic-synthetic distinction applies primarily to the steps of a
proof: synthetic steps are those in which new individuals are introduced into the
argument; analytic ones are those in which we merely discuss the individuals which
we have already introduced. The philosophical premise of Hintikka’s distinction is
an interpretation of Kant’s mathematical method, according to which intuitions
are defined as singular representations and constructions are necessarily used in
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synthetic arguments. We have argued that the first thesis is too radical and that
the leap from the mathematical method to the analytic-synthetic distinction finds
no convincing basis on the Kantian texts. Nevertheless, both of these readings
are building blocks of Hintikka’s conception. In particular, the theory that it is
the use of constructions that makes a mathematical argument step synthetic is
translated in modern terms by the theory that it is the use of the rule of existen-
tial instantiation of modern first-order logic that makes a logical argument step
synthetic and the theory that what is exhibited in the mathematical constructions,
viz. intuitions, are simply individuals is translated in modern terms by the fact
that the things introduced through the rule of existential instantiation are simply
individuals.

In this way, Hintikka manages to propose also a formal characterization of the
analytic-synthetic distinction, according to which a proof is analytic if and only if
the degree of each intermediate stage is smaller than, or equal to, the degree of
either the premises or the conclusion, where the degree of a formula measures the
maximal number of individuals that are considered together in it. A proof method
elaborated through the theory of distributive normal forms allows to discern which
inferences are analytic and which are synthetic in this sense and to give a gradual
characterization of the notion of syntheticity: the more new individuals are needed
to prove the conclusion from the premises, the higher the degree of syntheticity of
the proof.

Analysis

Kant’s conception of analysis is founded on the traditional theory of logical di-
vision of concepts. According to this perspective, each concept is assumed to be
made up by constituents, each of which finds its place in a hierarchy organized with
respect to the notions of containment and inclusion: each genus is contained in its
species and each species is contained under its genus. Analysis is thus understood
in terms of a decompositional or resolutive process that, starting from the initial
concepts, aims at arriving at its simple elements. This kind of analysis is based on
the Aristotelian definitions and divisions are taken to be exclusive and exhaustive
disjunctions. The decompositional conception of analysis, that had become domi-
nant by the end of the early modern period and which ties Kant to the rationalist
perspective, has been attacked by both Bolzano and Frege and has been wrongly
interpreted by Hintikka.

Bolzano criticizes the unsophisticated form of representationalism at the basis
of Kant’s conception, which assumes that concepts are pictures of the objects they
represent and, in particular, that properties of objects correspond to constituents
of concepts. He formulates an alternative kind of analysis that has been called
‘paraphrastic analysis’, according to which every sentence utterance can be para-
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phrased into a proposition that expresses its complete meaning: the process of
Auslegung or interpretation provides a complete analysis of the initial sentence.
Bolzano’s approach is a revolutionary intuition in the history of analysis and anti-
cipates in many respects the transformative or interpretative dimension of analysis
that is commonly assumed to characterize analytic philosophy. The reason why
Frege does not accept Kant’s conception of analysis is that it is strictly interwo-
ven with the traditional subject-predicate logic. He proposes a notion of analysis
that is founded on the function-argument distinction and that gives priority to
judgments over concepts and yields different results, each of which is on the same
level with the others. Hintikka ascribes to Kant and, at the same time, uses in his
own work, the so-called ‘constructional conception of analysis’, according to which
analysis does not introduce any individual entity, while synthetic procedures are
marked by the use of constructions, which allow to move from a general concept
to a non-empirical intuition that represents that concept.

Tautologicity of logic

We have shown that Kant’s position on tautologous judgments is not univocal.
In particular, it depends on which criterion of analyticity is considered as funda-
mental. While according to the identical criterion tautologous statements are of
course analytic, the clarification criterion, as well as the containment one, requires
at least the predicate concept being different from the subject concept, otherwise
there is no room for any kind of clarification whatever. Kant seems to gradually
abandon the idea that identical judgments are analytic as he comes to regard the
analytic-synthetic distinction as focused on knowledge-advancing judgments. On
the contrary, Bolzano is clear in affirming that analyticity does not coincide with
triviality and that many analyticities turn out to be instructive. This is because,
as we have underlined, Bolzano’s analyticity is not an epistemological notion and
does not invoke the trivial-instructive opposition.

We have pointed out that, in the Grundlagen, Frege holds that logic is, at the
same time, analytic and informative. Assuming, on the one hand, that logic con-
tains, albeit in a concentrated format, all the theorems of arithmetic and, on the
other hand, that arithmetic cannot be charged of sterility, Frege concludes that
logic is not tautologous. The key point of his explanation is his conception of def-
inition in terms of concept-formation through the process of analysis and the idea
that the recognition of a certain pattern and the extraction of a quantificational
structure from a given judgment is, by itself, a creative process. Logical deduction
is thus a knowledge-extending procedure because theorems are concentrated into
basic definitions and a resource-consuming procedure of extraction is needed. We
have argued that the introduction of the Sinn-Bedeutung distinction produces a
radical change in view on the usefulness of definitions and, as a result, on the
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informativity of logical deduction. In the review to Husserl, Frege maintains that
mathematical definitions are correct if the definiens and the definiendum share
the same reference, but it is not necessary that they share the same sense. After
having realized the inadequacy of this formulation, in the unpublished text Logic
in Mathematics he tries to reject definitions based on logical analysis and pro-
poses to distinguish between the logical and psychological level in talking of the
fruitfulness of definitions.

Logical empiricism borrows from Frege the principle of analyticity of logic, but,
unlike the author of the Grundlagen, argues that logic is tautologous. The idea
that logical deduction is uninformative is a consequence of the paradox of analysis
together with the thesis that logic is analytic. The conception that depicts logic
and mathematics as sterile seems to clash with our common intuition that the
result of a complex or long inference does indeed add something to our knowledge.
The latter fact is explained in the Vienna Circle with a strongly psychologistic
stance. Hahn holds that logical propositions, albeit sterile, have significance for
us because we are not omniscient and Hempel argues that, although they are not
objectively informative, logic and mathematics help us in disclosing what is already
contained in the premises of an inference. Similiarly, Ayer’s idea is that logical
deduction calls attention to the implications of a certain linguistic usage, such
as the convention which governs our employment of the connectives, of which we
might otherwise not be conscious. A different solution is proposed by Wittgenstein,
who denies any utility to the process of logical deduction. According to the insight
conveyed in the Tractatus, once propositions are expressed through an adequate
notation, such as the one offered by truth tables, logical deduction shall be replaced
by the mere inspection of the propositions.

Hintikka offers a radically new solution to the paradox of analysis, which is
an open attack against the logical empiricists’ conception. He uses the theory of
distributive normal forms as a basis to define the theory of probability and a theory
of semantic information, which provides an answer to the question of how much
information is conveyed by a certain first-order sentence. He thus distinguishes
between two kinds of information. On the one hand, depth information is the
measure obtained by assigning a positive probability weight only to the consistent
constituents of the polyadic calculus and is not effectively calculable. On the
other hand, surface information is obtained by assigning non-zero weights to all
the constituents that are not trivially inconsistent at a certain depth. According to
Hintikka, logical deduction is not sterile because it can increase surface information
and it enables us to find that certain non-trivially inconsistent constituents were
nevertheless inconsistent at a greater depth.
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Conceptions of logic

In the introduction to the Transcendental Logic of the Critique, Kant recognizes
four different kinds of logic: pure general logic, applied general logic, special logic
and transcendental logic. The former, on which we have focused our attention,
consists of a restricted version of the Aristotelian syllogistic with a simple theory of
disjunctive and hypothetical judgments added on. We have pointed out that four
are the fundamental features of this discipline. First, it is pure, namely, it is not
concerned with the empirical conditions of the subject in her employment of the
rules of the understanding. Second, it is general, namely, it contains the absolutely
necessary rules of thinking, where these rules are said to be necessary in the sense
that they have to be applied no matter what are the objects we are thinking about.
Third, it is formal, namely, it abstracts from the semantical content of thought
and, as a result, it cannot yield an extension of knowledge about realty. Formality
turns out to be a consequence of the generality of logic. Fourth, it is a canon for
thinking, namely, a body of rules or a priori principles. The thesis that logic is
a canon for thinking can be derived from the features of pureness, generality and
formality of the discipline.

Bolzano’s distinction between two notions of logic is a consequence of the atten-
tion he paid to the differences between the ordo essendi and the ordo cognoscendi.
On the one hand, the theory of science is characterized by broad borders and in-
cludes also methodological, pedagogical and epistemological considerations. On
the other hand, logic in the narrow sense has nothing to do with psychology and
is a deductive science. For the author of the Wissenschaftslehre, deductive sci-
ences are ordered according to the grounding relation, which assigns every truth
to its proper place with respect to the remaining propositions of that science.
This means that, unlike Kant’s pure general logic, this discipline is, for Bolzano, a
body of truths and not a body of rule. We have underlined that this shift, which
amounts to release logic from an alleged special status, is crucial and that a similar
position will be held by Frege.

We have seen that Frege radically innovates Aristotelian logic: through a pecu-
liar symbolism, in his Begriffsschrift he proposes a classical second-order logic with
identity expressing both the logic of propositions and the logic of quantification.
A characterizing feature of his work is the introduction of the function-argument
model, which allows Frege to overcome the difficulties of traditional syllogistic.
The formulation of a new logic is the first requirement of Frege’s logicist project,
which aims at reducing arithmetic to logic or, equivalently, at showing that the
truths of arithmetic are analytic. His project obviously criticizes Kant’s thesis
that mathematics is synthetic a priori. Frege’s logicist program requires to show
not only that propositions of arithmetic can be proved from logical truths and
through logical methods, but also, and crucially, that the fundamental concepts of
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arithmetic can be defined in terms of logical concepts. Frege conceives of logic as
a body of laws, being descriptive in their content and implying norms for thought.
We have shown that Frege agrees with Kant in holding that logic is general, in
that it allows an unrestricted applicability of its norms, but contradicts the author
of the Critique as far as formality is concerned. Logic for Frege cannot abstract
from all semantic content and must attend at least to the semantic content of the
logical expression. Like Bolzano, the author of the Begriffsschrift rejects Kant’s
thesis that logic is simply a canon for thought.

We have assumed that, with Quine, conceptions of logic are all inscribed in the
same framework, one in which the subject matter of logic is taken to be logical
properties of sentences and logical relations among sentences defined by logical
forms understood as simply schemata.

Against the principle of analyticity of logic

We have started our dissertation with the question of whether logic is analytic.
The thesis we have argued for in this work is that logic is neither analytic nor
tautologous. In giving this answer, we have taken logic to be classical first-order
logic and we have assumed that the analytic-synthetic distinction, which applies
primarily to inferences, concerns a distinction between degrees of computational
complexity, where analyticity and tractability are reconciled. The idea that most
of the logical inferences are synthetic has been a result of a philosophical recon-
struction, which has shown in the first place that the history of the principle of
analyticity of logic is not a linear and progressive narrative from Kant to the logical
empiricists’ perspective. On the contrary, we have argued that the standpoint of
the Vienna Circle, although soon became traditional, is an exception, rather than
the rule, and does not represent a climax of a supposed development or improve-
ment. We have seen that both Bolzano and Hintikka clearly break this positivistic
paradigma: the former by detaching analyticity from necessity, the latter by re-
sorting to Kant’s conceptual apparatus against the thesis of the Vienna Circle.
The stages individuated in our work and the main conclusions we have reached
might be summarized as follows.

First, we have argued that Kant does not apply his analytic-synthetic distinc-
tion to logic, because logic is seen as a canon and not as a body of truths. This
is the case although the traditional view depicts Kant as maintaining that logic
is analytic, probably relying on the fact that logic is indeed the fundamental in-
strument that Kant employs for both drawing and applying his analytic-synthetic
distinction, since it provides the basic notions for his definitions and the central
tool for the determination of the truth of analytic judgments. But the issue of
the role of logic as an instrument for defining and applying the analytic-synthetic
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distinction must be kept separate from the question of the epistemological status
of logic. Moreover, even attempting an analysis that Kant did not think it was
worth pursuing, we have shown that no logical judgment is synthetic a priori and
that some (if not all) logical judgments are not analytic. This is the case not only
for validities turning essentially on relations, but also for propositional truths such
as modus ponens and identical truths. In other words, following Kant’s definition
of the analytic-synthetic distinction, we have the unexpected result that many
logical judgments are neither analytic nor synthetic.

Second, we have shown that Bolzano applies his analytic-synthetic distinction
to logic and obtains the result that logic is synthetic. The conclusion that logic
is synthetic is derived by Bolzano from the assumptions that logic is a deductive
science and that deductive sciences are mainly synthetic a priori. We think that
the reason why Bolzano’s insight of the syntheticity of logic turns out to be a
substantial conception and not a mere terminological trick is that it hides an im-
portant thesis on the nature of this discipline, namely, that logic is a body of truths
like any other deductive science. The thesis that logic is synthetic assumes the
ordo essendi perspective. Moving to the epistemic side, we find instead that some
logical propositions are analytic. The latter play a crucial role in the presentation
and in the development of logic and are characterized by their being instantiations
of general rules, that, according to Bolzano, are always synthetic.

Third, we have pointed out that Frege maintains that logical laws are analytic,
but not tautologous, and that this conclusion depends on his logicist program. In
particular, the laws of logic that are chosen as axioms of the system are analytic
because of their self-evidence, while logical theorems are instead analytic in that
they can be proved through logical laws only. We have shown that what discrim-
inates Frege’s position from the Kantian one and leads us to conclude that logic
is analytic only for the former and not for the latter, although both of them are
not explicit on this point, is the difference in the underlying conception of logic:
for the author of the Grundlagen, as for Bolzano, logic is a body of truths and a
science in the strict sense of the term. Why, then, should Frege have avoided to
apply the analytic-synthetic distinction to logic, given his concern with a priori
sciences?

Fourth, we have underlined that the logical empiricist movement follows Frege
in holding the principle of analyticity of logic, but goes beyond the author of the
Grundlagen in saying that this discipline is tautologous. Kant’s synthetic a priori,
which had already been impoverished by Frege’s thesis that arithmetic is ana-
lytic, is rejected in toto by the Vienna Circle. As a result, the analytic-synthetic
distinction and the a priori -a posteriori distinction do not cut across one an-
other: synthetic statements are always grounded on facts and analytic statements
are known a priori. Quine’s Two Dogmas, which represents the strongest attack
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against the logical empiricists’ epistemology, does not criticize the idea that logic
is analytic, but only the lack of a proper characterization of statements that are
materially analytic. On this issue, Quine agrees with Carnap, who, despite the
significant modifications of his account of analyticity, mainly treats ‘logical’ simply
as a synonym for ‘analytic’.

Fifth, we have shown that, restoring to Kant’s conception of the mathematical
method, Hintikka holds that there exists a class of quantified logical truths that are
synthetic a priori. In holding that the synthetic a priori is a non-empty category,
he vindicates through modern means the main principles of Kant’s philosophy
against the criticisms moved by the logical positivists. Hintikka’s work is at the
same time a (supposed) reconstruction of Kant’s theory and an open attack against
the perspectives held by the Vienna Circle. It is this second aim that explains,
we think, the most serious weaknesses of his reading of the Critique, namely the
interpretative stretching of his reconstruction and his ascription to Kant of the
idea that pure general logic is, contrary to what we have argued, analytic. The
reason why Hintikka’s talk of logic is a vindication of Kant’s talk of mathematics is
that contemporary boundaries between mathematics and logic are not the Kantian
ones. Modern first-order logic includes modes of reasoning that Kant wouldn’t have
called logical, but mathematical, and it is precisely this kind of derivations that
Hintikka considers to be synthetic.

The conceptual kernel of Hintikka’s formal theory comes from the field of com-
putability: the undecidability of first-order logic is a fundamental observation for
the development of both the theory of distributive normal forms and the theory
of semantic information. The fact that we have to expand a given constituent
at a certain depth in order to acknowledge its inconsistency grounds Hintikka’s
notion of degree of syntheticity and the fact that we do not know which depth the
expansion has to reach in order to achieve the desired result represents the main
motivation towards Hintikka’s formulation of the notion of surface information.
The brilliant idea behind these constructions is that the definition of the analytic-
synthetic distinction must take into account the result that some inferences are
‘more difficult’ than others and require a greater computational effort and that
useful measures of information must be realistic and must envision that in general
there is no decision procedure for determining which constituents are inconsistent.
The intuitive idea of the ‘difficulty of reasoning pattern’ seems to be at the periph-
ery of both Kant and Bolzano’s conceptions of the analytic-synthetic distinction.
Nevertheless, Frege’s reasoning about the fruitfulness of an inference seems very
close to this insight: in the Grundlagen, he seems to recognize that the extraction
of a quantificational structure from a given judgment is, by itself, a creative and
resource-consuming procedure.

However, Hintikka’s work classifies as analytic a wide class of logical inferences
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that includes many polyadic deductions as well as the entire set of propositional
and monadic inferences. As a consequence, Hintikka’s approach is only a partial
vindication of the intuitive idea that logical deduction can increase our knowl-
edge. D’Agostino and Floridi have recently argued that these doubts concerning
the analyticity of propositional logic find a confirmation in the theory of compu-
tational complexity: if the decision problem for Boolean logic is (most probably)
intractable, how is it possible to maintain that it is uninformative and analytic?
D’Agostino and Floridi formulate an innovative non-classical semantics according
to which the class of synthetic propositional inferences is not empty. Following
this account, the conclusion of an analytic inference depends solely on the infor-
mational meaning of the logical operators occurring in its premises and conclusion,
while synthetic inferences are characterized by the use of virtual information.

With Depth Bounded First-Order Logics, we have unified Hintikka’s reasoning
on first-order logic with D’Agostino and Floridi’s account of propositional logic in
order to provide a complete vindication of the thesis that the most part of logical
inferences are synthetic. Our approach primarily applies the analytic-synthetic dis-
tinction to inferences and, crucially, provides a classification of classical first-order
inferences according to two notions of syntheticity. The two criteria of syntheticity
refer to two different kinds of computational and cognitive efforts with different
contents, namely, the idea that an inference is synthetic if, in obtaining the con-
clusion from the premises, it is necessary to employ pieces of virtual information,
and the idea that an inference is synthetic if it is necessary to use in the derivation
individuals that were not involved in the configurations of the premises. At the
basis of our hierarchy of logics, there is the class of first-order logical inferences
that are analytic from both the propositional and the quantificational case. Syn-
thetic inferences are classified according to two parameters: propositional depth
and quantificational depth. The more the number of nested pieces of virtual in-
formation are needed to obtain the conclusion from the premises, the higher the
level in the hierarchy as far as the propositional depth is concerned. Similarly,
the more the number of individuals that are not contained in the premises are
needed to obtain the conclusion, the higher the level in the hierarchy as far as the
quantificational depth is concerned.

The assumption of logical omniscience is an epistemic translation of the princi-
ple that logic is analytic and tautologous. For this reason, after having vindicated
the idea that most of classical first-order inferences are synthetic, we have proposed
a taxonomy of classical epistemic logic according to the degree of omniscience of
the agents involved and of the status of knowledge of the other’s knowledge. The
former is defined as the depth of the synthetic inferences that the agent is able to
carry out; the latter might be that the individuals’ degree of omniscience is un-
known, known or commonly known. The result of this taxonomy is given by Depth
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Bounded Epistemic Logics. The shift to the epistemic context and our discussion
on the muddy children puzzle should have made clear that the characterization
of the analytic-synthetic distinction in terms of computational complexity might
have important applications. In particular, we have shown that the solution to
the puzzle through our family of logic is much more realistic than that obtained
through classical epistemic logic.



Appendix

This Appendix consists of the proofs of the propositions enunciated in Chapter 6.

Proposition 1.1 For any Γ ⊆ Ls and B ∈ L:

1) sB ∈ Γ [Hypothesis]

2) sB ∈ Γ ∪ {s̄B} e s̄B ∈ Γ ∪ {s̄B} [1) and construction]

3) Γ ∪ {s̄B} /∈ G [2) and Def. 4]

4) A ⊆ G [Def. 5]

5) Γ ∪ {s̄B} /∈ A [3) and 4)]

Proposition 1.2 For any Γ,∆ ⊆ Ls and B ∈ L:

1) Γ ∪ {sB} /∈ A [Hypothesis]

2) Γ ∪ {sB} satisfies at least one of the conditions, call it C, for some F,G ∈ L
[Def. 5 e 1)]

3) Γ ∪∆ ∪ {sB} satisfies condition C for F,G ∈ L [2) and construction]

4) Γ ∪∆ ∪ {sB} /∈ A [Def. 5 and 3)]

Proposition 2.1 For any Γ ∈ A, Γ ⊆ Γ and, by Def. 6, Γ is a refinement of Γ
on ∅, that is to say, Γ ∈ R∅

Γ .

Proposition 2.2 For any Γ,Γ ∪ {sA},∆ ∈ A and J = {q1, . . . , qj} ∈ ℘(P):

1) ∆ ∈ RJ
Γ∪{sA} [Hypothesis]

2) ∆ is a refinement of Γ ∪ {sA} on J [1) and Def. 6]

3) Γ ∪ {sA} ⊆ ∆ [2) and Def. 6]
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4) s1q1, . . . , sjqj ∈ ∆ for si ∈ {t, f} [2) and Def. 6]

5) Γ ⊆ Γ ∪ {sA} [Construction]

6) Γ ⊆ ∆ [3) and 5)]

7) ∆ is a refinement of Γ on J [4), 6) and Def. 6]

8) ∆ ∈ RJ
Γ [7) and Def. 6]

Proposition 2.3 Let L = {r1, . . . , rl} ∈ ℘(P) andN = {r1, . . . , rl, rl+1, . . . , rn} ∈
℘(P), where L ⊆ N . For any Γ,∆ ∈ A:

1) ∆ ∈ RNΓ [Hypothesis]

2) ∆ is a refinement of Γ on N [1) and Def. 6]

3) Γ ⊆ ∆ [2) and Def. 6]

4) s1r1, . . . , slrl, sl+1rl+1, . . . , snrn ∈ ∆ per si ∈ {t, f} [2) and Def. 6]

5) L ⊆ N [Hypothesis]

6) s1r1, . . . , slrl ∈ ∆ for si ∈ {t, f} [4) and 5)]

7) ∆ is a refinement of Γ on L [3), 6) and Def. 6]

8) ∆ ∈ RLΓ [7) and Def. 6]

Proposition 2.4 For any J = {q1, . . . , qj} ∈ ℘(P), L = {r1, . . . , rl} ∈ ℘(P),
Γ,∆,Λ ∈ A:

1) ∆ ∈ RJΓ [Hypothesis]

2) ∆ is a refinement of Γ on J [1) and Def. 6]

3) Γ ⊆ ∆ [2) and Def. 6]

4) s1q1, . . . , sjqj ∈ ∆ for si ∈ {t, f} [2) and Def. 6]

5) Λ ∈ RL∆ [Hypothesis]

6) Λ is a refinement of ∆ on L [5) and Def. 6]

7) ∆ ⊆ Λ [6) and Def. 6]

8) s1qr, . . . , slrl ∈ Λ for si ∈ {t, f} [6) and Def. 6]
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9) Γ ⊆ Λ [3) and 7)]

10) s1q1, . . . , sjqj ∈ Λ for si ∈ {t, f} [4) and 7)]

11) s1q1, . . . , sjqj, sj+1r1, . . . , smrl ∈ Λ for si ∈ {t, f} [8) and 10)]

12) Λ is a refinement of Γ on J [9), 10) and Def. 6]

13) Λ ∈ RJΓ [12) and Def. 6]

14) Λ is a refinement of Γ on L [8), 9) and Def. 6]

15) Λ ∈ RLΓ [14) and Def. 6]

16) Λ is a refinement of Γ of J ∪ L [9), 11) and Def. 6]

17) Λ ∈ RJ∪LΓ [16) and Def. 6]

Proposition 3.1 For any i ∈ A, Γ ⊆ Ls and B ∈ L:

1) sB ∈ Γ [Hypothesis]

2) sB ∈ W0(Γ) [2) and Def. 10]

3) sB ∈ W(Γ) [3) and Def. 10]

Proposition 3.2 For any Γ,∆ ⊆ Ls and B ∈ L:

1) sB ∈ W(Γ) [Hypothesis]

2) ∃j ≥ 0 | sB ∈ Wj(Γ) [1) and Def. 10]

3) sB ∈ Wj(Γ ∪∆) [2) and Lemma 1 (following)]

4) sB ∈ W(Γ ∪∆) [3) and Def. 10]

Lemma 1. For any Γ,∆ ⊆ Ls, B ∈ L and j ≥ 0, if sB ∈ Wj(Γ), then sB ∈
Wj(Γ ∪∆).
Proof by induction on j ≥ 0:

• Basic case: j = 0. We prove that if sB ∈ W0(Γ), then sB ∈ W0(Γ ∪∆).

1) sB ∈ W0(Γ) [Hypothesis]

2) sB ∈ Γ [1) and Def. 10]

3) sB ∈ Γ ∪∆ [2) and construction]
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4) sB ∈ W0(Γ ∪∆) [3) and Def. 10]

• Inductive hypothesis: j = n. We assume that if sB ∈ Wn(Γ), then sB ∈
Wn(Γ ∪∆).

• Inductive step: j = n + 1. We prove that if sB ∈ Wn+1(Γ), then sB ∈
Wn+1(Γ ∪∆).

1) sB ∈ Wn+1(Γ) [Hypothesis]

2) There are three cases to be considered: i. Wn(Γ) ∪ {s̄B} /∈ A, ii.
sB = tKg¬2nC and Σg(Wn(Γ))∪{f¬2mC} /∈ A and iii. sB = tKg¬2n+1C
and Σg(Wn(Γ)) ∪ {t¬2mC} /∈ A [1) and Def. 10]

3) Case i. Wn(Γ) ∪ {s̄B} /∈ A
3.1) Wn(Γ) ⊆ Wn(Γ ∪∆) [Inductive hypothesis]

3.2) Wn(Γ ∪∆) ∪ {s̄B} /∈ A [3), 3.1) and Prop. 1.2]

3.3) sB ∈ Wn+1(Γ ∪∆) [3.2) and Def. 10]

4) Case ii. sB = tKg¬2nC and Σg(Wn(Γ)) ∪ {f¬2mC} /∈ A
4.1) Wn(Γ) ⊆ Wn(Γ ∪∆) [Inductive hypothesis]

4.2) Σg(Wn(Γ)) ⊆ Σg(Wn(Γ ∪∆)) [4.1) and Def. 9]

4.3) Σg(Wn(Γ ∪∆)) ∪ {f¬2mC} /∈ A [4), 4.2) and Prop. 1.2]

4.4) sB = tKg¬2nC ∈ Wn+1(Γ ∪∆) [4.3) and Def. 10]

5) Case iii. sB = tKg¬2n+1C and Σg(Wn(Γ)) ∪ {t¬2mC} /∈ A
5.1) Wn(Γ) ⊆ Wn(Γ ∪∆) [Inductive hypothesis]

5.2) Σg(Wn(Γ)) ⊆ Σg(Wn(Γ ∪∆)) [5.1) and Def. 9]

5.3) Σg(Wn(Γ ∪∆)) ∪ {t¬2mC} /∈ A [5), 5.2) and Prop. 1.2]

5.4) sB = tKg¬2n+1C ∈ Wn+1(Γ ∪∆) [5.3) and Def. 10]

6) sB ∈ Wn+1(Γ ∪∆) [3.3), 4.4) and 5.4)]

Proposition 3.3 For any Γ ⊆ Ls and B,C ∈ L:

1) sB ∈ W(Γ) [Hypothesis]

2) ∃n ≥ 0 | sB ∈ Wn(Γ) [1) and Def. 10]

3) sC ∈ W(Γ ∪ {sB}) [Hypothesis]

4) ∃k ≥ 0 | sC ∈ Wk(Γ ∪ {sB}) [3) and Def. 10]

5) sC ∈ Wn+k(Γ) [2), 4) and Lemma 2 (following)]
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6) sC ∈ W(Γ) [5) and Def. 10]

Lemma 2. For any Γ ⊆ Ls, B,C ∈ L and n, k ≥ 0, if sB ∈ Wn(Γ) and sC ∈
Wk(Γ ∪ {sB}), then sC ∈ Wn+k(Γ).
Proof by induction on k ≥ 0:

• Base case: k = 0. We prove that if sB ∈ Wn(Γ) and sC ∈ W0(Γ ∪ {sB}),
then sC ∈ Wn(Γ).

1) sC ∈ W0(Γ ∪ {sB}) [Hypothesis]

2) sC ∈ Γ ∪ {sB} [1) and Def. 10]

3) sC ∈ Γ (Obviously, if sC = sB, the desired result simply is the first
hypothesis) [2) and construction]

4) sC ∈ W0(Γ) [3) and Def. 10]

5) sC ∈ Wn(Γ) [4) and Prop. 4.3]

• Inductive hypothesis: k = m − 1. We assume that if sB ∈ Wn(Γ) and
sC ∈ Wm−1(Γ ∪ {sB}), then sC ∈ Wn+m−1(Γ).

• Inductive step: k = m. We prove that if sB ∈ Wn(Γ) and sC ∈ Wm(Γ ∪
{sB}), then sC ∈ Wn+m(Γ).

1) sB ∈ Wn(Γ) [Hypothesis]

2) sC ∈ Wm(Γ ∪ {sB}) [Hypothesis]

3) There are three cases to be considered: i. Wm−1(Γ∪{sB})∪{s̄C} /∈ A,
ii. sC = tKg¬2nD and Σg(Wm−1(Γ ∪ {sB})) ∪ {f¬2mD} /∈ A and iii.
sC = tKg¬2n+1D and Σg(Wm−1(Γ ∪ {sB})) ∪ {t¬2mD} /∈ A [2) and
Def. 10]

4) Case i. Wm−1(Γ ∪ {sB}) ∪ {s̄C} /∈ A
4.1) Wm−1(Γ ∪ {sB}) ⊆ Wn+m−1(Γ) [1) and Inductive hypothesis]

4.2) Wn+m−1(Γ) ∪ {s̄C} /∈ A [4), 4.1) and Prop. 1.2]

4.3) sC ∈ Wn+m(Γ) [4.2) and Def. 10]

5) Case ii. sC = tKg¬2nD and Σg(Wm−1(Γ ∪ {sB})) ∪ {f¬2mD} /∈ A
5.1) Wm−1(Γ ∪ {sB}) ⊆ Wn+m−1(Γ) [1) and Inductive hypothesis]

5.2) Σg(Wm−1(Γ ∪ {sB})) ⊆ Σg(Wn+m−1(Γ)) [5.1) and Def. 9]

5.3) Σg(Wn+m−1(Γ)) ∪ {f¬2mD} /∈ A [5), 5.2) and Prop. 1.2]

5.4) sC = tKg¬2nD ∈ Wn+m(Γ) [5.3) and Def. 10]

6) Case iii. sC = tKg¬2n+1D and Σg(Wm−1(Γ ∪ {sB})) ∪ {t¬2mD} /∈ A
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6.1) Wm−1(Γ ∪ {sB}) ⊆ Wn+m−1(Γ) [1) and Inductive hypothesis]

6.2) Σg(Wm−1(Γ ∪ {sB})) ⊆ Σg(Wn+m−1(Γ)) [6.1) and Def. 9]

6.3) Σg(Wn+m−1(Γ)) ∪ {t¬2mD} /∈ A [6), 6.2) and Prop. 1.2]

6.4) sC = tKg¬2n+1D ∈ Wn+m(Γ) [6.3) and Def. 10]

7) sC ∈ Wn+m(Γ) [4.3), 5.4) and 6.4)]

Proposition 4.1 For any Γ ⊆ Ls:

1) Γ /∈ A [Hypothesis]

2) Γ ⊆ W(Γ) [Def. 10]

3) W(Γ) /∈ A [1) and Prop. 1.2]

Proposition 4.2 For any Γ ⊆ Ls:

1) W(Γ) /∈ A [Hypothesis]

2) ∃j ≥ 0 | Wj(Γ) /∈ A [1) and Def. 10]

3) Wj(Γ) ∪ {s̄B} /∈ A for any B ∈ L [2) and Prop. 1.2]

4) sB ∈ Wj+1(Γ) for any B ∈ L [3) and Def. 10]

5) sB ∈ W(Γ) for any B ∈ L [4) and Def. 10]

Proposition 4.3 For any Γ ⊆ Ls, B ∈ L and n ∈ N:

1) sB ∈ Wn(Γ) [Hypothesis]

2) Wn(Γ) ∪ {s̄B} /∈ A [1) and Prop. 1.1]

3) sB ∈ Wn+1(Γ) [2) and Def. 10]

Proposition 4.4 We split the proof into two parts.

1. For any Γ ⊆ Ls and B ∈ L, if W(Γ) ∪ {s̄B} /∈ A, then sB ∈ W(Γ).

1) W(Γ) ∪ {s̄B} /∈ A [Hypothesis]

2) there are at least two formulae, sα and sβ, that satisfy one of the inadmissibility
conditions and belong to W(Γ) ∪ {s̄B} [1) and Def. 5)]
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3) there are two cases to be considered: i. one of the two is s̄B or ii. neither of
the two is s̄B [2)]

4) Case i. sα = s̄B and sβ ∈ W(Γ).

4.1) sα = s̄B [Assumption]

4.2) sβ ∈ W(Γ) [Assumption]

4.3) sβ ∈ Wn(Γ) for some n ∈ N [4.2) and Def. 10]

4.4) sα, sβ ∈ Wn(Γ) ∪ {s̄B} [4.1) and 4.3)]

4.5) Wn(Γ) ∪ {s̄B} /∈ A [2), 4.4) and Def. 5]

5) Case ii. sα 6= s̄B, sβ 6= s̄B and sα, sβ ∈ W(Γ).

5.1) sα, sβ ∈ W(Γ) [Assumption]

5.2) sα ∈ Wj(Γ) for some j ∈ N [5.1) and Def. 10]

5.3) sβ ∈ Wm(Γ) for some m ∈ N [5.1) and Def. 10]

5.4) let n =max{j,m} [construction]

5.5) Wj(Γ) ⊆ Wn(Γ) and Wm(Γ) ⊆ Wn(Γ) [5.4) and Prop. 4.3]

5.6) sα, sβ ∈ Wn(Γ) ∪ {s̄B} [5.2) and 5.3)]

5.7) Wn(Γ) /∈ A [2), 5.6) and Def. 5]

5.8) Wn(Γ) ∪ {s̄B} /∈ A [5.7) and Prop. 1.2]

6) Wn(Γ) ∪ {s̄B} /∈ A for some n ∈ N [4) and 5)]

7) sB ∈ Wn+1(Γ) for some n ∈ N [6) and Def. 10]

8) sB ∈ W(Γ) [7) and Def. 10]

2. For any Γ ⊆ Ls and B ∈ L, if sB ∈ W(Γ), then W(Γ) ∪ {s̄B} /∈ A.
It follows by Prop. 1.1.

Proposition 4.5 We split the proof in two parts:

1. For any sB ∈ Ls, if sB ∈ W(Γ), then sB ∈ W(W(Γ)).
It follows by Prop. 3.1.

2. For any sB ∈ Ls, if sB ∈ W(W(Γ)), then sB ∈ W(Γ).
If sB ∈ W(W(Γ)), then there exists some n ∈ N such that sB ∈ Wn(W(Γ)). We
prove by induction on n that if sB ∈ Wn(W(Γ)), then there exists some ln ∈ N
such that sB ∈ Wln(Γ).
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• Base case: n = 0. By Def. 10, W0(W(Γ)) = W(Γ).

• Inductive hypothesis: n = m. We assume that Wm(W(Γ)) ⊆ Wlm(Γ).

• Inductive step: n = m+ 1. We assume that sB ∈ Wm+1(W(Γ)). Then there
are three cases to be considered:

– Wm(W(Γ)) ∪ {s̄B} /∈ A
1) Wlm(Γ) ∪ {s̄B} /∈ A [Prop. 1.2 and Inductive hypothesis]

2) sB ∈ Wlm+1(Γ) [1) and Def. 10]

– sB = tKgC and Σg(Wm(W(Γ))) ∪ {fC} /∈ A
1) Σg(Wm(W(Γ))) ⊆ Σg(Wlm(Γ)) [Def. 9 and Inductive hypothesis]

2) Σg(Wlm(Γ)) ∪ {fC} /∈ A [1) and Prop. 1.2]

3) tKgC ∈ Wlm+1(Γ) [2) and Def. 10]

– sB = tKg¬C and Σg(Wm(W(Γ))) ∪ {tC} /∈ A
1) Σg(Wm(W(Γ))) ⊆ Σg(Wlm(Γ)) [Def. 9 and Inductive hypothesis]

2) Σg(Wlm(Γ)) ∪ {tC} /∈ A [1) and Prop. 1.2]

3) tKg¬C ∈ Wlm+1(Γ) [2) and Def. 10]

Proposition 4.6 We prove that for any sB ∈ Ls, if sB ∈ Σg(Γ), then sB ∈
W(Γ). We consider the following two cases:

Case i. sB = t¬2nC ∈ Σg(Γ).

1) tKg¬2nC ∈ Γ = W0(Γ) [Def. 9 and Def. 10]

2) W0(Γ) ∪ {f¬2nC} /∈ A because satisfies inadmissibility condition 12 [1) and
Def. 5]

3) t¬2nC ∈ W1(Γ) [2) and Def. 10]

4) t¬2nC ∈ W(Γ) [3) and Def. 10]

Case ii. sB = f¬2nC ∈ Σg(Γ).

1) tKg¬2n+1C ∈ Γ = W0(Γ) [Def. 9 and Def. 10]

2) W0(Γ) ∪ {f¬2n+1C} /∈ A because satisfies inadmissibility condition 12 [1)
and Def. 5]

3) t¬2n+1C ∈ W1(Γ) [2) and Def. 10]
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4) W1(Γ) ∪ {t¬2nC} /∈ A because satisfies inadmissibility condition 1 [3) and
Def. 5]

5) f¬2nC ∈ W2(Γ) [4) and Def. 10]

6) f¬2nC ∈ W(Γ) [5) and Def. 10]

Proposition 4.7 If sB ∈ W(Σg(Γ)), then, for some n ∈ N, sB ∈ Wn(Σg(Γ)).
We prove by induction on n that if sB ∈ Wn(Σg(Γ)), then there exists some ln ∈ N
such that, for s = t, tKgB ∈ Wln(Γ) and, for s = f , tKg¬B ∈ Wln(Γ).

• Base case: n = 0.

1) sB ∈ W0(Σg(Γ)) [Hypothesis]

2) sB ∈ Σg(Γ) [1) and Def. 10]

3) for s = t, tKgB ∈ Γ and, for s = f , tKg¬B ∈ Γ [2) and Def. 9]

4) tKgB ∈ W0(Γ) [3) and Def. 10]

• Inductive hypothesis: we assume the conclusion for n = m

• Inductive step: n = m+ 1.
If sB ∈ Wm+1(Σg(Γ)), then there cases to be considered:

1) Case i: Λ = Wm(Σg(Γ)) ∪ {s̄B} /∈ A
It follows that for some ∆ = {sG, sF, (sH)} ⊆ Λ, the formulae in ∆
satisfy the inadmissibility condition C. We have to consider two sub-
cases:

– s̄B /∈ ∆ and ∆ ⊆ Wm(Σg(Γ))

1) for each sC ∈ ∆, tKgC ∈ Wlm(Γ) for s = t and tKg¬C ∈
Wlm(Γ) for s = f by the Inductive hypothesis

2) ∆ ⊆ Σg(Wlm(Γ)) by Def. 9

3) Σg(Wlm(Γ)) /∈ A
4) Σg(Wlm(Γ)) ∪ {s̄B} /∈ A by 3) and Prop. 1.2

5) tKgB ∈ Wlm+1(Γ) for s = t and tKg¬B ∈ Wlm+1(Γ) for s = f

– s̄B ∈ ∆

1) for each sC ∈ ∆−{s̄B}, tKgC ∈ Wlm(Γ) for s = t and tKg¬C ∈
Wlm(Γ) for s = f by the Inductive hypothesis

2) ∆ ⊆ Σg(Wlm(Γ)) ∪ {s̄B} by Def. 9

3) Σg(Wlm(Γ)) ∪ {s̄B} /∈ A by 2)

4) tKgB ∈ Wlm+1(Γ) for s = t and tKg¬B ∈ Wlm+1(Γ) for s = f
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2) Case ii. Λ = Σf (Wm(Σg(Γ))) ∪ {fD} /∈ A and sB = tKfD
It follows that for some ∆ = {sG, sF, (sH)} ⊆ Λ, the formulae in ∆
satisfy some inadmissibility condition. Notice that:
(∗) if sD ∈ Σf (Wm(Σg(Γ))), then sD ∈ Σ(g,f)(Wlm(Γ)), because:

– for s = t:
tD ∈ Σf (Wm(Σg(Γ)))
tKfD ∈ Wm(Σg(Γ)) by Def. 9
tKgKfD ∈ Wlm(Γ) by Inductive hypothesis
tD ∈ Σ(g,f)(Wlm(Γ)) by Def. 9

– Mutatis mutandis for s = f

We have to consider two sub-cases:

– fD /∈ ∆ and ∆ ⊆ Σf (Wm(Σg(Γ)))

1) ∆ ⊆ Σ(g,f)(Wlm(Γ)) by (∗)
2) Σ(g,f)(Wlm(Γ)) /∈ A
3) Σ(g,f)(Wlm(Γ)) ∪ {fD} /∈ A by 2) and Prop. 1.2

4) tKgKfD ∈ Wlm+1(Γ) by Def. 9

– fD ∈ ∆

1) ∆− {fD} ⊆ Σ(g,f)(Wlm(Γ)) by (∗)
2) ∆ ⊆ Σ(g,f)(Wlm(Γ)) ∪ {fD} by 2)

3) Σ(g,f)(Wlm(Γ)) ∪ {fD} /∈ A
4) tKgKfD ∈ Wlm+1(Γ) by Def. 9

3) Case iii. Λ = Σf (Wm(Σg(Γ))) ∪ {tD} /∈ A and sB = tKf¬D. Mutatis
mutandis as in 2.

4) tKgB ∈ W(Γ) for s = t and tKg¬B ∈ W(Γ) for s = f

Proposition 4.8 For any J = {q1, . . . , qj}, Γ ∈ A and A ∈ L, assume that
sA ∈ W(∆) for any minimal refinement of Γ on J . By Def. 6, every Λ ∈ RJΓ
is such that Γ ∈ Λ and JΛ = {s1q1, . . . , sjqj} ∈ Λ for certain si ∈ T . Now, let
∆Λ = Γ ∪ JΛ. By construction, ∆Λ ⊆ Λ. Moreover, ∆Λ is a minimal refinement
of Γ on J and, by hypothesis, sA ∈ W(∆Λ). By Prop. 3.1, we can conclude that
sA ∈ W(Λ) and, since we haven’t made any specific assumption on Λ, the result
holds for every Λ ∈ RJΓ.

Proposition 5.1 Fix x as one of e, u, c. For any Ii = (ϕM
i ,RδMi ) in any model

M ∈M0 and for any B ∈ L:

1) sB ∈ ϕM
i [Hypothesis]
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2) sB ∈ Cnx0(Ii) [1) and Def. 11, Def. 12, Def. 13]

3) sB ∈ Cnx(Ii) [2) and Def. 11, Def. 12, Def. 13]

Proposition 5.2 Fix x as one of e, u, c. If sB ∈ Cnx(Ii), then, by Def. 11, Def.
12 and Def. 13, there exists some m ∈ N such that sB ∈ Cnxm(Ii). We prove by
induction on m that if sB ∈ Cnxm(Ii), then sB ∈ Cnxm(I1i ).

• Base case: m = 0. We prove that if sB ∈ Cnx0(Ii), then sB ∈ Cnx0(I1i ).

1) sB ∈ Cnx0(Ii) [Hypothesis]

2) sB ∈ ϕM
i [1) and Def. 11, Def. 12, Def. 13]

3) sB ∈ ϕM
i ∪ {sA} [2) and Construction]

4) sB ∈ ϕM1

i [3) and Def. of ϕM1

i ]

5) sB ∈ Cnx0(I1i ) [4) and Def. 11, Def. 12, Def. 13]

• Inductive hypothesis: m = n−1. We assume that Cnxn−1(Ii) ⊆ Cnxn−1(I1i ).

• Inductive step: m = n. We prove that if sB ∈ Cnxn(Ii), then sB ∈ Cnxn(I1i ).

1) sB ∈ Cnxn(Ii) [Hypothesis]

2) There are four cases to be considered: i. sB ∈ W(Cnxn−1(Ii)), ii. if
x = u, sB = tKiC ∈ V(Cnun−1(Ii)), iii. if x = e, sB = tKiC ∈
SV(Cnen−1(Ii)) and iv. if x = c, sB = tKiC ∈ CSV(Cncn−1(Ii)).

3) Case i. sB ∈ W(Cnxn−1(Ii)).

3.1) Cnxn−1(Ii) ⊆ Cnxn−1(I1i ) [Inductive hypothesis]

3.2) sB ∈ W(Cnxn−1(I1i )) [3), 3.1) and Prop. 3.2]

3.3) sB ∈ Cnxn(I1i ) [3.2) and Def. 11, Def. 12, Def. 13]

4) Case ii. If x = u, sB = tKiC ∈ V(Cnun−1(Ii)).

4.1) there exists some J ∈ ℘(P) for which:

i. |J | ≤ δMi and

ii. for any ∆ ∈ RJCnun−1(Ii)
, tC ∈ W(∆).

4.2) for J ∈ ℘(P), |J | ≤ δM
1

i [4.1.i) and Def. of δM
1

i ]

4.3) Cnun−1(Ii) ⊆ Cnun−1(I1i ) [Inductive hypothesis]

4.4) RJ
Cnun−1(I1i )

⊆ RJCnun−1(Ii)
[4.3) and Prop. 2.2]

4.5) for all Λ ∈ A, if Λ ∈ RJ
Cnun−1(I1i )

, then Λ ∈ RJCnun−1(Ii)
[4.4)]

4.6) for all Λ ∈ A, if Λ ∈ RJ
Cnun−1(I1i )

, then tC ∈ W(Λ) [4.1.ii) and

4.5)]
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4.7) sB = tKiC ∈ V(Cnun−1(I1i )) [4.2) and 4.6)]

4.8) sB = tKiC ∈ Cnun(I1i ) [4.7)]

5) Case iii. If x = e, sB = tKiC ∈ SV(Cnen−1(Ii))

5.1) There exists some J = ((L, i), (J, j)) ∈ CAPi for which:

i. δMi ≥ δMj
δMi ≥ |L|+ |J |
δMj ≥ |J |

ii. ∃A2(tC ∈ W(Cnen−1(Ii) ∪ {tKiA2}) ∧ ∀Λ ∈ RLCnen−1(Ii)
(tA2 ∈

W(Λ)∨
∃A1(tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))(tA1 ∈ W(∆))))).

5.2) Since by definition of M1 for all j ∈ A δM
1

j = δMj , we have that for
that J:
δM

1

i ≥ δM
1

j

δM
1

i ≥ |L|+ |J |
δM

1

j ≥ |J | [5.1.i)]

5.3) Cnen−1(Ii) ⊆ Cnen−1(I1i ) [Inductive hypothesis]

5.4) for A2 (tC ∈ W(Cnen−1(I1i ) ∪ {tKiA2}) [5.1.ii), 5.3) and Prop.
3.2]

5.5) for all Λ ∈ RL
Cnen−1(I1i )

, Λ ∈ RLCnen−1(Ii)
[5.3) and Prop. 2.2)]

5.6) for A2(tC ∈ W(Cnen−1(I1i ) ∪ {tKiA2}) ∧ ∀Λ ∈ RL
Cnen−1(I1i )

(tA2 ∈
W(Λ)∨
for A1(tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))(tA1 ∈ W(∆))))).

[5.1.ii), 5.4) and 5.5)]

5.7) sB = tKiC ∈ SV(Cnen−1(I1i )) [5.2), 5.6) and Def. 12]

5.8) sB = tKiC ∈ Cnen(I1i ) [5.7) and Def. 12]

6) Case iv. If x = c, sB = tKiC ∈ CSV(Cncn−1(Ii))
There exists some J = ((L, i), (J1, j1), . . . , (Jm, jm)) ∈ LAPi for which:

i. δMi ≥ δMj1
δMi ≥ |L|
∀m = 1, . . . , n, δMm ≥

n∑
k=m

|Jk|;

ii. and for An ∈ L:
∃An+1(tC ∈ W(Cncn−1(Ii)∪{tKiAn+1})∧∀∆0 ∈ RLCncn−1(Ii)

(tAn+1 ∈
W(∆0)∨
∃An(tAn+1 ∈ W(∆0∪{tKj1An})∧∀∆1 ∈ RJ1Σj1

(W(∆0))(tAn ∈ W(∆1)∨
...
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∃A1(tA2 ∈ W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJnΣjn (W(∆n−1))(tA1 ∈
W(∆n))) . . . ).

6.1) Since by definition of M1 for all j ∈ A δM
1

j = δMj , we have that for
that J:
δM

1

i ≥ δM
1

j1

δM
1

i ≥ |L|
∀m = 1, . . . , n, δM

1

m ≥
n∑

k=m

|Jk|

6.2) Cncn−1(Ii) ⊆ Cncn−1(I1i ) [Inductive hypothesis]

6.3) for An+1, tC ∈ W(Cncn−1(I1i ) ∪ {tKiAn+1}) [6), 6.2) and Prop.
3.2]

6.4) for all ∆0 ∈ RL
Cncn−1(I1i )

, ∆0 ∈ RLCncn−1(Ii)
[6.2) and Prop. 2.2]

6.5) forAn+1, (tC ∈ W(Cncn−1(I1i )∪{tKiAn+1})∧∀∆0 ∈ RL
Cncn−1(I1i )

(tAn+1 ∈
W(∆0)∨
for An (tAn+1 ∈ W(∆0 ∪ {tKj1An}) ∧ ∀∆1 ∈ RJ1Σj1

(W(∆0)) (tAn ∈
W(∆1) ∨
...
for A1 (tA2 ∈ W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJnΣjn (W(∆n−1)) (tA1 ∈
W(∆n) ) ) . . . ).
[6), 6.3) and 6.4)]

6.6) sB = tKiC ∈ CSV(Cncn−1(I1i )) [6.1), 6.5) and Def. 13]

6.7) sB = tKiC ∈ Cncn(I1i ) [6.6) and Def. 13]

7) sB ∈ Cnxn(I1i ) [3.3), 4.8), 5.8) and 6.7)]

Proposition 5.3 Fix x as one of u, e, c. If sB ∈ Cnx(Ii), then, by Def. 11, Def.
12 and Def. 13, there exists some m ∈ N such that sB ∈ Cnxm(Ii). We prove by
induction on m that if sB ∈ Cnxm(Ii), then sB ∈ Cnxm(I2i ).

• Base case: m = 0. We prove that if sB ∈ Cnx0(Ii), then sB ∈ Cnx0(I2i ).

1) sB ∈ Cnx0(Ii) [Hypothesis]

2) sB ∈ ϕM
i [1) and Def. 11, Def. 12, Def. 13]

3) sB ∈ Cnx0(I2i ) [2) and Def. of ϕM2
i ]

• Inductive hypothesis: m = n−1. We assume that Cnxn−1(Ii) ⊆ Cnxn−1(I2i ).

• Inductive step: m = n. We prove that if sB ∈ Cnxn(Ii), then sB ∈ Cnxn(I2i ).

1) sB ∈ Cnxn(Ii) [Hypothesis]
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2) There are four cases to be considered: i. sB ∈ W(Cnxn−1(Ii)), ii. if
x = u, sB = tKiC ∈ V(Cnun−1(Ii)), iii. if x = e, sB = tKiC ∈
SV(Cnen−1(Ii)) and iv. if x = c, sB = tKiC ∈ CSV(Cncn−1(Ii)).

3) Case i. sB ∈ W(Cnxn−1(Ii)).

3.1) Cnxn−1(Ii) ⊆ Cnxn−1(I2i ) [Inductive hypothesis]

3.2) sB ∈ W(Cnxn−1(I2i )) [3), 3.1) and Prop. 3.2]

3.3) sB ∈ Cnxn(I2i ) [3.2) and Def. 11, Def. 12, Def. 13]

4) Case ii. If x = u, sB = tKiC ∈ V(Cnun−1(Ii)).

4.1) there exists some J ∈ ℘(P) for which:

i. |J | ≤ δMi and

ii. for any ∆ ∈ RJCnun−1(Ii)
, tC ∈ W(∆).

4.2) for J ∈ ℘(P), |J | ≤ δM
2

i [4.1.i) and Def. of δM
2

i ]

4.3) Cnun−1(Ii) ⊆ Cnun−1(I2i ) [Inductive hypothesis]

4.4) RJ
Cnun−1(I2i )

⊆ RJCnun−1(Ii)
[4.3) and Prop. 2.2]

4.5) for all Λ ∈ A, if Λ ∈ RJ
Cnun−1(I2i )

, then Λ ∈ RJCnun−1(Ii)
[4.4)]

4.6) for all Λ ∈ A, if Λ ∈ RJ
Cnun−1(I2i )

, then tC ∈ W(Λ) [4.1.ii) and

4.5)]

4.7) sB = tKiC ∈ V(Cnun−1(I2i )) [4.2) and 4.6)]

4.8) sB = tKiC ∈ Cnun(I2i ) [4.7)]

5) Case iii. If x = e, sB = tKiC ∈ SV(Cnen−1(Ii))

5.1) There exists some J = ((L, i), (J, j)) ∈ CAPi for which:

i. δMi ≥ δMj
δMi ≥ |L|+ |J |
δMj ≥ |J |

ii. ∃A2(tC ∈ W(Cnen−1(Ii) ∪ {tKiA2}) ∧ ∀Λ ∈ RLCnen−1(Ii)
(tA2 ∈

W(Λ)∨
∃A1(tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))(tA1 ∈ W(∆))))).

5.2) Since, by definition of M2, δM
2

i = δMi + 1 and for all j ∈ A − i
δM

2

j = δMj , we have that for that J:

δM
2

i ≥ δM
2

j

δM
2

i ≥ |L|+ |J |
δM

2

j ≥ |J | [5.1.i)]

5.3) Cnen−1(Ii) ⊆ Cnen−1(I2i ) [Inductive hypothesis]

5.4) for A2 (tC ∈ W(Cnen−1(I2i ) ∪ {tKiA2}) [5.1.ii), 5.3) and Prop.
3.2]
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5.5) for all Λ ∈ RL
Cnen−1(I2i )

, Λ ∈ RLCnen−1(Ii)
[5.3) and Prop. 2.2)]

5.6) for A2(tC ∈ W(Cnen−1(I2i ) ∪ {tKiA2}) ∧ ∀Λ ∈ RL
Cnen−1(I2i )

(tA2 ∈
W(Λ)∨
for A1(tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))(tA1 ∈ W(∆))))).

[5.1.ii), 5.4) and 5.5)]

5.7) sB = tKiC ∈ SV(Cnen−1(I2i )) [5.2), 5.6) and Def. 12]

5.8) sB = tKiC ∈ Cnen(I2i ) [5.7) and Def. 12]

6) Case iv. If x = c, sB = tKiC ∈ CSV(Cncn−1(Ii))
There exists some J = ((L, i), (J1, j1), . . . , (Jm, jm)) ∈ LAPi for which:

i. δMi ≥ δMj1
δMi ≥ |L|
∀m = 1, . . . , n, δMm ≥

n∑
k=m

|Jk|;

ii. and for An ∈ L:
∃An+1(tC ∈ W(Cncn−1(Ii)∪{tKiAn+1})∧∀∆0 ∈ RLCncn−1(Ii)

(tAn+1 ∈
W(∆0)∨
∃An(tAn+1 ∈ W(∆0∪{tKj1An})∧∀∆1 ∈ RJ1Σj1

(W(∆0))(tAn ∈ W(∆1)∨
...
∃A1(tA2 ∈ W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJnΣjn (W(∆n−1))(tA1 ∈
W(∆n))) . . . ).

6.1) Since, by definition of M2, δM
2

i = δMi + 1 and for all j ∈ A − i
δM

2

j = δMj , we have that for that J:

δM
2

i ≥ δM
2

j1

δM
2

i ≥ |L|
∀m = 1, . . . , n, δM

2

m ≥
n∑

k=m

|Jk|

6.2) Cncn−1(Ii) ⊆ Cncn−1(I2i ) [Inductive hypothesis]

6.3) for An+1, tC ∈ W(Cncn−1(I2i ) ∪ {tKiAn+1}) [6), 6.2) and Prop.
3.2]

6.4) for all ∆0 ∈ RL
Cncn−1(I2i )

, ∆0 ∈ RLCncn−1(Ii)
[6.2) and Prop. 2.2]

6.5) forAn+1, (tC ∈ W(Cncn−1(I2i )∪{tKiAn+1})∧∀∆0 ∈ RL
Cncn−1(I2i )

(tAn+1 ∈
W(∆0)∨
for An (tAn+1 ∈ W(∆0 ∪ {tKj1An}) ∧ ∀∆1 ∈ RJ1Σj1

(W(∆0)) (tAn ∈
W(∆1) ∨
...
for A1 (tA2 ∈ W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJnΣjn (W(∆n−1)) (tA1 ∈
W(∆n) ) ) . . . ).
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[6), 6.3) and 6.4)]

6.6) sB = tKiC ∈ CSV(Cncn−1(I2i )) [6.1), 6.5) and Def. 13]

6.7) sB = tKiC ∈ Cncn(I2i ) [6.6) and Def. 13]

7) sB ∈ Cnxn(I2i ) [3.3), 4.8), 5.8) and 6.7)]

Proposition 6. We split the proof into two parts.

1. Fix x as one of u, e, c and fix k ∈ N. For any sB ∈ Ls and Γ ∈ A, if sB is a
DBELxk-consequence of Γ, then for all M ∈Mk and for all Ii ∈ M, if Γ ⊆ Cnx(Ii),
then sB ∈ Cnx(Ii).

We prove the contrapositive.

1) For M1 ∈Mk and for I1i ∈ M1, Γ ⊆ Cnx(I1i ) and sB /∈ Cnx(I1i ) [Hypothesis]

2) Let M2 = (A, ϕM2
, δM

2
, I21, . . . , I

2
n) ∈Mk such that:

2.1) ϕM2

j = Γ for all j ∈ A− {i}

2.2) ϕM2

i = ϕM1

i

2.3) δM
2

i = δM
1

i

3) For M2 ∈Mk and for all I2j ∈ M2, Γ ⊆ Cnx(I2j) [1), 2) and Prop. 5.1]

4) For M2 ∈Mk, Γ ⊆ Cnx(M2) [3) and Def. 15]

5) For M2 ∈Mk and I2i ∈ M2, sB /∈ Cnx(I2i ) [1) and 2)]

6) For M2 ∈Mk, sB /∈ Cnx(M2) [5) and Def. 15]

7) For M2 ∈Mk, Γ ⊆ Cnx(M2) and sB /∈ Cnx(M2) [4) and 6)]

8) sB /∈ Cnxk(Γ) [7) and Def. 16]

2. Fix x as one of u, e, c and fix k ∈ N. For any sB ∈ Ls and Γ ∈ A, if for all
M ∈ Mk and for all Ii ∈ M, if Γ ⊆ Cnx(Ii), then sB ∈ Cnx(Ii), then sB is a
DBELxk-consequence of Γ.

We prove the contrapositive.

1) sB /∈ Cnxk(Γ) [Hypothesis]

2) For some M ∈Mk, Γ ⊆ Cnx(M) and sB /∈ Cnx(M) [1) and Def. 16]
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3) For some M ∈ Mk, Γ ⊆ Cnx(Ij) for all Ij ∈ M and sB /∈ Cnx(Ii) for some
Ii ∈ M [2) and Def. 15]

4) For some M ∈Mk and Ii ∈ M, Γ ⊆ Cnx(Ii) and sB /∈ Cnx(Ii) [3)]

Proposition 7.1. Fix x as one of u, e, c and fix k ∈ N. For all Γ ∈ A and
sB ∈ Ls:

1) sB ∈ Γ [Hypothesis]

2) For any M ∈Mk such that Γ ⊆ Cnx(M), sB ∈ Cnx(M) [1)]

3) sB ∈ Cnxk(Γ) [2) and Def. 16]

Proposition 7.2. Fix x as one of u, e, c and fix k ∈ N. For all Γ,Γ ∪ {sA} ∈ A
and sA, sB ∈ Ls:

1) sB ∈ Cnxk(Γ) [Hypothesis]

2) For all M ∈Mk, if Γ ⊆ Cnx(M), then sB ∈ Cnx(M) [1) and Def. 16]

3) For all M′ ∈Mk, if Γ ∪ {sA} ⊆ Cnx(M′), then Γ ⊆ Cnx(M′) [Construction]

4) For all M′ ∈Mk, if Γ ∪ {sA} ⊆ Cnx(M′), then sB ∈ Cnx(M′) [2) and 3)]

5) sB ∈ Cnxk(Γ ∪ {sA}) [4) and Def. 16]

Proposition 7.3. Fix x as one of u, e, c and fix k ∈ N. For all Γ,Γ ∪ {sA} ∈ A
and sA, sB ∈ Ls:

1) sA ∈ Cnxk(Γ) [Hypothesis]

2) For all M ∈Mk, if Γ ⊆ Cnx(M), then sA ∈ Cnx(M) [1) and Def. 16]

3) For all M ∈Mk, if Γ ⊆ Cnx(M), then Γ ∪ {sA} ⊆ Cnx(M) [2)]

4) sB ∈ Cnxk(Γ ∪ {sA}) [Hypothesis]

5) For all M ∈Mk, if Γ∪{sA} ⊆ Cnx(M), then sB ∈ Cnx(M) [4) and Def. 16]

6) For all M ∈Mk, if Γ ⊆ Cnx(M), then sB ∈ Cnx(M) [3) and 5)]

7) sB ∈ Cnxk(Γ) [6) and Def. 16]
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Proposition 8. Fix x as one of u, e, c. Prop. 8 is equivalent to say that
Cnx0(∅) = ∅. Suppose ad absurdum that sB ∈ Cnx0(∅). By Def. 16 and
Def. 15, the hypothesis ad absurdum is equivalent to assume that for all M ∈M0

and for all Ii ∈ M, sB ∈ Cnx(Ii). Let M′ ∈M0 such that for all i ∈ A, I′i = (∅,R0).
We now show that Cnx(I′i) = ∅, contradicting the hypothesis ad absurdum and
thus proving the thesis.

We prove by induction on n that for all n ∈ N, Cnxn(I′i) = ∅:

• Base case: n = 0. Cnx0(I′i) = ∅ since ϕM′
i = ∅ by construction, by Def. 11,

by Def. 12 and by Def. 13 Cnx0(I′i) = ϕM′
i .

• Inductive hypothesis: n = m. We assume that Cnxm(I′i) = ∅.

• Inductive step: n = m+ 1. We prove that Cnxm+1(I′i) = ∅.
Due to Def. 11, Def. 12 and Def. 13, we have to prove four facts: i.
W(Cnxm(I′i)) = ∅, ii. if x = u, V(Cnum(I′i)) = ∅, iii. if x = e, SV(Cnem(I′1)) =
∅ and iv. if x = c, CSV(Cncm(I′1)) = ∅.

i. W(Cnxm(I′i)) = ∅. By the Inductive hypothesis, this amounts to show
that W(∅) = ∅. We prove by induction that for all n ∈ N, Wn(∅) = ∅.

– Base case: n= 0. W0(∅) = ∅ by Def. 10.

– Inductive hypothesis: n= m-1. We assume that Wm−1(∅) = ∅.

– Inductive step: n=m.
For any B ∈ L, Wm−1

i (∅) ∪ {s̄B} ∈ A, because each admissibility
condition involves at least two formulae, while Wm−1

i (∅) ∪ {s̄B} is a
singleton due to the Inductive hypothesis.
For all g ∈ LA, Σg(Wm−1(∅)) = ∅. And again for any s¬2mB ∈ L,
Σg(Wm−1(∅)) ∪ {s¬2mB} ∈ A, because each admissibility condition
involves at least two formulae, while Σg(Wm−1(∅))∪{s̄B} is a singleton.
Thus, we can conclude that Wm(∅) = ∅.

ii. V(Cnum(I′i)) = ∅.
By Def. 16, V(Cnum(I′i)) consists of all and only formulae of the kind tKiB
such that there exists some J ∈ ℘(P) for which:

1. |J | ≤ δM
′

i and

2. for any ∆ ∈ RJCnum(I′i)
, tB ∈ W(∆).
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The only possible J here is ∅, since δM
′

i = 0; by the Inductive hypothe-
sis we know that Cnum(I′i) = ∅ and the minimal refinement of ∅ on ∅ is
∅ itself. This amounts to say that V(Cnum(I′i)) = {tKiB such that tB ∈
W(∅)}. We have just proved that W(∅) = ∅. Thus, we can conclude that
V(Cnum(I′i)) = ∅.

iii. SV(Cnem(I′1)) = ∅.
By Def. 12, SV(Cnem(I′1)) consists of all and only formulae of the kind tKiB
such that there exists some J = ((L, i), (J, j)) ∈ CAPi for which:

1. δMi ≥ δMj
δMi ≥ |L|+ |J |
δMj ≥ |J |

2. ∃A2 ∈ L(tB ∈ W(Cnem(I′1) ∪ {tKiA2}) ∧ ∀Λ ∈ RLCnem(I′1)(tA2 ∈ W(Λ)∨
∃A1 ∈ L(tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))(tA1 ∈ W(∆))))).

Due to the conditions 1 and due to the construction of M′, the only possi-
ble Js here are such that L = J = ∅. The only minimal refinement Λ of
Cnem(I′1) = ∅ on L = ∅ is ∅ and tA2 /∈ W(∅). The only minimal refinement
∆ of Σj(W(Λ)) = ∅ on J = ∅ is ∅ and tA1 /∈ W(∅). So we can conclude
that SV(Cnem(I′1)) = ∅.

iv. CSV(Cncm(I′1)) = ∅.
By Def. 13, CSV(Cncm(Ii)) consists of all and only formulae of the kind
tKiB such that there exists some J = ((L, 1), (J1, j1), . . . , (Jm, jm)) ∈ LAPi
for which:

1. δM1 ≥ δMj1
δM1 ≥ |L|
∀m = 1, . . . , n, δMm ≥

n∑
k=m

|Jk|;

2. and for An ∈ L:

∃An+1(tB ∈W(Cncm(I′1) ∪ {tKiAn+1}) ∧ ∀∆0 ∈ RL
Cncm(I′1)(tAn+1 ∈W(∆0)∨

∃An(tAn+1 ∈W(∆0 ∪ {tKj1An}) ∧ ∀∆1 ∈ RJ1

Σj1
(W(∆0))(tAn ∈W(∆1)∨

...

∃A1(tA2 ∈W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJn

Σjn (W(∆n−1))(tA1 ∈W(∆n))) . . . ).

Due to the conditions 1 and due to the construction of M′, the only possible
Js here are such that L = ∅ and ∀m = 1, . . . , n, Jm = ∅. The only minimal
refinement ∆0 of Cncm(I′1) = ∅ on L = ∅ is ∅ and tAn+1 /∈ W(∅). The only
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minimal refinement ∆1 of Σj1(W(Cncm(I′1))) = ∅ on J1 = ∅ is ∅ and again
tAn /∈ W(∅). This reasoning can be repeated until we get that tA1 /∈ W(∅).
So we can conclude that CSV(Cncm(I′1)) = ∅.

Proposition 9. Fix x as one of u, e, c and fix k ∈ N. For any B ∈ L, Γ ∈ A,
M ∈Mk and Ii ∈ M:

1) tB ∈ Cnxk(Γ) [Hypothesis]

2) For all M′ ∈ Mk and for all I′i ∈ M′, if Γ ⊆ Cnx(I′i), then tB ∈ Cnx(I′i) [1)
and Prop. 6]

3) KiΓ ⊆ Cnx(Ii) [Hypothesis]

4) There exists some m ∈ N such that KiΓ ⊆ Cnxm(Ii) [3) and Def. 11]

5) Γ ⊆ W(Cnxm(Ii)) because [5.1) and 5.2)]

5.1) For any tCj ∈ Γ:
∆ = Cnxm(Ii)∪{fCj} /∈ A since fCj, tKiCj ∈ ∆ satisfy the inadmissibility
condition 12. Thus, by Def. 10, tCj ∈ W1(Cnxm(Ii)) ⊆ W(Cnxm(Ii)).

5.2) For any fCj ∈ Γ:
∆ = Cnxm(Ii) ∪ {f¬Cj} /∈ A since f¬Cj, tKi¬Cj ∈ ∆ satisfy the inad-
missibility condition 12. Thus, by Def. 10, t¬Cj ∈ W1(Cnxm(Ii)).
∆1 = W1(Cnxm(Ii)) ∪ {tCj} /∈ A since t¬Cj, tCj ∈ ∆1 satisfy the in-
admissibility condition 1. Thus, by Def. 10, fCj ∈ W2(Cnxm(Ii)) ⊆
W(Cnxm(Ii)).

6) Γ ⊆ Cnxm+1(Ii) [5) and Def. 11]

7) Γ ⊆ Cnx(Ii) [6) and Def. 11]

8) tB ∈ Cnx(Ii) [2) and 7)]

9) There exists some l ∈ N such that tB ∈ Cnxl(Ii) [8) and Def. 11]

10) We have to consider three sub-cases:

i) If x = u, then for ∅ ∈ ℘(P):

• 0 = |∅| ≤ δMi
• Cnul(Ii) is the only minimal refinement of Cnul(Ii) on ∅
• ∀∆ ∈ R∅

Cnul(Ii)
, tB ∈ W(∆) [9), 10) and Prop. 4.8]

tKiB ∈ V(Cnul(Ii)) [10.i) and Def. 11]
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ii) If x = e, then for J = ((∅, i), (∅, j)) ∈ CAPi:

• δMi ≥ δMi
δMi ≥ |∅|+ |∅|
δMi ≥ |∅|
• for B ∈ L, tB ∈ W(Cnel(Ii) ∪ {tKiB}) ∧ ∀Λ ∈ R∅

Cnel(Ii)
, tB ∈ W(Λ)

tKiB ∈ SV(Cnel(Ii)) [10.ii) and Def. 12]

iii) If x = c, then for J = ((∅, i), (J, j)) ∈ LAPi:

• δMi ≥ |∅| = 0

• tB ∈ W(Cncl(Ii) ∪ {tKiB}) ∧ tB ∈ W(Cncl(Ii))

tKiB ∈ CSV(Cncl(Ii)) [10.iii) and Def. 13]

11) tKiB ∈ Cnxl+1(Ii) [10) and Def. 11, Def. 12, Def. 13]

12) tKiB ∈ Cnx(Ii) [11) and Def. 11, Def. 12, Def. 13]

Proposition 10. Fix x as one of u, e, c. For all k ∈ N, Γ ∈ A and B ∈ L, let
α = {M ∈Mk | Γ ⊆ Cnx(M)} and β = {M′ ∈Mk+1 | Γ ⊆ Cnx(M′)}.

1) sB ∈ Cnxk(Γ) [Hypothesis]

2) ∀M ∈Mk, if Γ ⊆ Cnx(M), then sB ∈ Cnx(M) [1) and Def. 16]

3) If M ∈ α, then sB ∈ Cnx(M) [2)]

4) Mk+1 ⊆Mk [Def. 8]

5) If M′ ∈ β, then M′ ∈ α [4)]

6) If M′ ∈ β, then sB ∈ Cnx(M′) [3) and 5)]

7) ∀M′ ∈Mk+1, if Γ ⊆ Cnx(M′), then sB ∈ Cnx(M′) [6)]

8) sB ∈ Cnxk+1(Γ) [7) and Def. 16]

Proposition 11.1 We split the proof into two parts.

1. For all Γ ∈ A, for all k ∈ N and for any sB ∈ L, if sB ∈ Cnuk(Γ), then
sB ∈ Cnek(Γ)

1) sB ∈ Cnuk(Γ) [Hypothesis]

2) For all M ∈ Mk and for all Ii ∈ M, if Γ ⊆ Cnu(Ii), then sB ∈ Cnu(Ii) [1)
and Prop. 6]
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3) For every interpretation Ii in any model M ∈ Mk such that Γ ⊆ Cne(Ii), let I′i
in model M′ ∈Mk be an interpretation, which is exactly the same as Ii except
that ϕM′

i = ϕM
i ∪ Γ [Construction]

4) Γ ⊆ Cnu(I′i) [3) and Prop. 5.1]

5) sB ∈ Cnu(I′i) [2) and 4)]

6) sB ∈ Cne(I′i) [5) and Lemma 3 (following)]

7) sB ∈ Cne(Ii) [3), 6) and Lemma 4 (following)]

8) sB ∈ Cnek(Γ) [3), 7) and Prop. 6]

Lemma 3. Let Ii be any interpretation in any model M ∈ M0. Then, Cnu(M) ⊆
Cne(M).

If sA ∈ Cnu(Ii), then, by Def. 11, there exists some m ∈ N such that sA ∈
Cnum(Ii). We prove by induction on m that if sA ∈ Cnum(Ii), then there exists
some lm ∈ N such that sA ∈ Cnelm(Ii).

• Base case: m = 0. We prove that if sA ∈ Cnu0(Ii), then there exists some
l0 ∈ N such that sA ∈ Cnel0(Ii).

1) sA ∈ Cnu0(Ii) [Hypothesis]

2) sA ∈ ϕM
i [1) and Def. 11]

3) sA ∈ Cne0(Ii) [2) and Def. 12]

• Inductive hypothesis: m = n. We assume that if sA ∈ Cnun(Ii), then there
exists some ln ∈ N such that sA ∈ Cneln(Ii), that is to say, Cnun(Ii) ⊆
Cneln(Ii).

• Inductive step: m = n + 1. We prove that if sA ∈ Cnun+1(Ii), then there
exists some ln+1 ∈ N such that sA ∈ Cneln+1(Ii).

1) sA ∈ Cnun+1(Ii) [Hypothesis]

2) There are two cases to be considered: i. sA ∈ W(Cnun(Ii)) and ii.
sA = tKiC ∈ V(Cnun(Ii))

3) Case i. sA ∈ W(Cnun(Ii)).

3.1) Cnun(Ii) ⊆ Cneln(Ii) [Inductive hypothesis]

3.2) sA ∈ W(Cneln(Ii)) [3), 3.1) and Prop. 3.2]
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3.3) sA ∈ Cneln+1(Ii) [3.2) and Def. 12]

4) Case ii. sA = tKiC ∈ V(Cnun(Ii)).

4.1) there exists some J ∈ ℘(P) such that:

i. |J | ≤ δMi and

ii. for every ∆ ∈ RJCnun(Ii)
, tC ∈ W(∆)

4.2) for J = ((J, i), (∅, i)): δMi ≥ δMi ; δMi ≥ |J |+ |∅|; δMi ≥ |∅| [4.1.i)]

4.3) Cnun(Ii) ⊆ Cneln(Ii) [Inductive hypothesis]

4.4) for all Λ ∈ RJCneln (Ii)
, Λ ∈ RJCnun(Ii)

[4.3) and Prop. 2.2]

4.5) for all Λ ∈ RJCneln (Ii)
, tC ∈ W(Λ) [4.1.ii) and 4.4)]

4.6) tC ∈ W(Cneln(Ii) ∪ {tKiC}) [Construction and Def. 10]

4.7) tC ∈ W(Cneln(Ii) ∪ {tKiC}) ∧ ∀Λ ∈ RJCneln (Ii)
, tC ∈ W(Λ) [4.5)

and 4.6)]

4.8) sA = tKiC ∈ SV(Cneln(Ii)) [4.2), 4.7) and Def. 12]

4.9) sA = tKiC ∈ Cneln+1(Ii)) [4.7) and Def. 12]

5) sA ∈ Cneln+1(Ii) [3.3) and 4.9)]

Lemma 4. For every interpretation Ii in any model M ∈ M0, let I′i in model
M′ ∈ M0 be the interpretation, which is exactly the same as Ii except that
ϕM′
i = ϕM

i ∪ Γ for some Γ ⊆ Ls. If sB ∈ Cne(I′i) and Γ ⊆ Cne(Ii), then
sB ∈ Cne(Ii).

By Def. 12, there exist some k,m ∈ N such that sB ∈ Cnek(I′i) and Γ ⊆ Cnem(Ii).
We prove by induction on k that if sB ∈ Cnek(I′i) and Γ ⊆ Cnem(Ii), then sB ∈
Cnek+m(Ii).

• Base case: k = 0. We have to prove that if sB ∈ Cne0(I′i) and Γ ⊆ Cnem(Ii),
then sB ∈ Cnem(Ii).

1) sB ∈ Cne0(I′i) [Hypothesis]

2) Γ ⊆ Cnem(Ii) [Hypothesis]

3) sB ∈ ϕM
i ∪ Γ [1) and Def. 12]

4) There are two cases to be considered: i. sB ∈ ϕM
i and ii. sB ∈ Γ

5) Case i. sB ∈ ϕM
i :

5.1) sB ∈ Cne0(Ii) [5) and Def. 12]

5.2) sB ∈ Cnem(Ii) [5.1) and Prop. 4.3]
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6) Case ii. sB ∈ Γ:

6.1) sB ∈ Cnem(Ii) [2) and 6)]

7) sB ∈ Cnem(Ii) [5.2) and 6.1)]

• Inductive hypothesis: k = n. We assume that if sB ∈ Cnen(I′i) and Γ ⊆
Cnem(Ii), then sB ∈ Cnen+m(Ii). This is logically equivalent to the following:
if Γ ⊆ Cnem(Ii), then Cnen(I′i) ⊆ Cnen+m(Ii).

• Inductive step: k = n + 1. We have to prove that if sB ∈ Cnen+1(I′i) and
Γ ⊆ Cnem(Ii), then sB ∈ Cnen+m+1(Ii).

1) sB ∈ Cnen+1(I′i) [Hypothesis]

2) Γ ⊆ Cnem(Ii) [Hypothesis]

3) There are two cases to be considered: i. sB ∈ W(Cnen(I′i)) and ii.
sB = tKiC ∈ SV(Cnen(I′i))

4) Case i. sB ∈ W(Cnen(I′i))

4.1) sB ∈ W(Cnen+m(I′i)) [2), 4), Inductive hypothesis, Prop. 3.2]

4.2) sB ∈ Cnen+m+1(Ii) [4.1) and Def. 12]

5) Case ii. sB = tKiC ∈ SV(Cnen(I′i)).

5.1) There exists some J = ((L, i), (J, j)) ∈ CAPi for which:

i. δM
′

i ≥ δM
′

j ; δM
′

i ≥ |L|+ |J | and δM
′

j ≥ |J |
ii. ∃A2(tC ∈ W(Cnen(I′i)) ∪ {tKiA2}) ∧ ∀Λ ∈ RLCnen(I′i)

(tA2 ∈
W(Λ)∨
∃A1(tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))(tA1 ∈ W(∆))))).

[5) and Def. 12]

5.2) For J as in 5.1): δMi ≥ δMj ; δMi ≥ |L| + |J | and δMj ≥ |J | [5.1.i)
and Def. of M]

5.3) tC ∈ W(Cnen+m(Ii))∪{tKiA2}) [2), 5.1.ii), Inductive hypothesis
and Prop. 3.2]

5.4) If Λ ∈ RLCnen+m(Ii)
, then Λ ∈ RLCnen(I′i)

[2), Inductive hypothesis

and Prop. 3.2]

5.5) ∃A2(tC ∈ W(Cnen+m(Ii)) ∪ {tKiA2}) ∧ ∀Λ ∈ RLCnen+m(Ii)
(tA2 ∈

W(Λ)∨
∃A1(tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))(tA1 ∈ W(∆))))).

[5.1.i), 5.3) and 5.4)]

5.6) sB = tKiC ∈ SV(Cnem+n(Ii)) [5.2), 5.5) and Def. 12]

5.7) sB ∈ Cnen+m+1(Ii) [5.6) and Def. 12]
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6) sB ∈ Cnen+m+1(Ii) [4.2) and 5.7)]

2. For all Γ ∈ A, for all k ∈ N and for any sB ∈ L, if sB ∈ Cnek(Γ), then
sB ∈ Cnck(Γ).

1) sB ∈ Cnek(Γ) [Hypothesis]

2) For all M ∈Mk and for all Ii ∈ M, if Γ ⊆ Cne(Ii), then sB ∈ Cne(Ii) [1) and
Prop. 6]

3) For every interpretation Ii in any model M ∈ Mk such that Γ ⊆ Cnc(Ii), let I′i
in model M′ ∈Mk be an interpretation, which is exactly the same as Ii except
that ϕM′

i = ϕM
i ∪ Γ [Construction]

4) Γ ⊆ Cne(I′i) [3) and Prop. 5.1]

5) sB ∈ Cne(I′i) [2) and 4)]

6) sB ∈ Cnc(I′i) [5) and Lemma 5 (following)]

7) sB ∈ Cnc(Ii) [3), 6) and Lemma 6 (following)]

8) sB ∈ Cnck(Γ) [3), 7) and Prop. 6]

Lemma 5. Let Ii be any interpretation in any model M ∈M0, Cne(M) ⊆ Cnc(M).

If sA ∈ Cne(Ii), then, by Def. 12, there exists some m ∈ N such that sA ∈
Cnem(Ii). We prove by induction on m that if sA ∈ Cnem(Ii), then there exists
some lm ∈ N such that sA ∈ Cnclm(Ii).

• Base case: m = 0. We prove that if sA ∈ Cne0(Ii), then there exists some
l0 ∈ N such that sA ∈ Cncl0(Ii).

1) sA ∈ Cne0(Ii) [Hypothesis]

2) sA ∈ ϕM
i [1) and Def. 12]

3) sA ∈ Cnc0(Ii) [2) and Def. 13]

• Inductive hypothesis: m = n. We assume that if sA ∈ Cnen(Ii), then there
exists some ln ∈ N such that sA ∈ Cncln(Ii), that is to say, Cnen(Ii) ⊆
Cncln(Ii).

• Inductive step: m = n + 1. We prove that if sA ∈ Cnen+1(Ii), then there
exists some ln+1 ∈ N such that sA ∈ Cncln+1(Ii).
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1) sA ∈ Cnen+1(Ii) [Hypothesis]

2) There are two cases to be considered: i. sA ∈ W(Cnen(Ii)) and ii.
sA = tKiC ∈ SV(Cnen(Ii))

3) Case i. sA ∈ W(Cnen(Ii)).

3.1) Cnen(Ii) ⊆ Cncln(Ii) [Inductive hypothesis]

3.2) sA ∈ W(Cncln(Ii)) [3), 3.1) and Prop. 3.2]

3.3) sA ∈ Cncln+1(Ii) [3.2) and Def. 13]

4) Case ii. sA = tKiC ∈ SV(Cnen(Ii)).

4.1) there exists some J = ((L, i), (J, j)) ∈ CAPi for which:

i. δMi ≥ δMj
δMi ≥ |L|+ |J |
δMj ≥ |J |

ii. ∃A2(tC ∈ W(Cnen(Ii)∪{tKiA2})∧∀Λ ∈ RLCnen(Ii)
(tA2 ∈ W(Λ)∨

∃A1 (tA2 ∈ W(Λ∪{tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ)) (tA1 ∈ W(∆))))).

4.2) Cnen(Ii) ⊆ Cncln(Ii) [Inductive hypothesis]

4.3) for all Λ ∈ RLCncln (Ii)
, Λ ∈ RLCnen(Ii)

[4.2) and Prop. 2.2]

4.4) tC ∈ W(Cncln(Ii) ∪ {tKiC}) [Construction and Def. 10]

4.5) For J = ((L, i), (J, j)) ∈ CAPi:

i. δMi ≥ δMj
δMi ≥ |L|
δMj ≥ |J |

ii. ∃A2(tC ∈ W(Cncln(Ii) ∪ {tKiA2}) ∧ ∀Λ ∈ RLCncln (Ii)
(tA2 ∈

W(Λ)∨
∃A1 ∈ L (tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ)) (tA1 ∈
W(∆))))).
[4.1), 4.3) and 4.4)]

4.6) sA = tKiC ∈ CSV(Cncln(Ii)) [4.5) and Def. 13]

4.7) sA = tKiC ∈ Cncln+1(Ii) [4.6) and Def. 13]

5) sA ∈ Cncln+1(Ii) [3.3) and 4.7)]

Lemma 6. For every interpretation Ii in any model M ∈ M0, let I′i in model
M′ ∈ M0 be the interpretation, which is exactly the same as Ii except that
ϕM′
i = ϕM

i ∪ Γ for some Γ ⊆ Ls. If sB ∈ Cnc(I′i) and Γ ⊆ Cnc(Ii), then
sB ∈ Cnc(Ii).
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By Def. 13, there exist some k,m ∈ N such that sB ∈ Cnck(I′i) and Γ ⊆ Cncm(Ii).
We prove by induction on k that if sB ∈ Cnck(I′i) and Γ ⊆ Cncm(Ii), then sB ∈
Cnck+m(Ii).

• Base case: k = 0. We have to prove that if sB ∈ Cnc0(I′i) and Γ ⊆ Cncm(Ii),
then sB ∈ Cncm(Ii).

1) sB ∈ Cnc0(I′i) [Hypothesis]

2) Γ ⊆ Cncm(Ii) [Hypothesis]

3) sB ∈ ϕM
i ∪ Γ [1) and Def. 13]

4) There are two cases to be considered: i. sB ∈ ϕM
i and ii. sB ∈ Γ

5) Case i. sB ∈ ϕM
i :

5.1) sB ∈ Cnc0(Ii) [5) and Def. 13]

5.2) sB ∈ Cncm(Ii) [5.1) and Prop. 4.3]

6) Case ii. sB ∈ Γ:

6.1) sB ∈ Cncm(Ii) [2) and 6)]

7) sB ∈ Cncm(Ii) [5.2) and 6.1)]

• Inductive hypothesis: k = n. We assume that if sB ∈ Cncn(I′i) and Γ ⊆
Cncm(Ii), then sB ∈ Cncn+m(Ii). This is logically equivalent to the following:
if Γ ⊆ Cncm(Ii), then Cncn(I′i) ⊆ Cncn+m(Ii).

• Inductive step: k = n + 1. We have to prove that if sB ∈ Cncn+1(I′i) and
Γ ⊆ Cncm(Ii), then sB ∈ Cncn+m+1(Ii).

1) sB ∈ Cncn+1(I′i) [Hypothesis]

2) Γ ⊆ Cncm(Ii) [Hypothesis]

3) There are two cases to be considered: i. sB ∈ W(Cncn(I′i)) and ii.
sB = tKiC ∈ CSV(Cncn(I′i))

4) Case i. sB ∈ W(Cncn(I′i))

4.1) sB ∈ W(Cncn+m(I′i)) [2), 4), Inductive hypothesis, Prop. 3.2]

4.2) sB ∈ Cncn+m+1(Ii) [4.1) and Def. 13]

5) Case ii. sB = tKiC ∈ CSV(Cncn(I′i)).

5.1) There exists some J = ((L, i), (J1, j1), . . . , (Jn, jn)) ∈ LAPi for which:

i. δM
′

i ≥ δM
′

j1
; δM

′
i ≥ |L| and ∀m = 1, . . . , n, δM

′
m ≥

n∑
k=m

|Jk|;
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ii. and for An ∈ L:
∃An+1(tC ∈ W(Cncn(I′i)∪{tKiAn+1})∧∀∆0 ∈ RLCncn(I′i)

(tAn+1 ∈
W(∆0)∨
∃An(tAn+1 ∈ W(∆0 ∪ {tKj1An}) ∧ ∀∆1 ∈ RJ1Σj1

(W(∆0))(tAn ∈
W(∆1)∨
...
∃A1(tA2 ∈ W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJnΣjn (W(∆n−1))(tA1 ∈
W(∆n))) . . . ).
[5) and Def. 13]

5.2) For J as in 5.1): δMi ≥ δMj1 ; δMi ≥ |L| and ∀m = 1, . . . , n, δMm ≥
n∑

k=m

|Jk| [5.1.i) and Def. of M]

5.3) tC ∈ W(Cncn+m(Ii))∪{tKiA2}) [2), 5.1.ii), Inductive hypothesis
and Prop. 3.2]

5.4) If ∆0 ∈ RLCncn+m(Ii)
, then ∆0 ∈ RLCncn(I′i)

[2), Inductive hypothesis

and Prop. 3.2]

5.5) ∃An+1(tC ∈ W(Cncn+m(Ii)∪{tKiAn+1})∧∀∆0 ∈ RLCncn+m(Ii)
(tAn+1 ∈

W(∆0)∨
∃An(tAn+1 ∈ W(∆0∪{tKj1An})∧∀∆1 ∈ RJ1Σj1

(W(∆0))(tAn ∈ W(∆1)∨
...
∃A1(tA2 ∈ W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJnΣjn (W(∆n−1))(tA1 ∈
W(∆n))) . . . ).
[5.1.i), 5.3) and 5.4)]

5.6) sB = tKiC ∈ CSV(Cncm+n(Ii)) [5.2), 5.5) and Def. 13]

5.7) sB ∈ Cncn+m+1(Ii) [5.6) and Def. 13]

6) sB ∈ Cncn+m+1(Ii) [4.2) and 5.7)]

Proposition 11.2 We split the proof into two parts.

1. For all Γ ∈ A, Cnu0(Γ) = Cne0(Γ).

We have already proved (Prop. 11.1) that Cnu0(Γ) ⊆ Cne0(Γ). We need to prove
that Cne0(Γ) ⊆ Cnu0(Γ), that is to say, if sA ∈ Cne0(Γ), then sA ∈ Cnu0(Γ).

1) sA ∈ Cne0(Γ) [Hypothesis]

2) For any interpretation Ii in any model M ∈ M0, if Γ ⊆ Cne(Ii), then sA ∈
Cne(Ii) [1) and Prop. 6]
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3) Let Ii be any interpretation in any model M ∈ M0 such that Γ ⊆ Cnu(Ii) and
δMi = 0 [Construction]

4) Γ ⊆ Cne(Ii) [3) and Lemma 3]

5) sA ∈ Cne(Ii) [2) and 4)]

6) sA ∈ Cnu(Ii) [5) and Lemma 7 (following)]

7) Let I′i be any interpretation in any model M′ ∈M0 such that Γ ⊆ Cnu(I′i)

8) sA ∈ Cnu(I′i) [3), 6), 7) and Prop. 5.3]

9) sA ∈ Cnu0(Γ) [4), 8) and Prop. 6]

Lemma 7. Let Ii be any interpretation in any model M ∈ M0 such that δMi = 0.
If sA ∈ Cne(Ii), then sA ∈ Cnu(Ii).

Proof. If sA ∈ Cne(Ii), then there exists some n ∈ N such that sA ∈ Cnen(Ii). We
prove by induction on n that if sA ∈ Cnen(Ii), then there exists some ln ∈ N such
that sA ∈ Cnuln(Ii).

• Base case: n = 0. We prove that if sA ∈ Cne0(Ii), then there exists some
l0 ∈ N such that sA ∈ Cnul0(Ii).

1) sA ∈ Cne0(Ii) [Hypothesis]

2) sA ∈ ϕM
i [1) and Def. 12]

3) sA ∈ Cnu0(Ii) [2) and Def. 11]

• Inductive hypothesis: n = m. We assume that if sA ∈ Cnem(Ii), then there
exists some lm ∈ N such that sA ∈ Cnulm(Ii)

• Inductive step: n = m+ 1. We prove that if if sA ∈ Cnem+1(Ii), then there
exists some lm+1 ∈ N such that sA ∈ Cnulm+1(Ii)

1) There are two cases to be considered: i. sA ∈ W(Cnem(Ii)); ii. sA =
tKiC ∈ SV(Cnem(Ii)).

2) Case i. sA ∈ W(Cnem(Ii)).

2.1) Cnem(Ii) ⊆ Cnulm(Ii) [Inductive hypothesis]

2.2) sA ∈ W(Cnulm(Ii)) [2), 2.1) and Prop. 3.2]

2.3) sA ∈ Cnulm+1 [2.2) and Def. 11]

3) Case ii. sA = tKiC ∈ SV(Cnem(Ii)).
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3.1) There exists some J = ((L, i), (J, j)) ∈ CAPi for which:

i. δMi ≥ δMj ; δMi ≥ |L|+ |J | and δMj ≥ |J |
ii. ∃A2(tC ∈ W(Cnem(Ii) ∪ {tKiA2}) ∧ ∀Λ ∈ RLCnem(Ii)

(tA2 ∈
W(Λ)∨
∃A1(tA2 ∈ W(Λ ∪ {tKjA1}) ∧ ∀∆ ∈ RJΣj(W(Λ))(tA1 ∈ W(∆))))).

3.2) Since δMj = 0 for all j ∈ A, the only possible Js here are of the kind
((∅, i), (∅, j)) [3.1)]

3.3) The only minimal refinement of Cnem(Ii) on L = ∅ is Cnem(Ii);
similarly, the only minimal refinement of Σj(W(Cnem(Ii)) on J = ∅
is Σj(W(Cnem(Ii)) [Def. 6]

3.4) for A2 (tC ∈ W(Cnem(Ii) ∪ {tKiA2}) ∧ (tA2 ∈ W(Cnem(Ii))∨
forA1 (tA2 ∈ W(Cnem(Ii)∪{tKjA1})∧(tA1 ∈ W(Σj(W(Cnem(Ii)))))).
[3.1.ii), 3.2), 3.3) and Prop. 4.8]

3.5) Consider the last disjunction of the expression in 3.4): tA2 ∈
W(Cnem(Ii))∨ for A1

(
tA2 ∈ W(Cnem(Ii)∪{tKjA1})∧tA1 ∈ W(Σj

(W(Cnem(Ii))))
)

. Now, suppose that the second disjunct holds,

namely, for A1, it is the case that both the following hold:

i. tA2 ∈ W(Cnem(Ii) ∪ {tKjA1}) and

ii. tA1 ∈ W(Σj(W(Cnem(Ii))))

3.6) tKjA1 ∈ W(W(Cnem(Ii))) [3.5.ii) and Prop. 4.7]

3.7) tKjA1 ∈ W(Cnem(Ii)) [3.6) and Prop. 4.5]

3.8) tA2 ∈ W(Cnem(Ii)) [3.5.i), 3.7) and Prop. 3.3]

3.9) This means that if the second disjunct holds, then the first disjunct
holds too. Of course, if the second disjunct does not hold, the first
one holds. Thus, in both cases, the expression in 3.4) is logically
equivalent to:

for A2

(
tC ∈ W(Cnem(Ii) ∪ {tKiA2}) ∧ tA2 ∈ W(Cnem(Ii))

)
3.10) Cnem(Ii) ⊆ Cnulm(Ii) [Inductive hypothesis]

3.11) tA2 ∈ W(Cnulm(Ii)) [3.9), 3.10) and Prop. 3.2]

3.12) tA2 ∈ W(Cnulm+1(Ii)) [3.11), Def. 11 and Prop. 3.2]

3.13) for all ∆ ∈ R∅
Cnulm+1(Ii)

, tA2 ∈ W(∆) [3.12) and Prop. 4.8]

3.14) for ∅ ∈ ℘(P), |∅| ≤ δMi [Construction]

3.15) tKiA2 ∈ V(Cnulm+1(Ii)) [3.13), 3.14) and Def. 11]

3.16) tKiA2 ∈ Cnulm+2(Ii) [3.15) and Def. 11]

3.17) tKiA2 ∈ W(Cnulm+2(Ii)) [3.16) and Prop. 3.2]

3.18) tC ∈ W(Cnulm(Ii) ∪ {tKiA2}) [3.9), 3.10) and Prop. 3.2]
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3.19) tC ∈ W(Cnulm+2(Ii) ∪ {tKiA2}) [3.18) and Def. 11]

3.20) tC ∈ W(Cnulm+2(Ii)) [3.17), 3.19) and Prop. 3.3]

3.21) for all ∆ ∈ R∅
Cnulm+2(Ii)

, tC ∈ W(∆) [3.20) and Prop. 4.8]

3.22) tKiC ∈ V(Cnulm+2(Ii)) [3.14), 3.21) and Def. 11]

3.23) tKiC ∈ Cnulm+3(Ii) [3.22) and Def. 11]

4) sA ∈ Cnulm+3(Ii) [2.3) and 3.23)]

2. For all Γ ∈ A, Cne0(Γ) = Cnc0(Γ).

We have already proved (Prop. 11.1) that Cne0(Γ) ⊆ Cnc0(Γ). We need to prove
that Cnc0(Γ) ⊆ Cne0(Γ), that is to say, if sA ∈ Cnc0(Γ), then sA ∈ Cne0(Γ).

1) sA ∈ Cnc0(Γ) [Hypothesis]

2) For any interpretation Ii in any model M ∈ M0, if Γ ⊆ Cnc(Ii), then sA ∈
Cnc(Ii) [1) and Prop. 6]

3) Let Ii be any interpretation in any model M ∈ M0 such that Γ ⊆ Cne(Ii) and
δMi = 0 [Construction]

4) Γ ⊆ Cnc(Ii) [3) and Lemma 5]

5) sA ∈ Cnc(Ii) [2) and 4)]

6) sA ∈ Cne(Ii) [5) and Lemma 8 (following)]

7) Let I′i be any interpretation in any model M′ ∈M0 such that Γ ⊆ Cne(I′i)

8) sA ∈ Cne(I′i) [3), 6), 7) and Prop. 5.3]

9) sA ∈ Cne0(Γ) [4), 8) and Prop. 6]

Lemma 8. Let Ii be any interpretation in any M ∈ M0 such that δMi = 0. If
sA ∈ Cnc(Ii), then sA ∈ Cne(Ii).

Proof. If sA ∈ Cnc(Ii), then there exists some n ∈ N such that sA ∈ Cncn(Ii). We
prove by induction on n that if sA ∈ Cncn(Ii), then there exists some ln ∈ N such
that sA ∈ Cneln(Ii).

• Base case: n = 0. We prove that if sA ∈ Cnc0(Ii), then there exists some
l0 ∈ N such that sA ∈ Cnel0(Ii).

1) sA ∈ Cnc0(Ii) [Hypothesis]
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2) sA ∈ ϕM
i [1) and Def. 13]

3) sA ∈ Cne0(Ii) [2) and Def. 12]

• Inductive hypothesis: n = m. We assume that if sA ∈ Cncm(Ii), then there
exists some lm ∈ N such that sA ∈ Cnelm(Ii)

• Inductive step: n = m+ 1. We prove that if if sA ∈ Cncm+1(Ii), then there
exists some lm+1 ∈ N such that sA ∈ Cnelm+1(Ii)

1) There are two cases to be considered: i. sA ∈ W(Cncm(Ii)); ii. sA =
tKiC ∈ CSV(Cncm(Ii)).

2) Case i. sA ∈ W(Cncm(Ii)).

2.1) Cncm(Ii) ⊆ Cnelm(Ii) [Inductive hypothesis]

2.2) sA ∈ W(Cnelm(Ii)) [2), 2.1) and Prop. 3.2]

2.3) sA ∈ Cnelm+1 [2.2) and Def. 12]

3) Case ii. sA = tKiC ∈ SV(Cncm(Ii)).

3.1) There exists some J = ((L, i), (J1, j1), . . . , (Jn, jn)) ∈ LAPi for which:

i. δMi ≥ δMj1 ; δMi ≥ |L| and ∀n = 1, . . . , n, δMn ≥
m∑
k=n

|Jk|;

ii. and for An ∈ L:
∃An+1(tC ∈ W(Cncm(Ii)∪{tKiAn+1})∧∀∆0 ∈ RLCncm(Ii)

(tAn+1 ∈
W(∆0)∨
∃An(tAn+1 ∈ W(∆0 ∪ {tKj1An}) ∧ ∀∆1 ∈ RJ1Σj1

(W(∆0))(tAn ∈
W(∆1)∨
...
∃A1(tA2 ∈ W(∆n−1 ∪ {tKjnA1}) ∧ ∀∆n ∈ RJnΣjn (W(∆n−1))(tA1 ∈
W(∆n))) . . . ).

3.2) Since δMj = 0 for all j ∈ A, the only possible Js here are of the kind
((∅, i), (∅, j1), . . . , (∅, jm)) [3.1)]

3.3) The only minimal refinement ∆m
0 of Cncm(Ii) on L = ∅ is Cncm(Ii);

similarly, the only minimal refinement ∆m
1 of Σj1(W(Cncm(Ii)) on

J1 = ∅ is Σj1(W(Cncm(Ii)); the only minimal refinement ∆m
2 of

Σj2(W(Σj1(W( Cncm(Ii))))) on J1 = ∅ is Σj2(W(Σj1(W(Cncm(Ii)))))
and so on until we reach the only minimal refinement ∆m

n = Σjn(W
(Σjn−1(W(Σjn−2(W(. . . (Σj1(W(Cncm(Ii)))))))) [Def. 6]

3.4) for An+1(tC ∈ W(Cncm(Ii) ∪ {tKiAn+1}) ∧ (tAn+1 ∈ W(∆m
0 )∨

for An(tAn+1 ∈ W(∆m
0 ∪ {tKj1An}) ∧ (tAn ∈ W(∆m

1 )∨
...
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for A2(tA3 ∈ W(∆m
n−2 ∪ {tKjn−1A2}) ∧ (tA2 ∈ W(∆m

n−1)∨
for A1(tA2 ∈ W(∆m

n−1 ∪ {tKjnA1}) ∧ (tA1 ∈ W(∆m
n ))) . . . ).

[3.1.ii), 3.2), 3.3) and Prop. 4.8]

3.5) Consider the last disjunction of the expression in 3.4): tA2 ∈
W(∆m

n−1)∨ for A1

(
tA2 ∈ W(∆m

n−1 ∪ {tKjnA1}) ∧ tA1 ∈ W (∆m
n )
)
.

Now, suppose that the second disjunct holds, namely, for A1, it is
the case that both of the following hold:

i. tA2 ∈ W(∆m
n−1 ∪ {tKjnA1}) and

ii. tA1 ∈ W(∆m
n )

3.6) tKjnA1 ∈ W(∆m
n−1) [3.5.ii), Prop 4.7 and Prop. 4.5]

3.7) tA2 ∈ W(∆m
n−1) [3.5.i), 3.6) and Prop 3.3]

3.8) This means that if the second disjunct holds, then the first disjunct
holds too. Of course, if the second disjunct does not hold, the first
one holds. Thus, in both cases, the expression in 3.4) is logically
equivalent to:
for An+1(tC ∈ W(Cncm(Ii) ∪ {tKiAn+1}) ∧ (tAn+1 ∈ W(∆m

0 )∨
for An(tAn+1 ∈ W(∆m

0 ∪ {tKj1An}) ∧ (tAn ∈ W(∆m
1 )∨

...
for A3(tA4 ∈ W(∆m

n−3 ∪ {tKjn−2A3}) ∧ (tA3 ∈ W(∆m
n−2)∨

for A2(tA3 ∈ W(∆m
n−2 ∪ {tKjn−1A2}) ∧ (tA2 ∈ W(∆m

n−1) . . . ).

3.9) Consider the last disjunction of the expression in 3.8) and apply
the same reasoning as before. This process has to be iterated until
one gets that the expression in 3.4) is logically equivalent to:
for An+1(tC ∈ W(Cncm(Ii) ∪ {tKiAn+1}) ∧ tAn+1 ∈ W(Cncm(Ii))

3.10) Cncm(Ii) ⊆ Cnelm(Ii) [Inductive hypothesis]

3.11) tC ∈ W(Cnelm(Ii) ∪ {tKiAn+1}) [3.5) and Prop. 3.2]

3.12) tAn+1 ∈ W(Cnelm(Ii)) [3.5) and Prop. 3.2]

3.13) ∀Λ ∈ R∅
Cnelm (Ii)

, tAn+1 ∈ W(Λ) [3.12) and Prop. 4.8]

3.14) tC ∈ W(Cnelm(Ii) ∪ {tKiAn+1}) ∧ ∀Λ ∈ R∅
Cnelm (Ii)

, tAn+1 ∈ W(Λ)

[3.11) and 3.13)]

3.15) tC ∈ W(Cnelm(Ii) ∪ {tKiAn+1}) ∧ ∀Λ ∈ R∅
Cnelm (Ii)

(tAn+1 ∈ W(Λ)∨
(tA ∈ W(Λ ∪ {tKjA}) ∧ ∀∆ ∈ R∅

Σj(W(Λ)), tA ∈ W(∆)) [3.14)]

3.16) For J = ((∅, i), (∅, j)), δMi ≥ δMj , δMi ≥ |∅|+ |∅|, δMj ≥ |∅| [Con-
struction]

3.17) tKiC ∈ SV(Cnelm(Ii)) [3.15), 3.16) and Def. 12]

3.18) tKiC ∈ Cnelm+1(Ii)) [3.17) and Def. 12]

4) sA ∈ Cnelm+1(Ii) [2.3) and 3.18)]
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Pr̂́ıhonský, New Anti-Kant. Hampshire-New York: Palgrave Macmillan, pp. 192-
234.

Stang, Nicholas F. (2012) “A Kantian Reply to Bolzano’s Critique of Kant’s
Analytic-Synthetic Distinction,” Grazer Philosophische Studien 85: pp. 33-61.

Tennant, Neil. (2017) “Logicism and Neologicism,” In E. N. Zalta, ed., The
Stanford Encyclopedia of Philosophy Winter 2017 Edition, URL = https://pla-
to.stanford.edu/entries/logicism/.

Textor, Mark. (2013) “Bolzano’s Anti-Kantism. From A Priori Cognitions to
Conceptual Truth,” In M. Beaney, ed., The Oxford Handbook of The History of
Analytic Philosophy. Oxford: Oxford University Press.

Textor, Mark. (2010) “Frege on Conceptual and Propositional Analysis,” Grazer
Philosophische Studien 81 (1): pp. 235-257.

Tolley, Clinton. (2013) “Kant on the Generality of Logic,” In Proceedings of the
11th International Kant Congress. Vol. 2, Margit Ruffing et al., eds., Berlin: De
Gruyter, pp. 431-442.

Tolley, Clinton. (2012) “Bolzano and Kant on the Nature of Logic,” History and
Philosophy of Logic 33 (4): pp. 307-27.

Tolley, Clinton. (2006) “Kant on the Nature of Logical Laws,” Philosophical Top-
ics 34 (1-2): pp. 371-407.

Uebel, Thomas. (2019) “Vienna Circle,” In E. N. Zalta, ed., The Stanford Encyclo-
pedia of Philosophy Spring 2019 Edition, URL = https://plato.stanford.edu/entries
/vienna-circle/.

Van Ditmarsch, Hans, van der Hoek, Wiebe, and Kooi, Barteld. (2007) Dynamic
Epistemic Logic. New York: Springer.



BIBLIOGRAPHY 334

Van Harmelen, Frank, Lifschitz, Vladimir, and Porter, Bruce. (2008) Handbook of
Knowledge Representation. Amsterdam: Elsevier.

Voltaggio, Franco. (1974) Bernard Bolzano e la Dottrina della Scienza. Milano:
Edizione di Comunità.
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