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Sommario  

L’obiettivo di questa tesi è fornire un’analisi del pensiero matematico e della 
teoria atomistica di Giordano Bruno (1548-1600). Questi due aspetti della 
pensiero di Bruno sono strettamente intrecciati tra di loro nella misura in cui la 
matematica di Bruno è fondata sull’assunto atomistico che gli oggetti matematici 
(così come gli oggetti fisici) sono formati da parti indivisibili che Bruno chiama 
“minimi.” La teoria bruniana dei minimi è stata già oggetto di analisi fin dalla fine 
del ‘800, quando Kurd Lasswitz vide in questa teoria il segno della rinascita 
dell’atomismo nell’età moderna. Tuttavia, nonostante questo riconoscimento 
dell’importanza di Bruno nella storia dell’atomismo e della scienza in generale, il 
giudizio di Lasswitz sulla teoria bruniana dei minimi evidenziava alcune criticità 
relative proprio alle sue applicazioni fisico-matematiche. A risentire di questo 
giudizio critico fu soprattutto la matematica di Bruno che continuò ad esser 
guardata come una teoria “obsoleta” anche nel corso del ‘900. Più di recente, gli 
studi di Aquilecchia, Bönker-Vallon e De Bernart, tra gli altri, hanno contribuito a 
ricalibrare questa immagine negativa della matematica bruniana. Tuttavia, molte 
rimangono le questioni aperte a proposito di questa teoria. Questa dissertazione 
rappresenta un tentativo di dare risposta a tre questioni e, nel far questo, intende 
fornire un’analisi della matematica di Bruno che tenga conto dei suoi punti di 
forza oltre che delle sue criticità. Le tre questioni affrontate in questo lavoro sono:  

(1) Quali sono le fonti della matematica bruniana, ed in particolare delle idee 
di minimo e punto-atomo? 

(2) In quale misura l’idea bruniana di minimo può essere considerata un 
antesignano del concetto moderno di grandezza infinitesimale? 

(3) Bruno fu davvero un sostenitore del realismo matematico, come sostenuto 
da Hélène Védrine, la quale riteneva che questo fu il principale “ostacolo” 
che impedì a Bruno di sviluppare una teoria matematicamente corretta?  

La prima parte della tesi affronta la prima domanda. Prima di individuare gli 
specifici testi ed autori che potrebbero aver inspirato Bruno a sviluppare la sua 
“geometria atomistica,” la questione della fonti bruniane è affrontata in termini di 
“tradizione.” La tesi è che la geometria atomistica di Bruno si inserisca nel solco 
tracciato da alcuni atomisti medievali, i quali, prendendo spunto da testi 
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Neopitagorici come l’Institutio arithmetica di Boezio, definirono il punto come 
atomo o “unità avente posizione.” Come dimostrato recentemente da Aurélien 
Robert, tale definizione atomistica del punto divenne il punto di partenza per 
esplorare concezioni del continuo alternative a quella proposta da Aristotele. 
Com’è ben noto, Aristotele fu un convinto oppositore dell’atomismo, essendo 
dell’opinione che la divisione del continuo potesse procedere potenzialmente 
all’infinito. Tra gli autori medievali che, sfidando apertamente Aristotele, 
affermarono che il continuo fosse composto da punti indivisibili, vi era una nota 
fonte bruniana: Raimondo Lullo. Così come Bruno, Lullo era in linea con la 
tradizione dell’atomismo pitagorico. Il primo capitolo ricostruisce la storia di 
questa tradizione da un punto di vista storiografico, fornisce un’analisi del testo 
lulliano in cui le somiglianze tra le teorie matematiche di Bruno e Lullo sono più 
evidenti (il Liber de geometria nova), e si conclude con una sezione tesa ad 
accertare se Bruno possa effettivamente aver letto questo testo. A mia 
conoscenza, la Geometria nova di Lullo non è mai stata messa in relazione con la 
matematica di Bruno.  

Il secondo capitolo prende in esame Niccolò Cusano, l’autore che Bruno 
stesso riconosce come fonte privilegiata della sue idee matematiche. Lo scopo di 
questo capitolo è duplice. Innanzitutto, esso intende chiarire se e in quale misura 
ci sia una connessione tra l’atomismo cusaniano e l’atomismo pitagorico. La tesi è 
che tale connessione sia fornita dai concetti di explicatio e complicatio, concetti 
che Cusano eredita dalla tradizione pitagorica (e in particolare dal commento di 
Thierry de Chartres sull’Institutio arithmetica di Boezio) e che rappresentano due 
elementi chiave della sua teoria atomistica. Per sostanziare questa tesi, il capitolo 
fornisce un’analisi di come il significato attribuito ai concetti di explicatio e 
complicatio evolva nel passaggio da Boezio a Thierry de Chartres e Cusano. 
Inoltre, il capitolo traccia lo sviluppo concettuale di explicatio e complicatio 
all’interno dell’opera di Cusano, prendendo come punti di riferimento il De docta 
ignorantia (1440) e il De mente (1450). Il capitolo si conclude con una sezione 
volta a mostrare le similitudini e, soprattutto, le differenze tra la concezione 
cusaniana di minimo (contrassegnata da un’inestinguibile ineffabilità) e la 
concezione bruniana di minimo (la quale, pur conservando un certo margine di 
indeterminatezza, sembra essere più alla portata dell’intelletto umano).  
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La seconda parte della dissertazione si concentra sul contenuto della 
matematica bruniana e tenta di dare una risposta alle ultime due domande. In 
particolare, il terzo capitolo affronta la questione se l’idea bruniana di minimo 
possa ritenersi un precursore del concetto di infinitesimale. Lo fa attraverso 
un’analisi dei primi scritti matematici di Bruno, i dialoghi sul compasso di 
Fabrizio Mordente, due dei quali furono scoperti solo nel 1957 da Giovanni 
Aquilecchia. Sia i dialoghi sul compasso di Mordente che la discussione che essi 
suscitarono tra lo stesso Mordente e Bruno non hanno ricevuto grande 
attenzione. Per questo, dopo aver dato alcuni ragguagli storici a proposito del 
compasso e della controversia tra Bruno e Mordente, il capitolo si sofferma 
soprattutto sul primo e terzo dialogo. L’analisi di questi dialoghi mostra 
innanzitutto come Bruno abbia cercato di imporre la propria interpretazione del 
funzionamento del compasso, compasso che, nella sua opinione ma non in quella 
di Mordente, confermava l’esistenza di grandezze minime delle quali si 
componevano gli oggetti matematici. Inoltre, una lettura dei dialoghi sul 
compasso di Mordente rivela come la teoria matematica originalmente sviluppata 
da Bruno in questi dialoghi fosse più coerente della teoria che egli presenta nei 
suoi scritti successivi. Nel criticare la matematica di Bruno, interpreti come 
Leonardo Olschki si sono concentrati quasi esclusivamente sugli scritti più tardi. 
Tuttavia, se avessero considerato i dialoghi sul compasso di Mordente, tali 
interpreti  avrebbero intravisto una somiglianza tra l’idea bruniana di minimo e il 
concetto di grandezza infinitesimale. In questi dialoghi, Bruno concepisce il 
minimo come un ente esteso ma non avente una forma specifica. Questa 
concezione del minimo era compatibile con i principi della geometria euclidea, a 
differenza della concezione proposta nel De minimo, dove Bruno affermava che il 
minimo fosse un punto esteso di forma circolare.  

Il quarto capitolo illumina due aspetti della concezione bruniana di 
matematica che sembrano essere stati dimenticati, se non addirittura fraintesi, 
dagli studi precedenti. Il primo aspetto è che la concezione bruniana di 
matematica evolve nel corso del tempo ed in parallelo con un concetto centrale 
nell’economia del pensiero di Bruno: l’infinito. Infatti, Bruno intraprende una 
riforma della matematica per fare spazio al concetto di infinitamente piccolo o 
minimo, concetto sul quale Bruno inizia a interrogarsi solo in una fase avanzata 
della propria riflessione. Il secondo aspetto riguarda la possibilità che Bruno 
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abbia difeso una forma di realismo matematico, vale a dire la credenza che gli 
oggetti matematici esistano in natura indipendentemente dalla nostra mente. 
Vero è che nei dialoghi italiani, ed in particolare ne La cena de le ceneri, Bruno 
può essere considerato un realista in virtù della sua adesione al Copernicanismo. 
Tuttavia, già in queste opere, e ancor più evidentemente in quelle successive, 
Bruno si oppone all’idea che gli oggetti matematici esistano in natura ed esprime 
il proprio scetticismo nei confronti di quell’approccio che gli studiosi della 
Rivoluzione Scientifica hanno chiamato “matematizzazione della natura.” Alla 
luce di questo, non sembra possibile parlare di Bruno come di un realista e, ancor 
di più, affermare che fu il realismo ad ostacolare il suo progetto matematico 
(come sosteneva Védrine). Al contrario, il quarto capitolo mostra come i problemi 
che affliggono la teoria bruniana dei minimi siano il risultato del tentativo di 
integrare in una sola teoria fisica, metafisica e matematica. Bruno infatti ritiene 
che tutti e tre questi aspetti della realtà siano analizzabili nei termini della sua 
teoria dei minimi. Il capitolo si conclude con una sezione sulla monadologia di 
Bruno. Lo scopo è mostrare che, contrariamente a quanto affermato da alcuni 
interpreti, la monadologia di Bruno non fu il modello della monadologia di 
Leibniz, in quanto l’unico elemento che sembra accomunare queste due teorie è il 
fatto che entrambe si basano su una concezione pitagorica della monade.    
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Summary  

In the latter part of his career, Giordano Bruno (1548 – 1600) developed an 
innovative atomistic theory of mathematical objects. According to this theory, 
mathematical objects were composed of indivisible parts called “minima.” In 
traditional accounts of early modern mathematics, indivisibles entered 
mathematics only in the seventeenth century with Bonaventura Cavalieri. 
Nowadays, Cavalieri’s indivisibles are considered a forerunner of the 
infinitesimals and are associated to the invention of the calculus. On the contrary, 
Bruno has been regarded as a poor mathematician and his atomistic geometry 
has been neglected. It is the objective of this work to change the conventional 
image of Bruno’s mathematics.  

Part One deals with the source of Bruno’s atomistic geometry. I claim that 
Bruno belonged to the tradition of Pythagorean atomism, that is the view that 
mathematical objects were composed of points. The Middle Ages witnessed a 
revival of Pythagorean atomism as several authors proposed alternative 
conceptions of the continuum based on the Pythagorean definition of the point as 
atom or “unit having position.” Two Brunian sources were among these authors: 
Ramon Llull and Nicholas of Cusa. Bruno borrowed aspects of his atomistic 
geometry from both Llull and Cusanus. In particular, I claim that Bruno was 
indebted to Llull for his atomistic view of mathematical objects and to Cusanus 
for his idea of the minimum. 

Part Two offers an account of Bruno’s atomistic geometry. First, it provides 
an analysis of Bruno’s first mathematical writings, four dialogues on the compass 
invented by Fabrizio Mordente. The analysis of these dialogues shows that the 
original version of Bruno’s atomistic geometry was more coherent than the 
version of it presented in later works. In fact, one may claim that in the dialogues 
on Mordente’s compass Bruno conceived the minimum in a way that seemed to 
anticipate the concept of infinitesimal magnitude. In addition, Part Two traces 
the development of Bruno’s conception of mathematics from his vernacular 
works to his Latin poems. In doing so, it shows that Bruno was not a 
mathematical realist (as Védrine had him) and that Bruno’s atomistic geometry 
was unsuccessful because it was part of a more ambitious plan: the integration of 
physics, metaphysics and mathematics into a single theory.   
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Introduction  

Lost in the labyrinth: Bruno and the continuum problem  

There are two famous labyrinths where our reason very often goes 
astray: one concerns the great question of the Free and the Necessary, 
above all in the production and the origin of Evil; the other consists in 
the discussion of continuity and of the indivisibles which appear to be 
the elements thereof, and where the consideration of the infinite must 
enter in.1 

With their elegant simplicity and evocative power, these words, taken from 
Leibniz’ Theodicy (1710), fully capture the feeling of displacement with which 
scholars have faced the continuum problem ever since Antiquity. As a matter of 
fact, Leibniz borrowed the metaphor of the “labyrinth of the continuum” from the 
Louvain theologian and scientist Libert Froidmont, who in 1631 had published a 
book entitled Labyrinthus sive de compositione continui (Labyrinth or on the 
Composition of the Continuum).2 In it, Froidmont raised the issue of the 
composition of the continuum from an Aristotelian perspective, criticizing the 
atomistic view that the continuum was composed of indivisible parts and those 
who had defended it throughout the centuries (from Democritus to John 
Wycliff).3 In Leibniz’ day, the discussion on the continuum problem had taken a 
mathematical turn due to the introduction of a new mathematical theory central 

                                                
1 Gottfried Wilhelm Leibniz, Theodicy: Essays on the Goodness of God, the Freedom of 

Man, and the Origin of Evil, ed. Austin Farrer, trans. E.M. Huggard (Eugene, OR: 
Wipf and Stock, 2007), 55. 

2 Libert Froidmont, Labyrinthus sive de compositione continui liber unus (Antwerp: 
Balthasar Moretus, 1631). On Lebiniz’s debt to Froidmont, see Carla Rita Palmerino, 
“Geschichte Des Kontinuumproblems or Notes on Fromondus’s Labyrinthus?: On 
the True Nature of LH XXXVII, IV, 57 R°-58v°,” Leibniz Society Review 26 (2016): 
63–98. 

3 See Carla Rita Palmerino, “Libertus Fromondus’ Escape from the Labyrinth of the 
Continuum (1631),” Lias: Journal of Early Modern Intellectual Culture and Its 
Sources 42, no. 1 (2015): 3–36. 
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to which was the concept of indivisibles. To be fair, mathematical arguments had 
already been used in medieval controversies against atomism, and the idea that 
both the geometric and the physical continuum was composed of indivisible parts 
had its supporters as early as the ninth century in the Islamic world and the 
twelfth century in the Latin West.4 However, leaving aside Archimedes (who 
made use of indivisibles in a treatise entitled The Method only rediscovered in 
1906), for the first time in the seventeenth century the attempt was made to 
translate the concept of indivisibles into mathematical terms.  

A theory of indivisibles was first proposed by the Italian mathematician 
and Galileo’s pupil Bonaventura Cavalieri (1598-1647). Nowadays, Cavalieri’s 
indivisibles are regarded as a forerunner of the modern infinitesimals, and thus 
as a pivotal moment in the history of the calculus. However, when Cavalieri’s 
Geometria indivisibilibus continuorum nova quadam ratione 
promota (Geometry, developed by a new method through the indivisibles of the 
continua) was published in 1635, his contemporaries saw it as a threat to the 
Aristotelian orthodoxy.5 Indeed, in book VI of the Physics, Aristotle claimed that 
the continuum could by no means be composed of indivisibles.6 Paul Guldin and 
André Taquet, especially, argued against Cavalieri’s theory on the grounds that it 
                                                
4 See Christoph Lüthy, John E. Murdoch, and William R. Newman, “Introduction: 

Corpuscles, Atoms, Particles, and Minima,” in Late Medieval and Early Modern 
Corpuscular Matter Theories, ed. Christoph Lüthy, John E. Murdoch, and William 
R. Newman (Leiden: Brill, 2001), 1–38. On the history of atomism, see also Kurd 
Lasswitz, Geschichte der Atomistik vom Mittelalter bis Newton (Hamburg: Leopold 
Voss, 1890); Richard Sorabji, Time, Creation and the Continuum: Theories in 
Antiquity and the Early Middle Ages (London: Duckworth, 1983); Bernhard Pabst, 
Atomtheorien Des Lateinischen Mittelalters (Darmstadt: Wissenschaftliche 
Buchgesellschaft, 1994); Andrew Pyle, Atomism and Its Critics: From Democritus 
to Newton (Bristol: Thoemmes Press, 1997); Christophe Grellard and Aurélien 
Robert, eds., Atomism in Late Medieval Philosophy and Theology (Leiden: Brill, 
2009). 

5 Bonaventura Cavalieri, Geometria indivisibilibus continuorum nova quadam rations 
promota (Bologna: Monti, 1635).  

6 See Aristotle, “Physics,” in The Complete Works of Aristotle. The Revised Oxford 
Translation. One Volume Digital Edition, ed. J. Barnes (Princeton, NJ: Princeton 
University Press, 1995), bk. 6. 
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opened the doors of geometry to atomic entities (i.e. the indivisibles).7 Cavalieri 
tried in vain to convince his critics that he made no assumption about the 
composition of the continuum.8 In fact, he went as far as to claim that it was the 
philosopher’s task (and not the mathematician’s) to solve the continuum 
problem.9 With the exceptions of Newton, Gregorie and Huygens who tried to 
provide the method of indivisibles with a rigorous foundation, seventeenth-
century mathematicians followed Cavalieri’s example and avoided entering the 
labyrinth of the continuum. That is to say, they adopted the indivisibles without 
questioning whether their use entailed an atomistic view of the continuum. The 
risk of getting lost in the twists and turns of that question was far too great.  

Fortunately, in the early modern era there was no shortage of brave, even 
reckless innovators (in Latin novatores10), who were willing to spend decades in 
prison and sacrifice their lives to have their voices heard. Those were the years of 
the Inquisition, still today a recognized symbol of religious obscurantism because 

                                                
7 For Guldin’s criticisms see Enrico Giusti, Bonaventura Cavalieri and the Theory of 

Indivisibles (Cremona: Edizioni Cremonese, 1980), 55–65, 73–76; Paolo Mancosu, 
Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century 
(New York: Oxford University Press, 1996), 50–55; Egidio Festa, “Aspects de la 
controverse sur les invisibles,” in Geometria e atomismo nella scuola galileiana, ed. 
Massimo Bucciantini and Maurizio Torrini (Florence: Leo S. Olschki, 1992). For 
Taquet’s criticisms, see Dominique Descotes, “Two Jesuits Against the Indivisibles,” 
in Seventeenth-Century Indivisibles Revisited, ed. V. Jullien (Basel: Birkhäuser, 
2015), 249–74. 

8 Bonaventura Cavalieri, Exercitationes geometricae sex (Bologna: Monti, 1647), 199: 
“Apud eos enim, qui sustinent continuum ex indivisibilibus componi, descriptio 
dictorum indivisibilium erit descriptio superficiei. Apud eos vero, qui ulta haec 
indivisibilia ponunt aliquid aliud in ipso continuo, illud dicendum erit, describi in 
ipso motu.” 

9 Antoni Malet, From Indivisibles to Infinitesimals. Studies on Seventeenth-Century 
Mathematizations of Infinitely Small Quantities (Bellaterra: Universitat Autònoma 
de Barcelona. Servei de Publicacions, 1996), 17. 

10 Seventeenth-century scholars used the term “novatores” to indicated those who 
challenged the Aristotelian and Scholastic philosophy. Most of the times, this term 
had a negative connotation. See Daniel Garber, “Descartes among the Novatores,” 
Res Philosophica 92, no. 1 (2015): 1–19. 
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of its opposition to the development and dissemination of new knowledge. It was 
by the Inquisition, for instance, that Tommaso Campanella (1568-1639) was 
imprisoned for almost twenty-seven years, during which he wrote his most 
important work La città del sole (The city of sun11) and took pains to defend 
Galileo from the charges of heresy.12 Others died at the hand of the Inquisition, as 
in the case of Giordano Bruno (1548-1600), who escaped from Italy because of his 
controversial views on religion, only to be tried and sentenced to death on his 
return fourteen or so years later. To commemorate his tragic fate, in 1889, a 
statue of him was erected in the place where he was burned at the stake on 
February 17, 1600: Campo de’ Fiori in Rome.13 By then, he had joined the ranks of 
early modern intellectuals such as Spinoza, having grown to become a champion 
of free thought.  

Nowadays, Bruno is best known for his commitment to an infinitist view of 
the universe as well as for his inquisitorial trial. However, as flattering as this 
portrait of Bruno may be, it has tended to overshadow his other contributions, 
starting with his mathematical work. Few know that Bruno envisioned not only 
the infinitely large (the boundless universe), but also the infinitely small—what he 
called the “minimum;” and that, not unlike Cavalieri, he spent his last years 
developing a new mathematical theory in order to submit the concept of the 
minimum to mathematical analysis. Differently from Cavalieri, however, Bruno 
openly challenged Aristotle’s authority by making it clear that the minima were 
the building blocks of the mathematical continuum.14 To substantiate his claim, 
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13 For the history of the statue of Bruno, see Massimo Bucciantini, Campo dei Fiori: 
storia di un monumento maledetto (Torino: Einaudi, 2015).  

14 On Bruno and Cavalieri, see Angelika Bönker-Vallon, Metaphysik und Mathematik bei 
Giordano Bruno (Berlin: Akademie Verlag, 1995); Paolo Rossini, “Giordano Bruno 
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Bruno had to come to terms with Aristotle and his epigones, who for centuries 
had raised objections against atomism. In other words, he had to enter the 
labyrinth of the continuum. Bruno showed courage in defending his heretic ideas 
before the tribunal of the Inquisition, and in envisioning a boundless universe at 
a time when the general consensus was that the universe was finite. In its way, the 
decision to address the continuum problem was also an act of bravery on Bruno’s 
part, considering that as late as the 1630s mathematicians still avoided 
confronting that problem.  

And yet, as we shall see in the next section, Bruno is considered an anti-
mathematician or a poor mathematician even by Bruno scholars, and a fortiori is 
neglected in the traditional accounts of modern mathematics. Why is that so? As 
a matter of fact, the results achieved by Bruno were, in purely mathematical 
terms, inconsequential. In fact, his theory was flawed in several ways, as it made 
it impossible, for instance, to account for incommensurable magnitudes (such as 
the side and diagonal  of a square). Moreover, Bruno’s theory of minima had 
hardly any successful application, mainly because geometric indivisibles were 
postulated rather than used by Bruno. Cavalieri, on the other hand, deserved the 
credit for being the first to employ indivisibles in early modern geometry, 
developing a method capable of solving problems of measurement more quickly 
and directly than the methods handed down from the past (e.g. the method of 
exhaustion). Hence, from a mathematical perspective, Bruno’s bad reputation as 
a mathematician seems to be justified, although it is the purpose of this thesis to 
show that this received image does not do full justice to Bruno’s mathematical 
abilities.  

However, if it is true that Bruno cannot be compared to Cavalieri and the 
other seventeenth-century indivisibilists on the basis of their mathematical 
success, there are other elements that can allow for a meaningful comparison. For 
instance, as I have tried to show elsewhere, a comparison between Bruno and 
Cavalieri can illuminate their common sources or better their ‘shared knowledge,’ 
conceived as the cultural milieu in which they independently came to 
conceptualize the idea of geometric indivisibles.15 (I italicize the term 
“independently” because I do not mean to claim that Bruno played a role in 

                                                
15 See previous note.  
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shaping Cavalieri’s theory of indivisibles). Here, the focus is on the continuum 
problem and how Bruno dealt with it. The words of Leibniz in the Theodicy give 
us an idea of what a tremendous challenge the continuum problem posed to early 
modern scholars. Seen in this light, it should be no surprise that Bruno 
encountered great difficulties in putting his theory of minima on a solid footing. 
One may well argue that his attempts to solve the continuum problem were 
doomed to fail, given the hardness of the problem itself. This begs the question: 
Why should we pay attention to Bruno’s mathematical activities if we already 
know their negative outcome? Above all, because Bruno dared to venture where 
other, more skilled mathematicians did not even want to set foot on: the labyrinth 
of the continuum. It is true that he lost himself trying to find his way out of it, but 
this does not make his enterprise less interesting for us, who, like the spectator in 
the Lucretian poem, can see Bruno’s shipwreck from the shore.16 

The question of Bruno’s modernity  

Bruno owes his reputation to his infinitist cosmology. Indeed, he is known as the 
“philosopher of the infinite” and, additionally, as an unrepentant heretic because 
of his death at the hands of the Roman Inquisition. If this is true, then Bruno will 
be a perfect candidate for the role of modern philosopher, especially considering 
the emphasis placed on the concept of infinity in contemporary accounts of the 
so-called “passage to modernity.”17 Arthur Lovejoy was one of the first to express 
this idea in his classical book The Great Chain of Being: 

Through the elements of the new cosmography had, then, found earlier 
expression in several quarters, it is Giordano Bruno who must be 
regarded as the principal representative of the decentralized, infinite, 

                                                
16 Titus Lucretius Carus, On the Nature of Things, trans. Martin Ferguson Smith 

(Indianapolis: Hackett Pub, 2001), 35 (II, 1-4): “It is comforting, 1 when winds are 
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comforting to see from what troubles you yourself are exempt.” 

17 Arguably, the most famous study on the “passage to modernity” is Louis Dupré, 
Passage to Modernity: An Essay in the Hermeneutics of Nature and Culture (New 
Haven: Yale University Press, 1993). 
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and infinitely populous universe. for he not only preached it 
throughout Western Europe with the fervor of an evangelist, but also 
first gave a thorough statement of the grounds on which it was to gain 
acceptance from the general public.18 

Nevertheless, with the passing of time, a more negative view of Bruno gradually 
emerged. There was no denying Bruno’s role in changing the world-picture, but 
the way in which Bruno had brought about that change began to be questioned. 
Lovejoy already noticed that Bruno  

was not led to his characteristic convictions by reflection upon the 
implications of the Copernican theory or by any astronomical 
observations. Those convictions were for him primarily, and almost 
wholly, a deduction from the principle of plenitude, or from the 
assumption on which the latter itself rested, the principle of sufficient 
reason. […] Bruno is, in short, precisely in those features of his 
teaching in which he seems most the herald and champion of a modern 
conception of the universe, most completely the continuer of a certain 
strain in Platonistic metaphysics and in medieval theology.19  

It should be noted, however, that Lovejoy’s purpose in writing The Great Chain of 
Being was to trace the history of the principle of plenitude, which might have led 
him to overestimate Bruno’s dependence on that principle. This does not alter the 
fact that Bruno did not perform astronomical observations and, as we shall see in 
chapter 4, he was more of an instrumentalist than a realist in his approach to 
mathematics. A few years after Lovejoy, Alexandre Koyré took issue with Bruno’s 
lack of a scientific method, while continuing to stress the importance of the new 
cosmological paradigm developed by the Italian philosopher:  

Giordano Bruno, I regret to say, is not a very good philosopher. The 
blending together of Lucretius and Nicholas of Cusa does not produce 
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a very consistent mixture. […] he is a very poor scientist, he does not 
understand mathematics, and his conception of the celestial motions is 
rather strange. […] As a matter of fact, Bruno’s world-view is vitalistic, 
magical; his planets are animated beings that mover freely through 
space of their own accord like those of Plato and Pattrizi. Bruno’s is not 
a modern mind by any means. Yet his conception is so powerful and 
so prophetic, so reasonable and so poetic that we cannot but admire it 
and him. And it has—at least in its formal features—so deeply 
influenced modern science and modern philosophy, that we cannot but 
assign to Bruno a very important place in the history of the human 
mind.20   

It is worth remembering that, when Koyré wrote these words, a new idea was in 
the making: the Scientific Revolution. At the turn of the twentieth century, Ernst 
Mach and Ernst Cassirer were among the first to support the view that, towards 
the end of the Renaissance, the world witnessed a radical change in the way 
scientific knowledge was created and developed.21 In the 1930s, Koyré and other 
historians of his generation contributed to corroborate this view by highlighting 
how the rise of modern science coincided with the advent of a new scientific 
method. Among other things, this new method was characterized by a 
mathematical, experimentalist and mechanistic approach to the natural world. It 
was inevitable that Bruno, with his idea of a universe populated by animated 
planets and living suns, was regarded as a pre-modern thinker by those who, like 
Koyré, thought that the Scientific Revolution marked the beginning of the 
modern era. No matter how innovative Bruno’s conception of an infinite universe 
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was, it could not be considered the product of a modern mind because it did not 
result from the application of the scientific method.  

Koyré’s interpretation did not go unchallenged. In his Die Legitimität der 
Neuzeit (The Legitimacy of the Modern Age, 1966), Hans Blumenberg clearly 
affirmed that Bruno stood after what he called the “threshold of modernity:” 

There are no witnesses to changes of epoch. The epochal turning is an 
imperceptible frontier, bound to no crucial date or event. But viewed 
differentially, a threshold marks itself off, which can be ascertained as 
something either not yet arrived at or already crossed. Hence it is 
necessary; as will be done here for the epochal threshold leading to the 
modetn age, to examine at least two witnesses: the Cusan [Nicholas of 
Cusa], who still stands before this threshold, and the Nolan [Giordano 
Bruno of Nola], who has already left it behind.22 

The reason why, for Blumenberg, Bruno was a modern thinker was that, unlike 
Cusanus, he rejected the medieval distinction between God’s infinite power 
(potentia Dei absoluta) and its finite manifestation in the created world (potentia 
Dei ordinata).23 Bruno overcome this distinction by assuming the existence of an 
infinite universe in which all possible beings could exist, and thus where God 
could give free course to his infinite power.24 Indeed, Bruno thought that to say 
that the universe was finite was to set a limit to the divine omnipotence. It should 
be evident that Koyré and Blumenberg addressed the question of modernity from 
two different perspectives. While Koyré was “the dean of historians of the 
scientific revolution”—to borrow the words of Richard Westfall25—Blumenberg 
was in the tradition of Marx, Nietzsche, Husserl and Löwith. Löwith, especially, 
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had argued against the modernity of concepts such that of progress on the 
grounds that they were secularized version of original medieval ideas.26 In the 
The Legitimacy of the Modern Age, Blumenberg took issues with Löwith by 
showing that not all medieval ideas found their way to modernity. This was well 
exemplified by Bruno, who saw himself as the herald of a new philosophy as 
opposed to that of, in particular, the Scholastics.   

In the same years as Blumenberg defended Bruno’s modernity in 
Germany, Frances Yates took Bruno’s side in England. In her famous book 
Giordano Bruno and the Hermetic Tradition (1964), Yates made an effort to 
show “how shifting and uncertain were the borders between genuine science and 
Hermetism in the Renaissance”27 in an attempt to challenge the narrative of the 
Scientific Revolution. In the 1950s, C. P. Snow’s influential lectures on The Two 
Cultures and the Scientific Revolution had contributed to reinforce that narrative 
by presenting science and the humanities as two separate domains in need of 
connection.28 By ruling out Bruno from the canon of modernity on account of his 
magical activities, Koyré failed to acknowledge that there was no clear 
demarcation between science and magic in the early modern period. It was not 
until recently that, following in the footsteps of Yates, historians of sciences have 
gradually recognized this lack of disciplinary boundaries. This, on the one hand, 
has led to a critical reappraisal of those bodies of knowledge which as late as the 
1980s were still considered “pseudo-sciences,” such as alchemy, astrology and 
magic.29 On the other hand, it has become more and more evident that even the 
so-called “heroes” of the Scientific Revolution (e.g. Boyle and Newton) had an 
interest in fields that were far removed from what we now take to be science.30 
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Yates’ studies surely contributed to the popularity of Bruno in the English-
speaking world. Nevertheless, her interpretation, with its emphasis on the 
Hermetic influence on Bruno’s thought, had its critics. In a paper read at the 
Clark Library in 1974 and published in 1977, Robert Westman called for a 
reconsideration of what he termed the “Yates thesis.”31 As a matter of fact, Yates’ 
book on Bruno of 1964 was the culmination of a process that had started in the 
1930s with Paul Oskar Kristeller’s studies on Marsilio Ficino32—the author of the 
first Latin translation of the Corpus Hermeticum. The joint efforts of André J. 
Festugiére and Arthur Darby Nock (who prepared a new edition of the Corpus 
Hermeticum that appeared between 1945 and 195433) and the publication of 
Eugenio Garin’s collection of hermetic texts in 195534 laid the groundwork for 
Yates’ book. The 1970s witnessed a change in the attitude towards Renaissance 
Hermeticism, as the importance of this tradition began to be questioned. 
Westaman, for instance, disagreed with Yates on the role played by Hermeticism 
in Bruno’s acceptance of Copernicanism. For Yates, Bruno’s had a symbolic 
approach to Copernicus’ De revolutionibus in that he read the Copernican text 
through the lens of Hermeticism.35 On the contrary Westman, not unlike Lovejoy 
and Blumenberg, thought that “the key to Bruno’s cosmology (if there is a key) 
has less to do with specific Hermetic ideals than with efforts to visualize the 
                                                                                                                                            

(Chicago: University of Chicago Press, 2002); William R. Newman, Newton the 
Alchemist: Science, Enigma, and the Quest for Nature’s “Secret Fire” (Princeton, 
N.J.: Princeton University Press, 2019). 

31 Robert S. Westman, “Magical Reform and Astronomical Reform: The Yates Thesis 
Reconsidered,” in Hermeticism and the Scientific Revolution, ed. Robert S. 
Westman and J. E. McGuire (Los Angeles: University of California Press, 1977), 3–
91. 

32 Paul Oskar Kristeller, “Marsilio Ficino e Lodovico Lazzarelli. Contributo alla diffusione 
delle idee ermetiche nel rinascimento,” Annali della R. Scuola Normale Superiore 
di Pisa. Lettere, Storia e Filosofia, 2, 7, no. 2/3 (1938): 237–62; Paul Oskar 
Kristeller, “Ancora per Giovanni Mercurio da Correggio,” La Bibliofilía 43, no. 1/2 
(1941): 23–28. 

33 A new edition of the Corpus Hermeticum is now available: André-Jean Festugière, La 
révélation d’Hermès Trismégiste (Paris: Belles lettres, 2014). 

34 Eugenio Garin, ed., Testi umanistici su l’ermetismo (Roma: Bocca, 1955). 
35 Yates, Bruno and the Hermetic Tradition, 241.  



 21  

creation of a rationally ordered universe by an all-powerful, all-knowing 
Creator.”36  

In recent years, the publication by a team of scholars led by Michele 
Ciliberto of a new edition of Bruno’s Latin works has reopened the question of 
Bruno’s modernity. In his introduction to Bruno’s magical works, Ciliberto 
reconstructs the history of these works and their reception by modern 
interpreters. It was not until 1891 that Bruno’s magical works were first published 
by Felice Tocco and Girolamo Vitelli in the third volume of the Opera latine 
conscripta—the national edition of Bruno’s Latin works.37 Bruno’s unwillingness 
to publish his magical texts may explain why they have come down to us in an 
incomplete form. Ciliberto suggests that, instead of being meant for publication, 
these texts provided the teaching material for Bruno’s lectures on magic.38 These 
until then unknown texts confirmed Bruno’s commitment to the view that nature 
was governed by magical forces. Despite (or perhaps because of) this fact, Tocco 
tried to reduce the importance of his discovery in his presentation of Bruno’s 
unpublished works39. Likewise, Giovanni Gentile never mentioned the magical 
works in his influential book on Giordano Bruno e il pensiero del Rinascimento 
(Giordano Bruno and the Renaissance Thought, 1920).40 The reason why, for 
Ciliberto, both Tocco and Gentile neglected Bruno’s magic was because it did not 
sit well with their view that modernity started in the Renaissance with thinkers 
like Bruno:   
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All of this, in turn, implies the “crisis” of modernity as it is traditionally 
understood, and the consequent adoption of a new view of the modern 
centuries in which due consideration is given to those problems which 
sixteenth- and seventeenth-century philosophy has tried to obliterate. 
The new attention to magic, astrology, Hermeticism—which includes 
Bruno’s magical works—is an integral part of the new, overall 
conception of modernity which needs to be considered to understand 
the “discovery,” in this century, of Bruno’s “unpublished works.”41 

Ciliberto’s interpretation of Bruno’s magical works was very much in line with 
that of Yates, as he himself acknowledges. However, he notices that, despite the 
emphasis placed on magic in Yates’ account, she did not take into account 
Bruno’s magical works, limiting herself to the analysis of the Italian dialogues in 
which magic had a secondary role. Moreover, like Westman before him, Ciliberto 
objects that Yates overestimated the role of Hermeticism in the formation of 
Bruno’s thought, with the result that, in the wake of her studies, the prevailing 
view was that Bruno was only a hermetic magus. This, in turn, had led to neglect 
important aspects of Bruno’s life and works, and especially his activities as a 
natural philosopher and mathematician. Indeed, although Yates underscored the 
lack of boundaries between magic and science in the early modern period, she 
also claimed that “the procedures with which the Magus attempted to operate 
have nothing to do with genuine science.”42 In the end, both Yates and Koyré 
seemed to agree that Bruno was not what we might call “a man of science.” The 
fact that in her Giordano Bruno and Renaissance Science of 1999 Hillary Gatti 
felt compelled to attempt “an integration of the Hermetic Bruno into the scientific 
Bruno inherited from the nineteenth century”43 tells us that at the turn of the 
twenty-first century Bruno was, and perhaps still is, considered more of a magus 
than a scientist.   

Where does this leave us? The reader may have noticed that discussions 
about Bruno’s modernity have tended to focus mainly on his cosmology. 
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Attention has been paid to Bruno’s mathematics only to the extent that its flaws 
confirmed Bruno’s inability to understand the technical aspects of the Copernican 
theory. Although the idea of infinitely small quantities would play a crucial role in 
the development of seventeenth-century mathematics (leading to the invention of 
the infinitesimal calculus), Bruno seemed unable to convert this idea into an 
acceptable mathematical doctrine. Even Bruno scholars have struggled to make 
sense out of his mathematics, which may explain why this aspect of Bruno’s 
thought has gone largely unnoticed. Likewise, concerns have been voiced about 
Bruno’s mathematics when considered in relation to his atomistic theory. The 
case has been made that the overall value of Bruno’s atomistic theory was 
undermined by its mathematical applications. This was the opinion of Kurd 
Lasswitz, the first to systematically study Bruno’s atomism in his classical book 
Geshichte der Atomistik vom Mittelalter bis Newton (1890).44 Lasswitz credited 
Bruno with the revival of atomism in the early modern period. On the other hand, 
he could not help noticing the problems arising from the application of Bruno’s 
atomistic theory to mathematics: 

The abstraction from the physical reality is impossible for Bruno 
because of the generality of the concept of monad. When one imagines 
a figure in the empty space, the figure must be imagined as composed 
of minima; the figure is rendered a physical entity by the very act of 
imagining it. […] There are no mathematical figures, but only physical 
ones.45 

To understand Lasswitz’s criticisms, we need to consider the concept of the 
minimum on which Bruno based his atomistic theory. In Lasswitz’s view, Bruno 
took the mathematical minimum to be a substance, that is, an entity in its own 
right. This was a problem because, like Aristotle, Lasswitz held that mathematical 
objects were abstractions derived from the physical reality. Lasswitz’s studies put 
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Bruno’s atomism on the map and gave great impetus to the study of the history of 
atomism in general.46 Yet his criticisms had a negative impact on the reception of 
Bruno’s mathematics. For instance, Ernst Cassirer noticed that conceiving the 
mathematical minimum as a real object (and not as an abstraction) prevented 
Bruno from seeing those “laws and ideal relations whose value is independent 
from the nature of the existing things and of matter.”47 Likewise, Hélène Védrine, 
borrowing Bachelard’s terminology, spoke of a “realistic obstacle” hindering 
Bruno’s mathematics. By this term Védrine referred to the Platonic realist 
ontology of mathematical objects which Bruno would have been forced to adopt 
by his a priori rejection of Aristotle. However, Védrine argued, “Platonism does 
not contribute to the progress of mathematics.”48 

Recent attempts to gain a better understanding of Bruno’s mathematical 
works have led a to a reappraisal of his mathematical thought. Giovanni 
Aquilecchia was the first to call for a new approach to Bruno’s mathematics based 
on a careful analysis of his sources, his philosophical agenda and the historical 
circumstances under which he came to elaborate his atomistic geometry.49 
Furthermore, Aquilecchia must be credited with the discovery of two of Bruno’s 
first mathematical writings (the dialogues on Fabrizio Mordente’s compass), 
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which remained unknown until the 1950s.50 In the 2000s, the writings discovered 
by Aquilecchia provided the basis for Luciana De Bernart’s monograph on 
Bruno’s mathematics.51 For De Bernart, Bruno’s critics made the mistake of 
reading his mathematical writings through the lens of their own conception of 
mathematics, while they were best understood in the context of Renaissance 
mathematical practice.52 This was confirmed by the dialogues on Mordente’s 
compass in which Bruno tried to provide a theoretical explanation for the use of 
the instrument invented by his fellow countryman. A few years before De Bernart, 
Angelika Bönker-Vallon had attempted to develop new perspectives on Bruno’s 
mathematics by analyzing it from the viewpoint of his metaphysics.53  

It is worth mentioning that, as early as the 1920s, Ksenija Atanasijević 
offered a detailed account of Bruno’s most important mathematical work in her 
La doctrine métaphysique de Bruno exposée dans son ouvrage “De triplici 
minimo” (The metaphysical and geometrical doctrine of Bruno, as given in his 
work “De triplici minimo” 1922; English translation 1972).54 Although 
Atanasijević’s interpretation was undermined by her belief that Bruno was 
precursor of the Serbian philosopher Branislav Petronijević (1875-1954), her book 
deserves a special mention because it was written at a time when scholars had no 
interest whatsoever in Bruno’s mathematics. Also worth noting is that a new 
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edition and translation of Bruno’s mathematical works is currently being 
prepared by Ciliberto’s team, which will which make these works more accessible 
to the reader. 

In spite of these developments, Bruno continues to be regarded as a poor 
mathematician.55 In the belief that this received view does not do justice to 
Bruno, in this thesis I make an attempt to change it by dealing with the exegetical 
and historical problems posed by Bruno’s mathematical texts. In particular, three 
questions are addressed in the following pages: What was the source of Bruno’s 
mathematical ideas? Are Bruno’s critics justified in claiming that Bruno by no 
means anticipated the concept of infinitesimals because his understanding of 
infinitely small quantities was mathematically unacceptable? Are Bruno’s critics 
justified in claiming that Bruno was a mathematical realist? I shall show that 
Bruno’s critics have misjudged his mathematical abilities because (1) they have 
regarded his atomistic geometry as an isolated event in the history of atomistic 
theories, while an inquiry into the sources of Bruno’s mathematics shows that he 
belonged to a tradition going all the way back to the Middle Ages;56 (2) they have 
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focused almost exclusively on Bruno’s De minimo (1591) and disregarded his first 
mathematical writings (1586), which has prevented them from seeing that, in 
purely mathematical terms, Bruno’s original theory was more coherent than the 
version of it presented in his later works. I pay special attention to Bruno’s 
sources and to his first mathematical writings. In doing so, I do not put Bruno on 
a par with Regiomontanus, Cardano, Tartaglia and the leading mathematicians of 
the Renaissance, nor with Cavalieri, Newton and Leibniz and the inventors of the 
infinitesimal calculus. Rather, my aim is to offer an account of Bruno’s 
mathematics that discusses its strengths as well as its weaknesses. 

Between Pythagoras and Lucretius: On the sources of Brunian 
atomism 

It is a common view that the early modern revival of atomism was a consequence 
of Poggio Bracciolini’s 1417 rediscovery of Lucretius’ De rerum natura (On the 
Nature of Things, I century BC). In fact, in his award-winning book The Swerve, 
Stephen Greenblatt goes as far as to claim that this event was the sparkle that 
ignited the Renaissance and the modern age.57 As a matter of fact, the Lucretian 
poem was little known during the Middle Ages, as medieval scholars had no 
direct access to it but were acquainted with very few passages through secondary 
sources.58 Thus, it is true that forgotten ideas were brought to light by the 
rediscovery of the poem in the fifteenth century. However, recent studies on the 
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Renaissance reception of De rerum natura tend to reduce the importance of 
Poggio’s rediscovery with regard to the revival of atomism. As made clear by 
Elena Nicoli, “it is certainly incorrect to regard Lucretius’ doctrine, and especially 
his atomism, as the sole philosophical model that contributed to overturning 
Aristotle’s natural philosophy and paved the way for the development of modern 
scientific thought.”59 

Like early modern atomism in general, Bruno’s atomism was first regarded 
as an elaboration of Lucretian themes. This was the way in which it was presented 
by Dorothea Waley Singer, who had no doubt that “it was from Lucretius and 
certain Renaissance Lucretians such as Fracastor—whose name is given to a 
character in one of his dialogues—that Bruno drew his conception of what he calls 
the minima from which all things are formed.”60 By mentioning the minima, 
Singer clearly referred to Bruno’s Latin works (1591). However, it is likely that her 
interpretation of Brunian atomism was based mainly on the Italian dialogues, and 
in particular on De l’infinito, universo e mondi (On the Infinite, Universe and 
Worlds, 1584) of which she published an English translation.61 It was indeed in 
this work that Bruno first proposed the idea of an infinite universe in which 
atoms flowed from one body to another, in a way reminiscent of Epicurus and 
Lucretius. Nevertheless, in De l’infinito, there was no information about the 
shape of the atoms, their weight (or lack thereof), how they were arranged to form 
a body, and so on. This was because, although the seeds of Bruno’s atomistic 
theory were found in De l’infinito, in was not until De minimo that this theory 
was fully developed. As soon as one pays attention to De minimo, one realizes 
that there were more differences than similarities between Bruno’s and Lucretius’ 
atomism. 

In 1980, Carlo Monti published an Italian translation of Bruno’s 
“Frankfurt trilogy”, so called because it included three Latin poems (De minimo, 
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De monade and De immenso) that were printed in Frankfurt in 1591.62 This work 
allowed Monti to a conduct a thorough analysis of Brunian atomism and its 
sources, the result of which were published in 1994.63 In his account, Monti 
acknowledged that Lucretius was a “privileged source” for Bruno, who was 
indebted to the Latin poet (as well as to Epicurus) for his idea of an infinite space 
in which an infinite number of worlds composed of atoms were located.64 He 
listed two other conceptual elements that the philosophical systems of Bruno and 
Lucretius had in common: the idea of a natural law and the anti-providentialist 
view that nature was able to reproduce itself without God’s intervention. On the 
other hand, Monti noted that, unlike Lucretius and the ancient atomists 
Democritus and Leucippus, Bruno did not believe in the existence of absolute 
void, arguing that the space between atoms was filled by ether. Moreover, while 
for Lucretius and Epicures atoms moved downwards because of their weight, for 
Bruno atoms could move in all directions as the cause of their motion was an 
intelligent principle named the “world soul.” Therefore, despite the similarities 
between their world-views, the atomistic doctrine of Bruno was far removed from 
that of Lucretius. This led Monti to conclude that: 

If, in sum, the Lucretianism is almost always in the background [of 
Bruno’s philosophy], it is never a literal interpretation of Lucretius, but 
an important cultural motivation that plays different roles in the 
complex plot of Bruno’s thought.65 
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It is a fact that, on his return to Paris from London in 1585, Bruno acquired a 
copy of Obert van Giffen’s 1566 edition of Lucretius’ De rerum natura.66 This 
confirms that De rerum natura was a Brunian source. However, as shown by 
Amalia Perfetti, Bruno borrowed from Lucretius metaphors such as that of nature 
as mater rerum (mother of things) and general concepts such as that of semina 
(seeds).67 Although, as argued by Hiro Hirai, “the concept of seeds can be 
regarded as a missing link in the chain which bridged between the medieval 
scholastic doctrine of substantial forms and the mechanistic corpuscular theories 
of the late seventeenth and eighteenth centuries,”68 the concept itself seems 
unable to explain why Bruno’s atomism possessed certain characteristics or, more 
importantly, why he provided an atomistic theory of geometric objects. 

Nowadays, scholars agree that Bruno’s atomism had no connection to 
Lucretius’ and Epicurus’. In their exploration of the importance of Lucretius in 
the history of science, Monte Johnson and Catherine Wilson are adamant that 
“Bruno was by no means an orthodox Epicurean.”69 Yasmin Haskell is of the 
same opinion, as she writes that “the relationship between the two writers [i.e. 
Bruno and Lucretius] was more personal, more ideological, than strictly 
philosophical.”70 Likewise, in her study on the Renaissance reception of 
Lucretius, Nicoli argues that “while embracing Lucretius’ atoms, Bruno conceived 
of them as living, dynamic, and monadic entities which constituted, as a sort of 
divine nuclei, the seeds of an endless cosmos made up of infinite worlds. This 
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doctrine seems very far from that presented in De rerum natura,”71 We have 
already seen two aspects in which the atomistic theory advocated by Bruno was 
different from that of Lucretius: the existence of void (affirmed by Lucretius and 
denied by Bruno) and the atomic motion (downwards for Lucretius and in all 
directions for Bruno). Another difference was that Lucretius thought that the 
atoms had a vast but finite variety of shapes, while Bruno held that the atoms had 
only one shape: the circle or the sphere, depending on whether they were 
conceived in a two- or three-dimensional space (more on this in chapter 4). 
Finally, Bruno himself informs us about his commitment to Epicureanism early 
in his life and his subsequent disaffection:  

Democritus and the Epicureans, who claim that what is not body is 
nothing, maintain as a consequence that matter alone is the substance 
of things, and that it is also the divine nature, as an Arab named 
Avicebron has said in a book entitled Fount of Life. They also hold, 
together with the Cyrenics, the Cynics and the Stoics, that forms are 
nothing but certain accidental dispositions of matter. I, myself, was an 
enthusiastic partisan of this view for a long time, solely because it 
corresponds to nature’s workings more than Aristotle’s. But after much 
thought, and after having considered more elements, we find that we 
must recognize two kinds of substance in nature: namely, form and 
matter.72 

The fact that Bruno did not consider Epicureanism a suitable philosophical 
option may have prevented him from adopting an Epicurean version of atomism. 
The only part of Epicurean atomism that may have attracted Bruno’s attention 
was its theory of minima. This theory can be summed up as follows.73 Unlike 
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Democritus, Epicurus thought that atoms had parts called minima (in Greek 
elachista), which could not exist independently of the atom to which they belong 
and could not be further divided. The minima determined the characteristics of 
the atom (such as its weight, size and shape), which in turn affected the way in 
which atoms came together to form compound bodies. However, in the Physics, 
Aristotle argued against the view that an object (qua continuous) could be 
composed of indivisible entities such as the Epicurean minima, for these entities 
had no parts with which they could touch one another. (For Aristotle, an object 
was continuous only if its parts were in contact with each other).74 We do not 
know for sure whether Epicurus knew Aristotle’s Physics. Be that as it may, his 
theory of minima seemed to contain a reply to the Aristotelian objection that the 
continuum could not be composed of indivisibles. Epicurus invited us to consider 
the sensible minimum, that is the smallest perceivable thing. Despite the fact that 
sensible minima were so small that no part of them could be seen (it was as if they 
had no parts), they were arranged to form the object that contained them. “How 
then do they combine? ‘In their own special way’ is the most Epicurus ventures 
on the matter.”75 By analogy, the same could be said of atomic minima.  

Bruno knew the Epicurean theory of minima as expounded by Lucretius in 
De rerum natura.76 He held that the atom had “extremities” (in Latin termini), 
which could not be separated from the atom itself and were indivisible just like 
the Epicurean minima. Furthermore, he claimed that it was with their extremities 
that the minima (which for Bruno were synonymous with the atoms) touched one 
other, thus forming compound objects (see Chapter 4 for more details). It seems 
safe to conclude that Bruno borrowed from Epicurus this aspect of his atomistic 
theory, or at least used similar arguments to respond to Aristotle’s criticisms of 
atomism. However, the fact remains that for the most part Brunian and 
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Epicurean atomism were different theories, especially if we consider that Bruno 
applied the atomic model to geometric and physical objects alike. Therefore, 
Epicureanism may not have been the only source of Brunian atomism. Rather, it 
is more likely that Bruno’s understanding of atomism resulted from the 
conflation of different sources. This begs the question: which authors and texts 
may have inspired Bruno to develop his atomistic theory, besides Epicurus and 
Lucretius? Did geometric atomism have supporters in Antiquity or in the Middle 
Ages? Indeed, Bruno was not the first to postulate the existence of geometric 
indivisible entities, but different versions of geometric atomism have been 
ascribed to two of the most famous philosophical schools of the past: the Platonic 
and the Pythagorean. As a matter of fact, it may have been that the Epicureans 
also pursued the project of a new geometry based on their theory of minima.77 
However, this hypothesis has not yet been confirmed, which is why I have limited 
myself to Plato and the Pythagoreans.  

In the case of Plato, the term “geometric atomism” has been used to refer 
to the theory, expounded by Plato in the Timaeus, whereby the four elements 
were composed of parts that had the shape of a regular solid.78 Each element was 
associated to one of the so-called Platonic solids: fire (tetrahedron), air 
(octahedron), water (icosahedron), earth (cube). Each solid, in turn, was 
composed of triangles, which were deemed to be to be the most basic geometric 
figures. This Platonic version of geometric atomism was far removed from that of 
Bruno. Over time, Bruno changed his mind about the shape of geometric 
indivisibles, which went from being indefinitely shaped to having a circular 
shape. Nevertheless, unlike Plato, Bruno never attributed a triangular shape to 
his minima. It is true that Xenocrates (396/395–314/313 BC), who was Plato’s 
pupil and scholarch of the Platonic Academy, developed an atomistic theory 
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based on the concept of indivisible lines.79 This Xenocretean theory was more 
similar to Bruno’s atomistic doctrine, especially the original version of it 
presented in the dialogues on Mordente’s compass where Bruno spoke of the 
indivisible minima of the lines (see Chapter 3). Nevertheless, Bruno’s later 
mathematical works witnessed a change in his conception of the geometric 
minima, as they came to be conceived as circular, extended points. Thus, if, as 
proposed by Luciano Albanese,80 Xenocrates’ indivisibles lines provided a model 
for Bruno’s minima, this would help explain the early stage of development of 
Bruno’s mathematical thought. Yet the influence of Xenocrates cannot be used to 
account for the ultimate version of Bruno’s atomistic theory, which revolved 
around the idea that the geometric minima were points (and not indivisible 
lines).  

This leaves us with the Pythagoreans. Indeed, scholars have credited the 
Pythagoreans with a form of “point-atomism.”81 It all started with Paul Tannery 
who claimed that the target of Zeno’s paradoxes was the Pythagorean view that 
geometric objects were composed of points placed side by side.82 Tannery’s thesis 
had supporters until the 1950s, when it was dismissed on the grounds that there 
was no evidence that the Pythagoreans were the authors of point-atomism. (The 
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general consensus was that point-atomism was developed by a later generation of 
Neo-Pythagorean authors, and not by the early Pythagoreans, as Tannery had 
it).83 At the same time, scholars were aware that geometric atomism revived in 
the Middle Ages, in which period atoms were viewed as points instead of 
corpuscles. For a long time, the tendency was to regard these medieval theories of 
point-atoms as only a response to Aristotle’s criticisms of atomism.84 It was not 
until recently that historians started to explore the possibility that medieval 
atomists drew inspiration from Neo-Pythagorean authors such as Boethius, who 
expressed the idea that the point was an atom or a “unit having position.”85 It 
may also have been that the Pythagorean idea of point-atom found its way 
through the early modernity to become the cornerstone of Bruno’s atomistic 
theory. If so, what was the channel through which this idea reached Bruno? Was 
Bruno familiar with authors who endorsed Pythagorean atomism? 

In his introduction to two of Bruno’s later mathematical writings, Giovanni 
Aquilecchia proposed that:   

The geometry of [Bruno’s] De minimo is to be compared to Nicholas of 
Cusa’s still understudied mathematics and, through this latter, to 
Ramon Llull’s geometry, the importance of which has been recently 
claimed not only with regard to the Lullian Art, but also for 
interpreting particular aspects of the Renaissance civilization.86   
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Aquilecchia had reason to believe that a study of Cusanus’ and Llull’s 
mathematical theories could yield insights into Bruno’s mathematics, although he 
left it to others to pursue this line of research. Following Aquilecchia’s lead, De 
Bernart insisted on the importance of Cusanus’ mathematical writings, especially 
those on the quadrature of the circle, which provided a framework for 
understanding the geometric aspects of Bruno’s theory of minima.87 Likewise, 
Jean Seidengart claimed that “it will be unfair and incorrect to see Bruno as the 
inventor of the metaphysics of the indivisible Minimum […]. Therefore, we need 
to go back to the privileged source of these considerations […]: the work of 
Nicholas of Cusa.”88 In addition, both Seidengart and, more systematically, David 
Albertson argued that Cusanus’ conception of mathematics was deeply 
Pythagorean in that it derived from a close reading of Boethius’ Institutio 
arithmetica and its commentary by Thierry of Chartres.89 While scholars have 
tried to estimate the extent of Bruno’s debt to Cusanus, they have not considered 
that Llull’s mathematical writings could also have played a role in shaping 
Bruno’s understanding of geometric minima. This may be due to the fact that, for 
the most part, Lullian mathematics is uncharted territory. Accordingly, the fact 
that Llull, like Bruno, claimed that geometric objects were composed of points 
and thus defended a version of Pythagorean atomism has gone unnoticed.  

This study is in line with Aquilecchia’s suggestion, its purpose being to 
show that both Llull and Cusanus were Bruno’s sources for his mathematics. 
Special emphasis is given to Llull as his importance for Bruno’s mathematics has 
been largely underestimated. On the other hand, this study offers a new approach 
to the question of Bruno’s sources insofar as Llull and Cusanus (as well as Bruno 
himself) are regarded as belonging to the tradition of Pythagorean atomism. A 
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methodological remark is in order. The fact that Pythagoreanism was a common 
source of knowledge for these authors may explain the similarities between their 
mathematical theories. However, as we shall see, these theories were not 
identical. In fact, there were major differences between the mathematical theories 
of Llull and Bruno on the one hand, and that of Cusanus on the other hand. 
(Unlike Llull and Bruno, Cusanus was against the view that geometric objects 
were composed of points). Yet, as I will argue in Chapter 2, in his later works, 
Cusanus endorsed a version of atomism central to which were concepts—
enfolding and unfolding (complicatio and explicatio)—inspired by Boethian 
considerations. This means that, while the work of an author could be directly 
influenced by that of his predecessor(s), their common Pythagorean sources 
provided conceptual elements that could be reframed in a variety of ways, 
depending on the philosophical background of the authors themselves. For this 
reason, I believe that analyzing the mathematical theories of Llull, Cusanus and 
Bruno from the perspective of Pythagoreanism allows us to account for their 
differences as well as their similarities. 

Outline of chapters  

This thesis can be viewed as composed of two parts, each consisting of two 
chapters. The first part is concerned with the sources of Bruno’s atomistic 
geometry, namely Ramon Llull (Chapter 1) and Nicholas of Cusa (Chapter 2). The 
premise is that both these authors (as well as Bruno) belonged to the tradition of 
Pythagorean atomism, a mathematical version of atomism attributed to the 
Pythagoreans in the early twentieth century. It should be noted that ancient and 
medieval scholars did not regard themselves as “Pythagorean atomists” in the 
same way as the Aristotelians did. Rather, the term “Pythagorean atomism” is 
used here to indicate those atomistic theories which were based on the teachings 
of Neo-Pythagorean sources, especially Boethius. In other words, Pythagorean 
atomism is more of a historians’ that an actors’ category. For this reason, in 
Chapter 1, a survey of studies on Pythagorean atomism is provided in lieu of a 
historical reconstruction of this tradition (§ 1.1). Historians have long debated the 
authorship of Pythagorean atomism. For if it is true that ancient sources (above 
all Aristotle) spoke of an atomistic theory of geometric objects developed by the 
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Pythagoreans, these sources could have referred to a generation of Pythagoreans 
other than the immediate disciples of the philosopher of Samos. In fact, it has 
been demonstrated that the Antiquity witnessed as “expansion of tradition”90 of 
Pythagoreanism in the sense that, especially in the Platonic Academy, there was 
the tendency to invoke the authority of Pythagoras as a guarantee of the 
soundness of one’s own views and, for the same reason, to call oneself a 
Pythagorean. Thus, it might well have been that in Antiquity a theory was 
conceived as Pythagorean, even though its origin dated later than Pythagoras. 
This is how scholars have viewed Pythagorean atomism since the 1960s.91 

Boethius (477 – 544 AD) is a central element in this narrative of 
Pythagorean atomism because it was him who paved the way for the return of this 
theory in the Latin Middle Ages (§ 1.2). It must be said that Boethius was not an 
atomist and, as a good Aristotelian, he fought the view that geometric objects 
were composed of points. However, in addition to being an Aristotelian, Boethius 
was the Latin translator of Nicomachus of Gerasa’s (c. 60 – c. 120 AD) 
Arithmetike eisagoge (Introduction to Arithmetic). This work was a compendium 
of Pythagorean mathematics and its translation provided the basis for Boethius’ 
Institutio arithmetica. As is well known, in the Institutio Boethius presented the 
quadrivium, the four mathematical liberal arts (arithmetic, geometric, astronomy 
and music) that medieval students were required to learn before going on to 
study philosophy. More relevant to this study, in the Institutio Boethius described 
the point as an atom (because of its smallness and lack of parts) and a “unit 
having position.” The fame of Boethius’ Institutio in the Middle Ages gave 
visibility to this atomistic definition of the point and led to the exploration of non-
Aristotelian conceptions of the continuum. An author who adopted an atomistic 
view of the mathematical continuum happened to be a Brunian source: Ramon 
Llull.  

Ramon Llull (1232 – 1316) owes his reputation to his Art, a method 
designed to convert Jews and Muslims to Christianism which grew to become an 
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alternative to the Aristotelian logic (§ 1.3).92 Bruno was fascinated by the Lullian 
Art, especially by its visual aspects, as attested by the fact that he wrote works on 
it.93 It is on these works that scholars have focused their attention when assessing 
the influence of Llull on Bruno. The possibility that this influence extended 
beyond the boundaries of Bruno’s Lullian works has remained unexplored. Yet a 
reading of Llull’s Liber de geometria nova (Book on the New Geometry, 1299) 
reveals that he agreed with Bruno that geometric objects were composed of 
points. Thus, like Bruno, Llull appeared to defend a version of Pythagorean 
atomism. In fact, the pages of the Geometria nova show that he also adopted a 
form of Platonic atomism, that is the view that the four elements were composed 
of indivisible geometric figures (triangles, circles and squares, in the case of 
Llull). Hence, it can be assumed that Llull was a Bruno’s source for his 
mathematics. To validate this hypothesis, we need to ask ourselves, could Bruno 
have read Llull’s Geometria nova? This question arises because, to my 
knowledge, the Geometria nova was the only work in which Llull exposed his 
atomistic view of geometric objects.  

Llull wrote the Geometria nova in Paris in 1299 (§ 1.4). An analysis of the 
eight extant manuscripts containing a copy of this work shows that none of these 
manuscripts could have ended up in Bruno’s hands, either because they were 
produced at a later date or because their origin and provenance is not compatible 
with Bruno’s wanderings across Europe. However, it could have been that Bruno 
had access to a copy of the Geometria nova which has not come down to us. To 
determine if this was the case, I examined the catalogues and inventories of 
Lullian works which mentioned the Geometria nova. The online Llull Database 
was an invaluable aid in this phase of the research.94 The Geometria nova was 
listed, among others, in the catalogue of a manuscript known as the Electorium.95 
In addition to the catalogue, this manuscript contained a collection of Lullian 
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texts put together by one of Llull’s first disciples: Thomas Le Myésier (d. 1336).96 
The catalogue of the Electorium informs us that Le Myésier certainly owned a 
copy of the Geometria nova. What is more, since Le Myésier based his catalogue 
on the collection of Lullian manuscripts of the Charterhouse of Vauvert in Paris, it 
tells us that the Charterhouse also had a copy of the Geometria nova. The 
manuscript collection of the Charterhause of Vauvert had been established by 
Llull himself as part of a strategy to promote his work.97 The Charterhouse was 
still an important center for the diffusion of Lullism at the beginning of the 
sixteenth century, when the French humanist and Llull admirer Jacques Lèfevre 
d’Étaples (c. 1450 – 1536) borrowed from the Charterhouse the manuscripts 
necessary to prepare his edition of Llull’s work.98 The Charterhouse remained 
active until the French Revolution when, as a consequence of the 
“dechristianization” of France, religious orders were suppressed and their goods 
(including libraries) confiscated.99 As far as I known, all the documents 
concerning the Charterhouse are now kept at the Archives Nationales in Paris.100 
Unfortunately, among these documents, I was not able to find a proof that a copy 
of the Geometria nova was found at the Charterhouse as late as the 1580s, during 
which period Bruno visited Paris twice. Nevertheless, this possibility cannot be 
excluded on the basis of the evidence at hand, which leaves the door open for a 
possible dependence of Bruno on Llull for the atomistic character of his geometry.   

 The fact that Llull may have inspired Bruno to develop his atomistic 
geometry does not diminish the importance of Nicholas of Cusa (1401 – 1464) as 
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a Brunian source, which is the subject of Chapter 2. Indeed, an analysis of the 
philosophical underpinnings of Bruno’s mathematics reveals that it was based on 
two assumptions, both taken from Cusanus: the idea that there was a minimum 
as well as a maximum, and the idea that that minimum and maximum coincided. 
On the other hand, one may argue that it was not until the latter part of his career 
that Cusanus came to accept atomism and, even then, he continued to oppose the 
idea the idea that geometric objects were composed of points, which was central 
to Lullian and Brunian atomism. How does this affect our narrative of 
Pythagorean atomism? Can Cusanus be regarded as belonging to this tradition? If 
this were the case, the bridge between Cusan and Pythagorean atomism should be 
provided by an idea other than that on which Llull and Bruno built their atomistic 
theories. In fact, I believe that there were two ideas (which were part of the same 
theory) that could fulfill this function: enfolding and unfolding (complicatio and 
explicatio). 

In De docta ignorantia (1440), arguably Cusanus’ most famous work, 
enfolding and unfolding provided an explanation of how the unity of God was 
compatible with His being the creator of the world and of the multiplicity of 
things found therein (§ 1.1). Cusanus’ answer to this question was that the 
multiplicity of things was enfolded in God’s mind and unfolded in the created 
world, and that these two modes of existence were compatible with each other. It 
should be noted Cusanus’ source for his account of enfolding and unfolding was a 
mathematical text that has been recently rediscovered by Irene Caiazzo: Thierry 
of Chartres’ commentary of Boethius’ Institutio Arithmetica.101 This discovery 
enriches our knowledge of the sources of Cusanus’ philosophy, but also sheds 
light on the conceptual development of enfolding and unfolding in his thought.102 
Thierry used these notions to bridge the gap between arithmetic and geometry, 
numbers and magnitudes. In Cusanus’s view, enfolding and unfolding had a 
function similar to that attributed to them by Thierry. In De mente (1450), the 
bridging function of enfolding and unfolding was translated into a creative act of 
the human mind, and the two concepts were embedded into the atomistic theory 
that Cusanus was starting to develop. Hence, Cusanus was inspired by Boethius 
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(via Thierry) to develop his account of enfolding and unfolding, which went from 
being part of a theological explanation (in De docta ignorantia) to being part of 
an atomistic theory (in De mente).   

Chapter 2 continues with Cusanus’ account of minimum and maximum (§ 
2.2). There is no doubt that this aspect of Cusanus’ thought deeply influenced 
Bruno. In particular, Cusanus might have been Bruno’s source for his idea of the 
minimum as an infinitesimal quantity. In De docta ignorantia, Cusanus 
demonstrated that in arithmetic minimum and maximum could not be expressed 
numerically, while in geometry they were best understood as “absolute 
quantities,” that is as quantities that were independent of any finite 
determination (e.g. small, big, etc.). This was due to the fact that numbers and 
magnitudes expressed the finitude and “contractedness” of the world, while 
minimum and maximum had an absolute character. In fact, Cusanus claimed that 
both minimum and maximum were infinite entities. Speaking of the maximum, 
Cusanus refereed to the infinity of God and the universe. On the other hand, he 
was silent about the infinity of the minimum, leaving it to the reader to infer the 
characteristics of the ‘infinitely small.’ I suggest that (1) the “contracted 
minimum” (the opposite of the “contracted maximum,” i.e. the universe) 
coincided with the point; 2) the “absolute minimum” was ineffable just like God, 
the “absolute maximum.” In an effort to put the ineffability of the absolute 
minimum and maximum into words, Cusanus used the metaphor of the inscribed 
polygon which could never coincide with the circumscribed circle, regardless of 
the number of its sides. In his first mathematical writings, Bruno also argued that 
the geometric minimum was affected by a certain degree of indeterminateness 
insofar as had no precise shape. Nevertheless, in his opinion, instruments such as 
Mordente’s compass allowed us to visualize the minimum by revealing the 
minimum parts of lines and figures.    

While the first part of the dissertation is centered on the sources of Bruno’s 
mathematical theory, the second part focuses on the theory itself. Its main 
objective is to respond to the criticisms of early interpreters of Bruno’s 
mathematics, especially Leonardo Olschki and Hélène Védrine. Chapter 3 takes 
issue with Olschki who claimed that Bruno’s mathematics was too “concrete” to 
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have a mathematical significance.103 In the belief that this received view did not 
do justice to Bruno’s mathematics, I started dealing with the exegetical problems 
posed by Bruno’s texts and searching for hitherto neglected sources. However, as 
my research progressed, I realized that limiting myself to the analysis of Bruno’s 
texts and its sources was not enough to change the conventional image of Bruno’s 
mathematical abilities. I needed to look at Bruno’s mathematics from a different 
perspective, and understand the social, political and cultural conditions under 
which Bruno came to develop his mathematical theory. This led me to study an 
event that has been relatively neglected by Bruno scholars, that is the controversy 
between Bruno and the Italian geometer Fabrizio Mordente. In reconstructing 
this controversy, I became aware that the “concrete” character of Bruno’s 
mathematics, as Olschki had it, was due to Bruno’s interest in mathematical 
practices and instruments, such as the proportional compass invented by 
Mordente. Indeed, Bruno’s first mathematical writings were an attempt to give a 
theoretical explanation for the use of Mordente’s compass.  

Fabrizio Mordente (1532 – c.1608) was the inventor of one of the first 
proportional compasses, an instrument designed to measure the sections of a line 
or the area of an irregular figure (§ 3.1). Bruno met Mordente in Paris in 1586 and 
was immediately attracted to the compass, so much so that he decided to write 
four dialogues on it. However, it was not long before the two Italians engaged in a 
fight over the significance and authorship of the compass (§ 3.2). This 
controversy was long forgotten for two reasons: first, because, as already 
mentioned, the dialogues in which Bruno attacked Mordente were rediscovered 
only in the 1950s; second, because the only account of the controversy, given by 
Jacopo Corbinelli in his correspondence with Gian Vincenzo Pinelli, was 
published by Frances Yates in 1951.104 As Bruno explained in the first dialogue, 
Mordente’s compass allowed to divide geometric objects down to their 
“minimum” parts (§ 3.3). In this respect, Bruno continued, the theory behind the 
use of the compass was not unlike the Aristotelian theory of the minima 
naturalia. Developed by the followers of Aristotle in the Middle Age, this theory 
stated that there was a lower limit to the form of natural beings, beyond which 
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they would have been too small to retain their essence. If on the one hand 
Aristotelians admitted the existence of a “formal” minimum, on the other hand 
they denied the existence of a “material” minimum (i.e. an atom). For his part, 
Bruno believed that Mordente’s compass confirmed the existence of atoms as it 
demonstrated that, when dividing straight and curved lines, a point was reached 
where both kinds of lines appeared to be composed of indefinitely shaped parts (§ 
3.4). Indeed, these parts, which Bruno called “minima,” were big enough for us to 
see them, but were too small to determine whether they were straight or curved.   

The purpose of Chapter 4 is to provide an analysis of Giordano Bruno’s 
conception of mathematics. Specifically, it intends to highlight two aspects of this 
conception that have been neglected in previous studies. First, Bruno’s 
conception of mathematics changed over time and in parallel with another 
concept that was central to his thought: the concept of infinity. Specifically, Bruno 
undertook a reform of mathematics in order to accommodate the concept of the 
minimum, which was introduced at a later stage. Second, contrary to what Héléne 
Védrine claimed, Bruno was not a mathematical realist, but he believed that 
mathematical objects were mind-dependent.105 To chart the parallel development 
of the conceptions of mathematics and infinity, a seven-year time span is 
considered, in which period Bruno published three works that are relevant for 
this study: La cena de le ceneri (1584), Acrotismus camoeracensis (1588) and De 
minimo (1591). La cena de le ceneri is usually taken to be the manifesto of 
Bruno’s realism both because in this work he accepted the Copernican hypothesis 
of the motion of the earth, and because he took issue with Osiander’s 
‘instrumentalist’ reading of Copernicus’ De revolutionibus as expressed in the 
anonymous letter Ad lectorem appended to the text (§ 4.1). It is true that, unlike 
the majority of his contemporaries, Bruno accepted the cosmological 
underpinnings of the Copernican theory. Nevertheless, it must be remembered 
that endorsing realism also required one’s faith in the explanatory power of 
mathematics when applied to the study of nature. On the contrary, Bruno did not 
believe that mathematical models could be used to understand physical 
phenomena. The reason for Bruno’s mistrust in mathematical physics was that he 

                                                
105 Védrine, “L’obstacle réaliste.” 



 45  

denied that mathematical objects existed independently of our mind, pace 
Vedrine.  

The analysis of Acrotismus camoeracensis corroborates the idea that 
Bruno was far from being a mathematical realist. (§ 4.2). In addition, Acrotismus 
shows that Bruno’s rejection of mathematical realism was motivated by his 
attempt to mathematize the concept of the minimum or, which amounts to the 
same, to provide an atomistic theory of mathematical objects. Indeed, after 
having established that there was a limit to the divisibility of the physical 
continuum, Bruno sought to demonstrate that the same was true of the 
mathematical continuum. In Bruno’s view, Mordente’s compass gave evidence 
that both geometric and physical objects were composed of minimum parts. 
However, one could argue that, no matter how small they were, geometric 
minima were not impenetrable nor possessed other characteristics that prevented 
them from being further divided. In response to this objection, Bruno argued 
that, although it was true that in line of principle the division of the mathematical 
continuum could go on to infinity, there was no point in performing a 
mathematical operation which exceeded the limits of nature. In other words, 
Bruno claimed that mathematics had to conform to nature instead of explain it. A 
similar argument was made in De minimo, where however one may argue that 
Bruno’s ‘campaign’ against mathematical realism came to a halt (§ 4.3). The 
problem was that, in this work, Bruno claimed that the minimum (both physical 
and mathematical) had a circular shape, although he was adamant that geometric 
figures were nowhere to be found in nature. In my view, this problem was due to 
the fact that, with his theory of minima, Bruno attempted to integrate physics, 
metaphysics and mathematics into a single theory. The circular shape of the 
minimum was a result of this integration insofar as it derived from Bruno’s 
fascination with theological and metaphysical concepts, such as the metaphor of 
the infinite sphere.  

The thesis ends where it began—with a comparison between Bruno and 
Leibniz and their respective monadologies (§ 4.4). Early interpreters went as far 
as to claim that Bruno’s monadology (which was related to his theory of minima) 
provided the model for Leibniz’s. On the contrary, I argue that there were more 
differences than similarities between these two doctrines. If anything, both 
Bruno’s and Leibniz’s monadology were informed by a Pythagorean 
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understanding of the monad, which, in the case of Bruno, confirms the 
importance of Pythagoreanism as a source of his mathematical thought.  
  



 47  

PART ONE. SOURCES 
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1. Boethius, Llull and the legacy of Pythagorean atomism  

1.1 Pythagorean atomism as a historians’ category  

It was the French mathematician and historian of mathematics Paul Tannery 
(1843 – 1904) who first attributed an atomistic theory to the ancient 
Pythagoreans. Also known for his edition of Descartes’ work and correspondence 
(on which he collaborated with Charles Adam), Tannery was an engineer with a 
keen interest in the history of mathematics.106 This interest led him to study the 
works of the ancient mathematicians, especially Diophantus, and to write a book 
on the science of the ancient Greeks in which he raised the issue of Pythagorean 
atomism.107 Interestingly enough, no chapter of Tannery’s book was devoted to 
the Pythagoreans, but the discussion on Pythagorean atomism was found in the 
chapter on Zeno of Elea. At the time Tannery wrote his book, the general 
consensus was that Zeno’s paradoxes were directed against a common-sense view 
of multiplicity. Instead, Tannery thought that Zeno’s purpose was to defend the 
monism of his master Parmenides from the attacks of the pluralist Pythagoreans. 
To this end, Zeno adopted the strategy of showing the inconsistencies of the 
Pythagoreans’ own doctrines. For Tannery, those inconsistencies were reducible 
to a core belief of the Pythagoreans, a belief that, as we shall see, remained 
popular throughout the Middle Ages and the Renaissance: 

For the Pythagoreans, the point is the unit having a position or the unit 
in space. From this it follows that geometric bodies are a sum of points 
in the same way as numbers are a sum of units.108 

In Tannery’s opinion, not only did the Pythagoreans believe that geometric 
objects were composed of points, but they conceived the existence of physical 
points which served as the building blocks of physical bodies. This view was in 
accordance with the Pythagorean principle that all things were number, and it 
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was the target of Zeno’s paradoxes. Indeed, Tannery argued, “when understood in 
this sense, the arguments of Zeno appear clear, compelling, undeniable, even 
those which may seem mere paralogisms.”109 It has to be noted that Tannery 
never used the term “Pythagorean atomism,” but he claimed that there was a 
connection between the Pythagorean view that bodies were composed of points 
and the atomistic theories of Leucippus and Democritus. As a consequence of this 
and of the influence that Tannery had on the historiography of philosophy, the 
Pythagoreans came to be associated with atomism. This happened especially in 
the first half of the twentieth century, when the existence of a Pythagorean 
atomism was advocated by Francis Cornford and John Earl Raven. 

Cornford’s account of Pythagoreanism, as expounded in his article on 
“Mysticism and Science in the Pythagorean Tradition” (1922-3), was more 
complicated than Tannery’s. First of all, Cornford contested the idea that there 
was only one line of thought within the Pythagorean school. On the contrary, he 
claimed that there were two Pythagorean systems: the mystical and the scientific. 
Furthermore, he identified the scientific system with an atomistic theory that the. 
Pythagoreans developed in response to Parmenides’ criticism of their mystical 
system  

We can, in a word, distinguish between (1) the original sixth-century 
system of Pythagoras, criticized by Parmenides—the mystical system—
and (2) the fifth-century pluralism constructed to meet Parmenides’s 
objections, and criticized in turn by Zeno—the scientific system—which 
may be called ‘Number-atomism.’110 

Cornford returned to the issue of “Number-atomism” a few years later in his book 
on Plato and Parmenides (1939). The book opened with a discussion of the 
Pythagorean cosmogony, which was described as a process of derivation of 
physical bodies from numbers through geometric objects. For Cornford, the 
Pythagoreans developed two models to describe the derivation of geometric 
objects. According to the first model, geometric objects were constructed by 
adding a point to another. For instance, a line was formed by a row of points 
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placed side by side. In the second model, geometric objects were generated by the 
“flowing” of a point. Cornford noticed that the two models corresponded to two 
different stages in the evolution of the Pythagorean scientific system. The first 
model could be identified with Number-atomism, which however was affected by 
mathematical problems that could be solved by means of the second model. Thus, 
the “fluxion” model was an improvement on Number-atomism:   

The flowing of a single point into a line secures the continuity and 
infinite divisibility of magnitudes, and provides also for irrational 
quantities represented by incommensurable lines. The discovery of the 
irrational √2 and of the incommensurability of the diagonal of the 
square must have been made at a very early stage in geometry. It 
would follow upon the discovery of the Pythagorean theorem which 
may be due to Pythagoras himself, though the evidence is not 
conclusive. There can be little doubt that the earliest Pythagoreans, 
before these difficulties arose, simply built all geometrical magnitudes 
by adding unit-points.111  

A pupil of Cornford, John Earle Raven, dared to question the interpretation of his 
master. This latter deemed Aristotle’s account of Pythagoreanism unreliable 
because of its failure to distinguish the mystical from the scientific system. On the 
contrary, Raven claimed that “any account of Pythagoreanism that ignores the 
testimony of Aristotle is a house built upon sand.”112 Hence, Raven tried to show 
that the two systems were compatible with each other, and thus they could have 
been developed by the same generation of pre-Parmenidean Pythagoreans. 
Nevertheless, Raven agreed with Cornford that the Pythagoreans were the 
authors of an atomistic theory: 

In any case—and this is the important point—whether or not the 

Pythagoreans had actually spoken of ἄτοµα µεγέθη a belief in their 
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existence does follow, as a logically inevitable consequence, from other 
propositions which they had undoubtedly accepted. If (1) bodies are 
composed of units, (2) the unit is indivisible (an axiom common to all 
Greek mathematics), and (3) units have size, it is impossible to evade 
the two conclusions that Aristotle voices, that indivisible magnitudes 
exist and that units have weight. To this extent, irrespective of Zeno’s 
arguments, the supporters of the Number-atomism interpretation are 
justified.113 

Cornford and Raven laid the foundation for a new understanding of 
Pythagoreanism. However, starting with the 1960s, their interpretation was 
challenged by scholars such as William Guthrie. Like his predecessors, Guthrie 
thought that the Pythagoreans developed an atomistic theory which predated 
Eleatic philosophy.114 On the other hand, Guthrie raised doubts about the 
Pythagorean authorship of the fluxion theory (i.e. the second Pythagorean model 
for the derivation of geometric objects, according to Cornford). For Cornford and 
Raven, the fluxion theory was a Pythagorean achievement, as claimed by later 
sources such as Sextus Empiricus.115 For his part, Guthrie relied on the testimony 
of Aristotle, who, in De anima, mentioned those who took the line to be the 
“flowing of a point” while discussing the conception of the soul as a “self-moving 
number.”116 Although Aristotle did not mention him, we know that this 
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conception of the soul belonged to Xenocrates. This led Guthrie to conclude that 
Xenocrates was also the father of the fluxion theory. In doing so, Guthrie made an 
assumption that became a cornerstone of later interpretations of 
Pythagoreanism: “Any modification of Pythagorean doctrine made in the 
Academy would have been freely accepted as Pythagorean by most 
Neopythagorean or later writers.”117 

Admitting that Platonism and Pythagoreanism crossed paths did not only 
explain why the fluxion theory, despite its Platonic origin, was reported by Sextus 
as a Pythagorean doctrine. More importantly, it meant that Pythagoreanism 
could not be viewed as a continuous tradition stemming from a single source, that 
is, Pythagoras and his school. Rather, there were more Pythagorean traditions, 
most of which were named after Pythagoras although they bore no relation to 
him. In the 1850s, Eduard Zeller already noticed that in ancient Pythagoreanism 
there was an “expansion of tradition,” which however, in his opinion, amounted 
to a collection of “dogmatic preconceptions, partisan interests, dubious legends, 
and spurious writings.”118 This skeptical attitude changed over the years, with 
nineteenth-century commentators willing to give more credit to later 
Pythagorean sources. The most prominent example of this new tendency was 
Walter Burkert’s Lore and Science in Ancient Pythagoreanism (1962-72). For 
Burkert, the early Academy represented a watershed in the history of 
Pythagoreanism. Speaking of a recently rediscovered fragment of Speusippus, he 
stated that:  

This [fragment] makes certain, what a careful analysis of the sources 
would in any case make likely, that a Platonizing interpretation of 
Pythagoreanism, which had a decisive influence on the later tradition, 
goes back to Plato’s immediate disciples and differs sharply from the 

                                                                                                                                            
lines (for a point is a unit having position, and the number of the soul is, of course, 
somewhere and has position).” 

117 Guthrie, A History of Greek Philosophy, 262. If Guthrie attributed the fluxion theory 
to Xenocrates, J. A. Philip argued that it was elaborated after the Academy. See J. A. 
Philip, “The ‘Pythagorean’ Theory of the Derivation of Magnitudes,” Phoenix 20, no. 
1 (1966): 32–50. 

118 Cited in Burkert, Lore and Science, 2.  
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reports of Aristotle. The latter’s evidence thus becomes more 
important than ever; for he alone warns us to separate Pythagorean 
and pre-Platonic from Platonic material.119 

Returning to Tannery, the problem with his interpretation of Pythagoreanism was 
that it was an a posteriori reconstruction based on passages from Aristotle’s 
Metaphysics. However, as noted by Gregory Vlastos, Aristotle’s testimony was 
unreliable because there was no indication that “Aristotle had in view doctrines 
professed by Pythagoreans more than a hundred year before his own time rather 
than contemporary ones.”120 It may well have been that the atomistic theory 
which Tannery, following Aristotle, attributed to the early Pythagoreans was in 
fact developed much later. More recently, Aurèlien Robert argued that “if the 
historical aspect of Tannery’s interpretation has to be rejected, its philosophical 
content has not entirely lost its relevance.”121 In Tannery’s account, the 
Pythagoreans accepted the idea that the point was an atom or a unit having 
position. Robert noted that, in the Middle Ages, this idea was expressed by 
Boethius and other Neopythagorean sources such as Macrobius and Martianus 
Capella. Although not an atomist, Boethius conceded that the point could be 
viewed as an atom. In this way, he led medieval scholars to adopt the view that 
the continuum was composed of points, as happened in the case of William of 
Champeaux and Peter Abelard. 122  

1.2 Boethius and the revival of Pythagorean atomism in the 
Middle Ages  

Boethius (born: 475–7, died: 526?) is best known as the author of De 
philosophiae consolatione (The Consolation of Philosophy, c. 524). In addition, 
he was a translator and influential commentator of Aristotle, and wrote on a wide 
range of different subjects, from logic to theology, from music to mathematics. 
Boethius’ contribution to mathematics has been relatively little studied, 

                                                
119 Burkert, 13. 
120 Vlastos, “Zeno of Elea,” 376. 
121 Robert, “Atomisme pythagoricien,” 184. 
122 See Robert, 186–97. 



 54  

notwithstanding the fact that his Institutio arithmetica (c. 500) grew to become 
“the standard reference book for arithmetic in the West for a millennium.”123 
Conceived as a translation of Nicomachus of Gerasa’s Introduction to Arithmetic, 
the Institutio inspired the work of theologians (such as Thierry of Chartres, who 
wrote a commentary on it which will be analyzed in the next chapter), 
philosophers (such as Nicholas of Cusa who referred to its author as “our 
Boethius”124) and even architects and engineers, who went as far as to construct 
cathedrals and churches based on the numerical ratios defined by Boethius.125 
Furthermore, the Institutio had a profound influence on the Renaissance when, 
despite the growing importance of Euclid’s Elements, editions of it continued to 
be published and commented on, especially by the French humanist Jacques 
Lefèvre d’Étaples (1455 – 1536) and his circle. 

At the outset of the Institutio, Boethius presented the four mathematical 
sciences (arithmetic, music, geometry, and astronomy) and their respective 
subjects (numbers, ratios, stable magnitudes, moveable magnitudes).126 
Borrowing an idea from Nicomachus and Martianus Capella, he coined the term 
quadrivium (which in Latin means the meeting of four roads) to describe the 
unity of the mathematical sciences. Later on, medieval scholars adopted the word 
                                                
123 Jean-Yves Guillaumin, “Boethius’s De Institutione Arithmetica and Its Influence on 

Posterity,” in A Companion to Boethius in the Middle Ages, ed. Noel Harold Kaylor 
and Philip Edward Phillips (Leiden: Brill, 2012), 161. 

124 Nicholas of Cusa, De docta ignorantia, ed. Paul Wilpert and Hans Gerhard Senger 
(Hamburg: Felix Meiner, 2002), bk. I, chap. 11, p. 42: Quem Platonici et nostri 
etiam primi in tantum secuti sunt, ut Augustinus noster et post ipsum Boethius 
affirmarent indubie numerum creandarum rerum ‘in animo conditoris principale 
exemplar’ fuisse.” 

125 See Otto Georg von Simson, The Gothic Cathedral: Origins of Gothic Architecture 
and the Medieval Concept of Order (Princeton: Princeton University Press, 1988); 
Robert Odell Bork, The Geometry of Creation: Architectural Drawing and the 
Dynamics of Gothic Design (Farnham: Ashgate, 2011).  

126 Boethius, Institutio arithmetica, I, 1, 4, ed. Jean-Yves Guillaumin (Paris: Les Belles 
Lettres, 2002), 7: “Horum ergo illam multitudinem quae per se est arithmetica 
speculatur integritas, ilaam uero quae ad aliquid musici modulaminis 
temperamenta pernoscunt, immobilis uero magnitudinis geometria noticiam 
pollicetur, mobilis uero scientiam astronomicae disciplinae peritia uinidicat.” 
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trivium to indicate the three literary disciplines (grammar, dialectic and rhetoric) 
which, together with the quadrivium, comprised the seven liberal arts.127 
Although all of the mathematical sciences were necessary to achieve true 
knowledge, Boethius explained that arithmetic had priority over geometry, music 
and astronomy because of the fact that God created the world using numbers as 
prototypes.128 Accordingly, the existence of all created beings, including that of 
magnitudes and ratios, depended on numbers. “If you take away numbers, 
Boethius asked, in what will consist the triangle, quadrangle, or whatever else is 
treated in geometry?”129 Furthermore, numbers provided the model for the 
derivation of magnitudes from the point, since the point was the principle of 
magnitudes just as the unit was the principle of numbers:  

Unity has the potential of a point, the beginning of interval and 
longitude; it is not itself capable of interval or longitude, just as the 
point is the beginning of the line and the interval, although it is itself 
neither interval nor line. Nor does a point put upon a point bring about 
an interval, any more than if you joined nothing to nothing. It is 
nothing and nothing comes from nothing. […] Likewise, unity 
multiplied by itself begets nothing.130 

                                                
127 See Paul Oskar Kristeller, “The Modern System of the Arts: A Study in the History of 

Aesthetics Part I,” Journal of the History of Ideas 12, no. 4 (October 1951): 496–
527.  

128 Institutio arithmetica, I, 1, 8, ed. J.-Y. Guillaumin, 8-9: “[Arithmetica] enim cunctis 
prior est, non modo quod hanc ille huius mundanae molis conditor deus primam 
suae habuit ratiocinationis exemplar et ad hanc cuncta constituit quaecumque 
fabricante ratione per numeros adsignati ordinis inuenere concordiam. ” 

129 Institutio arithmetica, I, 1, 9, ed. J.-Y. Guillaumin, 9: “Si enim numeros tollas, unde 
triangulum uel quadratum uel quicquid in geometria uersatur, quae omnia 
numerorum denominatiua sunt?” Translation: Micheal Masi, Boethian Number 
Theory. A Translation of the De Istitutione Arithmetica (Amsterdam: Rodopi, 
1983), 74. 

130 Institutio arithmetica, II, 4, 4, ed. J.-Y. Guillaumin, 89: “Est igitur unitas uicem 
obtinens puncti, interualli longitudinisque principium, ipsa uero nec interualli nec 
longitudinis capax quemadmodum punctum principium quidem linae est atque 



 56  

Later in the text, Boethius explained that magnitudes were derived from the point 
through a process that he called “unfolding” (explicatio).131 Since the Institutio 
provided little information on the dynamic of this process, medieval 
commentators elaborated complex explanations to describe how magnitudes 
unfolded from the point. This was the case of Thierry of Chartres, who was the 
author of a theory of unfolding which will be analyzed in greater detail in the next 
chapter. In another passage of the Institutio, Boethius defined the point as “the 
principle of all intervals and indivisible by nature, which the Greeks call atom 
because it is so diminished and very small that parts of it cannot be found.”132 
However, this should not lead us to conclude that Boethius was an atomist, as 
both in the Institutio and in his commentary on Aristotle’s Categories he made it 
clear that magnitudes were not composed of points.133 Like Euclid, Boethius took 
the point to be an extremity and not a part of the line. In spite of this, Robert has 
demonstrated that Boethius unwittingly contributed to the revival of Pythagorean 
atomism.134 Indeed, especially in the fourteenth century, “the atoms of currency 
were extensionless, mere mathematical points, mere instants, mere moments of 
motion.”135 
                                                                                                                                            

interualli, impsum uero nec interuallum nec linea. Neque enim punctum puncto 
superpositum ullum efficit interuallum, uelut si nihil nulli iungas. Nihil enim est 
quod ex nullorum procreatione nascatur.” Translation: Masi, Boethian Number 
Theory, 129. 

131 Institutio arithmetica, II, 4, 6, ed. J.-Y. Guillaumin, 90: “Ex hoc igitur principio, id est 
ex unitate, prima omnium longitudo succrescit quae a binarii numeri principio in 
cunctos sese numeros explicat, quoniam primum interuallum linea est.” 

132 Institutio arithmetica, II, 4, 9, ed. J.-Y. Guillaumin, 91: “Omnium interuallorum esse 
principium et natura insecabile, quod Graeci atomon uocant, id est ita diminitum 
atque paurissimum ut eius pars inueniri non possit.” Translation: Masi, Boethian 
Number Theory, 130. 

133 Boethius, In Categorias Aristotelis commentaria, ed. J.-P. Migne, Patrologia Latina 
64 (Paris, 1847), 205 A-B: “Non autem hoe dicitur, quod linea constet ex punciis aut 
superificies ex lineis, aut solidum corpus ex superficiebus, sed quod et lineae 
termini puncta sunt, et superficiei linae, et solidi corporis superficies, nullasque res 
suis terminis constat.” 

134 Robert, “Atomisme pythagoricien,” 192–206. 
135 Lüthy, Murdoch, and Newman, “Introduction,” 8. 
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The mathematical character of medieval atomism distinguished it from 
ancient atomism insofar as in Antiquity atoms were viewed as material particles 
instead of mathematical points. The first medieval supporters of mathematical 
atomism were found in the Islamic world among ninth-century Muta’zilite 
theologians,136 while it was not until the fourteenth century that mathematical 
atomism was accepted in the Latin West, although both William of Champeaux 
and Peter Abelard spoke of points-atoms as early as the twelfth century.137 
According to John Murdoch, medieval atomism (both Islamic and Christian) 
raised as a response to Aristotle’s critique of atomism.138 This explained why 
Islamic and Christian thinkers held similar views on the continuum, without 
having to assume that the former influenced the latter. Murdoch’s hypothesis has 
generally been accepted by historians of atomism. Minor adjustments have been 
made to it by Murdoch himself in one of his most recent papers.139 Nevertheless, 
the view that “all the fourteenth-century atomists can be seen, indeed must be 
seen, as reacting to and criticizing the sixth book of Aristotle’s Physics”140 has 
remained unchallenged. 

Robert’s interpretation of medieval atomism is complementary to 
Murdoch’s. For Robert, there is no doubt that the recovery of Aristotle’s Physics 
in the thirteenth century had an impact on medieval discussions about the 
continuum. However, there may be other factors to be considered. In particular, 
it should be noted that medieval atomism was built on the Pythagorean 

                                                
136 On these two authors, see Robert, “Atomisme pythagoricien.” 
137 On Islamic mathematical atomism, see Alnoor Dhanani, The Physical Theory of 

Kalām: Atoms, Space, and Void in Basrian Muʻtazilī Cosmology (Leiden: Brill, 
1994). 

138 See Murdoch, “Infinity and Continuity,” 576. See also John E. Murdoch, “Naissance et 
développement de l’atomisme au las moyen âge latin,” in La science de la nature: 
théories et pratiques (Montreal: Bellarmin, 1974), 11–32. 

139 See John E. Murdoch, “Beyond Aristotle: Indivisibles and Infinite Divisibility in the 
Later Middle Ages,” in Atomism in Late Medieval Philosophy and Theology, ed. 
Christophe Grellard and Aurélien Robert (Leiden; Boston: Brill, 2009), 15–38. 

140 Lüthy, Murdoch, and Newman, “Introduction,” 9. 
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assumption that magnitudes were derived from the point.141 Pythagoreanism, 
therefore, also played a role in the development of medieval atomism. It is in this 
sense that Robert uses the term “Pythagorean atomism” with regard to the 
medieval period. 

According to Robert, the influence of Pythagoreanism on medieval 
atomistic theories is “evident in the twelfth century, but several elements invite us 
to think that the same framework can be also applied to the thirteenth and 
fourteenth century.”142 William of Champeaux, Peter Abelard, Robert Grosseteste, 
Henry of Harclay, and John Wyclif were among those who accepted the 
Pythagorean conception of the point-atom in the period covered by Robert.143 In 
what follows, I will present the work of another medieval author who claimed that 
geometric objects were composed of points: Ramon Llull. The case of Llull is 
interesting because he could have been a Brunian source. Indeed, it is well known 
that Bruno was an expert in the Lullian Art and wrote several “Lullian” works.144 
Furthermore, Llull was an example of how Platonic and Pythagorean insights 
could be integrated into a single atomistic theory. 

1.3 The Geometria nova of Ramon Llull  

Ramon Llull (1232 – 1316) was born in Majorca, the son of a middle-class family 
originally from Barcelona. After having spent his youth on the island where he 
received his education and started a family, his life took a new turn at about the 

                                                
141 On the Pythagorean origin of this assumption, see Leonid Zhmud, Pythagoras and the 

Early Pythagoreans (Oxford: Oxford University Press, 2012); Gabriele Cornelli, In 
Search of Pythagoreanism: Pythagoreanism as an Historiographical Category. 
(Berlin: De Gruyter, 2013); Philip Sidney Horky, Plato and Pythagoreanism (New 
York: Oxford University Press, 2013). 

142 Robert, “Atomisme pythagoricien,” 187. 
143 Aurélien Robert, “Atomisme et géométrie à Oxford au XIVe siècle,” in Mathématiques 

et connaissances du réel avant Galilée, ed. Sabine Rommevaux (Paris: 
Omniscience, 2010), 15–85; Aurélien Robert, “Space, Imagination, and Numbers in 
John Wyclif’s Mathematical Theology,” in Space, Imagination and the Cosmos 
from Antiquity to the Early Modern Period, ed. Frederik A. Bakker, Delphine Bellis, 
and Carla Rita Palmerino (Cham: Springer, 2018), 107–31. 

144 Bruno, Opere lulliane. 
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age of 30, when he saw an apparition of Christ on the Cross. This inspired him to 
convert to Catholicism and become a missionary, in which capacity he travelled to 
Montpellier, Paris, Rome and Africa. In the midst of his wanderings, he 
developed the Art, which he conceived as an instrument to convert the infidels 
but also as an alternative to the Aristotelian logic. We do not know how well the 
Art served Llull’s missionary purposes—if, and to what extent, it helped him win 
the hearts and minds of Jews and Muslims. What is certain is that it soon 
attracted the attention of theologians, philosophers and learned men who were 
seeking an alternative to the prevailing Scholasticism, and who devoted 
themselves to the study and diffusion of the Lullian works. Nicholas of Cusa, 
Jacques Lèfevre d’Étaples, Charles de Bovelles and Bernard de Lavinheta are 
among the best-known Lullists.145 Thanks to their efforts, the Art continued to 
gain followers over the centuries, offering a model for early modern philosophical 
projects such as the mnemonics of Bruno and the combinatorics of Leibniz.146 

Llull wrote more than two hundred works in Latin, Arabic and Catalan, 
including a number of treatises which were not closely related to the Art. 
Speaking of these treatises, Antony Bonner writes that:  

We must keep in mind that when Llull wrote on philosophy, it was not 
as a philosopher, and when he wrote on science, it was not as a 
scientist. He was less interested in those subjects for themselves than 
as tools to further his main purpose, the conversion of the unbelievers 
by means of a method based on the general principles that govern the 
natural order of the universe.147 

Written in June 1299 during Llull’s second stay in Paris (August 1298 – July 
1299), the Liber de geometria nova et compendiosa (Book on the New and 
Concise Geometry) is a glaring example of Llull’s attitude towards science. Llull’s 

                                                
145 For an overview of the Lullists, see Hillgarth, Ramon Lull, 270ff. 
146 On the importance of Llull as a philosophical model, see Paolo Rossi, Logic and the 

Art of Memory: The Quest for a Universal Language, trans. Stephen Clucas 
(London: Continuum, 2006). 

147 Anthony Bonner, Doctor Illuminatus: A Ramón Llull Reader, (Princeton, N.J: 
Princeton University Press, 1993), 47. 
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purpose in this work was to propose a new conception of geometry in accordance 
with the principles of his Art. In the first book, he dealt with the operations that 
can be performed on geometric figures such as square, circle and triangle. In this 
context, he addressed the problem of squaring the circle by developing a method 
that, more than a century later, drew the attention of Nicholas of Cusa148 More 
importantly, in the second book of the Geometria nova, Llull claimed that 
geometric objects were composed of points, thus adopting an atomistic view 
similar to that attributed to the Pythagoreans by Tannery. In addition, both 
Charles Lohr and José Higuera Rubio agree that Llull accepted the theory that the 
four elements were composed of indivisible geometric parts, namely circles, 
triangles and squares.149 Since this theory was first proposed by Plato, it can be 
referred to as Platonic atomism.150  

1.3.1 Platonic atomism151  

In the Aristotelian theory of the elements, each element had two qualities, but 

                                                
148 Elena Pistolesi, “Quadrar el cercle després de Ramon Llull: el cas de Nicolau de Cusa,” 

in 2n Col·loqui Europeu d’Estudis Catalans. La recepció de la literatura catalana 
medieval a Europa, ed. Alexander Fidora and Eliseu Trenc (Péronnas: Tour Gile, 
2007), 17–32. 

149 See Charles Lohr, “Ramon Lull’s Theory of the Continuous and Discrete,” in Late 
Medieval and Early Modern Corpuscular Matter Theories, ed. C. H. Lüthy, J. E. 
Murdoch, and W. R. Newman (Leiden: Brill, 2001), 75–90; José Higuera Rubio, “El 
‘atomismo’ luliano y el problema del continuo: Una explicación lógico-geométrica 
de la constitución elemental de las sustancias,” Scintilla 10, no. 1 (2013): 19–36; See 
also José Higuera Rubio, Fisica y teologia (atomismo y movimiento en el Arte 
luliano) (Madrid: Circulo Rojo, 2014). 

150 Plato, Timaeus and Critias, trans. Robin Waterfield (Oxford: Oxford University Press, 
2008), 46: “The starting-point is, of course, universally accepted : that fire, earth, 
water, and air are material bodies. Now, this means that, like all bodies, they have 
depth, and anything with depth is necessarily surrounded by surfaces, and any 
rectilinear surface consists of triangles.” 

151 In this section, I will limit myself to a brief account of the Lullian atomistic theory of 
the elements. For a more extensive analysis of this theory, see the studies quoted in 
note 36.   
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only one was dominant. For instance, fire had both heat and dryness, but only 
heat was dominant in fire, while dryness was dominant in earth.152 By contrast, 
the Lullian theory of the elements was based on the distinction between “proper” 
(propriae) and “appropriated” (appropriatae) qualities. For instance, Llull 
distinguished between the heat proper to fire and the dryness appropriated by 
fire from the earth that burned.153 The fact that a quality was possessed by one 
element or another not only determined whether that quality was proper or 
appropriated, but it also affected its structure. For proper qualities were 
continuous, while appropriated qualities were discrete, i.e. they were associated 
with a quantity which was divisible into a defined number of parts.154 As we shall 
see, this provided the basis for Lullian atomism insofar the parts of which 
appropriated qualities were composed had, in Llull’s view, a geometric shape. It 
should be noted that Urso of Salerno (d. 1225) held that the mixture of elemental 
qualities occurred by means of minimal parts (minimae partes), a view similar to 
the notion of discrete appropriated qualities proposed by Llull.155 This seems to 

                                                
152 Aristotle, “On Generation and Corruption,” in The Complete Works of Aristotle. The 

Revised Oxford Translation. One Volume Digital Edition, ed. J. Barnes (Princeton, 
NJ: Princeton University Press, 1995), 1184 (331a1-5): “Nevertheless, since they [i.e. 
the elements] are four, each of them is characterized simply by a single quality: 
Earth by dry rather than by cold, Water by cold rather than by moist, Air by moist 
rather than by hot, and Fire [5] by hot rather than by dry.” 

153  Ramon Llull, Die neue Logik. Logica nova, ed. Charles H. Lohr and Vittorio Hösle 
(Hamburg: Felix Meiner, 1985), 10: “Accidens aliud proprium, aliud appropriatum. 
Proprium, sicut caliditas ignis. Appropriatum, sicut sua siccitas, quam terra sibi 
appropriat.”  

154 Die neue Logik, 103: “Qualitas propria est continua, sicut caliditas ignis. Et talis, 
qualis instantanea est ratione continuae quantitatis. Sed qualitas appropriata 
diffusa est successive per discretas quantitates, sicut caliditas aeris, aquae et terrae, 
piperis et cinamoni, et ceterorum elementorum.”  

155 See Danielle Jacquart, “Minima in Twelfth-Century Medical Texts from Salerno,” in 
Late Medieval and Early Modern Corpuscular Matter Theories, ed. Christoph H. 
Lüthy, John E. Murdoch, and William R. Newman (Leiden: Brill, 2001), 75–90. See 
also Maaike van der Lugt, “Chronobiologie, combinatoire et conjonctions 
élémentaires dans le De commixtionibus elementorum d’Urso de Salerne (fin XIIe 
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suggest a connection between Urso and Llull, but it is beyond the purpose of this 
study to explore this connection.  

Continuing with the description of the Lullian theory of the elements, a 
compound object could possess more than one appropriated quality, thus it could 
contain parts of different qualities. The sum of these parts was the degree in 
which each quality was present in the object. For example, in the Geometria 
nova, Llull stated that “in a peppercorn, fire is in the fourth degree of heat, earth 
is in the third degree of dryness, air in the second degree of moisture and water in 
the first degree of cold.”156 In addition, he drew a diagram to describe the 
configuration of the elemental qualities in all plants in the fourth degree of heat 
(Figure 1). In this diagram, a different letter was used to refer to each elemental 
quality (a: heat, b: moisture, c: dryness, d. cold):  

 

Fig. 1: The fourth degree of heat 

 

                                                                                                                                            
siècle),” La misura – Measuring, Micrologus. Natura, scienze e società medievali, 
no. 19 (2011): 277–323. 

156 Ramon Llull, El libro de la “Nova geometria,” ed. José Maria Millás Vallicrosa 
(Barcelona: R. Torra, 1953), 69: “In grano piperis ignis est in quarto gradu caloris, 
terra in tercio gradu siccitatis, aer in secundo grado humiditatis, aqua in primo 
gradu frigiditatis.” For the translation of Llull’s Geometria nova, I rely on Yanis 
Dambergs’ translation accessible online at http://lullianarts.narpan.net.  
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It was no coincidence that, in the above diagram, the single parts of the elemental 
qualities were represented by geometric figures. In the Arbor scientiae (Tree of 
Science, 1295-6), Llull stated that “because there are neither more nor less than 
four elements, they are aptly disposed to be configured in elemented 
(elementatum) things in square, circular and triangular figures, and these three 
figures must necessarily be situated in all elemented things.157 The term 
elementatum was commonly used in twelfth-century discussion on the 
Timaeus.158 For instance, it was used by William of Conches to distinguish 
between the element in its pure form (elementum) and the element as found in a 
mixture (elementatum).159 This provides further evidence of the influence that 
Platonic commentators such as William of Conches had on the Lullian theory of 
the elements. In this context, the quadrature of the circle and the other 
operations presented in the first book of the Geometria nova took on a new 
significance. They proved that circle, triangle and square were equivalent figures 
that could be used interchangeably when analyzing compound objects. This, in 
turn, resulted in a considerable extension of the range of applications of 
geometry, as diagrams such as that representing the fourth degree of heat had 
multiple uses. Llull argued that by means of them 

geometers can know the composition of the angles, physiognomists 
can understand human forms, astronomers can know the figures of 
stars and the situation of the influences they transmit to things below, 

                                                
157 Ramon Llull, Arbor scientiae. Volumen I. Libri I-VII, ed. P. Villalba, vol. 24, Raimundi 

Lulli opera latina (Turnhout: Brepols, 2000), 34–35. “Sicut in pipere, in quo sunt 
omnes istae complexiones, et ei sufficit, quod sit subiectum differentiarum et 
concordantiarum et contrarietatum, quas praediximus, et adhuc, quia elementa 
sunt quattuor et non minus, neque plus, sunt disposita, quod sint figurata in 
elementatis in figura quadrangulari, circulari et triangulari. Translation by Yanis 
Dambergs accessible online at http://lullianarts.narpan.net.  

158 Theodore Silverstein, “Elementatum: Its Appearance Among the Twelfth-Century 
Cosmogonists,” Mediaeval Studies 16 (January 1954): 156–62. 

159 Irene Caiazzo, “The Four Elements in the Work of William of Conches,” in Guillaume 
de Conches: Philosophie et science au XIIe siècle (Florence: SISMEL Edizioni del 
Galluzzo, 2011), 3. 



 64  

and natural scientists can know the situations that the simple elements 
have in compounds.160 

In addition to defending his atomistic theory of the elements, in the Geometria 
nova Llull proposed an atomistic conception of mathematical objects. As a matter 
of fact, this conception poses a number of interpretative problems as it is based 
on a notion—that of corporeal point—that Llull seems to describe rather than 
explain. At any rate, there is a close resemblance between this conception and 
that in which Bruno’s atomistic geometry was grounded. Thus, in the next 
section, we take a closer look at Llull’s atomistic conception of mathematical 
objects to determine if and to what extent this conception may have inspired 
Bruno to develop his atomistic geometry.   

1.3.2 Pythagorean atomism  

In the sixth book of the Physics, Aristotle ruled out that a line could be composed 
of points, because points could not be brought into contact with one another to 
form a continuum.161 Likewise, Boethius made it clear that the points were the 
ends and not a part of the line (see § 1.2). By contrast, Llull claimed not only that 
“a point is an entity that is part of a line,”162 but also that “the matter of the line is 

                                                
160 Geometria nova, 65: “Potuerunt geometri compositionem angulorum predictorum et 

fisiomantici figuras hominum cognoscere et astronomi figuras stellarum quas 
faciunt in celo et assituacionem  influenciarum quas tramitunt ad hec inferiora, et 
naturales poterunt cognoscere assituaciones quas simplicial elementa habent in 
compositis.” 

161 Aristotle, “Physics,” in The Complete Works of Aristotle. The Revised Oxford 
Translation. One Volume Digital Edition, ed. J. Barnes (Princeton, NJ: Princeton 
University Press, 1995), 861–62: “Nothing that is continuous can be composed of 
indivisibles: e.g. a line cannot be composed of points, the line being continuous and 
the point indivisible. For the extremities of two points can neither be one (since of 
an indivisible there can be no extremity as distinct from some other part) nor 
together (since that which has no parts can have no extremity, the extremity and the 
thing of which it is the extremity being distinct).” 

162 Geometria nova, 85: “Punctus est ens qui est pars linae” 
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made up of points.”163 This seems to suggest that Llull had a materialistic 
conception of the point, as confirmed by the fact that he postulated the existence 
of corporeal points.164 Since corporeal points were extended, their existence 
enabled Llull to rebut the argument that surfaces could not be composed of points 
because surfaces were extended, while points were not.165 This argument tells us 
that, in Llull’s opinion, points were the building blocks of surfaces as well as lines. 
In fact, Llull seems to have thought that all mathematical objects were composed 
of points, as he claimed that surfaces consisted of wide points, lines of long 
points, circles of circular points, angles of obtuse and acute points, and so forth. 
Thus, for Llull, there were different species of points, as expressed in the 
following passage:  

The point is a genus that includes many species, like wide points and 
acute points, which are distinct due to distinct species of angles 
distinguished by the distinction between the triangle and the square.166 

What did Llull mean by saying that points were corporeal and could have 
different shape? One possibility is that, in this context, Llull referred to sensible 
rather than intelligible mathematical objects, as he claimed that sensible lines 
were composed of points.167 It should be noted that while an intelligible line (i.e. a 
breadthless length, as Euclid defined it in the Elements) is only extended in one 
dimension (length), a sensible line (e.g. a line drawn on a piece of paper) has also 
a certain breadth due to the instrument with which it was drawn. By the same 
token, when dividing a sensible line, the resulting parts will not be extensionless 
                                                
163 Geometria nova, 87: “Materia linee est de punctis” 
164 Geometria nova, 86: “Dictum est quod punctus qui est in centro est communis, unde 

sequitur quod omnis punctus communis sit corpus aut de natura corporis.” 
165 Llull’s counter-argument was found in the third part of the second book of the 

Geometria nova which Millás Vallicrosa omits in his edition without providing an 
explanation for his choice. However, this part of the text can be read in Damberg’s 
English translation. 

166 Geometria nova, 87: “Punctus sit genus quails habet sub se species angulorum 
distinctorum per distinctionem quadranguli et trianguli, idcirco apparet quod 
species sunt essencia realia” 

167 Geometria nova, 86: “Omnis linea sensibilis est composita.” 
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points, but they will have a certain extension and a certain shape. The shape of 
the points will depend on the object to which they belong: straight lines will be 
composed of ‘straight’ points, curved lines of ‘curved’ points, triangles of 
‘triangular’ points, and so on. If Llull had this in mind when he spoke of corporeal 
points, the term “corporeal” should be taken as synonymous with “sensible.” 
However, one may argue that, thus conceived, corporeal points were not points, 
but rather they were small portions of mathematical objects having different 
shapes. Moreover, they were not even corporeal as they were not three-
dimensional, unless one considers the materiality of the support on which 
mathematical objects were made sensible (e.g. the piece of paper) as part of the 
objects themselves.  

According to Boethius, the point was that which had no parts and for this 
reason he called it atom.168 On the contrary, Llull believed that the points in 
common between lines, such as those in which two lines intersected to form an 
angle, were divisible and thus had parts.169 Arguably, Llull meant that common 
points comprised part of the lines which passed through them. Moreover, since 
all the points of a line were potentially common points, they could all be divided 
into parts. Hence, we can conclude that those geometric entities which Llull 
called corporeal points were not points stricto sensu. Llull himself seemed to 
draw a distinction between corporeal and mathematical points, the latter being 
the only points, in his opinion, to be truly simple, i.e. without parts.170 
Furthermore, mathematical points were indivisible, incorporeal and 
unperceivable, that is to say, they were the exact opposite of corporeal points.171  

What was the relationship between mathematical and corporeal points in 
Llull’s thought? Speaking of mathematical points, Llull wrote that “the abstract 

                                                
168 Institutio arithmetica, II, 4, 6, ed. J.-Y. Guillaumin, 90. 
169 Geometria nova, 87: “Dictum est quod omnis punctus qui sit substanciam anguli 

communis est et divisibilis, unde concluditur quod alilcuis punctus sit corpus et 
divisibilis.” 

170 Geometria nova, 86: “Solus punctus mathematicus est simplex.” 
171 Geometria nova: 86-7: “Dictum est quod punctus qui non habet partem divisibilis esse 

non potest, unde sequitur quod talis punctus non potest esse corpus. […] Dictum est 
quod nullus punctus indivisibilis sentitur nec habet partem, unde sequitur quod 
prima puncta indivisibilia, videri non possent, audiri nec tangi.” 



 67  

essences that are mathematical are simple, like one essence of fire, one essence of 
heat, or one potential form, and so with other things like these.”172 As is well 
known, Aristotle was the first to express the idea that mathematical entities were 
intelligible abstractions derived from sensible beings.173 In doing so, Aristotle’s 
purpose was to oppose the Platonic view that mathematical objects were 
intelligible entities in their own right, which stood in between sensible beings and 
pure ideas.174 By claiming that mathematical points were “abstract” essences, 
Llull appeared to side with Aristotle and suggest that mathematical points were 
intelligible concepts derived from corporeal points. This is confirmed by the fact 
that Llull regarded the different species of corporeal points, and not their 
intelligible genus (i.e. the mathematical point), as real essences.175 On the other 
hand, it may have been that in the Geometria nova corporeal points were named 
after their mathematical counterpart, which would explain why Llull used, albeit 
inappropriately, the term “points” to refer to the minimal parts of sensible 
mathematical objects.  

More generally, the reason why the Geometria nova seems to frustrate 
attempts to understand the notion of corporeal points may be that it does not 
answer the question of the relationship between mathematical and physical 
objects. Llull’s position on this question is not clear. Did he think that 
mathematics and physics were two separate realms? Or did he hold that 

                                                
172 Geometria nova, 87: “Essencia abstacta que sunt mathematica sunt simplicia sicut 

una essencia ignis, una essencia caloris aut una forma que est in potencia et sic de 
aliis rebus similibus istis.” 

173 Henry Mendell, “Aristotle and Mathematics,” in The Stanford Encyclopedia of 
Philosophy, ed. Edward N. Zalta, Spring 2017 (Metaphysics Research Lab, Stanford 
University, 2017), para. 7.1, 
https://plato.stanford.edu/archives/spr2017/entries/aristotle-mathematics/. 

174 Plato, The Republic, ed. G. R. F. Ferrari, trans. Tom Griffith (Cambridge: Cambridge 
University Press, 2000), 217 (510d-e): “And you will also be aware that they [i.e. the 
mathematicians] summon up the assistance of visible forms, and refer their 
discussion to them, although they’re not thinking about these, but about the things 
these are images of. So their reasoning has in view the square itself, and the 
diagonal itself, not the diagonal they have drawn.” 

175 Geometria nova, 87: “Idcirco apparet quod species [puncti] sunt essencia realia.” 
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mathematical objects were found in nature? Lacking this information, we can 
limit ourselves to conjectures based on a close reading of the Geometria nova. As 
far as I could see, the other main mathematical text written by Llull (the Liber de 
quadratura) does not help answer these questions, nor does the literature offer a 
full-blown discussion of Llull’s mathematical thought.176 It is also possible that 
Llull himself did not find it necessary to clarify the philosophical underpinnings 
of his mathematics, given that he regarded mathematics as a derivation from his 
Art.   

 To conclude, it cannot be said that Llull elaborated an atomistic theory of 
mathematical objects. Indeed, it should be noted that the Geometria nova did not 
provide a full account of how corporeal points were arranged to form 
mathematical objects, nor, to the best of my knowledge, did Llull address this 
issue in other works. As noted at the beginning of § 1.3, Llull had little interest in 
mathematics, which raises the question of why he wrote a work like the 
Geometria nova. Carla Compagno writes that, in the years prior to the Geometria 
nova, Llull viewed mathematics as only a science of sensible objects. However, 
this conception changed over the years, as Llull came to appreciate the soundness 
of mathematical demonstrations and the universality of mathematical 
language.177 Unfortunately, the same cannot be said of the demonstrations and 
language of the Geometria nova, which has been criticized for its flawed 
arguments and its misuse of mathematical terminology.178  

It cannot be denied, however, that in the Geometria nova Llull expressed 
the idea that mathematical objects were composed of points. Bruno could have 
borrowed this idea from Llull since he had an extensive knowledge of his works, 
although it must be said that the Geometria nova was never mentioned by Bruno. 
In addition, Bruno could have become familiar with Llull’s mathematics through 

                                                
176 The only study on this topic is Charles Lohr, “Mathematics and the Divine: Ramon 

Lull,” in Mathematics and the Divine: A Historical Study, ed. T. Koetzier and L. 
Bergmans (Amsterdam: Elsevier, 2005), 215–28. However, as the title suggests, this 
study focuses on the relationship between theology and mathematics.  

177 Carla Compagno, “Il Liber de geometia noua et compendiosa di Raimondo Lullo,” 
Ambitos 31 (2014): 36. 

178 See José Maria Millás Vallicrosa, “Introduction,” in El libro de la “Nova geometria,” 
by Ramon Llull, ed. José Maria Millás Vallicrosa (Barcelona: R. Torra, 1953), 13–52. 
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the work of a sixteenth century Lullist, Bernard de Lavinheta.179 The work in 
question was Lavinheta’s Explanatio compendiosaque applicatio artis Raymundi 
Lulli (Concise Explanation and Application of the Art of Ramon Llull, 1523).180 
Bruno must have known this work, as proved by the fact that he referred to it in 
his writings.181 In the Explanatio, Lavinheta stated that “the point was the 
minimum part of the line, and it was indivisible like the atom. (…) The line is 
length composed of points pro materia, and of a certain flow pro forma”182 
Hence, like Bruno and his master Llull, Lavinheta thought that mathematical 
objects were composed of indivisible points. Furthermore, both Bruno and 
Lavinheta agreed that the line was generated by the flow of a point.183 The 
mediation of Lavinheta makes it virtually certain that Bruno had at least a basic 
knowledge of Llull’s mathematics. However, it was also possible that Bruno had a 
first-hand knowledge of Llull’s mathematical works. For this reason, the rest of 
this chapter is devoted to examining whether there is evidence that Bruno could 
have read the Geometria nova.  

                                                
179 I would like to thank Marco Matteoli for this suggestion. For an overview of 

Lavinheta’s life and work see Michela Pereira, “Bernardo Lavinheta e la diffusione 
del Lullismo a Parigi nei primi anni del ‘500,” Interpres. Rivista di studi 
quattrocentesci 5 (1984): 242–65. 

180 Bernard de Lavinheta, Explanatio compendiosaque applicatio artis Raymundi Lulli 
(Lyon, 1523). 

181 A list of all the references to Lavinheta’s Explanatio in Bruno’s works can be retrieved 
using the search function of the online database 
http://bibliotecaideale.filosofia.sns.it/index.php.   

182 Explanatio, 112f. 
183 See Giordano Bruno, “De triplici minimo et mensura,” in Opera latine conscripta, ed. 

F. Tocco and H. Vitelli, vol. I, pt. 3 (Florence: Le Monnier, 1889), 148: “Ergo linea 
nihil est nisi punctus motus, superficies nisi linea mota, corpus nisi superficies 
mota, et consequenter punctus  mobilis est substantia omnium, et punctus manens 
est totum.” 
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1.4 The Geometria nova as a Brunian source  

1.4.1 The manuscript tradition184  

There are eight extant manuscripts containing Llull’s Geometria nova:  

Ma1: Palma de Majorca, Biblioteca Pública, ms. 1036, ff. 1r-56v. 
Mu: Munich, Bayerische Staatsbibliothek, Clm. 10544, ff. 214r-263v. 
V: Vatican City, Biblioteca Apostolica Vaticana, Ottob. Lat. 1278, ff. 109r-
129r. 
S: Seville, Biblioteca Capitular y Colombina, 7-6-41, ff. 312ra-342va. 
Ma2: Palma de Majorca, Biblioteca Pública, ms. 1068, ff. 1r-51v. 
Mi: Milan, Biblioteca Ambrosiana, N 260 Sup., ff. 1r-54v. 
Ma3: Palma de Majorca, Societat Arqueològica Lul·liana, Aguiló 84, ff. 49r-

112v. 
Mad: Madrid, Biblioteca Nacional de España, ms. 17714, ff. II, 1-58v. 

Of these, Bruno could not have access to Ma3 and Mad since these manuscripts 
were from the eighteenth century. Ma1, S and Ma2 must also be excluded because 
they appeared to have a Spanish origin and provenance, while Bruno never 
visited Spain. It remains to determine the origin of Mu, V and Mi, since their 
provenance is compatible with Bruno’s wanderings over Europe. 

In his description of Mu, Aloisius Madre states that the manuscript was 
composed in 1449-50 and that, before passing to the Bayerische Staatsbibliothek 
of Munich, it was possessed by the Palatine Library of Mannheim.185 This latter 
information is relevant because Mannheim is close to Frankfurt, where Bruno 
published De minimo (1591) and spent his last year of freedom before returning 
to Italy. Thus, Mu would be a suitable candidate as a Brunian source, if it were 
not for the fact all the Lullian manuscripts of the library of Mannheim were 

                                                
184 The research presented in both this and the next section would not have been possible 

without the support of the Llull Database. See Anthony Bonner (dir.), Ramon Llull 
Database, Centre de Documentació Ramon Llull (University of Barcelona), 
http://orbita.bib.ub.edu/llull/). 

185 See Ramon Llull, In monte pessulano anno mcccv composita, ed. Aloisius Madre, vol. 
9, Raimundi Lulli opera latina (Turhnolt: Brepols, 1981), xvii–xviii. 
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originally from Barcelona. The German scholar Ivo Salzinger (1669 – 1728) 
bought these manuscripts at the beginning of the eighteenth century with the 
purpose of using them to prepare his own edition of Llull’s works. The 
manuscripts were first stored in Düsseldorf, then in Mannheim and finally in 
Munich.186  

V also belonged to a Spaniard, Joan Marti Figuerola, as indicated on the 
title page of the manuscript.187 All we know about Figuerola is that he was a priest 
in Valencia, had an interest in Lullism, and was still alive by 1530.188 In the 
seventeenth century, V passed to the nobleman Gian Angelo d’Altaemps, and, 
along with the rest of d’Altaemps’ personal library, entered the Vatican Library in 
1748.189  There is no reason to believe that Bruno could have read V. 

Mi contains a copy of both the Geometria nova (ff. 1-54v) and the Liber 
principiorum theologiae (ff. 61-130). According to the annotations on ff. 55 and 
131, both these works were copied by Joan Pla for Gaspar Sellés in 1566.190 Joan 
Pla was also the copyist of another manuscript owned by Gaspar Selles which is 
now at the Biblioteca Ambrosiana of Milan (N 185 Sup). Both these manuscripts 
were listed in an inventory (Ambrosiana, P 217 Sup, ff. 26-26v.), which appeared 
to refer to a well-established Lullian collection since some of the manuscripts 
were indicated with a shelf-mark.191 It is difficult to reconstruct the history of this 
Lullian collection, or to determine whether the whole of it (and not just the two 
above manuscripts) belonged to Selles. Surely, it was not until June 1603 that the 
first manuscripts were acquired by the Ambrosiana, while the library itself was 
inaugurated only in 1609. Bruno died on 17 February 1600.  This, along with the 
Spanish origin of Mi, excludes that this manuscript could have been a Brunian 
source. As we have seen, this conclusion applies to all of the eight extent 
manuscripts containing the Geometria nova  Let us now turn to examining the 
catalogues and inventories that listed Llull’s work.  

                                                
186 See Badia, Santanach, and Soler, Llull Vernacular Writer, 208. 
187 See http://orbita.bib.ub.edu/ramon/ms.asp?262.  
188 See http://orbita.bib.ub.edu/ramon/gent.asp?id=540.  
189 See http://orbita.bib.ub.edu/ramon/gent.asp?id=1300.  
190 See http://orbita.bib.ub.edu/ramon/ms.asp?440.  
191 See http://orbita.bib.ub.edu/ramon/cat1.asp?AMB2. 
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1.4.2. The catologue of the Electorium of Thomas Le Myésier 

The first catalogue that listed the Geometria nova was that included in Thomas 
Le Myésier’s  Electorium of 1325.192 Both the catalogue and the Electorium are 
important to the history of Lullism. The catalogue is one of the oldest surviving 
catalogues of Lullian works, as it was drawn up while Llull was still alive (1311-
4?). Furthermore, it provided the basis for later catalogues, such as those by 
Hauteville and Vernon to which we shall return later. The Electorium was a wide 
collection of Lullian texts compiled by Llull’s disciple Thomas Le Myésier (d. 
1336). As shown by J. N. Hillgarth in his classic book Ramon Lull and Lullism in 
Fourtenth-Century France (1971), Le Myésier had a key role in the diffusion of 
the Art, as his works influenced generations of Llull scholars across Europe.193  

Besides providing a list of Lullian works, the catalogue of the Electorium 
served as the personal inventory of Le Myésier, who marked with a dot the works 
of the catalogue of which he owned a copy. The Geometria nova was among the 
works owned by Le Myésier. Unfortunately, Le Myésier’s Lullian collection has 
been dispersed, save for six manuscripts. Of these, five manuscripts were 
acquired by Henry of Lewis (c. 1350) and, after his death, entered the library of 
the Sorbonne. They are now kept at the Bibliothèque nationale de France.194 The 
sixth manuscript, instead, is kept at Arras.195 None of these manuscripts seems to 
be helpful to reconstruct Le Myésier’s lost manuscript of the Geometria nova. 
Nevertheless, other useful information can be gained from the catalogue of the 
Electorium.  

 Llull scholars agree that Le Myésier drew his catalogue from the Lullian 
collection of the Charterhouse of Vauvert in Paris. Therefore, we can assume that 
the Geometria nova was also among the Lullian manuscripts of the Charterhouse 
of Vauvert. The history of the Charterhouse—which occupied a portion of what is 
now called Jardin de Luxembourg—was deeply intertwined with that of Llull and 

                                                
192 Paris, Bibliothèque Nationale, ms. lat. 15450, 89v-90. The catalogue of the Electorium 

is accessible online at http://orbita.bib.ub.edu/ramon/cat1.asp?EL. See also de Alós 
y de Dou, Los catalogos lulianos, 14–17; Hillgarth, Ramon Lull, 335–47. 

193 Hillgarth, Ramon Lull. For Le Myèsier’s legacy, see chap. 7.  
194 Paris, Bibliothèque Nationale, ms. lat. 16115, 16116, 16117, 16118, 16615.  
195 Arras, Bibliothèque Municipale, ms. 78 (Quicherat 100) 
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Lullism.196 Since Llull did not belong to any institution (e.g. the church or the 
university), he had to develop a system of his own for the production and 
dissemination of his works.197 As part of this system, the Charterhouse provided 
one of the three collections of Lullian works. The other two collections were 
located in Genoa and Palma de Majorca. This was clearly stated in the Vita 
coetanea (1311), a biography of Llull written by an anonymous monk of the 
Charterhouse:  

[Llull’s] books are dispersed through the world, but he made three 
special collections; that is, in the monastery of Charthusians at Paris, 
and in the house of a certain noble of the city of Genoa [i.e. Perceval 
Spinola], and in the house of a certain noble of the city of Majorca [i.e. 
Pere de Sentmenat, Llull’s son-in-law].198 

The first contacts of Llull with the Charterhouse dated back to Llull’s second stay 
in Paris (August 1298 – July 1299).199 During the same visit, in June 1299, Llull 
also completed the Liber de quadratura and the Geometria nova. Besides being 
composed at the same time and place, these two mathematical writings had two 
elements in common. First, the Liber de quadratura was probably referred to in 
the Geometria nova (although with a different title).200 Second, the Liber de 
quadratura and the Geometria nova followed each other in the catalogue of the 
Electorium.201 This leads Hillgarth to conclude that the two writings could have 
been included in the same manuscript which was part of the Lullian collection of 

                                                
196 For the history of the Chartehouse and its library, see Franklin, Les anciennes 

bibliothèques, 1:323–28; Léopold Delisle, Le cabinet des manuscripts de la 
Bibliothèque Nationale, vol. 2 (Paris: Imprimerie impériale, 1874), 253; Paul Biver 
and Marie-Louise Biver, Abbayes, Monastères et Couvents de Paris (Paris: Editions 
d’histoire et d’art, 1970), 103–15. 

197 On this point, see Badia, Santanach, and Soler, Llull Vernacular Writer, chap. 3. 
198 B. de Gaiffer, ed., Vita Beati Raymundi Lulli, Analecta Bollandiana, xlviii, 1930, 175. 

Translation by Hillgarth (Ramon Lull, 142). 
199 Hillgarth, Ramon Lull, 142. 
200 See Compagno, “La Geometria noua di Lullo,” 39. 
201 No. 140-141 of the online version of the catalogue.  
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Le Myésier.202 In addition, since the catalogue of the Electorium was based on 
that of the Charterhouse, we can assume that both the Geometria nova and the 
Liber de quadratura were among the manuscripts possessed by the 
Charterhouse. This begs the question: was the manuscript of the Geometria nova 
still at the Charterhouse as late as the sixteenth century? If so, Bruno could have 
borrowed it during one his two stays in Paris (1581-3, 1585-6), which was also the 
time when he wrote his first mathematical writings on Fabrizio Mordente’s 
compass (see Chapter 3).  

1.4.3. The Lullian collection of the Charterhouse of Vauvert  

There are two pieces of evidence that Llull’s works were still found at the 
Charterhouse of Vauvert as late as 1516. First, we have the testimony of several 
professors at the Sorbonne who claimed that, in that year, “many books of Llull 
were to be found in the libraries of the Sorbonne and of the Paris 
Charterhouse.”203 This testimony was collected by Juan de Vera, a Spanish 
physician who was sent to Paris by Alfonso of Aragon, the archbishop of 
Saragossa, to inquire about the orthodoxy of the Lullian doctrine. At that time, 
this topic was hotly debated in Spain, while there was a revival of Lullism in 
France and especially in Paris.204 The strongest advocate of Llull in Paris was 
Jacques Lèfevre d’Étaples, who made an effort to promote the teaching of the 
Lullian doctrine and published several of Llull’s works.   

Lèfevre d’Étaples was also asked by Juan de Vera to defend Llull’s 
orthodoxy.  As a response, Lèfevre dedicated his 1516 edition of Llull’s Liber 
proverbiorum and Arbor philosophiae amoris to Alfonso of Aragon. Lèfevre’s 
dedication provided further proof that that the Charterhouse still had a collection 
of Lullian manuscripts in 1516: 

                                                
202 Hillgarth, Ramon Lull, 347. 
203 For the source of this testimony, Jaume Custurer, Disertaciones historicas del culto 

inmemorial del B. Raymundo Lulio (Mallorca, 1700), 454. See also Rice, “Lèfevre 
and the Mystics,” 93. 

204 See Joseph M. Victor, “The Revival of Lullism at Paris, 1499-1516,” Renaissance 
Quarterly 28, no. 4 (December 1975): 504–34. 



 75  

Moreover, our libraries, especially those of the Sorbonne, that noblest 
home of famous theologians and public theological debate, and of the 
abbey of Saint-Victor have many of his works. The Carthusians, located 
just outside Paris, have an unusually fine collection, and these holy 
men read Llull’s works constantly, gathering from them fruits of piety, 
lend them generously, and allow them to be printed.205 

Thus, there can be no doubt that the Charterhouse was still active as a center for 
the diffusion of Lullism in the first decades of the sixteenth century. Furthermore, 
Lèfevre informs us that the Lullian collection of the Charthouse was readily 
accessible, as manuscripts could easily be borrowed and used for publication. 
This was a characteristic of the Charthouse, one that distinguished it from the 
Sorbonne and its strict lending policy. Indeed, to reduce the risk of thefts, books 
were chained in the Greater Library of the Sorbonne.206 For that reason, it was 
likely that Lèfevre himself borrowed the manuscripts for his edition of Llull’s 
works from the Charterhouse rather than from the Sorbonne.207   

That being said, no catalogue of the library of the Charterhouse has come 
down to us from the sixteenth century. Hence, we know neither the amount nor 
the titles of the Lullian manuscripts which were kept at the Charterhouse at that 
time. Without this information, we cannot say whether the copy of the Geometria 
nova listed in the catalogue of the Electorium was still at the Charterhouse as late 
as the sixteenth century. By the same token, we cannot draw any conclusions 
about the possibility that Bruno could have read the Geometria nova while in 
Paris. Surely, the evidence does not exclude this possibility, for it is certain that 
the activities of the Charterhouse extended well into the beginning of the 
sixteenth century. As we shall see, the Lullian collection of the Charterhouse was 
completely dispersed by the end of the eighteenth century. However, it is difficult 
to believe that this occurred in just a few decades, and thus that the Lullian 

                                                
205 Ramon Llull, Proverbia Raemundi Philosophia amoris ejusdem doci Badii qui 

impressit tetrastichon..., ed. Jacques Lefèvre d’Étaples (Paris: 1516), a ii. 
Translation by Rice (Lèfevre and the Mystics, 94) 

206 See Hillgarth, Ramon Lull, 272. 
207 See Dennis D. Martin, Fifteenth Century Carthusian Reform: The World of Nicholas 

Kempf (Leiden: Brill, 1992), 233. 
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collection of the Charterhouse had already been dispersed when Bruno reached 
Paris in the 1580s.  

The outbreak of the French Revolution coincided with the end of the 
Charterhouse, which was closed in 1790 and demolished from 1796 to 1800. At 
the same time, the need to reallocate the resources of the Charterhouse, including 
its collection of books and manuscripts, produced a wealth of documents, some of 
which were directly concerned with the library. In Les anciennes bibliothèques de 
Paris (1867), Alfred Franklin gives a detailed account of the last days of the 
Charterhouse.208 It is well-known that, as a result of the so-called 
“dechristianization” of France during the French revolution, religious orders were 
suppressed and their goods confiscated. This also affected the Charterhouse of 
Vauvert and its library. According to Franklin, the prior of the Charterhouse, 
Félix-Prosper de Nonant, tried to save the library from the confiscation by 
claiming that it consisted for the most part of books bought by himself. Thus, it 
was the prior and not the Charterhouse that had to be considered the owner of 
the library. Apparently, the officer in charge of the requisition took the prior at 
his word, and let the Carthusians keep their library. But this did not last long. 
Eventually, the library was seized and its books, like those of all the other 
religious libraries in Paris, ended up enriching the collections of what would soon 
be called Bibliothèque nationale. 

A document dated September 30, 1791, states that the library of the 
Charterhouse owned 10,976 printed books, but no manuscript. 209 These figures 
are confirmed by another inventory that I have found among the documents 
belonged to the prior of the Charterhouse.210 Hence, we can conclude that the 
manuscript collection of the Charterhouse was completely dispersed by the end of 
the eighteenth century. This is rather surprising and demands further 
investigation given the long-standing importance of the Charterhouse both as a 
religious institution and as a library. Hundreds of documents concerning the 
                                                
208 See Franklin, Les anciennes bibliothèques, 1:326–28. 
209 Recensement déta document aillé par formats des livres des 88 Bibliothéques des 

Maisons d’hommes ecclesiastiques et relligieuses du département de Paris fait 
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210 Etat des Bibliothèques particuliéres des Religieux, Archives Nationales de France, 
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Charterhouse can be consulted at the Archives Nationales de France.211 
Unfortunately, among those documents, I could not find any catalogue or 
inventory of the library of the Charterhouse other than those mentioned. 
However, the hypothesis that the manuscript collection of the Charterhouse was 
gradually dispersed over the centuries is corroborated by two other elements.  

First, of the only two extant manuscripts of the Lullian collection of the 
Chartehouse, one manuscript is kept at the Bibliothèque nationale de France (ms. 
lat. 3348 A). The manuscript contains a Latin translation of the Llibre de 
contemplació en Déu (1273-4?) which was donated by Llull himself to the 
Charterhouse in 1298. We can be sure that the manuscript was still at the 
Charterhouse in 1428, when Cusanus copied it.212 However, it was already 
missing by the year 1505, when Lèfevre d’Étaples dedicated his edition of the 
Liber contemplationis to Gabriel, a Carthusian at Vauvert, to replace the original 
manuscript which had been lost.213 The second extant manuscript, which is 
possessed by the Staatsbibliothek of Berlin (ms. Phill. 1911), was also donated by 
Llull to the Charterhouse. However, like the first manuscript, it left the 
Charterhouse in the sixteenth century when it was acquired by the French poet 
Philippe Desportes (1546 – 1606). 

In addition, a French catalogue from the seventeenth century seems to 
suggest that the Lullian collection of the Charterhouse was dispersed at that time. 
The catalogue was compiled by Jean-Marie de Vernon and included in his 
L’histoire véritable du bienheureux Raymond Lulle (1668).214 Vernon’s catalogue 
was structured in two parts. The first part contained a list of Lullian works 
categorized according to their subject. The second part contained the catalogues 
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of the Lullian collections of the Sorbonne and the abbey of Saint-Victor. It is 
worth noting that neither of these two catalogues listed the Geometria nova, and 
that both the Sorbonne and Saint-Victor were reported by Léfevre d’Étaples as 
possessing two of the three Lullian collections in Paris. (The third collection was 
that of the Charterhouse). The fact that Vernon did not provide the Lullian 
catalogue of the Charterhouse can be taken as proof that this collection had been 
lost when Vernon compiled his catalogue. 

On the other hand, it is true that Vernon’s catalogue was based on another 
catalogue, that of Nicolas de Hauteville. Hauteville’s catalogue was only two years 
older that Vernon’s (1666).215 More importantly, in the title of his catalogue, 
Hauteville claimed that he had drawn from several Lullian collections across 
Europe, including that of the Charterhouse. Unfortunately, Hauteville did not 
specify the provenance of any text in his catalogue, which includes the Geometria 
nova. Hence, Hauteville’s catalogue does not enable us to determine whether the 
Charterhouse still possessed a Lullian collection as late as 1666. It is also possible 
that Hauteville’s source of information about the Charterhouse was the catalogue 
of the Electorium. In that case, Hauteville could still mention the Lullian 
collection of the Charterhouse although this latter had already been lost. 

To conclude, the manuscript of the Geometria nova has a long history. 
Unfortunately, the lack of documents makes it difficult to reconstruct the entire 
history of the manuscript. What is certain, however, is that a copy of the 
manuscript was at the Charterhouse of Vauvert at the beginning of the sixteenth 
century. This leaves the door open to the possibility that Bruno may have 
borrowed the copy of the Charterhouse during his two stays in Paris in the 1580s 
and, in doing so, he may have become acquainted with Llull’s atomistic view of 
mathematical objects. This is important because Bruno’s atomistic geometry has 
often been viewed as an original (albeit unfortunate) intuition. On the contrary, 
the discovery that Llull, whom we know to be a Bruno’s source, also held an 
atomistic view of mathematical objects may lead to a different interpretation of 
Bruno’s mathematics, one that does not regard it as a neglectable singularity. On 
the other hand, it should be noted that Bruno’s atomistic view of mathematical 
objects differed in many respects from Llull’s, starting with the fact that it was 
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grounded in the concept of the minimum and not that of corporeal point. Indeed, 
Bruno borrowed from Nicholas of Cusa the concept of the minimum, among 
other things. For this reason, the next chapter turns to Cusanus and his 
importance for Bruno’s mathematics.   
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2. Unfolding the point: The Pythagorean atomism of 
Nicholas of Cusa  

Introduction  

In his entry to the Stanford Encyclopedia of Philosophy, Clyde Lee Miller 
expresses the belief, to which I am confident that the majority of the historians of 
philosophy would subscribe, that Nicholas of Cusa (1401 – 1464) was “the most 
important German thinker of the fifteenth century.”216 The generic term “thinker” 
appropriately describes the intellectual activity of Cusanus, who at the height of 
his career was a cardinal, a renowned expert in canon law, and the author of a 
substantially original philosophy. Born in Kues (now Bernkastel-Kues), a little 
town on the Moselle river, Cusanus moved to the university of Padua at the age of 
twenty-two. There not only did he deepen his knowledge of canon law, but he met 
key figures for the future development of his thought, including the 
mathematician Paolo del Pozzo Toscanelli. Studying would remain a top priority 
of Cusanus throughout his entire life, even after he entered the church 
administration. In Cologne, where in the 1420s he was serving as secretary of the 
archbishop of Trier, Cusanus managed to find time to study the writings of 
Ramon Llull, to which he was introduced by Heimerich of Campo, another 
essential figure for the intellectual growth of Cusanus. And, by his own 
admission, it was during the return journey from Constantinople as a papal legate 
that Cusanus was inspired to write De docta ignorantia (1440).  

In our days, Cusanus is widely acknowledged as a key figure in the history 
of thought. However, it was not until the beginning of the twentieth century that 
scholars began to investigate the life and works of Cusanus. For the most part, 
this renewed interest in Cusanus was the result of the efforts of the Neo-Kantian 
philosophers based in Marburg and Heidelberg.217 This includes, inter alia, 
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Hermann Cohen, Heinrich Rickert, Ernst Hoffman, Raymond Klibansky and 
Ernst Cassirer. For these scholars, Cusanus had left a legacy of philosophical 
inquiries into theological, mathematical and political issues that was worth 
exploring. However, this was not how the immediate followers of Cusanus 
thought of him, with the only exception of Lefèvre d’Etaples and Bruno who did 
not conceal their admiration for the German cardinal. 

 Bruno was indebted to Cusanus for significant aspects of his mathematics, 
including his conception of the minimum. For this reason, Bruno scholars would 
argue, and rightly so, that an analysis of Bruno’s mathematics requires an inquiry 
into Cusanus’ “mathematical theology,” to borrow the words of David 
Albertson.218 On the other hand, Cusanus may pose a challenge to our narrative of 
Pythagorean atomism for not only was he not an atomist, but he considered the 
Pythagoreans to be opposed to atomism, as shown by the following passage of De 
docta ignorantia (1440):  

Was not the opinion of the Epicureans about atoms and the void-—an 
opinion which denies God and is at variance with all truth—destroyed 
by the Pythagoreans and the Peripatetics only through mathematical 
demonstration? I mean the demonstration that the existence of 
indivisible and simple atoms—something which Epicurus took as his 
starting point—is not possible.219 

Later in his life, Cusanus seemed to change his mind about atomism. In De mente 
(1450), he stated that matter was not infinitely divisible but was composed of 
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indivisible parts, i.e. atoms.220 Both Ernest Cassirer and Hans Gerhard Senger 
agree that Cusan atomism was a sui generis theory. In his book on Einstein’s 
Theory of Relativity (1921), Cassirer writes that in Cusanus’ view the atom was 
“not an absolute minimum of being, but a relative minimum of measure.”221 In 
this way, Cassirer reveals the difference between Cusanus and ancient atomists 
such as Democritus and Epicurus. As conceived by Cusanus, the atom had a 
magnitude that varied in accordance with the object to be measured, it being “a 
relative minimum of measure.” For Democritus and Epicurus, on the contrary, 
the atom was an indivisible unit that could not be smaller. Likewise, Senger 
claims that Cusanus did not accept the classical definition of atom, but he 
regarded it as the “contracted unity of being.” For this reason, Senger argues that 
“Cusan atomism is in principle a mathematical theory, but in fact it is a 
metaphysical theory.”222 In addition Senger distinguishes the metaphysical 
atomism of Cusanus from the atomism of Bruno, which was at once a 
metaphysical, mathematical and physical theory.  

It was possible that, over the years between De docta ignorantia and De 
mente, Cusanus came to accept atomism. But what was the nature of Cusan 
atomism? Certainly, it was different from the atomistic theory defended by Llull, 
for Cusanus never claimed that the line was composed of points, nor that the 
point was part of the line. Rather, in accordance with Euclid, Cusanus described 
the point as the end of the line, while he agreed with Boethius that “if you add a 
point to a point, you have nothing more than if you added nothing to nothing.”223 
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This chapter has two objectives. First, it deals with the issue of Cusan atomism 
and its relationship to the tradition of Pythagorean atomism. In my opinion, the 
notions of enfolding and unfolding (explicatio and complicatio) provided the 
bridge between Cusan and Pythagorean atomism. For this reason, the first part of 
the chapter is devoted to Cusanus’ account of enfolding and unfolding in De docta 
ignorantia and De mente. The second part considers the importance of Cusanus 
as a Brunian source. It does so by analyzing Cusanus’ account of minimum and 
maximum which informed Bruno’s understanding of these two notions. 

2.1 Cusanus’ account of enfolding and unfolding   

2.1.1 Variations on a Boethian theme: Enfolding and unfolding 
in De docta ignorantia 

Arguably Cusanus’ most famous book, De docta ignorantia (1440) has long been 
viewed as a monument to Dionysius the Areopagite and the Christian mystical 
tradition. Indeed, the theory that our knowledge of God could not be more than a 
learned ignorance was essentially a refurbishment of Dionysius’ apophatic or 
negative theology. But there was more to it than that. To begin with, De docta 
ignorantia contained a thorough evaluation of the role of mathematics in 
theological thinking. Drawing inspiration from Llull and his theological reading 
of the problem of the quadrature of the circle, Cusanus started exploring the 
possibility of symbolically representing God and the coincidence of the opposites 
that characterized Him using geometric diagrams.224 (The same diagrams were 
later reproduced in Bruno’s works). The retrieval of Pythagorean doctrines as 
retained by authors such as Boethius and Thierry of Chartres added another layer 
of complexity to Cusanus’ mathematical theology. Among those doctrines, one of 
the most important was that of enfolding and unfolding, which is the subject of 
this section.225    
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It is generally acknowledged that Thierry of Chartres was the source of 
Cusanus’ account of enfolding and unfolding. Until recently, however, it was 
thought that Cusanus drew inspiration from Thierry’s Lectiones and Glosa on 
Boethius’s De trinitate.226 Indeed, these were the only known texts where Thierry 
spoke of enfolding or unfolding. Thanks to Irene Caiazzo’s recent discovery of 
Thierry of Chartres’ commentary on Boethius’s De arithmetica, we now have a 
more complete picture of Thierry’s works.227 In his Arithmetica commentary, 
which presumably preceded both the Lectiones and Glosa, Thierry discussed at 
length the role of enfolding and unfolding in mathematics. Caiazzo has 
demonstrated that the Arithmetica commentary was the true origin of Thierry’s 
theory of enfolding and unfolding.228 Building on these findings, David Albertson 
has proposed that Thierry’s Arithmetica commentary was also the source of 
Cusanus’ account of enfolding and unfolding.229 In what follows, I trace this 
account back to its origins, starting from Cusanus and going back to Thierry and 
Boethius. This is important to understanding the meaning attached by Cusanus to 
enfolding and unfolding and how this meaning changed in the passage from De 
docta ignorantia to De mente.  

Cusanus 

In De docta ignorantia II, 1, Cusanus presented enfolding and unfolding as 
primarily a model for understanding the relationship between the divine unity 

                                                                                                                                            
Cues (Neaples: Bibliopolis, 1983); M. De Gandillac, “Explicatio-Complicatio chez 
Nicolas de Cues,” in Concordia discors. Studi su Niccolò Cusano e l’umanesimo 
europeo offerti a Giovanni Santinello (Padua: Antenore, 1993), 77–106; Arne 
Moritz, Explizite Komplikationen: der radikale Holismus des Nikolaus von Kues 
(Münster: Aschendorff, 2006). 

226 Both these treatises are now published in N.M. Häring, ed., Commentaries on 
Boethius by Thierry of Chartres and His School (Toronto: Pontificial Institute of 
Medieval Studies, 1971). 

227 Thierry of Chartres, Commentary on Boethius’ Arithmetica. 
228 Irene Caiazzo, “Introduction,” in The Commentary on the De Arithmetica of Boethius, 

by Thierry of Chartres, ed. Irene Caiazzo (Toronto: Pontificial Institute of Medieval 
Studies, 2015), 64–67. 

229 Albertson, “Boethius Noster.” 



 85  

and the plurality of creation. The divine unity was the enfolding of all things, 
while all things are the unfolding of the divine unity. The reciprocity that 
characterized this relationship indicated that the existence of plurality did not 
affect the unity of God. In fact, Cusanus claimed that “plurality arises from the 
divine mind, in which there are many things without plurality since they are in 
enfolding unity.”230 Depending on whether plurality was considered in itself or as 
conceived in God’s mind, plurality could exist in two ways, respectively, unfolded 
and enfolded. These two ways were fully compatible and, more importantly, they 
guaranteed that the existence of plurality did not deprive God of His unity.     

In an effort to clarify the dynamics of enfolding and unfolding, in De docta 
ignorantia II, 3 Cusanus applied these two concepts to mathematics and physics. 
From reading this chapter, one has the impression that enfolding and unfolding 
were primarily theological concepts, and that their application to mathematics 
was for explanatory purposes only. Nevertheless, the analysis of Cusanus’ sources 
shows just the opposite: Cusanus borrowed from a mathematical text, Thierry of 
Chartres’s commentary on Boethius’ De arithmetica, the concepts of enfolding 
and unfolding.231 It is also true that Cusanus did not conceal the mathematical 
origin of enfolding and unfolding. In fact, as argued by Albertson, “[Cusanus] 
seems to assume that the case of numerical folding is not one among others, but 
the prime instance and indeed the very model of what enfolding and unfolding 
mean.”232 The passage of De docta ignorantia in which Cusanus defined 
enfolding and unfolding in mathematical terms is the following:  

In respect to quantity, which is the unfolding of unity, unity is called 
point, since nothing in quantity is found except the point. Just as a 
point is everywhere in a line, no matter where you divide it, so too is it 
in a surface and a body. Nor is there more than one point, which is 
nothing other than the infinite unity, because the infinite unity is the 
point, which is the limit, perfection and totality of the line and quantity 
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that it enfolds. The line is the first unfolding of the point, in which only 
the point is found.233.  

In analyzing this passage, one should bear in mind that enfolding and unfolding 
were Cusanus’ response to the problem of unity and plurality, that is how the 
same thing could be both one and many. This problem, for Cusanus, affected 
theology and mathematics alike because the point was an instance of the infinite 
unity of God. God was found in all His creatures just as the point was found 
everywhere in lines, surfaces and bodies. All things were the unfolding of God just 
as the line was the unfolding of the point. Finally, there was only one God just as 
there was only one point, which was the limit, perfection and totality (terminus, 
perfectio et totalitas) of quantity. This latter claim seems more difficult to 
translate into mathematical terms. To understand it better, it may be useful to 
look at Cusanus’ source, Thierry of Chartres.  

Thierry of Chartres  

There appears to be a connection between the above passage of De docta 
ignorantia, and the following passage taken from the second book of Thierry’s 
Arithmetica commentary:  

But unity takes the place of the point, and rightly so. Because just as 
unity is the enfolding [complicatio] of number, and number is the 
unfolding [explicatio] of unity, so also the point is the enfolding of 
every magnitude, and magnitude is the unfolding of the point. [...] 
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Therefore I say that the point is the limit and perfection of a given 
thing; it is the very totality of that thing. It delimits the entire thing 
wholly and perfectly, and there is properly speaking only [one] limit of 
one single thing.234 

Like Cusanus, Thierry drew an analogy between point and unit, although Thierry 
referred to the arithmetic unit and not to the divine unity. Furthermore, not 
differently from Cusanus, Thierry used enfolding and unfolding to explain the 
relationship between unit and number on the one hand, and point and magnitude 
on the other hand. Finally, Thierry and Cusanus agreed that the point was the 
limit, perfection and totality of magnitude. In fact, Thierry made an even stronger 
claim, stating unequivocally that geometric objects had only one limit. In the 
Elements, Euclid made it clear that “the ends of a line are points” (Def. I, 3). 
Thierry could have read the Elements in the translation by Adelard of Bath, the 
first to translate the Euclidean text from the Arabic between 1126 and 1130. In 
Adelard’s translation, we read that “the ends (extremitates) of a line are two 
points.”235 On the contrary, Thierry claimed that “when we say that a line has two 
limits (terminos), we misuse the term limit, since the limit is only one, the point 
is only one. […] Nor is there another reason why we say that in a line there are 
limits, if not because the line is terminated here and there.”236 How should we 
interpret Thierry’s words? One possibility is that, despite all evidence to the 
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contrary, Thierry meant that the line was terminated by only one point instead of 
two. Or it is possible that Thierry aimed to draw a distinction between the terms 
“limit” (terminus) and “end” (extremitas), meaning that the ends of a line had not 
to be called limits. If so, what meaning did Thierry attribute to the term “limit”? 

From Thierry’s perspective, the concepts of limit, perfection and totality 
could only be understood in relation to one another. In fact, Thierry seemed to 
use these three concepts as if they were synonymous. For instance, Thierry wrote 
that “the extension of a line unfolds its totality, which we call limit,”237 or that 
“magnitude begins from totality, that is, from its own perfection.”238 At the same 
time, Thierry dealt with each concept individually. Speaking of perfection, Thierry 
argued that “perfection is prior to imperfection, since imperfection descends from 
perfection, and perfection is not caused by anything else. Thus, what begins from 
perfection must of necessity descend to imperfection. For nothing is beyond the 
perfection of a thing, but only below.”239 Hence Thierry viewed perfection as an 
insurmountable upper limit. In addition, perfection seemed to act as a starting 
point, since Thierry repeatedly mentioned that things began from their own 
perfection. Geometric objects could also be ordered according to their degree of 
perfection. Following this order, the point came first, the line second and the 
surface third. For “the point is the first perfection, while the line is imperfection: 
Not that the line is not the perfection of surface, but it is called imperfection in 
relation to the point.”240 The higher the number of dimensions, the lower the 
degree of perfection. This reflected the Pythagorean tendency, highlighted by 
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Ruth Glasner, to define geometric objects moving from lower to higher 
dimensions.241  

Why should the point be considered more perfect than the line and 
surface? Thierry’s answer to this question is that “the point is the enfolding of 
every magnitude, and magnitude is the unfolding of the point.”242 It is worth 
noting that, at least on one occasion, Thierry replaced explicatio with evolutio, 
stating that “the line is the evolutio of the point.”243 In De mente, Cusanus also 
seemed to use explicatio and evolutio interchangeably. More precisely, Cusanus 
defined evolutio in terms of explicatio, which raises the question of how one 
concept was supposed to clarify the other. There was also the problem of 
translating evolutio in mathematical terms, since its proper meaning was the 
unrolling and reading of a book. We shall return to evolutio below. As for Thierry, 
we can assume that the point was the first perfection because all magnitudes were 
derived from the point by means of its unfolding. By the same token, the point set 
a limit to the perfection of magnitudes because nothing could be more perfect 
than that from which it was derived. Finally, the unfolding of one point was 
sufficient to generate all magnitudes. This would explain why Thierry claimed 
that there was only one point in all magnitudes, and the point was the “totality” of 
magnitude. It is true that Thierry did not explain in mathematical terms how the 
point “unfolded” into the line, surface, and so on. However, as we shall see in the 
next section, this problem also affected the passage of Boethius’ Institutio 
arithmetica on which Thierry commented.  

Boethius 

As noticed by Caiazzo 244 Thierry developed his theory of enfolding and unfolding 
as an attempt to explain this passage from Boethius’ Institutio arithmetica:  

                                                
241 Ruth Glasner, “Proclus’ Commentary on Euclid’s Definitions 1, 3 and 1, 6,” Hermes 

120, no. H. 3 (1992): 320–333. 
242 Commentary on Boethius’ Arithmetica, 163 (231-32): “Punctum est complicatio 

omnis magnitudinis, et magnitudo est explicatio puncti.” 
243 Commentary on Boethius’ Arithmetica, 164 (240-41): “Linea namque est puncti 

evolutio.” 
244 Irene Caiazzo, “Introduction,” 64  
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Therefore from this principle (i.e., from unity) arises the first length, 
which unfolds [explicat] from the principle of binary number into all 
numbers themselves, since line is the first extension.245  

Rather than explaining the meaning of unfolding, Boethius used this concept to 
draw a parallel between number and magnitude. Building on this insight, Thierry 
went on to elaborate a model of unfolding that could account for both number 
and magnitude. More precisely, through unfolding Thierry explained the 
derivation of number and magnitude from their respective principles, the unit 
and the point. In light of this, Albertson argues that Thierry did not only give a 
more detailed explanation of what unfolding was, but he managed to “unify the 
bifurcated conceptual foundation of the ancient quadrivium.”246 Because of this 
bifurcation, arithmetic and music stood on one side of the quadrivium, while 
geometry and astronomy stood on the other side. Arithmetic and geometry were 
separate domains in Boethius, who in fact claimed that the former had priority 
over the latter because of the fact that number was the divine model for all 
created things, including magnitude (see § 1.2). Moreover, Boethius seemed to 
unable to explain the passage from unity to multiplicity, as in his account there 
was a gap between the arithmetic unit and the geometric point on the one hand, 
and number and magnitude on the other hand.   

As argued by Albertson, unfolding offered a solution to the problem of 
bridging the gap between arithmetic and geometry. Another solution was to 
employ the fluxion theory, according to which magnitude was generated by the 
flux of a point. The Greek mathematician Hero of Alexandria (c. 10 AD – c. 70 
AD) offered a glaring example of how the fluxion theory could be used in this 
context. In his Definitiones, Hero adopted the fluxion theory to prove that 
number and magnitude were derived from similar principles. For Hero, the point 
was the principle of magnitude just as the unit was the principle of number. 
Nevertheless, he argued that “the unit is part of number, whereas the point is not 

                                                
245 Boethius, Institutio arithmetica, II, 4 (6). “Ex hoc igitur principio, id est ex unitate, 

prima omnium longitudo succrescit quae a binarii numeri principio in cunctos sese 
numeros explicat, quoniam primum interuallum linea est.”  

246 Albertson, Mathematical Theologies, 126–39; Albertson, “Boethius Noster,” 182.  
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part of the line, but it is its mental presupposition.”247 How was the point the 
principle of the line if not by being one of its parts? Hero’s answer to this question 
was that the line was generated by the “flow a point.” This allowed him to say that 
the point was the principle of the line (and magnitude in general) without 
committing to the ‘atomistic’ view that the line was a row of points placed side by 
side.  

Non unlike Hero, Thierry used the concept of unfolding to explain how the 
point was the beginning of the line, although the juxtaposition of two or more 
points did not produce a line. The only difference was that the fluxion theory 
implied a dynamic understanding of geometric objects, while unfolding was not 
explicitly associated with motion. On the other hand, one may argue that a 
dynamic element was implicit in the concept of evolutio, which both Thierry and 
Cusanus used in place of the concept of unfolding on a few occasions. This is 
worth noting especially in the case of Cusanus, who may not have relied on the 
fluxion theory to account for the derivation of magnitude from the point, and yet 
may have had a dynamic understanding of geometric objects, as suggested by his 
use of the concept of evolutio.  

Thus we have seen that the concept of unfolding/evolutio bore a close 
resemblance to the fluxion theory. What was the relationship between the fluxion 
theory and the concept of unfolding/evolutio on the one hand, and geometric 
atomism on the other hand? Were they compatible? Or was the view of geometric 
objects underlying the fluxion theory and unfolding at odds with geometric 
atomism? To begin with, it should be noted that both the fluxion theory and 
unfolding offered an alternative to geometric atomism, as they could be employed 
against the view that geometric objects were composed of points. In fact, this was 
the way in which the concept of flux continued to be used in early modern times, 
as happened in the case of the controversy that surrounded Cavalieri’s theory of 

                                                
247 Hero of Alexandria, Opera quae supersunt omnia, ed. J.L. Heiberg, vol. IV (Stuttgart: 

B.G. Teubner, 1903), 14 (13-26). Following Giardina’s Italian translation, I translate 
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Definitiones.  Testo, traduzione e commento (Catania: CUECM, 2003), 249–65. 
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indivisibles.248 At the same time, it cannot be denied that atomistic theories of 
geometric objects (such as those proposed by Llull and Bruno) provided a 
framework for unifying arithmetic and geometry, for they were built on the 
assumption that both number and magnitude were composed of discrete parts. In 
other words, like the fluxion theory and the concept of unfolding, geometric 
atomism functioned as a bridge between arithmetic and geometry  

Returning to Cusanus, the bridging function of unfolding was fundamental 
for the development of this concept in his later works. Indeed, both in De docta 
ignorantia and De mente, Cusanus described the derivation of magnitude from 
the point in terms of unfolding. What changed was the subject of unfolding, 
which in De docta ignorantia was conceived as an abstract mathematical 
operation, while in De mente was viewed as a creative act of the human mind. 
This shift reflected a more general change in the philosophy of the Cardinal, a 
change that, as we shall see, triggered a debate among Cusanus scholars about the 
modernity of his thought. 

2.1.2 Embracing atomism: Unfolding in De mente  

In 1450, Cusanus composed three dialogues centered on the figure of the idiota: 
De mente, De sapientia and De staticis experimentis. By choosing the idiota 
(illiterate in Latin) as the main character of these dialogues, Cusanus launched 
his attack on the medieval myth that the text was the authority, the only source of 
knowledge. On the contrary, in the three 1450 dialogues, knowledge came from a 
man, the idiota, who admittedly lacked formal education and represented the 
ideal of naïve knowledge.249 It was the task of the Philosopher, the other 
protagonist of the dialogues along with the Orator, to seek a correspondence 
between the idiota’s beliefs and the texts of ancient and medieval authors. 
Following this pattern, the dialogues went on to address several questions and 
present a new formulation of Cusanus’ philosophy. Among the issues that 

                                                
248 See Dominique Descotes, “Two Jesuits Against the Indivisibles,” in Seventeenth-
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Cusanus touched on in De mente, there were also the concepts of enfolding and 
unfolding.  

As suggested by the title, De mente was devoted to developing a theory of 
the human mind in accordance with the view that in Latin the term mind (mens) 
was etymologically derived from measurement (mensura).250 The whole of De 
mente revolved around this idea of mens/mensura, including its conception of 
unfolding. For this reason, I shall first give a brief presentation of the idea of 
mens/mensura before moving on to the concept of unfolding and the issue of 
Cusan atomism.  

Mens/mensura 

Although at the beginning of De mente Cusanus equated knowing to measuring, 
in the first part of this work knowledge was described as a process of mental 
“assimilation” (assimilatio) to the object to be known. It was not until chapter IX 
that Cusanus answered the question of how the human mind “measured” things. 
At that point, he would dismiss the concept of assimilation, going on to describe 
knowledge only in terms of measurement. This conceptual shift did not occur 
arbitrarily. In chapter VI, Cusanus took pains to explain how number was derived 
from the human mind, which in turns allowed him to base knowledge on number 
and measurement. Knowledge by assimilation was therefore only a working 
definition, a first step in the development of the idea of mens/mensura. This was 
also confirmed by the fact that Cusanus had already dealt with the concept of 
mental assimilation in two previous works, De filiatione dei (1445) and De genesi 
(1449).251 At the same time, the concept of assimilation was an integral part of the 
theory of mind presented in De mente. As such, it needs to be considered in 
reconstructing this theory.  

                                                
250 De mente, I (57): “Mentem esse, ex qua omnium rerum terminus et mensura. Mentem 

quidem a mensurando dici conicio.” 
251 In De genesi, 4 (165:8-9) Cusanus interchanges assimilatio with similitudo. Cf. De 

genesi, 3 (164:12) with De genesi, 4 (165:4). See also De filiatione dei, 6 (87). Both 
these works are now published in Nicholas of Cusa, Opuscula I: De deo abscondito, 
De quaerendo deum, De filiatione dei, De dato patris luminum, Coniectura de 
ultimis diebus, De genesi, ed. Paul Wilpert (Hamburg: Felix Meiner, 1959). 
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In De mente IV, Cusanus recalled the definition of the human mind as an 
image of God (imago Dei), warning us not to confuse image with unfolding. His 
aim was to emphasize the superiority of the human mind over the rest of creation, 
for the human mind was an image of God, while “the creatures that lack mind are 
unfoldings rather than images of the divine simplicity.”252 By virtue of its being an 
image of God, the human mind had the power of assimilating itself to the things 
created by God. This assimilative power (vis assimilativa) was the source of our 
knowledge because it resulted in the creation of concepts. Our mind received 
information about the external world from the senses. Based on this information, 
it assimilated itself to the external objects by creating images of them, that is 
concepts. Perceptions were needed in order for our mind to exercise its 
assimilative power, which meant that our mind had to be embodied.253 However, 
our mind was not a passive recipient of perceptions because these only provided 
the material out of which it created the concepts. As Cusanus made it clear in De 
mente VIII, concepts were not mere impressions of external objects on our 
mind.254  

Cusanus returned to the issue of assimilation in De mente VII. The fact 
that our concepts were based on perceptions affected the quality of our 
knowledge. Indeed, no matter how hard the human mind strove to represent 
external objects as faithfully as possible, our mental representations were bound 
to be conjectural. The reason was that external objects were composed of matter 
and, as such, always changed. Therefore, as soon as an external object was 
mentally represented, the object in question was already changed and its mental 
representation was outdated. To have more stable representations, we needed to 
peer into God’s mind, for, as Cusanus argued in De mente III, “if all things are 
present in the divine mind as in their precise and proper truth, all things are 

                                                
252 De mente, IV (76): “Creaturae mente carentes sunt potius divinae simplicitatis 

explicationes quam imagines” 
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present in our mind as in an image or a likeness of their proper truth.”255 But, as 
we have learned from De docta ignorantia, the infinity of God was beyond our 
grasp. Hence, as long as knowledge was acquired only by assimilation to external 
objects, it would remain conjectural.  

In the following of De mente VII, Cusanus explored the possibility of 
acquiring knowledge independently of perceptions. He took the example of the 
circle which was defined as the set of all points equidistant from the center. 
Cusanus was aware that no material circle met this definition, because figures 
such as a perfect circle could not be constructed nor found in nature. Hence, he 
argued that the concept of perfect circle was not derived from perceptions but 
from the mind itself. In our mind, objects existed independently of matter and 
change. This meant that the concepts that our mind derived from itself were more 
certain than those created by assimilation to external objects. Cusanus called the 
concepts derived from the mind itself “abstract forms” (formae abstractae) and 
claimed that they were the subject of mathematical knowledge.256 Therefore, 
mathematics provided a different kind of knowledge, one that was more certain 
than knowledge based on perceptions.  

Cusanus discussed the epistemological status of mathematics in De mente 
VI. As already said, this chapter marked a turning point in the development of the 
idea of mens/mensura. Here, emphasis was placed on the fact that number was 
the mode of understanding (modum intelligendi) of the human mind, meaning 
that our knowledge was based on number. There has been much discussion about 
this claim. Scholars such as Ernst Cassirer and more recently Kurt Flasch have 
emphasized the modernity of the mathematical epistemology set forth in De 
mente.257 The problem with this modernist reading of De mente is that it reduces 
the importance of previous works and especially of De docta ignorantia, 
suggesting that Cusanus was still under the influence of medieval authors when 

                                                
255 De mente, III (72). “Si omnia sunt in mente divina ut in sua precisa et propria veritate, 

omnia sunt in mente nostra ut in imagine seu similitudine propria veritatis.” 
256 De mente, VII (104). “Et quia mens ut in se et a materia abstracta has facit 

assimilationes, tunc se assimilat formis abstractis.” 
257 Ernst Cassirer, Individuum und Kosmos in der Philosophie der Renaissance (Leipzig: 

Teubner, 1927), 10–11; Kurt Flasch, Nikolaus von Kues: Geschichte einer 
Entwicklung (Frankfurt am Main: Vittorio Klostermann, 1998), 103–15. 
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writing these works.258 Leaving this issue aside, I shall focus on how, in Cusanus’ 
view, number was derived from the human mind, and how this affected his view 
of human knowledge.  

Cusanus proceeded to assess the role of number in human knowledge in 
keeping with the idea that the human mind was an image of God. Like the 
plurality of things generated by God, the plurality of concepts derived from our 
mind presupposed the possibility of distinguishing one concept from the other. 
Thus conceived, concepts depended on number, because “without number things 
could not be understood to be different from one another and to be discrete.”259 It 
was in this sense that Cusanus took number to be the “exemplar” (exemplar) of 
our concepts. In fact, the whole of our mental activity relied on number, including 
our ability to assimilate, conceptualize, discriminate and measure. Number, in 
short, was the mode of understanding of the human mind because nothing could 
be understood independently of number.260  

As is well known, Plato was one of the first to argue that mathematics was 
the foundation of human knowledge.261 However, differently from Plato, Cusanus 
did not think that concepts were innate, but rather he thought that they were the 
result of a mental activity.262 This also applied to mathematical concepts, with the 
only difference that these were not derived from the external world but from the 
mind itself. De mente VI contained an account of the derivation of number from 
the human mind. Assuming the Boethian definition of number as a collection of 
unities, Cusanus stated that number was derived from the human mind by 
multiplication of the arithmetic unit.263 Likewise, in chapter IX, he argued that 
the line was generated by the unfolding or evolutio of a point. In mathematics, a 
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definition that describes an object in terms of its generation is called “genetic.” 
The fact that Cusanus made use of genetic definitions attests that he viewed 
mathematical objects as constructs—mental constructs, to be more precise.     

Unfolding as a creative act of the mind  

As already mentioned, there is no agreement among Cusanus scholars on how to 
interpret De mente, whether as the place where Cusanus’ thought took a modern 
turn or as a text in the spirit of medieval Scholasticism. Depending on the 
position taken by the interpreter on this issue, the same passage of De mente has 
been read in opposite ways. What none of the parties involved in this discussion 
has denied is that in De mente Cusanus described human knowledge as a creative 
process.264 This stemmed from the analogy between human knowledge and divine 
creation made at the outset of De mente. However, there seems to be a 
contradiction between this creative view of knowledge and other accounts of 
knowledge that Cusanus gave in previous works and in De mente itself. Theo van 
Velthoven and Clyde Lee Miller propose two different solutions to solve this 
contradiction.  

In his classical study on Cusanus’ epistemology, Velthoven rephrases the 
problem of knowledge in terms of vision of God (Gottesschau) and human 
creativity (menschliche Kreativität).265 By linking it to De docta ignorantia, he 
regards the vision of God as the passive act of contemplation whereby the human 
mind became aware of the impossibility of knowing God.266 Thus conceived, the 
vision of God was incompatible with human creativity, which Velthoven 
associates to De mente. In this respect, Velthoven is one of those who views De 
mente as a watershed in the development of Cusanus’ thought. On the other 
hand, Velthoven aims to establish a connection between vision of God and human 
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creativity and, in doing so, he considers mathematics as a product of human 
creativity.267 In Velthoven’s opinion, the creation of mathematical objects also led 
to the vision of God, since this activity revealed our similarity to God.   

Like Velthoven, Miller addresses the question of whether, in Cusanus’ 
epistemology, the human mind had an active or a passive role in the acquisition 
of knowledge. Miller notes that De mente provided evidence in support of both 
answers insofar as it contained two accounts of knowledge: by assimilation and 
by measurement. When knowledge was acquired by assimilation, the human 
mind was the passive recipient of perceptions. On the contrary, when knowledge 
was acquired by measurement, the human mind was actively engaged in this task. 
The problem was how to reconcile these two apparently contradictory accounts of 
knowledge. Miller’s answer is that “our minds are not limited to quantitative 
measures and thus can determine the conceptual measures or units that best fit 
or are adequate to the different sorts of things we want to know.”268 This was 
possible because the human mind had the power of assimilating itself to all 
external objects. Hence, there was no measurement without assimilation and, as 
claimed by Miller, “we cannot resolve the tension between the two but we must 
hold onto it.”269 

As insightful as Miller’s contribution might be, it seems to me that it is not 
supported by the text. In De mente, Cusanus never spoke of the ability of the 
human mind to produce units of measurement that varied according to the object 
to be known. In fact, the idea of mens/mensura did not seem to require a real act 
of measurement. In De mente IX, when asked how the human mind measured 
things, the idiota answered that it did so by making (facere) the point and 
number; “hence multitude and magnitude are from the mind, and this measures 
all things.”270 This was in line with what Cusanus claimed in chapter VI about the 
number being the mode of understanding of human mind. Both chapters VI and 
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IX conveyed the idea that mathematics was the foundation of human knowledge. 
This was also, in my opinion, the meaning of the idea of mens/mensura.  

As already mentioned, the fact that mathematical objects were the starting 
point of human knowledge did not mean that these objects were innate concepts. 
On the contrary, mathematical objects were mental constructs, as number was 
derived by multiplication of the arithmetic unit, and magnitude was the result of 
the unfolding or evolutio of the point. We have come across the concept of 
evolutio when discussing Thierry’s Arithmetica commentary, in which evolutio 
and explicatio (unfolding) were used interchangeably to explain the derivation of 
quantity from the point. Likewise, in De mente IX, Cusanus first stated that the 
line was the evolutio of the point, and then he equated evolutio to explicatio.271 In 
this way, both Thierry and Cusanus turned evolutio, which in Latin meant the 
unrolling and reading of a book, into a mathematical concept. The fact that the 
influence of Thierry’s Arithmetica commentary is discernable in De mente 
confirms the importance of this text as a Cusan source. At the same time, it 
undermines the assumption, accepted especially by the advocates of Cusanus’ 
modernity, that Cusanus’ mathematical ideas were drawn from Proclus’s Euclid 
commentary. Admittedly, the idea that mathematical objects were mental 
constructs was Proclean. Furthermore, thanks to Klibansky and other scholars, 
we know that Cusanus possessed some of the first Latin translations of Proclus’ 
works.272 However, Cusanus could not have accessed these texts before the late 
1450s, which means that the influence of Proclus cannot be used to account for 
the mathematical ideas set forth in De docta ignorantia and in De mente.273   
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In addition to being the place in which Cusanus rephrased unfolding in 
accordance with the idea of mens/mensura, De mente IX was also where he 
endorsed atomism. In fact, these two events did not occur independently of each 
other, as both the concepts of unfolding and atom were part of the answer to the 
same question: 

Philosopher: What do you mean [by saying that] a line is the 
“development” [evolutio] of a point? 
Idiota: [I mean that it is] the development, i.e., the unfolding, [of the 
point]—which [is to say] none other than the following: viz., that the 
point is present in the many atoms in such a way that it is present in 
each of them qua combined and connected. For there is one and the 
same point in all the atoms, just as there is one and the same whiteness 
in all things white. 
Philosopher: What do you mean by “atom”? 
Idiota: With respect to the mind’s consideration a continuum is 
divided into what is further and further divisible, and the multitude 
increases ad infinitum. However, in actually dividing, we come to a 
part that is actually indivisible. This part I call an atom, for an atom is 
a quantity that, because of its smallness, is actually indivisible.274 

In one stroke Cusanus connected the concepts of evolutio, explicatio and atom, 
while drawing a distinction between physical and mathematical indivisibles. 
According to this distinction, which was classical in ancient times, a physical 
indivisible (i.e. an atom) could contain several mathematical indivisibles (i.e. 
points).275 Hence the division of the continuum could go on at the mathematical 
                                                
274 De mente, IX (119): Philosophus: Quomodo intelligis lineam puncti evolutionem? 

Idiota: Evolutionem id est explicationem, quod non est aliud quam punctum in 
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et multitudo crescit in infinitum, sed actu dividendo ad partem actu indivisibilem 
devenitur, quam atomum appello.  
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level after having reached its end at the physical level. In fact, Cusanus thought 
that the division of the mathematical continuum could go on to infinity, which 
confirms that he was far removed from being a supporter of atomism in 
mathematics. Furthermore, the distinction between physical and mathematical 
indivisibles could help explain Cusanus’ claim that there was one and the same 
point in all atoms. Arguably, Cusanus referred to the fact that atoms could vary in 
shape and size, while points were shapeless and thus there was only one species 
of point.  

Once again, it is important to note that Cusanus did not consider the point 
to be an indivisible part of the line. Rather, the point had, for Cusanus, a double 
function. First, the point was the end of the line, a definition that was taken from 
Euclid’s Elements (Def. I, 3). Second, the point was the generative principle of the 
line, this latter being the unfolding or evolutio of a point. This second definition 
was a borrowing from the Neopythagorean tradition and in particular from 
Thierry of Chartres. None of these definitions of the point implied an atomistic 
view of mathematical objects. In fact, we have seen how both those definitions 
were used to oppose the idea that mathematical objects were composed of 
indivisible parts. On the other hand, it should be noted that, in De mente, the 
infinite divisibility of the continuum was denied at the level of physical matter 
and three-dimensional bodies, but not at the level of mathematics. What is more, 
Cusanus saw a connection between the generative function of the point (i.e., its 
being the source of the unfolding of the line) and physical atomism. This 
connection, in my opinion, is the best possible way to describe Cusan atomism, a 
theory that defies definition and does not fall into a specific category.   

2.2 Cusanus’ account of minimum and maximum  

Although Bruno was credited with the revival of atomism in early modern times, 
it should not be forgotten that his theory was centered on the concept of 
minimum (and not on that of atom). In fact, Bruno defined the atom as a species 
of the minimum, which in turn was the “substance of all things.”276 However, 
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there has been a tendency in Bruno scholarship to reduce the minimum to the 
atom, which obscures Bruno’s theory. Perhaps not coincidentally, most studies of 
‘Bruno’s atomism’ have focused on the inconsistencies and contradictions 
resulting from the application of this theory to the study of nature.277 
Disentangling the minimum from the atom may solve at least some of these 
difficulties. Moreover, reducing the minimum to the atom may have affected the 
search for Bruno’s sources. Driven by the assumption that Bruno’s theory was 
primarily a form of atomism, scholars have looked for Bruno’s sources among 
ancient and medieval atomists, choosing Lucretius as the most likely 
candidate.278 However, as I have tried to show in the Introduction, the difference 
between their atomistic theories prove that Lucretius was not Bruno’s model in 
this respect. For this reason, I have suggested that Bruno stood in a different 
atomistic tradition: Pythagorean atomism. As soon as one starts placing emphasis 
on the minimum, the question arises of the source of this concept, and whether it 
was the same source as that of Bruno’s concept of the atom. 

As should be clear from the above, I believe that both Llull and Cusanus 
belonged to the tradition of Pythagorean atomism. Their views, however, 
diverged on the issue of the composition of the continuum. To my knowledge, 
Llull did not devote particular attention to the minimum. At the same time, he 
regarded the points as the atoms that composed geometric objects. Cusanus, on 
the other hand, rejected the idea that geometric objects were composed of point-
atoms, while he gave a detailed account of minimum and maximum. It is 
important to underline this distinction between Llull and Cusanus because it 
highlights their different contribution to Bruno’s mathematics. Bruno borrowed 
from Llull aspects of his atomistic geometry, while Cusanus was the source of 
Bruno’s concept of the minimum.  

The importance of Cusanus for Bruno’s mathematics cannot be 
overestimated. Bruno himself acknowledged his debt to Cusanus, whom he hailed 
as the “inventor of geometry’s most beautiful secrets.”279 For the most part, the 
relationship between Cusanus and Bruno has been studied with regard to their 
epistemology and cosmology, and to more specific issues such as their idea of 
                                                
277 For an overview of the literature on Bruno’s atomism, see the Introduction.  
278 Singer, “The Cosmology of Giordano Bruno (1548-1600).” 
279 Bruno, Cause, Principle, and Unity, 97. 
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individual or their use of Platonism.280 On the contrary, Cusanus’ and Bruno’s 
mathematics have rarely been compared. As a first step in this direction, Luciana 
de Bernart drew a parallel between Cusanus and Bruno based on the problem of 
the quadrature of the circle.281 In addition, Jean Seidengart claimed that Cusanus 
was the source of Bruno’s concept of the minimum.282 However, Seidengart’s 
insightful contribution overlooked the account of minimum and maximum that 
Cusanus gave in De docta ignorantia. In what follows, I try to fill this gap.  

Gaining a better understanding of Cusanus’ account of minimum and 
maximum is important to mark the distinction between the concepts of minimum 
and atom in Bruno’s thought. For, as conceptualized by Cusanus, the minimum 
bore no relation to the atom. Instead, Cusanus dealt with the minimum always in 
relation to the maximum as the two coincided. Compared with other sources that 
Bruno had at his disposal, Cusanus offered without doubt the most 
comprehensive discussion of minimum and maximum. Furthermore, like 
Cusanus, Bruno argued for the coincidence of minimum and maximum, which 
provides further evidence of Bruno’s dependence on Cusanus. If so, the idea of 
the minimum would have occurred to Bruno independently from the idea of 
atom, which indeed was inspired by Llull. Thus, it was not that the concepts of 
minimum and atom were originally connected, but it was Bruno who drew a 
connection between them, laying the foundations for his theory of minima.    

Cusanus systematically addressed the issue of minimum and maximum in 
De docta ignorantia. For this reason, I have limited myself to the analysis of this 
work, although this was not the only place in which minimum and maximum 
were mentioned. In reconstructing Cusanus’ argument, I have found useful to 
break it down into two parts. The first part is concerned with the problem of 

                                                
280 Paul Richard Blum, “‘Saper trar il contrario dopo aver trovato il punto de l’unione’: 

Bruno, Cusano e il platonismo,” in Letture bruniane I-II del lessico intellettuale 
europeo (1996-1997) (Pisa: Istituti editoriali e poligrafici internazionali, 2002); 
Filippo Mignini, “La dottrina dell’individuo in Bruno e Cusano,” Bruniana & 
Campanelliana 6, no. 2 (2000): 325–49; Pietro Secchi, “Del mar più che del ciel 
amante.” Bruno e Cusano (Rome: Edizioni di storia e letteratura, 2006). 

281 Luciana De Bernart, Cusano e i matematici (Pisa: Scuola Normale Superiore, 1999). 
Reprinted in De Bernart, Numerus quodammodo infinitus. 

282 Seidengart, “La metaphysique du minimum.” 
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expressing minimum and maximum in geometry and arithmetic. This paves the 
way for the discussion of the infinity of minimum and maximum, which is the 
subject of the second part. 

2.2.1 Minimum and maximum in arithmetic and geometry 

In Book I of De docta ignorantia, Cusanus spoke of minimum and maximum in 
mathematical terms to provide a framework for understanding these two 
fundamental concepts. As in the case of enfolding and unfolding (see § 4.1), it was 
no coincidence that Cusanus relied on mathematics to explain minimum and 
maximum. Like all the divine truths, minimum and maximum could only be 
understood through an intermediary, a symbol. Mathematical symbols were well 
suited for this task because they stood for objects that were more stable and 
certain than sensible objects.283 This was why Cusanus firmly believed in the 
explanatory power of mathematics.  

In De docta ignorantia I, 4, Cusanus initially presented minimum and 
maximum as two opposite concepts: the maximum was that which could not be 
greater, while the minimum was that which could not be smaller.284 At the same 
time, minimum and maximum offered a clear example of what Cusanus famously 
called the “coincidence of the opposites” (concidentia oppositorum). The 
coincidence of minimum and maximum was explained by “contracting” them to 
quantity, the subject of geometry. “Contracted” was the term that Cusanus used to 
refer to the realm of finite and limited beings. It was the opposite of “absolute” 
which indicated the infinity and transcendence of God, but also of other entities. 
Speaking of minimum and maximum as contracted to quantity, Cusanus stated 
that: 

                                                
283 De docta ignorantia, I, 11 (31): “Abstractiora autem istis, ubi de rebus consideratio 

habetur, – non ut appendiciis materialibus, sine quibus imaginari nequeunt, penitus 
careant neque penitus possibilita|ti fluctuanti subsint – firmissima videmus atque 
nobis certissima, ut sunt ipsa mathematicalia” 

284De docta ignorantia, I, 4 (11): “Et sicut [maximum] non potest esse maius, eadem 
ratione nec minus, cum sit omne id, quod esse potest. Minimum autem est, quo 
minus esse non potest.” 
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Maximum quantity is maximally large (maxime magna); and 
minimum quantity is maximally small (maxime parva). Therefore if 
you free (absolve) maximum and minimum from quantity—by 
mentally removing (subtrahendo intellectualiter) large and small—you 
will see clearly that maximum and minimum coincide. For maximum 
is a superlative (superlativus) just as minimum is a superlative.285 

The argument presented in this passage requires further explanation. First, 
Cusanus invites us to think of minimum and maximum as contracted to quantity. 
The purpose of this was to show that, when contracted to quantity, minimum and 
maximum were two opposites entities, the smallest and greatest quantity. Then, 
Cusanus invites us to abstract minimum and maximum from quantity, which is 
the opposite of being contracted to quantity. In doing so, Cusanus aimed to show 
that, irrespective of quantity, the absolute minimum and maximum coincided. 
For, when considered separately from its quantitative determination (i.e. small), 
the minimum also appeared to be a kind of maximum. Therefore the contraction 
to quantity was only the first step in understanding minimum and maximum, 
which could only be understood when they were abstracted from quantity and 
revealed in their coincidence.286 It should be noted that, when speaking of 
minimum and maximum as abstracted from quantity, Cusanus used the term 
“absolute quantity.” As is well known, absolutus in Latin was the perfect 
                                                
285 De docta ignorantia, I, 4 (11): “Maxima enim quantitas est maxime magna; minima 

quantitas est maxime parva. Absolve igitur a quantitate maximum et minimum – 
subtrahendo intellectualiter magnum et parvum –, et clare conspicis maximum et 
minimum coincidere; ita enim maximum est superlativus sicut minimum 
superlativus.” 

286  Gerda von Bredow has a different view of the coincidence of minimum and 
maximum. She argues that, in Cusanus’ view, the minimum coincided with the 
maximum only when they were contracted to quantity. On the contrary, when 
minimum and maximum were abstracted from quantity, the maximum contained 
the minimum, but not the other way around. See Gerda von Bredow, “Die 
Bedeutung des Minimum in der Coincidentia oppositorum,” in Nicolò Cusano agli 
inizi del mondo moderno: atti del Congresso intemazionale in occasione de V 
centenario della morte di Nicolò Cusano, Bressanone, 6-10 Settembre, 1964 
(Florence: G.C. Sansoni, 1970), 357–66.  



 106  

participle of the verb absolvo, which meant to set something free. Hence it 
appeared that, like minimum and maximum, quantity could be abstracted from 
its determinations (e.g. great, small, etc.) and conceived as an absolute entity. The 
concept of absolute quantity was more suited to represent minimum and 
maximum in geometry. Indeed, Cusanus argued that “it is not that absolute 
quantity is more of a maximum that a minimum quantity, since in it minimum 
and maximum coincide.”287 We shall return to the idea of absolute quantity 
below.  

After geometry, Cusanus moved on to arithmetic. As a preliminary remark, 
Cusanus stated that “if number is removed, the distinctness, order, proportion, 
and harmony of things cease, and so does the plurality of beings”.288 With these 
words, Cusanus seemed to accept the Platonic (but also Pythagorean) belief in a 
cosmic order based on number. It was in this light that Raymond Klibansky 
affirmed the existence of a Platonic tradition connecting the School of Chartres to 
Cusanus and the modern cosmology.289 Following in the footsteps of Klibansky, 
Cusanus scholars have continued to use medieval Platonism as a framework for 
understanding Cusanus’ thought.290 On the other hand, as happened in De docta 
ignorantia II, 1, Cusanus also argued against the precision of human 
measurements.291 For this reason, Sarah Powrie has recently proposed to 
consider another possible source of Cusanus’ cosmology, namely, fourteenth-

                                                
287 De docta ignorantia, I, 4 (11): “Absoluta quantitas non est magis maxima quam 

minima, quoniam in ipsa minimum est maximum coincidenter.” 
288 De docta ignorantia, I, 5 (13): “Sublato enim numero cessant rerum discretio, ordo, 

proportio, harmonia atque ipsa entium pluralitas.” 
289 Raymond Klibansky, The Continuity of the Platonic Tradition during the Middle Ages 

(London: The Warburg Institute, 1981), 28–29. 
290 For an overview of the literature on the School of Chartres and Cusanus, see 

Albertson, Mathematical Theologies, 12–17. Albertson’s book itself is an attempt to 
rethink the relationship between Thierry of Chartres and Cusanus in the light of 
what Albertson calls “Christian Neopythagoreanism.” 

291 See De docta ignorantia, II, 1 (61–63). 
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century natural philosophy.292 The fact that representatives of this philosophical 
tradition (e.g. the so-called Oxford Calculators) placed special emphasis on issues 
such as the incommensurability of magnitudes may account for Cusanus’ 
attention to mathematical inaccuracy and our inability to perform precise 
measurements.  

In De docta ignorantia I, 5, Cusanus established that number must be 
finite to provide the basis for cosmic order. “For [if number were infinite] there 
would be no distinction between things; nor would order or plurality or greater 
and lesser be found in numbers; indeed, number itself would not exist.”293 One 
consequence of the finiteness of number was that minimum and maximum could 
not be conceived as finite numbers just as they could not be thought of as 
contracted quantities. To prove this point, Cusanus made the following argument. 
No number can be greater than the maximum number. Yet, no matter how great a 
number may be, it will always be possible to find a greater number by addition. 
Only the infinite cannot be greater than it is, but number must be finite. Hence, 
there cannot be a maximum number because it would be infinite. Likewise, if 
there were a minimum number, we should be able to subtract number by number 
until we reach a number that cannot be smaller. However, this would result in an 
infinite regress, because any number can be made smaller by subtraction. The 
concepts of minimum and maximum, therefore, contradicted the finiteness of 
number, and for this reason there could neither be a minimum nor a maximum 
number.  

Cusanus identified minimum and maximum with the arithmetic unit 
instead of a finite number. The unit was not a number, but rather was “the 
beginning of all numbers qua minimum and the end of all numbers qua 
maximum.”294 Ancient and medieval philosophers of mathematics generally 

                                                
292 Sarah Powrie, “The Importance of Fourteenth-Century Natural Philosophy for 

Nicholas of Cusa’s Infinite Universe,” American Catholic Philosophical Quarterly 
87, no. 1 (2013): 33–53. 

293 De docta ignorantia, I, 5 (12) “Quoniam nulla rerum discretio foret, neque ordo neque 
pluralitas neque excedens et excessum in numeris reperiretur, immo non esset 
numerus.” 

294 De docta ignorantia, I, 5 (14): “[Unitas] est principium omnis numeri, quia 
minimum; est finis omnis numeri, quia maximum.” 
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agreed that the unit was the beginning of number, without being itself a number. 
The underlying idea was that the unit was ontologically prior to number because 
it was its principle. For Cusanus, however, the unit was both the beginning and 
the end of number. More precisely, Cusanus first equated the unit to the 
minimum. Then, because of the coincidence of minimum and maximum, Cusanus 
claimed that the unit was also the maximum.295 The result was that number was 
terminated at both ends by the unit, which raises the question of whether 
Cusanus had a ‘circular’ view of number. A similar view of number was held in 
Late Antiquity by Neopythagorean authors such as Moderatus of Gades (I century 
AD), who saw number as “a progression of multiplicity beginning from the 
monad, and a regression ending in the monad.”296 However, it was unlikely that 
Cusanus could have known the work of Moderatus, and thus that he could have 
been inspired by the Greek philosopher to adopt a circular view of number. 
Rather, it was more likely that Cusanus came to conceive the unit as both 
minimum and maximum as a result of the application of his own concept of 
coincidentia oppositorum to mathematics.  

Cusanus viewed the arithmetic unit as “a minimum simpliciter, which 
coincides with the maximum.”297 Further on, Cusanus argued that “the unit 
cannot be a number, because number, which can be greater, cannot be either a 
minimum or maximum simpliciter.”298 The use of the Latin term simpliciter, 
which for Cusanus was synonymous with absolute, corroborates the idea that in 
arithmetic minimum and maximum did not belong to the domain of finite 

                                                
295 De docta ignorantia, I, 5 (13): “Quapropter necessarium est in numero ad minimum 

deveniri, quo minus esse nequit, uti est unitas. Et quoniam unitati minus esse 
nequit, erit unitas minimum simpliciter, quod cum maximo coincidit per statim 
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296 Quoted from John M. Dillon, The Middle Platonists, 80 B.C. to A.D. 220 (Ithaca, N.Y: 
Cornell University Press, 1996), 350. On Moderatus, see Albertson, Mathematical 
Theologies, chap. 2. 
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numbers. Likewise, in geometry the term “absolute quantity” was used to indicate 
that, to fully understand minimum and maximum, one had to go beyond the 
contraction to quantity. In both cases, Cusanus aimed to show that in arithmetic 
and geometry there was a concept of minimum and maximum, which however 
could not be expressed in terms of number and quantity. The reason was that 
number and quantity could only represent the finite and contracted, while 
minimum and maximum were instances of the absolute. It was on these grounds 
that, in Book II of De docta ignorantia, Cusanus conceptualized minimum and 
maximum as infinite entities.   

2.2.2 Minimum and maximum as infinite entities 

Cusanus’ account of minimum and maximum continued in Book II of De docta 
ignorantia. Here, building on the mathematical explanation of minimum and 
maximum given in Book I, Cusanus shifted the focus from geometry and 
arithmetic to God and the universe. In chapters I, 4-5, the language used by 
Cusanus to describe minimum and maximum revealed the absolute and simple 
character of these two notions. In chapter II, 1, Cusanus went a step further and 
explicitly claimed that both minimum and maximum were infinite entities:  

Since neither an ascent to the maximum simpliciter nor a descent to 
the minimum simpliciter is possible, there could be no transition to 
infinity. As is evident in the case of number and the division of the 
continuum, given any finite entity, it is always possible to find a greater 
and a smaller. For maximum or minimum simpliciter are not given in 
(finite) things, nor could the progression go to infinity, as was just 
indicated.299 

                                                
299 De docta ignorantia, II, 1 (63-4): “Quoniam ascensus ad maximum et descensus ad 

minimum simpliciter non est possibilis, ne fiat transitus in infinitum, ut in numero 
et divisione continui constat, tunc patet, quod dato quocumque finito semper est 
maius et minus sive in quantitate aut virtute vel perfectione et ceteris necessario 
dabile – cum maximum aut minimum simpliciter dabile in rebus non sit –, nec 
processus fit in infinitum, ut statim ostensum est.”  
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The impossibility of ascending to the maximum or descending to the minimum 
was a direct consequence of Cusanus’ ‘comparative’ view of knowledge. This view 
of knowledge was a pillar of De docta ignorantia, and can be summed up in the 
statement that “every inquiry is comparative and uses the means of 
proportion.”300 By this Cusanus meant that the act of knowing consisted in 
comparing the unknown to the known. The smaller the gap between unknown 
and known, the easier the act of knowing. To clarify this point, Cusanus once 
again turned to mathematics, and in particular to mathematical proof. The 
complexity of a mathematical proof was proportional to the number of steps that 
need to be taken to trace the proof back to self-evident principles.301 Likewise, an 
object was more or less difficult to know, depending on how far that object was 
from what was already known. This comparative view of knowledge imposed a 
constraint on the kind of objects that could be known. Indeed, only finite objects 
could be compared with one another, while infinite objects admitted no 
comparison. To explain the impossibility of comparing infinites, Cusanus took the 
example of two infinite lines composed of an infinite number of segments. Even if 
the segments composing one line were longer than those composing the other 
line, the two lines would still have the same infinite length.302 For this reason, 
Cusanus stated that “the infinite as infinite is unknown because it escapes 
proportion.”303  

Returning to the topic of minimum and maximum, Cusanus first 
postulated the equivalence of the maximum and the infinite in De docta 
ignorantia I, 3.304 In chapter II, 1, this equivalence was reframed to 
accommodate the difference between the two highest expressions of maximum: 

                                                
300 De docta ignorantia, I, 1 (5): “Comparativa igitur est omnis inquisitio, medio 

proportionis utens.” 
301 De docta ignorantia, I, 1 (5): “Uti haec in mathematicis nota sunt, ubi ad prima 
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302 De docta ignorantia, II, 1 (64): “Linea infinita ex infinitis bipedalibus esset minor 
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303 De docta ignorantia, I, 1 (6): “Infinitum ut infinitum, cum omnem proportionem 
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304 De docta ignorantia, I, 3 (9): “Maximum vero tale necessario est infinitum.” 



 111  

God and the universe. Both God and the universe were infinite. Yet the universe 
was infinite privately (privative), while God was infinite negatively (negative).305 
Cusanus seemed to suggest that God was negatively infinite in the sense that He 
was the negation of the finiteness of creatures. On the other hand, Cusanus was 
more explicit about the privative infinity of the universe, which was associated 
with the limitlessness of the universe.306 For Cusanus, the most fundamental 
difference between God and the universe was that God was an absolute 
maximum, while the universe was a contracted maximum. To use the words of 
Hans Blumenberg:  

[Contraction] is thus the general and thoroughgoing characteristic of 
the actual world and of what is actual within it. What is actual is this or 
that, which is to say that as this and not that, it is actual at the expense 
of possibilities no longer open. Nothing actual is what it can be. (…) 
The universe also, as a unique whole, the universi prima generalis 
contractio, which is followed by the further degrees of restriction into 
genera, species and individua does not exhaust the horizon of 
possibility, which is defined by God’s omnipotence.307 

For Blumenberg, Cusanus’ distinction between absolute and contracted was a 
refurbishment of the medieval view whereby “the world was represented as 
[God’s] absolute power’s self-restriction to an arbitrary particle of what was 
possible for it.”308 For this reason, Blumenberg argues that Cusanus stood before 
what he called the “threshold of modernity.”309 More importantly here, the couple 
absolute-contracted may help clarify the difference between the infinity of God 
and the infinity of the universe. Cusanus argued that “with respect to God’s 

                                                
305 De docta ignorantia, II, 1 (64): “Solum igitur absolute maximum est negative 

infinitum; quare solum illud est id, quod esse potest omni potentia. Universum vero 
cum omnia complectatur, quae Deus non sunt, non potest esse negative infinitum, 
licet sit sine termino et ita privative infinitum.” 

306 Miller, “Cusanus, Nicolaus [Nicolas of Cusa],” para. 2.1. 
307 Blumenberg, The Legitimacy of the Modern Age, 544. 
308 Blumenberg, 563. 
309 Blumenberg, 269. 
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infinite power, which is illimitable, the universe could have been greater.”310 This 
was because God’s power included all the possibilities, while the universe 
included only those possibilities that were actualized. Nevertheless, there was no 
actualized possibility, that is no being, outside the universe. In this sense, the 
universe had reached its maximum extension and could be said to be infinite.  

  While Cusanus provided a wealth of detail on the infinity of the 
maximum, he did not specify how to conceive the infinity of the minimum. Yet 
Cusanus made it clear that if the ascent to the maximum went to infinity, so did 
the descent to the minimum. Despite this difficulty, an attempt can be made to 
reconstruct the infinity of the minimum based on the infinity of the maximum. Of 
the two models of infinity (privative versus negative) developed by Cusanus for 
the maximum, the privative model may also be applied to the minimum. Studying 
minimum and maximum in arithmetic has shown us that the minimum could not 
be expressed by a finite number. If numbers failed to represent the minimum, so 
did the other finite entities, for mathematical symbols were the most suited for 
visualizing concepts like the minimum (De docta ignorantia, I, 11). The 
minimum, therefore, could be said to be limitless or privatively infinite insofar as 
it could not be understood by means of finite beings such as numbers.      

In De docta ignorantia II, 1, Cusanus described the privative infinity as an 
attribute of the contracted maximum, the universe. Thus, if the minimum could 
be described as privately infinite, it seems safe to assume that Cusanus 
acknowledged the existence of a contracted minimum. However, it must be said 
that there was no explicit mention of the term “contracted minimum” in Cusanus’ 
works. Moreover, the case of geometry reminds us that the minimum was more of 
an absolute than a contracted quantity. This begs the question, was there a 
contracted entity resembling the minimum which could be used to visualize this 
otherwise ineffable concept? In De thelogicis complementis (1453), Cusanus 
argued that  

[God] made a point, which is almost nothing. For between a point and 
nothing there is no intermediary; for a point is to such an extent 

                                                
310 De docta ignorantia, II, 1 (65): “Licet in respectu infinitae Dei potentiae, quae est 

interminabilis, universum posset esse maius” 
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almost-nothing that if you added a point to a point, there would result 
no more than if you were to add nothing to nothing.311 

By virtue of its being “almost nothing,” the point was a suitable candidate for 
representing the contracted minimum. Indeed, the point was not a contracted 
quantity, since two or more contracted quantities could be added to form a 
greater quantity, while a point added to a point yielded nothing. (As already seen, 
this was also the reason why Cusanus did not subscribe to the atomistic belief 
that a line was a set of points placed side by side). On the other hand, the point 
existed and functioned as the end of the line. In sum, the point was on the 
threshold between nothingness and being. The contracted minimum had also a 
peculiar ontological status, since it was a contracted entity whose essence 
however exceeded that of finite beings. Given this similarity, the point could be 
used as a symbol of the contracted minimum.  

Did Cusanus also conceive an absolute minimum? There was only one 
occurrence of the term “absolute minimum” in De docta ignorantia III, 1.312 The 
passage in question can be regarded as a paraphrase of chapter II, 1, where 
Cusanus claimed the impossibility of ascending to the maximum or descending to 
the minimum. The only significant difference between the two passages was that 
Cusanus replaced simpliciter with absolute. As already mentioned, Cusanus used 
simpliciter as synonymous with absolute. Therefore, when inquiring about the 
concept of absolute minimum in Cusanus’ thought, we should count the 
occurrences of the term “minimum simpliciter” as well as those of the term 
“minimum absolute.” Since in De docta ignorantia alone this amounts to ten 
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occurrences (one of “minimum absolute,” nine of “minimum simpliciter”),313 we 
can conclude that Cusanus had a concept of absolute minimum.  

To better understand Cusanus’ concept of absolute minimum we need to 
return to De docta ignorantia II, 1. There Cusanus recalled the notion of equality 
(equalitas) with which he had already dealt in Chapter I, 3. The notion of equality 
offered a means to distinguish between God and the created world. Cusanus 
claimed that in the created world there were infinite degrees of equality. This 
meant that, as similar as two objects may appear, they would always remain 
separate objects and never coincide. By the same token, Cusanus argued that “the 
measure and the measured—however equal they are—will never be the same.”314 
Cusanus conceived the act of measuring as a process whereby the measurement 
instrument came to coincide with the object to be measured. Nevertheless, he 
found it impossible to carry out this process in the created world because perfect 
equality did not belongs to created things but only to God. Accordingly, the 
measurement of created things would always imply a certain degree of 
approximation, as the gap between instrument and object could by no means be 
filled. As a metaphor of this approximation, Cusanus took the example of the 
polygon and the circle:  

The more angles the inscribed polygon has the more similar it is to the 
circle. However, even if the number of its angles is increased ad 
infinitum, the polygon never becomes equal [to the circle] unless it is 
resolved into an identity with the circle.315 
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numquam tamen efficitur aequalis, etiam si angulos in infinitum multiplicaverit, 
nisi in identitatem cum circulo se resolvat.” The metaphor of the polygon and the 
circle reminds us of Cusanus’ attempts to square the circle. On Cusanus and the 
quadrature of the circle, see Fritz Nagel, Nicolaus Cusanus un die Entstehung der 
Exakten Wissenschaften (Münster: Aschendorff, 1984). 
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In De docta ignorantia II, 1, Cusanus also acknowledged the impossibility of 
making precise measurements in the created world. In fact, in keeping with the 
idea that perfect equality only belonged to God, Cusanus launched an attack on 
what, in many other respects, provided the foundation for his mathematical 
theology, that is the Boethian quadrivium. Probably inspired by his efforts to 
reform the calendar, Cusanus demonstrated that the planetary motions could not 
be measured with precision.316 Moreover, he claimed that it was impossible for 
two geometric figures or for two numbers to be perfectly equal, and that it was 
inappropriate to speak of musical harmony. By frustrating every human attempt 
at precise measurement, the four mathematical sciences of the quadrivium 
revealed that perfect equality could only be experienced negatively in the created 
world. It is worth noting that this departure from Pythagoreanism was aimed, in 
Cusanus’ view, to reinforce the principle that perfect equality was exclusively a 
divine attribute.    

Note that De docta ignorantia II, 1 was also the place where Cusanus 
denied the possibility of ascending to the maximum or descending to the 
minimum. In light of this, one may be tempted to draw a connection between the 
issue of the precision (or lack thereof) of measurement on the one hand, and the 
problem of how Cusanus conceptualized the absolute maximum and (more 
importantly for this study) the absolute minimum on the other hand. For 
Cusanus, one could not ascend to the maximum nor descend to the minimum, 
any more than one could make a polygon coincide with a circle by adding an 
endless number of sides. In fact, the circle could be used as a metaphor for the 
minimum and maximum, as both could be asymptotically approached but not 
reached. In turn, since minimum and maximum coincided in God, their ineffable 
nature substantiated the claim that our knowledge of God could only be a docta 
ignorantia, an ignorance aware of its necessity. This did not mean that our efforts 
to know God or to make precise measurements were in vain, as in making them 
we closed the gap with God and increased the degree of precision of our 

                                                
316 On Cusanus and the reform of the calendar, see Hans Gerhard Senger, Die Philosophie 

Des Nikolaus von Kues Dem Jahre 1440. Untersuchungen Zur Entwicklung Einer 
Philosophie in Der Fruhzeit Des Nikolaus (1430-1440) (Münster: Aschendorff, 
1971). 
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measurements. And it was this quest for infinite preciseness that captured the 
essence of the absolute minimum and maximum.  

As already mentioned in the Introduction, Bruno entered the labyrinth of 
the continuum and lost himself trying to find his way out of it. Unlike Bruno, 
Cusanus did not dare to set foot in the labyrinth of the continuum, but not 
because he thought that the continuum problem was more of a philosophical than 
a mathematical problem. (Seventeenth-century mathematicians used this 
argument to explain their decision not to deal with the continuum problem.) If 
anything, Cusanus viewed the continuum problem as more of a theological than a 
mathematical problem. Indeed, a reading of De docta ignorantia gives the 
impression that Cusanus regarded the labyrinth of the continuum as a temple, a 
sacred space. His account of minimum and maximum shows that he did not 
ignore the problems related to the conceptualization of the infinite, but he 
thought that the solution to these problems exceeded the limits of human 
understanding. Bruno would have thought of the minimum in the same terms, if 
it were not for Mordente’s compass. It is true that the argument of Bruno’s 
dialogues on Mordente’s compass rested on the assumption that the minimum 
parts of mathematical objects had no defined shape (see next Chapter). Thus, like 
Cusanus’, Bruno’s definition of the minimum was characterized by a certain 
degree of indeterminacy—indeterminacy that would eventually disappear when in 
De minimo Bruno would claim that the minimum had a circular shape. 
Nevertheless, Mordente’s compass allowed to divide and measure geometric 
quantities down to their minimum parts, sidestepping the problem of their 
indeterminacy. In this way, it not only provided an argument in favor of atomism, 
but it also turned the minimum from an ineffable reality to an understandable 
concept.    

The aim of the first part of this thesis has been to provide an overview of 
the contribution of Llull and Cusanus to the development of Bruno’s 
mathematics. In my opinion, the study of these two Bruno’s sources is important 
because it yields insights into the origin of Bruno’s mathematical ideas, the 
peculiarity of which has often led scholars to consider them individually and not 
in relation to a philosophical tradition. This is especially true of the atomistic view 
of mathematical objects that, as I have tried to show in Chapter 1, Bruno inherited 
from Llull and which inspired Bruno’s project of a mathematical reform. As for 
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Cusanus, an analysis of his account of minimum and maximum reveals that, on 
building on this account, Bruno could not but be aware of the problematic status 
of these two concepts. On top of that, Bruno viewed the minimum as the 
indivisible part of which both mathematical and physical objects were composed. 
In doing so, he integrated the Cusan minimum into the atomistic framework 
derived from Llull, thus laying the foundation for his atomistic geometry. 
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PART TWO. BRUNO’S ATOMISTIC GEOMETRY 
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3. Bruno’s first mathematical writings: The dialogues on 
Mordente’s compass  

Introduction 

In October 1585, Giordano Bruno returned to Paris from London in the entourage 
of his patron, the French ambassador Michel de Castelnau. So ended the two and 
a half years that Bruno spent in England, a period in which he wrote eight works 
(including his six Italian dialogues), and had faced criticism and hostility from 
the English intellectual environment. Bruno’s stay in England has been the 
subject of several studies, and yet we do not know with certainty the reasons that 
led to his return to France.317 Saverio Ricci proposes that Bruno was not the only 
one who failed in England. The diplomatic mission of Castelnau also turned out 
to be unsuccessful.318 With no one willing to support him in England, Bruno had 
no choice but to follow Castelanau when this latter decided to move back to 
France. What is certain is that Bruno did not feel welcome in Paris either, so 
much so that he left for Germany less than one year from his arrival. 

Two events made it impossible for Bruno to stay in Paris longer: the 
controversy with the Italian mathematician Fabrizio Mordente (1532 – 1608), 
and the dispute against Aristotelian philosophy in which Bruno took part at the 
Collège de Cambrai (now part of the Collège de France) in May 1586. Bruno 
scholars have already provided a historical reconstruction of both these events.319 
                                                
317 On Bruno in England, see Hilary Gatti, The Renaissance Drama of Knowledge. 

Giordano Bruno in England (London; New York: Routledge, 1989); Giovanni 
Aquilecchia, “Giordano Bruno in Inghilterra (1583-1585). Documenti e 
testimonianze,” Bruniana & Campanelliana 1, no. 1/2 (1995): 21–42; John Bossy, 
Giordano Bruno and the Embassy Affair (New Haven: Yale University Press, 
2002); Mordechai Feingold, “Giordano Bruno in England, Revisited,” Huntington 
Library Quarterly 67, no. 3 (September 2004): 329–46; Diego Pirillo, Filosofia ed 
eresia nell’Inghilterra del tardo Cinquecento: Bruno, Sidney e i dissidenti religiosi 
italiani (Rome: Edizioni di storia e letteratura, 2010). 

318 Saverio Ricci, Giordano Bruno nell’Europa del Cinquecento (Rome: Salerno editrice, 
2000), 191–92. 

319 For a historical reconstruction of the Bruno-Mordente controversy, see Yates, “Bruno: 
New Documents.” On the dispute at the Collège de Cambrai, see Amalia Perfetti, 
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However, less attention has been paid to the impact that the controversy with 
Mordente had on Bruno’s mathematics. To my knowledge, Luciana De Bernart is 
the only scholar who has addressed this issue.320 In writing this chapter, I have 
greatly benefited from her work.  

There may be several reasons why the Bruno-Mordente controversy has 
been neglected so far. First of all, this may be the result of the low esteem in 
which scholars have held Bruno’s mathematics in general.321 For instance, 
Cassirer notices how the “concrete” character of Bruno’s mathematics prevented 
him from seeing those “laws and ideal relations whose value is independent from 
the nature of the existing things and of matter.”322 Likewise, Védrine, borrowing 
Bachelard’s terminology, speaks of a “realistic obstacle” hindering Bruno’s 
mathematics (more on this in Chapter 4).323 As a result of these criticisms, Bruno 
has been viewed as a poor mathematician. But when it comes to the Bruno-
Mordente controversy, there are other factors to be considered, starting with the 
fact that this controversy remained unknown until the 1950s. Up to that time 
scholars were aware that Bruno and Mordente met in Paris in 1586, but they did 
not know about the controversy. It was thanks to the textual discoveries made by 
Frances Yates324 and Giovanni Aquilecchia325 (to which we shall return below) 
that the controversy became known, thus opening a new chapter in Bruno’s 
already long history of conflicts and disagreements.  

But what was the bone of contention between Bruno and Mordente? 
Mordente was the inventor of one the first proportional compasses (also known 
as sectors), an instrument constructed according to the principles of trigonometry 

                                                                                                                                            
“Un nuovo documento sul secondo soggiorno parigino di Giordano Bruno (1585-
1586),” in Giordano Bruno: gli anni napoletani e la peregrinatio europea: 
immagini, testi, documenti, ed. Eugenio Canone (Cassino: Università degli studi di 
Cassino, 1992). 

320 De Bernart, Numerus quodammodo infinitus. 
321 For more information on the reception of Bruno’s mathematics, see the Introduction. 
322 Cassirer, “Il problema della conoscenza nella filosofia e nella scienza dall’Umanesimo 

alla scuola cartesiana,” 345. 
323 Védrine, “L’obstacle réaliste,” 247. 
324 Yates, “Bruno: New Documents.” 
325 Aquilecchia’s findings are published in Bruno, Due dialoghi sconosciuti. 
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to solve arithmetic and geometric problems (such as calculating the square root of 
a number or squaring a curved figure). Mordente’s compass was almost unknown 
until the late 1800s, as its existence was overshadowed by that of another 
proportional compass, invented by a better-known Italian scientist: Galileo 
Galilei.326 However, Mordente’s compass did not go completely unnoticed by his 
contemporaries, catching the eye of technicians and mathematical practitioners, 
but also of speculative thinkers like Bruno. Puzzled by the novelty of Mordente’s 
invention, Bruno offered to write a Latin exposition of the compass in the form of 
two dialogues (entitled Mordentius and De Mordenti circino). Mordente, 
however, must not have liked what Bruno had to say about his compass, as he 
tried to acquire and burn as many copies of Bruno’s dialogues as possible. In 
response, Bruno wrote two more dialogues (entitled De idiota triumphans and De 
somni interpreatione), in which he accused Mordente of plagiarism and 
stupidity.327 

The Bruno-Mordente controversy will be discussed at length below. Here, I 
would like to focus on what happened in the aftermath of that controversy. In the 
years from 1586 to 1591, Bruno would go on to develop the idea that geometric 
objects were composed of indivisible parts, turning it into a fully-fledged 
atomistic geometry. Ultimately, this project would result in the publication of De 
minimo, where Bruno theorized his atomistic geometry based on the concept of 
the minimum. But if De minimo marked the end of Bruno’s mathematical 
odyssey, its starting point was found in the Italian dialogues that Bruno published 
in London in 1584, in particular in De la causa, principio e uno (On Cause, 

                                                
326 On Galileo’s proportional compass, see Antonio Favaro, “Per la storia del compasso di 

proporzione,” Atti del Reale Instituto Veneto di Scienze, Lettere e Arti 67 (1907): 
723–39; Paul Lawrence Rose, “The Origins of the Proportional Compass from 
Mordente to Galileo,” Physis 10 (1968): 53–69; Edward Rosen, “The Invention of 
the Reduction Compass,” Physis 10 (1968): 306–8; Ivo Schneider, Der 
Proportionalzirkel: ein universelles Analogrecheninstrument der Vergangenheit 
(Munich: R. Oldenburg, 1970); Matteo Valleriani, Galileo Engineer (Dordrecht: 
Springer Netherlands, 2010), 27–40. 

327 All of the four dialogues on Mordente’s compass are now published in Bruno, Due 
dialoghi sconosciuti. 
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Principle and Unity) and De l’infinito, universo et mondi (On the Infinite 
Universe and Worlds). 

Indeed, as Angelika Bönker-Vallon328 and Jean Seidengart329 have 
demonstrated, it is in these dialogues that Bruno, building on the work of 
Nicholas of Cusa, laid the foundation for his atomistic geometry. Nevertheless, 
although Bruno first dealt with the issue of the composition of the continuum in 
De la causa and De l’infinito, Seidengart notices that in these works, Bruno’s 
atomism was not yet fully developed.330 The term “atoms” was mentioned several 
times especially in De l’infinito, and yet Bruno did not specify how these atoms 
came together to form an object, or if he subscribed to a specific kind of atomism 
(e.g. Democritean or Epicurean). Moreover, in the Italian dialogues, Bruno did 
not seem to conceive of the existence of a geometric minimum, as the atomic 
structure was only attributed to physical entities. It was not until the controversy 
with Mordente and the publication of the dialogues on his compass that Bruno 
claimed that geometric objects were composed of infinitely small indivisible 
parts. For this reason, an analysis of Bruno’s dialogues on Mordente’s compass 
may offer new insights into the development of Bruno’s mathematical thinking. 
Also, it may show how Bruno’s mathematics changed over time, highlighting the 
differences between the theory developed in the dialogues on Mordente’s 
compass, and the theory presented in the later De minimo.                      

From an historical perspective, the Bruno-Mordente controversy is 
important for another reason. We have seen that early interpreters such as 
Cassirer and Védrine have argued against the modernity of Bruno’s mathematics 
on account of its being more of a concrete than an abstract knowledge. On the one 
hand, the fact that Bruno’s mathematics grew out of efforts to illustrate the use of 
Mordente’s compass seems to corroborate this opinion, showing that indeed 
Bruno had an early interest in mathematical practices. On the other hand, if 
Bruno’s mathematics is to be criticized for being outdated, we need to clarify what 
is meant by modern mathematics. Bruno’s critics seem to assume that modern 

                                                
328 Bönker-Vallon, Metaphysik und Mathematik bei Giordano Bruno; Bönker-Vallon, 

“Giordano Bruno e la matematica.” 
329 Seidengart, “La metaphysique du minimum.” 
330 Seidengart, 63. 
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mathematics was characterized by its high level of abstractedness and theoretical 
speculation. In other words, their concept of modern mathematics seems to 
coincide with what has been called “pure knowledge” as opposed to “applied 
knowledge.”331  

But did Renaissance mathematics fall squarely within the domain of pure 
knowledge? Certainly, Renaissance mathematics was in the process of becoming 
pure, as one of the goals of those defending the certitude of mathematics at that 
time was to ensure the independence of mathematics from other forms of 
knowledge, especially physics.332 However, one may argue that alongside 
‘theoretical’ mathematicians (such as Cardano, Tartaglia, and Regiomontanus), 
there was a wide range of mathematical practitioners whose activities have gone 
almost unnoticed until recently. To be fair, exploring the world of mathematical 
practitioners is not an easy task, since their work was rarely converted into 
printed books or formalized in mathematical theories. Nevertheless, especially 

thanks to the pioneering studies of Eva G. R. Taylor,333 scholars have gradually 

become aware of the importance of mathematical practitioners in establishing 
mathematics as a leading discipline during the Renaissance.334 The Bruno-

                                                
331 For a discussion of the distinction between pure and applied knowledge in early 

modern mathematics, see Sophie Roux, “Forms of Mathematization (14th-17th 
Centuries),” Early Science and Medicine 15, no. 4–5 (2010): 319–37. 

332 Here I am referring to the so-called Quaestio de certitudine mathematicarum which 
took place in the sixteenth century. Among those who made a case for the certitude 
of mathematics, there were Francesco Barozzi (1537-1604) and Christophorus 
Clavius (1538-1612). For more information on the Quaestio, see Anna De Pace, Le 
matematiche e il mondo: ricerche su un dibattito in Italia nella seconda metà del 
Cinquecento (Milan: Franco Angeli, 1993); Mancosu, Philosophy of Mathematics, 
10–33; Emilio Sergio, Verità matematiche e forme della natura da Galileo a 
Newton (Rome: Aracne, 2006), 11–52. 

333 Eva G. R. Taylor, The Mathematical Practitioners of Tudor and Stuart England 
(Cambridge: Cambridge University Press, 1954). 

334 For a more recent analysis of early modern mathematical practitioners, see Lesley B. 
Cormack, Steven A. Walton, and John A. Schuster, eds., Mathematical 
Practitioners and the Transformation of Natural Knowledge in Early Modern 
Europe (Cham: Springer, 2017). 
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Mordente controversy provides yet another example of the interaction between 
theoretical and practical mathematics in this period.   

Last but not least, the Bruno-Mordente controversy may shed new light on 
the question of to what extent Bruno’s concept of the minimum may be 
considered a forerunner of the modern notion of infinitesimal. As is well known, 
the introduction of infinitely small quantities marked a turning point in early 
modern mathematics, leading to the development of the calculus.335 Bruno’s 
minimum was the smallest quantity which geometric objects were composed of. 
In spite of this, scholars have been reluctant to draw even the slightest connection 
between Bruno and the infinitesimals. The reasons for this behavior are well 
explained by Leonardo Olschki.336 Arguably one of Bruno’s harshest critics, 
Olschki claims that Bruno was prevented from seeing “the most basic version of 
the infinitesimal principle” by his denial of the coincidence of the minimum arc 
and the minimum chord.337 In other words, the problem with Bruno’s geometry, 
in Olschki’s opinion, was that it envisaged two kinds of minima, one for the 
straight line and one for the curved line. On the contrary, in the theory of 
infinitesimals, every line—no matter whether straight or curved—was considered 
as composed of infinitely small, straight lines. Moreover, Olschki adds, “Bruno’s 
concrete geometry would have taken on an evident significance, if it had been 
connected to a theory of motion.”338 

Writing in 1927, Olschki could not have read Bruno’s last two dialogues on 
Mordente’s compass, which were rediscovered only in 1957. If he could have done 
so, he would have probably realized that both his objections to Bruno’s geometry 
were unwarranted. In fact, in De idiota triumphans (Bruno’s third dialogue), he 
argued that both straight and curved lines were composed of the same minima 
(see § 3.4). Furthermore, in De Mordentii circinoand more extensively in De 
somni interpretatione (respectively, Bruno’s second and fourth dialogue) he 
envisioned the possibility of a law of motion that could account for both circular 
                                                
335 For the history of the calculus, see Carl B. Boyer, The History of the Calculus and Its 

Conceptual Development (New York: Dover, 1949); C. Henry Edwards, The 
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and non-circular motions.339 The main field of application of this law of motion 
was the study of planetary orbits. Thus, Bruno had an answer for both the 
objections raised by Olschki, although this latter could not have known it. This 
opens the possibility for a new assessment of Bruno’s mathematics, which is what 
this chapter aims to carry out.    

In the following, I will first give a brief description of Mordente’s compass 
and of the controversy that originated from Bruno’s decision to write about it. 
Then I will move on to analyze Bruno’s first and third dialogues, where he 
explained how, working on Mordente’s compass, he came to discover the 
geometric minimum. Since the analysis of the second and the fourth dialogue 
(those in which Bruno developed the idea of a law of planetary motion based on 
his theory of minima) would require a separate study, this analysis is left for 
future study (see note 23).  

3.1 Mordente’s proportional compass: Some historical remarks  

To fully appreciate the value of Mordente’s compass and its importance for the 
history of science, we need to understand the difference between the reduction 
and proportional compass in the first place. The reduction compass (Figure 1) 
was at least as old as the ancient Romans, one of its first examples having been 
discovered in the archeological site of Pompeii.340 The main goal of a reduction 

                                                
339 De Mordentii circino, 58: “Is it not necessary that, in those things that are connected 

and related, the certain law of what moves away from and towards a center follows 
from the certain law of what rotates around a fixed center?” Considering that in the 
same text Bruno spoke of planetary motions, and that he mentioned the fact that 
“the stars happen to approach and move back from the sun and the earth” (De 
Mordentii circino, 57), one may argue that here Bruno seemed to postulate the 
existence of non-circular, planetary orbits. This claim would need to be 
substantiated by a thorough inquiry into Bruno’s astronomy, a task that is beyond 
the purpose of this work. For this reason, as mentioned below, I will not address this 
issue here.  

340 The reduction compass found in Pompeii is now kept at the Museo Archeologico 
Nazionale of Naples (inv. 76684). For more information, see Filippo Camerota, Il 
compasso di Fabrizio Mordente. Per la storia del compasso di proporzione 
(Florence: Leo S. Olschki, 2000), 14. 
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compass was to reduce or enlarge a drawing. The proportional compass, on the 
other hand, allowed to perform several mathematical operations, such as dividing 
a segment or a circumference into equal parts, or squaring an irregular figure. It 
did so by exploiting the geometric property that similar triangles have 
proportional corresponding sides. As such, the proportional compass may be 
considered the first calculating instrument of the modern age. For a long time, 
Mordente’s compass (Figure 2) had been seen as a reduction compass, a 
simplistic view that had not done justice to the Italian mathematician. Instead, as 
recently demonstrated by Camerota, Mordente’s compass was a proportional 
compass in its own right.341 

 

 

 

Fig. 1: An example of a reduction compass from the Medici Collections (Museo 
Galileo, Florence – Photography by Franca Principe) 

                                                
341 Camerota, 5–7. 
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Figure 2: The compass of Mordente (Museo Galileo, Florence – Photography by 
Franca Principe) 

The rediscovery of Mordente’s compass in the late 1800s reopened the question 
of the authorship of the proportional compass. This question has been debated 
ever since Galileo published Le operazioni del compasso geometrico e militare 
(The Operations of the Geometric and Military Compass, 1606).342 Galileo 
claimed to have constructed the first version of his compass (Figure 3) in 1597. 
However, there is evidence that other examples of proportional compass 
circulated in Europe even before 1597. A compass similar to that of Galileo had 
been constructed by the Flemish mathematician Michel Coignet as early as the 
1580s.343 Coignet in turn was familiar with Mordente’s compass, which he had 
helped promote through the publication of several treatises.344 In light of this 

                                                
342 Galileo Galilei, Le operazioni del compasso geometrico e militare ... (Padoa: Pietro 
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intricate network of acquaintances and information exchanges, several 
reconstructions have been proposed to explain the genesis of the proportional 
compass. Despite all these efforts, however, it remains unclear whether Mordente 
may be considered the inventor of the proportional compass—as sustained by 
Boffito345—or whether Mordente’s, Coignet’s and Galileo’s compass had different 
stories—as advocated, among others, by Favaro346 and Rose.347 

 

 

 

Fig. 3: The proportional compass of Galileo (Museo Galileo, Florence – 
Photography by Franca Principe)  

                                                                                                                                            
Salernitano ... (Antwerp, 1608); Michel Coignet, La geometrie reduite en un facile 
et briefve pratique ... (Paris: Charles Hulpeau, 1626). 

345 Giuseppe Boffito, Paolo dell’Abbaco e Fabrizio Mordente. Il primo compasso 
proporzionale costruito da Fabrizio Mordente e la Operatio Cilindri di Paolo 
dell’Abbaco, Il Facsmile 6 (Florence: Libreria internazionale, 1931). 

346 Favaro, “Per la storia del compasso di proporzione.” 
347 Rose, “The Origins of the Proportional Compass from Mordente to Galileo.” 
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But who was Fabrizio Mordente and under what circumstances did he invent his 
proportional compass? Born in Salerno in 1532, Mordente spent his youth 
travelling the world. During his explorations, he spent several months aboard 
Portuguese ships, an experience that would be crucial for the invention of the 
compass.348 At the end of the sixteenth century, the Portuguese empire was still 
one of the largest colonial empires in the world, and its fleet was equipped with 
the most common astronomical instruments. In the age of world explorations, the 
issue of increasing the precision of astronomical instruments was of crucial 
importance not only for astronomy but also for navigation. The success of long-
distance journeys across the oceans depended on instruments like the astrolabe, 
which were used by the sailors to determine their position in the open sea. 
However, the accuracy of these instruments was far from perfect. It is worth 
remembering that, in navigation, there is little room for error, as at sea level one 
minute of arc along the Earth’s equator equals approximately one nautical 
mile (1.852 km or 1.151 mi). By closely studying the astronomical instruments, 
Mordente would have realized that their precision depended on the number of 
parts into which the degree of arc was divided. The more the parts of the degree, 
the more the precision of the instrument. Theoretically, Mordente’s compass was 
capable of dividing the degree of arc into an infinite number of parts. For this 
reason, when Mordente published his first treatise, he presented the compass as a 
way to increase the precision of astronomical instruments.349  

Mordente continued to advertise his compass by publishing three other 
treatises, the most important of which was La Quadratura del cerchio, la Scienza 
de’ residui, il Compasso et riga di Fabrizio, et di Gasparo Mordente fratelli 
salernitani (The Quadrature of the Circle, the Science of Remainders, The 
Compass and Ruler by Fabrizio and Gasparo Mordente, Salerno Brothers).350 
Published in Antwerp in 1591, this treatise was the result of a joint effort by the 
two Mordente brothers, Fabrizio and Gasparo, and was composed of three parts. 
                                                
348 Camerota, Il compasso di Mordente, 25–26. 
349 Fabrizio Mordente, Modo di trovare con l’Astrolabio, ò Quadrante, ò altro 

instrumento, oltre gradi, intieri, i minuti, et secondi, et ognaltra particella (Venice: 
Paolo Forlani, 1567). 

350 Fabrizio Mordente and Gasparo Mordente, La Quadratura del cerchio, la Scienza de’ 
residui, il Compasso et riga (Antwerp: Philippe Galles, 1591). 
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The first part presented an attempt to solve the problem of the quadrature of the 
circle. The second part was dedicated to defining what was called the “science of 
remainders” (scienza de’ residui), whose objective was to measure even the 
smallest remainder of the division of a magnitude. Finally, the third part 
contained a description of the ultimate version of Mordente’s compass. No 
adjustment would be made to the compass in the following years, probably 
because of the limited circulation of the instrument itself due to its high cost.351 

As already mentioned, Mordente’s compass would rapidly fall into 
oblivion, only to be rediscovered in the second part of the nineteenth century. 
Ironically, it was thanks to Bruno, a great admirer of Mordente at first but then 
one of his most severe critics, that modern-day scholars turned their attention to 
Mordente’s compass. It all started with Berti, who drew attention to Bruno’s first 
two dialogues on Mordente’s compass, those in which Bruno praised Mordente 
for his invention.352 Several decades later, Yates published the letters of Jacopo 
Corbinelli to Gian Vincenzo Pinelli, in which the Bruno-Mordente controversy 
was reported in detail.353 This was six years before Aquilecchia published Bruno’s 
last two dialogues, those written after Mordente tried to burn all the copies of the 
first two dialogues.354 Hence, the encounter of Mordente and Bruno was 
important not only for the development of Bruno’s atomistic geometry, but also 
for the history of the proportional compass.   

3.2 The Bruno-Mordente controversy  

In a letter to Gian Vincenzo Pinelli dated September 29, 1585, Jacopo Corbinelli 
reported that Fabrizio Mordente had arrived in Paris.355 In his letter, Corbinelli 
mentioned two printings by Mordente: a single-sheet treatise showing an 
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illustration of the compass,356 and another work that has not yet been identified. 
Sheets like that mentioned by Corbinelli were distributed during the public 
demonstrations that Mordente organized to promote his compass. It is during 
one of these demonstrations that Bruno, who returned to Paris from London in 
October 1585, first became acquainted with Mordente’s compass. From the 
beginning, he was very enthusiastic about the invention of his fellow countryman, 
as reported by the librarian of the abbey of Saint Victor, Guillaume Cotin, in his 
diary on February 2, 1586.357 According to the librarian, Bruno hailed Mordente 
as the “god of geometers.” Furthermore, since Mordente did not know Latin, 
Bruno offered to write a Latin exposition of his compass, as mentioned above.  

The two dialogues entitled Mordentius (Mordente) and De Mordentii 
circino(On Mordente’s Compass) were published shortly thereafter. For a long 
time, these two dialogues were the only known texts where Bruno spoke of 
Mordente’s compass. This inevitably influenced early interpretations of the 
relationship between Bruno and Mordente, giving the impression that Bruno’s 
opinion about Mordente was overall positive. For example, writing in 1927, 
Olschki argued that Bruno praised Mordente “more than any other thinker or 
mathematician, more than Paracelsus and Copernicus, Cusanus and Plato.”358 
Olschki could not know that the two Italians engaged in a discussion as soon as 
Bruno started writing the first two dialogues, as recorded by Corbinelli in a letter 
to Pinelli dated February 16, 1586: 

I send you these two writings; our Fabritio is in a brutal rage against 
the Nolan and wishes to avenge himself in every way: but it does not 
seem to me that he has all the right on his side because, although the 
Nolan honors himself with the discourse of his, at the same time he 
also celebrates, and makes the author, him who is the author. The 
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other writing is considered mad by those who know and there are not 
many of them to be found. Of such, patience.359 

The Pinelli-Corbinelli correspondence has been extensively studied, although a 
complete edition of it has not yet been published. Rather, scholars have tended to 
focus on micro-regions of this large correspondence, relying on it to shed light on 
specific historical events, such as the Massacre of St. Bartholomew360 or the 
relationship between Corbinelli and the French intellectual environment.361 
Likewise, Yates limits herself to the analysis of the letters of Corbinelli to Pinelli 
containing references to Bruno with the aim of “anchor[ing] him [Bruno] in the 
contemporary scene.”362 In doing so, Yates manages to provide a chronology of 
the discussion between Bruno and Mordente.  

The above letter shows that Bruno must have been on good terms with 
Pinelli, who defended him, contending that Mordente did not have “all the right 
on his side.” The letter also offers insights into the reasons that led to the 
discussion between Bruno and Mordente. Pinelli had entrusted Corbinelli with 
the task of supplying books and manuscripts for the library he was establishing in 
Padua. In fulfilling this task, Corbinelli attached two writings to the above letter. 
Undoubtedly, the first writing had triggered the discussion between Bruno and 
Mordente. However, we cannot be sure that the writing in question was a printed 
copy of Bruno’s first two dialogues, or only a draft of them, as assumed by 
Yates.363 Be that as it may, Mordente possessed the same writing and certainly 
did not appreciate its content. The letter provides no information about the 
second writing that Corbinelli sent to Pinelli. Yates proposes that “Corbinelli is 
here being purposely vague and mystifying, as often in these letters when he is 
sending his employer something which he does not want to fall into inquisitorial 
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hands in Italy.”364 Hence, if Yates is correct, the second writing was unrelated to 
the discussion between Bruno and Mordente.  

The first two dialogues that Bruno wrote on Mordente’s compass must 
have been published prior to April 14, 1586. On that date, indeed, Corbinelli 
wrote to Pinelli:  

The Nolan has printed I know not what in which he extols to heaven 
Fabritio’s compass, but as a philosopher it seems that he wants to 
regulate the judgement and the expression of the said Fabritio, as 
though to show him that he has need of someone who should expound 
his arguments better (that he can himself). Fabritio fulminated with 
rage and wanted to print, but he gets muddled both when he speaks 
and when he writes. And the Nolan, who knew this, was prepared to 
scold him well in the second dialogue. It seems to me that the affair is 
over, and that both of them are content to go no further. It has cost 
Fabritio several crowns to buy up the Nolan’s dialogue and have it 
burned. If I can get hold of a copy I will send it to your excellence.365 

When Yates first published this letter, she could not know that Bruno published 
two more dialogues on Mordente’s compass in addition to the first two. For this 
reason, she assumed that the first two dialogues were published separately, and 
that Bruno was preparing the second dialogue by the time this letter was written. 
Yates’ hypothesis was corrected by Aquilecchia once he rediscovered the other 
two dialogues.366 As can be seen from the dates of Corbinelli’s letters, the tension 
between Bruno and Mordente escalated very quickly. Within less than two 
months (from February 16 to April 14) Bruno published the first two dialogues on 
Mordente’s compass. It was then that Mordente, annoyed by what Bruno had to 
say about his compass, sought to acquire and burn all the copies of Bruno’s 
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dialogues. As a response, Bruno started working on two new dialogues to defend 
himself from Mordente’s attacks.  

The publication of Bruno’s last two dialogues on Mordente’s compass, 
titled De idiota triumphans (The Triumphant Illiterate) and De somni 
interpretatione (The Interpretation of a Dream), must have occurred before 
June 6, 1586, on which date Corbinelli wrote to Pinelli:  

The Nolan still against Mordente, and new dialogues. Now he is 
engaged in destroying the whole of the peripatetic philosophy, and, 
from what little I understand of it, it seems to me that he delivers his 
arguments very well. I think that he will be stoned by this University. 
But soon he is going to Germany. Enough that in England he has left 
very great schisms in those schools. He is a pleasant companion, an 
Epicurean in his way of life.367 

Compared to the earlier letters, Corbinelli here says little about the Bruno-
Mordente controversy, except that it is still going on. Rather, he draws attention 
to another event concerning Bruno, his public dispute against Aristotelian 
philosophy held at the Collège de Cambrai on May 28-29, 1586.368 In contending 
that during the dispute Bruno had “deliver[ed] his arguments very well” and in 
calling him “a pleasant companion, an Epicurean in his way of life”, Corbinelli 
once again expressed his sympathy for Bruno. He also spoke of Bruno’s stay in 
England, which had caused “very great schisms in those schools.” As noted by 
Yates,369 Corbinelli was probably referring to the university of Oxford, where, in 
1583, Bruno had taught for a few weeks before being charged of plagiarism. 
Corbinelli foresaw that Bruno would also be removed from the university of Paris 
because of the great clamor that had accompanied his anti-Aristotelian dispute. 
Bruno himself seemed to be aware of this, which explains why he was planning to 
go to Germany. However, the polemic with the Aristotelians may not be the only 
reason for Bruno’s departure from Paris. Mordente may also have played a role, 
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having decided to abandon the circle of Henry of Navarre to support the Duke of 
Guise.370 Bruno, on the other hand, had remained faithful to Henry of Navarre. 
Suddenly, the polemic between Bruno and Mordente had taken a political turn, 
and Bruno may have decided to retreat rather than engage in this sort of fight. He 
would be safe in Germany by the time the War of the Three Henrys broke out in 
1587. 

That of Corbinelli is the only extant account of the Bruno-Mordente 
controversy. Unfortunately, this account provides little information on how the 
controversy started, or why Mordente was outraged by Bruno. From the Pinelli-
Corbinelli correspondence, one gains the impression that Mordente did not 
accept Bruno’s interpretation of the compass. This is also confirmed by the 1591 
treatise written by the two Mordente brothers wherein Bruno was defined as a 
“shadow of philosopher” because of his failure to understand the theory 
underlying the use of the compass.371 In addition, Corbinelli informs us that the 
controversy started as soon as Bruno’s first two dialogues began to circulate. 
Thus, Mordente’s anger must have been provoked by something that Bruno had 
written in the first two dialogues. Given the lack of other documents, we can only 
turn to Bruno’s dialogues to better understand the reasons for Mordente’s anger, 
aware of the fact that the information gathered from Bruno’s dialogues will be 
necessarily biased.   

The first two dialogues that Bruno wrote on Mordente’s compass were 
published together at the beginning of 1586 by Pierre Chevillot in Paris. The 
protagonists of the two dialogues were Giovanni Botero (the author of the Reason 
of State) and Mordente himself.372 By the time Bruno wrote the two dialogues, 
Botero, Mordente and Bruno were all members of the circle surrounding Henry of 
Navarre (the future King of France). Only later, and probably as a result of the 
controversy with Bruno, would Mordente switched sides and went on to support 
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Henry of Navarre’s rival, the Duke of Guise. In the preface to the dialogues, Bruno 
explained his decision to write about Mordente’s compass by presenting its 
inventor as one of those “Mercuries” sent by the divine providence “to remedy the 
fatigue and indigence of mortals.”373 This was the best compliment that Mordente 
could receive from Bruno, who also saw himself as a Mercury, a divine messenger 
entrusted with the mission of revealing the truth.374 The figure of Mercury, the 
Roman equivalent of the Greek god Hermes, was central to the Hermetic 
tradition that influenced many aspects of Bruno’s thought—although the 
importance of this tradition as a Brunian source has been gradually reduced ever 
since Yates first drew attention to it.375  

In addition, Bruno borrowed from the Hermetic tradition the idea that the 
history of human knowledge followed a circular path, which caused the truth to 
be regularly forgotten and rediscovered. For example, in the Spaccio de la bestia 
trionfante (Expulsion of the Triumphant Beast, 1584) Bruno argued against the 
Judeo-Christian tradition that had established its own religion at the expense of 
that of the old Egyptians. On the contrary, Bruno advocated a return to the 
religion of the old Egyptians who, worshipping animals and the living forces of 
nature, expressed the belief, to which Bruno subscribed, that “natura est deus in 
rebus.”376 Likewise, Bruno credited Mordente with the revival of a mathematical 
knowledge that was long forgotten.377 However, he did not reveal the sources of 
Mordente’s knowledge, arguably because he thought, as would be made clear in 

                                                
373 Mordentius, 31: “Ut verum, ita et vulgatum satis est, Deum providentem certis 

quibusdam temporibus Mercurios, quibus mediantibus labori et inopiae mortalium 
succurrat, e caelo mittere.” 

374 For Bruno’s self-identification with Mercury, see Michele Ciliberto, “Giordano Bruno, 
angelo della luce tra furore e disincanto,” in Dialoghi filosofici italiani, by Giordano 
Bruno, ed. Michele Ciliberto (Milan: Arnoldo Mondadori, 2000). 

375 Yates, Bruno and the Hermetic Tradition. 
376 Giordano Bruno, Dialoghi filosofici italiani, ed. Michele Ciliberto (Milan: Arnoldo 

Mondadori, 2000), 631. 
377 Mordentius, 31: “Fabricius Mordens Salernitanus inventionum mechanicarum parens 

non modo huiusce generis artes collapsas instaurat, emortuas revocat, mutilas 
perfecit: sed et quasdam pro impossibilitatis specie numquam intentatas 
exsuscitat.” 



 137  

De idiota thriumphans, that the idea of the compass had occurred to Mordente in 
an unconscious way. Lacking this information, it remains unclear on what basis 
Bruno claimed Mordente’s mathematical knowledge to be old, raising the 
question whether he claimed so only in an attempt to give more credibility to 
Mordente’s invention.  

Having described the divine character of Mordente’s invention and the 
forgotten knowledge that he had unearthed, Bruno went on to provide a portrait 
of the man behind the compass. As a matter of fact, this portrait was not entirely 
flattering. According to Bruno, Mordente was a quite person, who “speaks with 
facts, teaches by doing, and remaining silent goes further than anyone else could 
go by reasoning.”378 Bruno, however, was determined to break Mordente’s 
silence, and translate into words what Mordente showed during his public 
demonstrations of the compass. The innovativeness of the compass, Bruno 
declared “with all due respect,” was such that Mordente himself was not fully 
aware of it.379 Probably, Bruno referred to the possibility of using Mordente’s 
compass to demonstrate the existence of the geometric minimum. The fact that 
Mordente regarded his compass as ‘only’ a measurement instrument would have 
prevented him from seeing this possibility. But the truth was that Mordente was 
not interested in discovering the minimum. As mentioned earlier, his objective 
was to create an instrument that could measure the degree of arc down to its 
smallest fractions. In his works, there was no trace of the concept of the minimum 
nor of a theory of the use of the compass. Only in the wake of the controversy with 
Bruno, Mordente would make an effort to present his ideas in a more formal way, 
developing what he would call the “science of remainders.” 

It is sufficient to read these first lines to understand why Mordente tried to 
destroy all the copies of Bruno’s first two dialogues. Despite the appreciation 
expressed for the work of the “divine” Mordente, Bruno showed little respect for 
his fellow countryman. Furthermore, Mordente was outraged by Bruno’s attempt 
to impose his interpretation of the compass. But there was more to it. Not only 
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did Bruno state that Mordente had not fully understood his own work. He also 
claimed that what the two Mordente brothers had written on the compass was “so 
inelegant, so rough, ordered in such a contorted way, and based on such an 
ignorant doctrine, that one can easily see how it is as if nothing has never been 
published.”380 By the time Bruno published his dialogues in 1586, three treatises 
on the compass were already circulating: the first by Fabrizio Mordente published 
in Venice in 1567, the second by Gasparo Mordente (Fabrizio’s brother) published 
in Antwerp in 1584, the third by Fabrizio published in Paris in 1585. Camerota 
notes that Bruno’s critique of Mordente’s writings was all the more unfair, as he 
heavily relied on the 1584 treatise to describe the operations of the compass.381 

3.3 Bruno’s first dialogue: Mordentius  

Bruno’s first dialogue on Mordente’s compass was entitled Mordentius: sive de 
geometricis fractionibus ad exactam cosmimetriae praxim conducentibus. 
(Mordente: or on the Geometric Fractions Leading to the Exact Method for the 
Measurement of the Cosmos). It was devoted to presenting the method developed 
by Mordente to measure the smallest fractions of geometric magnitudes. This 
method was based on two axioms. According to the first axiom, two magnitudes 
were in the same ratio as their corresponding parts. For example, if two segments 
were in a ratio of 1:3, this meant that the half of the shorter segment was three 
times shorter than the half of the longer segment. By the same token, if we knew 
that a circumference was divided in 16 equal parts, and we wanted to know the 
value of a fraction that was smaller than one-sixteenth of the circumference, we 
could take the length of that fraction and apply it 16 times to the circumference 
(The example is taken from chapter V of the Mordentius). Proceeding in this way, 
we would cover a portion of the circumference, equal to a certain number of 
entire parts. This number would be the value of the fraction. If there were a 
remainder, the same operation could be repeated indefinitely until no portion of 
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the line was left over.  
If the first axiom of Mordente’s method was mathematical in its character, 

the second axiom was more philosophical and could be traced back to medieval 
Scholasticism:    

The second is the common philosophical axiom that in natural and 
artificial objects a minimum and a maximum relative to their form are 
to be determined, which is why those who divide naturally as well as 
artificially do not happen to go to infinity.382    

What Bruno presented as an axiom commonly accepted by philosophers was the 
cornerstone of the medieval theory of minima naturalia. Although different 
versions of this theory were developed especially in the thirteenth and fourteenth 
century, the idea of minima naturalia had only one source: Aristotle’s Physics, 
Book I, Chapter IV (187b13 – 188a5). There, in arguing against Anaxagoras and 
his theory that everything was in everything, Aristotle claimed that the form of 
natural beings was confined with certain limits. The lower limit—the minimum 
naturale—indicated the smallest form that a natural being could assume without 
losing its essence. As John Philoponus put it in his commentary on Aristotle’s 
Physics: “no man has the size of a fist or a finger or a grain, because if something 
is too small it cannot receive a form.”383 The corollary of this theory was that, at 
least as far as their form was concerned, natural beings could not be infinitely 
divided, otherwise there would be no limit to the smallness of their forms. This 
corollary was what gave Mordente (the fictional character created by Bruno, not 
to be confused with the instrument maker) confidence in the success of his 
method, assuring him that the division of a magnitude into its smallest fractions 
would come to an end. It is worth stressing that this was not the way Mordente 
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conceived his compass, but it was Bruno who attributed this interpretation to 
him.  

It is most likely that the axiom on minima naturalia was not included in 
the original method developed by Mordente, but it was added as a result of 
Bruno’s intervention, for no reference was made to this axiom in Mordente’s 
previous works. On the other hand, it should be noted that in De idiota 
triumphans Bruno would accuse Mordente of having misunderstood the theory of 
minima naturalia, showing how this theory ran counter to what Mordente aimed 
to demonstrate. For this reason, De Bernart argues that the axiom on minima 
naturalia was the work of Mordente, and that Bruno reported the axiom in the 
Mordentius only to criticize it in the De idiota triumphans.384 In claiming so, De 
Bernart implicitly assumes that the project of writing De idiota triumphans dated 
back to the time when Bruno was composing the Mordentius. Yet this hypothesis 
is not supported by the Pinelli-Corbinelli correspondence, which instead informs 
us that Bruno decided to write the last two dialogues in response to Mordente’s 
attacks on the first two. Rather, I believe that Bruno did not notice that 
Mordente’s findings did not sit well with the theory of minima naturalia until a 
later stage, but then he laid the blame on Mordente instead of admitting that he 
had made a mistake. Thus, the axiom on minima naturalia should be regarded as 
a Bruno’s addition to Mordente’s method, despite the objections that Bruno 
himself would raise to this axiom in the later De idiota triumphans.        

As one can see from the dramatis personae included in John Murdoch’s 
paper on The Medieval and Renaissance Tradition of Minima Naturalia, several 
authors contributed to developing the theory of minima naturalia over the 
centuries.385 Indeed, the theory of minima naturalia was discussed as late as the 
sixteenth century by the likes of Luis Coronel (d. 1531), Benedict Pereira (1536 – 
1610) and Francisco de Toledo (1532 – 1596). As shown by Murdoch, different 
definitions of minima naturalia were given during the middle ages, each 
corresponding to a different group of authors. Among them, there were also those 
who associated the concept of minima naturalia with the issue of minimum 
                                                
384 De Bernart, Numerus quodammodo infinitus, 173–77. 
385 John E. Murdoch, “The Medieval and Renaissance Tradition of Minima Naturalia,” in 

Late Medieval and Early Modern Corpuscular Matter Theories, ed. Christoph H. 
Lüthy, John E. Murdoch, and William R. Newman (Leiden: Brill, 2001), 99–101. 



 141  

limits. Bruno himself established this connection in the Mordentius, claiming 
that the existence of a minimum naturale set a limit to the division of natural 
beings. However, it is hard to say whether Bruno was acquainted with what 
Murdoch calls the “limit decision literature.”386 Given Bruno’s Dominican 
education, it is more likely that Thomas Aquinas and Averroes shaped his 
understanding of minima naturalia.  

 Aquinas discussed the theory of minima naturalia in his Summa 
theologiae rather than in his commentary on Aristotle’s Physics. Murdoch notes 
that this choice reflects Aquinas’s awareness of the relation between minima 
naturalia on one hand, and substantial forms on the other hand.387 As for 
Averroes, he developed his theory of minima naturalia especially in the middle 
commentary on Aristotle’s Physics.388 A Latin translation of this text by Jacob 
Mantino (d. 1549) was included in the Junta edition of Aristotle’s Opera omnia, a 
copy of which was possessed by the monastery of San Domenico Maggiore in 
Naples where Bruno received his education.389 Averroes borrowed aspects of his 
theory of minima naturalia from the mutakallimūn, a group of ninth-century 
Islamic theologians that defended a form of geometric atomism similar to that of 
Bruno. In particular, Glasner has demonstrated that Averorres was indebted to 
the mutakallimūn for his idea of the minimum, which he adopted “taking it out of 
the atomistic context and adjusting it to the Aristotelian environment.”390  

Since the translation by Mantino only covered the first three books of 
Averroes’s middle commentary on Aristotle’s Physics, Bruno’s knowledge of 
Averroes’s theory of minima naturalia was bound to be limited. However, 
references to the theory were made in Book III of the middle commentary, where 
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we read that: “magnitude is infinitely divisible qua matter, not qua form; qua 
form its divisibility is limited.”391 Likewise, in the long commentary on the 
Physics, which was also included in the Junta edition, Averroes claimed that “a 
line as a line can be infinitely divided. But such a division is impossible if the line 
is taken as made of earth.”392 Reading these texts, Bruno would have thought that 
Averroes’s theory was still Aristotelian in that it was grounded in the concept of 
‘formal’ minimum. Seeking the minimum magnitude rather than the formal 
minimum, Bruno was more in line with the atomistic sources of Averroes, 
although it is unlikely that Bruno could have been familiar with the doctrines of 
the mutakallimūn.393 

Again, it should not be forgotten that this discussion on minima naturalia 
had nothing to do with Mordente’s compass. Indeed, as already mentioned, 
Mordente’s objective was to create an instrument capable of dividing the degree 
of arc into a potentially infinite number of parts. As such, Mordente’s compass 
did not challenge the Aristotelian view of the continuum, which in fact provided a 
theoretical justification for the use of the compass. Nor was Mordente committed 
to the theory of minima naturalia, as we have seen that there was no trace of this 
theory in Mordente’s writings prior to his encounter with Bruno. Rather, it was 
Bruno who tried to use Mordente’s compass against Aristotle, turning it on its 
head and taking it as an argument in favor of his atomistic view of the continuum.  

3.4 Bruno’s third dialogue: De idiota triumphans  

De idiota triumphans was one of the last two dialogues that Bruno wrote in 
response to Mordente’s attacks on the first two. Meanwhile, the tension between 
Bruno and Mordente had rapidly escalated, and Bruno’s purpose in writing De 
idiota triumphans was to criticize Mordente’s method. If, in the first part of De 
idiota triumphans, Bruno’s criticism focused on more superficial aspects of 
Mordente’s method (such as the actual number of operations that could be 
carried out with the compass), in the last part the focus shifted to its foundation. 
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In particular, Bruno took issue with what, in the Mordentius, he had presented as 
the second axiom of Mordente’s method according to which natural and artificial 
beings had a minimum form and thus could not be infinitely divided in relation to 
their forms. Bruno started by noticing that this argument only applied to natural 
beings, and it could be extended to artificial beings insofar as these were 
considered as formal and not as artificial entities. Therefore, Bruno concluded, it 
was wrong to speak of artificial beings as distinguished from natural beings, 
because as formal entities they behaved in the same way. This remark tells us that 
Bruno was familiar with the Aristotelian theory of minima naturalia, for in what 
was considered the source of all the arguments on minima naturalia (Physics 
IV.1), Aristotle referred to natural and not to artificial beings.  

For Bruno, the major flaw in the understanding of the theory of minima 
naturalia that he had attributed to Mordente was that it ignored the distinction 
between formal minimum and minimum magnitude. Bruno noted, and rightly so, 
that the supporters of minima naturalia did not consider “the minimum 
magnitude or the minimum continuous quantity, which for them cannot be 
found, but the minimum substance in which the form of each species can be 
retained.”394 The reason why especially medieval scholars emphasized the formal 
character of minima naturalia was to distinguish between two kinds of 
divisibility of natural beings, depending on whether they were viewed as 
continuous or as formal entities. The former case was associated with infinite 
divisibility, while the latter with finite divisibility. The source of this distinction 
was Aristotle, who in Physics IV (187b13 – 188a5) claimed that natural beings 
could not be infinitely divided without losing their form, while in Physics VI 
(231b14 – 15) he argued for the infinite divisibility of the continuum. As 
documented by Anneliese Maier395 and John Murdoch,396 medieval scholars 

                                                
394 De idiota triumphans, 14: “Non intelligens quod dicit ratione respectuue formarum, 

declarare sensum illorum philosophorum non respicere minimum magnitudinis seu 
quantitatis continuae, quod numquam credunt incurri posse: sed minimum 
subietum in quo possit saluari forma cuiusque speciei.” 

395 Anneliese Maier, Die Vorläufer Galileis im 14. Jahrhundert: Studien zur 
Naturphilosophie der Spätscholastik. (Rome: Edizioni di Storia e Letteratura, 
1966). 

396 Murdoch, “Tradition of Minima Naturalia.” 
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rephrased this Aristotelian distinction in different ways, speaking for example of 
natural beings as divisible in potency or in act. 

In the first dialogue on the compass, Bruno had Mordente claim that the 
theory of minima naturalia provided the foundation for his method because this 
latter led to identify the formal minimum, or more specifically, the minimum 
fraction of a curved or a straight line. On the contrary, in De idiota triumphans, 
Bruno argued that Mordente’s method showed the minimum magnitude, the 
existence of which was denied by the supporters of minima naturalia. Bruno’s 
argument ran as follows:  

If one refers to the line or the surface to be divided, the assumption [of 
Mordente], which some philosophers accept as a principle, means that 
those who divide mechanically happen to lose first the perception of 
quality and then that of quantity or extension. For this reason, there is 
no difference in taking the minima or the almost minima of a curved or 
a straight line, of a regular and irregular figure. Hence, what is 
determined in its form is not limited in its matter. This is why 
Mordente should be considered a god.397 

What Bruno meant was that when dividing a line down to its smallest fractions a 
point was reached where it was no longer possible to determine the shape of the 
fractions. As the size of the fractions decreased, we lost the ability to distinguish 
between curved and straight, and all the fractions ended up having the same 
indefinite shape to our eyes. This could pose a challenge to Mordente’s method, 
insofar as if a fraction was too small it could not be measured with the compass. 
As reported by Bruno, Mordente solved this problem by simply measuring the 
remaining fraction, and then subtracting this value to the whole length of the 

                                                
397 De idiota triumphans, 14-5: “Quinimmo, si ad superficiem vel lineam dividendam 

respicere velit, illud acceptum pro principio a quibusdam philosophis: significat in 
proposito, quod mechanice dividentibus prius contingat perdere sensum qualitatis 
quam molis seu quantitatis, quia tandem non differt accipere minima seu prope 
minima lineae curvae atque rectae, regularis atque irregularis: et ideo 
determinatum secundum formam, nondum est terminatum secundum materiam: 
Unde Mordentius deificetur.” 
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line.398 Here, the fact that the smallest fraction turned out to have no defined 
shape was taken as proof that beyond the perceivable forms of curved and 
straight there was a common, shapeless minimum magnitude. This shapeless 
minimum was regarded as the matter of the line, which, in the above quotation, 
was defined as “determined in its form” (i.e. curved or straight) but “not limited 
in its matter.”399 The merit of Mordente’s method was that it revealed this 
minimum, shapeless magnitude (or “ultimate fraction,” as Bruno called it) 
standing on the threshold of perception, as it “teaches us to divide down to the 
ultimate sensible element and, with such ease as I have demonstrated in the 
specific dialogue, leads us to the ultimate fraction.”400 

A remark is in order. It is true that Bruno’s argument worked insofar as 
curved and straight were considered as perceivable forms and not as abstract 
geometric determinations. For, in classical Euclidean geometry, curved and 
straight were not reducible to each other. However, it should be noted that one of 
the ancestors of the modern calculus, the method of exhaustion, was also based 
on the approximation of curved and straight. Traditionally ascribed to the ancient 
Greek mathematician Eudoxus of Cnidus, who in turn seemed to have borrowed 
the idea from Antiphon the Sophist, the method of exhaustion consisted in 
measuring the area of a circle by inscribing within it a regular polygon, the 
number of whose sides was progressively increased until the area of the inscribed 
polygon ‘exhausted’ that of the circumscribed circle. Yet, even when properly 
carried out, this procedure did not make the polygon coincide with the circle, but 
at best it reduced the difference between the two areas so that it could be 
neglected. To this extent, the method of exhaustion implied a certain degree of 
approximation and, as noted by Boyer, “the gap between the curvilinear and the 
rectilinear still remain[ed] unspanned.”401 The same can be said of the argument 
used by Bruno in De idiota triumphans.  

                                                
398 De idiota triumphans, 42. 
399 De idiota triumphans, 15. 
400  De idiota triumphans, 15: “[Mordenti] ad ultimum usque sensibile dividere doces, et 

tanta facilitate, quantam in dialogo proprio explicaui, ita ultimum fractionum 
insinuas.” 

401 Boyer, History of the Calculus, 35. 



 146  

What did Bruno’s argument mean in geometric terms? Generally speaking, 
Bruno posited the existence of geometric minima, i.e., infinitely small quantities, 
which were extended but indefinitely shaped. Such minima were the building 
blocks of all geometric objects, regardless of whether they were regular or 
irregular polygons, curved or straight lines. In the years following the controversy 
with Mordente, Bruno would go on to develop this intuition into an atomistic 
geometry. However, differently from what he would do in De minimo, in the 
dialogues on Mordente’s compass Bruno did not equate geometric minima to 
extended circular points.402 This difference was of crucial importance, because 
claiming that geometric objects were composed of extended points caused several 
problems in geometry, such as the impossibility of accounting for 
incommensurable magnitudes. Therefore, in the dialogues on Mordente’s 
compass Bruno developed a theory which, when compared to that set forth in De 
minimo, was more coherent from a geometric viewpoint. This raises the question 
of why Bruno changed his mind with regard to the status of geometric minima. 
Since this question will be answered in the next chapter, I will limit myself to the 
observation that the theory developed in De minimo was at the same time a 
geometric, metaphysical and physical theory. Thus, we can assume that Bruno 
was probably led astray from the geometric path taken in the dialogues on 
Mordente’s compass by the necessity of combining different kinds of theoretical 
elements. 

                                                
402 As a matter of fact, the idea of a “minimum circle” could already be found in the 

fourth dialogue on Mordente’s compass. See for instance, De somni interpretatione, 
21: “An non individuum, (quod minimus circulus est) per sex puncta in plano 
tangibile erit, ni mathematica ratione infinitum progressum libeat adoriri?” 
(emphasis added). It may be no coincidence that, in this context, Bruno spoke of a 
“minimum circle” and not of a “circular minimum.” Indeed, it should be noted that 
Bruno’s objective in writing De somni interpretatione was to propose his solution to 
the problem of the quadrature of the circle. Furthermore, in the dialogues on 
Mordente’s compass, Bruno did not explicitly claim that the minimum had a 
circular shape—as he would do in De minimo—while he was adamant that the 
minimum fractions of straight and curved lines were shapeless.    
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3.5 Bruno and the infinitesimals: A reappraisal 

Most of the objections against Bruno’s mathematics were raised in response to 
the version of it expounded in Bruno’s De minimo. However, critics of Bruno’s 
mathematics would probably have had a different picture of this theory, if they 
had also considered the dialogues on Mordente’s compass. This is well 
exemplified by the case of Olschki. In the introduction, we saw that Olschki raised 
two objections to Bruno’s mathematics. The first objection was that Bruno’s 
mathematics envisaged different kinds of minima, while there should be only one 
sort of infinitesimal quantity. The second objection is that Bruno’s mathematics 
was not linked to a theory of motion. For these reasons, Olschki concludes, the 
Brunian concept of the minimum cannot be considered a forerunner of the 
infinitesimals. If one reads De minimo, one cannot help but agree with Olschki. 
Nevertheless, as soon as the dialogues on Mordente’s compass are brought in, one 
is forced to admit that Olschki’s criticisms are unfair. In those dialogues, not only 
did Bruno claim that there was only one kind of minimum magnitude, but the 
reason why he claimed so was because he aimed to lay the foundations for the law 
of planetary motion which he had “dreamt of.”403  

Both the idea of infinitely small quantities and the attempt to account for 
natural phenomena such as motion belong to the historical development of the 
calculus. This, of course, does not mean that Bruno should be regarded as on a 
par with Leibniz, Newton, Cavalieri and all the other seventeenth-century 
mathematicians who contributed to the development of the calculus. For Bruno’s 
theory of minima was not substantiated by any mathematical application, and it 
lacked a rigorous mathematical foundation. I am aware that the status of 
infinitely small quantities was debated in the mathematical community ever since 

                                                
403 As mentioned in the introduction to this chapter, Bruno first presented the idea of a 

law of planetary motion in the last part of the second dialogue on Mordente’s 
compass, which is entitled Insomnium (The Dream). Then he elaborated on this 
idea, attempting to provide a mathematical foundation for it based on his geometry 
of minima, in the fourth dialogue, which was entitled De somni interpretatione (The 
Interpretation of the Dream).  
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Bonaventura Cavalieri published his treatise on the indivisibles in 1635.404 I am 
also aware that different kinds of infinitely small quantities were proposed 
throughout this period, ranging from the “heterogenous” invisibles of Cavalieri to 
the “homogenous” indivisibles of Pascal and Barrow.405 In fact, if we want to draw 
a parallel between Bruno and seventeenth-century indivisibilists, we could say 
that he falls within the latter category, his indivisibles being homogeneous with 
the object they belong to. (Bruno thought that a line, no matter whether straight 
or curved, was composed of shapeless, two-dimensional extended parts. Cavalieri, 
on the contrary, thought that the indivisibles of a solid were planes, and the 
indivisibles of a plane were lines. Thus, Cavalieri’s indivisibles had one dimension 
less than the object they belonged to, and in this sense they were said to be 
heterogenous).   

That being said, I believe that a reading of the dialogues on Mordente’s 
compass shows that, at least at the beginning of his mathematical career, Bruno 
had a mathematically correct understanding of infinitely small quantities. By this 
I means an understanding that was not ad odds with Euclidean geometry. This 
was not the case of the conception of invisibles that Bruno proposed in his De 
minimo, where, as already shown, he claimed that geometric objects were 
composed of extended points. On the other hand, I do not want to claim that 
Bruno developed a mathematically correct theory of infinitely small quantities, 
since the foundation of Bruno’s theory was more philosophical (see his use of 
minima naturalia) than mathematical. As Rowland puts it: “he was moving 
toward the calculus himself, and could already outline what would become some 
of its fundamental ideas in theory, if he could not yet express them in usable 

                                                
404 Cavalieri, Geometria indivisibilibus; For an overview of seventeenth-century debates 

on indivisibles, see Mancosu, Philosophy of Mathematics, 34–64; Malet, From 
Indivisibles to Infinitesimals, 11–22; Amir Alexander, Infinitesimal: How a 
Dangerous Mathematical Theory Shaped the Modern World (New York: Scientific 
American/Farrar, Straus and Giroux, 2014). 

405 V. Jullien, “Explaining the Sudden Rise of Methods of Indivisibles,” in Seventeenth-
Century Indivisibles Revisited, ed. V. Jullien (Basel: Birkhäuser, 2015). 
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equations.”406 To this extent, claiming that Bruno envisioned the infinitesimals 
would not be out of place. 
  

                                                
406 Ingrid D. Rowland, Giordano Bruno: Philosopher/Heretic (Chicago: University of 

Chicago Press, 2009), 194; See also Ingrid D. Rowland, “Giordano Bruno e la 
geometria dell’infinitamente piccolo,” in Aspetti della geometria nell’opera di 
Giordano Bruno, ed. Ornella Pompeo Faracovi, (Lugano: Agorà, 2012), 53–70. 
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4. Changing conceptions of mathematics and infinity  

Introduction: The “realist obstacle” to Bruno’s mathematics  

This chapter takes issue with Hélène Vedrine’s view that Bruno’s mathematical 
failure was due to his belief in the actual existence of mathematical objects in 
nature, a belief that constitutes the core of what has been called “mathematical” 
or “Platonic realism.”407 For this reason, Védrine speaks of a “realist obstacle” 
hindering Bruno’s mathematics. I challenge this received view of Bruno’s 
mathematics by charting the evolution of his conception of mathematics. Indeed, 
I claim that Bruno went from being a moderate realist to being an outright anti-
realist over the seven years between the publication of his Italian dialogues (1584) 
and the publication of his Latin poems (1591). Contrary to what early interpreters 
have claimed, Bruno’s Latin poems were not a mere repetition of what he had 
already said in his Italian dialogues.408 Rather, the years from 1584 to 1591 
witnessed major changes in Bruno’s philosophy, changes that also involved his 
conception of mathematics. Furthermore, I believe that the evolution of Bruno’s 
conception of mathematics was related to the additions that he made to his 
theory of the infinite. In my opinion, it was no coincidence that while Bruno lost 
his (already little) faith in realism, his theory of the infinite gained a new element, 
namely, the concept of the minimum. It was to turn the concept of the minimum 
into a mathematical object that Bruno dismissed realism and started a reform of 
mathematics.  

To be clear, this chapter discusses two versions of mathematical realism: 

(1) The view that mathematical objects have a separate existence from our 
mind.  

                                                
407 Védrine, “L’obstacle réaliste.” For a definition of mathematical or Platonic realism, see 

Alexander Miller, “Realism,” in The Stanford Encyclopedia of Philosophy, ed. 
Edward N. Zalta, Winter 2016 (Metaphysics Research Lab, Stanford University, 
2016), para. 2, https://plato.stanford.edu/archives/win2016/entries/realism/. 

408 Carlo Monti, “Introduction,” in Opere latine, by Giordano Bruno, trans. Carlo Monti 
(Torino: UTET, 1980), 9. 
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(2) The view that mathematical models can be used to explain physical 
phenomena.409  

I shall argue that Bruno rejected both these versions of realism; more specifically, 
he denied (2) on the basis of (1). In other words, in Bruno’s opinion, 
mathematical physics (or mathematical astronomy) had no explanatory power 
because mathematical objects were not found in the natural world. In order to 
show how this rejection of realism was connected to the introduction of the 
minimum in Bruno’s mathematics, I shall examine three works: La cena de le 
ceneri (1584), Acrotismus camoerancesis (1588) and De minimo (1591). In 
addition, the last section of this chapter gives a brief account of Bruno’s theory of 
monads and its relationship to Leibniz’s monadology. Leibniz scholars are often 
struck by the similarities between these two theories, which has made especially 
early interpreters wonder whether Bruno’s theory provided the model for 
Leibniz’s. I believe that this was not the case and I try to show that the similarities 
between Bruno’s and Leibinz’s mondalogical doctrines were due to the fact that 
both these theories were informed by a Pythagorean understanding of the monad.  

4.1 Realism vs instrumentalism in La cena de le ceneri 

Ernan McMullin claims that “to call Bruno a Copernican requires one to empty 
the label of all content save the assertion that the earth and planets move around 

                                                
409 In a recent article on early modern astronomy, Çimen distinguishes mathematical 

realism from what he calls “physical realism,” that is, “the belief that a true 
geometric description (or model) can be made out of a true physical theory, that is, 
of inquiries into physical reasons.” Ünsal Çimen, “On Saving the Astronomical 
Phenomena: Physical Realism in Struggle with Mathematical Realism in Francis 
Bacon, Al-Bitruji, and Averroes,” HOPOS: The Journal of the International Society 
for the History of Philosophy of Science, October 5, 2018, 3. As we shall see 
(especially in § 4.3), Bruno would have subscribed to this latter version of realism, 
insofar as he thought that mathematics should be modelled after physics. 
Mathematical realism has also associated to the Scientific Revolution and the 
“mathematization of nature.” See John Henry, The Scientific Revolution and the 
Origins of Modern Science (Houndmills, Basingstoke, Hampshire: Palgrave, 2001), 
15. 
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the sun.”410 In particular, McMullin notices how Bruno seemed unable to 
understand important aspects of the Copernican theory, especially when it came 
to technical issues. An example is provided by the explanation Bruno gave in La 
cena de le ceneri (The Ash Wednesday Supper, 1584) of the Copernican diagram 
showing the position of the planets in the solar system (Figure 1). The issue at 
stake was the position of the earth relative to the moon. According to Torquato, 
one of the two Oxford dons with whom Bruno (or better his fictional character) 
engaged in a conversation on the Copernican theory, Copernicus placed the earth 
on the third sphere, with the moon carried around it on an epicycle. On the 
contrary, Bruno thought that the earth and the moon were located on the same 
epicycle.411

                                                
410 McMullin, “Bruno and Copernicus,” 64.  
411 Giordano Bruno, The Ash Wednesday Supper, trans. Hilary Gatti (Toronto: University 

of Toronto Press, 2018), 161–65. 
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Figure 1: Diagram showing the position of the planets in the solar system. 
Copernicus, De revolutionibus, bk. I. 

 

Although, in La cena, Torquato was forced to admit that he was wrong, it was 
Bruno who made a mistake. In response, scholars have tried to justify him by 
suggesting “external” causes for his misunderstanding of the Copernican theory. 
Frances Yates proposed that Bruno was reading Copernicus in a Hermetic way, 
which led him to see the Copernican diagram as more of a “hieroglyph” than an 
actual representation of the solar system.412 More recently, Dario Tessicini has 
demonstrated that Bruno’s view that the earth and the moon were on the same 
                                                
412 Yates, Bruno and the Hermetic Tradition, 241. For criticisms of the “Yates thesis,” see 

Westman, “Magical Reform and Astronomical Reform”; McMullin, “Bruno and 
Copernicus.”  
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epicycle could be traced back to the Pythagorean belief in the existence of a 
counter-earth.413  

Be that as it may, Bruno’s failure to understand technical aspects of the 
Copernican theory does not alter the fact that he was one of the first to explicitly 
endorse the idea that the earth moved, at a time when the vast majority of the 
astronomers and natural philosophers tended to accept only Copernicus’ 
mathematical models, but not the underlying cosmological theory. What is more, 
as noted by McMullin, Bruno may have been the first to notice in print that the 
author of the anonymous letter entitled “Ad lectorem de hypothesibus huius 
operis” and appended to Copernicus’ De revolutionibus (1543) was not 
Copernicus himself.414 We now know that the author was Andreas Osiander (1498 
– 1552), who took over the publication of Copernicus’ work when Rheticus was 
forced to leave Nuremberg for Leipzig, where he had been appointed to the chair 
of mathematics. However, Bruno could not have been aware of this, as it was not 
until 1609 that Osiander was first identified as the author of “Ad lectorem” by 
Kepler.415  

In “Ad lectorem,” Osiander famously claimed that the ideas presented in 
De revolutionibus had to be regarded as mere hypotheses aimed at explaining 
astronomical phenomena in mathematical terms, and not as physical statements 
concerning the actual structure of the universe. In the belief that Copernicus was 

                                                
413 Dario Tessicini, I dintorni dell’infinito: Giordano Bruno e l’astronomia del 

Cinquecento (Pisa: Fabrizio Serra, 2007), 9–58. See also Miguel A. Granada, 
“L’héliocentrisme de Giordano Bruno entre 1584 et 1591: la disposition des planètes 
inférieures et les mouvements de la Terre,” Bruniana & Campanelliana 16, no. 1 
(2010): 31–50; Miguel Ángel Granada, “Introduction,” in La cena de las cenizas, by 
Giordano Bruno, ed. Miguel A. Granada (Madrid: Tecnos, 2015). 

414 McMullin, “Bruno and Copernicus,” 59. For an overview of the authors who first noted 
that ‘Ad lectorem’ was not the work of Copernicus, see Michel-Pierre Lerner and 
Alain-Philippe Segonds, “Sur un ‘“advertisement”’ célèbre: L’Ad lectorem du De 
revolutionibus de Nicolas Copernic,” Galilaeana 5 (2008): 118–20. 

415 Lerner and Segonds, “L’Ad lectorem du De revolutionibus,” 120–24. On Osiander, see 
also Bruce Wrightsman, “Andreas Osiander’s Contribution to the Copernican 
Achievement,” in The Copernican Achievement, ed. Robert S. Westman (Berkeley: 
University of California Press, 1975), 213–43. 
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not only trying his hand at new mathematical models but also proposing an 
alternative worldview, Bruno criticized the author of “Ad lectorem” for having 
betrayed Copernicus’ intentions. Early interpreters, especially Duhem, have 
labelled Osiander’s reading of De revolutionibus as instrumentalist, while Bruno 
and the other scholars who accepted the cosmological aspect of the Copernican 
theory have been defined as realist. Since the divide between instrumentalism 
and realism in early modern astronomy has attracted a great deal of scholarly 
attention, I shall give a brief account of the historiographical debate on these two 
epistemological stances before going on to address the question of Bruno’s 
realism.  

In modern scholarship, Pierre Duhem was the first to acknowledge and 
oppose what, in his understanding, was Copernicus’ realism. In To Save the 
Phenomena (1908), Duhem claimed that Copernicus was a realist insofar as he 
believed that his astronomical hypotheses were both true and demonstrable. 
However, Duhem’s claim did not sit well with the findings of Noel Swerdlow and 
Otto Neugebauer,416 which showed that Copernicus did not consider his 
mathematical proofs to be certain—a consideration that is confirmed by the fact 
that he was hesitant about publishing his work. In light of this, scholars have 
concluded that, rather than being based on textual evidence, Duhem’s hostility 
towards Copernicus was rooted in his own view of science, one that fiercely 
rejected “the philosophical-theological imperialism of the prevailing realism of 
the second half of the sixteenth century.”417 This would also explain why Duhem 
was sympathetic with Osiander, who, in his opinion, had shown that “the 
hypotheses of physics are mere mathematical contrivances devised for the 
purpose of saving the phenomena.”418 

A few decades after Duhem, Robert Westman demonstrated that 
Osiander’s reading of De revolutionibus was a variation on an established 

                                                
416 N. Swerdlow and O. Neugebauer, Mathematical Astronomy in Copernicus’s De 

Revolutionibus (New York: Springer, 1984), 19–21. 
417 André Goddu, “The Realism That Duhem Rejected in Copernicus,” Synthese 83, no. 2 

(May 1990): 307. 
418 Pierre Maurice Marie Duhem, To Save the Phenomena: An Essay on the Idea of 

Physical Theory from Plato to Galileo, trans. Edmund Dolan and Chaninah 
Maschler (Chicago: University of Chicago Press, 1985), 117. 
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interpretation of the Copernican theory, which Westman called the “Wittenberg 
interpretation” and whose advocates were the followers of Philip Melanchthon 
(1497 – 1560).419 This approach was characterized by an ambivalent attitude 
towards Copernicus, as members of the Melanchthon circle accepted the 
equantless models while rejecting the three types of terrestrial motion. For this 
reason, they tried to turn the Copernican models into computational devices that 
could fit into a geostatic view of the universe. These efforts must have been 
successful, because “the realist and cosmological claims of Copernicus’s great 
discovery failed to be given full consideration.”420 On the other hand, in 
opposition to Duhem, Westman underlined that the Wittenberg interpretation 
was not instrumentalist in character, and that “it represented more than a 
position of epistemic resignation with regard to what one could know about 
actual celestial motions, while stopping short of a strong realist interpretation.”421  

In a later article, Westman took issue with what Duhem considered to be 
the origin of the realism-instrumentalism divide in early modern astronomy, 
namely, the presence of two competing disciplines in the realm of astronomical 
studies: natural philosophy and mathematics.422 Roughly speaking, Duhem 
thought that natural philosophers were realist while mathematicians were 
instrumentalist. On the contrary, Westman claimed that “both [mathematical] 
astronomers and philosophers held realist ideals”423 and that this disciplinary 
boundary within astronomical studies gradually faded away in the course of the 
sixteenth century, also because of the rise of the figure of the court astronomer.   

More recently, Peter Barker and Bernard Goldstein warned against the use 
of the terms realism and instrumentalism in descriptions of sixteenth-century 

                                                
419 Robert S. Westman, “The Melanchthon Circle, Rheticus, and the Wittenberg 

Interpretation of the Copernican Theory,” Isis 66, no. 2 (June 1975): 165–93. 
420 Westman, 168. 
421 Westman, 167.  
422 Robert S. Westman, “The Astronomer’s Role in the Sixteenth Century: A Preliminary 

Study,” History of Science 18, no. 2 (1980): 105–147. 
423 Westman, “The Astronomer’s Role,” 2.  
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astronomy.424 Both these terms, the authors argued, were coined in the twentieth 
century in the context of a specific philosophical debate, hence “neither realism 
nor instrumentalism quite captures the predicament of the sixteenth-century 
astronomer.”425 Moreover, Baker and Goldstein noticed that in the sixteenth 
century, mathematical astronomy and natural philosophy were distinguished on 
the basis of their demonstrations. Following the Aristotelian theory, propter quid 
demonstrations (from causes to effects) were attributed to natural philosophy, 
while mathematical astronomy was limited to quia demonstrations (from effects 
to causes). The fact that astronomical knowledge could be probable at best was 
seen as a consequence of the impossibility of converting quia demonstrations into 
proper quid, for certain knowledge was achievable only through the latter. It is 
worth noting that the Aristotelian theory of demonstration was also invoked in 
another sixteenth-century epistemological debate: the Quaestio de certitudine 
mathematicarum.426 This suggests a comparison between the Quaestio and 
contemporary discussions on the status of astronomical demonstrations such as 
those reported by Barker and Goldstein, which would require a separate study.   

Seen against this background, the question of whether Bruno adopted a 
realist approach to the Copernican system may be phrased in the following terms: 
Did Bruno believe that the new mathematical models developed by Copernicus 
allow to gain a better understanding of the physical causes of astronomical 
phenomena? Did Bruno think that the physical universe had a mathematical 
structure? Scholars have tended to regard Bruno as a realist on the basis of two 
main elements, namely, his acceptance of the motion of the earth and his critique 
of Osiander. However, it should not be overlooked that adopting a realist attitude 
towards the Copernican system also required one’s faith in the explanatory power 

                                                
424 Peter Barker and Bernard R Goldstein, “Realism and Instrumentalism in Sixteenth 

Century Astronomy: A Reappraisal,” Perspectives on Science 6, no. 3 (1998): 232–
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425 Barker and Goldstein, 253. 
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of mathematics when applied to the study of the physical world. Quite 
interestingly, Bruno has been described as both a straightforward realist (in his 
commitment to the cosmological significance of Copernicus’ innovations) and as 
a fierce opponent of the mathematics of his time. In fact, it was Bruno to convey 
this image of himself by endorsing Copernicus on the one hand, and by writing 
One Articuli centum et sexaginta adversus mathematicos (Hundred and Sixty 
Articles against the Mathematicians, 1588) on the other hand. 

How did Bruno’s realism fit with his mistrust in mathematics? Hélène 
Védrine claims that it was because of his realism that Bruno was skeptical about 
his contemporary mathematical research. For Védrine, Bruno was a realist in a 
Platonic sense insofar as he thought that “mathematical beings were in act in the 
sensible world.”427 On the contrary, sixteenth-century mathematic was, for the 
most part, based on the Aristotelian view that mathematical objects were 
intelligible concepts abstracted from sensible beings. Rejecting this Aristotelian 
ontology and the mathematics that was built on it, Bruno went on to propose his 
own “Platonic” version of mathematics, central to which was the concept of “real 
minima.” However, Védrine notes, it was not Bruno but “the Paduan 
Aristotelians, Cardano, Tartaglia, Scipione del Ferro who contributed to the 
advancement of sixteenth-century mathematics.”428  

As mentioned above, I challenge Vedrine’s view of Bruno’s mathematics. I 
shall show that if it is true that traces of realism can be found in Bruno’s 
vernacular works (and in particular in La cena), these works also contain the 
seeds of a different epistemology which will be fully developed in the Latin works. 
Let us start by reviewing the evidence in favor of Bruno’s realism. Scholars, 
including Védrine, have regarded Bruno’s critique of Osiander and the 
consequent defense of Copernicus’ ‘true’ intentions as an endorsement of realism. 
In effect, this appears to be the most plausible explanation for the passages in 
question, which can be summarized as follows.   

Not only was Bruno one of the first to note that the author of ‘Ad lectorem’ 
could not have been Copernicus, but he was probably the author of the first 
vernacular translation of the letter. A comparison with the original text shows 
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that Bruno faithfully translated its content, omitting only a section in which 
Osiander reiterated what he had already said about the use of hypotheses in 
astronomy—a use that was made necessary by the fact that astronomical 
reasoning could by no means yield knowledge of the physical causes of celestial 
phenomena. This was indeed the central point of “Ad lectorem” which ended with 
following words (taken from Bruno’s translation):  

Let us then take advantage of the treasure of these suppositions only in 
so far as they render the art of calculation marvelously easy. For if 
anyone takes such fictions for real, he will leave this discipline more 
ignorant than when he entered it.429   

As anticipated, Bruno utterly rejected this reading of De revolutionibus which he 
regarded as the work of a “ignorant and presumptuous ass.”430 In particular, what 
Bruno did not accept of “Ad lectorem” was its attempt to excuse Copernicus, as if 
the Polish astronomer wanted to defend himself from the charges of heterodoxy 
and heresy that theologians and Aristotelians could have pressed against his 
book. As a matter of fact, modern Copernicus scholarship has shown that this was 
precisely the case. Copernicus was afraid of how De revolutionibus could be 
received by the learned audience, and took steps to remove all the sensitive 
elements that could attract the attention of the ecclesiastical authorities. For this 
reason, Bruce Wrightsman writes that, far from endangering Copernicus’ 
reputation (as Bruno and other more recent interpreters of De revolutionibus 
have argued)431 “it is much more probable to claim that, for over a century, “Ad 
lectorem” protected the work […] during an extremely tense period of ideological 
and political conflict and thus, actually permitted the work to be used and 
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pondered during that period by those with such scruples.”432 
To dismiss Osiander’s arguments and prove that it was Copernicus’ 

purpose to claim that the earth moved, Bruno made the argument that De 
revolutionibus was a philosophical rather than a mathematical treatise. As we 
have seen, the distinction between natural philosophers and mathematicians was 
at the center of sixteenth-century astronomical debates. According to Bruno, 
Copernicus viewed himself as philosopher when, writing to Pope Paul III in the 
Preface to De revolutionibus, he underscored the importance of paying attention 
to the philosophers, and not to the “vulgar herd.”433 On the other hand, Bruno 
could not deny that Copernicus’ work contained mathematical demonstrations, 
which however he regarded as a ploy to gain the support of the mathematical 
community, and not as an integral part of the Copernican theory. For this reason, 
Bruno concluded, Copernicus “not only acts as the mathematician who makes 
suppositions, but also at the physicist who demonstrates the movements of the 
earth.”434  

If La cena contained only this judgement of Copernicus and his theory, we 
should conclude that Bruno was a realist insofar as he not only considered the 
terrestrial motions to be more than a mathematical hypothesis, but also 
attributed this opinion to Copernicus himself. However, when earlier in the text 
Smithus asked Theophilus (Bruno’s spokesman) what was his opinion about 
Copernicus, Theophilus answered that: 

His judgement in matters of natural philosophy was far superior to 
that of Ptolemy, Hipparchus, Eudoxus, and all the others who followed 

                                                
432 Wrightsman, “Andreas Osiander’s Contribution,” 240. Defenses of Osiander can also 

be found in Angus Armitage, Copernicus, the Founder of Modern Astronomy. 
(London: Allen and Unwin, 1938), 94; Lerner and Segonds, “L’Ad lectorem du De 
revolutionibus.” 

433 The Ash Wednesday Supper, 93. On Copernicus’ preface, see Robert S. Westman, 
“Proof, Poetics, and Patronage: Copernicus Preface to De Revolutionibus,” in 
Reappraisals of the Scientific Revolution, ed. David C. Lindberg and Robert S. 
Westman (Cambridge: Cambridge University Press, 1990), 167–205; Geoffrey 
Blumenthal, “Diplomacy, Patronage, and the Preface to De Revolutionibus,” 
Journal for the History of Astronomy 44, no. 1 (February 2013): 75–92. 

434 The Ash Wednesday Supper, 93. 



 161  

in their footsteps. […] Yet he did not leave this philosophy far enough 
behind him; for, in so far as he was a student of mathematics rather 
than of nature, he was unable to penetrate those depths which would 
have allowed him to eradicate the useless and inappropriate principles 
from which it stems.435 

Hence, Bruno had an ambivalent attitude towards Copernicus. At the outset of La 
cena, Copernicus was criticized for being more of a mathematician than a natural 
philosopher, whereas, in his defense of the reality of the Copernican model, 
Bruno emphasized the physical value of the ideas presented in De revolutionibus. 
How can this ambivalence be explained? McMullin writes that “Copernicus 
appears as a philosopher in search of the truth by contrast with other 
astronomers but as a “mathematician” by contrast with Bruno himself.”436 This 
may be true, but it is McMullin himself to notice that there were more differences 
than similarities between Bruno’s and Copernicus’ cosmological theories. An 
analysis of these differences will lead to a revaluation of Bruno’s realism by 
shedding new light on the question of whether he considered mathematical 
objects to be in act in the sensible world (as Védrine has it) or not.  

To begin with, there were Bruno’s considerations about astronomical 
calculations. These calculations were the result of hundreds of years of 
astronomical observations. Being aware of this, Bruno gave credit to the 
generations of mathematicians whose work had laid the foundation for the 
cosmological theories of Ptolemy and Copernicus. Yet there was another side to 
Bruno’s assessment of mathematical astronomy, as illustrated in the following 
passage:  

Such men [i.e. the mathematicians] are like interpreters who translate 
words from one language into another; yet it is not they but others who 
finally reach the heart of the matter. Again, they are like rustics who 
report the progress and fortunes of a battle to an absent captain; 
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although they themselves are unable to understand the strategies, the 
causes and the design which have led to the victory.437  

Two remarks are in order. First, in this quotation, Bruno once again emphasized 
that the “rustic” mathematicians did not know the causes of astronomical 
phenomena, whose knowledge instead belonged to the so-called “captain,” whom 
we can assume to be the military counterpart of the natural philosopher. Hence, 
this quotation corroborates the idea that Bruno accepted the distinction, standard 
in his day, between mathematical astronomy and natural philosophy.   

The second remark is that, for Bruno, mathematicians acted like 
interpreters, their task being to translate the language of nature into that of 
mathematics. Consider for a moment the Galilean metaphor of the book of nature 
written in the language of mathematics. Although there is no consensus on the 
meaning attached by Galileo to it,438 it should be evident that such a metaphor 
stood at the opposite pole from the Brunian view that, in astronomical studies, 
mathematicians played the role of interpreters. The idea underlying this view was 
indeed that the language of mathematics was different from that of nature, 
otherwise there would be no need for an interpreter. At the same time, it should 
be noted that comparing mathematicians and interpreters did not amount to 
saying that it took a mathematician to understand nature, since Bruno made it 
clear that mathematicians lacked this ability which was only possessed by natural 
philosophers.  

Hence, we can conclude that Bruno did not think that the universe had a 
mathematical structure. Rather, the universe could be described in mathematical 
terms, but this required a translation which, as faithful as it might be, could not 
entirely capture the essence of the physical reality. Thus, Bruno can hardly be 
said to be a realist in this respect. This is also confirmed by his rejection of 
circular devices, especially orbs, as a way of explaining planetary motions, which 
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was arguably the most significant difference between Bruno’s and Copernicus’ 
cosmological theories. In La cena, Bruno took issues with “those who want to 
imagine fillings and wadding of irregular orbs, […] inventing plasters and other 
prescriptions in order to heal nature so that it can serve their master, Aristotle or 
someone else.”439 As is evident from the reference to Aristotle, Bruno here was 
attacking the advocates of the Aristotelian-Ptolemaic system. However, the same 
objection could be raised against Copernicus, who also conceived the existence of 
solid orbs in which heavenly bodies were embedded. 

In Bruno’s cosmological theory, orbs were dismissed in favor of “a single 
airy, ethereal, spiritual, and liquid body, a capacious place of motion and quiet, 
which reaches out into the immensity of infinity.”440 Having abandoned the solid 
orbs which carried around the heavenly bodies in a uniform circular motion, 
Bruno was forced to find an alternative physical explanation for planetary 
motions. To this end, he resorted to the original Platonic idea, whose major 
promoter in the Renaissance was Marsilio Ficino, that heavenly bodies were 
“animals,” meaning that they were inhabited by a spirit called the “world-soul” 
(anima mundi).441 It was this world-soul that was responsible for the motion of 
heavenly bodies, which wondered across the ethereal space and around their 
respective suns—Bruno envisioned infinite solar systems—to absorb the heat and 
light necessary to life.442 

Let us now ask: on what grounds did Bruno reject the existence of solid 
orbs? Was this rejection caused by something more than his outspoken criticism 
of Aristotle and his epigones? In nature, Bruno argued in La cena, no body had a 
perfectly round shape, nor was there a body which moved along a perfectly 
circular trajectory. Hence, if this was the case on earth, why did we have to 
assume that perfect circularity was present in the heavens, and thus postulate the 
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existence of solid orbs? 443 This argument implied that, unlike what most of 
medieval cosmologists thought, there was no difference between the bodies which 
inhabited the super- and sublunary regions. Indeed, as is well known, such a 
distinction was absent from Bruno’s homogenous universe in which all bodies 
were composed of the same four elements. Furthermore, this argument tells us 
that, contrary to what Védrine claims, Bruno did not believe in the actual 
existence of mathematical objects (such as perfect circles or circular motions) in 
the physical world. Based on the same argument, in the later Latin works, Bruno 
would go on to dismiss all circular astronomical devices, including eccentrics and 
epicycles (more on this in the next section). At that point, instead of criticizing the 
astronomers who “healed” nature so as to fit their mathematical models,444 he 
would argue that it was mathematics that had to change in order to represent 
nature, thus advocating a reform of geometry. This reform was to make room for 
a new concept that meanwhile had entered Bruno’s mathematics: the concept of 
the minimum.   

4.2 Acrotismus camoerancesis and the making of Bruno’s theory 
of minima 

In essence, Bruno’s theory of minima was an atomist doctrine, insofar as it rested 
on the assumption that all objects were composed of indivisible parts (i.e. 
minima).445 Although it was not until the publication of De minimo (1591) that 
Bruno’s theory of minima was fully developed, both the concepts of minimum 
and atom made their first appearance in the Italian dialogues. There, Bruno dealt 
with these concepts separately, speaking of minimum and maximum especially in 
the Fifth Dialogue of De la causa, principio e uno (On Cause, Principle and 
Unity, 1584), and making references to the atoms that “flowed” from a body to 
another in De l’infinito universe et mondi (On the Infinite Universe and Worlds, 
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1584).446 It was no coincidence that the concepts of minimum and atom were 
treated separately, as, at least in the early stages of their development, Bruno 
viewed them as independent of each other. That is to say, differently from what 
would happen in De minimo, the atom was not regarded as a species of the 
minimum. Rather, by virtue of the coincidence of the opposites—a concept 
borrowed from Nicholas of Cusa (see Chapter 2)—the minimum was always 
treated in relation to the maximum, which was the main topic of discussion. After 
all, Bruno’s purpose in writing the first three Italian dialogues was to promote his 
conception of an infinite universe – the highest expression of maximum after 
God. 

As I have tried to show in Chapter 3, it was in the dialogues of 1586 
devoted to the proportional compass of Fabrizio Mordente that Bruno first used 
the concept of the minimum in conjunction with the concept of atom. Building on 
what in De l’infinito he had said about atoms being exchanged among bodies, he 
went on to show how, using Mordente’s compass, it was possible to demonstrate 
that both geometric and physical objects had an atomic structure. More precisely, 
in Bruno’s understanding—but not in Mordente’s, who vehemently protested 
against this interpretation of his instrument—the compass allowed to divide 
curved and straight lines down to their “minimum,” indivisible fractions. This 
discovery must have inspired Bruno to further develop his atomistic theory, 
which in De l’infinito only consisted in a few scattered references to the topic. 
However, in order to do so, he needed to overcome what represented the major 
obstacle to the development of a full-fledged atomistic theory: the Aristotelian 
critique of atomism. He attended to this task in another work which was 
composed at about the same time as the dialogues on Mordente’s compass, but 
was published two years later: the Acrotismus camoerancesis (1588).447 Perhaps 
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not coincidentally, the Acrotismus also yielded insights into the issue of Bruno’s 
realism.  

 The Acrotismus contained the Aristotelian theses, and Bruno’s arguments 
against them, which had been the subject of a public dispute held at the Collège 
de Cambrai (now part of the Collège de France) in Paris in 1586. The title of the 
work seemed to hint at that dispute, as the term Acrotismus was derived from the 
Greek akrorais, which meant “to listen” and was included in the title of Aristotle’s 
Physics (Physike akroasis), while the term camoerancesis was a neologism 
coined by Bruno to refer to the Collège de Cambrai.448 On occasion of the dispute, 
Bruno had the theses printed under the title Centum et viginti articuli adversus 
Peripateticos (One hundread and twenty articles against the Peripatetics, 1586). 
The Acrotismus bore a close relationship to the Articuli, as the former may be 
viewed a revised and extended version of the latter. 

Already in La cena, Bruno maintained that “in physics, division of a finite 
body cannot progress to infinity expect for those who are mad, whether you think 
of it in act or in potencial.”449 However, neither in La cena nor in the other Italian 
dialogues, Bruno explained why it was so “mad” to believe in the infinite 
divisibility of the physical continuum, thus postulating rather than rationally 
justifying the existence of the atoms. To a certain extent, the Acrotismus filled 
this gap. The structure of the book, which followed the model of sixteenth-century 
academic discussions, was designed to address, one by one, the central issues 
raised in Aristotle’s Physics. To the problem of whether or not the continuum was 
infinitely divisible (which was mainly discussed in Book VI of Aristotle’s Physics) 
Bruno devoted the 42nd article of the Acrotismus, which reads as follows:  

Before assuming the continuum to be infinitely divisible, Aristotle 
should have specified how the whole universe was divisible in the same 
way as this earth, and the whole of this globe in the same way as this 
apple; how these things, which qua finite beings are of different size, 
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through division become equal. (…) How are they equal in potency, but 
unequal in act?450 

For Bruno, to say that that two things were infinitely divisible was to say that they 
were composed of an infinite number of parts. Infinity, however, admitted no 
difference, as it was impossible for “an infinite to be bigger than another infinite 
neither in potency nor in act.”451 By the same token, it was impossible to say 
which of two infinitely divided things was bigger than the other, since after the 
division both would turn out to be composed of the same infinite number of 
parts. Nor did it matter that the parts of one thing were bigger in size than the 
parts of the other, “for the bigger parts taken only once from the bigger [thing] 
would be necessarily equal to the smaller parts taken multiple times from the 
smaller [thing].”452 The Aristotelians would have replied to these objections by 
pointing out—as done in the pseudo-Aristotelian treatise De insecabilibus lineis 
(On indivisible lines)—that the fact that a bigger object could contain an infinite 
number of smaller objects told us nothing about the containing object itself, for 
one object could be contained in another without being part of it.453 
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This counter-argument did not seem to bother Bruno, who instead focused 
on another Aristotelian distinction—that between potential and actual infinity. In 
the Physics, Aristotle viewed the infinite divisibility of the continuum as a 
potential infinity, meaning that there was no limit to the number of parts into 
which the continuum could be divided; no matter how small a part was, it could 
always be further divided.454 In addition, Aristotle made it clear that the 
divisibility of the continuum was never infinite in an actual sense, since, in his 
opinion, actual infinity was impossible.455 Bruno challenged this claim, as he did 
not see how it was possible for a potency to exist without a corresponding act. 
Bruno assumed that an Aristotelian would reply that such potencies were found 
in the realm of mathematics, where it was allowed to perform operations which 
were impossible to perform in the real world. In response, Bruno noted that even 
the mathematicians did not take the line to be “absolutely infinite, as it would be 
useless to do so, but they consider it to be infinite in a certain respect, as, for 
them, infinite means ‘as big as you want’”456. On this point, Bruno was in 
complete agreement with Aristotle, who in the Physics wrote that mathematicians 
made use of arbitrary large and not infinite magnitudes.457  

It is beyond the purpose of this chapter to discuss the effectiveness of 
Bruno’s arguments against the Aristotelian physics. Rather, I am interested in 
what these arguments can tell us about Bruno’s conception of mathematics and 
its relationship to the idea of infinity. We have seen that Bruno (as well as 
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Aristotle) thought that, strictly speaking, it was not the infinitely great but the 
arbitrary large to be the subject of mathematics. What about the infinitely small? 
Did, according to Bruno, mathematicians believe that there was a limit to the 
division of the mathematical continuum, or did they believe that it could go to 
infinity? We know that classical Euclidean geometry advocated an Aristotelian 
view of the continuum, insofar as the only allowed indivisibles were points, lines 
and planes conceived as ends and not as parts of the continuum. In fact, most of 
the medieval objections to atomism were inspired by geometric considerations. 
For example, critics of atomism noted that it was impossible to account for 
incommensurables if magnitudes were conceived as composed of a finite number 
of indivisible parts. Bruno himself had to reply to this objection in De minimo, 
but in the Acrotismus he adopted a different strategy, one that at first sight may 
appear rhetorical, but that retrospectively may be viewed as the inception of 
Bruno’s project of mathematical reform:  

It is one thing to consider magnitude mathematically, quite another to 
consider magnitude physically. (…) If logic and mathematics want to 
assume the infinitely divisible regardless of any praxis and use for a 
vain consideration, let them have their way.458 

Mathematics, for Bruno, had to conform to the natural order, lest it became a 
vain speculation. In Bruno’s case, this meant that the infinite divisibility of the 
continuum had to be rejected both in physics and mathematics. With the passing 
of time, Bruno  realized that it took more than a few adjustments to introduce 
atomism in mathematics. In fact, it required an entirely new theory, the 
development of which was carried out in De minimo. As for the Acrotismus, it 
seems to confirm that Bruno was far from being a mathematical realist. For in it, 
instead of saying that physical phenomena could be fully explained in 
mathematical terms (as the mathematical realist would do), Bruno claimed the 
opposite—that it was mathematics that had to be modelled after physics.  
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4.3 De minimo: Where mathematics meets physics (and 
metaphysics) 

In the spring of 1591, Giordano Bruno was in Frankfurt when he was invited to 
Venice by the patrician Giovanni Mocenigo.459 This gave Bruno the opportunity to 
return to his home country, from where he had escaped more than ten years 
earlier under the suspicion of heresy. Bruno must have been aware that, once in 
Italy, the Inquisition could have pressed charges against him. Nevertheless, he 
accepted Mocenigo’s invitation and, against his better judgement, set off to 
Venice. As is well known, this decision turned out to be unfortunate, since, after 
being denounced by Moceningo, Bruno was burned at the stake in Campo de’ 
Fiori in Rome on February 17, 1600.  

Bruno’s activities had been brought to Moceningo’s attention by the Latin 
poem entitled De minimo, which, together with De immenso and De monade, 
formed Bruno’s so-called “Frankfurt trilogy.” Indeed, all of these three works 
were published in Frankfurt shortly before Bruno left for Italy. For his part, 
Moceningo was interested in unlocking the secrets of the art of memory. More 
relevant to this study, De minimo marked the end of the mathematical journey 
started eight years earlier with the Italian dialogues, as it contained the ultimate 
version of Bruno’s theory of minima. According to this theory, there were three 
different species of minima: a metaphysical minimum (the monad), a physical 
minimum (the atom), and a geometric minimum (the point): 

The minimum is the substance of things and, although it refers to a 
genus different from that of quantity, constitutes the principle of the 
quantity and magnitude of bodies. It is matter, that is, element, 
efficient cause, final cause, totality. It is a point in one- and two-
dimensional magnitudes. It is properly named atom in the bodies 
which are the first parts; and less properly in those entities which are 
all in all and in the single parts (such as the voice, the soul, and similar 
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entities). It is a monad rationally in numbers and essentially in all 
things.460 

Bruno was adamant that both the physical and the mathematical continuum were 
composed of indivisibles, respectively, atoms and points. He also held that atoms 
and points had the same shape—the only difference was that atoms were 
spherical while points were circular because points had one dimension less than 
atoms. 461 Having a shape meant that both atoms and points were extended. It 
also implied that the number of atoms and points composing an object had to be 
finite, lest the object be less extended than the sum of its parts. For this reason, 
Bruno claimed that bodies were composed of a finite number of atoms. 462 
However, the same could not be said of mathematical objects because, as already 
seen, this would have led to the denial of incommensurability. Bruno tried to turn 
this inconvenience on its head by presenting his theory as a solution to problem 
of incommensurability: 

Maybe, oh illustrious master, should I complain about the dissolution 
of incommensurability and irrationality, instead of being glad for the 
revival of rationality and measurability?463 

Certainly, incommensurability posed a serious challenge to Bruno’s theory of 
minima. So did Aristotle’s objections against atomism, which Bruno had started 

                                                
460 De minimo, 139–40: “Minimum est substantia rerum, quatenus videlicet aliud a 

quantitatis genere significatur, corporearum vero magnitudinum prout est 
quantitatis principium. Est, inquam, materia seu elemen tum, efficiens, finis et 
totum, punctum in magnitudine unius et duarum dimensionum, atomus privative in 
corporibus quae sunt primae partes, atomus negative in iisce quae sunt tota in toto 
atque singulis, ut in voce, anima et huiusmodi genus, monas rationaliter in numeris, 
essentialiter in omnibus.” 

461 De minimo, 177: “Minimi in plano propria figura est circulus, in solido sphaera.” 
462 De minimo, 150: “Materies coram finita recepta finitis prorsus consistit partibus 

omnis.” 
463 De minimo, 240: “Numquid, o a mplissime domine magister, pro interitu alogiae et 

incommensurabilitatis potius plorandum censebo, quam pro logiae et mensurae 
renascentia gaudendum?” 
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to deal with in the Acrotismus. For Aristotle, the problem with atomism was that 
if the parts of an object were indivisible, they could not touch each other, and thus 
the object to which they belonged could not be said to be continuous. 464 Indeed, 
two indivisibles touching each other with all of themselves overlapped, thus 
creating no extension. The only other way in which two things could touch each 
other was through one of their parts, but this was impossible in the case of 
indivisibles which by definition had no parts whatsoever. Bruno’s solution to this 
problem was to claim that the contact between indivisibles occurred through their 
extremity (terminus). 465 The extremity was not a part of the indivisible because it 
could not be separated from it, but it existed only when two indivisibles touch 
each other. As already mentioned in the Introduction, Bruno was indebted to 
Epicurus for this aspect of his theory.  

In his previous works, Bruno had criticized contemporary mathematical 
research for its failure to acknowledge the importance of the minimum: “The 
ignorance of the minimum makes the geometers of this century geameters, and 
the philosophers philasophers” Bruno wrote in Articuli adversus 
mathematicos.466 This criticism continued in De minimo, where, building on the 
premise that physical reality had an atomic structure, the bone of contention 
became the infinite divisibility of the mathematical continuum:        

When infinitely dividing what has a precise measure, the geometer 
makes 

                                                
464 Physics, 861–62 (231a18–231a28). 
465 De minimo, 160: “Minimum non tangit se toto neque sui parte alterum minimum, sed 

suo fine plura potest attingere minima, sicut etiam nullum corpus se toto vel parte 
sui, sed vel tota vel extremitatis parte tangit alterum; […] terminus ergo est qui nulla 
est pars, et per consequens neque minima pars.” On Bruno’s concept of extremity, 
see Barbara Amato, “Il concetto di ‘termine’ nel «De minimo»,” in Letture bruniane 
I-II del lessico intellettuale europeo (1996-1997) (Pisa: Istituti Editoriali e 
Poligrafici Internazionali, 2002). 

466 Articuli adversus mathematicos, 21: “Ignorantia minimi facit geometras huius saeculi 
esse geametras, et philosophos esse philasophos.” 
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a mistake, he does not follow in the footsteps of nature which, being 
never reached, cannot be imitated by the geometer.467 

If in the Acrotismus the acceptance by mathematicians of infinite divisibility was 
“tolerated” (“let them have their way”), in De minimo Bruno was less indulgent. 
This was probably due to the fact that, in the Latin poem, Bruno presented his 
own mathematical theory, which he viewed as an alternative to classical 
mathematics. As a matter of fact, Bruno’s theory of minima was one of the first 
attempts to introduce indivisibles in geometry, an issue that would become 
central to seventeenth-century mathematics. On the other hand, there was the 
role (or lack thereof) of mathematics in the study of nature. As is evident from the 
above quotation, Bruno thought of mathematics a set of mental representations 
that had to mirror rather than explain the physical world. Once again, this 
suggests that Bruno was far removed from the Galilean metaphor of the book of 
nature and, more generally, from what historians of the Scientific Revolution 
have called the “mathematization of nature.”468 In fact, if anything, the project 
carried out by Bruno may be said to be a “naturalization of mathematics.”  

What was the cause of Bruno’s mistrust in explanatory power of 
mathematical physics? We have seen that, in La cena, solid orbs (still employed 
by Copernicus) were rejected in favor of an universe populated by animated 
celestial bodies, the reason being that no perfect circular form or motion was to 
be found in nature. This was reaffirmed in the Frankfurt poems, especially in De 
immenso, where, in denying that the perfect circle—in fact, any perfect form—was 

                                                
467 De minimo, 154–55: “Ergo errat mensor certum sine fine resolvens quantum, naturae 

nusquam vestigia lustrans, nusquam illa attingens, non ullis sortibus aequans.” 
468A non-exhaustive list of studies on the mathematization of nature include: Michel 

Blay, Reasoning with the Infinite: From the Closed World to the Mathematical 
Universe (University of Chicago Press, 1999); Roux, “Forms of Mathematization 
(14th-17th Centuries)”; William R Shea, Nature Mathematized: Historical and 
Philosophical Case Studies in Classical Modern Natural Philosophy (Dordrecht: 
Springer Netherlands, 1983); Geoffrey Gorham et al., eds., The Language of 
Nature: Reassessing the Mathematization of Natural Philosophy in the 
Seventeenth Century (Minneapolis: University of Minnesota Press, 2016). 
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present in nature, Bruno appealed to the authority of the Platonists.469 Hence, it 
seems safe to conclude that Bruno’s skepticism towards mathematical physics 
was rooted in his opposition to mathematical realism, that is the view that 
mathematical objects were mind-independent. The Latin poems combined this 
rejection of mathematical realism—the seeds of which could already be found in 
Bruno’s vernacular works (see § 4.1)—with an element that instead was the result 
of later researches: the concept of the minimum. However, there was an aspect of 
Bruno’s theory of minima that contrasted with his anti-realism: the circular shape 
of the minimum. Bruno, indeed, claimed that the minimum was a circle in two-
dimensional space and a sphere in three-dimensional space.470 (That is to say, the 
point was a circle and the atom was sphere). But why did Bruno endow the most 
important entity in his ontology with a circular shape, if such a shape was 
nowhere to be found in the real world?  

The problem of the circular shape of the Brunian minimum is even more 
compelling if we consider the importance that Bruno attributed to images, and 
more in general to visual thinking.471 In the specific case of Bruno’s mathematical 
works, images had a double application. First, images offered a means to promote 
mathematics as a practical discipline essential to social and economic 
development. An example is provided by the “temples” of Apollo, Minerva, and 
Venus that Bruno constructed in De minimo, by means of which he aimed to lay 
the foundations for a universal theory of measurement that would enable 
mathematical practitioners to measure everything (Figures 2a-2b-2c). In 
addition, Bruno used mathematical images in a symbolic fashion to express what 
was difficult to put into words, or to visualize what was invisible to the human 
eye. For instance, in De minimo, Bruno relied on circular constructions to show 

                                                
469 Giordano Bruno, “De immenso et innumberabilibus (Books 1-3),” in Opera latine 

conscripta, ed. F. Fiorentino, vol. I, pt. 1 (Neaples: Morano, 1879), 361: 
“Mathematice enim circularis motus non est in materia, quaecunque et 
qualiscunque sit, immo neque ullam formam vere in materia esse Platonici dixerunt 
(et non omnino male), neque hominem verum, neque verum equum.” 

470 De immenso: “Minimi in plano propria figura est circulus, in solido sphaera.”  
471 For the importance of images in Bruno’s thought, see especially Rossi, Art of Memory, 

81–96. 
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the patterns in which atoms were arranged to form geometric and physical figures 
(Figures 3a-3b-3c).  

 
 

 

Figure 2a: Atrium Veneris 
 
 

 

Figure 2b: Atrium Minervae 
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Figure 2c: Atrium Apollinis 
 
 

 

Figure 3a: Area Democriti 
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Figure 3b: Campus Democriti 
 
 

 

Figure 3c: Isocheles Democriti 
 

Christoph Lüthy has demonstrated that Bruno inherited these circular diagrams 
from a centuries-old tradition, going all the way back to Augustine (354-430 AD) 
and based on the mathematical teachings of Boethius (477-524 AD).472 What 

                                                
472 Christoph Lüthy, “Bruno’s Area Democriti and the Origins of Atomist Imagery,” 

Bruniana & Campanelliana 4, no. 1 (1998): 59–92. 
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distinguished Bruno from his predecessors was the meaning that he attached to 
those diagrams, as he was the first to use circles to represent atoms. In parallel, 
Bruno was the recipient of a metaphor which also had its origin in the Middle 
Ages, in particular in the anonymous Liber XXIV philosophorum (Book of the 24 
Philosophers): the metaphor of the infinite sphere whose center was everywhere 
and whose circumference was nowhere.473 Originally devised as a description of 
God, the metaphor of the infinite sphere took on different meanings throughout 
its long history, depending on the context in which it was understood. With 
Nicholas of Cusa, the infinite sphere came to represent the universe, the 
maximum in the realm of finite beings.474 In keeping with the idea (also from 
Cusa) that the opposites coincided, Bruno took a step further and employed the 
metaphor of the infinite sphere to describe the minimum:   

It is evident to everybody that the centre, i.e. the circle, the chord, the 
area, the diameter, the arc and the radius are all without distinction, 
whether we refer to the minimum or to the maximum.475 

                                                
473 This metaphor has been the subject of extensive studies: Dietrich Mahnke, Unendliche 

Sphäre Und Allmittelpunkt Beiträge Zur Genealogie der Mathematischen Mystik 
(Halle: M. Niemeyer, 1937); Karsten Harries, “The Infinite Sphere: Comments on 
the History of a Metaphor,” Journal of the History of Philosophy 13, no. 1 (1975): 5–
15. 

474 Nicholas of Cusa, De docta ignorantia, ed. Paul Wilpert and Hans Gerhard Senger 
(Hamburg: Felix Meiner, 2002), bk. II, chap. 12, para. 162: “Unde erit machina 
mundi quasi habens undique centrum et nullibi circumferentiam, quoniam eius 
circumferentia et centrum est Deus, qui est undique et nullibi.” 

475 De minimo, 145: “Centrum, aio, cyclus, chord', area, dimetrus, arcus et radius nullo 
veniunt discrimine coram omnia, seu minimum seu maxima concipiantur.” I 
understand that this statement seems to run counter to the view, which I hold, that 
the Brunian minimum was an extended point. Indeed, if the center and 
circumference of the minimum coincided, the minimum could not have been 
extended. However, there are other factors to be considered, which lead to think 
that Bruno regarded the minimum as an extended entity. First and foremost, there 
is his denial of incommensurability. If the minima were not extended, Bruno could 
have claimed that magnitudes were composed of an infinite number of them. This in 
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Hence, the circular shape of the Brunian minimum appeared to result from the 
interplay of two theoretical elements: the circular diagrams and the metaphor of 
the infinite sphere. Despite their geometric appearance, both these elements had 
a metaphysical rather than a strictly mathematical origin, as they were used to 
symbolize God.476 It was Bruno who turned the circular diagrams and the infinite 
sphere into full-fledged mathematical notions. He did so by employing them as a 
visual aid to understanding the fundamental properties of the minimum (e.g. the 
way in which minima interact with one another). Nevertheless, the metaphysical 
‘heritage’ of these two notions interfered with their new mathematical function, 
causing problems at the geometric level. For instance, we have seen that Bruno’s 
theory was incapable of accounting for incommensurable magnitudes. Another 
problem was that since around one circle there was only room for six other circles 
with the same diameter (see Area Democriti, Figure 3a), and since each circle 
stood for a geometric point, Bruno concluded that in a circumference the center 
(the central circle) was reached by only six radii (whose extremities were the six 
peripherical circles).477  

Thus, the circular shape of the minimum was at odds not only with Bruno’s 
rejection of mathematical realism, but also with the basic tenets of Euclidean 
geometry. As seen above, these contradictions were generated by the introduction 
of metaphysical elements into a theory that was at once physical and 
mathematical. Nonetheless, Bruno was unwilling to abandon those metaphysical 

                                                                                                                                            
turn would have enabled him to save incommensurability. Also, there is Bruno’s 
claim that the center of the circumference was the end-point of only six radii. There 
would have been no need to claim so, had the points been not extended.   

476 We have already said that the infinite sphere was originally conceived as a metaphor 
of God. As for the circle, Augustine attributed its shape to God by virtue of its being 
the most perfect form. See Christoph Lüthy, “Entiae & sphaerae: due aspetti 
dell’atomismo bruniano,” in La filosofia di Giordano Bruno. Problemi ermeneutici 
e storiografici, ed. Eugenio Canone (Florence: Leo S. Olschki, 2003), 184. 

477 De minimo, 247: “Ostendat minimum minimorum, cuius typus est circulus in quem 
omne resolvitur angulatum, a pluribus circumquaque possit attingi quam sex, et 
tunc concedemus eundem vel minimam partem vel nullam partem communem esse 
posse terminum omnium quae a peripheria descendere possunt lineae, non autem 
sex tantummodo radiorum terminum et trium communem partem diametrorum.” 
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elements because its objective was precisely to integrate physics, metaphysics and 
mathematics into a single theory. In fact, the whole of Bruno’s theory was built on 
the distinction of the three species of minima: physical (the atom), metaphysical 
(the monad) and mathematical (the point). This meant that all of these three 
aspects of reality could be described in terms of minima or, to put it otherwise, 
that in Bruno’s understanding the minima provided a “theory of everything.” 

Bruno may or may not have been aware that his project was too ambitious, 
and that any attempt to unify physics, metaphysics and mathematics would have 
caused problems at one or more of these three levels. What is certain is that he 
was willing to face these problems to ensure the comprehensiveness of his theory. 
This does not alter the fact that Bruno’s theory of minima was flawed, particularly 
with regard to its mathematical and physical applications. However, 
acknowledging that Bruno’s theory served a ‘higher purpose’ may help to better 
assess its overall value.  

4.4 The marriage of numerology and magic in De monade 

More than fifty years have passed since the publication of Frances Yates’s 
classical studies on Giordano Bruno and the Hermetic Tradition (1964). As Yates 
herself explained in the introduction to the book, Bruno had long been a problem 
for her (“masses of notes and manuscript accumulated but full understanding 
eluded me”478), until she realized that the solution lay in contemporary 
Renaissance scholarship, and more precisely in the studies that Kristeller, Garin 
and others were conducting on Renaissance Hermeticism. Although Yates’ 
purpose in writing her book was “to do only what its title states, to place him [i.e. 
Bruno] in the Hermetic tradition,”479 she went further than that, presenting the 
whole of Bruno’s doctrine as the work of a Renaissance magus. More recent 
interpreters have objected that the “Yates thesis” was too simplistic, since its 
emphasis on magic overshadowed the importance of other aspects of Bruno’s 
thought, above all its philosophical character.480 Indeed, as we have seen 
throughout this chapter, Bruno’s works tends to frustrate attempts to read them 

                                                
478 Yates, Bruno and the Hermetic Tradition, ix. 
479 Yates, x. 
480 See Ciliberto, “Introduction.” 
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in a one-sided way. And yet, in spite of this, Yates’ interpretation of Bruno 
continues to provide the key to his most obscure texts, as happens in the case of 
De monade. numero et figura (On the Monad, Number and Figure, 1591).481 

Of the Latin poems that compose Bruno’s Frankfurt Trilogy, De monade is 
arguably the most difficult to interpret. This difficulty arises from the fact that, at 
first sight, De monade appears to be a mere exercise in numerology. The poem 
was divided in ten chapters, each of which was devoted to describing the 
properties of the first ten numbers. Each number was associated with a geometric 
figure and a list of extra-mathematical realities (moral virtues, natural 
phenomena, philosophical concepts, and so on) in order to show that “in any 
species and number all things can be found, according to the disposition of the 
diverse elements.”482 For instance, the number one or “monad” was associated 
with the circle and was said to be found in both the Mind and Soul.483 In this 
respect, Bruno’s De monade was not unlike Iamblichus’ Theology of Arithmetics 
(Theologumena arithmeticae, fourth century AD) and other late antique 
‘arithmological’ treatises, with the only difference that Bruno’s work was little 
concerned with theology.484 Rather, Bruno’s purpose was to show how 
mathematics—which, in his understanding, was not opposed to numerology—
could provide a universal science through which to explore the world at all levels. 
In fact, it was precisely in that Neoplatonic and Neopythagorean tradition that 
Bruno placed his own poem, a tradition that in the Renaissance the likes of 
Marsilio Ficino and Giovanni Pico della Mirandola had renamed “ancient 
theology,” prisca theologia or perennis philosophia (although the meaning of 
these terms do not exactly coincide).  

                                                
481 Giordano Bruno, “De monade, numero et figura,” in Opera latine conscripta, ed. F. 

Fiorentino, vol. I, pt. 2 (Neaples: Morano, 1884). 
482 De monade, 330: “Qualibet in specie ac numero mox comperientur omnia, pro varia 

variorum conditione.” 
483 De monade, 346. 
484 Iamblichus, The Theology of Arithmetic: On the Mystical, Mathematical and 

Cosmological Symbolism of the First Ten Numbers, trans. Robin Waterfield (Grand 
Rapids, Mich: Phanes Press, 1988). 
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Ancient theology has been the subject of extensive studies.485 I will limit 
myself to an outline of this tradition to illuminate Bruno’s De monade and the 
historical context in which it was written. The main reason why Renaissance 
thinkers invoked ancient theology was to integrate the original pagan Platonism 
into Christianity. As D. P. Walker explains, “that this integration could be 
successfully carried out was largely due to the mistaken belief that behind Plato 
stood Moses and the ancient theologians.”486 In other words, the underlying idea 
was that Plato had inherited a much older body of knowledge which was already 
possessed by Moses and the progenitors of the Judeo-Christian tradition. Besides 
Moses, a chief representative of ancient theology was Hermes Trismegistus, 
whose works, the Corpus Hermeticum, were translated in the Renaissance by 
Ficino. Hermes’ works were considered to be as old as the ancient Egyptians until 
in 1614 Isaac Casaubon showed that, in fact, they dated to the first centuries of 
the Christian era.487 Ficino’s translation, which covered 14 of the 15 treatises 
traditionally attributed to Hermes (the last one was missing from the manuscript 
on which Ficino worked), was entitled Pimander and dedicated to Ficino’s 
patron, Cosimo de’ Medici. In the preface to his work, Ficino proposed the 
following genealogy of ancient theology:  

He [i.e. Hermes] was called the first author of theology, and Orpheus 
followed him, taking second place in the ancient theology. After 
Aglaophemus, Pythagoras came next in theological succession, having 
been initiated into the rites of Orpheus, and he was followed by 

                                                
485 Charles B. Schmitt, “Perrenial Philosophy: From Agostino Steuco to Leibniz,” Journal 

of the History of Ideas 27, no. 4 (October 1966): 505; D. P. Walker, The Ancient 
Theology: Studies in Christian Platonism from the Fifteenth to the Eighteenth 
Century (London: Duckworth, 1972); Maria Muccillo, Platonismo, ermetismo e 
“prisca theologia”: ricerche di storiografia filosofica rinascimentale (Florence: L.S. 
Olschki, 1996); Martin Mulsow, “Ambiguities of the Prisca Sapientia in Late 
Renaissance Humanism,” Journal of the History of Ideas 65, no. 1 (2004): 1–13; 
Wilhelm Schmidt-Biggemann, Philosophia Perennis: Historical Outlines of 
Western Spirituality in Ancient, Medieval and Early Modern Thought (Dordrecht: 
Springer, 2004). 

486 Walker, The Ancient Theology, 12. 
487 Walker, 18. 
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Philolaus, teacher of our divine Plato. In this way, from a wondrous 
line of six theologians emerged a single system of ancient theology, 
harmonious in every part.488 

As already mentioned, it was Yates’ contribution to draw a connection between 
Bruno and Renaissance Hermeticism. Surely, De monade was one of those texts 
in which this connection was more evident, since reference to the ancient 
theologians was made in the introductory chapter to the poem. With the only 
exception of Philolaus, Bruno mentioned the same ancient theologians as Ficino 
while adding to the list Zoroaster and Apollonius of Tyana.489 However, it was 
neither Hermes nor Orpheus who inspired Bruno to write De monade, but rather 
Plato and even more so Pythagoras. Indeed, as already mentioned, researches on 
numerology and number mysticism had been carried out by the Pythagoreans 
even since the foundation of their school. In addition, Bruno entertained the idea 
of creating a bridge between arithmetic and geometry by associating numbers and 
figures. This idea had also a Pythagorean origin, since the ancient Pythagoreans 
had established a connection between the first four numbers and the sequence 
point-line-surface-solid in attempt to explain the origin of all things out of 
numbers. We find traces of this ancient Pythagorean theory in Sextus Empiricus’ 
Against the Physicists: 

Thus the point, for example, is ranked under the head of the One; for 
as the One is an indivisible thing, so also is the point; and just as the 
One is a principle in numbers, so too the point is a principle in lines. 
So that the point comes under the head of the One, but the line is 
regarded as belonging to the class of the Dyad; for both the Dyad and 

                                                
488 Marsilio Ficino, Opera omnia (Basel, 1576), 1836, cited and translated in Brian P. 

Copenhaver and Charles B. Schmitt, Renaissance Philosophy (Oxford: Oxford 
University Press, 1992), 147. 

489 De monade, 334: “Sed nos propositum resumentes dicimus huiusce generis numeros 
Pythagorae, Aglaophemo, Zoroastrio, Hermetique Babylonio fuisse principia, 
quibus operanti naturae homines cooperatores esse possint. Huiusce generis figuras 
Platonem supra sensibilium specierum orbem extulisse constat; ‘Apollonius propter 
numerorum virtutem, audito illius nomine, puellam suscitavit.’” 
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the line are conceived by way of transition.—And again: the length 
without breadth conceived as lying between two points is a line. So 
then, the line will belong to the Dyad class, but the plane to the Triad 
since it is not merely regarded as length, as was the Dyad, but has also 
taken to itself a third dimension, breadth. Also when three points are 
set down, two at an interval opposite to each other, and a third midway 
in the line formed from the two, but at a different interval, a plane is 
constructed. And the solid form and the body, as also the pyramid, are 
classed under the Tetrad. For when the three points are placed, as I 
said before, and another point is placed upon them from above, there 
is constructed the pyramidal form of the solid body; for it now 
possesses the three dimensions length, breadth, and depth.490 

Interestingly enough, Sextus distinguished this theory from the fluxion theory 
since, in his historical reconstruction, the ancient Pythagoreans charged both of 
them with a cosmogonic meaning, although the fluxion theory was developed at a 
later stage. As for Bruno, he claimed, on the one hand, that the line was generated 
by the flowing of a point, the plane by the flowing of a line, and the solid by the 
flowing of a plane.491 On the other hand, he established the following one-to-one 
correspondence between numbers and figures: point–one, line–two, plane–three, 
solid–four.492 Hence, we can conclude that Bruno accepted both Pythagorean 
theories reported by Sextus. Building on this, he went on to show how the 
derivation process of the first ten numbers unfolded. The starting point of this 
process was, of course, the monad.  

As you may recall, in De minimo, Bruno gave the following definition of 
the monad as the metaphysical minimum: “it [i.e. the mininum] is a monad 

                                                
490 Sextus Empiricus, Against the Physicists, 345–47. 
491 De minimo, 148: “Ergo linea nihil est nisi punctus motus, superficies nisi linea mota, 

corpus nisi superficies mota, et consequenter punctus mobilis est substantia 
omnium, et punctus manens est totum”. 

492 De monade, 380-81: “Et tetrade est primum solidi natura reperta, quando in 
corporeis rebus numeri esse priores aptati debent. Quia punctum dat monas, atque 
Dat puncti fluxum dias, haec extenditur inde in planum triadis; demum tetras esse 
reponit corporeum.” 
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rationally in numbers and essentially in all things.”493 This definition laid the 
foundation for the numerological project carried out in De monade. Here, the 
monad was conceived as both the beginning of the numerical series and the origin 
of all things by virtue of the fact that numbers were found everywhere. In 
addition, the monad was associated with the circle, the same figure that was 
attributed to the other two species of the minimum, the point and the atom. In 
the previous section, we have seen that, in endowing the minimum with a circular 
figure, Bruno gave a new meaning to the circle, which in the Middle Ages was 
used to signify God. In De monade, Bruno explained why the circle was the best 
way to represent the monad by means of analogies. For instance, the circle was 
the source of all geometric figures, just like the monad was the source of all 
numbers, for “all figures, whatever is their substance, when divided in their 
magnitude, are not reduced to diverse species, but they find their indivisible 
minimum in the circle and sphere.”494 Another reason why all figures could be 
reduced to the circle was that, regardless of the number of their sides, they could 
always be inscribed in a circle.495 Finally, Bruno noticed that the fin, wing and 
arm all moved following a circular trajectory—another reason to believe that the 
circle was the most primordial figure.496 However, Bruno specified, this did not 
mean that perfect circles were found in nature, “for nothing [in nature] is 
pure.”497 In De monade as well in De minimo, mathematical realism was off the 
table.     

The chapter on the monad ended with a scala or “ladder,” divided in three 
“orders,” listing the beings in which the monad manifested itself. For the most 
part, these were metaphysical entities—such as the Mind, the Soul, the Mover—
which occupied a central place in Bruno’s philosophical system. Carlo Monti 
suggests that Bruno borrowed the original Neoplatonic idea of the ladder of being 
from Agrippa’s De occulta philosophia (On the Occult Philosophy, 1531 – 1533), 

                                                
493 De minimo, 139–40: “Minimum est … monas rationaliter in numeris, essentialiter in 

omnibus.” 
494 De monade, 336: “Nec variam in speciem quantum resecando resolvunt, dividuum ii 

minime cyclum sphaeramque capessunt.” 
495 De monade, 337. 
496 De monade, 339. 
497 De monade, 340: “Quoniam purum nihil est.” 
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more precisely from book II, chapter IV (“De unitate et eius scala,” “The unity and 
its ladder”). Because of this ladder, a version of which was appended to each 
chapter of De monade, this work has been regarded as a numerological treatise. 
However, De monade was not just about numerology. In it, speculations about 
the symbolic and mystical powers of numbers were intertwined with 
considerations regarding the existence a world-soul which made all things alive, 
including those apparently inanimate. For instance, while speaking of the 
ontological priority of the monad over numbers and beings, Bruno mentioned the 
fact that every being unfolded from a single soul located at the center of the 
universe.498 Likewise, he spoke of a single principle by which all things were 
originated and kept alive, and to which all things returned after their death.499 

This panpsychist view of the world, which was already expressed in 
Bruno’s vernacular works, opened the door to natural magic. In Bruno’s eyes, 
natural magic was the view that natural beings could be used to act upon one 
another by virtue of their spiritual interconnectedness. For this reason, for 
example, stones were thought to have an influence on the human soul.500 As 
highlighted by Walker, Renaissance invocations of ancient theology were often 
accompanied by experiments in the field of natural magic, astrology, and 
numerology.501 This was also the case of Bruno, who wrote several magical 
treatises throughout his life502 and combined magic and numerology in De 
monade. 

                                                
498 De monade, 338: “Nempe anima a medio cordis membrum explicat omne, principio, 

arcano de semine stamina mittens, inde iterum relegenda suis verso ordine fatis, ac 
certa rerum serie.” 

499 De monade, 343: “Lex una est qua per naturam fluximus alto e principio, qua 
servamur, sensu, ingenioque donati vegetique sumus, quo deinde refluxu occidua e 
regione altos redeamus ad ortus.” 

500 Bruno, Cause, Principle, and Unity, 63: “[…] The properties of many stones and gems 
which, broken, recut or set in irregular pieces, have certain virtues of altering the 
spirit or of engendering affections and passions in the soul, not only in the body.” 

501 Walker, The Ancient Theology, 2. 
502 Giordano Bruno, Opere magiche, ed. Simonetta Bassi, Elisabetta Scapparone, and 

Nicoletta Tirinnanzi (Milan: Adelphi, 2000). 
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Taking a step further, it might have been the interplay of magic and 
numerology which drew Leibniz’s attention to Bruno’s De monade, and inspired 
his conception of the monad as a mind-like substance. There has been much 
discussion about Leibniz’s monadology and his debt to Bruno. Indeed, the 
similarities between Bruno’s and Leibniz’s theory of monads have suggested that 
the latter might have borrowed aspects of his theory from the former. For Leibniz 
scholars, the question is when Leibniz’s debt incurred, whether in his youth (as 
suggested by Stuart Brown) or later in his life (as advocated by earlier 
interpreters).503 It is not my purpose to address this question, but to focus on the 
extent of Leibniz’s debt to Bruno. For Brandon Look, Leibinz’s monadology was 
the ultimate expression of his metaphysics of substance, which can be viewed as a 
synthesis of five philosophical views: idealism, panpsychism, perspectivism, 
divine emanation and monadic hierarchy.504 Of these five views, only two—
panpsychism and divine emanation—could also be ascribed to Bruno. As we have 
seen, Bruno’s panpsychist view of the universe was an integral part of the infinist 
cosmology expounded in his vernacular and Latin works. As for divine 
emanation, suffice it to say that in De minimo Bruno called God the “monad of 
the monads” (monas monadum)505 and defined him as “the monad source of all 
numbers, the simplicity of all magnitudes and the substance of all 
compounds.”506 

On the contrary, in Bruno’s works there were no traces of the other three 
Leibnizian views. In fact, Bruno utterly rejected idealism, namely, the view that 
only minds and ideas were substances, while matter and motion were phenomena 
derived from those substances. More precisely, in De la causa, he took issue with 

                                                
503 Stuart Brown, “Monadology and the Reception of Bruno in the Young Leibniz,” in 

Giordano Bruno: Philosopher of the Renaissance, ed. Hilary Gatti (Aldershot: 
Ashgate, 2002), 381–404. 

504 Brandon C. Look, “Gottfried Wilhelm Leibniz,” in The Stanford Encyclopedia of 
Philosophy, ed. Edward N. Zalta, Summer 2017 (Metaphysics Research Lab, 
Stanford University, 2017), para. 5, 
https://plato.stanford.edu/archives/sum2017/entries/leibniz/. 

505 De minimo, 146. 
506 De minimo, 136: “Deus est monas omnium numerorum fons, simplicitas omnis 

magnitudinis et compositionis substantia.” 
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the Platonists (the idealists par excellence) and their “ideal signs, separate from 
matter, for if these are not monsters, they are assuredly worse than monsters, 
being chimeras and pointless fantasies.”507 This leads Alfonso Ingegno to 
conclude that, rather than being a mere phenomenon, the Brunian matter “is a 
principle which is neither passing nor transient, a principle which cannot be 
annihilated and which is identified with the substance of beings themselves.”508 
In general terms, Bruno was also opposed to the concept of ontological hierarchy, 
although in De monade he adopted the Neoplatonic idea of the ladder of being 
but only for numerological purposes. Finally, unlike Leibniz, Bruno did not 
believe that each monad offered a unique perspective on the universe, nor that 
monads were capable of perception. This was a major difference with Leibniz’s 
monadology, for although in De monade there was a connection between monads 
and world-soul (and numerology and magic), Bruno never came to conclusion 
that monads were mind-like substances.  

In conclusion, one might well argue that there were more differences than 
similarities between Bruno’s and Leibniz’s theory of monads. In fact, we have 
seen that most of the distinctive features of Leibniz’s monadology were views that 
Bruno rejected. On the other hand, we know that Leibniz read Bruno’s De 
monade as well as other of his works and it is hard not to see a link between their 
theories of monads. Like Bruno, Leibniz had a panpsychist view of the universe 
and believed in the existence of an original unity from which all things were 
derived—a unity that was called either God or monad depending on the context. 
Hence, if it is true that Leibniz was indebted to Bruno for his theory of monads, 
this is what the German philosopher was more likely to have borrowed from his 
Italian predecessor. However, it should be noted that Bruno himself was indebted 
to a much older tradition for the ideas of monad and world-soul, since the 
Pythagoreans and the Stoics must be credited with the first formulation of those 
ideas. In this respect, I agree with Brown who argues that “the main reason for 
the similarities between the two philosophers is their debt to common sources 

                                                
507 Cause, Principle, and Unity, 85. 
508 Alfonso Ingegno, “Introduction,” in Cause, Principle, and Unity, by Giordano Bruno, 

ed. Robert de Lucca and Richard J. Blackwell (Cambridge: Cambridge University 
Press, 1998), xviii. 
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and their membership of a common philosophical tradition.”509 The fact that 
Pythagoreanism was an important part of this tradition offers yet another 
example of how, in many aspects of his mathematical thought, Bruno was an heir 
of the philosopher of Samos.   
  

                                                
509 Brown, “Monadology and the Reception of Bruno,” 384. 
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Conclusions  

Constraints were imposed to finish this work within the time limit. For this 
reason, I will use this space to present the issues not covered by this work as well 
as its main results. First of all, this work does not contain an account of all the 
mathematical works written by Bruno. For the record, this includes eight works: 
the four dialogues on Mordente’s compass (1586), the Articuli adversus 
mathematicos (1588), De minimo (1591), the Praelectiones geometricae (1591/2) 
and the Ars deformationum (1591/2). These last two works remained 
unpublished until 1964 when Aquilecchia discovered a copy of them contained in 
a manuscript of the University Library of Jena.510 Aquilecchia believed that both 
the Praelectiones and the Ars dated back to Bruno’s stay in Padua from August 
1591 to May 1592, and that they contained the teaching material used by Bruno in 
his lectures to a group of German students. As for the content, the two works 
provided an explanation of the mathematical theory presented in De minimo. The 
same can be said of the Articuli, although this work was written at an earlier date 
than De minimo and in it the mathematical reform advocated by Bruno was 
discussed in greater detail. As such, the Articuli, the Pralectiones and the Ars can 
be useful to understand  De minimo, of which however we already have a detailed 
account provided by Atanasijević.511 After all, De minimo was the main 
mathematical work written by Bruno. For this reason, interpreters and, 
especially, critics of Bruno’s mathematics have focused mainly on this work. 
However, as I have tried to show in Chapter 3, this has also led scholars to neglect 
important aspects of Bruno’s mathematical thought, starting with the fact that, in 
purely mathematical terms, the theory presented in the dialogues on Mordente’s 
compass was more coherent that the version of it presented in Bruno’s later 
works. In light of this, I decided to give more visibility to the dialogues on 
Mordente’s compass (although I could not addressed all the issues raised in 
them), while I studied De minimo and Bruno’s mathematics in general from a 
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thematic rather than analytic perspective.   
Moreover, this work does not contain an account of the reception of 

Bruno’s mathematics. This issue has been addressed especially with regard to 
England and the Northumberland circle, focusing on the extent to which English 
scholars were indebted to Bruno for their ideas about infinity and atomism.512 On 
the contrary, no one has examined whether the transfer of ideas occurred in both 
directions, and thus whether Bruno was influenced by English authors such as 
John Dee and Thomas Harriot as well as the other way around. This investigation 
is left for future studies. 

The account of Bruno’s mathematics presented in this work is structured 
around three questions (this is what I mean when I say that my approach to 
Bruno’s mathematics is more thematic than analytic):  

(1) What are the sources of Bruno’s atomistic geometry? 
(2) Did Bruno anticipated the concept of infinitesimal? 
(3) Was Bruno a mathematical realist? 

I think that it is important to answer these questions because they were either left 
open (as in the case of the first question) or they were answered incorrectly (as in 
the case of the second and third question). In both cases, this had a negative 
effect because the lack of sources led to regard Bruno’s atomistic geometry as an 
isolated episode in the history of mathematics, while refusing to acknowledge a 
connection between Bruno and the infinitesimals and viewing him as a 
mathematical realist made his atomistic geometry look outdated. What was at 
stake was Bruno’s reputation as a mathematician.   

Starting with the first question, I addressed it in terms of ‘tradition.’ More 
specifically, I tried to show that Bruno was in line with a group of medieval 
atomists who, drawing inspiration from Neopythagorean texts such as Boethius’ 
                                                
512 Robert Kargon, “Thomas Hariot, the Northumberland Circle and Early Atomism in 

England,” Journal of the History of Ideas 27, no. 1 (January 1966): 128–36; Daniel 
Massa, “Giordano Bruno’s Ideas in Seventeenth-Century England,” Journal of the 
History of Ideas 38, no. 2 (April 1977): 227–42; Hilary Gatti, “Minimum and 
Maximum, Finite and Infinite Bruno and the Northumberland Circle,” Journal of 
the Warburg and Courtauld Institutes 48 (1985): 144–63; Saverio Ricci, “Giordano 
Bruno e Il ‘Northumberland Circle’ (1600-1630),” Rinascimento 25 (1985): 335–56. 
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Institutio arithmetica, defined the point as an atom or “unit having position.” As 
demonstrated by Robert, this atomistic definition of the point became the starting 
point for explorations of non-Aristotelian conceptions of the continuum. Indeed, 
as is well known, Aristotle was a fierce opponent of atomism as he believed that 
the division of the continuum could go to infinity. Ramon Llull was among the 
medieval authors who, challenging Aristotle, claimed that the continuum was 
composed of indivisible points. Thus, like Bruno, Llull belonged to the tradition 
of Pythagorean atomism. Llull presented his atomistic view of mathematical 
objects in a little known work, the Liber de geometria nova, which to my 
knowledge has never been related to Bruno’s mathematics. Since Bruno had an 
extensive knowledge of Llull’s works, I assumed that the Geometra nova may 
have inspired Bruno to develop his atomistic geometry. To substantiate this 
claim, I examined whether Bruno could have read this work, concluding that 
there was evidence that this might have occurred.      

If Llull was Bruno’s source for his atomistic view of the continuum, Bruno 
himself acknowledged Cusanus as the privileged source of his mathematical 
ideas. The bridge between Cusan and Pythagorean atomism was provided by the 
concepts of enfolding and unfolding. Indeed, both these concepts were inherited 
from the Pythagorean tradition (in particular from Thierry of Chartres’ 
commentary on Boethius’ Institutio) and embedded in the atomistic theory 
presented by Cusanus in De mente. On the other hand, Cusanus was Bruno’s 
source of his idea of the minimum. This did not mean that Bruno and Cusanus 
shared the same view of the minimum. In fact, in Cusanus’ account the minimum 
was an ineffable reality, while in Bruno’s account the minimum could be 
visualized using instruments such as Mordente’s compass.    

As for the second question—whether Bruno’s idea of the minimum can be 
considered a forerunner of the modern concept of infinitesimal—I addressed it by 
analyzing Bruno’s first mathematical writings, the four dialogues on Mordente’s 
compass. The analysis of these dialogues revealed that Bruno tried to impose his 
interpretation of the compass, which, in his opinion but not in that of Mordente,  
confirmed the existence of minimum magnitudes of which mathematical objects 
were composed. More importantly, Bruno’s concept of the minimum, as 
presented in the dialogues on Mordente’s compass, was closer to the concept of 
infinitesimal than previously thought. Early interpreters of Bruno’s mathematics 



 193  

such as Olschki have claimed that the Brunian minimum was far removed from 
the concept of infinitesimal on account of its having a specific form. On the 
contrary, in the dialogues on Mordente’s compass, Bruno based his argument on 
the assumption that minimum magnitudes were shapeless. It was in De minimo 
that Bruno claimed that the mathematical minimum was an extended point 
having a circular shape, but this was the result of Bruno’s attempt to integrate 
physics, metaphysics and mathematics into a single theory. 

Finally, I dealt with the third question—on Bruno’s mathematical realism—
by tracing the development of his conception of mathematics from his vernacular 
works to his Latin poems. I claimed that Bruno opposed both the idea that 
mathematical objects exist independently of our mind (as attested by his rejection 
of circular devices such as celestial orbs) and the idea that mathematical models 
could be used to explain nature (as attested by his belief that natural philosophers 
and not mathematicians were able to understand the true causes of physical 
phenomena). In fact, Bruno’s mistrust in mathematical physics and mathematical 
astronomy was a consequence of his unwillingness to accept the existence of 
mathematical objects in nature. 

On the one hand, this provides a response to Védrine’s objection that 
Bruno’s realism was the cause of his mathematical failure. On the contrary, I 
believe that Bruno did not succeed in turning his atomistic geometry into a full-
fledge mathematical theory because he was led astray by his philosophical 
agenda. On the other hand, one may argue that Bruno’s rejection of mathematical 
realism, and in particular of the possibility of explaining nature in mathematical 
terms, opens a gap between Bruno and the Scientific Revolution. Indeed, the 
narrative of the Scientific Revolution, as told by the likes of Husserl and Koyré,513 
rested on the assumption that the rise of modern science coincided with the 
emergence of a new view of nature, one characterized by a quantitative and 
mathematical approach. The mathematization of nature has since become the 
epitome of the Scientific Revolution. But what if mathematicizing was not the 
                                                
513 Edmund Husserl, The Crisis of European Sciences and Transcendental 

Phenomenology: An Introduction to Phenomenological Philosophy, trans. David 
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only approach to the study of nature? What if there were more “forms of 
mathematization” (as claimed by Roux514) or there were scholars who tried to 
“naturalize mathematics?”515 The invention of the calculus provides evidence that, 
as it was, classical mathematics was unable to account for natural phenomena 
such as motion.516 Bruno was aware of this, as proved by the fact that he argued 
against those who wanted to force nature into predetermined mathematical 
models (e.g. the Ptolemaic astronomers). What if the modernity of Bruno’s 
mathematics consisted in this awareness? Will it lead to reconsider his 
mathematical abilities and, perhaps, the whole relationship between early 
modern mathematics and the Scientific Revolution? This study is a first step in 
this direction.  

 
  

                                                
514 Sophie Roux, “Forms of Mathematization (14th-17th Centuries),” Early Science and 

Medicine 15, no. 4–5 (2010): 319–37. 
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Giuliano Mori, “Mathematical Subtleties and Scientific Knowledge: Francis Bacon 
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