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Introduction: The hunt for the missing piece 4

It is almost a century now since data implying the presence of nonluminous matter in the
Universe surfaced: in 1932 Oort [1] observed that the number of stars near the sun was 30 —50%
less than the number necessary to explain their velocities; then, in 1933, Zwicky [2] pointed
out that the velocity dispersion of galaxies in the Coma cluster required 10 to 100 times more
mass than the one accounted for the luminous galaxies themselves. The same Zwicky called this
unseen matter dunkle materie (dark matter). These observations were practically ignored for
almost four decades until a large number of new evidences corroborating the claim of Oort and
Zwicky emerged.

Nowadays evidences advocating the existence of Dark Matter (DM) range from the galactic
scale, where DM is needed to explain the observed stellar dynamics, to cosmological scales, DM
being one of the pillars of the ACDM model. However, despite its central role, the nature of the
DM remains unknown. This ignorance, which mostly stems from our inability to detect non-
gravitational interactions between dark and baryonic matter, together with the fact that DM is
one of the few phenomenological flaws of the Standard Model (SM) has driven a huge activity in
the theoretical community.! However, if the lack of information about the DM properties makes
quite easy is to come up with plausible theoretical solutions it also makes very hard to proof
or disproof them. Thus it is crucial to keep pushing the experimental frontiers in parallel with
the theoretical efforts. In the following we summarize the (few) experimental informations we
have about the DM, and the experimental endeavors that the community is undergoing in the
attempt to unveil some of its key features.

Energy density

The only thing we know with a high degree of accuracy about the DM is its cosmological
abundance, Qpym = ppu/po, where ppy and pg are respectively the DM and the critical energy
densities. Up to now, the more accurate determination of {2py; comes from fitting the parameters
of the ACDM model to the CMB power spectrum [6]:

Qpumh? = 0.1186 + 0.0020, (1)

where h is the Hubble constant in units of 100 Km/(s Mpc).

Mass

While the DM energy density is known with an high degree of accuracy, its number density
npm = pom/Mpwm, or equivalently its mass, is very poorly constrained.

The lower bound on the DM mass depends on whether it is a fermionic or a bosonic particle.
In the bosonic case, this lower limit comes from the requirement that DM has to behave classically

1 The lack of non-gravitational signals, not only limits our investigating power, also raises the doubt that the
DM could be just a manifestation of some modified theory of gravity. This possibility seemed to be ruled out
by the observation of two galaxies lacking DM [3,4], however a recent work [5] showed that the apparent lack of
DM was due to a misestimate of the galaxis’ distances. Therefore the doubt remains.
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Figure 1: Bounds on the DM lifetime from measurements of the CMB power spectrum (left
panel) [12], and 21-cm absorption signal (right panel) [13], assuming different decay channels.
Both bounds are provided up to DM masses of O (10TeV). The ones coming from CMB are
expect to remain constant at higher masses, while further studies are needed to extend the ones
coming from 21 —cm line observables. At masses below the MeV significant bounds can be placed
only assuming a decay channel into photons.

on galactic scales, i.e. its de Broglie wavelength, Apy = h/(Mpyvpy) has to be smaller than
galactic length scales (~ 10 Kpc). From this requirement, and taking vpy ~ 200 Km/s (the typ-
ical DM velocity in our galaxy), we find the lower bound Mpy = 10722 eV. For fermionic DM we
also have to require that the degeneracy pressure does not prevent galaxy formation. The space
density of fermions cannot exceed the value f = gh~3, where g is the number of internal degrees of
freedom [7]. Assuming the dark-matter distribution to be an isothermal sphere with core radius
. = (902 /47 Gp.)"/?, where p. is the central density and o is the Maxwellian one-dimensional ve-
locity dispersion, the corresponding maximum phase-space density is f = p.Mpay(270?) =2 [8].
Requiring that this maximum value is smaller than gh~2 and taking a Milky Way type galaxy
(0 =150 Km/s and p. > GeVem™3) we get Mpy > 25€V.

For what concern the largest possible value for the DM mass, several analysis seem to rule out
DM candidates with masses above ~ 10 —100M, (see for example the bounds from disruption of
compact stellar system [9,10]). However, is important to emphasize that many of these analysis
are plagued by astrophysical uncertainties. Recently it has been pointed out [11] that pulsar
timing measurements will provide an astrophysical clean constrain in the near future.

To summarize, we are able to constraint the DM mass within 79 orders of magnitude for
bosonic candidates and 56 orders of magnitudes for fermionic ones.
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Figure 2: Bounds on the DM lifetime from indirect searches for different decay channels [1/].
In the mass range ~ 107 to 10° GeV the IceCube experiments provide stronger bounds, see for
example [15].

Lifetime

The DM has to be present both in the early Universe, where it provides the seeds for structure
formation, and in the present-day Universe, where it dictates the stellar dynamics in galaxies.
Therefore, we can readily state that its lifetime has to be at least of the order of the Universe:
oM = 10'7s. However, much stronger constraints can be placed looking for the effects of the
energy released in DM decays 2.

Decays during the recombination epoch inject highly energetic particles in the baryon-
photon plasma at a rate which is proportional to mpy. These particles heat the gas and -more
importantly- ionize hydrogen atoms, modifying the location and the thickness of the last scat-
tering surface (LSS). The shift of LSS location translate in a shift of the CMB acoustic peak,
while the broadening of the LSS induces a suppression of the CMB modes with [ = 3. Therefore,
measurements of the CMB power spectrum can be used to constrain mpy [12], as shown in the
left panel of Fig. 1.

The recently observed absorption line in the low energy tail of the CMB spectrum [16]
allows us to put an upper bound on the temperature of the intergalactic medium (IGM) at
redshift z ~ 17. Decays of DM particles during the dark ages (i.e. the epoch which goes from
recombination, z ~ 1100, to reionization, z ~ 10) are constrained, mainly because they inject
energy in the IGM heating it, erasing or reducing the absorption line [17,18,13]. The bounds
obtained in this way are stronger than the ones derived from observations of the CMB power
spectrum (see the right panel of Fig. 1) and will became even stronger as soon as the experimental
error on the amplitude of the absorption line is reduced.

2Here (and in the following discussion about the DM annihilation cross section) we assume that DM either
decays (annihilates) into SM or that its decay (annihilation) products decay into SM on cosmologically short
timescales. This is the case in the vast majority of DM models but scenarios in which both this assumptions are
violated can be engineered (consider for example DM decaying into dark photons of a completely decoupled dark
sector). In this case, bounds on the DM lifetime and annihilation cross section have to be revised.
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Figure 3: Bounds on the DM annihilation cross section from indirect searches for different decay
channels. The left panel shows an example of bound for masses around the weak scale [19], the
right panel shows bounds at higher masses from the ANTARES neutrino telescope [20)].

Finally, products of DM decays in the present-day Universe give an excess over the predicted
flux of particles from astrophysical objects. Experiments looking at these flux can then be used
to constraint the DM lifetime (see for example [14] and Fig. 2 where some of their results are
reported).

Annihilation cross section

If the DM abundance is not generated by a primordial asymmetry, residual annihilations of DM
particles can release energy in the Universe giving rise to effects similar to the ones generated by
DM decays. Therefore, CMB observables [22] together with 21-cm [21] and indirect detection
experiments can be use to constrain the DM annihilation cross section, see Fig. 3 and 4 (for
DM masses around the weak scale see for example [19,23] for searches of gamma rays in Dwarf
spheroidal galaxies and the Milky Way galactic halo, and [24] for searches of antiprotons; for
DM above the TeV the strongest bound are provided by HESS [25] and neutrino telescopes,
e.g. [20]).

Despite the bounds provided by the three methods above mentioned are in the same ballpark,
it is important to stress that the ones coming from the 21-cm signal are free from astrophysical
uncertainties (that plague the ones coming from indirect detection) and model independent
(differently from the ones from CMB observables, which rely on a global fit that assumes ACDM).

Interactions with the SM

One of the most promising way to shed some light on the particle nature of the DM is to directly
detect it. A long-standing strategy to achieve this goal is to look for interactions between DM
particles of the galactic halo and terrestrial detectors. Since the typical velocity of DM particles
in our galaxy is fixed (vpy ~ 1073), the typical kinetic energy carried by a DM particle changes
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Figure 4: Bounds on the DM annihilation cross section from measurements of the CMB power
spectrum (top panel) [0], and 21-cm absorption signal (lower panels) [21], assuming different
dacey channels. Both the CMB and the 21-cm bounds are expect to continue the linear scaling
at higher DM masses. At masses below the MeV, as for the decay, significant bounds can be
placed only assuming annihilations into photons.

with its mass. Therefore, different experiments sensitive to different energy ranges are required
to test different DM masses.

For a long time the weakly interacting massive particle (WIMP) scenario has dominated
the direct detection program, partly because of its theoretical attractiveness (especially in its
supersymmetric realization) and partly because of its fairly well defined target region in the
parameter space (i.e. a mass around the weak scale, 1 GeV < Mpy < 10 TeV, and a scattering
cross section with nucleons in the range 107°°cm? < opyn < 1074 cm?). This lead to the
development of several experiments aimed to detect nuclear recoils induced by scatterings of
DM particles; which, with a typical energy threshold of order 10 KeV, were sensitive to DM
masses = 10 GeV. Up to now, no scattering events have been observed, and we can only place
upper bounds on the DM-nucleon scattering cross sections. The strongest ones (for masses above
10 GeV) are provided by the XENONIT experiment [26], whose results are summarized in Fig. 5.
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Figure 5: Reproduced from [26]. Solid lines show present bounds on the spin-independent (SI)
cross section for DM-nucleon scattering. The black dashed line shows a projection of the bounds
that will be placed by XENONnT in the case of a null detection, while the yellow dashed line
shows the neutrino floor.

The lack of a detection signal in experiments looking for WIMP-like particles gave rise,
in the last decade, to a blossoming of new DM candidates that, like WIMP ones, are highly
motivated by theoretical results and/or experimental data, but live in different (typically sub
GeV) mass ranges. A broad and partially incomplete classification can be made dividing them
in two categories: hidden-sectors and wultra-light candidates.

Hidden sectors candidates are a natural generalization of WIMP candidates to include inter-
action with a new force rather than just with SM ones. In this scenario interactions with the
SM may be only gravitational, or mediated by new forces that interact only very feebly with the
dark and/or visible sectors. Thanks to the interplay between the SM and dark dynamic, hidden
sectors are viable over a broader mass range than WIMP, roughly going from KeV to tens of
TeV. The technological challenge in detecting sub GeV candidates is the size of the detectable
signal. If we consider a nuclear recoil, for example, the maximum energy which can be deposited
in the detector is given by

2u2vd Mpy \° (16 GeV
By = KM 190y 2
My “Y \ 500 MeV My 2)

where p is the DM-nucleus reduced mass and My is the nucleus mass. From this equation
we see that the maximum deposited energy decreases quadratically with the DM mass when
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Figure 6: Present (shaded regions) and future (solid/dashed/dotted lines for short/medium/long
timescales) bounds on the DM-electron scattering cross section of ultra-light DM candidates [27].
Left (right) panel assumes a momentum-independent (dependent) interaction.

this is lowered below the GeV scale, rapidly going below the threshold of most current DM
detectors. Right now, the only experiments already probing the sub GeV region (down to
~ 10MeV) are XENON10 and XENON100. The experimental apparatus is the same searching
for WIMP-like candidates but, instead of looking for nuclear recoil, they look for electron recoils.
These processes have a much smaller energy threshold (~ 10+~ 100eV) and, as long has the DM
mass is heavier than the electron, they can access to a much larger fraction of the DM kinetic
energy [28]. Because of the poor knowledge of the background for few-electron events, the bounds
provided by these experiments (shown in Fig. 6) are less stringent than the ones in the WIMP
mass range. However, using the annual modulation of the signal to reduce the background
could lead to a sizable improvement of these bounds [28]. Candidates as light as the MeV can
be probed by looking for excitations of electrons from the valence to the conduction band in
semiconductors. The challenge here is to reduce dark counts and increase sensitivity to energy
depositions three orders of magnitude below the WIMP targets. This program is well under
way in silicon targets, and is actively being pursued in collaborations such as SENSEI [29],
DAMIC [30] and SuperCDMS [31] whose projected sensitivities are shown in Fig. 6. To test
even lighter candidates, down to the KeV scale, small gap materials have been identified as the
best targets. They include superconductors [32] and Dirac materials for the case of electrons
excitations, and superfluid Helium [33] and polar materials [34] when the DM couples to nuclei
or ions.

Below the KeV scale we enter the realm of ultra-light DM candidates. They include scalars,
pseudoscalars and vector bosons produced during inflation or high-temperature phase transitions;
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the most famous being the axion. Bosonic candidates down to the meV scale can be tested by
looking for their absorption in superconductor through single phonon emission [35], or in a
semiconductor through emission of one [36,37] or more [36] phonons. For masses below the eV,
bosonic DM in the galaxy starts to behave as an oscillating classical field with a high occupation
number and frequency v = Mpy/27. For sub- meV masses, corresponding to frequencies less
than THz, this property can be used to detect these ultra-light candidates looking for continuous
signals rather than impulse ones. Different experiments, relying on different couplings of the
oscillating DM field to the SM, plan to explore the entire mass range: from the meV scale down
to 10722 eV. Experiments sensitive to electromagnetic coupling will explore the mass range
10712 = 1075 eV, the ones looking for coupling to gluons will test the range 1072 = 107%eV,
while the lowest mass range 10722 + 1075 can be tested by state-of-the-art torsion balances and
atomic interferometers (for a brief summary of the experiments see Table 1).

In addition to detect interactions with DM particles in the galactic halo, we can also directly
probe the DM by producing it at colliders. Collider searches are particularly well suited to
test models where the DM abundance is fixed by a thermal freeze-out of annihilations into SM
particles (either directly, like for ordinary WIMP, or through some portal, like in the case of
hidden sectors). In this case a lower bound can be placed on the annihilation cross section of
the DM, and this translates in a minimum expected rate at colliders. Compared to direct de-
tection experiments, colliders have advantages (reduced dependence on the DM particle nature,
capability to explore the dark sector structure by producing the mediators, ecc...) and disad-
vantages (difficulties to test non thermal models, like freeze-in scenarios, where the annihilation
cross sections are extremely small). The experimental approaches used in collider searches can
be broadly divided in three chathegories: missing mss(/energy /momentum) searches, where we
look for the missing mass associated to the undetected DM particles. Dark photon production,
where we look for SM decays of the hypothetical mediator of the dark sector. And searches in
electron and proton beam dump, where the DM is produced in electron or proton decays and
detected through a scattering in a downstream detector. For a review of on-going and future
experimental efforts in DM searches a colliders see [38].

Self-interactions

One of the best way to constrain DM self interactions is to study merging clusters, with the
most famous being the “Bullet clusters” [45,46] (for other methods see e.g. [47] and [48]).
Clusters mergers are characterized by three components: galaxies that, because of their small
self-scattering cross section, behave as collisionless particles; intercluster medium (ICM) gas
that, because of the drag forced induced by the ram pressure, is dissociated by any collisionless
component; and DM which provides the larger contribution to the total cluster mass. If the DM is
collisionless its distribution, reconstructed through strong and weak gravitational lensing, should
coincide with the one of galaxies after the merger. While if it has non-negligible self interaction
we expect to see an offset between the DM and galactic components. In the archetypical merger
provided by the “Bullet clusters” the center of the galactic and mass distribution are offset by
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Experiment Coupling Sensitivity
ADMX E&M 500 MHz =+ 10 GHz
HAYSTAC [39] E&M 2.5GHz = 12 GHz
LC circuits [40] E&M 3MHz =+ 30 MHz
ABRACADABRA [40] E&M 1 Hz + 100 MHz
CASPEr [41] QCD & Spin 200 Hz =+ 200 MHz
Torsion balances [42,43] Spin & Scalar 1078 Hz + 107! Hz
Atomic interferometers (MAGIS) [44] Spin & Scalar 0.1Hz = 10Hz

Table 1: Experiments that are going to probe the ultra-light mass landscape. The first column
indicates the coupling between the oscillating DM field and the SM exploited by the experiments,
while the second one reports the frequency window in which the experiments operate.

25 + 29 Kpc, implying that DM behaves as collisionless within experimental uncertainties [49].
Specifically, this observations constrains the self-interaction cross section to be smaller than
Oseit/ Mpn < 1.25cm? /g [49].

This bound is quite weak and leaves room for non negligible self-interactions between DM
particles. For example DM at the electro-weak scale is allowed to have a self scattering cross sec-
tion just one or two orders of magnitude smaller than the neutron capture cross section. Those
hypothetical self-interactions have sometimes been advocated to solve some tensions in small
scale structures observables. Indeed, while collisionless DM successfully explains distribution of
matter on large scales (2 Mpc), a few problems seem to arise when we try to explain small
scale distributions (for a recent review see [50]). Among them the biggest ones are: the cusp to
core problem; i.e. the tension between the observed DM core profile (ppas oc °) [51] and the
cusp profile (ppy o¢ 77!) expected by numerical simulation assuming no self interactions [52].
The diversity problem; i.e. the clash between the large scatter observed in the density profile
of dwarf galaxies with equal maximum rotation speed [53], and the small scatter obtained by
numerical simulations [52]. The too-big-to-fail problem; i.e. the tension between the Milk Way’s
satellites masses inferred from observed stellar dynamics with respect to the values predicted by
numerical simulations of a 10" Mg, cold DM halo with no self interactions [54]. However, it must
be emphasized that it is still unclear wether these discrepancies are due to some unexpected
properties of the DM or to the limited accuracy of the N-body simulations used to make predic-
tions on the small scale distribution of matter (like, for example, the lack of baryonic feedback).
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It is clear from what we have said so far that the DM issue is far from being solved. Experimental
and theoretical efforts are still needed, with the former providing new hints for the model building
and the latter identifying motivated target regions for experiments.

Theoretical works on the subject broadly divide in two categories: model independent studies
and model building works. In the first category fall -for example- works trying to infer properties
of the DM using astrophysical and cosmological data, or to understand what kind of mechanism
may have generated the abundance of DM that we observe in the Universe. In the second
category there are works that, motivated by theoretical puzzles and/or experimental evidences,
propose new viable DM candidates. The content of this thesis touches both these categories
with the fil rouge being the study of DM bound states.

Bound states are a common feature of theories with long-range or confining forces. In the
former case bound states are perturbative objects resembling atoms of QED, while in the latter
they are more similar to hadrons of QCD. Bound states are one of the main characters in the
cosmological history of the visible part of the Universe from recombination up today, and it is
interesting to wonder if they could play a crucial role also in the dark sector.

The thesis is divided in two parts. The first one, which is mainly based on [55, 56|, is
devoted to a model independent study of bound state effects on DM thermal relics. Specifically,
we discuss how the relic abundance of DM candidates produced through thermal freeze-out is
modified by the additional annihilation channel provided by formation and subsequent decay
of unstable DM bound states. The second part, based on [57-59], is model building oriented.
There, we present some models where the DM candidate is not an elementary particle but a

composite state of some confining dynamic (either a new dark force or the strong dynamic of
the SM).




Part 1

Bound States and thermal relics
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On the road to unveil the nature of the Dark Matter, the knowledge of its cosmological
abundance is one of the few experimental evidences guiding us. Requiring that this cosmological
abundance is reproduced is a common way to constrain the parameter space of a DM model and
provide target regions for experiments. Thus, it is crucial to compute this quantity accurately.

Even though the mechanism that sets the abundance of DM in the Universe is still unknown,
among the many proposals thermal freeze-out is one of the most known and studied. In this
framework, the final abundance only depends on how efficiently the DM annihilates. It has
been notice long ago [60—62] that long range interactions between DM particles can significantly
enhance or suppress this annihilation rate, through an effect that goes under the name of Som-
merfeld enhancement. More recently [63-67], it has been shown that formation and subsequent
decay of unstable DM bound states, providing a new annihilation channel, can also significantly
enhance the annihilation rate. So far, this effect have been mostly considered in models where
the DM is charged under a speculative abelian extra ‘dark force’. In the following two chapters
we present a formalism that allows one to include this effect in the case of a thermal relic charged
under SM interactions.




Chapter 1

Including bound states in the cosmological history

In this chapter we present generic formulae for computing how Sommerfeld corrections together
with bound-state formation affect the thermal abundance of Dark Matter with non-abelian gauge
interactions. We then apply these results to two benchmark DM candidates: an electroweak
triplet and quintuplet. In the latter case bound states raise the DM mass required to reproduce
the cosmological DM abundance from 9 to 14 TeV and give new indirect detection signals such as
(for this mass) a dominant 7-line around 85 GeV. We conclude considering DM co-annihilating
with a colored particle, such as a squark or a gluino, finding that bound state effects are especially
relevant in the latter case.

The chapter is structured as follows. In section 1.1 we show how the system of Boltzmann
equations for DM freeze-out can be reduced to a single equation with an effective annihilation
cross section that takes into account Sommerfeld corrections and bound state formation. In
section 1.2 we review how the Sommerfeld correction can be computed for non-abelian gauge
interactions, and how the effect of non-zero vector masses can be approximated analytically.
In section 1.3 we summarise the basic formulee for bound state formation, showing how the
effects of non-abelian gauge interactions can be encoded into Clebsh-Gordon-like factors, and
how the main effect of massive vectors is kinematical. In section 1.4 we provide formulae which
describe the main properties of the bound states, such as annihilation rates and decay rates.
All these quantities are needed at finite temperature: in section 1.5 we discuss the issue of
thermal corrections, showing that the breaking of gauge invariance lead to the loss of quantum
coherence. Finally, in section 1.6 we perform concrete computations in interesting models of
Dark Matter charged under SU(2), (a wino triplet, a quintuplet) and of co-annihilation with
particles charged under SU(3). (squarks and gluinos). We find that bound state effects can be
sizeable, as summarized in the conclusion, section 1.7.
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1.1 Boltzmann equations

We assume that the DM, y;, lies in the representation R (if real) or R® R (if R is complex) of
a gauge group G with gauge coupling g. We define a = g?/4m and g, as the number of degrees
of freedom of the DM system. The evolution of the DM number density, npy, together with the
one of the various bound states, ny, is described by a set of coupled Boltzmann equations. In this
section we show how this system can be reduced to a single equation for the DM density with an
effective DM annihilation cross section. In what follows, each DM bound states is identified by
an index I which collectively denotes its various quantum numbers: angular momentum, spin,
gauge group representation. etc.

The Boltzmann equation for the total DM density is

sHz T = ~2%am lYe“Q —1| = 22 ~ e (1.1)

eq2
DM YDM

where Ypy = npw/s, s is the entropy density and z = M, /T. We define as n°® and Y the
value that each n or Y would have in thermal equilibrium, and v is the space-time density
of interactions in thermal equilibrium. The first term describes DM DM annihilations to SM
particles; the extra term describes formation of bound state I. The expression of ~,,, is related
to the annihilation cross section by [68]:

T o0
Yann = J ds s K, (ﬁ) a(s) (1.2)
4M2 T

644

where K, is a modified Bessel function, and & is the adimensional reduced annihilation cross

5(s) = J dt )’ AP (1.3)

with s,t being the Madelstam variables and the sum running over all DM components and over

section:

all the annihilation channels into all SM vectors, fermions and scalars, assuming that SM masses
are negligibly small. For bound state formation, the explicit value of ~; is give in eq.(1.9).
We next need the Boltzmann equation for the number density of bound state I, n;(¢):

ny+ 3Hny nDM ny ny ny ny
- _eq <Flbreak>l © e + <F1ann> 1 e + <FIHJ> “eq = eq |- (14)
ng’ ”13(11\24 ng T ZJ: an ni!

The first term accounts for formation from DM DM annihilations and breaking: {I"peax) is the
thermal average of the breaking rate of bound state I due to its collisions with the plasma. The
second term contains (I'f.u, ), which is the thermal average of the decay rate of the bound state I
into SM particles, due to annihilation of its DM components. The third term describes decays to
lower bound states .J or from higher states J, as well as the inverse excitation processes. They are
both accounted in a single term if we define I';_,; = —I';_,;. For decays, the thermal average of
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the Lorentz dilatation factor of a particle with total mass M gives (I') = 'Ky (M /T)/Ky(M/T),
which equals to the decay width at rest I' in the non-relativistic limit 7" « M. The thermal rate
for breaking has a different dependence on 7. In the models we consider at least some decay
or annihilation rates is much faster than the Hubble rate, I' » H. Therefore, the left-handed
side of eq. (1.4) can be neglected, and the system of differential equations reduces to a system
of linear equations that determine the various n;/n3*. This can be shown formally by rewriting
eq. (1.4) for ny(t) into an equivalent Boltzmann equation for Y7(z)

4y, Y2y Y Y, Y

Y;
Hz—L = n ) (Crpreai)| <24 — 5|+ Crand| 1= g | + D 1| ooy — g | £ (15
RE 7“{<“’k%Y$f Y#}+<I >[ w“]+J<I”{K? 3?4} )

Inserting the values of n; or Y7 into eq. (1.1), it becomes one differential equation for the DM
abundance with an effective cross section

dYpwm Y
H = —27 —1]. 1.6
T — | 1 (1.6

For example, in the case of a single bound state I = 1 one finds

<F1ann>

Yeff = Yann + 71BR17 BRl = .
<F1ann + 1ﬂlbreak>

(1.7)

Namely, the rate of DM DM annihilations into the bound state gets multiplied by its branching
ratio into SM particles.! The breaking rate Iy ear is related to the space-time density formation
rate y; by the Milne relation:

¥1 = 17T Ibreak)- (1.9)

This relation is derived by taking into account that 2 DM particles disappear whenever a DM-
DM bound state forms, such that Ypy + Y7/2 is conserved by this process, and by comparing
eq. (1.5) with eq. (1.1).

Next, the space-time densities v for DM-DM process can be written in the usual way in terms
of the cross sections oy, averaged over all DM components.? In the non-relativistic limit one
has

T«M e
2y =7 (nph)*(ovre). (1.10)

I In the case of two bound states 1 and 2 one finds

+ 71 (<F1ann><r2> + <F12><F1ann + F2ann>) + Y2 (<F2ann><rl> + <F12><F1ann + F2ann>)
(T )XT2) + T12)Ty + T

Yeff = YDM—SM (1.8)
where I't = I'rann + I rbreak-

2If DM is a real particle (e.g. a Majorana fermion) this is the usual definition of a cross section. If DM is
a complex particle (e.g. a Dirac fermion) with no asymmetry, the average over the 4 possible initial states is

o= %(2@& + 0yx + 0xx)- In many models only xx annihilations are present, so that o = %JX;.
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The Boltzmann equation for the DM abundance can then be written in the final form

dYDM <Ueﬁvrel>3 eq2
dz == H= (YSM_YD(I%/I):

~AS(2)

22

(Y — Y5, (1.11)

where S is the tempeature-dependent correction due to higher order effects (Sommerfeld en-
hancement, bound-state formation, ...) with respect to a reference cross section og computed
at tree level in s-wave

<Ueffvrel> 0pS gsmm
S(z) = —F= A= — = Mp M 1.12
(2) pa— H lroa, a5 JoMipi (1.12)
where ggv is the number of degrees of freedom in thermal equilibrium at 7" = M, (gsm = 106.75
at T » My) and Mp, = GJ_Vl/ 2 = 1.22 x 101 GeV. In the non-relativistic limit the Milne relation

becomes ) ,
9y (M T)Y

<Flbreak> = EWG_EBI/T<U]U1@1> (113)

where Ep, > 0 is the binding energy of the bound state under consideration, g; is the number
of its degrees of freedom, and {o v, ) is the thermal average of the cross section for bound-state
formation (computed in section 1.3). The branching ratio in eq. (1.7) approaches 1 at small
enough temperature. For a single bound state one has the explicit result

-1

2 3 3/2
0o gyo0 M 1 _
S(2) = Samn X___X 2By /Mx 1.14

(Z) (Z) - [<01vrel> * 291 Fann <47TZ) c ' ( )

where S,,, is the Sommerfeld correction to the annihilation cross section (computed in sec-
tion 1.2), and the second term is the contribution from the bound state I. Its effect is sizeable
it o7, E'g, and I'1an, are large.

1.2 Sommerfeld enhancement

1.2.1 DM annihilation at tree level

The tree-level (co)annihilation cross section of DM particles into SM particles can be readily
computed. We consider two main classes of models. In both cases we assume that the DM
mass is much heavier than all SM particles. A posteriori, this will be consistent with the DM
cosmological abundance.

First, we assume that DM is the neutral component of a fermionic n-plet of SU(2), with
hypercharge ¥ = 0 and mass M,. The s-wave annihilation cross section into SM vectors,
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fermions and Higgses is [69]

OUrel =

4094 2 _ 2 —
g (2n* +17n° —19)  ma; y { 37/12 n =3 (1.15)

2567 g, M?2 M2 207/20 n=>5

where g, = 2n is the number of degrees of freedom of the DM multiplet. The p-wave contribution

2

- factor. Similar formulee apply for fermions with ¥ # 0 and for a

is suppressed by an extra v
degenerate scalar multiplet [69]. Related interesting models have been proposed along similar

lines [70].

Next, we consider co-annihilations of a DM particle xy with a colored state x’ in the represen-
tation R of SU(3)., mass M,y = M, +AM and g; degrees of freedom. In supersymmetric models
X can be a neutralino and x’ can be the gluino or a squark. Assuming that co-annihilations are
dominant one has an effective cross-section [71]

x eXP(AM/T)S/z ] 7 (1.16)

1./ .
oVl = 0(x' X — SM particles)v,e x [1 +
( ) gy’ (1 + AM/MX)

Assuming that y’ lies in the representation R of color SU(3). one has the s-wave cross sec-
tions [71]

2dzC% — 12Ty 7ol

Iy
O\X'X — 399g)Vrel = 5 1.17
( ) 1 gX/dR Mi/ ( )
48T R T 1 if x’ is a fermion
N — 3
- rel — . . 1.18
(XX = 40 gydr M, 8 { 0 if y’ is a boson (1.18)

where we summed over all SM quarks and d3 = 3, T3 = 1/2, C3 = 4/3; dg = 8, Ty = Cs = 3,
Cip = Crg = 6, Cyr = 8, etc. The number of degrees of freedom of x’ is g, = 6 for a scalar
triplet, 8 for a scalar octet, 12 for a fermion triplet, 16 for a fermion octet.

As discussed in the next sections, all these tree-level cross sections get significantly affected
by Sommerfeld corrections and by bound-state formation due to SM gauge interactions.

1.2.2 Sommerfeld corrections

We consider an arbitrary gauge group with a common vector mass My . Non-abelian interactions
among particles in the representations R and R’ give rise to the non-relativistic potential

67Mv7’

V=a«o

r

DT TE (1.19)
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which is a matrix, if written in R, R’ components. As long as the group is unbroken, its algebra
allows one to decompose the processes into effectively abelian sub-sectors, RQ R’ = >, J, as

e—MvT‘

V=«

o D Cy1, = Crlp = Crlp | (1.20)
J

In each sub-sector one gets an effective abelian-like potential described by a numerical constant
AJ.

—Myr Cpr+Cr —C
‘ Qe = AjQ, Ay = & 2R !

V) = —Oeg (1.21)

such that aeg > 0 and A\; > 0 for an attractive channel J.

We specialise to the two classes of models considered in section 1.2.1.

Isospin SU(2)y is broken, and gets restored by thermal effects at T'> 155 GeV, where degen-
erate vector thermal masses My respect the group decomposition. The Casimir of the SU(2),
irreducible representations with dimension n is C,, = (n? — 1)/4. A two-body state decomposes
asn@nN=1®3@...®»2n — 1. The potential is V = (I? + 1 — 2n?)ay/8r within the two-body
sector with an isospin representation of dimension /. The most attractive channel is the singlet
I =1V ==2ay/r for n = 3 (aeg = 0.066), V = —6ay/r for n =5 (aeg = 0.2).

Color is unbroken. The Casimirs Cg of SU(3) irreducible representations have been listed
below eq.(1.17), such that the singlet state has V = —4az/3r if made of 3® 3 (aeg = 0.13) and
V = —3as/r if made of 8® 8 (aeg = 0.3).

The Sommerfeld correction can be computed from the distortion of the wave function of
the initial state. In the center of mass frame of the incoming two 2 fermions, the stationary
Schroedinger equation is

V)
_ Vi = Eq. 1.22
a, TVY =Y (1.22)
As usual we can decompose the wave function in states of given orbital angular momentum
wup(r
vlr0.¢) = R (6.0) = "y, ) (1.23)

where Y, are spherical harmonics and the radial wave function u,(r) satisfies

ug 0o+ 1)
- — = Fuy,. 1.24
MX + [V + MXT'Q Uy Uy ( )

The Schroedinger equation admits discrete solutions with negative energy and continuum solu-
tions with F' = M, v2,/4 equal to the kinetic energy of the two DM particles in the center-of-mass
frame, where each DM particle has velocity 3, such that their relative velocity is v, = 2. For
identical particles, one must only consider a wave function (anti)symmetric under their exchange.

The deflection of the initial wave function from a plane wave leads to the Sommerfeld
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enhancement. For s-wave annihilation,® the Sommerfeld factor that enhances the tree-level
cross section can be computed as S = |u(o0)/u(0)|?> where u has outgoing boundary condition

u'(0)/u(0) ~ iM, v /2. For the potential of eq. (1.21) and s-wave scattering one gets

S = 27Taeff/vrel
1 — 6_27raeff/vrel

for My = 0. (1.25)

In the case of a massive vector, an analytic solution is obtained by approximating the Yukawa
potential with a Hulthen potential

e~ Mvr Kk My e "Mvr

T (1.26)

This potential approximates the Yukawa behaviour best if x is chosen as k ~ 1.74. The Som-
merfeld factor that enhances an s-wave cross section is [73]
27 gt sinh (7 My vper /K My )

S = )
Vrel (cosh (m My vye1/ KMy ) — cosh (WMerel\/l — 40463/§MV/MX1)§€1/5MV)>

(1.27)

This expression reduces to the Coulomb result of eq. (1.25) in the limit of vanishing vector
mass M. S is resonantly enhanced when M, = rkn?My /aeqg for integer n, which corresponds
to a zero-energy bound state, as discussed in section 1.3. S depends only on ceg/ve and on
y = My /M, oeq; its thermal average (S) depends only on aeg+/z and y, where z = M, /T. At
small velocities, vy « My /M, as relevant for indirect detection, the formula above reduces to

-1

Vpe1—0 27T2aeﬁ?MX g M,
~ —2 (1 2 —_— 1.2
S L cos 2T L (1.28)

producing a significant enhancement if aeg M, /My = 1.

1.3 Bound state formation

1.3.1 Binding energies

As well known, an infinity of bound states with quantum number n = 1,2, ... exist in a Coulomb
potential V' = —aeg/r with any aes: the binding energies Ep are B,y = a3 M, /4n? and do not
depend on the angular momentum ¢; their wave functions normalized to unity ©ne,(r, 0, @) =
Roo(r)Yem (0, ) are summarized in eq. (A.1) in the appendix. In particular, ©o0(r, 0, ) =

e~"/%0 /4 /7a} for the ground state, where ag = 2/aeg M, is the Bohr radius.

—Myr

A Yukawa potential —aege /r allows a finite number of bound states if the Yukawa

screening length, 1/My, is larger than the Bohr radius: My < aegM,. Formation of a bound

3The Sommerfeld enhancement also affects p-wave cross sections, which remain subleading [72,73].
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Binding energies in a Yukawa potential
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Figure 1.1: Energies of bound states in a Yukawa potential (colored curves) compared to the
Hulthen approximation with k = 1.9 (black continuous curves).

state via emission of a vector is kinematically possible if the binding energy ~ a2;M, plus the
kinetic energy M, v2,/4 is larger than the mass of the emitted vector: My < (a2g+v2,;) M, [64,65].

rel
The binding energies in a Yukawa potential can be exactly computed at first order in My by
expanding V' = —aeg exp(—Myr)/r ~ —aeg(1/r — My ), finding

2
azgM,

E o~
¢ 4n?

— aeg My + O(ME). (1.29)
The relative correction becomes of order unity for My ~ aegM, where the Coulomb approxi-
mation is unreliable. The shift in energy is equal for ground state and excited levels so that the
Coulomb approximation fails earlier for the latter ones.

Fig. 1.1 shows numerical results for the binding energies, obtained by computing the matrix
elements of the Yukawa potential in the basis of eq. (A.1) and diagonalising the resulting matrix
in each sector with given ¢, see also [74,67]. Analytic expressions for the binding energies are
obtained by approximating the Yukawa potential with the Hulthen potential of eq. (1.26), where
k is an arbitrary order one constant. For states with ¢ = 0 one has

2
azg M,
4n?

I{MV

En(] =
OéeffMX

(1.30)

[1 -n y]2 where Yy =

which reproduces eq. (1.29) at leading order in My for kK = 2. The bound state exists only when
the term in the squared parenthesis is positive, namely for M, > kn®>My /aeg. Fig. 1.1 shows
that setting x ~ 1.90 better reproduces the generic situation, while x ~ 1.74 better reproduces
the critical value at which the special n = 1 bound state first forms. Bound states with angular
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Figure 1.2: Diagrams relevant for bound state formation. The first two diagrams give the first
two terms of eq. (1.35). The third diagrams, which is peculiar of non-abelian interactions, gives
rise to the last term.

momentum ¢ > 0 have different energy from the corresponding state with ¢ = 0 only if the
Yukawa potential deviates significantly from its Coulomb limit, namely if the second term in the
parenthesis is of order one. Analytic solutions are only available making extra simplifications.
A comparison with numerical results suggests a relatively minor correction of the form

2

2
M
Qe X1 —n2y — 0532200+ 1)| , k=174, (1.31)

E@%
" 4n?

The wave functions for free and bound states, in a Coulomb or Hulthen potential, will be needed
later and are listed in Appendix A.

1.3.2 Bound state formation

We are interested in the formation of bound states through the emission of a vector V*:
DM, (P;) + DM, (P2) — By + V(K). (1.32)

In the non-relativistic limit, we write the 4-momenta as

2 2
p ong p —
Py~ (M, + %Jh% Py~ (M, + ﬁ,pﬁ, K = (w, k) (1.33)

with w = 4/k? + M2 where My is the vector mass. In the center-of-mass frame p» = —p; and
the momentum of each DM particle is p = M, v,1/2. Conservation of energy reads

2 Eptuw (1.34)

where Fg = 2M, — Mp > 0 is the binding energy. The first term on the right-hand side is the
recoil energy of the bound state that is negligible in what follows, such that energy conservation
approximates to w ~ Ep + M,v2, /4.
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The diagrams in fig. 1.2 contribute to the amplitude. In the non-relativistic limit the first two
diagrams describe the usual dipole approximation, which gives a cross section for bound state
formation proportional to a® times a sizeable Sommerfeld correction, while the third diagram is
only present when the gauge interaction is non-abelian [67]. The diagrams of fig. 1.2 generate
the non-relativistic Hamiltonian [75-77]

g 1a > a 1a - e a —Mgr abc
H[ = —M<A (I‘l) 'plT‘i’iéjj’ + A (l’g) 'pQTj'j(Sii’> <gO./A ( ) M. ) T ij b (135)

X

where T and T are the generators in the representation of particles 1 and 2 respectively: the
indexes a, b, ¢ run over the vectors in the adjoint, and the indexes 4, j, 7', j* over DM components.
In Born approximation we get the following cross section for the formation of a bound state
with quantum numbers ném:
T "Vrel = Z(Ugszpvrel)a (1.36)
a

where

2 k
(Ugfglvrel)a - M2 JkoZ ‘E k U Pném‘ (137)

The polarization vectors, €, of the massive gauge boson satisfy

a _ax K KV
ZEMEV = (nul/ - ]I\142 ) ) (138)

g

while the transition amplitude, &7#, satisfies K,27" = 0 because of current conservation. There-
fore the unpolarized cross section can be rewritten in terms of the spatial terms as

20 k ‘/Z e ‘2
ném 2 ném
(et Vret)a = — 755 JkoQ ftinl TPMC%) (1.39)

In the dipole approximation,* that will be used throughout, the spatial part of the transition
matrix in the center-of-mass frame is

=
a —

p,ndfm —

(T8,6550 — T'.8) FI40 — i (T0,TS,, fove) T5:17 (1.40)

p,nfm it §'g p,nfm

N | —

where we have defined the overlap integrals between the initial state wave function ¢,;;(7) and

4The dipole approximation is valid if the wave-length of the photon is larger than the size of the bound state.
As discussed in [78] the most relevant bound states are approximately Coulomb-like so that the binding energy is
a2y M, /(4n?) and the size the Bohr radius ag = 2n? /(e M, ). If follows that when the binding energy dominates
over the initial kinetic energy the dipole approximation is always satisfied. The dipole approximation fails for
v2, » ae. When this condition is verified the value of the cross-section is however small.
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the wave function 4y, () of the desired bound-state:

Tt = [ @1t bu (L)
205,45 aM . Mo
Tomtm = TX Jdgr Orspmiryr T € B (1.42)

The dipole approximation imposes the selection rule AL = 1. Since in the non-relativistic limit
spin is also conserved this implies that s-wave bound states can only be produced from two DM
particles in an initial p-wave state. Furthermore, p-wave bound states can be produced from
s and d-waves. With this in mind we get the following overlap integrals for the production of
bound states in s-wave configuration:

=ia gl 1 ~ ~ ~
Tpnoo = _7§ (J ridr Ryi;(r)0, Ry o ( )) (6o + €4 +6-), (1.43a)
Tad = oM <Jr2der1 i (r)e M Ry oo (r )> (Go+eér+eé). (1.43b)
pm 2\/3 ' n0.5"

where éy = 2 and éz = i\%(i F ig). For production of bound states in a p-wave configuration
starting from an s-wave one we get

Gt = == ([ rPares (o o)) = (L13¢)
Tl = 55 ([ ParRns®) B ) (1.430)
oty = (;4]\\/% (JTQdTRpo,ij( Je M RY s (7")) ex, (1.43e)
T = 5o ([ PR B ) o, (a3

The amplitudes for producing a p-wave bound state starting from a d-wave configuration are

gait = | [Parmaso) (0. )R] (Ve + S va), s

S 1 . . 2,

jp,];zlg) = ——\/5 lf TQdTRpQ,ij(T) (@ — ) Rnlj (r )] (€+ +é_ + \/geo) ; (1.43h)
= il OéM r ~ é_ ~ .
E,ﬁlil = 2\/§ lj erTRpZij( Je Me R;kzlj (7 )] (\/§€+ + 7% + €0> ) (1.43i)

oo M , R R 2 )
Tod = S | [ PR R )| (20 e+ Zoaa) (1.43)

Plugging these amplitudes in eq. (1.39), performing the angular integral, averaging over initial
states and summing over final states we get the cross sections for the formation of s-wave bound
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states:

e Sak k?
(v = T 3M2 (1 3w2> "

1, . —a oM,
JTQdTRpl,ij (5 (71-/1-5]']'/ — Tj,j(i-l-/) O +1

X

( vl Jfabc) —Mgr RZOJ

(1.44)
For p-wave bound states we get

(Ugslfvrel)a = (Ulglslfvrel)zﬁp + (Ubsfvrel)dﬂp (1.45a)

where (074v:61)577 and (07%v1)S7P are the cross sections from initial states in s and d-wave
respectively. Their explicit values are

k?2
(Ubsfvrel)sap = SW - ij erR;kllj
. (145h)
1 a A QM b 7 abc\ —M,r
X 5 <T’i’15jj’ — Tj’jéii’) 8T 2 (71 zT] jf ) e Rp(),ij
16 ok
(O'bsfvrel)d—ﬂ? — 7 W (1 - — ‘JT d’l“Rpg ij X
X

5 (1.45¢)

1 “ —a% 1 . aM abe\ —Mgr
X (5 (Tméﬂl — T]/]d”/) (& — ;) +1 5 ( it g ]f ) )R:’le

If DM are scalars, the wave function is symmetric under exchange of identical scalars. Real
(complex) scalars have g, = dr (2dgr) degrees of freedom. Bound states of scalars have S = 0.

For s (p)-wave bound states this implies that the gauge part of the wave function is symmetric
(anti-symmetric). The cross-sections for bound state formation are again given by eq. (1.45).

1.3.3 Group algebra

Assuming that the global group G is unbroken (such that vectors are either massless or have a
common mass), group algebra allows one to simplify the above formulse. We assume that DM
is a particle y; in the representation R of G, labeled by an index ¢, and we focus on x;x; bound
states so that T" = —T*. Both the initial state and each bound state can be decomposed into
irreducible representations of GG, times the remaining spin and spatial part. So the two-body DM
states x;X; fill the representations J contained in ROR =) ;J. Each representation J is labeled
by an index M. The change of basis is described the the coefficients CG?]-J = (J,M|R,i; R, j)
of the group G. For G = SU(2), these are the Clebsh-Gordon coefficients usually written as
{4, m|j1,m1; j2, ma). For the singlet representation one has CG;; = 5@-/\/33 and for the adjoint
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representation one has CG§; = T} / VTp. In the new basis, where ij is replaced by M and #'j
by M’, the bound-state formatlon amplitudes of eq. (1.40) becomes

AN = CMM T+ CPM Tt (1.46)

where the group-theory part has been factored out in the coefficients

;1 . N 1 / )
C5M" = 2 CGY CGYH (Thdsy + Tj50) = 5 Tr{OGM{CGM, 1] (1.47)
CoMM = CGY CGUH (T TS, f¢) = i Tr [CGM' T CGM TC] fFabe (1.48)

that holds separately for each initial channel J and final channel J’. In many cases of interest
the two tensors are proportional to each other. The overlap integrals J, T are the same of
eq. (1.41), but now containing only the spatial part of the wave functions. With these notations
the cross sections of eq. (1.44) and (1.45), in a given channel (J, M) — (J', M), become

2

— S 8 Oék a ’ a /QM —Mar *
(Thatvret)farar = 5@ < Swg) UT dr Ry ( MM g, — cgMM — € M ) ol (1.49a)
k : oM 2
(opdvrea) oy = 8;‘42 (1 - ﬁ) ' J rdr R, ( CMM o, + CgMM 0‘2 e_M‘”> Ryl  (1.49Db)
N 16 ok , 1 oMy N e |
(a—bslfvrel)ZMI])M/ = EW (1 - —> ’J 2(1er2 (CCLMM (6 - ;) CaMM 5 —E€ Ma ) nl
X
(1.49¢)

In the special case 1 — adj (namely, the initial state is a gauge singlet, such that the bound
state is an adjoint) the group theory factors are proportional to each other, C’aM M o CoMM ", 50
that the inclusive cross-section remains a perfect square:

2

aM M’

TR dad j 2
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1 Tad j

! ! 2
C‘(}MM + ’}/C%I—MM _ ;

i

(1.50)

The + sign corresponds to the opposite adj — 1 process. The same simplification holds for any
SU(2), representation, because in the product of two SU(2). representations each irreducible
representation appears only once. The relevant SU(2), group factors are listed in Table 1.1.
Furthermore, the simplification also holds for the SU(3). representations that we will encounter
later, and the relevant group SU(3). factors are listed in Table 1.2.

1.3.4 Massless vectors

The overlap integrals in the spatial part of the amplitudes for bound state formation can be
analytically computed if vectors are massless.
The initial states are assumed to be asymptotically plane-waves with momentum p, distorted
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by the potential in channel J where aeg = A\ with A\; = A; given by eq. (1.21). The initial
state wave function in a Coulomb-like potential is given in eq. (A.8).

The final states are assumed to be bound states in channel J’ in a Coulomb potential with
aep = A and Ay = A . We use a basis of eigenstates of angular momentum, parameterized by
the usual ¢/, m indeces. The bound state wave functions are given in eq. (A.1), and are analytic
continuations of the free-state wave functions.

Plugging these wave functions into the overlap integrals we get the cross section for the
production of the various bound states. We are interested in the cross-section averaged over
initial states and summed over final gauge bosons and bound states components. For the lowest
lying bound state with n = 1, £ = 0 and spin S we get

1 2

14— 28 +1 2117'('(]_ + C2A2)6—4C)\iarccot(g)\f) ) /
(Uvrd)n_l’é_o = ooAi(Ag()° Y ~— X CoMM — oaMM
bsf f g>2< 3(1+ Cz)\fc)?’ (1 — e=2mCN) az\;\:w J Y T

(1.51)
where 0o = ma?/M? and ¢ = a/v;q. For the bound states with n = 2 and £ = {0, 1} we get

29 +1 21471'(5 (CQ)\? + 1) e—4§>\iarccot(g‘)\f/2)

n=20=
(v " = NN} (1.52)

9>2< 3 (CQ)\?C + 4)5 (1 — e=2mN)
! , 4 2
x 31 |CEM(CAy (A = 20) —4) + O (Cz (3\; —4N;) — /\_f> ,
aM M’
n=2 /0= 25 +1 212+, 76—4C/\iarccot(§/\f/2)
(O-'Urel)bsfze ! = U(])\i)\? C

2 5 X
Iy 9(C3N3+4)" (1 —e2mN)
2
x 3 HC;MM’ (Af(g%(:uf —4\) +8) — 12)\,) + CgMM (P (30T + 1200 — 8AF) +4) | +
aM M’
+25(CPA7 + 1)(CPA + 4)|CHMM Ap + 204

2]. (1.53)

In the last equation we have separated the contribution of the s-wave and d-wave initial state.
These formulas apply both for Dirac and Majorana particles, and in all cases relevant for us the
sums can be performed as summarized in tables 1.1 and 1.2.

In the limit \; = 0 where the Sommerfeld correction is ignored, the cross section for producing
a bound state with ¢ = 0 is of order ozz/Mi times a (vye1/Qe)? Suppression at vy € Qeg as
expected for production from a p—wave; the cross section for producing a bound state with
¢ =1 does not have this suppression for C+ # 0.

The formulee above simplify in the limit of large and small velocities. For the ground state
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one finds
Ao ,

9g 4+ 1 911 1 2 TN g« N

n=14=0 + m CaMM’ CaMM’ )\fvrel

(OVrel ) per =005 3 Z J + A\ T % Aot
9x aMM’ f 5 / - Vgel » i f

ﬂ-vrel

(1.54)

4

.. . . . 5
For large velocities the cross-section is proportional aas/ve,.

1.3.5 Approximate formulae for massive vectors

The cross sections for producing bound states in a Yukawa potential can be obtained by com-
puting numerically the wave functions (or using the wave functions in Hulthen approximation,
listed in the appendix), and by computing numerically the overlap integrals. As this is somehow
cumbersome, we discuss how massless formulae can be readapted, with minor modifications, to
take into account the main effects of vector masses. We start considering the case where the
vectors have a common mass My and the group theory structure is identical to the massless
case.

The initial state wave function remains approximately Coulombian as long as My « M, V.
Physically, this means that the range of the force 1/My is much larger than the de Broglie wave-
length of Dark Matter A\=! = M, ve1. One indeed can check that in this limit the Sommerfeld
factor in eq. (1.27) is well approximated by its Coulombian limit My = 0. At finite temperature
vZ, ~ T/M,, so that the Coulombian approximation holds for temperatures T » Mg /M, which
can be much lower than M. When this condition is violated, the modification of the shape of
the potential leads to a scaling of the cross section with velocity as vZ{, where ¢ is the angular
momentum of the initial state wave function. Thus, for the 1s bound state, which is created
from a p wave state, the scaling is vZ,. Therefore, the cross section is velocity suppressed and
small after thermal average at late times. On the other hand p-wave bound states which are
formed from an s-wave initial state approach a constant value.

Next, we consider bound states. Eq. (1.30) shows that bound states are well approximated
by the Coulombian My = 0 limit if My « M, a.qg. This condition can be alternatively obtained
from the analogous condition for free states by replacing v, — aeg, since this is the typical
velocity in a bound state. In the limit of small My « .M, all binding energies undergo a
small common shift —a.g My as discussed around eq. (1.29).

In summary for 7' » M2 /M, the main effect of vector masses is the kinematical suppression
of the cross section for bound-state formation, which blocks the process if My is bigger than the
total accessible energy. This effect is approximately captured by

-~ B 2 My
7 (xx V) ~ %E < — k—z) for r< —% (1.55)
o(xx = BV)|my=0 2w 3w
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where K, = (w, E) is the massive vector quadri-momentum as in eq. (1.33). The parenthesis
take into account the emission of the third polarization of a massive vector. The bound state
formation gets suppressed or blocked when w becomes of order My, .

In our applications we will need the cross sections below the critical temperature at which
SU(2), gets broken. In this case the masses are not degenerate: one has My ~ My and M., = 0.
It becomes important to include emission of photons and eq. (1.55) becomes

o(xx — BV) k < k? ) (1 N cos? HW) N sin? Oy

~ (-
o(xx = BV)|my—0 w 3w? 2 3 7

(1.56)

where the first term takes into account the emission of the W and Z bosons while the last term
corresponds to the photon emission.

One extra effect is that the charged components of the DM electroweak multiplet get split
from the neutral component and become unstable. In the cases of interest discussed later, the
resulting decay width negligibly affects the cosmological relic DM density.

1.4 Annihilations of DM in bound states, and their de-
cays

The two DM particles bound in a potential V = —aege V"

/r can annihilate to SM particles,
such that the bound state decays. We will refer to this process as ‘annihilation’ rather than

‘decay’. Analogously to quarkonium in QCD, the rate is
Dann ~ algady M, = 107°M, . (1.57)
This is typically much faster than the Hubble rate

47ngSM T2 _18 M M
H=7—22 " ~2107 %M X t T ~ —X. 1.58
15 My ey ® 25 (1.58)

Nevertheless breaking of bound states in the thermal plasma can have a rate I'peax(7") which is
as fast as 'y, at the freeze-out temperature. So we need to compute the annihilation rates in
order to obtain the branching ratios in eq. (1.7). We assume that DM is heavy enough that we
can ignore the masses of SM particles produced in annihilations of DM bound states.

The group-theory factors are analogous to the one encountered in section 1.2.2 when comput-
ing Sommerfeld-enhanced DM annihilations to SM particles. As already discussed, the DM-DM
bound states x;X; fill the representations .J contained in R ®R =7 ;J, and the bound state

M

By in representation J with index M is given by CG;j xiX;-
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1.4.1 Annihilations of spin 0 bound states with ¢/ =0

We assume that the gauge group is unbroken and that DM is much heavier than SM particles.
The annihilation rate of a spin-0 bound state B with ¢ = 0 into two vectors V2V? summed
over all their components a, b is

Ro(0)? Te T8V 1°
Pown = T(BY - VV) = a2%2rﬂ“ [CGM%} (1.59)
X ab

where T is the generator in the DM representation R, and R,(r) is the radial wave function
of the bound state normalized as ) |Rne(r)[*r?dr = 1; F = 1(2) for distinguishable (identical)
DM particles. For Majorana particles the amplitude is 1/2 the one of Dirac particles while the
wave function at the origin is V2 so that the total rate is 1 /2 the one of Dirac particles.

In general R ® R always contains the singlet and the adjoint representation, so we evaluate
explicitly the group-theory factors that determine the annihilation rates of these specific bound
states.

e For a gauge-singlet bound state one has CG;; = d;;/v/dg such that its annihilation rate is

2 |Rn0<0) |2 T}%dadj

['(Bno — = 1.
(Bho = VV) =« P2 dg (1.60)
where Tr [TaTh| = Tré®.
e For a bound state B® in the adjoint representation of G one finds
2 d2
F(BZO - VV) _ a2 |Rn0(0>’ Zabc abc (161)

16F2M2 dog

where dgp,. = 2Tr [CG*{T?, T°}]. This is zero if G = SU(2). Indeed the triplet bound state
for SU(2) has spin-1 and cannot decay into massless vectors.

The annihilation rate into scalars is given by one half of the above expression.

The previous formulas hold for a generic Yukawa potential. In the Coulomb limit the wave
functions can be explicitly evaluated, obtaining

|Rn0(0)|2 _r angff.

(1.62)
Mi 2n3

Approximating the Yukawa potential with the Hulthen potential one finds

Rn 0 2 M 3 2 4M2
| 0( )| _ F Xaeff <1 o KN V) . (163)

2 3 2.2
Mx 2n aneff
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1.4.2 Annihilations of spin 1 bound states

In view of the Landau-Yang theorem, spin-1 bound states cannot annihilate into V'V. They can
annihilate into pairs of SM fermions and scalars (or equivalently longitudinal gauge bosons). For
fermions

|Rn0

I’ a
6 P Z\T CGMTR] T (1.64)

D(Buy — fifi) =
where T§,; are the gauge generators of the considered SM fermion. The rate is different from
zero only for bound state in the adjoint representation (CG{; = Tj%/4/Tx). Summing over the
components of f we get

’Rno( )’2

TRT 1.65
6 F2M? rlsm (1.65)

L(Bry — ff) =
that should be multiplied by the multiplicity of final states: the SM contains 3(3 + 1) fermionic
SU(2) doublets. If DM has hypercharge, the annihilation rate receives the extra contribution

Oty [ Rno(0) 2

AT(Byy — ff) = TIVE drYQYs. (1.66)
X

Spin-1 singlet resonances can also decay into three vectors, but with a suppressed rate

Zabc abe T -9 B‘RHO(O)‘Q
D(Byy— VVV) = Sl T ot St (1.67)
X

1.4.3 Annihilations of bound states with ¢ > 0

The annihilation rate of bound states with orbital angular momentum ¢ > 0 is suppressed by
higher powers of «. For example spin-1 bound states annihilate into vectors as
12, (0) {1, 7}’
(B - vv) — 002 Tl Lo foqu T 17 1.68
( nl ) F2M4 dB Z 2 ( )

where in the massless limit the derivative of the wave function at the origin contains the sup-

pression factor
|R/21(0)|2 - F agffM

X
M 24

(1.69)

Annihilations of spin-0 bound states with ¢ = 1 into fermions and scalars are similarly suppressed.
A greater suppression applies to bound states with ¢ > 1. We will not need to compute these
suppressed annihilation rates because states with ¢ > 0 undergo faster decays into lower bound
states, as discussed in the next section.
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1.4.4 Decays of bound states

We next consider decays of a DM bound state into another lighter bound state. This is analogous
to decays of excited state of the hydrogen atom.’

The decay rate of a 2s state into the corresponding 1s state is suppressed, and negligible
with respect to its annihilation rate.

The decay rate of a 2p state into the corresponding 1s state is unsuppressed, and dominant
with respect to its annihilation rate. The formula for the decay rate is related to the cross-section
for bound state formation [67]: the only difference is that the initial state is not a free state, but
a bound states with wave functions normalized to 1. Explicitly

16 ak ’

! ! ! M
F(B% - B% + Va) = gm f?“Qd’T‘R21 (C‘ayMM 87 - C%MM &TG_MET) TO (170)
X
If G = SU(2); and at temperatures below the scale of electroweak symmetry breaking the

released binding energy is usually not enough to emit a massive SU(2), vector W or Z, and
only the photon can be emitted.

2

A2\ 512X\ 1 . caMM
D(2p — 15 +7) = qea M, [ N2 — 2L v ceMM' | ZT 1.71
(p s 7) Qem Oy X( f 4)3()‘i+2)‘f>8><3d3a1\%\:/p J )\f ( )

having assumed that the bound state is well approximated by its Coulombian limit.

1.5 Thermal effects

So far we allowed for generic vectors mass. The motivation is that all vectors acquire non-
relativistic ‘thermal masses’ in the early universe at finite temperature. In the non-relativistic

limit we are interested in electric potentials, and the relevant masses are the Debye masses, given

by
2 [y 2 | P 2 22
myy = ggyT ; Mmsy(e) = gng ; mgy) = 29317 (1.72)
This means that an attractive potential with a.r = Aa supports bound states with quantum

number n = 1,2, ... if

T, { 1.7 for SU(2);, w73)

A>——
M 25" 1.0 for SU(3).

Furthermore, the W+ and the Z acquire mass from the electro-weak symmetry breaking. Com-
bining SU(2),-breaking masses with thermal masses gives a thermal mixing between v and Z.
At finite temperature the SU(2),-breaking Higgs vev v decreases until SU(2),, is restored via a

®With the important difference that Dark Matter (unlike hydrogen at recombination) has a small number
density at freeze-out, such that vectors emitted at bound state formation (unlike photons) or from bound states
have a negligible impact on the plasma.
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Figure 1.3: DM mass splitting (blue) and weak angle (black) at finite temperature.

cross-over at T' > T, ~ 155 GeV. This effect can be roughly approximated as
v(T) = vRe(1 — T?/T2)"2. (1.74)

In reality, thermal corrections are a much more subtle issue. We need to reconsider if/how the
above naive approach applies at finite temperature.

1.5.1 Sommerfeld enhancement at finite temperature

Evolution of the DM states is affected by the presence of the thermal plasma. At leading order in
the couplings to a plasma one gets refraction (in the case of the thermal plasma, this corresponds
to thermal masses). At second order one gets interactions with rates I' which exchange energy
and other quantum numbers with the plasma, and break quantum coherence among different
DM components. Thereby DM forms an open quantum system, which is not described by a
wave function, but by a density matrix p. Its evolution equation has the form

p= il Sl - S0, L'L}) (1.75)

where L are Lindblad operators that describe the various interactions I'y, [79]. A gauge inter-
action with the plasma typically gives I'y ~ o*T?/M?. Let us discuss breaking of quantum
coherencies in the cases of interest.

In the SU(3). case, the Lindblad operators are proportional to the unit matrix in each 2-body
sub-system with given quantum numbers. Thereby coherencies within each sector with given
total color is preserved, while contributions from different sectors to the total cross section must
be summed incoherently.

In the SU(2), case, its breaking leads to loss of coherence within the components of a given
representation. For example, if DM is a SU(2), triplet with components o and y+, a xoXxo state
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can become Yo)4 by interacting with soft W= vectors in the plasma. From the point of view of
exactly conserved quantum numbers, such as electric charge, these are different sectors. Thereby
one has something intermediate between exact SU(2). (full coherence within each sector with
given weak representation) and badly broken SU(2), (coherence only between state with same
electric charges). An effect of this type is induced by the mass splitting among xo and x,
which randomises their relative phase. In a static situation this is equivalent to loss of quantum
coherence [81].

So we compute the thermal contribution to the mass splitting between different components
of SU(2),, multiplets, which was neglected in previous studies. A fermion with mass M, » My, T
receives the following thermal correction to its mass, at leading order in g:

2 00 2 2
P01 ) 2%+ 3ME s I

This correction is suppressed by M, and can be neglected for our cases of interest. A correction
not suppressed by M, arises at higher order in g [82,83], and can be taken into account as follows.
In the limit M, » My the one-loop quantum correction to the mass of a charged particle, as
computed from Feynman diagrams, reduces to the classical Coulomb energy U stored in the
electric fields. For a single vector A, it is

—MvT

(1.77)

\V4 A 2 M2 2
U= \|dV (VA + VA(Q) = g—MV + divergent where Ay = e
2 2 8 AT r
After summing over all SM vectors, the mass difference between two DM components i and j
with electric charges @; and @); in a generic Minimal Dark Matter model is [69]

AMy; = @2 = QDsiy (Mz = My) + (Qi = Q)(Qi + Qs = 2V) (M — M)]. (178)

The higher order thermal contribution is obtained by simply replacing M., Mz, My, and sw with
their thermal expressions. For @); = 1, ); = Y = 0 the mass difference is plotted in Fig. 1.3 and
well approximated by

AM(T) = 165MeV Re(1 — T/T,,)*>. (1.79)

1.5.2 Bound-state formation at finite temperature

If thermal masses were naive masses, they could kinematically block bound-state formation
XX — BV, when My ~ ¢T is bigger than the binding energy Ep ~ o?M,.

However thermal masses are not naive masses. Heuristically, one expects that a plasma
cannot block the production of a vector with wave-length shorter than its interaction length.
Formally, in thermal field theory cross sections get modified with respect to their leading-order
value in g by effects suppressed by powers of g/m. Thermal masses are a resummation of a class
of such higher order corrections: those that become large at ¥ < g7T'. Scatterings at higher order
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in g can have extra initial state particles, such as Vxyxy — BV: this means that bound state
formation is not blocked by thermal masses. Technically, the same conclusion can be reached in
the thermal formalism, by computing the formation rate of bound states B rate as the imaginary
part of their propagator IIzp. Cutted diagrams give an integral over thermal vectors: they have
‘poles’ (that can get kinematically blocked) as well as ‘longitudinal’/‘holes’ and a ‘continuum’
below the light cone, which indeed corresponds to processes such as Vyxy — BV.

Formally, the cross section computed ignoring such ‘thermal mass’ effects is correct at leading
order in g. In our cases of interest g ~ g3 and g ~ g9 are of order one, such that higher order
effects cannot be neglected. Given that a full thermal computation is difficult and does not
seem to give qualitatively new effects such as kinematical blocking of bound state formation, we
compute the xx — BV cross sections at leading order in g i.e. by ignoring the vector thermal
mass My in the kinematics. We take into account vector masses in the Yukawa potentials. This
approximation should be correct up to O(1) thermal corrections, as confirmed by [83], who finds
that thermal corrections are small for g = g, and of order unity for g = g3.

1.6 Applications

We now apply our formalism to the computation of the thermal relic abundance of various
models previously studied in the literature. We start with DM candidates with SU(2) quantum
numbers, such as Minimal Dark Matter scenarios, where the mass of mediators reduce the impact
of bound state formation on the relic abundance. We finally consider supersymmetric scenarios
with co-annihilation of neutralinos with gluinos or squarks.

1.6.1 Minimal Dark Matter fermion triplet (wino)

The first explicit model that we consider is the Minimal DM fermionic triplet [69], which coincides
with a supersymmetric wino in the limit where all other sparticles are much heavier. Once SU(2),
is broken, the conserved quantum numbers are L = 0, .S and ). The potential among the neutral
states with spin S = 0 is [61,69]

— <2A]\;A \O@B)

= o\ e . (1.80)

where A = qom/r + anche ™27y B = ape™™W"/r and AM is the mass splitting produced
by electroweak symmetry breaking, equal to AM = 165MeV at T' = 0 (we use the two-loop
result [84,85]). The charged states with S = 0 have [61,69]

VSl =AM+ B, VD) =2AM + A (1.81)
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Iy21p| > |09MM/ + MM |2

Iy 21y | X |CHM +ACP2 123 o 61 F~[
aM M’

123 | 2|1 F4[? 325 | 2115 29)?

325 | 5|1 F 297 527 12]1 F 37/

729 | 9|1 F 4y

Table 1.1: Group theory factors for formation of a bound state made of two SU(2), Splets (left)
or quintuplet (right) with total isospin I from an initial state with total isospin I; and viceversa.
The upper sign refers to I; — 1y, the lower sign to I — I;.

Finally, for the states with S = 1 one has
Vi =2AM — A, V5T =AM -B. (1.82)

where V5= differs by a sign from the earlier literature [61,69]. These potentials allow one to
compute the Sommerfeld correction, which affects the thermal relic abundance because of the
existence of a loosely bound state in the sector with ) = .S = 0 and ¢ = 0. The cosmological
DM abundance is reproduced for M, ~ 2.7TeV, such that the freeze-out temperature M, /25 is
below the temperature at which SU(2);, gets broken, and the SU(2),-invariant approximation
is not accurate.

Nevertheless it is interesting to discuss the SU(2) -invariant limit, which clarifies the contro-
versial sign in eq. (1.82). Ignoring SU(2), breaking, the DM-DM states formed by two triplets
of SU(2), decompose in the following isospin channels

3®3=1s®34 D 5g, (1.83)

The two DM fermions can make a state with spin S = 0 or 1. The total wave function must
be anti-symmetric under exchange of the two identical DM fermions: taking into account the
spin parity (—1)°*!, the space parity (—1)" and the isospin parity (—1)" where I = 21 + 1 is

(_1)£+S+I

the dimension of the representation, only states with = 1 are allowed. Namely, the

allowed states are

|V oie A allowed ¢
—200 /T +2 | evenif S =0,0dd if S =1
—a/r +1 | evenif S =1,0ddif S=0
+an/r —1 |evenif S =0,0ddif S=1

(1.84)

Tl W |~

The charged components of the 5-plet two-body channel have potentials as in eq. (1.81); the
neutral components of the 5 mix with the 1 giving the matrix in eq. (1.80). By computing
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Figure 1.4: Energies of bound states at finite temperature. made of two triplets (left) or quin-
tuplets (right). Curves show results in SU(2)p-invariant approzimation, dots show numerical
results in components. In the left panel we consider DM as a SU(2) fermion triplet, there
is only one bound state and the SU(2)p-invariant approximation is not accurate. In the right
panel we consider DM as a SU(2), fermion quintuplet, the bound states are identified as follows:
I =1 (thick), I = 3 (medium), I =5 (thin), n = 1 (blue), n = 2 (red), n = 3 (green), £ = 0
(continuous), { = 1 (dashed), ¢ = 2 (dot-dashed).

its eigenvalues one finds that the correct SU(2)p-invariant limit is recovered for AM = 0 and
A = B. The components of the I = 3 triplet with S = 1 have the potentials of eq. (1.82),
with a correct SU(2) -invariant limit: notice that the W-mediated V5= has opposite sign to
Vg:lo, unlike what assumed in previous literature. Anyhow, computing the spectrum we notice
that this channel is not attractive enough to form a bound state, so that the sign change has
a minor impact, as shown by comparing Fig. 1.5a with [61,69]. The figure also shows the DM
abundance as obtained using the simple SU(2) -invariant approximation, which turns out not
to be accurate. In SU(2)-invariant approximation the Sommerfeld-corrected cross section [86]
is obtained by decomposing the total s-wave annihilation cross-section of eq. (1.15) into isospin

channels:

1 2 2
6SQ+—OS 1+£SI 3T Ty

— : 2L 1.
EEREIISTHI TN BASTRVE (1.85)

OannUrel =

where S is given by eq. (1.27) and the pedix on S indicates the value of A\. We renormalise ay
at the RGE scale M, adopting the value from [87].

We next consider the contribution of bound states. Eq. (1.31) tells that a bound state with
given n and aeg = Ay exists if

2 2

M,z 5OMV% ~ 4Te\/% (1.86)

where, in the last expression, we inserted the approximated vector mass My, ~ My at zero
temperature. This means that only the ground state n = 1, £ = 0 of the I = 1 configuration
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Figure 1.5: Thermal relic DM abundance computed taking into account tree-level scatterings
(blue curve), adding Sommerfeld corrections (solid red curve), and adding bound state formation
(magenta). We consider DM as a fermion SU(2)y, triplet (left panel) and as a fermion quintuplet
(right panel). In the first case the SU(2)p-invariant approximation is not good, but it’s enough
to show that bound states have a mnegligible impact. In the latter case the SU(2)p-invariant
approzimation (dashed red curve) is reasonably good, and adding bound states has a sizeable

effect.

is present at M, = 2.7TeV, in agreement with the component computation of the energy level
carried out numerically. Thereby, we will consider only such 1s; state (where the pedix denotes
isospin). Fig. 1.4a shows its binding energy as function of the temperature for M, = 2.7 TeV.
The fact that the binding energy is small suggests that the Sommerfeld enhancement can be
sizeable, and that bound-state formation gives a small correction to the effective annihilation
cross section.

The only existing bound state has ¢ = S = 0 and, in dipole approximation, can only be
produced from an initial state with £ = 1 and S = 0. No such state exists in the case of DM
annihilations relevant for indirect DM detection, where the initial state is xoxo, that only exist
with even (—1)"% due to Pauli statistics [67]. In the case of DM annihilations relevant for
thermal freeze-out, the bound state can be produced by x;x_ co-annihilations. In the SU(2)-
invariant computation this difference arises because we have isospin as an extra quantum number:
the bound state with £ = 0 and I = 1 can be produced from an initial state with ¢ =1, [ = 3.
As discussed above, the SU(2) -invariant approximation is not accurate; nevertheless it suffices
to estimate that the bound-state contribution is negligible.

Fig. 1.4a compares the approximated binding energy with the one computed numerically
from the full potential of eq. (1.80). In SU(2).-invariant approximation the annihilation width
is Tann = 8a5M,, and the production cross section xx — Bis7y is given by eq. (1.51) (with
Cs; = Cr V/2) times /30 to take into account that only the photon can be emitted
(thermal masses do not kinematically block the process), given that the non-thermal masses
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Fermion 5plet, M, = 14 TeV, Hulthen approximation
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Figure 1.6: Assuming that DM is a fermionic SU(2), quintuplet, we show its thermally-averaged
effective annihilation cross section at tree level in s-wave (horizontal line), adding Sommerfeld
corrections (black curve), and the contributions from bound state formation for the bound states
listed in eq. (3.2.1).

My z are much bigger than the binding energy. Even with this rough (over)estimate, bound-
state formation affects the DM relic density by a negligible amount, at the % level. Its effect is
not visible in Fig. 1.5 where we show the DM thermal abundance as function of the DM mass.

1.6.2 Minimal Dark Matter fermion quintuplet

We next consider the Minimal DM fermionic quintuplet [69]. The DM-DM states formed by two
quintuplets of SU(2); decompose into the following isospin channels

5R5=15®34D55® 74D 9s. (1.87)
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In the limit of unbroken SU(2); the s-wave annihilation cross-section reads [62]°

OannUrel =

207 w2 {16 25

28
2inas | 2 2 1.

697" " 69
where the tree-level cross section of eq. (1.15) has been decomposed into channels with [ =
{1, 3,5} (higher I do not annihilate into SM particles), and the appropriate Sommerfeld factor in-
serted for each channel. The cosmological DM abundance is reproduced for M, ~ 9.3 TeV [62,23].
Fig. 1.5b shows that the SU(2); invariant approximation can be reasonably good. The approx-
imation is exact at T" > T.., which includes the freeze-out temperature. The approximations
remains good below the critical temperature because electroweak vector masses are smaller than
aeg M, and badly fails only at 7'> AM, when the temperature gets smaller than the mass
splittings AM ~ e My between neutral and charged DM components and co-annihilations
become Bolztmann-suppressed. In this temperature range T'> M, /M, such that the Sommer-
feld correction is well approximated by its Coulombian limit.

Bound states

In view of the selection rules discussed in the previous section, the allowed configurations are

1 V ie. A allowed ¢

1| —6ay/r 6 |evenif S=0,o0ddif S=1

3 | —=bay/r 5 |evenif S=1,0ddif S=0 (1.90)
5| —3ay/r 3 |evenif S=0,0ddif S =1 ‘

7 0 0 no bound state

9| day/r —4 no bound state

where we have computed the non-abelian effective potential in each isospin channel. Eq. (1.86)
shows that various bound states exist for M, ~ 10TeV. Taking thermal masses and the small
dependence on ¢ into account, Fig. 1.4b show the binding energies as function of the temperature
for M, = 14TeV. We consider formation of the 1s;, 2s; and 2p; ‘quintonium’ bound states in
each isospin channel I:

SRef. [69] performed a computation of Sommerfeld effects taking into account the breaking of SU(2),. In
order to reproduce the correct SU(2)p-invariant limit, the non-abelian part of the potential in the sector with
total electric charge (Q = 1 and spin S = 1 must be changed by a sign that makes it different from the sector
with @ =1, S = 0. Eq. (18) of [69] must be changed into

++ + ++ +
VS=0 _ 5AM —2A  —+/6B vS=1_ ~ 5AM —2A  —+/6B (1.88)
@=1"9 —+/6B AM + 3B )’ Q=1 " —+/6B AM —3B ) :

where A = e /7 + agc%ve*MZ’"/r and B = age MW" /r and AM is the mass splitting produced by electroweak
symmetry breaking. Namely, the sign of the non-abelian Coulomb potential depends on spin, unlike what assumed
in earlier works.
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Name I S n / ‘ A ‘ Lann/ M, [ dec/ M, ‘ Produced from

s, 1 0 1 0]6]| 324003 0 Ps

1ss 3 1 1 05/ 15625 a3/48 0 pr, Ps

1ss 5 0 1 0|3]| 567a3/4 0 Pa, 7

257, 1 0 2 0|6 405 a3 O(a3a?,) D3 (1.91)
2s3 3 1 2 0|5 |1562505/384  O(asa?) D1, Ds

255 5 0 2 0]3]| 567a3/32 O(a3a?) P3, P7

2p1 1 1 2 11]6 O(ad) ~ 0.8 Al s3

2p3 3 0 2 1|5 O(ad) ~ 0.5 @ tem 51, S5

2ps 5 1 2 13 O(ad) ~ 0.2 03l S3, S7

The possibile initial states that can form each bound state are selected as follows. In dipole
approximation the value of the spin quantum number S is conserved and the angular momentum
¢ is changed by one unity. Furthermore a vector boson is emitted, such that the initial isospin
I;, must be I + 2. This leaves the possible initial states listed in the last column of the above
table.

Each contribution to bound state formation is given by the generic formulse in section 1.3
inserting the group theory factors appropriate for the given SU(2), representations, as explicitly
given in Table 1.1. For example, let us consider the formation of the 1s; bound state. The cross-
section is given by eq. (1.51) and (1.50) with T = 10, dg = 5, S = 0. Once a bound state
is formed, we need to determine its branching ratio into SM particles. For 1s; and 2s; states,
they are well approximated by eq. (1.7). For 2p; states they are given by eq. (1.8) and well
approximated by BR(2p; — 1s7) x BR(1s; — SM).

Fig. 1.5b shows the DM cosmological abundance as function of its mass M,. We summed
the Sommerfeld-enhanced cross section (computed in SU(2);, components) with the bound-state
cross section computed in SU(2) -invariant approximation. As discussed above, the SU(2),
invariant approximation only holds at T'> AM, such that we switch-off the bound-state contri-
bution to the effective annihilation cross section at T' < M, /10 (upper border of the magenta
band in Fig. 1.5b) or at T' < M, /10* (lower magenta band). We adopted the couplings from [87]
and normalized them at M, when computing annihilation rates, and at the inverse Bohr-radius
as M, when computing potentials.

We find that bound state formation increase by ~ 40% the effective annihilation cross section
defined in eq. (1.6), leading to a ~ 20% increase in the value of M, that reproduces the cosmo-
logical DM abundance. After including bound state formation, the cosmological DM abundance
is reproduced for M, ~ 14 TeV.
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Figure 1.7: Sommerfeld-enhanced cross section for indirect detection of a fermion 5-plet at
B =1073. The grey areas are excluded by the Fermi diffuse bound (computed in a conservative
way, and in a more aggressive way); the red area is excluded by bound on dwarfs. The dotted
curves are the analytic SU(2)r-invariant approzimation of eq. (1.92). The green band shows the
quintuplet mass for which the observed DM relic density is reproduced.

Indirect detection

We now investigate the indirect detection prospects of the quintuplet dark matter model. A
study of the direct annihilation of quintuplet dark matter leading to W W~ ZZ, ~~ has
been performed in [69,68,23,89,90], finding that the Sommerfeld enhancement plays a crucial
role. Photons resulting from W,Z decays give a continuum photon spectrum, which imply
strong constraints if there is a large DM density around the Galactic Center, see Fig. 6 of [69].
However the DM density profile is unknown. In Fig. 1.7 we compare the signal with the trustable
bound from the diffuse photon spectrum measured by FERMI. We show two bounds: a weaker
safe bound obtained by demanding that the DM signal (computed assuming a Burkert density
profile) never exceeds the measured spectrum, and a bound stronger by a factor ~ 10 obtained by
subtracting the putative astrophysical background [23]. The continuous curves is the prediction
from a component computation [69], and the dotted curves are obtained from the SU(2)p-
symmetric approximation

2 4
(Uvrel) ~ 71-0[2 2 SG + ) (Uvrel = Tra \/ SG -V Sg (192)

as well as 077 = 0,/ tan* QW, 0,z = 20,/ tan® Oy. Here Sg (53) are the Sommerfeld factors
for the I = 1 and (I = 5) channel: around M ~ 12TeV they are enhanced by a zero-energy
bound state with n = 4 (n = 3). The formula above correctly reproduce the peaks of the cross-
section associated to zero energy bound states while they miss the dips due to less important
Ramsauer-Townsend effect, see [91].
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Figure 1.8: Cross sections for producing a monochromatic photon after bound-state annihilation
in the quintuplet model. We consider the contribution of the 1sg (left) and 2ps (right) bound state.
This signal cross section is compared with the bounds from Fermi-LAT, assuming a contracted
NFW DM density profile and a 3° aperture around the galactic center (‘R3’ region) [88]. The
Fermi-LAT limits on the vy-line cross sections have been appropriately rescaled taking into account
that one photon with energy smaller that the DM mass is emitted.

Eq. (1.92) is obtained by writing the neutral component of the yoxo state as linear combi-
nation of states with given total isospin:

1 2 18
|X0Xx0) = \/—gu =1,I;=0) — \/;U =513 =0)+ \/%U =9,13 = 0). (1.93)

The continuum spectrum of photons resulting from W, Z decays and fragmentations is not the
most clean experimental signal, given that astrophysics produce a largely unknown continuum
background. A monochromatic gamma line would give a clean signature, but a visible gamma
line is not a generic feature of dark matter models [92,93]. We discuss here the possibility to
search for quintuplet dark matter by looking for monochromatic photons emitted in the bound
state formation processes yoxo — B7.

The xoxo DM state of eq. (1.93) can only exist with even ¢ + S due to Pauli statistics. In the
dipole approximation SU(2); conservation implies that only I = 3 bound states can be formed
either from the I = 1 or the I = 5 component of xoxo: the deepest such bound state is 1s3,
with binding energy Ep ~ 60 GeV(M, /10 TeV). Therefore only the photon can be emitted in
its formation, and consequently only the neutral component of the bound state can be produced
from xoxo. The My, z masses cannot be neglected when computing the potentials. Then, the
cross section for bound state formation is obtained by applying eq. (1.49) to the desired single
component, rather than summing over all possible components. The final result is
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Figure 1.9: In the left panel we show the y-line spectrum predicted by the quintuplet model for
the 1s3 and 2ps capture processes, computed in SU(2)-invariant approzimation. A 10% energy
resolution of the detector is assumed. We choose a benchmark DM mass of M, = 14TeV. In
the right panel we show the ratio of the two y-line signal strength as a function of the DM mass.

Ai=6,A =5 T §(Uvrel)bsf

Ai=3Af=5

oVrel(XoXo — Baney) = 250;? l\/%(avrel)gff
(1.94)
where the first (second) term corresponds to the 1 — 3 (5 — 3) contribution, and the I = 3
bound state B is further identified by its n,¢ quantum numbers, and its spin is S = 1 (0) for
¢ even (odd). In this approximation we neglect the splitting between the various components
of the multiplet. The above cross section is 2-3 orders of magnitude below (ove)ww, with a
similar pattern of Sommerfeld enhancements: thereby the annihilation of the bound state into
WW or similar states do nor produce relevant extra effects. The interesting new feature is the
monochromatic photon.
We average the cross section assuming that the DM velocity distribution in the galactic rest
frame is a Maxwell-Boltzmann with root mean square velocity 220km/s < vy < 270km/s, cut

off by a finite escape velocity 450 km/s < ves. < 650 km/s:
F0) = N x 1% 0(vg — ). (1.95)

The normalisation constant N is fixed such that {d*v f(v) = 1. Furthermore we assume that all
DM is made of 5plets. We show the velocity-averaged photon capture cross sections in Fig. 1.8.
The signal is below experimental bounds, and in some mass range it is close to the current
sensitivity of the Fermi-LAT satellite. Both lines from the 1s3 and the 2p; capture processes
appear to be in principle detectable in the future. Additionally, the 2ps bound state decays
into the 1s; and 1sj states through emission of a photon, leading to extra gamma lines. In the
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Figure 1.10: Energies of bound states made of two squarks (left) or of two gluinos (right) as
color singlets (tick), color octets (thin), n = 1 (blue), n = 2 (red), £ = 0 (continuous), { = 1
(dashed).

Coulomb limit their energies are

2 2
E, =2 (A§ = %) My, (1.96)
where \; = 5 and Ay = (6, 3) for 1s; and 1s5 respectively and I'op, 15, 4++4/T'2ps 1551+ = 0.38. This
provides us with a window of opportunity to obtain spectroscopic data about the dark matter in
the universe and learn about its gauge interactions. Fig. 1.9a shows that the extra peaks emerge
over the continuum spectrum of photons from DM annihilations. Fig. 1.9b shows the ratio of
the line signal intensities provides information about the dark matter mass. This information
can then be confronted with searches for less specific emission of continuum photons at high
energies stemming from direct dark matter annihilation.

1.6.3 Neutralino DM co-annihilating with a squark

We next consider neutralino Dark Matter with mass close enough to a squark x’ = ¢ such that
co-annihilations determine the relic abundance through the effective cross section of eq. (1.16)
as discussed in section 1.2.1. The QCD process ¢¢* — gg dominates over weak processes such
as ¢4 — qq, that we neglect. A squark ¢ is a scalar colour triplet, and a ¢¢* state decomposes
as 3®3 = 1 ®8. The QCD potential V = —\;a3/r is attractive with \; = 4/3 in the singlet
channel, and repulsive with Ay = —1/6 in the octet channel. Squarks annihilate into gluons at
tree-level in s-wave, and the cross section of eq. (1.17) gets Sommerfeld-enhanced as [71]

0
7

OUre] =

7 a2
3 l—84/3 +

3 5_1/6]. (1.97)
27 M2 | 7
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R2 R Y |CGMM 4 A CaMM2
M M M M —
R = CMM'  yCgMM'|2 - T3,
e e ls =81 | 3[1% 5]
128 | 11 F 3P 848y | 6
326 | 3|1 F 42 85 = 10, @104 | 3127 3y
84275 | 9|17 3]

Table 1.2: Formation of a bound state made of two squarks (left) or two gluinos (right). We
show the group theory factors for formation of a bound state in the representation R’ made from
an initial state in the representation R and viceversa.

Bound states can exist in the color singlet channel with S = 0 and any ¢, given that they are
made of distinguishable scalars. The lowest lying ¢¢* bound states (we neglect ¢¢ bound states,
which can only annihilate through weak processes) are

Name R n ¢ A | Tuw/My | Taee/My Produced from

ls; 1 1 0 4/3] 32a3/81 0 Ds (1.98)
257 1 2 0 4/3] 4a3/81 O(ah) D8

2p1 1 2 1 4/3| 0O(ad) O(al) S8

Taking into account the gluon thermal mass, and renormalizing the strong coupling at the
inverse Bohr radius, we find that the 1s; bound state exists around the freeze-out temperature,
see eq. (1.73). All other states only form at much lower temperatures, as shown in the left
panel of Fig. 1.10. Even the binding energy of the 1s; state gets significantly reduced by the
gluon thermal mass,indicating that the Coulomb approximation is not accurate. We used the
approximation described in section 1.3.5. The Clebsh-Gordon factors for bound-state formation
are listed in Table 1.2a while the left panel of Fig. 1.11 shows the contribution of bound states
to the total co-annihilation rate. The impact of bound states on the DM relic density is shown
in Fig. 1.12 where, for small mass splittings, we have included post confinement effects that will
be discussed in the next chapter.

Furthermore, so far we have ignored the possibility that ¢ can decay, implicitly assuming
that its life-time is long enough. To conclude, we discuss what ‘long enough’ means and whether
this assumption is plausible. A squark can decay into a neutralino DM and a quark, with rate

e \/(qu — M2)? — 2m2(M2 + M2) + m}

(G — gy) ~ = 1.
(@ — qx) - i, (1.99)

This new effect can be taken into account by the density-matrix formalism of eq. (1.75), which
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Figure 1.11: Thermally-averaged effective co-annihilation cross section at tree level in s-wave
(horizontal line), adding Sommerfeld corrections (black curve), and the contributions from bound
state formation for the bound states listed in eq. (1.104).

can be conveniently approximated by adding a stochastic term to the Schroedinger equation
(1.22), represented by a non-unitary I' term in the Hamiltonian [80,94], such that

_ V%
MX

+ Vi = (E + D). (1.100)

As it can be understood also from the uncertainty relation AE At > 1, bound states only
exist if the decay width I is smaller than the binding energy Ep ~ a3M,,. This is satisfied
only if the squark decay width of eq. (1.99) is strongly suppressed by the phase space. Such
kinematical suppression can reasonably happen if the squark is a stop # [95], such that its tree-
level decays into a top quark is kinematically blocked if M; — M, < M,, allowing for a ~ 5%
non-degeneration around M, ~ 3 TeV. Furthermore, at finite temperature this degeneracy gets
broken by thermal corrections to the Higgs vev and to the squark mass AMr ~ ¢g31?/M,,, which
effectively account for scatterings such as g¢ — xq that never get kinematically blocked, giving
rise to a thermal ¢ width I" ~ ozgho3/M§. Such effects can be neglected at the decoupling
temperature Thee ~ M, /25.

1.6.4 Neutralino DM co-annihilating with a gluino

We next consider neutralino Dark Matter with mass close enough to a gluino g such that co-
annihilations determine the relic abundance through the effective cross section of eq. (1.16). The
product of two color octets decomposes as

8R8=1s@®3A D8 D104 D104 D 275. (1.101)
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Figure 1.12: The colored bands represent the regions in the plane of mass splitting between
the colored partnter (gluino/squark) and the dark matter (neutralino) in which the correct relic
abundance is reproduced within three standard deviations. The computation has been performed at
tree-level (blue), taking into account Sommerfeld enhancement (red) and bound state formation
(magenta). In the latter case, the tail at large M and small AM ~ Aqep is due to QCD

confinement effects that will be discussed in Chapter 2.

Each channel experiences the following potentials

Color V o ie. A allowed ¢
1g —3ag/r 3 |evenif S=0,o0ddif S=1
84 —Say/r 3/2 | evenif S =1,0ddif S=0
8s —3as/r 3/2 | evenif S =0, odd if S =1
104 @104 0 0 no bound state
27g az/r -1 no bound state

(1.102)

where on the last column we listed the bound states supported in the attractive channels. The

symmetric channels can annihilate into two gluons at tree level, and the 8 4 channel can annihilate

into quarks: the Sommerfeld-corrected s-wave annihilation cross-section is [71]

OUrel = 5700

27 [1 1 1 9  mad
32 ! -

where the first (second) term comes from annihilations into gluons (quarks).

(1.103)

Furthermore, around the freeze-out temperature two (one) bound states in the singlet (octet)
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channel exist, as illustrated in Fig. 1.10b, which takes the gluon thermal mass into account.
We assume that gluino decay is slow enough, I'; « Ep, that gluino bound states can form.
Furthermore, we assume that the gluino and DM are kept in relative equilibrium. If DM is a
bino, these assumptions are satisfied by having relatively heavy squarks. Gluino bound states
have been considered in [96,97] where the gluon thermal mass was neglected and only the singlet
bound states with n = 1 was included. Furthermore, we include the non-abelian contribution
to bound-state formation (latter diagram in Fig. 1.2), whose effect is described by the Cr
contribution in Table 1.2b, and our C; differs by a factor 1//2.
At zero temperature the lowest lying bound states are:

Name R S n / ‘ A ‘ LCann/My  Thec/ M, ‘ Produced from

s, 1g 0 1 0] 3 | 243a3/4 0 Ps,

188A 8A 1 1 O 3/2 810(%/32 O P1, pSS’ p27S

1885 85 0 1 0 3/2 243@2/128 0 P84 P104

295 1y 0 2 0] 3 | 243a3/32  O(af) Ds, (1.104)
258,4 8A 1 2 0 3/2 810[%/256 O(Oég) P1,Psgy P27g

2ss, 85 0 2 0]3/2]24303/1024 O(af) P84 P10

2p1 1lg 1 2 1| 3 O(al) ~ af S84

2ps, 84 0 2 13/2 O(al) ~ 0103 | 51,884, Sorg

2ps, 8¢ 1 2 1]3)/2 O(al) ~ 0.103 S84, 510,

Fig. 1.11b shows how each bound state contributes to the effective annihilation cross section,
and Fig. 1.12b shows how the resulting DM abundance gets affected. We find a moderate shift
of the regions where the thermal abundance reproduces the cosmological DM abundance. The
largest effect arises when Mz — M, is small, such that formation of 2p bound states from s-wave
free states become sizeable at low temperatures. At even smaller temperatures post-confinement
effects has to be taken into account as describe in the next chapter.

1.7 Summary

In the first part of the chapter we presented generic expressions and tools for computing non-
abelian bound state formation. We specialised these formula to an unbroken gauge group, such
that a significant simplification over a component computation is obtained by making use of
group algebra. We applied these results to study how formation of bound states of two Dark
Matter particles decreases their thermal abundance, in various concrete DM models.

1. In section 1.6.1 we assumed that Dark Matter is a fermionic 3plet of SU(2), with zero
hypercharge, for example a supersymmetric wino. We find that the SU(2)p-invariant
approximation is only qualitatively accurate. Nevertheless it is enough to establish that
bound states have a negligible impact, at the % level, on the thermal relic DM abundance.
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Furthermore, it shows that the non-abelian Coulomb energy depends on total spin, unlike
what assumed in previous computations: we thereby repeated a component computation
with the correct signs, and including thermal corrections to the weak mass splitting between
charged and neutral components of the DM multiplet; finding again no sizable effects due
to bound state formation.

2. In section 1.6.2 we assumed that Dark Matter is an accidentally stable fermionic 5plet of
SU(2) with zero hypercharge. We found that ‘quintonium’ bound states reduce the DM
thermal abundance by about 30%, increasing the DM mass that reproduces the cosmologi-
cal abundance to about 14 TeV. We also considered bound-state corrections to DM indirect
detection, finding that the 5-plet predicts a characteristic spectrum of mono-chromatic ~
lines around £, ~ (10 — 80) GeV, with rates of experimental interest.

3. In section 1.6.3 we have considered Dark Matter co-annihilating with a scalar color triplet,
a squark in supersymmetric models, finding that bound states give a mild shift (O(20%)
for neutralino masses around 1 TeV) in the thermal relic density.

4. In section 1.6.4 we have considered Dark Matter co-annihilating with a fermionic color
octet, a gluino in supersymmetric models, improving the results of [96] by taking into
account thermal masses and bound-state formation with gluon emission forms gluons, as
depicted in the last diagram of Fig. 1.2. Bound state formation gives a significant correction
(O(200%) for neutralino masses in the range 2 +~ 6 TeV) to the thermal relic DM density.

We think that our results should be improved along two lines. First, concerning the weak
Splet, a computation in components will be needed to take into account the breaking of SU(2);,
and precisely determine the DM mass. Second, we included the effect of thermal masses, and
assumed that they do not kinematically block bound-state formation for the reasons discussed in
section 1.5.2. While we expect this to be a reasonable approximation, a careful study of thermal
effects, possibly along the lines of [83], will be needed to achieve a more precise result.




Chapter 2

A closer look to the strongly coupled case

Extensions of the Standard Model (SM) sometimes predict (quasi)stable colored particles whose
cosmological abundance is severely constrained because of their strong interactions with baryonic
matter. When it comes to compute their relic density, the analysis carried out in the previous
chapter is not the end of the story since it does not include non-perturbative effects that can
take place after QCD confinement. In this chapter we show that these effects can significantly
reduce the relic density of colored relics.

In particular we study the case of Split SuperSymmetry [98,99] where the new supersymmetric
fermions are much lighter than the new supersymmetric scalars, and gauginos can become long-
lived giving peculiar signatures at colliders and potential cosmological problems. These problems
were explored in [100], where the relic gluino abundance (before late gluino decay in neutralino
and colored SM particles) was computed including perturbative gluino annihilations and arguing
that one can neglect non-perturbative effects arising after confinement at 7' ~ Aqcp. We show
that such effects cannot be ignored and, including them, we find that the relic gluino abundance
is reduced by a few orders of magnitude, thereby weakening cosmological bounds on the model.!

Non-perturbative QCD effect are relevant not only for colored relics but also in the case of
particles co-annihilating with a colored partner. We will briefly discuss the case of a neutralino
co-annihilating with a gluino or a squark.

The chapter is organized as follows. In section 2.1 we compute the thermal relic abundance
of (quasi)stable gluinos and in section 2.2 we reconsider the cosmological bounds and discuss
the associated phenomenology. Conclusions are given in section 2.3.

!The relevance of confinement effects has been estimated in [101] in the case of colored particles charged under
U(1)em. This scenario differs from the one we are considering (where the colored particle is electromagnetically
neutral) because QCD bound states of electromagnetically charged particles can be formed or broken by emitting
or absorbing photons.
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Figure 2.1:  Predicted gluino abundance. Relic stable gluinos exceed the DM density if M; = PeV.
The bands show the non-perturbative analytic result for oqep = 1/Apep (blue) and oqep =
Am/Npep (red). The thin (thick) lines assume that only singlet bound states (octet bound states
too) can form with QCD size; similarly, the small (large) dots show our numerical computation
for some values of the gluino mass.

2.1 Relic gluinos

We consider a Majorana fermion in the adjoint of SU(3). In supersymmetric models this is
known as gluino and denoted as g. The gluino can be stable if it is the lightest supersymmetric
particle. Otherwise it can decay via squark exchange into a quark, an antiquark and a neutralino
or chargino, or radiatively to a gluon and a neutralino, with quarks and squarks in the loop.
The resulting lifetime is long if sfermions have a much heavier mass mgysy [102, 103]:

o 4 sec ( msyusy )4 TeV\°® 2.1)
97N \10°GeV M; )’ '

where N is an order-one function [103]. A stable or long lived gluino is probed and constrained

by cosmology.
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2.1.1 Computing the relic gluino abundance

Fig. 2.1 shows our result for the gluino relic abundance, before their possible slow decays. This
is computed as follows. The upper curves show the relic abundance after a first decoupling at
T ~ Mj;/25, as computed in various approximations:

1. at tree level in the perturbative expansion,

2. taking into account Sommerfeld corrections, i.e. using the annihilation cross section given
in eq. (1.103),

3. taking into account also formation of bound states as discussed in the previous chapter.

These effects reduce by about 1 order of magnitude the gluino abundance, controlled by the
Boltzmann equation

Bl v (7~ ¥ (2.2)
where z = M;/T, Y; = ng/s, s is the entropy density at temperature 7'; H(T) is the Hubble
constant.

If 7; < Mpl/AéCD ~ psec gluinos decay before the QCD phase transition leaving no cosmo-
logical effects. Otherwise gluinos recouple as the temperature approaches the QCD scale, and
their relic abundance is determined by a re-decoupling at temperatures mildly below the QCD
phase transition. At this point gluinos have formed gg and/or gq¢’ hadrons which scatter with
large cross sections oqep = ¢/Agcp where ¢ ~ 1, making about Mpi/Agep ~ 10" scatterings in
a Hubble time. For comparison, the proton-proton elastic scattering cross section at low energy
is known to be g, &~ 100 mb, corresponding to ¢ ~ 23.

Although gluinos are much rarer than gluons and quarks, occasionally, two gluino hadrons
meet forming a gg bound state plus n pions through the processes:

g9+ 99— gg + nr  or  §q7 + gef — gg + nw. (2.3)

Classically such state has angular momentum ¢ ~ pwv,qb where b ~ 1/Aqep is the impact
parameter; pu ~ M;/2 is the reduced mass; v, ~ (T/M;)'/? is the relative velocity. Thereby
{ ~ (M3T)"2/Aqep, is large for M; » Agep = T. The quantum-mechanical total QCD cross
section for forming gg bound states is large because many partial waves contribute. This can be
parameterized defining the maximal angular momentum as {yax = +/¢/27 Mzv,e/Aqep obtaining
(see e.g. [104])

¢
= c 20+1 .

oQep = Op >~ —— 0¢ = 4m——5——sin” ;. (2.4)
;_;) A(QQCD Mgv?el

where the phase shifts average to (sin®¢,) ~ 1/2, and ¢ is a dimensionless parameter which, as
discussed above, parametrizes the strength of the gluino hadrons self scatterings. This expecta-
tion is consistent with numerical results in toy calculable models [105].
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The cross section relevant for reducing the gluino abundance is not oqcp, but the smaller
cross section o,y,, for forming gg states which annihilate into SM particles before being broken
by interactions with the plasma. Assuming that a gg with angular momentum ¢ and energy ~ T
annihilates before being broken with probability o,(T), one has?

Kmax

Oann = Z 0re- (26)
=0

A large cross section needs large ¢, but g, can be small at large /. We compute g, as the
probability that the gg bound state radiates an energy large enough to become unbreakable
(bigger than ~ T') before the next collision, after a time At ~ 1/n,v,0qcp. In such a case it
becomes unbreakable and keeps radiating until gg annihilate.

The key quantity to be computed is thereby the power radiated by the relevant bound states
which have n, ¢ » 1. In the abelian case, this is well approximated by its classical limit: Larmor
radiation. Having assumed neutral constituents, we can neglect photon radiation. Similarly,
gravitational radiation has cosmologically negligible rates I'gay ~ E3/M3,. The dominant ra-
diation mechanism is gluon radiation, which differs from abelian radiation because gluons are
charged under QCD. This makes a difference when (as in our case) particles are accelerated
because of the strong force itself. While a photon can be soft and its emission leaves the bound
state roughly unchanged, an emitted gluon has its own QCD potential energy, and its emission
changes the QCD potential among gluinos by an order one amount (in particular, a singlet
bound state becomes octet). As the classical limit of gluon emission is not known, we apply the
quantum formulze.

We need to compute the power radiated by highly excited gg bound states, with sizes of
order 1/Aqep. Smaller bound states can be approximated by the Coulomb-like non-relativistic
limit of the QCD potential, and can have various color configurations, in particular singlets and
octets. At large distances, they appear as color singlets because they are surrounded by a soft
gluon cloud at distance of order 1/Aqcp, which (since the typical momenta of the g is much
larger than Aqep) acts as a spectator when computing their inner behaviour. In the opposite

2This intuitive picture can be formally justified writing a network of Boltzmann equations, one for each bound
state I with different ¢ and n. Such equations contain the formation rates 7, the thermally averaged breaking
rates Fll)reak, the annihilation rates I'¢"™", the decay rates among the states I'y;. This is unpractical, given that
hundreds of states play a relevant role. To get some understanding, we consider a toy system with three states.
Of these three states, only state 1 can be produced, and only state 3 can annihilate. The state 1 can decay
to state 2, which can decay to state 3. Assuming that the rates are faster than the Hubble rate, we showed in
the previous chapter that one can reduce the network of Boltzmann equations to the single Boltzmann equation
eq. (2.2) for the total gluino density, controlled by an effective annihilation rate equal to p7y; where

T2 BRox — T3
]_’*12 + Fllareak’ 23 ]_"23 + Fgreak + BR12Fllareak

QO = BngBRgg, BR12 = (25)

where the last term takes into account that 2 can upscatter to 1. We see that p does not depend on I'§"" and has
the expected physical meaning. In view of QCD uncertainties we cannot compute all order unity factors, such
that it is appropriate to employ the simpler intuitive picture.
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Figure 2.2:  Quantum energy levels of a gg bound state which have energy close to 0. Values of
n are shown.

limit, states larger than 1/Aqcp can only be color-singlet hadrons. For our purpose what is
needed are QCD-size bound states which are the most challenging, as confinement effects are
starting to be relevant. We will estimate their effect into two opposite limits:

8) assuming that color octet gg bound states are relevant, such that radiation is dominated
by single-gluon emission (pion emission after hadronization) into singlet states. This is
computed in section 2.1.2.

1) assuming that only color singlets gg exist, such that radiation is dominated by color-
singlet double-gluon emission (pion emission after hadronization) among singlets. This is
computed in section 2.1.3.

While the two cases are analytically very different (e.g. different powers of the strong coupling),
QCD is relatively strongly coupled so that the numerical final results in the two limiting cases
will be similar.

Before starting the computations, we summarize generic results for QCD bound states.

The bound states

We compute the energy levels of the gg bound states assuming the non-relativistic QCD potential

V(r) = A _@[1 * Z_; (% + 14(yp + hlﬁ?“))] r <« 1/Aqep  [106]

_Oégla;ttice tor r~1/Aqep  [107]

(2.7)
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where A\ = (Cg + Cr — Cg)/2 for the potential among representation R and R’ in the @
configuration with Cy = 0, C3 = 4/3, Cs = 3 being the Casimirs. So A = 3 (3/2) for the potential
among octets in the singlet (octet) configuration. Lattice simulations indicate agjagice & 0.3 and
o ~ (0.4 GeV)?2 The one-loop correction to the perturbative term means that the QCD potential
is roughly given by the tree level potential with the strong coupling renormalised at the RGE
scale fi ~ 1/r. At finite temperature o(T) ~ 0(0),/1 —T?/T3¢p with Tep ~ 170 MeV [107].

The product of two color octets decomposes as

8R8=1sD81 D8 D10, D104 D 275. (2.8)
such that there are three attractive channels and the gluino bound states exist in the following
configurations

Color ‘ V ie. A ‘ allowed /¢
1g —3ag/r 3 |evenif S=0,0ddif S =1 (2.9)
84 | —2a/r 3/2 |evenif S=1,0ddif S=0 " '
8s —%Oég/’f’ 3/2 | evenif S =0,0ddif S =1
The energy eigenvalues in a potential V' = —qeg/r + oegr are [108§]
2 2 2 o
JIre 1 — o /2n Coulomb limit
Eyp~——| —— + 12t ~ ) . 2.10
‘ 2 [ w2t nax] { 3(zoeg)¥?/2u?  string limit (2.10)

where p ~ Mj/2 is the reduced mass, £ = {0,1,...} is angular momentum, n > 1 + ¢, z =
1.79(n — £) + £ — 0.42, & = 0eg/4a2; 1% is a dimension-less number and ¢ is the positive solution
tot = 1 — 4n3ext®. In the limit where the Coulomb force dominates one has t ~ 1 and ¢ ~ 0;
bound states have size n*ay where ag = 1/pacg is the Bohr radius. The linear force dominates

when n?ag » 1/ae/o ~ 1/Aqep.

Fig. 2.2 shows the levels with nearly zero energy for M; = 3 TeV.

The breaking rate

Once formed gg states can be broken by interactions with pions in the plasma:
gg+m—9g+gg+m. (2.11)

The probabilities g, that a given state radiates enough energy before being broken can be
computed in two different ways.

Based on classical intuition, one can simply compare its energy loss rate with the breaking
rate. While this simplification holds in the abelian case, we have to deal with a non-abelian
dynamics, where gluon emission changes singlet to octet states, and vice versa. This is relevant,
as singlet and octet decay rates are significantly different (especially for some singlet states which
only decay through higher-order effects, as discussed below). It’s not clear what is the classical
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limit of this system in the limit of large quantum numbers n, ¢.

We then perform a quantum computation, determining the @, by simulating transitions
among the many different states. This is feasible up to masses M ~ 10TeV, because it involves
a growing number of states at larger Mj.

We then need the breaking rate of the individual bound states. Thermal equilibrium between
direct and inverse process (also known as Milne relation) does not allow one to infer the breaking
rates from the total creation rate, because the latter is cumulative over all bound states. We
assume that the breaking rate is given by the thermal average of the pion scattering cross
section, assumed to be equal to 1/A%20D, and perform the thermal average (Opreak¥rely OVer the
distribution of pions with energies large enough to break the bound states. The number density
of pions with enough energy to break a bound state with binding energy Ep is®

nfrq(EW > EB]) 5

3 (T (Ep +m,))”? oxp (_M) , (2.12)

2/273/2 T

such that <Fbreak> X <O'break’U]fel>n?.‘.q(EJTr > EB)

2.1.2 Color octet states and single gluon emission

In this section we compute ,,,, assuming that two colliding g can form a gg system with all 64
possible color configurations of eq. (2.8), and with relative weights determined by combinatorics
rather than by energetics. Then the effective annihilation cross section is determined by summing
over attractive channels as

L,

1 8 8
Oann 6_4 Oann + g (O-agn + O-aén) .

We fix the proportionality factor to ~ 4 such that the total cross section is oqcp = c/AQQCD,

(2.13)

where ¢ ~ 1 parameterizes our ignorance of the overall QCD cross section. The annihilation
cross section is dominated by o%4 because the state 84 radiates much more than 1 or 8g. Indeed,

because of selection rules, single-gluon emission allows the following decays with A¢ = +1:
1 — 84, 84 — 1,8¢ 8s — 84. (2.14)

Taking hadronization into account two pions are emitted, such that the binding energy of the
final state E; must be larger than Eg + 2m,, otherwise the decay is kinematically blocked. If
the energy gap is somehow bigger than Aqcp, inclusive decay rates can be reliably computed by
treating the gluon as a parton.

Since the 1 state is more attractive than 8g 4, the above conditions are easily satisfied for the
84 — 1 decay, while 1 — 84 decays are kinematically blocked at larger ¢ and allowed at small
enough ¢ (elliptic enough classical orbit), but suppressed with respect to the abelian result.

3In the energy balance used to derive this equation, non-perturbative contributions to the binding energies
(of both the gg and gg states) have been neglected.
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In our numerical results we sum over all possible final states using wave-functions computed in
WKB approximation using the Langer transformation. We also provide a simple approximated
analytic result obtained assuming Coulombian wave-functions (which is valid for deep final states,
but not for the QCD-size initial states)*

8agp?
n3l

an(SA - 13) i %Oég/i, an(&q - 15) = (215)

The decay rate must be compared with the thermal breaking rate, which is given by pion
scatterings such as (§g) +m — (gg) + (gg) + 7. Since we considered bound states made of neutral
gluinos, they are not broken by photon scatterings to leading order. The result is very simple:
the 8,4 decay rate is so fast that its actual value is irrelevant: all 8 4 allowed states have g, = 1 at
the relevant temperatures 7' < Aqep. On the other hand, 85 and 1 states contribute negligibly.
Then, the annihilation rate is controlled by a much simpler condition: 8, bound states with
binding energy Ep ~ T only exist up to some maximal ¢ < fy,,xs, which can be easily computed.
For Mz = 3'TeV Fig. 2.2 shows that (. ~ 25. For generic Mz » T, {1, is well approximated
by imposing the vanishing of E,, in eq. (2.10), finding

(2.16)

3M§20z§ 1/4
160

gmaXS = (126t2)71/4 ~ (

having approximated ¢ ~ 1 in the last expression. Using eq. (2.10), the deepest available singlet
state has energy gap AE = 2,/3az0 ~ 0.9 GeV (see also Fig. 2.2) and can only decay via higher
order processes.

The effective annihilation cross section is

2 ~ 5 - §M~2U2 cro gcr = min(gmamgmaﬁ)' (2'17)

84 Ler
o 1 1 27
ann 2
Oann ~ § Oy =~ 14
/=0 g “rel

At low (high) temperatures one has e, ~ lax € Vel (b = Unaxg o€ ©°;) such that the thermal

average for £ » 1 is (Tanntrel) =~ 20qcpA/L/TMy ({TannVrel) = \/37ra§/16MgTJ). Taking the
minimum of these two limits (which are equal at T = T,, = m/3a3/0/80qcp with oqep =
¢/A3 ), we obtain an approximation valid at a generic intermediate 7"

AT 0 for T > TQCD s
<0'ann?Jrel> = 0QCD Vi Tcr/T for Tcr < T < TQCD; (218)
g 1 for T < T,

The Boltzmann equation of eq. (2.2) is approximatively solved by

4In the same approximation, the smaller energy radiated into 8g is given by a Larmor-like formula, given that
the initial and final state are equally attractive.
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Figure 2.3:

The effective annihilation cross section of gluino gg bound states, assuming that
they form color-octet 8 4 states (left) or only color-singlet states (right). The solid curves are the

numerical computation the dashed lines are the maximal geometrical cross sections given by the
analytic approximation.

V(o) oL [

gsmm Mz Mpy

-1
0
M
J dz<0-annvrel>] ~ 94/5 g/gSM (219)

Mj/Tqcp z? 4UQCDTc3r/2MP1(3 Tocp/Ter — 2)

where the dz integral is dominated by T' ~ Tqcp: for Tt « Thep the abundance simplifies to

1 60M;o M; 170 MeV
Y (0) &~ N I ~0.6 10717 g . 2.20
(=) wMp1'\| gsmTqoped 3TeV  Tgep (220

The final relic abundance does not have a strong dependence on ogcp, as it is only relevant at
relatively low temperatures. The DM critical density is exceeded if M3 > PeV. Fig. 2.3a shows
the full numerical result for (o, e, which agrees with the analytic maximal value (apart from
some smoothing at T' ~ T¢;) up to about 50 MeV: thereby the numerical abundance is better

reproduced lowering Toep down to 50 MeV in eq. (2.20). This is done in the analytic estimate
plotted in Fig. 2.1.

2.1.3 Color-singlet states and two gluon emission

Single-gluon emission switches the color of the bound state as 1 < 8 and its angular momentum
¢ by +1: as a consequence kinematics blocks single-gluon decays of various color-singlet bound
states, roughly all the ones in Fig. 2.2 which don’t have nearby octet states. In particular, decays
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of singlet states with maximal ¢ are blocked, and octet states with maximal ¢ can (but need not)
decay to singlets with blocked decays.

We thereby take into account two-gluon emission, which allows for 1 — 1 decays with A¢ =
{0, £2}. The rates of 2g transitions are mildly suppressed by O(a3) compared with the 1g decay
rates. If the energy difference AE is much bigger than Aqcp, gluon hadronization proceeds
with unit probability and the 2¢g decay widths can be computed using 2nd order non-relativistic

perturbation theory [109]:
% N 3;.53 AFE
nt—n' 167 0

x .

m,m’

dk k* (AE — k)® x

1 1 2 (2.21)

W emlr { “Eyot Hs—k ' —Ewot Hs— (AE — k) } Tl m)

where r; = {x,y, z} is the relative distance between the two g; k is the momentum of the hadron
produced in the hadronization of the two outgoing gluons, AE = E,, » — E,, and Hg the free
Hamiltonian of the virtual intermediate octet state. The angular part of the matrix elements,
already carried out in eq. (2.21), imposes the selection rule [¢' — ¢| = 0,2. The two-gluon 1 « 1
rates are given by an abelian-like expression, unlike the one-gluon 1 < 8 transitions. The rates
for 8 — 8 two-gluon transitions are given by a similar expression, with Hg replaced by H;.

Hadronization is possible down to the kinematical limit AE ~ 2m,. However the energy
difference between two singlet states with maximal ¢, |A¢| = 2 and nearby n is ~ 0¥/ Vi i Y 2,
which, in view of the Mj; suppression, can be smaller than 2m,. In such a case the decay can
still proceed through off-shell pions, which produce photons and leptons. How to estimate these
suppressed decays is discussed in section 4.4.6 of Chapter 4. We neglect multi-gluon emission,
which allows bigger jumps in /.

The 2¢g rates are included in numerical computations which assume that QCD-scale color
octets exist. The result was discussed in the previous sub-section, as 2¢g decays give a relatively
minor correction.

We consider the opposite extreme possibility that octet states with QCD-size do not exist,
and that only color singlets exist. We can again obtain an analytic lower bound on the final g
abundance by assuming that all singlet levels fall fast. Then the cross section o, ~ o} is only
limited by fmaxi = Vv 2lmaxs such that

16T 0 for T > TQCD R
<0'ann?}rel> = 0QCD M Tcr/T for Tcr <T< TQCD; (2.22)
ﬂ' ~
o for T < T,

where now T, = m4/3a3/0/40qcp. The resulting relic gluino abundance is 2 times lower than in
eq. (2.19), and with the new value of T,. Fig. 2.3b shows that this limit only holds at 7" < 20 MeV,
such that the analytic expression reproduces the numerical value for Y by reducing Tocp down
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Figure 2.4: Cosmological constraints on long-lived gluinos. Left: As a function of the gluino
lifetime. Right: As a function of the sfermion mass scale msusy, which in Split SuperSymmetry
determines the gluino lifetime.

to ~ 20 MeV.

2.2 Phenomenology

2.2.1 Cosmological bounds and signatures

Bounds on quasi-stable relics depend on their lifetime 75; on their mass Mj; on their relic abun-
dance, that for gluinos we computed in terms of My, and on their decay modes. As mentioned
above, we assume that gluinos decay to neutralinos (assumed to be the Lightest Super-symmetric
Particle, LSP) plus either a gluon or a quark and an antiquark. Here we assume that half of
gluino energy is carried away by the LSP; if the LSP is not much lighter than the gluino, even
less energy goes into SM states and one would obtain weaker bounds.

Our final result is plotted in Fig. 2.4, using the thick red dashed line of Fig. 2.1: even
using updated experimental bounds (discussed below), our bounds on a (quasi)stable gluino
are significantly weaker than those derived in [100]. The reason is that our relic density takes
into account non-perturbative gluino annihilations, and is much smaller than the ‘perturbative’
gluino relic density assumed in [100], see Fig. 2.1. In particular, we find that a (quasi)stable
gluino just above present collider bounds is still allowed provided that its lifetime is smaller than
about 10'2s or larger than about 10?%s.

In the rest of this section we summarize the various bounds on decaying relics plotted in
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Fig. 2.4, moving from smaller to larger lifetimes.

Big Bang Nucleosynthesis

A gluino that decays during BBN can disturb the successful BBN predictions of light element
abundances, which get affected in different ways, depending on the gluino lifetime (for more
details see [110,111]):°

e For 0.1s < 7; < 10%s the mesons and nucleons produced by gluino decays quickly reach
kinetic equilibrium with the thermal bath of background photons and e* and thus do not
have enough energy to destroy light nuclei. However, the extra pions, kaons and nucleons
present in the thermal bath increase the p <> n conversion rate, thus increasing the n/p
ratio and as a consequence the primordial “He mass fraction Y,

e For 7; 2 10?s the gluino decay products do not thermalize before interacting with nuclei,
due to the lower temperature of the plasma at these times. The still energetic nucleons
(the mesons decay before they can interact) can thus hadrodissociate *He which in turn
also increases the D abundance (e.g. via p + *He — D + 3He).

e For 7; = 107 s photodissociation of *He, which induces increased *He and D abundances,
becomes relevant. Photodissociation is not relevant at earlier times because the v-spectrum
is cut off at the threshold energy E ~ m2/(22T) [114] for e*e™ pair production from
energetic v’s with thermal ~’s, so that photons are not energetic enough to break up
nuclei.

The resulting constraints have been computed in [110] and updated and improved in [111]. The
constraints are given in the (7x,&x) plane for different main decay modes of X, where X is the
unstable relic (the gluino in our case) and {x = FEy;Yx is its destructive power. Since we assume
that half of gluinos’ energy is carried away by the LSP we have Ey s ~ Mj;/2. The bounds for
the various hadronic decay modes are similar since in all cases they induce hadronic showers,
and our bounds are based on the plot for the ¢t mode.

The effects from photodissociation depend only on the total injected energy and not from the
details of the decay channels, so that for 7; = 107 s the bounds do not explicitly depend on Mj to
a good approximation. At earlier times, the effects depend on the number of hadrons produced
in the hadronization process, which scales with a power of Mj;. Thus we fit the bounds, given
in [111] for Mx = 1TeV,10TeV, 10> TeV, 10° TeV, to a power-law function of Mj.

The left-handed panel of Fig. 2.4 shows the resulting bounds in green. In the right-hand
panel we show the same bounds with the gluino lifetime computed as function of the SUSY
breaking scale mgysy-

°In addition, gluinos could also disturb the BBN predictions if they participate themselves in the nuclear
reactions occurring during BBN [112,113]. This would be the case if the gluino R-hadrons bind into nuclei which
are relevant during BBN. Since we do not know whether this is the case or not, we ignore such effects here.
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Distortion of the CMB blackbody spectrum

Gluinos with lifetimes between ~ 107s and ~ 10'3s (the latter corresponds to recombination)
can lead to deviations of the CMB spectrum from a blackbody form. When the Universe is 107 s
old, photon number changing processes such as double Compton scattering are not efficient any
more, so that photons injected into the plasma can induce a chemical potential p ~ 1.41 de/e [115]
in the Bose-Einstein distribution of the CMB radiation, where [116]

6.1 x 1065\ ”*
- (%) . (2.23)
g

After ~ 4 x 101Q,h%s [116], elastic Compton scatterings do not maintain thermal equilibrium
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anymore. An injection of photons ‘Comptonizes’ the spectrum, i.e. it leads to a mixture of
blackbody spectra of different temperatures. This is described by the Compton y-parameter,
given by y = de/4e [115].

The 95% CL limits from the FIRAS instrument on the COBE satellite are |u| < 9 x 107 and
ly| < 1.5 x 107° [117,118]. The resulting constraints on the gluino lifetime are shown in pink in
Fig. 2.4. Here we assumed that ~ 45% (see e.g. [119]) of the energy that is not carried away by
the LSP goes into photons. The resulting bounds are less constraining than the BBN bounds.
However future bounds from PIXIE [120] will be stronger by 2 to 3 orders of magnitude.

CMB anisotropies

The electromagnetic energy ejected into the gas at or after recombination by decaying relics
modifies the fraction of free electrons and heats the intergalactic medium. This leads to modi-
fications of the CMB angular power spectrum, measured by PLANCK. The maximally allowed
density of a long-lived relic as a function of its lifetime has been computed assuming decay prod-
ucts with fixed energies in the range from 10KeV up to 10 TeV [121] respectively 1 TeV [122].
The e, e, v from hadronic decays do not have fixed energies, and moreover we do not know the
energy spectrum of the decay products of relics with a mass significantly larger than 10 TeV.
For very large gluino masses the bounds we show are therefore only indicative. We consider the
middle of the band in [122] and obtain bounds by assuming that half of gluinos energy goes into
SM states and that 60% (see e.g. [119]) of the latter goes into e*,e™,~. In Fig. 2.4 we show the
resulting constraints for a gluino with a lifetime > 10'%s in yellow.

21-cm line

If confirmed, the observation of an absorption feature in the low energy tail of the CMB spectrum
[16] allows us to put an upper bound on the temperature of the intergalactic medium (IGM) at
redshift z ~ 17. Decays of relic particles during the dark ages are constrained, mainly because
they inject energy in the IGM heating it, erasing the absorption feature. Bounds on decaying
DM particles, with masses up to 10 TeV, have been computed in [17,18,13]. We rescale these
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bounds to a generic abundance, still assuming that half of gluino energy goes into SM states
and that 60% (see e.g. [119]) of the latter goes into e*,e~,~. The result is shown in Fig. 2.4.
Similarly to the case of the CMB bounds in the previous section, the 21 cm bounds for very
large gluino masses are only indicative and subject to significant uncertainty.

Constraints from gamma-ray telescopes and neutrino detectors

Decaying gluinos with larger lifetimes are constrained by the measurement of cosmic ray spectra,
in particular of photons or neutrinos. We adopt the results of [123] who computed limits on the
lifetime of DM decaying to bb, from data from the FERMI gamma ray telescope and the neutrino
detector ICECUBE, up to a DM mass of 10'? GeV. We rescale the bounds of [123] taking into
account that the density of our relics differs from the DM density. Ref. [123] derives bounds
assuming a relic that decays to bb. We assume that 50% of the gluino’s energy goes to the LSP
and the rest goes into hadronic decay channels, which lead to similar spectra as bb. Fig. 2.4
shows the resulting constraints on a long-lived gluino from FERMI (in blue) and ICECUBE (in
orange). The ICECUBE limits exceed the bounds from FERMI data for M; = 107 GeV.

Searches for super-massive nuclei

Coming finally to stable gluinos, lattice simulations indicate that they would form neutral gg
hadrons [124], as well as a minor component of baryonic states such as guud (according to [125]
the lightest gluino baryon could be guds). They behave as strongly interacting Dark Matter.
This is allowed by direct detection experiments performed in the upper atmosphere and by
searches for super-massive nuclei in the Earth and in meteorites if their relic abundance is a few
orders of magnitude smaller than the cosmological DM abundance, although the precise bound
is subject to considerable uncertainties (a more detailed discussion can be found in section 3.3 of
the next chapter). In Fig. 2.4 we indicate the tentative constraints that arise from the search for
supermassive nuclei in meteorites by Rutherford backscattering of 2¥U, Nsmp /Ny |meteorites S 2 X
10~'2 [126], assuming a heavy nuclei capture cross section of Geapture = 107%/Agcp. Presumably,
there is still an open window, from TeV masses above the LHC [101] up to about 10 TeV.

Higgs mass

In the right panel of Fig. 2.4 we considered Split SuperSymmetry, such that the gluino lifetime is
computed as function of the sfermion mass mgysy, see eq. (2.1). This scale is further constrained
within the split MSSM by the observed Higgs mass, which is reproduced within the green region
(for different values of tan ) in the (M3, mgysy) plane. We computed M, as in [127], assuming
that gauginos and Higgsinos are degenerate at the gluino mass M3 and that all scalars are
degenerate at msygy. Allowing the masses to vary and taking into account uncertainties on M,
and aj slightly expands the region. Within the Higgs-allowed region the gluino decays promptly
on cosmological time-scales, evading all cosmological bounds.
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No prediction for the Higgs mass arises in extensions of the MSSM. However, roughly the
same region is obtained by imposing the meta-stability bound on Higgs vacuum decay, which
implies that the Higgs quartic Ay cannot be too negative, Ay = — 0.05. A substantially larger
msusy, such that the gluino is long-lived, is obtained assuming that Higgsinos are heavy (possibly
with masses of order mgysy: in such a case the RGE for the Higgs quartic are those of the SM
(with slightly different values of go 3 due to the light gluino and wino), and the Higgs quartic
can remain positive up to msysy ~ Mp; within the uncertainty range for the top quark mass.

2.2.2 Collider signals

Next, we discuss some aspects of the phenomenology of long-lived gluinos at hadron colliders,
in particular the LHC. Long-lived gluinos can be pair produced and after hadronization form
long-lived hybrid states with SM quarks and gluons, known as ‘R-hadrons’. We conservatively
assume that the signal at the LHC is just energy deposit in the calorimeter, rather than charged
particles in the tracker. It is difficult to trigger on these event and so an initial state jet is
required. The LHC places the limit Mz > 1.55 TeV on a Majorana gluino [128].

The other possibility is the production of a gg bound state. Assuming that states with ¢ = 0
dominate the rates, they are color 8,4 with spin .S = 1 and color singlets or 85 with .S = 0 (see
eq. 2.9). They are produced through gluon and quark fusion respectively; and, in the narrow
width approximation (see eq. (5.41) for more details), their production cross section is given by:
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where Cj; is the luminosity of partons ¢j, and I';; are the decay rates for n = 1 bound states
into partons ij. The decay rates are given by
1 8 8
Lgg _ 93} Les _ 9033 Fi _ 33}

Lo _ —99 — 2.26
M, 2F ' M, 8F ' M; 2F (2.26)

with F' = 2 for the Majorana gluino and F' = 1 for a Dirac particle, and with the channel
strength A; = 3 and \g = 3/2.

Since the resonances annihilate to two gluons or two quarks, we assume a 100% branching
ratio to two jets and apply the LHC di-jet bounds [129] to the sum of the cross sections. In
Fig. 2.5 we compare the bounds on the resonances to the slightly stronger R-hadron bound.

Concerning future colliders, the expected reach of a 100 TeV hadron collider with 1000 fb~" is
7 (9)TeV for a Majorana (Dirac) gluino, having used [130] to perform an approximate rescaling.
The R-hadron search would then reach 10 TeV and 14.5 TeV respectively. Thus a 100 TeV
collider would reach the benchmark mass of a thermally produced Dirac gluino, which - as will
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Figure 2.5:  The black curve is the di-jet upper bound on the cross section for production of
spin-1 and spin-0 bound states from LHC data at 13 TeV; the red (green) curve is the theoretical
prediction assuming a Majorana (Dirac) gluino. From this we derive the experimental bounds
(vertical lines). The thin vertical line shows the bound from R-hadron searches.

be discussed in the next chapter is a viable dark matter candidate.

2.2.3 Implications for Dark Matter co-annihilations

The thermal relic abundance of a particle is affected by co-annihilations with particles of similar
mass. Omne example is co-annihilations of neutralino DM with heavier colored particles, for
example gluinos. As discussed in sections 1.6.4, co-annihilations can be enhanced by Sommerfeld
corrections and bound-state formation. We point out here that a much bigger effect is produced
by the non-perturbative QCD effects discussed in the previous sections, if the mass splitting
AM between the co-annihilating species is comparable or smaller than Aqep. ¢ This is shown
in Fig. 2.6a in the neutralino/gluino co-annihilation case, assuming that squarks mediate fast
neutralino/gluino conversions. We see that the neutralino mass which reproduces the observed
DM density gets much higher at AM < GeV. In the limit AM « GeV the relic abundance is
dominantly set by the new QCD annihilations. As a result, the neutralino mass can reach up to
a PeV, heavier than the maximal relic DM mass allowed if DM annihilations are dominated by
partial waves with low ¢ [104].

2.2.4 Quasi-stable squark

In the previous sections we considered a Majorana gluino. A real scalar in the octet of SU(3).
would behave similarly to the Majorana gluino. On the other hand, a (quasi)stable particle in

6Such a near-degeneracy is unnatural.
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Neutralino DM co—annihilating with squarks

Neutralino DM co—annihilating with gluinos
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Figure 2.6:  The pink (purple) line in the plots indicates the region of the parameter space
in which the neutralino relic density matches the one of the DM if non-perturbative effects are
ignored (included). Because of co-annihilations with gluinos (left panel) or stops (right panel),
non-perturbative QCD annihilations that take place at T < Agep significantly increase the DM
neutralino mass reproducing the observed DM abundance, if the mass difference between the
neutralino and the colored partner is smaller than a few GeV. In the case of stops (right panel),
the big effect is only estimated and only present if stop baryons decay to SM particles before
decaying to neutralinos; otherwise confinement only gives a O(1) effect.

the fundamental 3 of color SU(3). can behave in a qualitatively different way. Since the 3 is
a complex representation, the particle must be a complex scalar or a Dirac fermion, which can
carry a conserved charge.

For definiteness, we consider the possibility of a (quasi)stable squark, and more specifically a
stop t, as RGE effects tend to make t lighter than other squarks. A stable stop arises if  is the
lightest SUSY particle (LSP) and R-parity is conserved. A quasi-stable stop arises if R-parity is
almost conserved, or if the stop decays slowly into the LSP: this can happen e.g. when the LSP
is a gravitino. Collider bounds on stops [132] tend to ignore the possibility that the lighter stop
t is the (quasi)stable LSP, because it is usually considered to be already excluded by cosmology.

In cosmology, perturbative QCD #* — gg annihilations dominate over tt — t¢ annihilations
and leave a roughly equal amount of relic £ and t*. Perturbative QCD annihilations are enhanced
by Sommerfeld and bound-state effects discussed in the previous chapter. The relic ¢ abundance
after perturbative annihilations is plotted in Fig. 2.7 and approximated by

i M (2.27)

s Mpa3
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Figure 2.7:  Stop relic abundances. The ttt baryons could be relatively long lived and have an
abundance not suppressed by QCD confinement effects

For M; < PeV this is smaller than the baryon asymmetry n,/s ~ 107! that we neglect
given that its effect is model dependent. Indeed, we do not know how the baryon asymmetry
is generated: it might be generated at the weak scale such that it would not affect heavier
stops. Even if a baryon asymmetry is present at stop decoupling, tf < t*t scatterings could
easily concentrate the baryon asymmetry to lighter baryons fast enough that the asymmetry is
irrelevant for stops. If instead the baryon asymmetry enhances the relic stop abundance, bounds
would become stronger.

After the QCD phase transition, stops form hadrons. In view of the large QCD cross sections,
the stop hadrons with dominant abundance are deeply-bounded states which contain stops only.
They are tt* and the charged baryons #tt. Both fall to the ground state and decay through anni-
hilations of the constituents. In particular, a bound state containing two or more stops decays,
in its ground state, with a life-time I'y; ~ o M2oj0. Where the cross section for ¢ — ¢t can
be roughly estimated as ot ~ D, (12,3} a?/M?, ignoring possible extra velocity suppressions.
Then, T'; is cosmologically fast unless gauginos (with masses M;) are heavier than ~ 10! GeV.

We expect a roughly equal number of {#* annihilations for each produced ¢ttt given that QCD
group algebra implies that both #£* and ¢t feel an attractive Coulombian QCD force, such that
they can form deep, unbreakable, Coulombian bound states. Assuming that a ¢ binds with
probability o to a ¢ and with probability 1 — o to a ¢* and thereby that a deep ¢t binds with
probability 1 — o to ¢ and with probability g to a *, the average number of #£* per produced
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baryon is

Nip=) — _1p+1/(1—p)—1
<fof + Ng*g*g*> r+ 1/7’ -1

This equals 3 assuming no baryon asymmetry r = N;/NF and p = 1/2, namely neglecting

(2.28)

that t£* is more attractive than ¢f. Extra hadrons and mesons that contain quarks have a much
smaller abundance, that is not relevant here. If the charge 2 states ¢t decay fast on cosmological
scales, final abundances and bounds are similar to the gluino case. If (quasi)stable, they are
instead subject to strong cosmological constraints. In particular during BBN #*#*#* can bind to
4He reducing its charge and thereby the Coulomb suppression of nuclear reactions, opening up
a new channel for °Li production,

(t*t*t* *He) + D — SLi + t*1*t* (2.29)

which can strongly alter Lithium abundances (see [135] for a brief review). Charge —1 states
with lifetime = 10° are subject to the BBN bound Y < 2.5 x 10717 [112]. A study of analogous
constraints on relics with charge —2 is beyond the scope of this work.

Next, we study the scenario where a quasi-stable stop co-annihilates with a slightly lighter DM
neutralino. Post-confinement effects are relevant if AM < GeV. Roughly half of the stops form
tt* mesons, and the others form ¢t baryons. The impact on the DM abundance is very different,
depending on which process dominates ttf decays. If it is dominated by stop annihilations
into SM particles, post-confinement effects strongly suppress the DM abundance, similarly to
the gluino/neutralino co-annihilation scenario. A much smaller order one effect is obtained if
instead stops decay to DM neutralinos and SM particles with rate I'; = I';;. The region where the
DM abundance is reproduced is estimated in Fig. 2.6b in the two extreme possibilities, having

assumed oqep = 1/A%.

2.3 Summary

We have reconsidered the relic abundance of neutral colored relics, finding that hadron collisions
at temperatures below the QCD scale reduce it by a few orders of magnitude. In particular we
considered a quasi-stable gluino: Fig. 2.1 shows its relic abundance, and Fig. 2.4 the cosmological
constraints, taking into account the new effect and new data.

Co-annihilations between gluinos and neutralino DM are similarly strongly affected by con-
finement, provided that their mass difference is smaller than a few GeV, as shown in Fig. 2.6a.

In section 2.2.4 we considered charged colored relics, in particular the case of a quasi-stable
stop. In this case, confinement gives a big contribution to co-annihilations with neutralinos only
if ¢ttt baryons decay into SM particles via tf — tt before stop decays to neutralinos.
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Dark Matter from confining sectors
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So far our focus has been on scenarios where the DM is an elementary particle. In this
context we have studied how formation of unstable bound states of DM particles can affect the
cosmological history, and give peculiar indirect detection signals. In this second part of the work
we move to the study of models where the DM is in the form of stable bound states. We start
(Chapter 3) with the case where the force keeping these bound states glued together is already
present in the SM, then we move to the case (Chapters 4 and 5) where a new confining dark
force provides the binding interaction.




Chapter 3

Colored DM

The first model we propose challenges one of the common feature of DM models: the DM is an
uncolored particle. Indeed we suggest that the DM could be a composite state of new heavy
colored particle, Q, for simplicity electrically neutral. Q could be a heavy quark in the 3 @ 3
representation of SU(3),, or a ‘Dirac gluino’ in the 8 ® 8 representation, such that Q annihilates
with Q, but not with itself. We dub this neutral quark as quorn. Perturbative annihilations
between Q and Q (together with effects induced by unstable Q9 bound states) leave a thermal
relic density of order Qgh? ~ 0.1 Mg/7TeV. After the quantum chromo-dynamics (QCD) phase
transition at temperature T'< Aqep & 0.27 GeV colored particles bind into hadrons. Subsequent
annihilations among hadrons reduce their relic abundance, increasing the value of Mg needed
to reproduce the observed cosmological abundance, Qpyh? ~ 0.1 for Mg ~ 12 TeV.

The quorn-onlyum hadrons made of Q only (QQ if Q ~ 8 and QQQ if Q ~ 3) are acceptable
DM candidates, as they have a small Bohr-like radius a ~ 1/a3Mg. This scenario is believed to
be excluded because it predicts other hybrid hadrons where Q binds with SM quarks ¢ or gluons
g. Such hybrids, Qgq, QQq, Qq (if @ ~ 3) and Qg, Qqq (if Q ~ 8), have size of order 1/Aqcp
and thereby cross sections of order oqep ~ 1/A¢p for interactions with baryonic matter. Their
cosmological abundance must be orders of magnitude smaller than the DM abundance Qpy ~
0.1, while naively one might expect that cosmological evolution results into Qpyiia > Cpwm, given
that quarks and gluons are much more abundant than quorns Q.

We will show that cosmological evolution gives Qpyirig ~ 10~4Qpn, such that this scenario
is allowed. This is not surprising, taking into account that quorn-onlyum has a binding energy
Ep ~ a3Mg ~ 200 GeV much larger than hybrids, Fp ~ Aqcp. Quorn-onlyum thereby is the
ground state, reached by the universe if it has enough time to thermalise. This depends on two
main factors:

i) quorns are much rarer than quarks and gluons: ng ~ 107'n, , when the DM abundance
is reproduced;

ii) QCD interactions are much faster than the Hubble rate H ~ T? /Mpy: a loose bound state
with a oqep cross section recombines N ~ n, ,0qcp/H ~ Mpi/Aqep ~ 10" times in a
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Hubble time at temperature 7' ~ Aqep.

Since 10' is much bigger than 10'*, chromodark-synthesis cosmologically results into quorn-
onlyum plus traces of hybrids. This is analogous to Big Bang Nucleo-synthesis, that leads to
the formation of deeply bounded Helium plus traces of deuterium and tritium.

The chapter is organised as follows. In section 3.1 we define the model, and summarize
the main features of its QCD interactions. In section 3.2 we discuss how cosmology leads to
dominant formation of Q-onlyum hadrons. In section 3.3 we show that the abundance of hybrids
is small enough to be compatible with bounds. In section 3.4 we show that Q-onlyum DM is
compatible with bounds. A summary of our results is given in the conclusions in section 3.5.

3.1 The model

We consider the following extension of the SM:!
L = L + Q(lﬁ — MQ)Q (31)

The only new ingredient is Q: a Dirac fermion with quantum numbers (8,1)y under SU(3). ®
SU(2), ® U(1)y i.e. a neutral color octet. The only free parameter is its mass Mg. Like in
Minimal Dark Matter models [139] Q is automatically stable, as no renormalizable interaction
with SM particles allows its decay, which can first arise due to dimension-6 effective operators
such as QDDU and QLD(Q where @) (L) is the SM quark (lepton) doublet, and U (D) is the
right-handed SM up-type (down-type) quark. The decay rate is cosmologically negligible if such
operators are suppressed by the Planck scale.

After confinement Q forms bound states. For Mg » Apc/as states made by Q-only are
Coulombian. The QQ bound states are unstable: Q and @Q annihilate into gluons and quarks. No
such annihilation arises in QQ bound states as we assumed that Q carries an unbroken U(1) dark
baryon number that enforces the Dirac structure such that QQ is stable. The DM candidate is
the quorn-onlyum QQ ground state, neutral, color-less and with spin-0.2 As we will see, if QQ is
a thermal relic, the observed cosmological DM abundance is reproduced for Mg ~ 12.5 TeV. This
mass is large enough that Q does not form QCD condensates. The QQ potential in the color-

'Within the SM, QCD could give rise to Dark Matter as ‘strangelets’ made of many uds quarks [137] or as
‘sexaquark’ uuddss [138]. However there is no experimental nor lattice evidence that such objects exist. We
thereby extend the SM.

2Qther assignments of quantum numbers of Q are possible. A scalar would give similar physics. A fermionic
Q ~ (3@®3,1)p under SU(3). ® SU(2), ® U(1)y would give the QQQ baryon as a viable DM candidate. As
the gauge quantum numbers of a neutral color triplet are exotic, the QQq, Qqgq and Qg hadrons containing
light quarks would have fractional charges. Fractionally charged hadrons are subject to stronger experimental
bounds [136]. A Q ~ (3,2,1/6) = (Q., Qa), with the same quantum numbers of SM left-handed quarks @, would
give as lightest state the neutral DM candidate Q, Q;9Q4. This is excluded by direct detection mediated at tree
level by a Z, being a weak doublet with hypercharge Y # 0. Allowing for an additional confining group, a Q ~ 8
can be build out of @ ~ 3 obtaining double composite Dark Matter.
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singlet channel is V(r) = —3az/r, so the binding energy is Fp = 9a3Mg/4n* ~ 200 GeV /n?,
which is bigger than Aqcp up to n ~ 20. We adopt the value Aqep ~ 0.27 GeV.

The quantum numbers of the hybrid hadrons, Qg and Qqq’, are not exotic. We expect that
the isospin singlet Qg is lighter than Qgq’ (isospin 3 @ 1) by an amount of order Aqcp, which
accounts for the relative motion of ¢ and ¢, where ¢, ¢ = {u,d}. A lattice computation is needed
to safely establish who is lighter. Assuming that Qqq’ is heavier, then its neutral component
Qqq decays to Qg with a lifetime of order 1/Aqcp. The slightly heavier components Qud and
Qdu with electric charges +1 have a lifetime of order v* /A%CD.

The above DM model has possible extra motivations. The fermion Q appears as a ‘Dirac
gluino’ in some N = 2 supersymmetric models [140], where sfermions can mediate its decay, if
R-parity is broken. Alternatively, the heavy quarks Q could be identified with those introduced
in KSVZ axion models [141]. In such a case our U(1) symmetry gets related to the Peccei-Quinn
symmetry. Corrections to the Higgs mass squared proportional to Mé arise at 3 loops and are
comparable to its measured value for Mg ~ 12 TeV [142].

3.1.1 Confinement

QCD confinement happens in cosmology through a smooth crossover. In Cornell parametrisa-
tion [143] the QCD potential between two quarks in the Fundamental representation at tem-
perature 7" in the singlet configuration is approximated as Vi;(r) ~ —apeg/r + opr. In the
perturbative limit one has apey = Craz where Cp = (N2 — 1)/2N,. = 4/3 is the quadratic
Casimir and oy is renormalized around 1/r. At r ~ 1/Aqep lattice simulations find apeg = 0.4
and o ~ (0.45GeV)? [107]. The potential between two adjoints is similarly approximated by a
Coulombian term plus a flux tube:

VQQ(T) 5 —# +or. (32)

Perturbation theory implies Voo/Ca ~ Vy3/Cr [144] where Cy = N. = 3. Thereby aes ~ 3as
and 0(0) ~ 90r(0)/4 ~ (0.67 GeV)?, as verified on the lattice [145]. At finite temperature the
Coulombian force gets screened by the Debye mass and the string appears only below the critical

temperature T, ~ 170 MeV as o(T') ~ 0(0)4/1 — 1T2/T2 [107].

3.1.2 Eigenvalues in a linear plus Coulombian potential

We will need the binding energies of a non-relativistic QQ hadron. We thereby consider the
Hamiltonian H = p2/2u + V(r) in 3 dimensions that describes its motion around the center of
mass, with reduced mass 2 ~ Mg. The potential is given by eq. (3.2). As usual, wave-functions
are decomposed in partial waves as (1, 0,¢) = 3., , . Rae(r)Yen (0, ¢) where 7i is the principal
quantum number. For each ¢ = 0,1,2,... we define as n = 1 the state with lowest energy, so
that n = 1,2,3,.... The radial wave function R;,(r) has 7 — 1 nodes. Unlike in the hydrogen
atom there are no free states: angular momentum ¢ is not restricted to £ < n. In order to match
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Figure 3.1: Binding energies Enp in GeV for a QQ in the singlet configuration. States with
Ewe < —0.2GeV (in green) are well approzimated by the Coulombian limit. Increasing Mg
leads to a larger number of Coulombian states and to a deeper ground state. QQ states are
cosmologically mostly produced in the region with larger ¢ of the band E ~ Agep.

with the Coloumbian limit in its usual notation we define n = n + ¢ such that, at given ¢, only
n = ¢+ 1 is allowed.

The reduced wave function w;¢(r) = 7Rze(r) obeys the Schroedinger equation in one dimen-
sion in the effective potential Vog = V + £(¢ + 1)h?/2ur?. Dimensional analysis implies that
energy eigenvalues have the form

2 3
9 B o g O 10 TeV 1
Eap = oSz x f(e,n, L), where €= —4a§ﬂu2 =10 AT ( o on) (3.3)
From [108]® we extract the approximation valid at leading order in € « 1
aZap 1
Er = =S5 | — — & en(14.3n - 6.30 — 3.34) + - - ] (3.4)
n

The first term is Coulombian. The second term accounts for the linear potential, and becomes
relevant at large n, £. In particular, assuming ¢ ~ n » 1, Coulombian states with negative binding
energy exist up to £,n < 0.5e~/4. The ground state has binding energy Eg = —Ey ~ 200 GeV
for Mg ~ 10 TeV.

In the opposite limit where the linear force dominates and the Coulomb-like force can be

3We thank C. Gross for having pointed out a typo in [108].
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neglected, all energy levels are positive and states with higher ¢ have higher energy [108]

30.2/3

Eap~ ———
SPEE

/ 2/3
<0.897ﬁ + 5~ 0.209) (3.5)
such that thermalisation lowers ¢. The dependence on o, and the ground state energy can
also be computed variationally, assuming a trial wave-function ¢ (r) = e™"/ ’”C/rg’/ ? such that
the typical size is 7. ~ (uo)~"3. Fig. 3.1 shows the binding energies for relevant values of the
parameters.

We next discuss bound states Bg made of one heavy Q plus a gluon. It cannot be described
by non-relativistic quantum mechanics. Nevertheless, its binding energy can roughly be obtained
by eq. (3.5) taking a small reduced mass p ~ 4/o. One then expects that such states are in their
ground states at T' < Aqep, and that their mass is Mp, = Mg + O(Aqep)-

3.1.3 Decay rates of excited bound states

Energy losses due to quantum decay of a QQ state with n,¢ » 1 into deeper states can be
approximated with classical Larmor radiation. This holds in dipole approximation, where a
state can only decay to ¢/ = £ + 1.

To see this, we consider a hydrogen-like system with V' = —a/r and reduced mass p. As-
suming a circular orbit as in [101] one gets the emitted power

2 2.7
circ _ 2aa o 2#’ a

Larmor 3 3n8

(3.6)

having inserted the acceleration a = «/ur? and converted the orbital radius into n? times the
Bohr radius as r = r, = n?/au. Similarly, the binding energy is £ = —a/2r = —a?u/2n?.

At the quantum level, a circular orbit corresponds to a state with maximal ¢ = {4, = n. In
dipole approximation such a state decays only to n’ = ¢’ = n — 1, emitting a soft photon with
energy AELamor = |En — En_1| =~ o?u/n?, such that the decay rate is

, Wi 2 < oY ) 5
Cl;imor = = o | — . 3.7
L |AELarmor| 3\n a ( )

This matches the quantum decay rate.

Let us now consider a generic state. Classically, a generic elliptic orbit is parameterized
by its energy E and by its angular momentum ¢ < fg, where lge = +/a?u/2FE is the value
corresponding to a circular orbit. The Larmor radiation power, averaged over the orbit, is

<WL > _ Wcirc 3 — (é/gCirC>2

Larmor 2(£/£circ>5 (38)

Due to the larger acceleration at the point of minimal distance, the radiated energy for ¢ « £
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is much larger than in the circular case: this is why eé colliders are built circular.
This classical result for non-circular orbits agrees with the quantum results for n,¢ » 1,
summarized in Appendix C for the hydrogen atom, which can be approximated as

20° 1 W, ~ 207 1% 3 — (0/n)?

P> g W™ 308 5y (39)

In the quantum computation the enhancement at small ¢/ < n appears after summing over the
available final states with small n’ > ¢ — 1 which allows for energy jumps |E,, — E,/| larger than
in the circular case.

In the opposite limit where the linear part of the potential dominates over the Coulombian
part, energy losses of highly excited states are again well approximated by classical Larmor
radiation, which does not depend on the shape of the orbit, given that the force does not depend
on the radius: Wiarmor = 8aeH02/3M5 is negligibly small. This is confirmed by numerical
quantum computations.

3.1.4 Cross section for formation of a loose Q9O bound state

We here estimate the cross section oy (Bg + Bg — Bgg + X) for formation of a loose bound
state containing two heavy quarks Q, starting from two bound states Bg containing one Q.

Assuming that Bg = Qg can be approximated as a Q and a gluon kept together by a flux
tube with length ¢ ~ 1/Aqcp, the following geometrical picture emerges. The cross section is
oot ~ T2 at energies E ~ Mgv* < Aqep such that there is not enough energy for breaking
the QCD flux tubes, and the recombination probability of two flux tubes is p ~ 1, like in string
models. Independently from the above geometric picture, the size of the bound state is of order
1/Aqep, and thereby one expects a cross section ogep = C/AéCD, with ¢ ~ 7 in the geometric
picture. In the following we will consider ¢ = {1, 7,4n}. For example the measured pp cross
section corresponds to ¢ ~ 10.

While this expectation is solid at energies of order Agcp, at lower temperatures the cross
section might be drastically suppressed if the residual van der Waals-like force has a repulsive
component, which prevents the particles to come close enough. We will ignore this possibility,
which would result into a higher abundance of hybrid relics.

More in general, processes that only require a small energy exchange F can have large cross
sections of order 1/E?.4

3.1.5 Cross section to form an un-breakable QO bound state

We can finally compute the quantity of interest for us: the thermally averaged cross section
o (T') for collisions between two Qg states which produce an unbreakable QQ hadron. This

4The authors of [146] propose a quantum mechanical model where processes analogous to o(Bg + Bg —
Bgo + X) are computed in terms of cross sections suppressed by 1/Mg. This large suppression seems to derive
from their arbitrary assumption that the cross section should be dominated by an s-channel resonance.
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is the same problem we faced in Chapter 2 when we wanted to compute oy (7) for gluinos.
However, given that we just need an order of magnitude estimate of the hybrid relic, we will not
perform a brute force quantum mechanical computation. And, for the sake of computational
simplicity, we will try to give an estimate of oy (7) by following an analogy with Larmor
radiation. Only for the value of Mg that reproduces the observed DM relic density, we also
perform the full quantum computation described in Chapter 2 to check our results.

An unbreakable QQ hadron is formed when the loose bound state discussed in the previous
section radiates more energy (through pion emission) than ~ 7' in the time At before the next
collision with a pion of the thermal bath, such that it becomes un-breakable and later falls down
to its deep ground state. In view of the previous discussion, we proceed as follows. A large total
cross section oqep ~ F/A(QQCD needs a large impact parameter b ~ 1/Aqcp, and thereby the QQ
state is produced with large angular momentum ¢ ~ Mguvb.

The issue is whether a bound state with large ¢ gets broken or radiates enough energy becom-
ing un-breakable [101]. As discussed in section 3.1.3, abelian energy losses are well approximated
by classical Larmor radiation, and it is crucial to take into account that non-circular orbits ra-
diate much more than circular orbits. The QQ potential is given by eq. (3.2), with a large
Qe ~ 3as(ft) renormalized at o ~ 1/ ~ Aqep.

The cross section for falling into an un-breakable QQ bound state is computed as follows.
We simulate classical collisions, averaging over the velocity distribution at temperature 7" and
over the impact parameter b. We numerically solve the classical equation of motion for the
QQ system, starting from an initial relative distance b and an orthogonal relative velocity v.
From the solution #(t) we compute the radiated energy AFE by integrating the radiated power
Wiarmor ~ 2(165%2 /3 for a time At. We impose AE > T where At is the average time between two
collisions at temperature 7. We estimate it as At ~ 1/n,v,0qcp where n, is the pion number
density and oqep = ¢/Agcp such that At ~ A{qp/T? at T » m,, while the pion density is
Boltzmann suppressed at lower T

The resulting o (7)) is plotted in Fig. 3.2, computed by varying the uncertain QCD pa-
rameters as aeg = {0.3,1,3}, ¢ = {1, 7, 47}. We see that even for aeg ~ 1 the fall cross section
oran(T") equals to the total cross section ogep at temperatures below (0.1 — 0.3)Aqcep, and it is
mildly smaller at ' ~ Aqcep. If instead aeg ~ 47 one would have o, = ogep even at T ~ Agep.
The value aeg ~ 47 can account for non-perturbative QCD effects: it is not unreasonable to
think that the bound state can quickly radiate the maximal binding energy Ep ~ 200 GeV by
emitting in one shot a hundred of gluons with energy £ ~ 2 GeV each.

A rough analytical estimate for o, (7T') can be obtained as follows. As discussed above, states
that radiate fast enough arise only in the Coulombian part of the potential. In view of eq. (3.8),
their energy loss rate is Wiamor ~ algM3/0®, which can be big enough only for relatively small
¢ ~ Mgbv. Imposing AE =T for v ~ 4/T /Mg gives

Aot 1AQeD
2

¢ 7/4\5/2
Ol ~ —— min(1,0.34) A= ot - QD
AQCD M$/2T2

(3.10)
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Figure 3.2:  Thermally averaged cross section for falling in an unbreakable bound state as

computed numerically for Mg = 12.5TeV and for different values of aeg = 0.3 (dot-dashed) 1
(dashed), 3 (continuous) and for different values of the total QCD cross section, oqcp = c/A%?CD,
c=1 (green), = (blue), 47 (red). Eq. (3.10) approzimates this numerical result.

where the order one numerical value was added by roughly fitting to Fig. 3.2, for the values of
the total QCD cross section there assumed. The fall cross section is only suppressed by a small
power of Mg, explaining why we find a large oy ~ o1t for Mg ~ 12.5TeV. In the analytic
estimate we neglected the fact that m, ~ Aqcp: this is taken into account by the relatively
large ad hoc numerical factor added to eq. (3.10) such that it provides a better agreement with
the numerical result in Fig. 3.2 for Mg ~ 12.5TeV.

3.2 Cosmological relic densities

We can now compute how strong QCD interactions lead to an abundance of the Q-onlyum
DM candidate QQ much larger than the severely constrained hybrid bound states Qg. We
describe what happens during the cosmological evolution, from the usual decoupling of free
Q at T ~ Mg/25 (section 3.2.1), to recoupling (section 3.2.2) at T'= Aqcp, to T ~ Aqcp
(section 3.2.3), to redecoupling at 7' < Aqep (section 3.2.4), to nucleosynthesis at 7' ~ 0.1 MeV
(section 3.2.5).

3.2.1 Q decoupling at 7' ~ My/25

As usual, at T'> Mg the free Q annihilate into SM particles much faster than the Hubble rate,
remaining in thermal equilibrium until they decouple at T' = Tye. & Mg/25, leaving the usual
relic abundance, determined by their annihilation cross-section in this decoupling phase. The




Colored DM 82

non-relativistic s-wave cross section reads

095 Urel 63 /1 10 3 7Toz§
ann Urel — = - _S _S _Sf — 3.11
e (14 EEVECER Vi BV (3:11)

where the strong coupling is renormalized around Mg, while it is renormalized around asMg in
the Sommerfeld factors .S,, corresponding to the various color channels:

27N Vel
S, = )
1— 6—27rna3/vrel

(3.12)

We define Yo = (ng + ng)/s, where s is the entropy density, and assume no dark baryon
asymmetry, ng = ng.

As shown in the previous chapter, perturbative formation of bound states gives an order one
correction to the final relic and needs to be included in the cosmological evolution. The bound
states made by our ‘Dirac gluinos’ can be divided into stable QQ or 00 states that carry two
units of dark baryon number, and unstable QOQ states, where Q and Q annihilate. The latter
come into spin-0 and spin-1 combinations, while the stable states have only the spin allowed by
Fermi statistics: in particular the singlet ground state has spin 0. Among the unstable bound
states the most relevant for the relic abundance at T » Aqgcp are the ones that decay faster and
have larger binding energy. These are listed in Table 3.1. The corresponding effective rates are
plotted in Fig. 3.3. We only estimated the annihilation widths of those states that exist only as
QQ; they are suppressed by O(a2) making these states negligible (the formation cross section
does not depend on spin) unless numerical factors compensate for the suppression.

These rates determine a network of Boltzmann equations for the abundance of free @ and
for the abundances Y; = ny/s of the various bound states I as function of z = Mg/T. Such
equations are

dYQ l YQ2 ] YQ2 Y;
sHz——= = —2fyannW—1 —2271 ? oo |
dZ YQQ ! - YQq YI
dY; Y, Y; Y7 Y; Y
Hz— = i iea)| =5 = woq | + Crann) |1 = seq | + D Tr=)| omg — oo
S z dz n] {< Ib k>|:Y5q2 }/qu:| < 1 >l Yv]eq §< I J> Y;}q }/[eq
(3.13)

Here ~; is the thermal-equilibrium space-time density of formations of bound state I, related to
the thermal average (I jpreax ) Of the breaking rate I'jprear as described in section 1.1. Furthermore
I'ann is the decay rate of bound state I due to annihilations between its Q and Q constituents:
it vanishes for the QQ and QQ states. Finally, I';_,; = —I';_,; is the decay rate from state I
to state J. To reduce the number of differential equations while including QQ and Q0 states,
we need to extend the strategy of section 1.1. The annihilation rates, I',,,, for these states
vanish, so we can now only reduce the network of Boltzmann equations to two equations: one
for Yo (density of free Q) and one for Yoo = ;.00 Y7 (total density of stable bound states,
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made of color S n / ‘ Eg/Mg ‘ Cann/Mg  Taee/Mog ‘ Annihilation
Q9 ls 0 1 0] 9a3/4 243a5/2 0 g9
090 ls 1 1 0] 9a3/4 ~ aj} ~ af 9999
Q9 84 1 1 0| 9a2/16 | 81a3/16 ~ af qq
Q9 84 0 1 0| 9a2/16 ~ al ~ af 999
Q90 8 0 1 0] 9a2/16 | 243a3/64 ~af 99
Q9 8 1 1 0] 942%/16 ~ab ~af 9999
Q9 ls 0 2 0] 9a2/16 | 243a5/16  ~af 99
00 ls 1 2 0] 9a3/16 ~ aj ~ of 9999
Q9 84 1 2 0| 9a2/64 | 81a3/128  ~af qq
Q9 84 0 2 0| 9a2/64 ~ af ~ af 999
0]0) 8 0 2 0] 9a2/64 | 243a5/512  ~af 99
09 8 1 2 0] 9a2/64 ~ b ~af 9999
Q9 ls 0 2 1] 9a3/16 ~0 ~ af
Q9 ls 1 2 1] 9a2/16 ~ab ~af 99
Q9 84 1 2 1| 9a2/64 ~0 ~ 0.103
Q9 84 0 2 1| 9a2/64 ~ aj ~ 0.1a3 qq
Q9 8 0 2 1] 9a%/64 ~0 ~ 0.1a3
0]0) 8 1 2 1] 9a%/64 ~ aj} ~ 0.1a3 99
9)0) ls 0 1 0| 9a%/4 0 0 DM candidate
Q90 84 1 1 0| 9a2/16 0 0
Q0 8 0 1 0] 9a%/16 0 0
Q9 ls 0 2 0] 9a2/16 0 ~ af
Q9 84 1 2 0| 9a3/64 0 ~ af
Q0 8 0 2 0] 9a%/64 0 ~ af
Q9 ls 1 2 1] 9a2/16 0 ~af
Q0 84 0 2 1| 9a2/64 0 ~ 0.1a3
Q9 8¢ 1 2 1] 9a%/64 0 ~ 0.1a3

Table 3.1: Properties of lowest lying Coulombian bound states made of QQ (upper) and QQ
(lower). The subscript S or A denote if the state is obtained as a symmetric or antisymmetric
combination in color space. Slower rates have only been estimated.
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that satisfies Yoo/Y5s = Y7/Y;* for all stable states I). The equations are

dY, Y3 Y3 Y.
sH2—2 = _Q’Yann 92 — 1| — 27 —Q2 — Qqu
dz YSd YS¥ Y,
qy, 1y vee] o 0 (3.1)
QQ Q QQ
SHZ = n <Fbreak> l — ]
QQ e ©
dz V5® o Y5h

where v¢ includes the effects of QQ bound states and is given by the same expression as in
section 1.1. The total fall rate that accounts for the cumulative effect of all QQ and QQ bound
states is given by the sum of the formation rates of all such states, Y. = > re0o Vi, Which equals
ngollbreak) = 2, re0olT TbreakyN 7. Notice that Yo + 2Ygoo remains constant when a QQ bound
state is formed.

We now derive an approximated analytic solution by computing the deviation from equilib-
rium of the stable bound states. First, we appreciate that at temperatures at which the quorn
annihilation goes out of equilibrium the second of the above equations is still in equilibrium and
thus the effect of stable bound states can be ignored in the solution for the first equation. The
asymptotic solution in this phase is

YQ(Z) I [YQ(Zdec)_l +A

zZ
dec eq

1
Yoo(z) ~ YQOQ<Z)+XYQ1Q() Yo(z )QYQQ

(3.15)

? <aannvr61>
LY o(2)
A

where zgec & 25 and 1/X = H/s|r_n,. Expanding in small 1/X one finds Y4 (2) and determines
the temperature at which Y3,(2) ~ Ydo(2)/A, finding

Toreat)Mg {T'hrear)

1~ ~ ) 3.16
This gives the asymptotic solution for Aqep « T' « Mg:
_ _ ? dz ! <Fbreak>MQ -
YQ 1(2’) ~ YQ I(Zdec) + A J 2/2 |:<Uannvrel> + <Ufallvrel> (1 + EBH—(Z/)Z/
Fee (3.17)

Yool) ~ 1[(Yg—1<zdec>m | <oannvrel>)lyg<z>]

2 Zdec

Using the specific rates for the main perturbative bound states listed in Table 3.1 we obtain the
values of Yo and of Yo at temperatures 7' » Apc. The result is shown in Fig. 3.4b, where they
are denoted as ‘perturbative’. We see that such effect can be neglected. At confinement, non-
perturbative QCD effects force all free Q to bind with SM quarks and gluons to form strongly
interacting hadrons, as discussed in the following.
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Figure 3.3: Thermally-averaged effective annihilation cross section in units of oy = W&%/Mé
for Mg = 12.5'TeV. The horizontal line is the tree-level value in s-wave; the black curve is the
result obtained adding Sommerfeld corrections; the thick gray curve is the result adding also QQ
bound-state corrections. The other curves show the contributions from the main bound states
among those listed in Table 3.1. The orange curve is an estimate of confinement effects that lead
to recoupling at low T'< 10 GeV.

3.2.2 QO recoupling at T'> Aqcp

DM annihilations recouple below the decoupling temperature Ty if the thermally averaged
DM annihilation cross section ., (7)) grows at low temperatures faster than 1/7°%2. In such
a case DM recouples, and its abundance npy is further reduced. A tree-level cross section
Oann ~ g*/M3Z,; does not recouple. A Sommerfeld enhancement S ~ 1/v,q0c1/+/T leads to order
one effects, but not to recoupling (unless enhanced by some resonance). Formation of bound
states with small quantum number n ~ 1 give other similar effects. In the previous section we
included such order one corrections, adapting the results of Chapter 1. At this stage Q can form
relatively deep bound states with heavy quarks, which eventually decay.

The QCD coupling grows non-perturbative at 7' > Aqcp giving a more dramatic recoupling
effect: bound states with size rp, ~ (a3/n)Mg can be formed through a large cross section
Oann ~ 1/r%, having omitted powers of the strong coupling. The increase of the cross section as
n — oo is tamed by a competing effect: only bound states with Eg, =T are actually formed at
temperature T (as better discussed in Appendix D), leading to a re-coupling cross section that
grows as o, ~ 1/T? for T 2 Aqep.

3.2.3 Chromodark-synthesis at 7' ~ Aqcp

This effect culminates after confinement. Cosmological effects of confinement begin when the
Coulombian force aeg/r? becomes weaker than the string tension o(7') at the typical distance
r ~ 1/T. Given that gluons and quarks are much more abundant than Q, the free Q form
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Figure 3.4:  Thermal relic abundances of the DM QQ hadron (blue band) and of hybrid Qg
hadrons (red band, as obtained varying aeg and UQCDAEQCD between 1 and 4w ). The red diamonds
show the relic of hybrids hadrons obtained with the more precise estimate of oy given in Chapter
2. Left: mass densities. The desired DM abundance is reproduced for Mg ~ 12.5TeV. The
sub-dominant abundance of hybrid Qg hadrons and the relative experimental upper bounds are
subject to large and undefined nuclear, cosmological and geological uncertainties, see section 3.3.
Right: number densities Y = n/s of QQ DM states and of Q hybrids. We also show the

abundance of QQ bound states before confinement (dashed curve).

Qg and Qqq¢ bound states, which have a binding energy of order Aqgcp and scatter among
themselves and with other hadrons with cross sections of typical QCD size, ogcp = c/A(QQCD
with ¢ ~ 1. In this stage H ~ Agcp/Mp1 ~ 107*Aqep, such that a Qg hadron experiences 10
QCD scatterings in a Hubble time. Given that the relative abundance of Q is Yo ~ 10714, two
Qg will meet, forming either deep QQ hadrons (which remain as DM) or QQ hadrons (which
annihilate into SM particles). The abundance of Q-only hadrons gets dramatically suppressed,
until they decouple.

While most DM particles form in this phase, a precise description is not needed to compute
the final abundances, which are dominantly determined by what happens during the final rede-
coupling, where the dominant SM degrees of freedom are semi-relativistic pions, while the baryon

abundance is negligible, in view of the Boltzmann factor e=™»/7 and of the small asymmetry.

3.2.4 QO redecoupling at T'<Aqcp

We need a precise description of the final redecoupling which occurs at temperatures of tens of
MeV. One might think that the simplified Boltzmann equations for the density of free Q and of
QQ bound states, eq. (3.14), can be replaced with corresponding equations for the total density
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of Bg bound states (Qg and Qqq’) and for the total density of Bgg bound states.

A slightly different strategy is needed. Indeed, the simplification that allowed to reduce
the network of Boltzmann equations (one for each bound state) to two is valid only if: 1)
all Bg bound states are in thermal equilibrium among them; i) all Bgg bound states are in
thermal equilibrium among them. Bound states are subject to QCD interactions, with large
oqcp cross sections, such that the corresponding interaction rates are much faster than the
Hubble rate. However, as discussed in section 3.1.3, non-perturbative QCD interactions now
lead to the formation of a large variety of bound states, with large n and ¢ quantum numbers
which suppress the decay rates among them. Some decay rates can be slower than the Hubble
rate. This issue was solved in section 3.1.5 where we computed an effective cross section for the
formation of all unbreakable QO bound states, that later fall to the QQ ground state. The same
cross section, almost as large as the QCD cross section, holds for the formation of unbreakable
QOQ, that later annihilate:

Ofall = Oann < 0QCD- (3.18)

The equality of the classical non-perturbative total cross section for forming QQ bound states
with the total cross section for forming QQ bound states, is compatible with the perturbative
quantum cross sections computed in section 3.2.1. Indeed, because of Fermi anti-symmetrisation
in the QQ case cross sections are twice bigger, while the number of QQ states is twice bigger
(after restricting to colour-singlet bound states and averaging odd with even /).

One extra process can take place: annihilations between QQ and QQ in their ground states.
In section 3.4.2 we will compute its cross section, finding that it can be neglected in our present
cosmological context. Together with eq. (3.18) this implies a simple result: half of the Q and
Q present before redecoupling annihilate, and half end up in our DM candidates, the QQ and
QQ ground states. Boltzmann equations are only needed to compute how small is the residual
fraction of @ in loose hybrid hadrons, which are phenomenologically relevant in view of their
large detection cross sections.

We thereby group bound states in two categories. We define Yoo as the density of all un-
breakable QQ bound states, produced with cross section ogy. We define Yo as the density of
Q in loose bound states: the Q in bound states containing a single Q (Qg, Qqq’), and those
in loose QO and QO bound states at relative distances ~ 1/Aqep, that get broken by QCD
scatterings.

The relevant Boltzmann equation are:

Y2 dY, Y3
eff eff Q QQ eff Q
stW = —2(Yan + ’Yann)[yéqz - 1], sH S ’Yfalllygc@ 1]' (3.19)

valid for 7' < Aqep i.e. 22 zqep = Mo/Aqep. In the non-relativistic limit the space-time density
of interactions is determined by the cross sections as 27:(n?g)2<avrel>. The asymptotic solutions
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Figure 3.5:  Cosmological evolution of the abundances of Q states and of QQ DM states
for Mg = 12.5TeV. The uncertain phase at T'Z Agep negligibly affects the final relic abun-
dances: the dashed curves assume mnon-perturbative effects before confinement estimated as
o = oqep(Agep/T)?; the solid curves neglect such effects. The mass abundance on the right
axis is computed assuming QQ particles with mass 2Mg.

to this system of equations are

0 eff eff
YQ_I(OO) ~ Yg_l(ZQCD) + )\f <Ofallv1“€1> —1:2<O_annvrel>dz/ 7
z

#QCD 3.20
1 Yo(zqep) (0fh Urel) (3.20)

+ —
2 (o vre) + (0 vral) + 2qep/A Yo(zqep)

Yoo(®) ~ Yoo (2qcp)

with the last term roughly equals Yo(zqcp)/4. Fig. 3.4 shows our final result: the DM abundance
and the hybrid abundance as function of the only free parameter, Mg. The left panel shows
the mass abundances 2 = p/p.,; the right panel shows the number abundances Y = n/s. The
hybrid abundances are plotted as bands, given that they are affected by QCD uncertainties;
smaller values are obtained for larger ¢ = UQCDA(%CD and for larger . Varying them between
1 and 47, the hybrid abundance changes by a factor 100. The DM abundance, less affected
by QCD uncertainties, is plotted as a blue curve. The right panel shows that the DM QQ
abundance is mostly made at the non-perturbative level; the perturbative bound states computed
in section 3.2.1 only play a significant role in enhancing QQ annihilations.

The observed DM abundance is reproduced for
Mg ~ (125 £ 1) TeV (3.21)

and the hybrid mass abundance is about 10* smaller that the DM abundance (between 10% and
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10° within our assumed range of QCD parameters). For such mass, Fig. 3.5 shows the cosmo-
logical evolution of the abundances. It also shows how large uncertainties at 7' ~ Aqcp before
redecoupling have a negligible impact on the final abundances, which is dominantly determined
by redecoupling.

An analytic argument that shows that Quyhia « €dpy is unavoidable and that gives the
dependence of the final abundances on Mg, Mp;, Aqep (eq. (D.4)) is given in Appendix D.

3.2.5 Nucleodark-synthesis

Redecoupling is completed at temperatures 7' ~ 10 MeV. Later nucleons bind into light nuclei
at the Big Bang Nucleosynthesis (BBN) temperature Tggy ~ 0.1 MeV. Various authors tried to
compute what happens to SIMPs during BBN, and how SIMPs affect ordinary BBN [147-150)°.
Our predicted amount of Strongly Interacting Massive Particles, Ygnyp ~ 107!, has negligible
effects on ordinary BBN, which constrains Ygnyp < 10712, Such studies however disagree on what
happens to SIMPs during BBN. Do SIMPs bind with (some) nuclei? Does a significant fraction
of SIMPs remain free?

We present our understanding, but we cannot provide a safe answer. Indeed, nuclear forces
are not understood from first principles, not even for ordinary p and n [151]. Long-range nu-
clear properties are determined by couplings to pions, known thanks to chiral perturbation
theory [152]. Heavier QCD states contribute to short-range nuclear forces: however QCD is here
only used as inspiration to write phenomenological nuclear potentials to be fitted to p,n data,
see e.g. [153].

In our scenario there are two types of SIMPs with distinct properties. The Qg hybrids are
isospin singlets and thereby do not couple to pions. The Qgqg hybrids form an isospin triplet
(with charges 0, £1) coupled to pions.

Presumably Qqq’ are heavier and decay promptly to Qg. Then, the Qg singlet states, which
do not feel the pion force, are expected to behave similarly to the A baryon, which does not bind
to protons to form heavy deuterons [154]. Maybe such SIMPs do not bind with any nuclei, or
maybe they find a way to form bound states with big enough nuclei. An attractive force can be
provided by exchange of an isospin-singlet scalar meson, such as the o (mass M ~ 0.6 GeV) or
glueballs (mass M ~ 1.5GeV) provided that their effective Yukawa couplings yspyp and yy to
the SIMP and to nucleons are large enough and have the same sign. In spherical well and Born
approximation and for Mg » M, the hybrid can form a bound state in a nucleus with atomic

number A if [155]
127 M?

YSIMPYN = 5 GV ? (3.22)

If SIMPs bind to light nuclei, after BBN they dominantly end up in Helium or free, with a
relatively large amount in Beryllium, according to [148, 149].

The Qqq’ states, which feel the pion force, have an interaction potential with a range of ap-

SHere and in the following, by SIMP we mean particles that interact strongly with SM particles.
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proximately 2 fm. If they are the lighter stable bound states, during BBN they get incorporated
into nuclei with an efficiency close to 100% [150]. In the Milky Way, SIMPs in charged nuclei
can loose a significant fraction of their energy by interactions with ambient matter.

No SIMP searches have yet been performed in galactic clouds, which would probe the SIMP
primordial abundance. After BBN, SM matter forms stars and planets: primordial SIMPs sink
to their center before these objects possibly solidify. Stars (rather than BBN) later produce
the observed elements heavier than He. In the next section we estimate the present geological
abundance of SIMPs.

3.3 Signals of relic hybrid hadrons

In our model Q-onlyum DM is accompanied by hybrid hadrons, containing heavy colored Q
bound together with SM quarks or gluons. In this section we discuss their signals. While
SIMP DM has been excluded long ago, in our model SIMPs have a sub-dominant abundance,
fsimp = psmvp/ppu below 1073, possibly a few orders of magnitude smaller. Such small value of
pstvp makes indirect SIMP detection signals negligible (3 poqep < 10724 cm?/sec) despite that
SIMPs interact with matter nucleons and with themselves through large cross sections of order
oqep ~ 1/A{ep. See also [157]. In some models SIMPs can have electric charge (fractional in
exotic models).

As discussed in section 3.3.1, galactic SIMPs are stopped by the upper atmosphere of the
Earth and slowly sink. Thereby SIMPs are not visible in direct detection experiments performed
underground. Their later behaviour depends on whether SIMPs bind with nuclei: if yes they
indirectly feel atomic forces; otherwise they sink even within solid bodies, such as the present
Earth. In section 3.3.2 we summarize bounds on the SIMP abundance, to be compared with
their present abundance, estimated in sections 3.3.3 and 3.3.4.

3.3.1 Direct detection of hybrid hadrons

Despite their reduced abundance, SIMPs would be excluded by a dozen of orders of magnitude,
if they reach the underground direct detection detectors with enough energy to trigger events.
This is not the case. The energy loss of a neutral SIMP in matter is [15§]

dE 2my
%:_Egln"‘(m o for my « Mg (3.23)

where ny4 is the number density of nuclei with atomic number A and mass ma ~ Am,,; 2my/Mg
is the fractional energy loss per collision and o4 ~ 0, A%*(ma/m,)?* is the SIMP cross section on a
nucleus [159], written in terms of the SIMP scattering cross section on protons, o, ~ 7/Agcp ~
1.6 1072 cm?. The cross section o4 is coherently enhanced at the energies of interest for us,
E = Mgv?/2 ~ MeV for v ~ 1073, The densities n4 in the Earth crust can be written as
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na = fap/ma where p is the total mass density and f4 is the mass fraction of material A,
>4 fa = 1. The energy loss following from eq. (3.23) is

(3.24)

2 (A 10 TeV
E(:E)zEgexp[—fpda: m” (A7) 10Te Op ]

T0kg16.6' Mg 7/A2cp

Thereby SIMPs with Mg ~ 10 TeV thermalize in the Earth atmosphere, which has a column
depth of 10* kg/m” and (A*)'/4 ~ 16.6, before reaching the crust with (A%)"/4 ~ 31 and density
p A 3g/cm3. SIMPs do not reach direct detection experiments, situated about a km under-
ground.

Some direct detection searches have been performed by balloon experiments at high altitudes.
The authors of [160] claim that it is questionable whether such experiments exclude a SIMP with
density psmvip = py. Our predicted abundance pgivp ~ 10~ ppu is allowed.

After thermalisation, SIMPs diffuse with thermal velocity vipermal & A/67 /Mg ~ 40m/s at
temperature T' ~ 300 K. In the Earth gravitational field g = 9.8 rn/sQ, SIMPs not bound to nuclei
sink with a small drift velocity that can be estimated as follows. Each collision randomises the
SIMP velocity because vty € Ughermal- Lhereby the drift velocity is the velocity vang ~ g7/2
acquired during the time 7 ~ d/Uhermal between two scatterings, where d = 1/(3],na0a) ~
0.1 mm in the Earth crust. Thereby the sinking velocity is

Varige ~ 0.1km/yr. (3.25)

Diffusion gives a non-uniform SIMP density on the length-scale T'/Mgg ~ 25 m dictated by the
Boltzmann factor e~ Mesh/T,

Finally, SIMP concentrate around the center of the Earth, where they annihilate heating of
the Earth [160]. Bounds on such effect imply that the SIMP abundance must be sub-dominant
with respect to the DM abundance, pspyp < 1073ppy. This bound is satisfied in our model,

where psivp ~ 107*ppur.

The situation is somehow different if SIMPs bind with (some) nuclei, either during BBN
(mostly forming He), or by colliding with nuclei in the Earth atmosphere (possibly mostly
forming N, O, He, H) or crust. A SIMP contained in a hybrid nucleus with charge Z ~ 1 has a
much bigger energy loss in matter, as computed by Bethe

dE K22 _ Ara’n,

2m3?
% [ ? h’l Ji s K e s I~ ZlO eV. (326)

The mean free path in Earth of a SIMP in a charged state is thereby Ly ~ MgB*/K ~
2 107°c¢m (4/0.001)*.  Again, SIMPs do not reach underground detectors. The main differ-
ence is that SIMPs bound in nuclei sink in the ocean and in the primordial Earth, but not in
the solid crust, where electric atomic forces keep their positions fixed on geological time-scales.
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Element Nsivp/Ny at Mgiyp = 10TeV | Formation
Studied Bound Expectation? Mechanism
He space - 10710 BBN
| Be Earth | 71070 [150] | No | BBN |
| Oxygen water | 3107 [150] | No | accumulation |
| Enriched petro-C'* | 10710 [156] | 10157 | accumulation |
| Iron Earth | 10712 [162] | 107157 | accumulation |
‘ Meteorites ‘ 41071 [126] ‘ 107147 ‘ capture ‘

Table 3.2: FExperimental bounds on the density of Strongly Interacting Massive Particles with
non-exotic electric charges, compared to the expected abundance of our hybrid, roughly estimated
assuming that it binds in nuclei (otherwise they sink), and assuming fspap ~ 107°

3.3.2 Searches for accumulated hybrid hadrons

Experimental searches for accumulated SIMPs consist in taking a sample of matter, and searching
if some atom has an anomalous mass or charge, see [163] for a recent review. The results, detailed
below, imply relative abundances smaller than O(1/N,4) (inverse of the Avogadro number) in
the selected samples.

The searches often involve a first phase of sample enrichment in hybrids (for example cen-
trifuge treatment of a sample of water, or use of radioactive materials), followed by a second
phase of hybrid detection, with the most successful being the mass spectroscopy and Rutherford
backscattering [126].

Limits on the SIMP fraction in the sample depend on the SIMP mass: in the range GeV to
TeV, the best bounds are derived from mass spectroscopy of enriched sea water samples [164].
Here the hypothetical particle is a positively charged SIMP, which could form heavy water
replacing a proton. The bounds on the relative abundance are of order Ngpp+/Ny < 10727
where Ny is the number of nuclei.

For heavier SIMPs, mass spectroscopy seems to provide weaker limits. Stringent limit stems
from studies of material from meteorites. In [126] the Rutherford backscattering technique was
used to set a limit on the SIMP-to-nucleon number density in the tested meteorites that covers
the range 100 GeV < Mgpyp < 107 GeV. This technique does not depend on the SIMP charge
and thus also applies to neutral SIMPs. For Mgpyp ~ 10 TeV the limit is [120]

NSIMP < 3 10_14 10 TeV

meteorites 3.27
n Mgmvp ( ) ( )

where NV,, is the number of nucleons.

These bounds should be compared with the predicted SIMP abundance in the selected sam-




Colored DM 93

ples. If the tested samples were representative of the average cosmological composition, our
model would predict

Nsp _ my Qsivp 5 10-9 10 TeV fsip

= — 3.28
Nn MQ Qb MQ 10-° ( )

cosmo

having used the cosmological density of baryonic matter, Q,h? ~ 0.022, and of DM, Qp\h? ~
0.12. The predicted abundance in the selected samples is much lower than the cosmological
average and depends on their geological history.

3.3.3 Abundance of hybrid hadrons in the Earth

Testing a sample of sea water does not lead to bounds, because the atoms that contain heavy
hybrid hadrons sink to the bottom. Similarly, the Earth once was liquid, so that the primordial
heavy hybrids sank to the core of the Earth.%

Objects made of normal matter accumulate SIMPs due to collisions with SIMP relics in
the interstellar medium. Heavy hybrids accumulated in the Earth crust, if captured by nuclei,
presumably stopped sinking after that the crust solidified. In order to set bounds, we thereby
consider the SIMPs captured by the Earth in the time At ~ 4 Gyr passed since it is geologically
quasi-stable. We ignore convective geological motion. The Earth is big enough to stop all SIMPs,
so that the total mass of accumulated SIMPs is

fSIMP

M ~ psiptramRE At ~ 2.5 107 kg o5

(3.29)

having inserted the escape velocity from the Galaxy v ~ 1073 and assumed that the SIMP galac-
tic density follows the DM matter halo density ppy ~ 0.3 GeV/cm? as ngmp = fsiappom/Msivp -

The rate of QQ annihilations of stopped SIMPs is negligible, because suppressed by e~e" where
r is the macroscopic distance between Q and Q.7
The number of SIMPs accumulated in the Earth is
N, M 10T re
SIMP _ M my 0 0TeV fsmup Vrel . (3.30)
Nn Earth MQ MEarth MQ 10_5 10_3

If SIMPs are not captured by nuclei and sink as in eq. (3.25), their present density in the crust
is negligibly small, Ngnp/N, ~ 10723, If SIMPs get captured in nuclei, a significant fraction
of such SIMPs could be in the crust, with a local number density higher by some orders of
magnitude. In Fig. 3.4 we plot the bound from Earth searches assuming that all SIMPs stop in
the atmosphere and sink slowly through earth until captured by a nucleus, which might happen

6The Earth crust contains significant abundances of some heavier elements: those that preferentially form
chemical bounds with light elements, reducing the average density. This possibility does not hold for too heavy
hybrids with mass ~ 10 TeV.

"The SIMP thermonuclear energy content Mc? could be artificially released through QQ annihilations, and
is about 10* times larger than the world fossil energy reserve, 1023 J.
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in the upper 10 km. The capture cross section with nuclei is discussed below.

3.3.4 Abundance of hybrid hadrons in meteorites

Meteorites result from accumulation of interstellar dust and contain heavy elements. The tested
meteorites consist mainly of carbon and/or iron. These elements have not been produced by
Big-Bang-Nucleosynthesis, which produced H and He (Z < 2), nor by cosmic ray fission, which
produced Li, Be, B (Z < 5). Heavier elements have been synthesized from nuclear burning in
stars and have later been dispersed away through various explosive processes: core-collapse su-
pernovee, accretion supernovae, merging neutron stars and r-process nucleosynthesis. Primordial
SIMPs would have sunk to the center of stars, and would have presumably remained trapped
there, undergoing QQ annihilations.

Thereby, the SIMP relative abundance in meteorites made of heavy elements is expected to
be significantly smaller than the average relative cosmological abundance.

In order to set bounds we compute the amount of SIMPs accumulated in meteorites. Mete-
orites are the oldest objects in the solar system and are so small that heavy hybrids do not sink
in them. While the Earth is large enough that it captures all SIMPs intercepted by its surface,
we consider meteorites small enough that the opposite limit applies: SIMPs are captured by all
nuclei within the volume of the meteorite. Thus we need to estimate the probability @ that a
nucleus captured a SIMP in a time At:

NSIMP
Ny,

2 Ocapture 10 TeV fSIMP At Urel

. 3.31
1/A(2QCD MSIMP 10-° 5Gyr 103 ( )

—1
=p= nSIMPGcaptureUrelAt ~ 710

meteorite

This value is roughly two orders of magnitude above the meteorite bound in eq. (3.27).

However, the capture cross sections of SIMP by nuclei are very uncertain. Taking into
account that they are not coherently enhanced, the maximal value is the area of the nucleus,
Ocapture ~ A% ?/A4cp [165]. The measured capture cross sections of neutrons by nuclei are
smaller: in most cases Ocapture ~ O.Ol/AéCD at MeV energies. Assuming this capture cross
section we obtain the possible meteorite bound

fsmap = PSIMP < 15 Dcopture (3.32)

PDM O'Ol/A(QQCD

plotted in Fig. 3.4 and summarized in Table 3.2. Our SIMPs have MeV energies, but the long-
distance attractive force mediated by pions (present for neutrons, where it is the only effect
understood from first principles) is absent for Qg SIMPs, which are isospin singlets. Their
capture cross section could be much smaller, and possibly our SIMPs do not form bound states
with nuclei, such that meteorite bounds are not applicable.
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3.3.5 Neutrinos from SIMP annihilations in the Sun

Annihilations of SIMPs accumulated in the center of the sun provide an extra neutrino signal.
The capture rate does not depend on the SIMP cross section, given that it is so large that all
SIMPs that hit the Sun get captured, such that

1020 fSIMP 12.5TeV

sec 1075 Mg (3:33)

2
Fcapt = nSIMPvrelﬂ-Rsun ~

where Rom ~ 7 10%m is the solar radius. Around the relevant mass, ICECUBE provides the
bound Tony <7 10%sec™ on DM annihilating to bb [166]. Our Q dominantly annihilates to
gluons and light quarks, providing a slightly smaller neutrino flux [167]. We thereby conclude
that the ICECUBE bound is satisfied even assuming a SIMP annihilation rate in equilibrium
with the capture rate, I'ynn & eapt/2.

Also DM accumulates in the center of the Sun and, by annihilating to neutrinos, gives a
detectable signal in ICECUBE [166]. For typical parameters, equilibrium between capture and
annihilation is achieved (I'apn ~ T'capt/2). Hence, given that the capture cross section depends on
the DM-nucleon cross section and the DM mass, the neutrino flux expected by these annihilations
depends on the cross section for DM direct detection. The ICECUBE bounds are weaker than
those from direct detection experiments, and satisfied in our model [166].

3.4 Dark matter signals

In our model DM is a QQ hadron. In this section we discuss the DM signals: direct detection
(section 3.4.1), indirect detection (section 3.4.2) and collider (section 3.4.3).

3.4.1 Direct detection of DM

Direct detection of DM is a low energy process, conveniently described through effective opera-
tors. Composite DM gives operators which can be unusual with respect to those characteristic
of elementary DM with tree-level-mediated interactions to matter. For example, a fermionic
bound state can have a magnetic dipole moment, which is strongly constrained. In our case
DM is a non-relativistic scalar bound state QO made of two colored neutral fermions Q. Its
dominant interaction with low-energy gluons is analogous to the Rayleigh scattering of photons
from neutral hydrogen. Describing our QO bound state as a relativistic field B with canonical
dimension one, we can write an effective Lagrangian valid up to energies of order O(a3My):

Ly = C40% + 04, 0%, = MpyBB[cpE™ + cp B, (3.34)
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The first expression employs the conventional basis of operators

o3 — Bo*ovB E<M BB
04 = LBBGL?, O =-Typ oo, " SRar e 63
where (G%,)* = 2(B*2 — E2) and 04, = GG, — 11wGe,G%?. In the secon(i expression we
rewrote them in terms of the chromo-electric Ef = G§, and chromo-magnetic B* components,
such that cg is 47 times the chromo-electric polarizability of the bound state, cg ~ 4wa® where
a = 2/(3asMyg) is its Bohr-like radius. Furthermore cp « cp is suppressed by the velocity
v ~ ag of the @ in the bound state. Neglecting the chromo-magnetic interaction, the coefficients
renormalized at the high scale (that we approximate with My) are

CQ
C4 (Mz) = —Mpycp,  Ch(My) = —2—"—. (3.36)

The low energy effective coupling of DM to nucleons is fx|B|? NN [168] with

Iy

my

— —1203(My)f, ~ S04 (M2)g(2, M) (3.37)

where f, = 0.064 and ¢(2, M) = 0.464. The spin-independent direct detection cross-section is

13 m3 s o [20TeVN® (0.1\"/ cp \2
NN 9310 - ( ) . 3.38
Am M2y, M\ My as ) \15ma? (3:38)

081

This is close to the XENONIT bound [169], og1 <3 107* cm? x Mpy/20 TeV, that holds at
Mpy >» 100 GeV up to the standard assumptions about the DM galactic halo.

Thereby we perform a dedicated computation of the cg coefficient, which is possible in
perturbative QCD. Adapting the techniques developed for the hydrogen atom and for bottomo-
nium [170], the effective Lagrangian of eq. (3.34) also describes the shift in the QQ ground-state
energy induced by external chromo-electric and chromo-magnetic fields:

1, = _
Hep = —E[CEE@2 + cpB™]. (3.39)

The external field E¢ adds a chromo-dipole interaction to the non-relativistic Hamiltonian of the
Q0 bound state, as well as the associated non-abelian effects. Perturbation theory at second
order then gives a shift in the ground state energy E1g, which allows one to reconstruct cg as

871'0(3 C 1
_ Bl B 3.40
‘6= 3 Ng—1< 7ol L2 (3.40)

where |B) is the QQ ground state, N, = 3 and C is the Casimir coefficient, defined by
Cé;; = (IT*T*);; and equal to 3 for our assumed octet representation. Summing over all al-
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Figure 3.6: Left: Direct detection signals of QQ dark matter, as computed in section 3.4.1. We
also show the neutrino floor, which will eventually limit future direct searches. Right: Indirect
detection signals as computed in section 3.4.2. We show the current dwarf galaxy constraints by
FermiLAT, which have only a mild systematic uncertainty due to the dark matter J-factor, and
the future sensitivity of the CTA [171] experiment to photons from dwarf galaxies.

lowed intermediate states with free Hamiltonian Hg in the octet channel we find (see Appendix
E)
celpm = (0.36 + 1.17)ma® (3.41)

where the first (second) contribution arises from intermediate bound (free) states. The non-
abelian nature of QCD manifests in the fact that the allowed intermediate states are p-wave
color octets: they are less bound (relatively to the ground state) than in the hydrogen atom
case, such that our cg coefficient is significantly smaller than what would be suggested by a
naive rescaling of the abelian result.

Eq. (3.41) is the coefficient used as a reference value in the cross section of eq. (3.38). Higher
order QCD interactions and relativistic effects conservatively amount up to a 50% uncertainty.
As plotted in Fig. 3.6a our predicted DM mass Mpy ~ 25TeV is higher than the DM mass
excluded by direct detection, Mpy = 14 TeV.

3.4.2 Indirect detection of DM

Two DM particles in the galactic halo can annihilate into gluons and quarks giving rise to indirect
detection signals. The energy spectra of the resulting final-state stable particles (p, €, v, v) is
well approximated by the general results of non-relativistic annhilations computed in [172]. We
need to compute the annihilation cross section between the DM = QO Coloumbian bound state
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and DM = QQ. It is enhanced and dominated by the recombination process
(QQ) +(Q9Q) — (Q9) + (Q9) (3.42)

followed by later QQ annihilations to SM particles. This is similar to what happens for
hydrogen/anti-hydrogen annihilation, which proceeds through recombination (ep) + (ép) —

(e€) + (pp) followed by later ee and pp annihilations, giving rise to a large ot ~ 1/am?; of

2
ep’

computations have been performed for m, » m, [173]. This simplifying approximation is not

atomic-physics size, rather than of particle-physics size, Gann¥ra ~ a2/m Detailed quantum
valid in our case. Rather, the common mass My implies that DM recombinations are not ex-
otermic, such that the cross section should be constant for small v, (up to long distance effects).
Since the scale associated to the bound state is the Bohr radius we estimate

Conn ~ Ta> (3.43)

For indirect detection experiments o, is thus suppressed by the DM velocity: Fig. 3.6b shows
the result for v, ~ 1073,

Long distance Sommerfeld effects could enhance the DM recombination cross section at v, <
as. Classically, this can be estimated as follows. The interaction between two neutral atoms at
distance r » a is given by the non-abelian Van der Waals electric attraction, Vg ~ —0.7a%/r7 [174,
170, 175], having used eq. (3.41) for the numerical coefficient. A 4-particle intermediate state
forms if K > max, Vig(r) where Vg = Vi + L?/2Mgr? is the usual effective potential. This
determines the maximal impact parameter by, and thereby the cross section®

3/7

rel

12/7 7 1o
az” Mg

(Y

2 5/2
TannUrel ~ TbZ . Vel ~ (05" < Ve € 3). (3.44)

This estimate is also shown in Fig. 3.6b. At astrophysically low velocities vy ~ 1073 < ag/ ? the

magnetic dipole interaction Vi, ~ a3 /7“3M5 becomes as important as the electric interaction,
giving OannVrel ~ ag/ 3/Mévrle/13. However, a quantum computation is needed even to get the
correct parametric dependence.

In any case, indirect detection signals are below present bounds, as shown in Fig. 3.6b. We
plotted bounds on gamma ray emission from dwarfs, given that searches in the galactic center

region are subject to large astrophysical uncertainties, and other bounds are weaker.

8 A more precise result can be obtained from a classical computation. Focusing on the color singlet channel,
we numerically compute the classical motion of a QQ bound state in its ground state (circular orbit with radius
a in some plane) which collides with relative velocity vy, and impact parameter b with a similar QQ system.
When the two bound states get closer and interact they can produce two QQ bound states, which later annihilate.
Confinement takes place at larger distances and plays a negligible role. By averaging over the relative orientations
of the two systems and over the impact parameter gives the classical probability for this process, encoded into a
velocity dependent cross section.
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Figure 3.7:  Cross-section for excitation of the QQ DM ground state with a proton beam at 0.5
(red), 2 (purple), 7 (blue) TeV.

3.4.3 Collider signals of DM

While DM usually gives missing-energy signals which are hardly detectable at hadron colliders,
DM made of colored quorns Q gives very visible signals. Indeed, DM constituents Q are pair
produced at colliders via QCD interactions. After hadronization they form hadrons. Presumably
the neutral Qg is stable, and the charged Qqq are long-lived on collider time-scales, giving rise
to tracks. Experiments at the LHC pp collider at /s = 13 TeV set the bound Mg = 2TeV [176].
A larger /s ~ 85TeV is needed to discover the quorn with the mass expected from cosmology,
Mg ~ 12.5TeV. A pp collider with /s = 100 TeV would be sensitive up to Mg < 15TeV [177],
as long as the detector can see the signal.

Furthermore, we explore the possibility of detecting collisions of protons in collider beams
with ambient QO DM. The QQ binding energy is EFg ~ 200 GeV. Protons with energies much
larger than Eg see the QQ system as two free @ and the QCD cross section is suppressed by
the energy squared. Protons with energies comparable to Ep see the system as a ball with
Bohr radius a = 2/3a3Mg. The cross-section for the excitation of the ground state through the
absorption of a gluon can be estimated as the cross-section for ionization computed in [55,66]

(3.45)

4 2 ,—6¢arccot(3¢)
o = 36m°aza’ <@) L+ 9/c e

E,) 1493 1—e3

g

where E; is the gluon energy and ¢ = a3/vre = 1/(3appm) parametrises the momentum of Q in
the final state. Energy conservation implies E, ~ Ep + MpyvZ,/4. Fig. 3.7 shows the proton-
DM cross-section obtained convoluting with parton distribution functions. The event rate in a
beam containing /V,, protons is small,

dN, NJPDM 3 N, PDM 20 TeV o

dt P"2Mg  year 10200.3 GeV/em3 2Mg 10-33 cm?’

(3.46)
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Q0 dark matter excitation by cosmic rays is negligible on cosmological time-scales.

3.5 Summary

We have shown that Dark Matter can be obtained from a colored neutral quark Q (dubbed
quorn), that, after the QCD phase transition, forms deeply bound hadrons made of Q only
(dubbed quorn-onlyum), plus traces of hybrid hadrons made of Q together with SM gluons
or quarks (dubbed Strongly Interacting Massive Particles or SIMP). We explored the simplest
model, where Q is a stable neutral Dirac fermion in the adjoint representation of SU(3).. Such
a state could be a Dirac gluino, or appear in natural axion models (see section 3.1).

Fig. 3.5 shows the cosmological evolution of the DM and hybrid abundances for the value of
the quorn mass, Mg ~ 12.5TeV, which reproduces the DM cosmological abundance as discussed
in section 3.2. A first decoupling occurs, as usual, at T" ~ Mg/25. Quorns recouple while the
universe cools approaching the QCD phase transition at 7" ~ Aqgcp. This opens a phase of
chromodark-synthesis: quorns fall into QQ singlet bound states, which have a binding energy
Ep ~ 200GeV. The cross sections grow large, up to oqcp ~ 1 /A%gcm because excited states
with large angular momenta ¢ are formed. Such states efficiently cool falling to the ground state
before being broken, as computed in section 3.1.5 where we show that quantum states with
n, ¢ » 1 are well approximated by classical physics. It is important to take into account that
(non-abelian) Larmor radiation from elliptic orbits is much larger than for circular orbits.

Details of this uncertain phase are not much important for the final result: one half of free
quorns annihilate, one half end up in QQ DM; the small residual abundance of Qg hybrids,
pstvp/ppm between 1073 and 107%, is mostly determined at T ~ 30MeV, when the states
decouple again.

In section 3.4 we studied DM phenomenology. The quorn-onlyum DM state QQ with mass
Mpy ~ 2Mg ~ 25TeV has small residual interactions suppressed by powers of 1/Mg. The
cross section for direct DM detection is of Rayleigh type, suppressed by 1/ Mg. In section 3.4.1
we performed a non-trivial QCD bound-state computation, finding a cross section just below
present bounds. The cross section for indirect DM detection is enhanced by recombination,
(QQ) + (QQ) — (QQ) + (QQ), and still compatible with bounds (section 3.4.2). At colliders
quorns manifest as (quasi)stable charged tracks: LHC sets the bound Mg = 2 TeV.

In section 3.3 we studied the SIMP hybrid states, which have large cross sections of order
1/A(2QCD and a relic abundance 3 or more orders of magnitude smaller than DM. In view of
this, they seem still allowed by the experiments which excluded SIMP DM (psimp = ppom),
although a dedicated project would be needed to predict their properties. Our model contains
two kind of SIMPs: the isospin-singlet Qg with no interaction to pions; and the isospin triplet
Qqq. Presumably the latter are heavier and decay. We do not know whether Qg can bind
with (large enough?) nuclei, and how they would bind during Big Bang Nucleosynthesis, given
that there is no first-principle understanding of nuclear potentials. The following statements
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are safe: our predicted SIMP abundance is so small that they negligibly affect ordinary BBN;
SIMPs get stopped by the Earth atmosphere and are not visible in underground detectors; SIMP
annihilations negligibly heat the Earth.

The interpretation of searches for rare hybrid heavy nuclei in samples of materials depends on
the history of SIMPs and of the selected samples: from the Big Bang, to star burning, through
Earth geology. The primordial abundance of SIMPs in the Earth and in stars sank down to their
centres, undergoing QQ annihilations. Thereby, in order to set bounds, we consider the smaller
secondary abundance of SIMPs. Presumably most primordial SIMPs still are in galactic clouds,
and the Earth is big enough to capture all SIMPs encountered along its trajectory. The total
energy stored in captured SIMPs likely exceeds the energy of the world fossile fuel reserve by 10%.
What happens after capture is unclear. If SIMPs do not bind in nuclei, they sink in the Earth
ocean and crust with drift velocity v ~ 0.1 km/yr, such that their ground-level abundance is much
below existing bounds. They can be searched for through dedicated enrichment processes and
Rutherford backscattering experiments. If instead SIMPs bind within nuclei, electromagnetic
interactions keep them in the crust since when the crust become geologically stable. Then, the
local SIMP density can be comparable to present bounds, depending on the capture cross section
by nuclei, which is highly uncertain.

SIMP searches have been also performed in meteorites, where SIMPs cannot sink. Despite
this, meteorites are made of heavy elements synthesised by stars: primordial SIMPs sank to the
center of stars, and never come back. The secondary abundance of SIMPs in meteorites depends
on the SIMP capture cross section by individual nuclei, which is highly uncertain and possibly
vanishing. Present bounds are satisfied assuming a SIMP capture cross sections comparable to
the one of neutrons with similar MeV energy, ocapture ~ 0.01/ AéCD.

In conclusion, colored DM seems still allowed, although close to various bounds. Direct
detection seems to provide the strongest and more reliable probe.

We discussed the most promising model of colored DM: a neutral Dirac fermion Q in the
adjoint representation of color. A scalar would give a similar phenomenology, and the DM
abundance would be reproduced thermally for a similar Mg ~ 12.5 TeV. A smaller mass would
be obtained for quorns in the fundamental of SU(3)., although the mass of the quorn-onlyum DM
state QQQ would be Mpy ~ 3Mg. In models where Q has an asymmetry, the DM abundance
can be obtained for lower Mg (though this would make more difficult to evade experimental
bounds on hybrid states).




Chapter 4

Bound states from Dark Sectors: part I

From a modern point of view the SM is understood as an effective field theory with a very high
ultraviolet cut-off, which appears renormalizable at energies currently probed in experiments.
This feature notoriously gives rise to the SM hierarchy problem, but is also at the very origin
of the attractive properties of the SM. In particular, global symmetries arise accidentally in
the infrared and explain in the most economical way baryon and lepton number conservation,
flavour and electroweak (EW) precision tests. These remarkable properties provide a compelling
guidance to build possible extensions of the SM, even at the price of sacrificing the naturalness
of the electroweak scale (as hinted anyway by experiments). In particular, the cosmological
stability of DM can be elegantly explained in terms of accidental symmetries, in analogy with
the stability of the proton following from baryon number conservation. This has to be contrasted
with SM extensions where global symmetries are imposed ad hoc, like for example the case of
R-parity in supersymmetry. A simple way to generate accidental symmetries is to extend the
gauge theory structure of the SM by postulating a new confining dark color group. This idea
was put forward in [178], where the role of the DM was played by an accidentally stable dark
baryon made of dark quarks lighter than the confinement scale, Apc, of the dark-color group,
see also [179-186]. In this chapter we explore the opposite regime, i.e. we take dark quarks with
masses bigger than Apc, see also [187]. This leads to increased predictivity: in the presence of
multiple dark-quarks, only the lightest one is typically relevant for DM physics, that is thereby
determined in terms of two free parameters, mg and Apc.
Furthermore, it leads to novel characteristic signatures.

1. The cosmological history is not standard, and the relic DM abundance is determined in two
stages: the dark-quark relic abundance freezes out at T' ~ mg/25 in the usual way, through
weakly coupled annihilations with cross section oggtr ~ w2 /mg. This is followed at
T ~ Apc by a first-order dark phase transition [188], where a fraction of the dark quarks Q
and Q binds into mesons, that decay, and the remaining fraction forms stable dark-matter
baryons B and B.

2. The BB annihilation cross section relevant for indirect DM detection is a few orders of
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Npcmo + I —— Dark baryons
2mg + p— Dark mesons
m o 4
TApc + _— Dark glue-balls
Apc

Figure 4.1: Typical spectrum of the theory. We assume that the lightest dark quark is heavier
than the dark confinement scale, Apc. DM is dark baryon made of Npc dark quarks. The lightest
dark states are unstable dark glue-balls.

magnitude larger than the usual QQ annihilation cross section, being enhanced by dark-
atomic 1/apc effects.

3. Fig. 4.1 illustrates the spectrum of the theory: the dark sector contains unstable dark-glue-
balls with mass Mg ~ Apc which can be much lighter than DM with mass ~ mg, and
thereby potentially accessible to low-energy searches, such as high-luminosity fixed-target
experiments. If Mg is larger than the binding energy, some dark quarks could have formed
long-lived excited dark baryons, that de-excite emitting 5 or v radio-activity.

The chapter is organized as follows. In section 4.1 we outline the scenario and the main options:
SU(Npc) and SO(Npc) gauge theories, with dark quarks neutral or charged under the SM gauge
group. In section 4.2 we study the bound states: lighter unstable dark glue-balls, dark mesons,
stable dark baryons; we compute their binding energies by means of a variational method.
In section 4.3 we study how baryon DM can form throughout the cosmological history. In
section 4.4 we study signatures in cosmology, direct detection, indirect detection (enhanced by
recombination), colliders, high-intensity experiments at lower energy, radioactive DM. Detailed
computations in the main specific models are presented in section 4.5. In section 4.6 we conclude
summarising the main novel results.

4.1 The scenario

We consider DM made of ‘dark quarks’, new fermions possibly charged under the SM gauge
group and charged under a new confining gauge interaction Gpc = SU(Npc) or SO(Npc).
We will dub the new interaction Dark Color (DC). The dark-quarks are assumed to lie in the
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fundamental representation of the DC group and to form a vectorial representation R (in general
reducible) of the SM
Q = (Npg, R) ® (Npc; R) (4.1)

where Npc and Npc indicate respectively the fundamental and anti-fundamental representation
of the dark-color group, and R is a representation of the SM groups. These theories are described
by the renormalizable Lagrangian

1

L =Ly —
49%0

G, G+ Qi(ilD — mo,) Qi + (yi; HQ:Q; + iy H* Q:Q; + h.c.) (4.2)

where g;‘,, is the field-strength for the DC interactions. A topological term for the DC sector can
be added, but it will not play an important role in the present work. When Yukawa couplings
are allowed by the gauge quantum numbers, two independent couplings y and ¢ exist for left and
right chiralities of the vector-like fermions, breaking in general parity P and CP. The addition
of new vector-like fermions charged under a dark gauge interaction maintains the successes of
the SM for what concerns flavor and precision observables. As a consequence, the new physics
can lie around the weak scale with no tension with experimental bounds, yet accessible to DM
and collider experiments.

The renormalizable theories considered here enjoy accidental symmetries (dark baryon num-
ber, species number and generalisations of G-parity [189]) that lead to stability of particles that
are therefore good DM candidates, if safe from decay by dimension five operators of the form
(Q;Q,)(HTH). We focus on the simplest and more robust possibility: DM as the lightest dark-
baryon, made of Q"¢ In fact, taking a GUT or a Planck scale as UV cut-off for our model,
the approximate dark baryon number conservation is typically sufficient to guarantee stability
over cosmological time scales.

Stability of the Q¥P¢ dark baryon can remain preserved up to dimension-6 operators in the
presence of extra states charged under Gpc, provided that they have quantum numbers different
from Q. Their thermal relic abundance would be sub-leading, if they are much lighter than O.
For example, sticking to fundamentals of Gpc, the @ — —Q symmetry remains preserved in the
presence of a dark scalar §, as long as fermion singlets vz and the consequent QS*vi operators
are absent.

Choices of the gauge quantum numbers that lead to acceptable DM candidates have been
presented in the literature [190]. We will adopt the simplest and most successful models.

The new point of our study is that we will study the phenomenology of such models assuming
that the constituent dark quarks have masses mg larger than the confinement scale of the dark
gauge interactions

o
Ape ~ — 4,
pC = 1Mo EXp [ 11C5(G) aDc(mg)] (4.3)
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where Cy(SU(N)) = N, C3(SO(N)) = 2(N — 2)! and apc(mg) is the value of the coupling
at the scale of the lightest dark quark. The temperature at which the dark confinement phase
transition occurs roughly is Apc.

This scenario presents qualitatively novel aspects. Freeze-out of DM constituents Q occurs at
the scale mg/25 (or larger if there is a dark baryonic asymmetry [186]). At lower temperatures,
Q forms an interacting fluid with dark gluons and possibly with some SM vectors. DM baryons
only form in a second ‘darkogenesys’ stage at a lower temperature, around the dark confinement
scale Apc which could be as light as 100 MeV. For dark quark masses in the TeV range this
translates into

6 3/Cy(Q)

~ ~ 0.0 .
e(mo) > 1 e e o Ane I mo/(10°Apc)

During a first order phase transition, a fraction of the dark quarks manage to form dark baryons,

(4.4)

which remain as DM, and the remaining fraction annihilates into dark glue-balls, which later
decay into SM particles.

4.1.1 Models

In the heavy quark regime, mg » Apc, the dark baryon mass is roughly the sum of the con-
stituent masses. Then, mixing between baryons made of different species is negligible as long as
their mass splitting is larger than the binding energy

’mQ1 - mQ2| > maX<ADC7 a2Dch1)' (45)

We will assume that this is the case, such that DM is made of the lightest specie of dark quarks.
Then, different gauge quantum numbers of Q give different models. They fall into two main
categories: either Q is a neutral singlet NV under the SM gauge group, or it is charged. In the
first case the DM candidate is QVP¢: a dark-baryon with spin Npc/2, singlet under the SM. In
the second case DM has lower spin.

Let us discuss more in detail theories with charged Q.

In theories with dark gauge group Gpc = SU(Npc) candidates with non-vanishing hyper-
charge are excluded by direct DM searches, so that a successful DM candidate is obtained if
the lightest dark quark is a triplet V under SU(2)., neutral under SU(3). ® U(1)y2. Avoiding
sub-Planckian Landau poles for SU(2);, fixes Npc = 3.

The situation is different in theories with dark gauge group Gpc = SO(Npg): since its
vectorial representation is real, the lightest dark baryon is a real particle, fermion or boson.
Real particles cannot have a vector coupling to a spin-1 particle, so dark quarks with non-
vanishing hypercharge are allowed as long as a small coupling with the Higgs splits the two
degenerate real states. Acceptable DM candidates are obtained again for @ = V, but also for

!This differs from [190] because we use a different convention for the normalization of apc, reflected by the
different index 7' = 2 for the vector of SO(XV), see Table 4.1. The present normalization satisfies a'go(3) = agu(2)-
2An exception can be provided by models with degenerate dark quarks [191].
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Figure 4.2: Qualitatively different regions described in the text as function of the mass hierarchy
mo/Apc and of Npa, superimposed to a contour plot of ape renormalized at mg. We assumed
a SU(Npc) gauge group; similar results hold for SO(Npc).

Q=LOAN®D...or Q =LPV@..., where the lightest dark quark L has the same gauge
quantum numbers of a lepton doublet, such that Yukawa couplings to the Higgs are allowed.
Such models can give rise to inelastic dark matter phenomenology [192].

4.2 The bound states

Dark gluons form dark glue-balls, ®, with mass Mg ~ 7TApc. Dark quarks bind into dark mesons
and dark baryons. In the Coulombic regime the size of dark quark bound states is set by the
Bohr radius, ag ~ 1/(apcmg) with binding energy Ep ~ a2 mg. We can distinguish three
different regimes, depending on the relative ordering of 1/ag, Ep < 1/ag and Apc:

A) If Apc « Ep <« 1/ag: confinement gives small corrections and bound states are well
described by Coulombic potentials. This region roughly corresponds to apc <0.1 and
mg = 103Apc and is plotted in blue in Fig. 4.2 for a SU(Np¢) group.

B) If Ep < Apc <1/ap dark baryons form at temperatures around the confinement scale in
excited states, that later try to decay into lowest lying Coulombian bound states [187]. This
region is plotted in red in Fig. 4.2 and roughy corresponds to apc ~ 0.2 and mg ~ 100Apc.

C) If1/ap « Apc bound states are similarly to quarkonium in QCD, dominated by confinement
phenomena. This region is plotted in green in Fig. 4.2 and roughy corresponds to apc = 0.4
and mg < 10Apc.
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Figure 4.3: Leading processes describing interactions between the SM and the dark gluons.
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4.2.1 Dark glue-balls

Under our assumptions, the lightest bound state in the dark sector are dark glue-balls (®), with
quantum numbers J©¢ = 07F and mass Mg ~ TApc [193], which can be much lighter than the
DM mass, Npcmg. Interactions of dark gluons with the SM are induced by loops of dark quarks
(possibly DM itself) charged under the SM sector as in Fig. 4.3. Assuming dark quarks with
electro-weak charges we estimate the lifetime of the lightest 07* glue-ball as (see section 4.4.5
and [194])

( 2 9 3
3 500 GeV
107 % ¢ mo 5
Npc Mg 10 TeV
3 \2/ 01\ /mp\>/50GeV)”~ mo 4
110 (o) ) i O — qq, it Mg > 2
" S<NDC) (y1y2> (mq> ( Mg ) (H)Te\/) qq, 1 e > 2my
3 \2/01\2/500GeV\°/ mo \*
107" 2 O - hh. if Mp > 20
N S<NDC> (y1y2> ( Mo ) <10TeV) WMo > 2Mp,

(4.6)
where m, is the mass of the SM quarks, mg = (mg,mo,)"?, and yi ., mg,, are respectively
the Yukawa couplings and masses of the dark quarks circulating in the loop. A smaller life-time
arises in the presence of extra light states charged under Gp¢, for example a dark color scalar
coupled to the SM through the Higgs portal. The glue-ball lifetime can vary from cosmological
to microscopic values. As we will see, cosmological constraints generically imply?

To + tape < 1sec (4.7)

where tp, . ~ Mpy/ gi/ QA%C is the cosmological time at which dark confinement occurs.

3We do not consider cosmologically stable glue-balls as DM candidates because their thermal abundance is
generically too large if the dark sector was in thermal equilibrium with the SM.
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Gpc ‘ Representation R ‘ Dimension d Index T  Casimir C

fundamental N 1/2 (N? —1)/2N
SUN) adjoint N?2 -1 N N

fundamental N 2 N -1
SO(N) adjoint N(N—-1)/2 2N -4 2N —4

Table 4.1: The dimension, the index T' and the quadratic Casimir C of fundamental and adjoint
SU(N) and SO(N) representations.

4.2.2 Dark mesons

Dark confinement implies that physical states at zero temperature are singlets of dark color:
mesons and baryons. Assuming that dark quarks fill a representation R = (Rpc, Rsm) of the
dark gauge group times the SM gauge group, the non-relativistic interaction between a Q and a
Q is a Coulomb/Yukawa potential mediated by dark vectors and by SM vectors. For a two-body
state in the representation Jpc € Rpc® Rpc of Gpe and Jey € Rem® R of Ggu the Coulombic
potential is

QpcADC + OsMASM Qe Cr, +Cg, —Cy
V- S

r r 2 ’

(4.8)

where Cr, are the quadratic Casimirs, see table 4.1. In the Coulombic regime the size of
dark quark bound states is given by the Bohr radius, ap ~ 2/(cegmg) while the energy is
Ep ~ a?smg/4. For QQ dark meson singlets one finds aeg = Cyape.

When ag > Agé the effects of confinement cannot be neglected. The effective potential can be
approximated as V' ~ —aeg/r + A} so that the bound states are dominated by the Coulombian
term when A% a2 < aeg or equivalently Apc/mg < ong/CQ : the Coulombic approximation does not
hold in the green region of Fig. 4.2.

4.2.3 DM dark baryons

Under our assumptions DM is the neutral component of dark baryons made of the lightest dark-
quark multiplet?. The lightest dark baryons are the s-wave bound states with minimal spin
(altought extra spin gives a small extra mass, unlike in QCD).

If the lightest dark quark is a SM singlet, Q@ = N, the lightest dark baryon has a symmetric
spin wave-function, so that its spin is Npc/2. If instead Q has a multiplicity Ng the lightest

4Electro-weak interactions split the neutral from the charged components of SU(2); multiplets (Amg =
o My sin?(Aw /2) ~ 165 MeV when hypercharge vanishes [139]). In our region of parameters mg » Apc = GeV
the mass splitting is always smaller than the binding energy of the baryons so that we can work in an approximate
SU(2)r invariant formalism.
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baryons fills the following representations, under both flavour and spin:

Bj for Npc = 3
lightest dark baryon = ¢ HH  for Npc =4 (4.9)

BE\:‘ for NDC:5

so that their spin is either 0 (for Npc even) or 1/2 (Npc odd). For example in the model where
Q =V (a SU(2) triplet) and Gpc = SU(Npc), the lighter dark baryons are triplets under
SU(2), for Npc odd and singlets for Np¢ even.

The binding energy of dark baryons can be computed precisely using variational techniques.
Let us consider a more general system made of n < Npc SM singlets dark quarks N in the
anti-symmetric dark-color configuration. In the non-relativistic limit the Hamiltonian is

n 2 n
P Cnapc 1

H=K+V, K= ‘. V=e-—>» — (4.10)
; QmQ NDC -1 ; Tij

where r; is the position of dark-quark ¢ and r;; = |r; — r;|. It is convenient to rewrite H in

terms of the center-of-mass coordinate X = 1

T on

P = 37" | p,, and of the distances d; = r; —,, with associated canonical momenta 7; = p,—P/n

v 7, of the associated canonical momentum

for © = 1,...n — 1 The kinetic energy becomes

n—1

1
K=K — ;TS 4.11
CM+m Zﬂ' T ( )

where Koy = P?/2nmg. We compute the binding energy of the lightest baryons using the vari-
ational method with trial wave-functions for the dark-baryon state |B) containing one parameter
k with dimensions of inverse length. Defining (X) = (B|X|B)/{(B|B) we use 7; = —id/dd; and
parameterize (1/r;;) = Cyk and (K — Kcym) = nCxk?/2mg such that

k2 n(n —1) Cyapc
H—- K =nC — Cyvk : 4.12
( oM) =1 szg 1% 9 Npe — 1 ( )
Maximising with respect to k gives the binding energy
n —1)? nC?
ES" = CpC2a? Az g, oy 413
B EUNODcIMQ X (Npc — 1)2 E= R0k (4.13)

where the last factor equals 1 for dark baryons with n = Npc.

Table 4.2 shows the resulting coefficients for three different trial wave-functions. For n = 2
we reproduce the Coulombian binding energy. For n = 3 and gauge group SU(3) we reproduce
the QCD result, F59° ~ 0.46a2.mq [133] (see also [134]). Numerical integration becomes
increasingly difficult for higher n.
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Trial dark-baryon wave-function z(71,...7,)

eXP(_kZ?@‘ rij) | D eXp(—kZ?:I rij) | exp(—k X, i)
n CV CK CE CV CK CE CV CK CE
21 1 1 025 1 1 025 |5/8 1 0.10
31143 28 027 | 092 1.22 026 |5/8 1 0.14
4117 5 028 | 0.88 1.3 029 |5/8 1 0.19
5 0.85 1.4 033 |5/8 1 0.24
6 ~08 ~12 ~04|5/8 1 0.29

Table 4.2: Binding energies of anti-symmetric bound states made of n dark-quarks with mass
mg with a non-abelian Coulombian potential. We use the variational method and assume three
different trial wave functions. The coefficients Cy i g are defined in eq. (4.13). In particular,
for n = Npc the bound states are dark baryons, and Ep = Cr(Cyape)?mg.

The first two trial wave-functions depend only on relative distances 7;; and give similar
results for the binding energy (the biggest result is the best approximation). The third wave-
function g = (k/m)"?exp(—k Y., r;), considered in [195] for G = SU(Npc), depends on
absolute coordinates r;, such that the center-of-mass kinetic energy is not subtracted: it leads
to Cy = 5/8 and Cx = 1 for any n (we find order one factors that differ from the analogous
computation in [195]), and the resulting binding energy can be a reasonable approximation at
large n.

As the numerical computation becomes more difficult for large Np, it useful to complement it
with the following approximation. The binding energy of dark baryons can be semi-quantitatively
understood by building them recursively adding dark quarks to a bound state. For Gpc = SU(3)
the baryon can be thought as a stable di-quark bound to a quark. Treating the di-quark as
elementary we can construct a color singlet baryon adding the third quark. Summing up the
binding energies of QQ and QQ + Q one finds Ep ~ 0.7a%_mg not far from the correct value
Ep ~ 0.4502 mg. Because the gauge wave-function of di-quarks is anti-symmetric, the spin of
s-wave bound states is 1 for a symmetric flavor wave-function and 0 for an anti-symmetric wave-
function. Generalising this argument to Npc quarks one finds a Bohr radius ay' ~ apc Npemo
and a binding energy Fp ~ a?_ N3.mg in agreement with [196].5

5The binding energy of n — 1 antisymmetric dark quarks with an extra dark quarks is Ep "' =
SN2 1 nOEctn—1,1 Where fin, n, = nina/(n1 +na)mg is the reduced mass and An, .y ng = (Cny + Cry — Chy) /2.
The quadratic Casimir of the n-index antisymmetric tensor of SU(Npc) is C), = %n(NDc —n)(1+1/Npc). The

total binding energy of a singlet made of the anti-symmetric combination of n = Npc dark quarks is then

Npc

n _ N2~ (Npc — 1
EZ" ~ Z Ep b s %a%cmg. (4.14)

n=2
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4.2.4 Annihilations of DM dark baryons

Annihilations of DM dark baryons are relevant for computing their cosmological thermal abun-
dance (section 4.3) and for indirect detection signals (section 4.4.2).

The cross section for annihilation of dark baryons B with dark anti-baryons B receives a
contribution of particle-physics size, due to perturbative annihilation of constituents, oggv,e ~
ol /mé A bigger contribution arises at scattering energies smaller than the binding energy:
the long-range Coulomb-like force inside baryons can distort the orbits of the constituent quarks
such that two overlapping baryons can recombine into mesons. Despite the negligible energy
transfer this rearrangement has a large effect, because the QQ into mesons later annihilate,
such that mesons decay.® Such recombination can take place efficiently only if v,e < ape: clas-
sically this corresponds to the condition that the relative velocity is not much larger than the
orbital velocity; quantistically to the condition that the wave-length of the incoming particles is
larger than the size of the bound states. At larger energy one has partonic scatterings among
constituents, with the smaller cross section discussed above.

The dominant recombination, if allowed kinematically, arises when a dark baryon Q¥P¢ and
a dark anti-baryon QMo emit one QO dark meson, leaving a dark baryonium bound state made
of Npc — 1 dark quarks Q and Npc — 1 anti-quarks O:

(QV0) +(Q"P¢) — (QQ) + (@) (@ ™). (4.15)

Rearrangements into several mesons, such as (QVp¢) + (QMpc) — (QQ)Mre | is suppressed at
large NDC [196]

Assuming an estimate similar to the hydrogen-anti-hydrogen result, the cross-section relevant
for indirect detection and at late times during the freeze-out is

T R}, 1 T

OBB ~ —F— = OBBUrel ~ —F—~ 5
vV FEyin/Ep vV NpcCnapc mg

which vastly exceeds the annihilation cross sections among dark-quark constituents, oggvrel ~

(4.16)

mal,/m. Heuristically the large cross-section can be understood as follows: when the baryon-
anti-baryon overlap a quark anti-quark-pair becomes unbound and can form a meson. For
low enough velocities this process happens with probability of order one leading to an almost
geometric cross-section. Additionally we consider thermal correction to the Bohr radius, which
can become important during the freeze-out process [187]. A more precise value of oz;5 needs a
dedicated non-relativistic quantum mechanical computation.

Next, we can check which rearrangements are kinematically allowed. Considering, for exam-
ple, Gpc = SU(3) (Cy = 3) or SO(3) (Cy = 2) we have the following binding energies:

5This phenomenon is somewhat analogous to the annihilation of hydrogen (ep) with anti-hydrogen (ep), that
can recombine as (ep) + (ep) — (e€) + (pp) followed by the e€ and pp annihilation processes. Recombination is
energetically favourable because the two heavier protons can form a deep bound state. The rearrangement cross

section is of atomic size, ovwel ~ \/Me/MuTAemad for mpvZ, < mea?2,, [197-200].
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e The binding energy of a QQ singlet meson is Egé = 1C%a% mg, see the discussion around
eq. (4.8).

e The binding energy of a QQQ baryon is Eg9° ~ 0.26C%a2 mg, see eq. (4.13).
e The binding energy of a QQ di-quark state is ES< = iEgQ, see eq. (4.13).

The rearrangement into 3 mesons is kinematically allowed, given that the energy difference is
positive: AEp = 3E3° — 2E59° ~ 0.23C%a? mqg.
The dominant process in eq. (4.15) seems also allowed, in view of

AEg = B2 + 9992 21999 & (1+2)E22 +2E9° —2E292 — 0.35C%a%mo > 0 (4.17)

where we estimated the binding energy of QQQQ as the one of Q-Q and of O-Q, plus the
(QQ)-(QQ) binding energy approximated as 2E§Q, where the factor of 2 accounts for the
reduced mass.

If the dark baryons B are not in the Coulombic regime, they can be approximated as heavy
dark quarks kept together by flux tubes which give a confining linear potential V' ~ A% r. The
recombination cross section then is geometric, oz ~ TR?, at any scattering energy [101,201,146].
Indeed this is the cross section for crossing of two flux tubes with length ~ R; lattice simulations
suggest that the probability of reconnection is close to one (a similar process takes place in string

theory, where the reconnection probability can be suppressed by the string coupling [202]).

4.3 DM relic abundance

We here study the thermal relic DM abundance, assuming a vanishing or negligible dark-baryon
asymmetry. No such asymmetry can exist in SO(Np¢) models (because baryons are real par-
ticles), while generating an asymmetry in SU(Np¢) models requires substantially more compli-
cated constructions [186]. We need to distinguish two qualitatively different scenarios:

e Dark color confines before freeze out, i.e. Apc = mg/25: dark baryons form before freeze-
out, but their kinetic energy at freeze-out is large relative to their potential energy, so
that the annihilation cross section is the one among constituents, oggte ~ Ta2./mg,
smaller than the cross section in the limit Apc » mg considered in previous works [190].
Thereby the DM mass suggested by the cosmological abundance is mildly smaller than
Mp ~ 100 TeV.

e We focus on the more radical possibility that dark color confines after freeze out, at Apc «
mg/25. Around freeze-out at T ~ mg/25 the dark coupling ay is perturbative and dark
quarks Q are free. They later partially combine into DM baryons at T" ~ Apc. The DM
mass suggested by cosmology is smaller than in the previous case.
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Figure 4.4: Qualitative dependence of the DM relic abundance as function of Apc and of mg:
the cosmological value is reproduced along the boundary between the green and red regions. For
mg < Apc ~ 50TeV we recover the results of [190]. A lighter mg is allowed if instead mg >
Apc, in view of the perturbative value of ape at freeze-out. However, if the glue-ball lifetime o
s too long, glue-ball decays can wash-out the DM density. In the plot are showed 2 different
scenarios: decay due to heavy states charged under the SM, and a shorter life-time, possible due
to existence of a light scalar.

The SM sector and the dark sector are in thermal contact during freeze-out if Q is charged under
Ggy (for example Q could be a triplet under SU(2).), or in the presence of a heavier dark quark
@’ charged under the SM, provided that its mass is comparable to Q. If instead mg » mg the
two sectors decouple at T' < myy/25; nevertheless they later evolve keeping equal temperatures
as long as there are no entropy release takes place. Otherwise, if the numbers of degrees of
freedom gsy or gpe depend on T' (this happens in the SM at T' < M,), the temperatures become
mildly different, satisfying gsm(Tsm)Ton/9sm(Taee) = 9pc(Toc)Tac/9pc(Thee)-

More importantly, the fraction of the dark energy density which does not contribute to form-
ing DM dark baryons thermalizes into dark glue-balls which decay into SM particles. If the glue-
balls are sufficiently long lived and dominate the energy density of the Universe at some stage of
the cosmological evolution, the standard scaling a oc 7! is modified into @ oc T~%3. During this
early epoch of matter domination, the Universe expands faster than in the radiation-dominated
era, leading to an enhanced dilution of the DM relic density. The situation is qualitatively illus-
trated in Fig. 4.4 and the precise computation of the effect is illustrated in section 5.2.2 of the
next chapter.
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NDC = 3, -QDM ~ 043 Q NDC = 4, -QDM ~033Q NDC = 5, -QDM ~ 024 Q

Figure 4.5: Ezamples of dark condensation for Npc = 3 (left), 4 (middle) and 5 (right). Dark
quarks Q (anti-quarks Q) are denoted as red (blue) dots, placed at random positions. We assume
that each DM particle combines with its dark nearest neighbour, forming either unstable QQ dark
mesons (gray lines) or stable QNP¢ dark baryons (red regions) and QNP¢ dark anti-baryons (blue
regions).

4.3.1 Freeze out of dark quarks and Dark Condensation

Let us discuss in detail the case where the confinement phase transition takes place after freeze-
out, corresponding to a relatively small apc(mg), see eq. (4.4).

The density of free quarks after freeze-out and before confinement can be computed by solving
the coupled Boltzmann equations for the fermions and bound states, described in Appendix F.
Formation of bound states from dark quarks is a negligible phenomenon until the dark gauge
coupling is perturbative, given that only a small amount of dark quarks survived to their freeze-
out, as demanded by the observed cosmological DM density. Formation of Npc ® Npc and
Npc ® Npc two-body bound states is further suppressed by the fact that it proceeds from a
repulsive initial channel given that one dark-gluon must be emitted, in dipole approximation, to
release the binding energy. In Appendix F we show that only a small fraction of dark quarks
gets bound in stable Npc ® Npc¢ states.

Only when the temperature of the dark sector cools below the dark confinement scale, a dark
phase transition happens (likely first order [203], leading to potentially observable gravity wave
signals), and dark quarks must recombine to form either dark mesons or dark baryons. Dark
mesons annihilate, heating the plasma of dark glue-balls, which later decay into SM particles.
Only dark baryons survive as DM. Thereby we need to determine the fraction of DM that
survives to this phase of dark condensation.

Unlike in QCD, dark quarks are much heavier than the confinement scale, so that we can
neglect the possibility that QQ pairs are created from the vacuum in order to favour the rear-
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Figure 4.6: The freeze-out history of two scenarios is displayed. The red line corresponds to
confinement which takes place before freeze-out and the blue line shows the freeze-out which is
followed by confinement and condensation. In both scenarios at late times, once the velocity
drops below a critical value the constituent annihilation is replaced by a baryonic recombination,

which leads to a late stage of dark matter annihilation and an additional depletion of the DM
density.

rangement of dark colors [204,205]. Furthermore, dark quarks form a diluted gas, in the sense
that the average distance d(Apc) between them is much larger than 1/Apc,

1
1 1 (27T} ?
dT) ~ —— ~ = [ —= mo/3Ty 4.18
1)~ s~ 7 (me) (@18

We are left with a classical combinatorics problem, a geometrical confinement. FEach dark quark
is connected to a string, and the sea of Q and Q must recombine into color singlets. Assuming
that a fraction g of dark quarks recombines into baryons the required abundance of DM is
obtained for

(0gaUre) ~ ( ve (4.19)

23 TeV)?

We assume in what follows that pp ~ 1 for small Npc ~ 3. A possible justification goes as
follows. In three dimensions the distance of a dark quark to its nearest neighbour is 0.75 times
smaller than the distance to its next to nearest neighbour, on average. This suggests that only
the nearest neighbours are relevant to the recombination process. Assuming that each O or
Q reconnects with probability one with its nearest neighbour, as illustrated in Fig. 4.5, the
probability to form a dark baryon is roughly (1/2)">¢=2 smaller than the probability of forming

a dark meson. One than finds ]

Y1 2Moe 1 /Npe

o5 (4.20)
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At face value for Npc = 3 this gives a baryon fraction 0.4 in agreement with other estimates in
the literature. One possible source of error arises from effects of crossing and rearrangement of
flux tubes during the recombination process.

So far we assumed no dark-baryon asymmetry. In SU(/N) models dark baryon number is
conserved and, in more complicated models, a dark-baryon asymmetry could be generated. Then
one would get an extra contribution given by Qpy = |20 — Qg

The enhancement in ogz/og95 ~ 1/ad, due to recombination, discussed in section 4.2.4,
leads to an extra dilution of the DM cosmological abundance, see Fig. 4.6. As the critical cross
section relevant for cosmology scales as (ovye) o 1/T, this effect can be relevant provided that
mo / ADC < 103.

A larger related effect can emerge in the intermediate region B) where Ep < Apc < 1/ag [187].
In this region the lowest lying bound states are Coulombian, but at temperature 7" they get
excited up to large distances where V ~ or (0 ~ A} is the flux tube tension) forming object
with radius Rgx ~ T/A} much larger than the Bohr radius ay = 2/(apcmg). Writing V' =
—ape/T + or, a thermal computation gives, for T' < Apc

-1
I 3mQT5\/mQT67EB/T 1 4 mQT4\/mQT€7EB/T .
Vot Vo3

The thermal radius reduces to ag for T « Ep, and to 3T /A% for T ~ Apc. The critical tem-
perature below which the dark baryons relax to the ground state is of order of Ez, and possibly

RB* (T) ~ (ao (4.21)

somewhat lower in view of the entropy factor of the almost continuum states of excited states.
At T ~ Apc an excited baryon B* can be approximated as Npc dark quarks connected by flux
tubes with length Rg«. When B* scatters with B* two flux tubes can cross: lattice simulations
suggest that the probability of reconnection is close to one; a similar process takes place in string
theory, where the reconnection probability can be suppressed by the string coupling [202]. This
results into a large geometric ogigs ~ T2 /A‘]%)C for T < Apc, which enhances QQ annihilations,
as their rate inside thermally elongated hadrons is faster than the Hubble rate (except possibly
for hadrons with large angular momenta). Depending on the precise unknown values of the phase
transition temperature T, ~ Apc and of the string tension o ~ A3 such extra annihilations
can be either subleading or substantially increase the value of the DM mass that reproduces the
cosmological DM density [187]. In the rest of the chapter we do not consider this possibility.

4.4 Signatures

4.4.1 Cosmological constraints

We discuss the various cosmological bounds, that require Apc = 100 MeV.
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Extra radiation

If Apc « 1MeV (1eV) dark gluons behave as extra relativistic degrees of freedom at the BBN
(CMB) epoch. Their amount can be parametrised as a contribution to the effective number of
neutrino species:
8 Toc\'
ANy = =d(G) | = (4.22)
7 Tsm

where d(G) is the dimension of the dark color gauge group. Present bounds [206,207] constrain
ANz (T ~ 1MeV) <1 and ANeg(T ~ 1eV) <0.5. This implies

This condition is marginally consistent with SU(3) and SO(3) theories if the dark sector decou-
ples at temperature Ty.. = 1 GeV. Models with low confinement scale are however excluded by
other cosmological constraints.

Structure formation

Structures such as galaxies form because DM can freely cluster after matter/radiation equality,
at T'<0.74eV. DM that interacts with lighter dark gluons would instead form a fluid [208,209]:
DM clustering is negligibly affected provided that either the confinement scale is large enough,
Apc = 10eV or the dark gauge coupling is small enough, ape < 1078, We will follow the first
option.

Big Bang Nucleosynthesis

Dark-glue-balls with mass Mg ~ TApc decay into SM particles injecting non-thermal particles,
which alter the cosmological abundances of light element or the CMB power spectrum. Barring
a dark sector with Tpo « Tsm, avoiding this requires that injection from glue-ball decays is over
at the BBN epoch, Tsyy ~ MeV. This requires Apc = MeV and that the dark-glue-ball lifetime
T is shorter than 1sec [210].

Cosmic Microwave Background

Dark matter that annihilates around at Tge. ~ 0.25eV injects particles which ionize hydrogen
leaving an imprint on the Cosmic Microwave Background radiation (CMB). As the relevant
quantity is the total injected power, the CMB bounds on the DM annihilation cross section are
robust and do not depend on the details of the cascade process resulting from DM annihilation
to SM final states. The bound is weaker than typical indirect detection bounds [22]

feﬂ<0annvrel> <41 x 10728 Cm3

o 4.24
M, sec GeV ( )
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Figure 4.7:  Left (right) panel shows the region of the parameter space for the V- (N @ L) model
which 1s ruled out by indirect constraints. The red region is ruled out by constraints on the DM
annihilation cross section (the strongest are provided by HESS [25] and CMB observables [206]),
which we estimate to be dominated by a recombination reaction of two dark baryons at low
velocities. In the blue region the glueballs are either stable or have a lifetime bigger than 1 s.
In the first case they overclose the Universe, in the second either they spoil BBN (if 1s < 1 <
10'2s) [210] or they are ruled out by diffuse gamma ray searches (if 10'?s < 7 < 1017s) [213].
The black-dashed lines show the region where the DM relic density is reproduced.

where f.g is an efficiency parameter depending on the spectra of injected electrons and photons,

given by
1 (Mx . (dN dN
EdE |215%° — T —= 4.2
2MX,[) d [feff (dE)6++ eﬁ(dE),y] ( 5)

where the ionization efficiencies for e* and v have been computed in [211,212]. In our case M,
is the mass of the composite dark baryon. The resulting bound is plotted in Fig. 4.7 and leads
to a bound on the dark condensation scale Apc = 30 MeV in the region where DM is a thermal
relic.

feff:

4.4.2 Indirect detection

In the scenario where DM has no dark-asymmetry, dark baryons B can annihilate with dark
anti-baryons B producing indirect detection signals. The DM kinetic energy Mzv? is typically
much smaller than the energy of the excited states so that we can ignore higher resonances and
consider only the ground state dark baryon. Given that after confinement DM is a DC singlet
there is no Sommerfeld enhancement due to DC interactions. Still, the low-energy annihilation
cross section can be large due the large size of the bound states, as discussed in section 4.2.4,
see eq. (4.16).

DM annihilation leads to the production of dark glue-balls, which are the lightest particles in




Bound states from Dark Sectors: part I 119

the dark sector. The minimal number of produced glue-balls is k = 2Np¢, possibly enhanced up
tp k ~ M, /Mg from dark hadronization effects. The dark glue-balls later decay to SM particles
(two photons if they are lighter than My or — if Q is coupled to the higgs — into ff, where f is
heaviest SM fermion lighter than Mg/2). The strongest bounds coming from indirect detection
experiments looking for these annihilation products are reported in Fig. 4.7.

4.4.3 Direct Detection

Direct detection experiments see DM dark-baryons as a particle and cannot resolve its con-
stituents. Indeed, the maximal momentum transfer in elastic interactions with nuclei of mass
my is & myv <100 MeV in view of the galactic DM velocity v ~ 1072, In the range of pa-
rameters allowed for our models the size of DM bound states is smaller than the corresponding
wave-length so DM bound states scatter coherently with the nucleus.”

SU(Npc) models

We first discuss SU(Npc) models where DM is complex. In the simplest case the dark-baryon
DM belongs to a single multiplet of the SM interacting as in minimal dark matter models [139].
Direct detection constraints on Z-mediated scatterings are satisfied if the DM candidate has no
hyper-charge, which implies integer isospin. The loop-level W-mediated cross section [139, 62,
215] is independent of the dark matter mass and entirely dependent by its SU(2);, quantum
number, equal to about og; ~ 1.0 x 107%° cm? for a weak triplet, and to ~ 9.4 x 10™%° cm? for a
weak quintuplet. The predicted cross-sections are above the neutrino floor and will be observable
in future experiments if Mz < 15TeV.

This simple result can however be drastically modified in the presence of heavier dark
fermions. In models where the DM fermion has Yukawa couplings (y for the left-handed chirality
and ¢ for the right-handed chirality) with the Higgs and with an heavier dark-quark with non
vanishing hypercharge, the DM candidate can acquire a vector coupling to the Z. The heavier
dark-quarks have a vectorial coupling to the Z given by

9z = & (T3 — Qsin®y) . (4.26)

~ cos By

After electro-weak symmetry, the dark-quarks that make up the DM mix with the heavier dark
quarks, acquiring an effective vectorial coupling

e 9z
o = (s + ) (427)

where sy, and sgi are the mixing of left and right chiralities. Since the Z is coupled to a conserved
current, the coupling g5 to dark baryons is given by the sum of the constituent charges. For

"Some fraction of dark baryons could form dark nuclei [214], affecting direct detection signals.




Bound states from Dark Sectors: part I 120

example g5 = Npcgd! when the dark-baryon is made of electroweak singlets. At low energies
we obtain the effective interaction between B, the DM dark baryon, and the SM quarks ¢

(BY*B)(q7.9)- (4.28)
From this Lagrangian one obtains the spin-independent DM cross section on nuclei NV

(pnGr cos Oy )? ﬁ ?
dm 92

os1 = (4.29)

where p,, is the reduced mass of the DM-nucleon system. The direct detection bound implies
g5 <7 x 1074/ Mp/ TeV.

When Yukawa couplings exist, Higgs mediated scatterings are also generated. The Yukawa
coupling to the lightest mass eigenstate is yeg = yspcr + ycrsg. The Yukawa coupling of dark-
baryons is given by the sum of the Yukawa of the constituent dark quarks. The resulting SI
cross section is [216]:

V2GRS M_i 2

4.30
T M;ll Yp ( )

0s1

where f,, ~ 1/3 is the relevant nuclear form factor [217,218]. Direct detection bounds imply
ys <4 x 1072\/ MB/ TeV.

Furthermore, fermionic composite DM that contains electrically charged constituents has a
magnetic moment p ~ eapc/(4m)mg that can lead to a potentially observable cross-section with
characteristic dependence on the recoil energy Er, do/dEg ~ e*Z?1% /At Ep.

SO(Npc) models

Models based with dark quarks in the fundamental of Gpc = SO(N)pc behave differently,
because the lightest fermion is a real Majorana state that cannot have vectorial couplings to the
Z. Mass eigenstates s have only axial couplings to the Z

T X MY Vs XM with strength g5 = QL(S% — 5%). (4.31)
cos Ow
This contributes to spin dependent cross-sections with nuclei, subject to much weaker bounds.
For this reason DM candidates with non-zero hypercharge are possible in the presence of a small
mixing with a real particle. For what concerns Higgs interactions these are as in SU(Np¢) and
similar bounds apply.
Vector coupling to the Z can be present between DM and heavier states. DM made of
electro-weak doublets gives two almost degenerate Majorana fermions split by

y2,U2

A ~
m Amg

(4.32)
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Figure 4.8: Left: ATLAS bounds on the cross section for the direct production of a spin 1
resonance decaying into leptons (u und e) [222]. Right: ATLAS bounds on the dark quarks
pair production cross section [222]. They are derived assuming that ~ 1/3 of the produced dark
quarks form spin 1 bound states and the others spin 0 bound states.

where Amg is the mass splitting between the two dark quarks which get mixed. When the
splitting is smaller than O(100 KeV) inelastic transitions between the two states can take place
giving rise to inelastic dark matter [192].

Finally, we comment on dipole moments. In models with Gpe = SU(Np¢) and mg <«
Apc, fermionic baryons acquire large magnetic dipole moments (which give characteristic signals
in direct detection experiments [190]) thanks to non-perturbative effects. If instead mg >
Apc, neutral baryons have small magnetic moments given (at leading order) by the sum of the
elementary moments. A similar result holds for electric dipoles, possibly generated by a Opc
angle by instantons, which are suppressed in the perturbative regime. Polarisability of weakly
coupled dark matter bound states could also be of interest [219,220].

4.4.4 Collider

If dark quarks are charged under the SM, bound states of the new sector can be produced singly
or through the hadronization of the dark quarks produced in Drell-Yan processes.

Resonant single production does not depend on the details of the strong dynamics. In the
narrow width approximation, the production cross-sections of a bound state X of mass My is
given by
(2J x + 1)D X

olpp— X) = Vs

Y Cppl(X — PP)., (4.33)
P
where Dy is the dimension of the representation, Jx is its spin, P the parton producing the
resonance and Cpp are the dimension-less parton luminosities, see [221].

Bound states with spin-0 are produced from vector bosons fusion. For constituent dark
quarks with SU(2), x U(1)y quantum numbers the decay width of singlet spin-0 bound states
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is

2[R0 (0) [ (To + dpY?)?
F2m2Q dg

where Ty (d2) is the index (dimension) of the SU(2), representation, R, (0) is the value at the

origin of the bound state wave-function and F' = 1(2) for distinguishable (identical) dark quarks.

The decay rates into W and Z bosons and into dark gluons G are

[ (X{= —~7) = Noca

(4.34)

Iz 2(-Tycotbyw +Ytanbw)> Tzz  (Thcotff + Y tanby,)?

T, (Ty + daY'2)2 " T, (Ty + daY'2)2 ’
(4.35)
Cww T3 Igg = 1 Nig—1 d3 ape
Ly N (Ty + dyY?)?sin Oy’ L'y ~16F Nic (To+doY?)? a?

Spin-1 bound states decay into fermions or scalars (and equivalent longitudinal gauge bosons
W, Z), as their decays into massless gauge bosons is forbidden by the Landau-Yang theorem.
For example, the decay width of an SU(2) triplet spin-1 bound state into a left-handed pair of
SM fermions is

a3 |Ruo(0)]”

a J=1
I (X{/Z' = ff) = Noc 12 Fond

(4.36)

where we neglected possible hypercharge contributions. Singlet spin-1 bound states can also
decay into three dark gluons with a rate:

r =N Zaln:dzbcwz_g 3 |Rn0(0)|2
99T T36d, 1 PO FPmd

(4.37)

where dgp. = 2Tr [T“{T b TC}] with T%%¢ generators of the dark-color group in the dark quarks
representation.

For concreteness we focus on the model with Gpc = SU(3) with a dark quark @ = V. In
the region of parameters relevant for DM, the dark coupling ap is stronger than the electro-
weak couplings, so that the bound states are dominantly shaped by the dark interactions. In
the Coulomb limit, the radial wave function at the origin is then given by [Rpn(0)[*/m% =
(Fmoa?s;)/(2n3) with a.g defined as in (4.8). Spin-0 bound states are produced from photon
fusion and decay mostly into dark gluons with the branching ratios given in eq. (4.35). In view
of the small photon luminosity at LHC, no significant bound is obtained. Spin-1 resonances can
be produced in electro-weak interactions from first generation quarks and decay into electrons
and muons with a branching ratio of order 7%. In Fig. 4.8 we show the bound from current
di-lepton searches that exclude dark quark masses up to 1 TeV. This is significantly stronger
than typical collider bounds on electro-weak charged states.

Dark quarks with SM charges can be also pair produced in Drell-Yan processes. In the region
of masses relevant for LHC, their kinetic energy is comparable to their mass. When dark quarks
travel a distance £ » 1/Apc a flux tube develops between them carrying an energy A$ ¢, such
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that they reach a maximal distance [223]

2
mo _13 mg \ [ GeV
lax ~ —5— ~ 10 —_— 4.38

Abe m<TeV> (ADC> 4.2

which is microscopic in the region relevant for DM phenomenology. The dark quarks will then
oscillate and de-excite to the lowest lying bound states with the emission of dark glue-balls, until
they eventually decay to SM states. It is difficult to determine the branching ratios into each
SM channel. Assuming for simplicity that all dark quark pairs de-excite democratically to the
lowest lying spin-0 and a spin-1 bound states, 2/3 of the events populate the spin-0 bound states
(singlet and quintuplet) and 1/3 populate the spin-1 triplet. In Fig. 4.8 we show the bounds
from di-photons and di-leptons on double productions of dark quarks. Especially in the region
of large apc, these bounds are weaker than the bounds from single production.

4.4.5 Dark glue-balls at high-intensity experiments

Dark glue-balls can be produced either through the production and subsequent decay of dark
mesons or through the effective operators [224-220]

Os = Qem@ocG LG AFP Ey . O = (Zj: HIHGA G (4.39)

The diagrams in Fig. 4.3 generate Og g with coefficients

B TD(j(Tz + dQY) 1 _ 2Tpc 1 @ln(det MF(h))]
cs(mg) = 50 — co(me) = ——7 h

(4.40)

h=0

where Mp(h) is Higgs-dependent dark quark mass matrix, Tpc the index of the dark quark, T
the isospin, and Y its hypercharge.

After confinement, Og gives rise to a coupling between 011 glue-balls and the SM gauge
bosons which allows the glue-balls to decay into photons. For the lightest 07" glue-ball one

finds [225]

a2 0[2 m3f2
Doityo., = —0DC 70205 (4 7,y72)2 4.41
O T 144008 (Tz + oY) (4.41)

where fos = (0|Tr G,,G"|0*F). Using the lattice result 4mapcfos = 3M3 valid for SU(3)
theories, one gets the dark-glue-ball lifetime in eq. (4.6) for models with electro-weak charges.

The Yukawa couplings between the dark and the SM sector induce a mixing angle o between

dark glue-balls and the SM Higgs
ape U fos

47 M,f

sina ~ ¢ (4.42)
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Figure 4.9: Predicted values of the Higgs/dark gluon mizing angle «, assuming dark quarks with
Yukawa couplings y = 1 (blue lines) or adding a dark scalar with mass mg (green line) with
a mized quartic \grg = 1072, as function of the dark gluon mass Mg. The shaded regions are

excluded, the dotted curves can be probed by future SHiP [227] (red points) and AFTER [228]
(magenta points) experimental proposals.

giving rise to the dark glue-ball decay widths

2 a3
oot opf = Nci\g—iy? sina,  Toergy = %% sin’ (4.43)

The cross-section for the production of dark glue-balls are negligible at LHC. Light dark
glue-balls can be potentially produced in high luminosity experiments such as SHiP [227]. The
SHiP experiment will operate at a center of mass energy Foy ~ 27 GeV and will produce
approximately 10?° proton on target collisions. The distance from the target to the detector is
approximately L ~ 100m and the detector length is S ~ 60m. A detectable signal at SHiP

arises if there are a few events in the detector

Ney ~ 1020M x [e e (1 — 5] 2 few (4.44)
pp

where o, ~ 1/m;2) is the proton-proton scattering cross section. This implies that the SHiP
experiment will probe only a region of the parameter space which is already excluded by indirect
detection bounds or electroweak precision tests (see next section). This conclusion is confirmed
by the result of a more precise computation, shown in Fig. 4.9. In the same figure we also
show the sensitivity of an hypothetical fixed target experiment (AFTER) operating with LHC
beams at a center of mass energy Ecy ~ 115 GeV and producing approximately 10*® proton on
target [228].
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Figure 4.10:  De-excitation life-time of radio-active dark matter, that can be long when Mg ~
TApc is larger than the binding energy. A very long T is obtained when the life-time of dark glue-
balls is so long that they dilute the DM density. In the left (right) panel glue-balls decay thanks
to heavier dark quarks charged under Gsy (with a Yukawa coupling y to the Higgs). Bounds
from enerqy injection in the CMB spectrum are shown.

The conclusion persists even if the theory is modified by adding an extra dark colored scalar
neutral under Ggyy, coupled to the Higgs as Ayg|S|?|H|?, which gives an extra contribution
c6 = AusTbc/(12m%), enhanced by its possibly small mass mg « Mj,. Imposing |Ays| <0.01
in view of bounds on the Higgs invisible width, and mg = Apc in order not to change the DM
phenomenology, we find that dark glue-balls remain undetectable at SHiP.

4.4.6 Radioactive Dark Matter

As discussed in section 4.2 the parameter space allows for Ep < Apc <1/ag (region B). This
leads, in the primordial universe at temperatures T'< Apc, to the production of excited DM
bound states. These states can be long-lived if AEp < Mg such that decays to a dark glue-ball
are kinematically forbidden. In models where Q is neutral under the SM, such excited bound
states then can only decay to light SM states (such as vy or ete™) through an off-shell glue-
ball-like state, giving rise to radioactive dark-matter. We can estimate the decay rate of such
trapped excited bound states, by splitting the phase space in terms of the invariant mass M of
the off-shell virtual dark glue-ball ® [221], obtaining

1 (AP [(B* — B®*(M)) Lo« (M)
N(B* — M) = — MdM>
(B 55 ) ™ Jo d ‘MZ—M‘%—FZF@M@P

(4.45)

where I'(B* — B ®*) is the decay width into a virtual dark glue-ball with mass M, and I« (M)
is its decay width into SM states. We approximated the imaginary part of the propagator
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MT g« (M) with the value on-shell. If the dark glue-ball can be on shell, the integral around its
peak gives I'(B* — BSM) ~ I'(B* — B ®*). We are interested in the opposite regime where the
intermediate state is off-shell. For Mg » AFEp the propagator is approximately constant and we
estimate .
I'(B* — BSM) ~ AEE

Mg

(B* — B®*(0))Tgs (AER) . (4.46)

Taking into account that ®* is a dark glue-ball-like state that does not need to have spin

0, but can match the quantum numbers of two dark gluons, we estimate I'(B* — B®*(0)) ~

4
DC

arise from the bound-state wave function and binding energy, while the two powers of apc(Apc) ~

at . (mg)a? . (Apc)mg as the decay rate into two massless dark gluons. The 4 powers of apc(mg)
1 arise from dark-gluon emission. I'g+(AFEp) can be small, making excited B* long lived, as
shown in Fig. 4.10, where the large increase of the life-time corresponds to the transition from
on-shell to off-shell decays. In models where Yukawa couplings exist excited DM can decay
through Z—mediated processes giving a much shorter lifetime, see fig 4.10 right panel.

Bounds on radioactive DM can be inferred by rescaling bounds on decaying DM. An excessive
reionization of CMB is roughly obtained for tcyp « 7 < 1.110° Gyr x AEg/Mjg [229], where
tems ~ 380 kyr is the Universe age at photon decoupling and My is the DM mass. If DM is still
y-radioactive today, one must have 7 > 10" Gyr x AEg/Mpg, for 0.1 MeV < AEp < 10 GeV [230].
If DM is still -radioactive today, its de-excitation life-time(s) must be longer than 7 > 107 Gyr x
AEp/Mg, for MeV < AFEp <10GeV [230]. DM with 7 ~ Ty can be borderline at MeV. In view
of these bounds and of the model predictions, its seems unlikely that DM can be radioactive
enough to heat solving the small-scale potential ‘cusp/core’ and ‘missing satellite’ problems of
cold DM. In the parameter region without dark matter dilution by glue-ball decay the glue-ball
lifetime has to be smaller than one second, as we discussed earlier. This leads to a half life of the
radiative states of the order of a few hours. Thus they have no impact on the CMB spectrum.

4.4.7 Precision tests

Vector-like fermions do not give large corrections to electro-weak precision observables. The
regime mg < Apc was discussed in [231,232]. The result in the opposite regime is qualitatively
similar. The corrections to the precision S and T" parameters are

42 2 2
~ y v ~ y v
AT ~ Npc———— AS ~ Npc————-. 4.4
PCT 2 mg’ S P2 mg (4.47)

Experimental bounds allow couplings y ~ 1 if mg is above a few hundred GeV.

Extra Yukawa coupling can give extra effects in flavour. For general Yukawa couplings, the
theory contains CP violating phases Im[mg, mo,y*y*| which generate electric dipole moments
of SM particles at two loops. Similar effects have been studied in supersymmetry [212]. In a
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model with Q@ = L @V we estimate

dr ~ N l 4.48
/ peeQy 1673 mpmy " M? (4.48)
For the electron this means
N, TeV?
de ~ 107 ecm x Im[yg] x —=< x ¢ (4.49)
3 mypmy

to be compared with the experimental bound d, < 8.7 x 107 ecm [233]. A somewhat smaller
effect is obtained in the @ = L @ N model.

4.5 Models

Finally, we analyse the microscopic structure of the simplest models with SU(Np¢) and SO(Np¢)
dark gauge interactions. At energies greater than Apc we have a set a fermions charged under
Gpc ® Ggy. They annihilate into SM degrees of freedom or dark gluons. Moreover they can
form bound states through the emission of dark gluons or SM gauge bosons.

At tree level, a dark quark with mass mg has the following s-wave annihilation cross section
into massless gauge bosons

Al + AQ 1
rel/ann — Ty 4.50
(T0re1) 167 gy dp M2 (4.50)
where
Ay = Te[TT°TT"], Ay = Te[TTTT"] (4.51)

and g, = 4(2)dp for Dirac or Majorana fermions. For dark quarks charged under both Gp¢ and
Gsy the notation above stands for T = (gpcTpc ® 1) ® (1 ® gsmTsm). For dark quarks in the
irreducible representation (N, Rsy) the formula above gives

T 1 KPC 4 KDPC Tad N 1 KM 4 KM Tady 4CpcCsm  Tapcasw (4.52)
A dan 4(2)NE M? Npc  4(2)d3y, M3 4(2)dsmNpc M o
The group theory factors are listed in Table 4.1 using
d(A)C(A)T(R
Ki(R) = d(R)C(R)?, Ks(R) = K{(R) — (4) (2 JT(R) : (4.53)

Furthermore, dark quarks charged under the SM undergo extra annihilations into SM fermions
and into the Higgs.

Due to the attraction/repulsion of light mediators, the tree level cross-section is corrected by
the Sommerfeld effect [234,62,235,236] as 0 ~ S x 0¢, where S encodes the effect of long-distance
interactions that deflect the incoming fermion wave-function. The effect of SM vectors is known
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Goc | Ri2 Ry | Ip, g,
1 2 adj NF -1 14 N :
— ON —zAf
SU(N) J=m N3 N,
_Af
, N—z2
1 2 adj (N 1)1+
SO(N) adj = (1 N3 — 4N+4’

Table 4.3: Group-theory factors for formation of a bound state in the representation Ry from an
wnatial state in the representation R; and viceversa.

from the literature. We focus here on the effect of dark gluons. For s-wave annihilation

27T05eff / Urel
]_ — 6_27raeff/vrel

S =

(4.54)

where aeg is the effective coupling in each dark color channel as defined in eq. (4.8). The fermion
bi-linears decompose in the representation of the dark-color group:

(4.55)
(4.56)

Npc ® Npe = 1@ adj, Npc ® Npe = [I&H
NDC®NDC = I@adJEBDj

GDC = SU(NDC) .
GDC = SO(NDC) .

The effective potential in each channel is given by eq. (4.8) with A\; = 0 and A; = Ag where

Gpc = SU(Npe)

Gpc = SO(Npc)

R | Ag x (2N) | bound states
1 NZ. ] ves R ‘ AR ‘ bound states
adj DEl no 1 | Npc—1 yes (4.57)
1] 1-— NDC no adJ 1 yes
O -1 no
H NDC +1 yes

Furthermore, two dark quarks can form a bound states emitting one vector.

A pair of dark

quarks in the fundamental representation feels an attractive force in the singlet and in the
antisymmetric configuration. Using the results derived in the first chapter, the cross section for
forming the ground state, with quantum numbers n = 1 and ¢ = 0, is

1 25' + 1 21 ( + CQA?)€—4C)\iarccot(C)\f)

NN (M) T e (4.58)

(Jvrel)bsf _ 6_27r€/\i) X IRi—>Rf

X
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Name I S n {|Tun/My Npc=3  Npc=4 Npc =5 | Pqec/My | Prod. from
Is; 1 0 1 0 ) (8/6)3adc  (15/8)*al, (24/10)304‘20 0 Dadj
st 1 1 1 0] 22 2648 /37 153a8,/21  33(2/5)0a8,/7 0 Padi
lss B 1 1 0 0 0 0 0 Pe
257 1 0 2 0 ] (8/12)3a3y  15%ad, /8%  3(24/20)3a3, | O(af) Dadj
25f 1 1 2 0| Mo 2af 37T 15%6/2T 63 /T(ane/5)® | Oafe) | pag
29 B 1 2 0 O(“Dc) O(QDC) 0(046130) O(OZGDC) D=
2p}_r 1 0 2 1 (’)(a:DC) (a7DC) (’)(a:DC) O(azDC) Sadj
2py 11 2 1 O(a?c) (a7DC) O(O‘7DC) O(%DC) Sadj
2 H 0 2 1 O(ape) O(ape) O(ape) O(ape) C

Table 4.4: Summary of perturbative di-quark bound states in SU(N) models.

where g9 = Wagc / Mi, ¢ = apc/vre and \; f are the effective strength of the coupling aeg = Ajapc
of the initial and final state channels respectively, in two-body representation R; and Ry. And

similarly for the other excited levels. The Ig, g, factors encode the group theory structure and
are listed in Table 4.3.

4.5.1 Model with Gpc = SU(3) and singlet dark quark

We first consider the model where the dark quark Q in the fundamental of SU(Npc) is a singlet
under the SM. We assume that extra unspecified heavier dark quarks with SM charges couple
the dark sector with the SM sector, such that glue-balls decay into SM particles.
QQ annihilation cross-section into dark gluons is

The s-wave

4 2
Npc TOpHco

My

(OVrel) =

—3N3. + 2 2
De ( (4.59)

N2 —4
Sl + s Sad') X
16N3,, N2, —2 J

where Sy and S,q; are the Sommerfeld factors for the singlet (attractive) and adjoint (repulsive)
channels.

Let us consider the bound states. The SU(Npc¢) interactions give two attractive configura-
tions that can support bound states: the singlet contained in Q ® Q and the anti-symmetric
configuration in Q@ ® Q. The former is unstable and gives a contribution to the effective annihi-
lation cross section, see Appendix; the latter is stable and could give rise to dark-recombination
at low temperatures (T < adM,). The unstable bound state is made of Dirac particles so it
exists for any choice of quantum numbers n, ¢, s. The stable bound state is made of identical
particles, so that a fully anti-symmetric wave-function implies that it must have spin 1 in s-wave
and spin-0 in p-wave. Moreover it can only be produced from an initial state in the symmetric

configuration. The main bound states together with their key properties are summarized in
Table 4.4.

If dark confinement happens after freeze-out, the thermal relic abundance of DM is obtained
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Figure 4.11:  Model with Gpc = SU(3) and a dark quark neutral under Gsy. Left: thermally
averaged cross sections for annihilation and for bound states formation, assuming mgo = 10TeV
and ape = 0.1 (Ape ~ 30GeV ). Right: region where dark baryons reproduce the DM cosmo-
logical abundance. A recombination fraction g = 0.4 is assumed.

by first solving the Boltzmann equations for the elementary dark quarks and their perturbative
bound states. Table 4.4 implies that the bound states are produced from a repulsive initial state.
This suppresses the production of stable and unstable di-quark bound states at late times, where
the kinetic energy is insufficient to overcome the repulsion. As a consequence, we find that the
thermal relic abundance is mostly due to perturbative annihilations boosted by the Sommerfeld
enhancement, and by di-quark bound state production at earlier times. At T ~ Apc confinement
occurs in the dark sector, and a fraction of the dark quarks is converted into dark baryons. The
dark baryons can undergo recombination annihilations, which have large cross sections, leading
to a late-time dark matter depletion.

When dark confinement takes place before freeze-out, annihilations are still governed by the
constituent cross section, provided that the typical velocities at freeze-out are large enough.
At lower velocities, the larger recombination cross section produces a late-time dark matter
depletion.

Taking all these effects into account, Fig. 4.11 shows an estimate of the parameter region
where the thermal relic abundance of dark baryons matches the cosmological DM abundance.

A dark quark @ singlet under the SM can interact with the SM sector through heavier
mediators. The most interesting possibility is realised adding a vector-like dark quark L, allowing
to write Yukawa couplings with the SM Higgs

— L =mpLL + myNN¢+y LHN® + §L°H'N + h.c. (4.60)
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Figure 4.12: Direct detection bounds, assuming dark quarks @ = N@® L with Yukawa couplings to
the Higgs. Left: we consider the SU(3) model with my < my. Right: we consider the SO(3)
model with myp, < my, such that a large enough Yukawa coupling is needed in order to suppress
Z-mediated inelastic scatterings.

As explained in section 4.4.3, after electro-weak symmetry breaking the singlets mix with the
neutral component of the doublet generating an effective coupling to the Z and to the Higgs.
Denoting with U, and Uy the rotation matrices to the mass eigenstate basis, the coupling to Z
is

92 N _ e - .
2 cos HWZ" (Ni(UD?iU“(UL)szj — N (U}J['i)%U#(UR)Zij) : (4.61)

For real Yukawa couplings (no CP violation) the U, g are SO(2) matrices with rotation angle

2¢/2v (mpj + myy)

tan 20 = 4.62
0L S — 3, + (o) — (G (462
for Uy and similarly for Ug. The light singlet dark quark N acquires the coupling
g — _
5 n ((3% + 5p) NN — (s — SJQEE)N'YMVBN) . (4.63)
2 cos Ow

Bounds from Higgs-mediated interactions are typically weaker and have a different dependence
on the mixings, namely

h _
\—@ (Jersr +ycrsp) NN . (4.64)

Fig.4.12 shows the bounds on the Yukawa coupling y, once we combine Higgs-mediated and
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Figure 4.13: Model with Gpec = SU(3) and with a dark quark tripled under SU(2)r. Left:
thermally averaged cross sections for annihilation and for bound states formation, assuming
mg = 10TeV and ape = 0.07 (Apc ~ 3 GeV). Right: region where dark baryons reproduce the
DM cosmological abundance.

Z-mediated effects. Experiments are sensitive even to heavy and weakly mixed fermions.

4.5.2 Model with Gpc = SU(3) and dark quark triplet under SU(2);

We next consider the Gre¢ = SU(Npc) model with dark quarks in a triplet (V') of SU(2)..
Requiring no sub-Planckian Landau poles selects Npe = 3. We compute in terms of SU(2),
multiplets, neglecting the 165 MeV electro-weak splitting between charged and neutral compo-
nents. SM gauge interactions keep the dark sector in thermal equilibrium with the SM sector.
Pairs of dark quarks decompose as

0R0=(138,1®3®5), Q®QA=(3B3®6,1®3@5). (4.65)

The annihilation cross-section among dark quarks is

2

7 mady 8 mapcas 37wl 2 5
rel) = | —= — == = = . 4.
(o0rm) (162 ez T e Tmoae )\t (4.66)

where \; = 4/3 and A\g = —1/6 are the effective strengths of the Sommerfeld factors for the
singlet and octet channels. For ap. < 3as the annihilation cross-section is dominated by the
SM interactions.

In the absence of confinement the desired DM relic abundance is obtained for mg ~ 2.5TeV /4/2Np¢;
such a model is however only allowed for ap. < 1078 [208]. We assume that dark interactions
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dominate or are comparable with the SM ones.

Neglecting SM interactions, the meson bound states are listed in Table 4.4. Each bound
state has 9 components and decomposes as 1 ®3@ 5 under SU(2);. The singlet and quintuplet
are symmetric under SU(2), so they have the same spin as in the previous case Q = N listed
in Table 4.4. The triplet have the opposite spin, being anti-symmetric under SU(2).

The lightest baryons have spin 1/2 and lie in the adjoint representation of flavour SU(3)g,
and split as 8 = 3@ 5 taking SU(2), gauge interactions into account, such that the triplet is
lighter than the quintuplet.

Predictions for direct detection are then the same as for any fermion weak triplet (such as
wino [237]): ogr lies above the the neutrino background for mpz < 15 TeV. Constraints on Yukawa
couplings with heavier dark quarks are similar to those discussed in the N @ L model.

The annihilation cross-section relevant for indirect detection a few orders of magnitude above
the canonical thermal value 3 1072 cm?3/sec, being dominated by long-range rearrangement
processes as discussed around eq. (4.16); presumably without extra Sommerfeld enhancement.
Present bounds are shown in Fig. 4.7, as a function of the dark glue-ball mass which controls
the energy spectrum of final-state particles. We combine searches for diffuse gamma rays from
the FERMILAT satellite and from the ground based H.E.S.S. observatory The FermiL AT limits
are more relevant in the case of light glue-balls decaying into photons; the H.E.S.S. limits are
sensitive to the cascade photons resulting from W boson decays in case of heavy glue-balls.
The sensitivity of the photon searches strongly depends on the number of steps in the dark
hadronization cascade and is thus rather uncertain. The limits coming from annihilation into
WW are more robust. We also show the limits from CMB energy injection are shown, which
have smaller astrophysical and theoretical uncertainties.

4.5.3 Models with Gpc = SO(Npc)

As discussed in section 4.1.1, models with dark gauge group SO(Npc) give rise to Majorana DM,
allowing for lightest dark quakrs in more general representations under Ggy. The annihilation
cross-section of fermions in the fundamental of SO(Np¢) into dark gluons is

(V) = —DC Sp+ D¢ g ) « (4.67)
2 N3 N3 M3

where 51 and S,q; are the Sommerfeld factors for the singlet and adjoint channel respectively.
As a simple example we consider the model with a singlet N and a doublet L,

— L =myLL° + %J\ﬂ +yLHN + §L°H'N + h.c. (4.68)
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Differently from the singlet model in section 4.5.1, N and N¢ are the same particle. The mass
matrix of the neutral states is

. 0 mp  vy/V2 Ny
L > 3 (N1, Ny, N3) mr, 0  vj/V2 Ny |+h.ec. (4.69)
UZ//\/§ U@/\@ my N3

where the Weyl fermions N; and Ny are the neutral components of L and L and N3 = N. The
mass matrix can be diagonalised as My, = UT MU, where, at leading order in the Yukawa

couplings
1 i v
\{5 \/5 V2(mp—my)
7 Yv
U=1 = VB Ve | (4.70)
v(y+7) i(y—y)v 1

2(mL—mN) 2(mL_mN)

The gauge coupling to the Z in the flavor basis are Q; = diag(1/2,—1/2,0). Rotating to the
mass basis we obtain the couplings of the mass eigenstates to the Z,

0 i y—g)v
‘ 2 4(“%L;~77)1N)
— 1 ; yry)v
g9 = (U'QzU),, = ~3 0 Uiy my), | (4.71)
g e (g
4(mp—mn) dmp—my)  Amp-mn)* /

Because the mass eigenstates are Weyl fermions, the diagonal couplings of DM to the Z are
purely axial. This can be made manifest converting to Majorana notation Wy, = (N, N)/+/2
such that Wi, v#W%, vanishes identically. In this basis one finds

g2 T j T '
p— Zy [aig Wy W, + dvy Uy 0, | (4.72)
where a;,; = —Re g;; and v;; = Im g;;. From eq. (4.71) we see that the only non vanishing terms

are of the form W, y#7°W% and \I/’Myﬂlllfw with ¢ # 7. The first interaction gives rise to spin-
dependent interactions suppressed by the mixing with the heavier states, which are below the
sensitivity of present experiments. The second interaction produces inelastic scattering between
states with a mass splitting of order Am ~ y*v?/(my — myz).

The Higgs-mediated contribution to direct detection is similar to SU(Np¢) models. Writing
Ly = yithiNj/\/i + h.c. one finds

((y+z7)2v ) i((y2—172)v) (y+9)
OM (h) Amp—mw)  2mz—my 2
= T _ i(y?—g*)v (y—9)°v i(y—9)
Yig = <U U) B 2(mp—my)  2(mp—mn) 2 ’ (473)
oh tj (§+Q)N i(nyﬁ) " 2y
2 2 mpp—mpy ij

Fig. 4.12 illustrates the present bounds on the Yukawa couplings.
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4.6 Summary

We studied fundamental theories of Dark Matter as baryons made of a dark quark Q with mass
mg, charged under a dark gauge group SU(Npc) or SO(Npc) that becomes strong at a scale
Apc. The main options for the gauge quantum numbers of Q are: either neutral or charged
under the SM gauge group. DM is stable because dark baryon number is accidentally conserved,
analogously to the proton in the SM.

In past works the possibility that Q is lighter than the dark condensation scale Apc has
been studied, finding that the DM cosmological abundance is reproduced as a thermal relic for
Apc ~ 100TeV, which saturates the perturbative unitarity bound on DM annihilations. In
this chapter we explored the opposite situation: this simple generalization leads to unusual and
non-trivial DM phenomenology.

The dark confinement scale Apc can be as low as 10 GeV, giving rise to unstable dark glue-
balls with mass Mg ~ TApc as lightest dark particles. Dark glue-balls decay into lighter SM
particles, and can be searched for in low-energy experiments.

In cosmology, dark quarks freeze-out as usual at T ~ mg/25. DM can be lighter than 100 TeV
because the dark gauge coupling a¢ is perturbative, when renormalized at this energy. However,
a second stage of cosmological history contributes to determining the DM relic abundance:
after a first-order phase transition at T ~ Apc (that can lead to gravitational waves) the dark
quarks must bind into objects neutral under dark color: a fraction of dark quarks forms dark
mesons, that decay, the rest binds into stable dark baryons B that survive as DM. We estimated
this fraction in a geometric model of dark hadronization, that takes into account that dark
strings do not break. As a consequence the annihilation cross section among dark quarks,
T0aUrel ~ TQp, /M can be smaller than the standard cosmological value, 3 10720 cm?®/ sec.

More importantly, the annihilation cross section among dark baryons, oggvme ~ 1 /aDCmZQ,
is typically much larger than 044, being enhanced by a negative power of apc. This happens
because annihilation can proceed through an atomic-physics process, recombination: at low
enough energy a dark quark Q in a dark baryon B can recombine forming a meson with a
Q in a B; afterwards the meson decays through the usual particle-physics QQ annihilation.
If mg » Apc the bound state B is dominated by the Coulombian part of the potential, and
this is similar to recombination occurring in hydrogen anti-hydrogen scattering. We computed
the binding energies of dark baryons and mesons by means of a variational method, finding
that recombination is kinematically allowed. If instead mg = Apc the confining part of the
potential is relevant, and the process can be seen as the crossing of dark strings (flux tubes of
the dark color interaction). In cosmology, the large ozz » g5 leads to extra dilution of the
DM density. In astrophysics, it leads to large signals for indirect DM detection. Dark mesons
decay into dark glue-balls: depending on the model their decays might be dominated by gauge
couplings (producing photons) or by Yukawa couplings (producing leptons, which can provide a
DM interpretation of the et excess observed by PAMELA and AMS [238])).

Cosmological evolution leads to the formation of excited dark baryons, which quickly decay
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into glue-balls provided that their excitation energy AEp ~ a%cmg is larger than Mg ~ TApc.
Otherwise, de-excitation can be slow, proceeding through off-shell dark glue-balls, giving rise
to a novel phenomenon: dark matter that emits either § or 7 radioactivity (again depending
on whether gauge couplings of Yukawa couplings dominate). It would be interesting to explore
whether radio-active DM can alleviate the core/cusp and missing-satellite issue of cold DM.

Finally, we studied the direct-detection and collider phenomenology of models where DM is
made of heavy baryons. Heavy dark quarks can be produced at colliders, manifesting as narrow
spin-0 or spin-1 resonances and producing effects in SM precision observables. Current bounds
are consistent with a lightest dark quark charged under the SM heavier than 1-2 TeV.




Chapter 5

Bound states from Dark Sectors: part II

Here we continue our analysis of accidental composite DM models considering a new kind of
candidate, the gluequark, which has properties different from those of dark baryons and mesons
in several respects. Gluequarks are bound states made of one dark quark and a cloud of dark
gluons in theories where the new fermions transform in the adjoint representation of dark color.
They are accidentally stable due to dark parity, an anomaly free subgroup of dark fermion
number, which is exact at the level of the renormalizable Lagrangian. Depending on the SM
quantum numbers of the new fermions, violation of dark parity can arise from UV-suppressed
dimension-6 operators thus ensuring cosmologically stable gluequarks for sufficiently large cut-oft
scales. Contrary to baryons and mesons, the physical size of the gluequark is determined by the
confinement scale independently of its mass. In the regime of heavy quark masses, Mg > Apc,
this implies a physical size larger than its Compton wavelength, see Fig. 5.1. The annihilation
cross section for such a large and heavy bound state can be geometric, much larger than the
perturbative unitarity bound of elementary particles. This in turn modifies the thermal relic
abundance and can lead to significant effects in indirect detection experiments (similarly to what
we already saw in Chapter 2 and 3). Also, the resulting cosmological history is non-standard
and different from that of theories with baryon or meson DM candidates.

Bound states made of one dark fermion and dark gluons were considered in Ref. [239], where
they couple to the SM sector through the neutrino portal. Similar DM candidates were also
studied in Refs. [240,241], in the context of supersymmetric gauge theories. There, bound
states of one fermion (the dark gluino) and dark gluons arise as the partners of glueballs after
confinement and were consequently called glueballinos. Ref. [240] showed that the observed DM
abundance can be reproduced by a mixture of glueballs and glueballinos provided that the dark
and SM sectors are decoupled very early on in their thermal history. In such scenario the two
sectors interact only gravitationally, the dark gluino being neutral under the SM gauge group.
Notice that the stability of glueballs in this case does not follow from an accidental symmetry but
is a consequence of the feeble interaction between the SM and dark sectors. In this chapter we
will focus on the possibility that dark fermions are charged under the SM gauge group, so that
the lightest states of the dark sector may be accessible through non-gravitational probes. In this
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Figure 5.1: Cartoon of the gluequark DM candidate. A heavy fermion in the adjoint of color
gives rise to color singlet state surrounded by a gluon cloud of size 1/Apc > 1/Mg.

case the dark and visible sectors stay in thermal equilibrium until relatively low temperatures,
of the order of 1 GeV, and the thermal history of the Universe is rather different than that
described in Refs. [240,241]. In particular, we will argue that in our scenario dark glueballs
cannot account for a sizeable fraction of DM because of BBN and CMB constraints.

Composite DM candidates from theories with adjoint fermions were also considered in the
context of Technicolor models, see for example Refs. [242,243]. Those constructions differ from
ours in that technicolor quarks are assumed to transform as complex representations under the
SM, but they can share common features with some of the models described in this chapter !.

The chapter is organized as follows. Section 5.1 provides a classification of models with adjoint
fermions that can lead to a realistic DM candidate. We outline the cosmological history of the
gluequark in section 5.2 and present our estimate for the thermal relic abundance in section
5.3. Section 5.4 discusses a variety of bounds stemming from cosmological and astrophysical
data, DM searches at colliders, direct and indirect detection experiments. We summarize and
give our outlook in section 5.5. A discussion of the relevant cross sections can be found in the
Appendices.

5.1 The models

We consider the scenario in which the SM is extended by a new confining gauge group Gpc
(dark colour), and by a multiplet of Weyl fermions Q (dark quarks) transforming in the adjoint
representation of Gpc and as a (possibly reducible) representation R under the SM group Ggsu:

Q = (adj, R). (5.1)

In particular, we consider models where the dark quarks have quantum numbers under SU(2),, x
U(1)y but are singlets of SU(3). color. We assume R to be a real or vector-like representation,

'Reference [243] for example considered gluequark DM in the context of the so-called Minimal Walking
Technicolor model, but its estimate of the thermal relic abundance focuses on the perturbative freeze-out and
does not include any of the non-perturbative effects described in this work.
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so that the cancellation of Ggy anomalies is automatic and mass terms for the dark quarks are
allowed.

We performed a classification of the minimal models, i.e. those with the smallest representa-
tions and minimal amount of fields, which give a consistent theory of DM. We refer to them as
‘minimal blocks’. Each block is characterised by two parameters: the dark quark mass My and
the value of the dark gauge coupling gpc at Mg. A CP-violating 6 term can also be included
but does not play an important role in what follows. The renormalizable lagrangian thus reads

1
49%0

L= Ly — G, + Qlic"D,Q — % (QQ+Q'Q"). (5.2)
It is possible to combine more than one minimal block; in this case the number of parameters
increases: each module can have a different mass and, depending on the SM quantum numbers,
Yukawa couplings with the Higgs boson may be allowed.

As long as all dark quarks are massive, the theory described by (5.2) confines in the infrared
forming bound states. The symmetry Q — —Q, dark parity, is an accidental invariance of the
renormalizable Lagrangian. The physical spectrum is characterized by states that are either
even or odd under dark parity. The gluequark, denoted by x in the following, is the lightest odd
state and has the same SM quantum numbers of its constituent dark quark, thus transforming
as an electroweak multiplet. Radiative corrections will induce a mass splitting among different
components, with the lightest state being accidentally stable at the renormalizable level thanks
to its odd dark parity. The mass difference computed in Ref. [244] shows that the lightest
component is always the electromagnetically neutral one, which therefore can be a DM candidate
provided it has the correct relic density.

We select models with a suitable gluequark DM candidate by requiring them to be free of
Landau poles below 10'% GeV. This is a minimal assumption considering that, as discussed below,
astrophysical and cosmological bounds on the gluequark lifetime can be generically satisfied only
for a sufficiently large cut-off scale. It is also compatible with Grand Unification of SM gauge
forces. The ultraviolet behaviour of each model is dictated by the number of dark colors Np¢ and
by the dimension of the SM representation R, i.e. by the number of Weyl flavors N;. Models
with too large Ny or Npc imply too low Landau poles for Gy, and are thus excluded from
our analysis. The list of minimal blocks that satisfy our requirements is reported in Table 5.1
for SU(Npc), SO(Npc) and Sp(Npe) dark color groups. Each block is characterized by its
accidental symmetry (that can be larger than the dark parity) and by the dimensionality of the
lowest-lying operator Q4. which violates it. The latter has the form

Odec = OSMgZVUMV Qa; (53)

where Ogyp is a SM composite operator matching the SU(2);, x U(1)y quantum numbers of
the dark quark Q. The operator (5.3) can in general induce the mixing of the gluequark with
SM leptons, providing an example of partial compositeness. As long as the theory is not in the
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N Quantum numbers Npc Accidental 0 Classical
! SU(2) x U(1) SU | SO | Sp | Symmetry dec [Odec]
1 N =1, All | All | All Zs (HG,,c"' N 6

3 V =3 <3 |<4| 1 Zsy (HG,, o™V 6

4 |L=21p@®L=2_1p|<4]<6|<2 U(1) (G, 0" L 5

6 | T=30T=3, 2 | 3 | 1 U(1) (HG,,0"'T 6

Table 5.1:  Minimal building blocks for models of gluequark DM. We require that a multiplet
contains an electromagnetic neutral component and that the gauge couplings do not have Landau

poles below 10'° GeV, assuming a representative mass of 100 TeV for the dark quarks. We denote
with £ the SM lepton doublets.

vicinity of a strongly-coupled IR fixed point at energies E » Mg, Apc, the dimension of Ogye. is
simply given by [Ogec] = 7/2 4+ [Osm |, as reported in the sixth column of Table 5.1. Among the
minimal blocks, the LL model has [Ogec] = 5 classically. In this case the naive suppression of the
gluequark decay rate is not enough to guarantee cosmological stability, although a stable DM
candidate can still be obtained through additional dynamics, see the discussion in Appendix I.
In the remaining minimal blocks the classical dimension of Oge. is 6 and the gluequark can
be sufficiently long lived. Indirect detection experiments and data from CMB and 21 cm line
observations set important constraints on these models which will be discussed in section 5.4.

The behaviour of the theory at energies above the confinement scale depends largely on the
number of dark flavors Ny and on the value of the dark coupling gpc at the scale Mg. One
can identify two regimes. In the first, gpc(Mg) is perturbative and this necessarily implies a
confinement scale smaller than the quark mass, Apc < Mg; we will call this the ‘heavy quark’
regime. In this case, depending on the value of Ny, there are three possible behaviours. For
Ny = N ]‘?F = 11/2 the theory is not asymptotically free, hence starting from the UV the coupling
gets weaker at lower scales until one reaches the quark mass threshold below which the dynamics
becomes strong and confines. 2 For N F <Ny <N ?F, where N7 is the non-perturbative edge of
the conformal window, the theory flows towards an IR fixed point at low energies until the quark
mass threshold is passed, below which one has confinement. Finally, if Ny < N§ the coupling
grows strong quickly in the infrared and confinement is triggered without delay. Only for this
latter range of values of Ny the confinement scale can be larger than the quark mass, Mg < Apc;
we will refer to this as the ‘light quark’ regime. The physical spectrum, the phenomenology and
the thermal history are rather different in the two regimes.

The infrared behaviour of SU(Npc) gauge theories with fermions in the adjoint representation
was extensively studied through lattice simulations, see for example [245-254] and references
therein. There seems to be sufficient evidence for an infrared conformal phase of theories with
Npc = 2 colors and Ny = 4, 3 massless Weyl flavors, while results with N; = 2 are more uncertain
though still compatible with a conformal regime. Theories with Ny = 1 are supersymmetric and
have been shown to be in the confining phase. The case with Npc = 3 colors is much less studied

2Notice that the value of N J‘}F, in the case of adjoint fermions, does not depend on the gauge group.
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and no firm conclusion can be drawn on the conformal window. Notice that, independently of
the number of colors, asymptotic freedom is lost for Ny > 6, while the existence of a weakly-
coupled infrared fixed point can be established for Ny = 5 by means of perturbation theory.
Besides determining which phase the massless theory is in, simulations give also information on
the spectrum of bound states. In particular, information on the gluequark mass in the limit of
heavy quark masses (Mg » Apc) can be obtained from lattice simulations with adjoint static
sources, see for example Refs. [124,255].

Heavy quark regime: In the heavy quark regime, the lightest states in the spectrum are
glueballs, while those made of quarks are parametrically heavier. The value of the glueball
mass is close to the one of pure gauge theories. Lattice results for pure glue SU(3) theories
show that the 0*" state is the lightest with mass mg++ ~ TApc, see for example [256]. Similar
values are found for SU(Np¢) with different number of colors. The gluequark is expected to
be the lightest state made of quarks, with a mass M, ~ Mg. Other states made of more dark
quarks (collectively denoted as mesons) quickly decay to final states comprising glueballs and
gluequarks, depending on their dark parity.

The gluequark lifetime can be accurately estimated by computing the decay of its constituent
heavy quark, similarly to spectator calculations for heavy mesons in QCD. In the minimal blocks
where the dark parity-violating operator has dimension 6 the main decay channel for the lightest
gluequark x° is x° — hv + n® (where ® indicates a glueball and n > 1). In the V model of
Table 5.1 with three dark flavors transforming as an EW triplet, the dim-6 operator

2
ig—v (HCTUZE Guo Q" + h.c.)
uv

induces the decay of the gluequark with inverse lifetime

o gy M3 10284 Mo \° (108 GeV* 1
= . =10 gyy s (5.4)
T(xo) 409673 Afy, 100 TeV Apv

Similar results apply for the N and 7@ T minimal blocks.

Glueballs can decay to SM particles through loops of dark quarks. In particular, since the
latter are assumed to have electroweak charges, glueballs can always decay to photons through
dimension-8 operators of the form QWQ“Z’WwWaﬁ generated at the scale Mg. For all the
minimal models in Table 5.1 this is the lowest-dimensional operator which induces glueball
decay. The partial width into photons is determined to be [257,225] 3

. { Npc\? Ms  \° /100 TeV)®
o — ~0.7s! . 5.5
(@ =) i ( 3 ) (500GeV> Mo (5:5)

3To derive this and the following decay rates we used the value of the matrix element (0|G,,G"|®) computed
on the lattice for SU(3), see Ref. e.g. [258].
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When phase space allows, the decay channels Z~, W*W ™~ and ZZ open up producing one order-
of-magnitude smaller lifetime. Relatively long-lived glueballs, as implied by the estimate (5.5),
are subject to cosmological and astrophysical constraints as discussed in section 5.4.

Models with Yukawa couplings to the Higgs doublet can be obtained combining minimal
blocks. In this case 1-loop radiative effects at the scale Mg generate the dimension-6 effective
operator |H|*G? ,, inducing a much shorter lifetime. If their mass is high enough, Mg > 2my,,
glueballs predominantly decay to two Higgs bosons with a decay width

Noc\2 fyi\2 [ My \° /100 TeV*
[(® — hh) ~ 102571 [ =2C _ 5.6
( ) ’ ( 5°) (51) (swaew Mg ) (56)

where Mg = (Mg, Mg,)'?, and y, o, Mg, , are respectively the Yukawa couplings and masses
of the dark quarks circulating in the loop. Lighter glueballs can decay through the mixing with
the Higgs boson; as for the Higgs, the dominant channel for Mg < 150 GeV is that into bottom
quarks, with a corresponding partial width *

_ N 2 Y192\ 2 My \' /10TeV\*
T(® — bb) ~3-107s " [ 22 : _ . .
( )=3-10%s ( 3 (0.1) 50 GeV Mo (5.7

Light quark regime: If dark quarks are lighter than Apc, the physical spectrum is radically

different and one expects spontaneous breaking of the global SU(Ny) symmetry down to SO(Ny).
The lightest states are thus the (pseudo) Nambu-Goldstone bosons ¢, while the DM candidate
is the gluequark, accidentally stable and with a mass of the order of the confinement scale Apc.
As discussed in section 5.3, and similarly to the baryonic DM theories of Ref. [178], reproducing
the correct DM relic density in this regime fixes Apc ~ 50 TeV. The NGBs with SM quantum
numbers get a mass from 1-loop electroweak corrections, which is predicted to be O(10 TeV) for
the value of Apc of interest. Besides such a radiative correction, the quark mass term breaks
explicitly the SU(Ny) global symmetry and gives an additional contribution. Including both
effects, the NGB mass squared is given by

3
m2 = coMoApo + cl%](l + 1A, (5.8)
T

where I is the weak isospin of the NGB and ¢y ; are O(1) coefficients.

For fermions in the adjoint representations, only models with N; < 5 light quarks can be
in the regime Mg < Apc, since those with more fermions are either IR conformal or IR free.
Therefore, among the minimal blocks of Table 5.1 only two are compatible with the light quark
regime, i.e. the V model and the L @ L model. The V model has a global symmetry breaking
SU(3) — SO(3) which leads to five NGBs transforming as an electroweak quintuplet. In the
L@®L model one has SU(4) — SO(4) and nine NGBs transforming as 3+, 3p of SU(2)gw x U(1)y.

4The scaling I'(® — bb) ~ M is approximately correct for Mg « my, though eq. (5.7) is a good numerical
estimate for my, ~ Mg < 150 GeV as well.
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The limit of very small quark masses, MgApc « mfp, is experimentally interesting, since

NGBs have predictable masses. In general, the lightest NGBs decay to SM final states through
anomalies or Yukawa couplings, as in the case of the V' model. In some cases, however, some of
the NGBs are accidentally stable due to unbroken symmetries of the renormalizable Lagrangian.
An explicit violation of such accidental symmetries is expected to arise from higher-dimensional
operators, possibly resulting into long-lived particles. An example of this kind is given by the
L@® L model, where NGBs made of LL or LL constituents have U(1) number £2 and are stable
at the renormalizable level, see Appendix I.

Since we assumed the dark quarks to transform as real or vectorlike representations under
the SM gauge group, the fermion condensate responsible for the global symmetry breaking
in the dark sector can be aligned along an (SU(2); x U(1)y)-preserving direction (in non-
minimal models, Yukawa interactions can generate a vacuum misalignment leading to Higgs
partial compositeness, see [259,231]). As the strong dynamics preserves the EW gauge symmetry
of the SM, it also affects electroweak precision observables through suppressed corrections which
are easily compatible with current constraints for sufficiently high values of Ap¢, as required to
reproduce the DM relic abundance [260,58,261].

Besides the NGBs, the physical spectrum comprises additional bound states with mass of
order Apc. These include the gluequarks, which are expected to be the lightest states with odd
dark parity, and mesons (i.e. bound states made of more than one dark quark) °. Except for the
lightest gluequark, which is cosmologically stable, all the other states promptly decay to final
states comprising NGBs and gluequarks, depending on their dark parity. In the minimal blocks
where dark parity is broken by the dimension-6 operator (HG,,, 0" Q, the most important decay
channels of the gluequark are x° — hv and x° — hv + ¢. The two-body decay dominates at
large- Np¢ and gives a lifetime of order

3 2 4
1 ~ g?]V M;éf)? = 4x 10—2694 MX fX 1018 Gev S—l (5 9)
(xo) 87 A}y YV 1100TeV | |25TeV Apv '

where f, is the decay constant of the gluequark °.

To summarize our discussion on models, Table 5.1 reports the minimal blocks which have
a potentially viable DM candidate and a sufficiently high cut-off, above 10> GeV, as required
for SM Grand Unification and to suppress the DM decay rate. In particular, the requirement
on the absence of Landau poles restricts the list of possible models to a few candidates. As
mentioned before, the case of the singlet was studied already in the literature [240,241], and

®The existence of stable baryons in theories with adjoint fermions was investigated in Refs. [262,263], where
stable skyrmion solutions were identified and conjectured to correspond to composite states with mass of O(N3 ),
interpolated from the vacuum by non-local operators. We will not include these hypothetical states in our analysis.
In the light quark regime they are expected to annihilate with a geometric cross section and contribute a fraction
of DM relic density comparable to that of the gluequarks.

6This has been defined by (0/G,,, " Q|x(p,r)) = fyMyu,(p), and scales as f, ~ M, (Npc/4r) in the large-
Npc limit.
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it will not be considered further in our study. We find that in all the other minimal blocks of
Table 5.1 the SU(3), x SU(2);, x U(1)y gauge couplings unify with much lower precision than
in the SM. Making the dark sector quantitatively compatible with SM Grand Unification thus
requires extending these minimal blocks by including additional matter fields. Also, it would be
interesting to explore the possibility of unifying both the visible and dark gauge couplings. We
leave this study to a future work.

In the next sections we will discuss the thermal history of the Universe and try to estimate the
DM relic density: section 3 explains the general mechanisms at work and is largely independent
of the details of the models; section 4 gives a concrete example, adopting as a benchmark the V'
model of Table 5.1, i.e. the minimal block with an SU(2);, triplet. For a discussion of the L@ L
model see Appendix I.

5.2 Cosmological History

The Universe undergoes different thermal histories in the light and heavy quark regimes. We first
give a brief overview of such evolution, followed by a more detailed discussion with quantitative
estimates.

In the light quark regime the thermal history is relatively simple and similar to that de-
scribed for baryonic DM in Ref. [178]. Dark color confines when dark quarks are relativistic
and in thermal equilibrium. After confinement the gluequarks annihilate into NGBs with a
non-perturbative cross section v, ~ m/A% o, while glueballs are heavy and unstable. At tem-
peratures T ~ M, /25 the annihilation processes freeze out and the gluequarks start behaving
as ordinary thermal relics.

In the heavy quark regime the thermal history is more complex and characterized by three
different stages. Before confinement (7' 2 Apc), free dark quarks annihilate into dark gluons and
undergo perturbative freeze-out at T' ~ Mg/25 (see section 5.2.1). At confinement (T' ~ Apc),
the vast majority of the remaining dark quarks hadronizes into gluequarks, while the plasma
of dark gluons is converted into a thermal bath of non-relativistic glueballs. The formation of
mesons is suppressed by the low density of dark quarks compared to the ambient dark gluons.
Glueballs overclose the Universe if they are cosmologically stable, therefore we consider the region
of the parameter space where their lifetime is sufficiently short. As first pointed out in [264-266],
and recently reconsidered in [267-269], decays of non-relativistic particles with a large and non-
thermal energy density — like the glueballs — can modify the standard relation between the scale
factor and the temperature during the cosmological evolution. If the glueballs are sufficiently
long lived and dominate the energy density of the Universe at some stage of the cosmological
evolution, the standard scaling a oc 7' is modified into a oc T-%3. During this early epoch
of matter domination, the Universe expands faster than in the radiation-dominated era, leading
to an enhanced dilution of the DM relic density (see section 5.2.2). Finally, interactions among
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gluequarks can lead to a second stage of DM annihilation through the process

X+x— QQ"+d/V

L QO - SM (5.10)

where QO* is an excited bound state of dark quarks and V stands for a SM vector boson
or possibly a Higgs boson in models with Yukawa interactions. An analogous mechanism was
first discussed in Ref. [98,101,201] and more recently by Ref. [187,57,105]. The process (5.10)
proceeds in two steps. Initially, an excited bound state QQ* with size O(1/Apc) is formed by a
collision of two x’s through a recombination of the constituent heavy quarks. This is similar to
what happens for example in hydrogen anti-hydrogen scattering [197]. As a consequence of the
large size of the gluequark (see the discussion in section 5.2.3), the corresponding recombination
cross section is expected to be large oo ~ 7T/A2DC. Once formed, the QQ* can either decay
(QQ* - QQ + V — SM) or be dissociated back into two gluequarks by interactions with the
SM and glueball baths (®/V + QQ — x + x). A naive estimate shows that the latter process
typically dominates. This is because the largest contribution to the total cross section comes
from scatterings with large impact parameters, b ~ 1/Apc, in which the QQ* is produced with
a large angular momentum, ¢ ~ Movb. Bound states with ¢ » 1 take more time to de-excite to
lower states, and dissociation can happen before they reach the ground state. The annihilation of
gluequarks through recombination is therefore inefficient as long as the glueball bath is present.
Only when the glueballs decay away, a second stage of DM annihilation can take place through
the process (5.10).

5.2.1 Thermal freeze-out

Thermal freeze-out is the first (only) phase of the cosmological evolution in the regime with
heavy (light) quarks. In this stage the number density of free dark quarks (for Mg > Apc) or of
gluequarks (for Mg < Apc) is reduced until it becomes so low that chemical equilibrium is no
longer attained and freeze-out takes place. The number density at freeze-out is approximately

given by )
H(Tt..
n(Tto.) ~ ot (5.11)
where H is the Hubble parameter, and afterwards it is diluted by the Universe expansion.

In the heavy quark regime, free dark quarks annihilate with a perturbative cross section into
dark gluons and into pairs of SM particles (vector bosons, Higgs bosons and fermions). The
freeze-out temperature is of order Tt, ~ Mg/25. A general expression for the annihilation cross
section is reported in Appendix G, see eq. (G.2). For the V' model with Npe = 3 analysed in

the next section, the annihilation cross section into dark gluons and SM fields is

2 2
Tag, (27 1 25\ a5 1 g 1 1 1
) = A S ) (26 4SS+ =5 ), 5.12
(TamnViet) ME (96+8<+12 2. T an. )67 T3 T o (5-12)
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neglecting the mass of final states. The term from annihilation into SM particles separately
shows the contribution of vectors and fermions plus longitudinal gauge bosons.

Terms in the second parenthesis encode the Sommerfeld enhancement from dark gluon ex-
change: S3, S35, S_; refer respectively to the 1, 8 and 27 color channels and are given by [71,55]

2
s, = 2ec m . (5.13)

Upel 1 — e—2mnapc/vrel

In the light quark regime gluequarks annihilate into NGBs with a cross section that is ex-

pected to scale naively as
T

2
ADC

in analogy with nucleon-nucleon scattering in QCD [270]. Nambu-Goldstone bosons are unstable

(CannUrel) ~ (5.14)

and later decay into SM particles.

5.2.2 Dilution

As well known, the number density of DM particles today is related to the number density at
freeze-out by

now(To) = now(Tt.o) (a;())g . (5.15)

This relation is usually rewritten in terms of temperatures assuming that between freeze-out and
today the standard scaling a oc 7! holds. However, the validity of the standard scaling relies
upon the assumption that entropy is conserved in the SM sector, i.e. that no energy is injected
into the SM plasma. In presence of large entropy injection one can have an epoch during which
a grows faster than a oc T~!. In this case the relation between npy(7Tp) and npy(Tt,) is given

by:
y nont(To) = nom(Tro) (TCCO):‘ (Zg})) %)3 , (5.16)

where T; and T defines the temperature interval during which the non-standard scaling holds

(see Fig. 5.2). The last term in parenthesis accounts for the suppression with respect to the
naive relict density which would be obtained using the standard scaling. In the following we will
show that late-time decays of dark glueballs can give rise to a non-standard scaling of the form
a o T~ with o > 1. The corresponding suppression factor thus reads:

(- ()

After dark color confinement, the energy density of the Universe can be divided into a

relativistic component, pgr, containing all the SM relativistic particles, and a non-relativistic
one, py, containing all the dark-sector long-lived degrees of freedom (i.e. dark glueballs and
gluequarks). In particular, the energy density of glueballs at confinement is much larger than
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Figure 5.2: Left: Sketch of the non-standard a(T') scaling. Values of a > 1 in eq.(5.17) imply a
scale factor at freeze-out, ay,., smaller than the one obtained from a standard cosmology, ay.,..
This in turn leads to a suppression of the relic density by a factor (ay, /aso)* = (Ty/T;)>* 3.
Right: Scaling obtained by solving numerically (5.18) and (5.19) for Mg = 100 TeV and Ty. =
Apc = 10GeV. There exists an epoch during which the a(T') scaling is very well approzimated
by a power law a oc T~* with o = 8/3.

the corresponding thermal energy density for a non-relativistic species, and this can lead to an
early epoch of matter domination. Neglecting the subleading contribution of gluequarks to pas,
the evolution of pys r is governed by *

(5.18)

pu =—3Hpy — Lo pu
pr=—4Hpr +To pu

where 'y is the glueball decay rate and the Hubble parameter H is given by the Friedmann

equation:
8t

H? = T (pR + ,OM) . (519)

Since in the relevant region of the parameter space the dark and SM sectors are in thermal

equilibrium at dark confinement, the initial conditions at T' = T,. ~ Ap¢ are given by

ov(Tae) = € pr(Tye) with =" (5.20)

where gp(7T") and ¢.(7") count the number of relativistic degrees of freedom in the dark and SM

sector respectively. Furthermore, assuming that the decay products thermalize fast enough, the

"Here we omit the contribution of glueball annihilations into SM vector bosons to the evolution of p M, - This
contribution is negligible in the region of the parameter space where dilution is sizeable. Both the rate of glueball
annihilation at temperatures of order Apc and the glueball decay rate scale as ALo/Mg, so that the former,
similarly to the latter, is expected to be smaller than Hubble when dilution is relevant. We have checked this
naive expectation by verifying that after confinement the estimated annihilation rate is smaller than Hubble on
branch 1 of Fig. 5.4.
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temperature of the Universe below T}, is related to the relativistic energy density by:

2
pr = %g* T (T <Ty). (5.21)
The evolution during the early matter-dominated epoch, if the latter exists, can be described
by solving analytically eq. (5.18) at leading order in pg/pas for cosmic times ¢ « 1/I'g [268]:

N 3
par = Pt (9) e Ta(t=D (5.22a)
a

_ a2 3 L [ray? o rand
PR = PR (5) +g S—ﬂ_rcb MPIPM [(5) - (a) . (5.22b)

Here pyr and a denote the initial conditions at some time ¢ much after the beginning of
the matter-dominated epoch. The relativistic energy density is given by the sum of pp (first
term in eq.(5.22b)), diluted as a~*, and the energy injected by glueball decays (second term
in eq.(5.22b)), diluted as ~ a~%2. Initially the first term dominates and the standard scaling
a o« T~ is obtained; as long as the glueball lifetime is long enough, the second term will start
to dominate at some temperature 7}, implying a non-standard scaling a oc T=%?3 (see Fig. 5.2).
The value of T; can be found by equating the first and second terms of eq.(5.22b) and by using
egs.(5.19),(5.20):

T Mp, P
4.15,/9x T3, &% + T Mp

The non-standard scaling ends when almost all the glueballs are decayed, i.e. around (t —t4.) ~

ﬂ =~ Tdc£ X (523)

[',', where t,4. is the time at dark confinement. Using eqs. (5.19) and (5.20), one can translate
this condition in terms of a temperature finding:

Tf >~ 4/ MPIFq) . (524)

From eq.(5.17) it follows that late-time decays of glueballs dilute the naive relic density by a

£ (L)' _ 028 MpPTS? (415G, T3, € + Do M) (5.25)
\7) " e Cally | |

factor

where O(1) numerical factors omitted in eq.(5.24) have been included. When the glueballs are
sufficiently long lived to give a sizeable dilution, the second term in the numerator inside the
parenthesis of eq.(5.25) can be neglected and F is very well approximated by:

1.82 /Myl
F~ 282 viinle. (5.26)
g*/ Tdcg

While the analytic formulas (5.22b)-(5.26) turn out to be quite accurate, in our estimate of the
relic density performed in section 5.3 we will solve eq. (5.18) numerically without making any
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Figure 5.3: Cartoon of the re-annihilation processes occurring after dark confinement. First, free
quarks combine into color singlets gluequarks. Next, fast collisions form excited QQ* states that
at sufficiently low temperatures fall into the ground state and decay.

approximation.

5.2.3 Reannihilation

At T = Ty. ~ Apc the theory confines and the dark degrees of freedom reorganize into singlets
of dark color. In the heavy quark regime, the number density of gluons is much larger than the
one of fermions and the vast majority of free quarks Q hadronize into gluequarks. These can
then collide and recombine in excited QQ* states by emitting an electroweak gauge boson (or
a Higgs boson in theories with Yukawa couplings) or a glueball when kinematically allowed, see
eq. (5.10). The process goes through a recombination of the constituent heavy quarks, while the
direct annihilation of these latter has a small and perturbative rate. Given that gluequarks have
a size of order 1/Apc, one expects naively a recombination cross section of order oo, ~ 1 /AQDC.
This value can in fact be reduced by kinematic constraints and the actual total cross section
depends ultimately on the temperature at which the process takes place. A detailed discussion
and estimates for the recombination cross section are given in Appendix H.

Once formed, QQ* states with mass M(QQ*) > 2Mg will promptly decay back to two
gluequarks. Lighter states, on the other hand, can either de-excite and thus decay into SM
particles through the emission of a SM vector boson or a glueball (QQ* — QQ + V /& — SM),
or be dissociated by interactions with the glueball and SM plasmas (®/V + QO* — x + x), see
Fig. 5.3.

If de-excitation occurs faster than dissociation, a second era of efficient DM annihilation
can take place, reducing the gluequark number density. While re-annihilation processes can be
active over a long cosmological time interval, it is the last stage during which the re-annihilation
cross section gets its largest value 0.0, that is most important to determine the final gluequark
density. This last stage happens relatively quickly and can be characterized by a re-annihilation
temperature Tr. The exact value of Tk depends on the rate of dissociation and is difficult to
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estimate. The largest uncertainties arise from the calculation of the de-excitation rate, which can
vary over several orders of magnitude. We performed a thorough analysis taking into account
the many dynamical ingredients which play a role in determining both the re-annihilation cross
section and temperature. A detailed account is reported in Appendix H. We find that, under
the most reasonable assumptions, dissociation of the most excited QQ* states occurs faster
than de-excitation, as long as the glueball bath originating from dark gluons confinement is
present; therefore, the re-annihilation temperature is approximately equal to the one at which
glueballs decay (Tr ~ Tp). Besides this most probable scenario, in the following we will also
consider the other extreme possibility where re-annihilation occurs right after confinement (Tg =
Apc). The comparison between these two opposite scenarios will account for the theoretical
uncertainties intrinsic to the determination of the non-perturbative dynamics characterizing our
DM candidate.

In both benchmark scenarios considered above the last stage of the re-annihilation epoch
occurs while entropy is conserved in the Universe and can thus be described by a set of standard
Boltzmann equations given in eq. (H.1). They reduce to a single equation for sufficiently large
de-excitation or glueball decay rates. This reads

dy, _s<areav>

T Y2, (5.27)

where z = Mg/T, Y, = n,/s and s is the entropy density of the Universe. The equilibrium
term can be neglected since Ty < Apc € Mg. Assuming a re-annihilation cross section which is
constant and velocity independent ¥, eq. (5.27) can be easily integrated analytically; one obtains

(for T' < Tg)
3/2
Yo (1) = Yo (Tr) ' + ; (“;”)TR [1 = (%) ] . (5.28)

Late-time annihilation significantly affects the gluequark relic density when the second term in

the above equation dominates, 7.e. roughly when
Ny Oreal » H at T =Tg, (5.29)

in agreement with a naive expectation. When condition (5.29) is met, any dependence from the
previous stages of cosmological evolution, encoded in Y, (Tk), is washed out and the asymptotic
value of the relic density is set only by re-annihilation. For temperatures T sufficiently smaller
than Tx (but higher than a possible subsequent period of dilution, in the case Tr ~ Apc),
eq.(5.28) can be recast in terms of the gluequark relic density as follows:

MAT 3/2 T 1/2 T

Mg Mpy Orea Tr
8 As explained in Appendix H, the last stage of re-annihilation can be effectively described by a constant cross

section; the latter turns out to be also velocity independent in the relevant region of the parameter space of our
theories.

3
) for T « Tg. (5.30)
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Figure 5.4: On the black solid line 0, = Qpu. We also report (dashed line) the isocurve
Q0 = Qpw for the case where re-annihilation is not considered. The numbers indicate the three
thermal histories described in the text. In the yellow region the glueballs are either stable or have
a lifetime bigger than 1s. In the first case they will over-close the Universe while in the latter
they will spoil BBN, both cases are therefore forbidden. The blue region is ruled out by indirect
searches, namely modifications of the CMB power spectrum, 21-cm line observables and indirect
detection (see section 5.4.3).

5.3 Estimate of the Relic density

The cosmological evolution of gluequarks is determined by the interplay of the mechanisms
described in the previous section and depends on the two fundamental parameters Mg and Apc.
For each point in the plane (Apc, Mg) one can thus in principle reconstruct the thermal history
of the Universe and compute the DM abundance €2,. In this section we will sketch the different
possible thermal histories and give an estimate for €2,. As a reference model we consider the
minimal module with a triplet of SU(2), (see Table 5.1). We will assume the theory to be
outside its conformal window, so that the regime of light dark quarks is well defined. We will
discuss at the end how the picture changes for different SM representations and when the theory
is in the conformal window or is not asymptotically free.

We will try to quantify the large uncertainties that arise in the determination of the cos-
mological evolution and of the relic density as a consequence of the non-perturbative nature of
the processes involved. As anticipated in section 5.2.3, one of the largest uncertainties comes
from the identification of the re-annihilation temperature Tr. We will consider the two pre-
viously discussed benchmarks: Tr = Tp, the most plausible one according to our estimates,
and Tr = Ty.. We reconstruct for each of them the different possible cosmological evolutions
obtained by varying Mg and Apc. Our estimate of the DM abundance for both benchmarks is
reported in Fig. 5.4, where we show the isocurve Q, h? = 0.119 reproducing the experimentally
observed density.




Bound states from Dark Sectors: part II 152

Let us consider first the case Tr = Tp. There are three possible thermal histories that can
be realized (they are correspondingly indicated in the left plot of Fig. 5.4):

1. For very large Mg/Apc the Universe undergoes a first perturbative freeze-out at T, ~
Mg/25, then dark confinement occurs at T ~ Apc followed by an epoch of dilution between
T, and Ty = Tp = Tx °. Glueballs decay at T' < T, and the number density of gluequarks
is too small, as a consequence of the dilution, to ignite a phase of non-perturbative re-
annihilation. The DM density is therefore given by

n(Tro) M. < Ty >3
Qpy ~ X F, 5.31
DM pcrit ﬂ.o. ( )

where the number density at freeze-out is estimated by solving the Boltzmann equations
numerically and approximately given by eq. (5.11). By using the dilution factor reported
in eq. (5.26), setting M, = Mg, Tt, = Mg/25, and T,;. = Apc as indicated by lattice
studies [271], one obtains

0.1\2 / Ape \*? /100 Ape \ 2
Qpuh? ~ 0.1 .32
bM 0 (aDC) <TeV> Mo : (5.32)

which describes well the slope of the upper part of the relic density isocurve in the left

panel of Fig. 5.4. Because of the extreme dilution happening during the early epoch of
matter domination, the experimental DM abundance is reproduced in this case for very
large DM masses, of order of hundreds of TeV or more, above the naive unitarity bound.

2. For smaller values of Mg/Apc (but still with Mg/Apc = 25), the dilution between T;,,
and T'p is not enough to prevent re-annihilation (i.e. condition (5.29) is met). The latter
thus occurs at T ~ Tp, washing out any dependence of (2, from the previous stages of
cosmological evolution; the corresponding DM relic density is

QDM = T

Perit

T)M, (Tp\’ _
(1) My (—0) for Ty < T « Tk. (5.33)

The first factor corresponds to the gluequark energy density at the end of the re-annihilation
(given by eq.(5.30)), and the second one encodes the standard dilution due to the Universe
expansion. We evaluate the re-annihilation cross section by using the semiclassical model
described in Appendix H.1; this gives

A7

O';ngd = AT [5<P(ADC7 MQ, TR) + Qo EV(ADC7 MQ, TR)] . (534)
DC

The parameters €4 and ey are smaller than 1 and encode the suppression from energy

9Here we are implicitly assuming that the re-heating temperature at the end of inflation is larger than Mg,
so that the number density of dark quarks after the perturbative freeze-out is thermal.
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and angular momentum conservation respectively for the recombination processes xx —
QQ*+® and yx — QQ*+V. While eq.(5.34) is the result of a rather sophisticated analysis
of the re-annihilation dynamics and represents our best estimate for o,.,, it is subject to
large theoretical uncertainties, as discussed in Appendix H.1. We thus also consider the
extreme situation where the re-annihilation cross section is always large and saturated by
its geometric value

o0 = (5.35)
Abc

Varying .., between the values in eqs.(5.34) and (5.35) will quantify the uncertainty on
n,(T). By using eq.(5.30) and setting M, = Mg and T = Tp ~ v/MpL's, eq. (5.33) takes

the form: 11/4 15/2
A M, 47 /A2
Qpyih? ~ 0.1 =2 9 /Abe (5.36)
Gev 1000 ADC Urea(MQ7 ADC)

This formula describes the intermediate part of the isocurve in the left plot of Fig. 5.4.
Initially (i.e. for 150 GeV < Apc < 800GeV) the re-annihilation is dominated by the
process xxy — QQ* + ® and €4 ~ 1; in this case the last factor in (5.36) can be well

model

model i small) and the estimated

approximated with 1 (the electroweak contribution to o
uncertainty on the gluequark relic density is negligible. For larger Ap¢ re-annihilation
into QQ* plus a glueball becomes kinematically forbidden in our semiclassical model, and
e quickly drops to zero (see Appendix H.1). In this region ey ~ 1/10 and varying e,
between 04! and 9% spans the gray region. The extension of the latter quantifies the

uncertainty of our estimate of the relic density.

3. When Mg/Apc < 25, the perturbative freeze-out does not take place. If Mg is bigger than
Apc, then the Universe undergoes a first epoch of annihilation of dark quarks for T' > Mg,
followed after confinement by the annihilation of gluequarks, until thermal freeze-out of
these latter occurs at T ~ M, /25. If Mg < Apc, on the other hand, the theory is in
its light quark regime and the only epoch of annihilation is that of gluequarks after dark
confinement, again ending with a freeze-out at 7' ~ M, /25. Afterwards n, is diluted by
the Universe expansion without any enhancement from the decay of glueballs (these are
too short lived to give an early stage of matter domination). The expression for the DM

relic density is formally the same as in eq.(5.31) with F = 1. Setting Tt, = M, /25, one
obtains , )
47T/A ADC
Qpuvh? ~ 0.1 De : 5.37
DM Tann \ 100TeV (5:37)

For 1 < Mg/Apc < 25 the non-perturbative annihilation of gluequarks proceeds through
the same recombination processes of eq.(5.10). According to the model of Appendix H.1,
only the final state with a vector boson is kinematically allowed, and ey ~ «3/10. This
implies Oany =~ (2/10) 47/A3 o, so that the DM relic density turns out to be independent
of Mg. If instead the re-annihilation cross section is estimated by eq.(5.35), then by
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continuity with the previous cosmological evolution one must take o, ~ 47r/A2DC, which
also corresponds to a relic density independent of Mg. Varying o.., between these two
values gives the largest vertical portion of the gray region in the left plot of Fig. 5.4.

As soon as one enters the light quark regime, Mg < Apc, the annihilation of gluequarks
proceeds through the direct annihilation of their constituents (the theory at Mg is non-
perturbative) with a cross section 0., = 4wc/A%, where ¢ is an order 1 coefficient. We
vary 1/5 < ¢ < 1 to quantify the uncertainty in this last non-perturbative process. We
thus obtain the narrower vertical portion of the gray region in the left plot of Fig. 5.4,
which extends down to arbitrarily small My. The observed relic density in this regime
is reproduced for Apc =~ 50TeV, similarly to the light quark regime in baryonic DM
models [178].

Let us turn to the case T = Ty. = Apc. As for T = Tp one can identify three possible
thermal histories (correspondingly indicated in the right panel of Fig. 5.4):

1. For Mg/Apc » 25 the Universe goes first through a perturbative freeze-out of dark quarks
at Tto. ~ Mg/25, then re-annihilation occurs right after confinement for 7' ~ Apc. Finally,
dilution takes place between T; and the temperature of the glueball decay Tp. The DM
relic density is given by the expression in eq.(5.33) times the dilution factor F. Numerically
one has

Abo Am /A

Qpuh? ~5-1072 .
DM SMZ/Q O_rea(MQ7ADC)

(5.38)

In this case, our semiclassical model estimates £¢ ~ 1/100 throughout the parameter space
model and ¢9°° we thus obtain the upper portion of

rea rea

of interest. By varying o,., between o
the gray region in the right plot of Fig. 5.4.

2. For smaller Mg/Apc (but still with Mg/Apc > 25), the glueballs are too short lived to
ignite the dilution, and the DM relic density is given by eq.(5.33). Setting Tr = Apc one
obtains

QDMh2 =~ 10_10

GeV? \ Apc Orea(Mo, Apc)

3. When Mg/Apc < 25 the cosmological evolution of the Universe is the same as thermal
history 3 in the case Tr = Tp. The DM relic density is given by eq.(5.37), corresponding
to the vertical gray regions of the right plot of Fig. 5.4.

The plots of Fig. 5.4 graphically summarize our estimate of the DM relic density including
the uncertainty from the value of Tx (left vs right panel), and from the value of the cross sections
for gluequark re-annihilation and annihilation in the light-quark regime (gray region). Reducing
substantially the uncertainty on the re-annihilation process (both the cross section and the value
of T) is not simple and would require a dedicated and in-depth study of the recombination and
de-excitation rates, and an extensive study of the system of Boltzmann equations, which is
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beyond the scope of the present work. An improved precision in the context of our semiclassical
model, on the other hand, could be obtained from a more accurate knowledge of the spectrum of
states in the strong sector, in particular of the masses of the glueball and gluequark; this can be
obtained through dedicated lattice simulations. Notice also that the plots of Fig. 5.4 have been
obtained by assuming a dark color gauge group SU(3), for which the confinement temperature
T,. and the non-perturbative matrix element relevant for the glueball decay rate are known from
lattices studies. Extending our results to other dark gauge groups would in general require to
determine these inputs with dedicated simulations, in absence of which there would be further
theoretical uncertainties (both in the estimate of the DM relic density, through the expression
of the dilution factor in eq. (5.26), and in the exclusion region from the glueball lifetime).

As a last remark we notice that the qualitative picture derived in this section is largely
independent of the details of the specific model. However, the quantitative results can change
significantly in models with Yukawa couplings, where the glueball lifetime is much shorter. In
particular, the exclusion region from the glueball lifetime moves further up left and branch 1,
where dilution occurs, becomes vertical (so that the relic density is uniquely fixed in terms of
Apc). Finally, models that, in the limit of zero quark masses, are infrared free or in the conformal
window are constrained to be in the regime Mg > Apc.

5.4 Phenomenology and Experimental Constraints

In this section we outline the main phenomenological signatures for collider physics and cosmol-
ogy of the models with gluequark DM. In general, the phenomenology has analogies to the one
of baryonic DM studied in Refs. [178,58]. Given the large gluequark masses needed to reproduce
the DM relic density both in the light and heavy quark regimes, searches at colliders are not
promising, whereas cosmological observations provide interesting bounds.

5.4.1 Collider searches

The dark sector has a rich spectrum of states which, in principle, one would like to study at
colliders.

The lightest states in the spectrum, with mass given by eq.(5.8), are the NGBs from the
SU(Nr) — SO(Nr) global symmetry breaking in the light quark regime. In the case of the V/
model, the five NGBs form a multiplet with weak isospin 2, and one expects m, 2 Apc/5. The
phenomenology of a quintuplet of NGBs was studied recently in Ref. [261]. These states are pair
produced at hadron collider in Drell-Yan processes through their electroweak interactions, and
decay to pairs of electroweak gauge bosons through the anomalous coupling

2NDC a% Pabrra 177buv
L (5.40)

A promising discovery channel studied by Ref. [261] is pp — ¢%p® — 37yW*; the doubly charged
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states decay into same-sign W pairs and are somewhat more challenging to see experimentally.
The LHC has an exclusion reach up to TeV masses, while a 100 TeV collider would test the
light quark scenario approximately up to 5 TeV. In this regime colliders could start probing the
thermal region.

The lightest states in the heavy quark regime are the glueballs. They couple to the SM only
through higher-dimensional operators, and are rather elusive at colliders. In models without
Yukawa couplings, where interactions with the SM occur through dimension-8 operators, the
production cross section via vector boson fusion (VBF) or in association with a SM vector boson
is too small to observe a signal in current or future colliders (for example, the VBF cross section
at a 100 TeV collider is of order a(pp — ®+7j7) < 107 fb for Mg/Apc = 10 and Mg > 500 GeV).
In models with Yukawa couplings the glueballs mix with the Higgs boson and production via
gluon-fusion becomes also possible. While this leads to larger cross sections, the corresponding
rate is too small to see a signal at the LHC and even high-intensity experiments like SHiP
can only probe light glueballs in a region of parameter space that is already excluded by EW
precision tests, as discussed in section 4.4.5.

Mesons can give interesting signatures in both light and heavy quark regimes. Bound states
made of a pair of dark quarks, @), can be singly produced through their EW interactions.
While the production of spin-0 mesons is suppressed since they couple to pairs of EW gauge
bosons, spin-1 resonances mix with the SM gauge bosons of equal quantum numbers and can
be produced via Drell-Yan processes. In the narrow width approximation the cross section for
resonant production can be conveniently written in terms of the decay partial widths as

(2Jqq +1)Dgq

o(pp — QQ) = Mg

Z Cppl'(QQ — PP), (5.41)
P

where D¢ is the dimension of the representation, Jgg the spin, P the parton producing the
resonance and Cpp are the dimension-less parton luminosities.

In the heavy quark regime the Q@ bound state is perturbative and its decay width can be
computed by modelling its potential with a Coulomb plus a linear term. For a,cMg > Apc the
decay width of the lowest-lying s-wave bound states scales as

F(QQ — ’P'P) ~ DQQCM%MCMBDCMQ, (5.42)

3

where o)

. originates from the non-relativistic Coulombian wave-function. When apcMg < Apc,
the effect of the linear term in the potential becomes important and eq.(5.42) gets modified; since
confinement enhances the value of the wave function at the origin, the width becomes larger in
this regime. Using the Coulombian approximation thus provides conservative bounds. Explicit
formulas for the rates were given in section 4.4.4 of the previous chapter. For example, in the

V model the decay width of the s-wave spin-1 Q@ resonance (isospin 1 in light of the Majorana
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Figure 5.5: Left: ATLAS bounds on the cross section for the direct production of a spin-1 QQ
resonance decaying into muons and electrons [222]. Right: Estimated reach on gluequark pair
production obtained by recasting the limits of Ref. [272] from disappearing tracks searches at the
HL-LHC (red), the HE-LHC (green) and a 100 TeV collider (blue). The solid (dashed) lines
assume a 20% (500% ) uncertainty on the background estimate.

nature of V') into a left-handed fermion doublet is

3

_ oo
r (QQL_% - ff) = (Npc — Ni¢) 224;30 Mg, (5.43)

where n refers to the radial quantum number. The tiny energy splitting between levels is
irrelevant at colliders and the total rate is dominated by the lowest-lying Coulombian ones. The
branching ratio into pairs of leptons is about 7% and the strongest bounds currently arise from
searches of spin-1 resonances at the LHC decaying into electrons and muons. We show the limits
in the left plot of Fig. 5.5 and find that the LHC excludes masses up to 2 — 3.5 TeV depending
on the ratio Mg/Apc (or equivalently on the value of apc(Mg)).

In the light quark regime the lightest spin-1 state is the p meson with mass M, ~ Apc. The
widths scale as [273]

g2
F(P - 9090) ~ _*Mp

8
) (5.44)
L(p— []) ~ a2y (g) M

P
*
where g, characterizes the interaction strength among bound states. For moderately large g,

as suggested by large-Np¢ counting g, ~ 47w/+/Npc, the decay into light NGBs dominates while
final states with leptons are suppressed. It thus follows a weaker bound than in the heavy quark
regime, as illustrated in Fig. 5.5 for g, = 4.

Gluequarks can also be pair produced at colliders through their EW interactions. In the
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heavy quark regime the energy threshold is much higher than the confinement scale and quarks
are produced in free pairs. Because dark quarks are in the adjoint representation of dark color,
when they get separated by a distance of O(1/Apc) they hadronize producing color singlets
that fly through the detector. On the contrary, dark quarks in the fundamental representation
would not be able to escape, leading to quirks/hidden valley phenomenology [274,179,58]. The
phenomenology of the open production is then identical to the one of an elementary electroweak
multiplet except that the cross-section is enhanced by the multiplicity of the dark color adjoint
representation, i.e. N3, —1 for SU(Npc). Such enhancement factor is not present for gluequark
pair production near threshold in the light quark regime. In general, an electroweak triplet
can be searched for in monojet and monophoton signals or disappearing tracks, the latter being
more constraining. We derived the reach of the high-luminosity LHC (HL-LHC), the high-energy
LHC (HE-LHC) and the proposed 100 TeV collider by recasting the results of Ref. [272] for the
V model in the heavy quark regime, see the right plot of Fig. 5.5. We find that the HL-LHC
could discover gluequark triplets up to ~ 600 GeV while a 100 TeV collider could reach ~ 7TeV.
Such bounds are typically weaker than the ones from the production of Q@) spin-1 resonances
decaying to leptons.

5.4.2 DM Direct Detection

From the point of view of DM direct detection experiments, where the momentum exchanged is
less than 100 KeV, the gluequark behaves as an elementary particle with the same electroweak
quantum numbers as the constituent quark. The main difference from elementary candidates
with same quantum numbers is that the relic abundance is not controlled by the electroweak
interaction, leading to a different thermal region.

For a triplet of SU(2) the spin-independent cross-section is og; = 1.0 x 107%° ¢cm?, which is
below the neutrino floor for masses M, > 15 TeV. For an SU(2) doublet tree-level Z-mediated
interactions induce a spin-independent cross section on nucleons ogr ~ 107%° cm?, which is ruled
out for M, < 10®GeV [26]. Dark quark masses large enough to make the doublet model viable
can be obtained only in the scenario where Tr = Apc, while the scenario with T = T is ruled
out (see Appendix I for more details).

5.4.3 DM Annihilation and Decay

After freeze-out, decays or residual annihilations of gluequarks can give rise to indirect detection
signals.

In the region of parameter space relevant for our purposes, annihilation processes set con-
straints on theories in the heavy quark regime, and we thus focus on that case to analyse them.
As discussed in section 5.2.3 (and more extensively in Appendix H), the annihilation can be
either direct (xx — n®/SM) or mediated by the formation of a QQ* bound state that sub-
sequently decays (yx — QQ* — n®/SM). In the former case the annihilation cross section
is perturbative (see eq.(G.2)) and, given the relatively high mass of the gluequark, it does not
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lead to any interesting indirect detection signatures. The latter case, instead, because of the
enhanced annihilation cross section, could lead to an interesting phenomenology and it is worth
further study.

As discussed in section 5.2.3 and in Appendix H, for angular momenta ¢ > 1 the recombina-
tion cross section is of order o, =~ 647T/A12)C. However, given the small velocities relevant for
indirect searches (v, ~ 107%4/TeV /Mg at the CMB epoch and v, ~ 1072 in our galaxy), the
angular momentum of the colliding particles ¢ ~ Mgv,e1/Apc is of order unity in a large region
of the parameter space. In this case only s-wave processes take place and 0,0 rather than
Orea 1S constant. In this regime the value of the cross section is very uncertain, and we chose to
estimate it in terms of two benchmark scenarios (see Appendix H.1):

1

A2
<Uannvrel> ~ ES T (545)

T N —————5 -
7 (a3 M)

Once formed, the QQ* bound states de-excite and in general decay into dark gluons, SM
gauge bosons or SM fermions. The branching ratios can be derived in terms of the perturbative
annihilation cross section of dark quarks into the corresponding final states, see eq.(G.2). In the
region of interest apc > s and one finds

042 (6]

), BR(WW/\I/\I!)wa—Q BR(ZG) ~ : (5.46)

Qo

2 )
DC Qpc

BR(GG) ~ 1+ (’)(

Opc
where G denotes a dark gluon. For the specific case of the V' model, the tree-level decay into
SM fermions and ZG is forbidden (the xo has vanishing coupling to the Z) and use of eq.(G.2)

thus gives
6 o?

27a,’
where the last factor is from the branching ratio of Q) into WV .
Similarly to residual annihilations, decays of the gluequark could give rise to indirect signals.

(5.47)

<0UY€1>XOX0—>WW ~ <Uannvrel> X

The x° decays mostly to hv plus glueballs in the heavy quark regime, and to hv or hv + ¢ in
the light quark regime (see eqs.(5.4),(5.9)). Both glueballs and NGBs in turn decay into SM
particles and ultimately the gluequark decay leads to the production of light SM species which
can be observed experimentally. Bounds can be avoided, on the other hand, if some mechanism
is at work that makes the x° absolutely stable or give it a much longer lifetime than the one
estimated in eq. (5.4) and (5.9).

Fig. 5.6 summarizes the constraints in the plane (Apc, Mg) that arise from experiments
probing DM decay and annihilation. The red exclusion regions from DM annihilation have been
derived for the two benchmark values of {(oanntre) in eq. (H.2), while the blue ones from DM
decay were obtained by setting Apy /gy = Mp = 2.4 x 1018 GeV and f, = 3Apc/(47) when
evaluating mpy from eqs. (5.4),(5.9). Experimental bounds are given in terms of the DM mass
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Figure 5.6: Exclusion limits from experimental searches sensitive to the DM annihilation (red
regions) and decay (blue regions). The limits from DM annihilation respectively in the left and
right panels have been obtained by adopting the two benchmarks of eq. (H.2), while limits from

DM decay were derived by setting Ayv/guy = Mp = 2.4x 10" GeV and f, = 3Apc/(4m) in
egqs. (5.4),(5.9).

M,; in order to translate them into the (Apc, Mg) plane we set M, = Mg in the heavy quark
regime and M, = Apc in the light quark regime.

The constraints from DM annihilation are characterized by a large theoretical uncertainty, as
one can easily see by comparing the left and right panels in the figure. Resolving such uncertainty
would require a precise determination of the recombination cross section, which does not seem
an easy task in general and is beyond the scope of this work. Also the exclusion curve from
DM decay has a sizable theoretical uncertainty, which largely comes from the unknown relation
between M, and Apc in the light quark regime (needed to translate the experimental bounds
into the (Apc, Mg) plane), and from the absence of a calculation of the gluequark decay constant
(which controls the size of the DM decay rate and for which we were only able to give an order-
of-magnitude estimate). In this case, however, dedicated lattice simulations could determine
these quantities and thus drastically reduce the theoretical error on the blue exclusion curves.

The results of Fig. 5.6 stem from three classes of experiments, which are discussed in the
following.

Cosmic Rays Experiments

Given the large gluequark mass needed to reproduce the DM relic density in the heavy quark
regime, the strongest indirect detection bounds on DM annihilation come from the ANTARES
neutrino telescope [20], HESS [25] and the multi-messenger analysis made by the Fermi gamma-
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ray telescope and IceCube [275]. The bounds can be roughly summarized as follows 1°:

(Tamnrel) S 1077 GeV 2 (from ANTARES, HESS)

5.48
(Cam¥rel) S 107°GeV™?  (from Fermi-ICeCube) . (5.48)

Indirect searches also place bounds on the lifetime of heavy DM candidates. In the high-mass
range, Ice-Cube provides the most stringent bounds [15]. For M, = (10° + 107) GeV, they are
roughly given by

M, \*?
0N >10% [ —2— . 4
T(x") 2 10 <100TeV> 8 (5.49)

CMB power spectrum

The energy released by gluequark annihilations and decays around the epoch of recombination
modifies the CMB power spectrum. This, similarly to indirect detection experiments, constrains
the lifetime and the annihilation rate of the DM. The annihilation cross section is constrained
to be smaller than [200]

M
ann “re S 1 -8 —x -2 .
(CamVrer) < 10 (100 GeV) GeV ™, (5.50)

while the limits on the DM lifetime are [12]
7 (x%) = 10*s. (5.51)

These bounds are slightly less stringent than the ones coming from indirect detection, but have
the advantage to be free from astrophysical uncertainties. They are provided for DM masses
up to 10 TeV, but are expected to be approximately mass-independent for masses above this
value [276]. The CMB bounds shown in Fig. 5.6 have been obtained under this assumption.

21 cm line

While CMB is sensitive to sources of energy injection at the epoch of recombination, the cosmic
21-cm spectrum is sensitive to sources of energy injection during the dark ages. The recent
observation of an absorption feature in this spectrum, if confirmed and in agreement with stan-
dard cosmology, can be used to put bounds on both the lifetime and the DM annihilation cross
section. Conservative limits can be derived by neglecting astrophysical heating sources; the one
on annihilation is of order [21,17]:

M
< -5 X -2
<O-annvrel> ~ 10 ( 10 Tev> Gev y (552)

0Here and in eqgs. (5.51),(5.53) we omit for simplicity the mild dependence that the bounds have on the DM
mass. The exclusion curves of Fig. 5.6 have been obtained by using the exact expressions without performing
such approximation.
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while the one on the DM lifetime is [18,17, 13]
7 (x") 2 10%s. (5.53)

The latter is independent of astrophysical uncertainties on the distribution of DM.

As for the case of CMB, these bounds are provided up to M, = 10 TeV and to obtain Fig. 5.6
we assumed that they are constant at higher masses. Differently from the previous case, however,
this assumption is not completely justified and further studies are needed to provide solid bounds
in the high-mass range [276].

5.4.4 Glueball lifetime

In the region of the parameter space that we consider, Apc = GeV, glueballs with lifetime
larger than 1s are excluded by a combination of bounds. Cosmologically stable glueballs have a
too large relic density and overclose the Universe. Long-lived glueballs, on the other hand, are
constrained by BBN observations [210] in the range 1s < 75 < 10'%s and by observations of the
diffuse gamma-ray spectrum [213] in the range 10'%s < 75 < 10'7s.

These bounds constrain the high-mass region of the V' model as shown in Fig. 5.4. Notice,
however, that they could be potentially relaxed if glueballs decay through dimension-6 operators
(generated for example in models with Yukawa couplings).

5.5 Summary

In this chapter we continued the systematic study of gauge theories with fermions in real or
vector-like representations, initiated in Ref. [178], where a DM candidate arises as an acci-
dentally stable bound state of the new dynamics. We considered in detail the gluequark DM
candidate, a bound state of adjoint fermions with a cloud of gluons, stable due to dark fermion
number. What makes this scenario special in the context of accidental DM is that the physical
size of DM, that controls the low-energy interactions, is determined by the dynamical scale of the
gauge theory independently of its mass. In the heavy quark regime the DM mass and size can
be vastly separated leading to an interesting interplay of elementary and composite dynamics.
In particular, cross sections much larger than the perturbative unitarity bound of elementary
particles can arise, modifying the thermal abundance and producing potentially observable sig-
nals in indirect detection experiments. Gluequarks display a rich and non-standard cosmological
history and could be as heavy as PeV if their abundance is set by thermal freeze-out.

Our estimates show that the observed DM density can be reproduced by gluequarks both in
the light and heavy quark regimes. The mass of the DM is of order 100 TeV or larger, which
makes the models difficult to be directly tested at present and future colliders. On the other
hand, indirect experiments sensitive to the decay and the annihilation of the DM are a power-
ful probes of gluequark theories. We found that these experiments can already set important
limits, excluding part of the curve which reproduces the observed DM density, depending on
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the value of the annihilation cross section and if the naive estimate for the gluequark decay
rate is assumed (see Fig. 5.6). This suggests that gluequark theories in the very heavy quark
regime require non-generic UV completions to ensure the accidental stability of the DM at the
level of dimension-6 operators. For example, the dark parity could be gauged in the UV (see
Appendix I), or its violation could be generated only by non-perturbative gravitational effects
in a weakly-coupled UV completion. Similar arguments are put forward also in the context of
axion models concerning the quality of the Peccei-Quinn symmetry, see [277]. Assuming that
an appropriate UV completion exists, gluequark models are interesting examples where the DM
density can be generated thermally after inflation by very heavy particles. This can be con-
trasted with other scenarios, such as Wimpzillas [278], where ultra heavy DM candidates are
never in thermal equilibrium.

The low-energy dynamics and the spectrum of gluequarks are non-perturbative and we were
only able to give rough estimates of various effects. In particular, in the heavy quark regime, the
quantitative estimate of the re-annihilation relevant for the thermal relic abundance and indirect
detection of DM is highly uncertain, as it depends on the details of the spectrum and on the
rates of non-perturbative transitions. A more firm conclusion would require a better knowledge
of the recombination cross sections and of the de-excitation rates of bound states, as well as
an extensive study of the system of Boltzmann equations. In the light-quark regime, a non-
perturbative calculation of the annihilation cross section would lead to a sharp prediction of the
dynamical scale of the dark sector. The precise knowledge of the spectrum of gluequarks, mesons
and pions would then give valuable information for indirect detection and collider studies.

In this chapter we studied gluequarks as thermal relic candidates and focused on the simplest,
minimal theories of Tab. 5.1. Investigating non-minimal models would be certainly interesting
and important under several aspects. For example, SM gauge couplings unify at high energies
with less precision in the minimal blocks of Tab. 5.1 than in the SM. Achieving precision uni-
fication thus necessarily requires extending the models to include additional matter with SM
quantum numbers. Furthermore, while the thermal relic abundance hints to a large DM mass,
this conclusion can be modified in more general gluequark theories where the DM is asymmetric
(this requires a larger accidental symmetry than dark parity) or where the DM abundance is
determined by the decay of unstable heavier states. These theories would have a smaller mass
gap and could be tested at the LHC and at future colliders. We leave an investigation along
these directions to a future work.




Chapter 6

Conclusions

The focus of this thesis has been on the study of bound states in the phenomenology of DM
models. We have considered both their model independent consequences in the context of a
thermally produced relic and their role as composite DM candidates. While a detailed discus-
sion of the results can be found in the concluding sections of Chapters 1, 2, 3, 4 and 5, here we
summarize again the most relevant results.

In the first part of the work we provided a formalism to include bound states effects in the
cosmological history of DM particles produced through thermal freeze-out. Compared to previ-
ous works on the subject, our results apply to both abelian and non-abelian gauge theories (both
in the perturbative, see Chapter 1, and non-perturbative regime, see Chapter 2). Moreover, in
our treatment the whole tower of bound states levels is included, providing a more precise com-
putation of the effect. This formalism is then applied to some benchmark DM candidates (such
as an electroweak triplet and quintuplet, and a neutralino co-annihilating with a colored part-
ner) finding that bound state effects can give order one corrections to the DM mass required to
reproduce the observed cosmological abundance. We also recast the bounds on long-lived relic
gluinos including non-perturbative bound states effects which reduce their cosmological abun-
dance by few orders of magnitude.

In the second part of the work, we considered scenarios where bound states do not only give
corrections to the cosmological history of the DM but they also provide a viable composite DM
candidate. This is either realized introducing new fermionic particles charged under QCD inter-
actions (see Chapter 3) or a whole new dark sector featuring new matter fields charged under a
new confining force (see Chapter 4 and 5).

Specifically, in the first scenario we extended the SM by adding a new Dirac fermion in the
adjoint representation of QCD and neutral under electroweak interactions, we dubbed this new
particle quorn. The DM candidate of the model is provided by the bound state of two quorn;
this state is indeed electrically neutral and colorless. However, the quorn can also form stable
hybrid states by binding with gluons or quark-antiquark pairs. These states have a large QCD-
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like cross section to be captured into normal nuclei, and therefore are subject to very stringent
experimental bounds. Because of this, to be successful the model should reproduce the observed
DM relic density with the one of quorn bound states and, at the same time, predict a highly
suppressed abundance of hybrid states. We showed that, thanks to post-confinement effects,
for a quorn mass around 12.5 TeV the abundance of quorn bound states reproduces the one of
DM, while the hybrids abundance is suppressed by four orders of magnitude (which is enough
to evade the bounds). The DM candidate of the model interacts with normal nuclei through
chromo dipole moments induced by the color charge of the constituents. Future direct detection
experiments will be able to test this interaction. At colliders quorns can be pair produced
through QCD interactions giving rise, after hadronization, to charged and neutral tracks. A
100 TeV collider is expected to test quorn masses up to 15TeV. An interesting phenomenology
is also expected in indirect detection experiments, where annihilation of quorn bound states
proceeds through recombination of the constituents.

In the second scenario, the SM is extended by adding new fermions charged under both the
electroweak group and a new confining dynamic (dark color). The mass of these new fermions,
dubbed dark quarks, is assumed to be larger than the confining scale of the dark color. Such
that, after confinement, the lightest states of the spectrum are dark glueballs. Dark glueballs can
decay into SM particles through higher dimensional operator induced by a loop of dark quarks.
If sufficiently long-lived, glueballs can lead to an early matter-dominated era in the evolution of
the Universe and, upon decaying, dilute the density of preexisting relics thus allowing for very
large DM masses. Depending on the assignment of dark quarks quantum numbers, we can have
different DM candidates with vastly different phenomenologies.

In Chapter 4, we considered dark quarks in the fundamental representation of an SU(N)
(SO(N)) dark color group. In this scenario, the DM candidate is a dark baryon made of N dark
quarks. Dark baryons are stable thanks to an accidental U(1) (Zy) symmetry that guarantees
dark baryon number conservation. The relic density of the dark baryons is fixed by a freeze-out
of perturbative annihilations among dark quarks and a second stage of annihilations between
dark baryons after the dark color confinement. This relic density (eventually diluted by glueball
decays) matches the one of the DM for dark quarks masses of order 10 TeV.

In Chapter 5, we take dark quarks in the adjoint representation of the dark color group. In
this scenario the DM candidate is a bound state made of one dark quark and a cloud of dark
gluons, we call this state gluequark. The stability of the gluequark is guaranteed by an accidental
dark parity that acts on the dark quarks. Contrary to baryons and mesons, the physical size of
the gluequark is determined by the confinement scale independently of its mass. This implies a
physical size larger than its Compton wavelength. The annihilation cross section for such a large
and heavy bound state can be geometric, much larger than the perturbative unitarity bound
of elementary particles. This, in turn, modifies the thermal relic abundance and can lead to
significant effects in indirect detection experiments.

To sum up, we have shown that bound states can play a crucial role in the DM phenomenol-
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ogy. Both in the case where the DM is an elementary particle, by providing a new annihilation
channel through the formation and subsequent decay of unstable bound states. Both in the
case where the DM is a composite object, by providing an accidentally stable candidate. It is
therefore crucial, in the effort to explore all the possible solutions to the DM puzzle and provide
accurate target regions for experiments, to take bound states into account.

While our understanding of bound states production in the perturbative regime is quite
complete, a more precise understanding of post-confinement effects is needed in the case non-
perturbative dynamics. Specifically, a better knowledge of the recombination cross sections and
decay rates is required to reduce the uncertainties that plague these scenarios.
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Chapter A

Wave functions in a potential mediated by a vector

In this appendix we collect the relevant formulas used throughout the first chapther.
If the vector is massless, the radial wave functions of a bound state in the Coulomb potential are

R(r) = <2>3/2 Me—r/nao<2r>ZLi€_+£l_l(2r) (A.1)

nag 2n(n + 0)! nag nag

where ag = 2/aeg M, is the Bohr radius and L are Laguerre polynomials. If the vector has mass My,
an analytic solution is obtained approximating the Yukawa potential with a Hulthen potential

K My e #Mvr

VHulthen = 1 o—rMyr (A.2)
The radial wave functions of bound states in the Hulthen potential are
1— —reMy \£+1
Rue(r) = Nyge~mvane L2 phasesatq _ gg-rmatv) (A-3)

r

where g = /My Epe/kMy, Ny is the normalization factor such that Sdr 2 RyyRyry = Oppr, and P
are the Jacobi polynomials' which equal unity for £ = n — 1. For £ = 0 one has

1 —n?y / 1 — niy?
= N, = My — 7 A4
4dn0 2ny ) n0 Ry 2y3n5 ( )

In particular, the ground-state wave function is

1— 2 1— —rMy,
Rio(r) = A |cMy 2y3y e~ My aio 767“ . (A.5)

The normalisation factor for £ = 1 is Ny = Npoa/(1 — n2y2)/(n2 — 1)n2y2.

Tmplemented in Mathematica as P>¢(z) = JacobiP[a, b, c,x]. The value of ¢ differs from [67].
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The normalized radial wave function of a free state in the Hulthen potantial is [73,67]

[ A7 1— —kMyr\f+1
Re(?‘) _ T ( (& ) szerelr/Z 2F1( ’ Jr7 2(6 + 1)? 1— efﬁMVr>X

«a ﬁ"M V. 1M 2k My Qo
“W it - Bl
X “rel

(A.6)

2€ | Qe

where S is the Sommerfeld factor for £ = 0 given in eq. (1.27), F is the hypergeometric function? and

4K}Mvaeﬁ‘
1+,4/1———— . A7
( M vrel ) ( )

its arguments are

—_1+€+zMX2 i
|4

The function Ry(r) is real, and in the limit aeg = 0 it reproduces the free partial wave expansion
e = D i*Ry(r)Yuo(#) where Ry(r) = /4n(20 + 1)iejg(pr) Here 6 is the angle between 7 and p),
p = Myve/2 and jy are spherical Bessel functions ji(2) = /7/22Jp41/2(2) (equal to jo(2) = sin(z)/z
for large z). Furthermore, in the massless limit My = O, Ry reproduces the Coulomb partial wave

expansion
em‘eff/%“ﬂf(l — 1t /Vrel) 1F1 [i0eft/Vrel, 1, i(pr — - T)] TP = Z 7) Yoo (0 (A.8)
l
where
im0+ 1) , _ .
Ry(r) = M _””"(2pr) 1L+ 1 4 icves/Urel, 20 + 2, 2ipr] H |0 — k 4+ 1 — icesr/vrel| - (A.9)
I'2e+2) bl

Such analytic solution of the wave function for the Hulthen potential is only exact if £ = 0. If £
is not zero, an extra approximation for the centrifugal term is needed, such that the behaviour at
large r becomes only approximate. This is not a problem for the bound state wave function, as it is
exponentially suppressed at large r. However, for the free state this approximation leads to unphysical
results that become relevant in the case of bound state production from a p-wave and d-wave partial
waves. In order to correct for this inaccuracy we multiply the resulting cross sections, as was suggested
in [73] by

w? ~ Myva _p

L, = — with w = ~—.
o (= k)2 +w?) KMy My

This function is controlled by the critical momentum My so that, once the momentum of the dark

(A.10)

matter particles drops below the mediator mass, the production cross sections from higher ¢ states are
suppressed.

2Implemented in Mathematica as o F}(a, b; c; x) = Hypergeometric2F1[a, b, c,x].




Chapter B

Non-abelian bound states

Production cross sections and decay widths of two-body bound states due to perturbative non-abelian
gauge interactions have been given in Chapter 1, for bound states with low angular momentum /.
Following the same notations, in appendix we generalize the decay widths to any ¢. We consider
emission of a single-vector V¢ in dipole approximation, such that the angular momenta of the initial
and final states differ by A¢ = +1. We denote with « the non-abelian gauge coupling, with M, the
vector mass, and with M the common mass of the two particles which form the bound state.

The decay widths of a bound state through single-vector emission are obtained from the previous
expressions substituting the free-particle final state wave function R,, with the wave-function of the
desired final bound states. Assuming again degenerate (or massless) vectors and a bound state in a
representation R with dimension dp, we find

1 8 ak k?
Pl —>n'l—1)=——— 2 (1 T
(>, f-1) dR(2€+1)M2< 3w2>x

B.1)
/ E ]. / M 2 (
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, I oM 2 (B.2)
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Chapter C

Hydrogen decay rates

We summarize the known results for the hydrogen decay rates in dipole tree-level approximation [279].
We denote the initial state as (n,£), and the final states as (n/,¢’). Their energy gap is

AB 0y = 1 (1 _ 1) (1)

2 n2 n/?
where p is the reduced mass. The spontaneous emission rate, in dipole approximation, is

4o AE3

T(nt—n' 0) =228
(n b =n'0) = 55

1K |7 im0, m)). (C.2)

Selection rules imply A¢ = +1, and the matrix element are
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with R,,(r) the radial part of the hydrogen wave-function. These integrals are given by
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where oF} is the Hypergeometric2F1 function. A similar formula can be obtained for Rzlﬁl by the
interchange of the indices n and n’. The total decay rate and energy loss rate from an initial state (n, ¢)
is obtained by summing over all available lower-energy states with n’ < n.




Chapter D

Toy redecoupling

We here show that the chromodark-synthesis mechanism is absolutely unavoidable by discussing a toy
model that allows one to analytically understand some of its features. We consider formation of one
bound state Bgg containing two DM quarks Q from two bound states Bg containing one DM quark:!

Bgo+ Bg <> Bog + X (D.l)

where X denotes any other SM particles, such as pions. We define 0 = 2Mp, — Mp,,. In the real
situation described in section 3.2, many bound states with a semi-classical discretuum of binding factors
0 can be produced. We simplify the problem by considering just one of them, with § ~ Aqcp such
that the QCD cross section for the above process is large, cgo ~ 1/62. One then reaches thermal

equilibrium
€q 3/2
MBoo _ ™Boo _ YBgo [ 4T / /T (D.2)
n2 neq2 92 MQT ) :
BQ Bo BQ

This means that the Bg dominantly form Bgg at the redecoupling temperature

Tredec = % where A=1In }}:; ~ 40 (D.3)
is an entropy factor that describes how much formation of Bgg gets delayed by having a plasma with
much more particles X than can break it, than particles Bg that can form it. This is analogous to
how e, p bind in hydrogen at 7' < §/1In(n,/ny), and to how p,n bind in deuterium at T'< 6/ In(n,/np),
where 6 are the binding energies of hydrogen and deuterium respectively.?

In the toy model, the residual density of Bg is estimated as its thermal equilibrium value at the
redecoupling temperature where the interaction rate 'gg ~ np,00Qura for the process of eq. (D.1)
becomes smaller than the Hubble rate. Imposing ['gg ~ H with H ~ T?/Mpy, vie] ~ A/T/Mg and

Similar considerations apply to formation of Bgg from free Q at T' Aqcp, but this phase is not relevant
for the final DM abundance.

2In the numerical computation such entropy factor was accounted in section 3.1.5 by imposing a small time
allowed to radiate enough energy down to an unbreakable state. To keep the argument simple we here ignore
the Boltzmann suppression in the 7 abundance at T < m, (in the full numerical computation this is taken into
account and increases the o, computed in section 3.1.5, consequently suppressing the hybrid abundances).
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NBo ~ YBQT3 gives

YreliC|tO N 1 ~A3/2@ N 10—16 MQ 1) . (D,4)
o 1 00 MpiTredeer/ Tredec/ Mo Mpy 10TeV Agen

This shows that re-annihilation is dominated by bound states with smaller 6 ~ Aqcp, rather than by
deep states. In the full computation many bound states contribute to the depletion of Yp,, that gets
about 2 orders of magnitude smaller than the toy-model estimate of eq. (D.4). In turn, the unavoidable
toy-value is much smaller than what obtained by including only perturbative QCD annihilations at
T ~ Tdec > AQCD-




Chapter E

Chromo-polarizability of QO DM

Eq. (3.40) provides the formula for the polarizability of a QCD bound state. We here evaluate it for
our DM, the QQ singlet bound state |B) = |1, s, ey with energy E1g = —a2gMq/4, where aeg = 3as.
By emitting a gluon it becomes a p-wave octet, with free Hamiltonian Hs = p?/M, — as/r where
ag = 3ag/2, whose eigenvalues are Fg, = —agMQ /4712 for bound states and p? /M, for positive energy
states. To evaluate the matrix element in eq. (3.40) we insert the completeness relation for the octet
eigenstates

15 = Z [n, £, m, ag)(n,l,m,ag| + = ZJ & p3\p,£ m, ag )P, £, m, as| (E.1)

nt,m

where the first (second) term is the contribution from bound (free) states. The factor 1/3 is introduced
not to double count the angular momentum states. In coordinate space (F|n, ¢, my = Rye(r)Yem (0, ¢)
for bound states and (7|p, £,m) = Ry¢(r)Ym (0, ¢) for continuum positive energy states, where Yz, (6, ¢)
are spherical harmonics. The Coulombian wave-functions are

2 \*? [(n—t—1) 2r 2r
= =t ) —r/na; 2041 Ar
(nai) 2n(n + 0)! ¢ <nal> b <nai> (E:2)

1 » » :
Rpro;(r) = VAmv20+1 Il E_é +21/;L]Zp] e”/(Qaip)e_Zpr(%pr)( 1Fl+4+ a%p’ 200+ 1), 2ipr] (E.3)

where 1 F7 is the Hypergeometric1F1 function; a; = 2/(o;My) are the Bohr radii in each channel with
LQZ-‘rl

Ry, (7)

effective coupling o; = {aef, ag} and _, are Laguerre polynomials.
Angular momentum conservation implies that only p-wave intermediate states contribute to the

polarizability. The bound state contribution thereby is

<1, s Oéeff|f1n p, as)|?
<B’7" FIB>bound = 7;2 — El() (E4)

where the matrix element is

o0
|1, s, a1|7|n, p, ozg>|2 = |J0 drr3 Rioa.s (7)Rnlag (7“)|2. (E.5)
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Performing numerically the integral and the sum one finds
(B|Ff— "2 B)pouna = 0.3594°. (E.6)
Hg — Eqo

The contribution of unbound E > 0 intermediate states is found generalizing the formulae in [280]

0 2
J drr3 R10aug (1) Rprag (1) (E.7)
0

(1 + p2/p2)674p/parctanp
(cEmole ~ 1)(1+ 27

L Q3 1 d3p g
Bff—2  #B%ee = -
( |rH8_E10F] tree 3[(2W)3P2/MQ—E10

= aggp(p +2)? JOO P dp = 1.17a®

c 0
where C' = 3 and p = —ag/aeg = —1/2 for our color octets. In the case of the hydrogen atom (C' = 1,
p = —1) one finds [170] cg|hydrogen = 87(5.49 + 1.26)a®/3 = 18ma®. The QQ chromo-polarizability is
smaller than what suggested by a naive rescaling of the abelian result computed for the hydrogen atom
CE |naive = 1871a3C /(N2 — 1) = 6.75ma’.




Chapter F

Boltzmann equations for baryonic DM

To describe the cosmological evolution of dark quaks at T' > Apc we need to generalize the results of
section 1.1 to include also stable bound states. As discussed in section 1.1, the joint evolution of the
dark quarks and bound states number densities is described by eq.(3.13) and (1.5) which we report

here for convenience:

Y. Y2 Y,
std Q_ —2’yann[ — 1} — 2271[ ! } (F.1)
dZ YQ eq Qeq Y}’eq
dYr Y5 Y7 Yy
4T T - T )| 1 — I .
s dz n[ {< v k>[Y5eq YIeq +< " > YI +Z< 1=2) YJeq Y.eq

where Yo 1 = ng /s with s the entropy density, 2 = mg/T. We define as n°? and Y°? the thermal
equilibrium value of n and Y respectively and ~ is the space-time density of interactions in thermal
equilibrium. The first term describes QQ annihilations to SM particles; the second term describes
formation of the bound state identified by the index I that collectively denotes its various quantum
numbers: angular momentum, spin, gauge group representation, etc.

The effect of rapidly unstable bound states can be encoded in an effective annihilation rate, 7S
that substitutes 7ann, such that their Boltzmann equations can be dropped, as shown in Chapter 1.
However, the present study contains a new feature: some bound states (such as QQ) do not decay,
and can only be formed or broken by interactions. We then need to separately evolve the Boltzmann
equations for their abundances. We define Yhsf—stable = >,y 77 With the sum running over the unstable
bound states, and similarly for the stable ones. In the non-relativistic limit the space-time densities
get approximated as

T«M
2y =" (ng)* v (F.2)
such that the Boltzmann equations simplify to
1 dYQ Seff—unstable 2 2 SI bsf Ys eq
- = — Y5-Y, =2 AYVE-vi—=
\ dz 52 ( Q Q,eq) 22 Q Y7 eq
(F.3)

2
1 dY} _ SI bsf YQ Y YQ,eq 7
\dz 22
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where we introduced the dimension-less factors Seg—unstable = Sann + Sbsf—unstable and

(O XVrel) 005 gSMT
Sx(z) = XUel/ 5 —’ - Mp M, . F4
x(2) 0 H 7=, 45 (0PN (F-4)

Here ggv is the number of degrees of freedom in thermal equilibrium at 7' = M, (gsm = 106.75 at
T > My).
Stable bound states I are kept into thermal equilibrium by fast dark gauge interactions, so that

they decouple at a z; much later than DM freeze-out, that occurs at zy ~ 25. Thereby for 2z « z; we
obtain a single Bolztmann equation

1dYo S
A dz 22

(Yé — Yé,eq) y Seff = Sann + Sbsffunstable + Sbsffstable (F5)

approximatively solved by

-1
Yo(z) = % (J Sett(2) . 4 Seﬁ(jf)> . (F.6)
zf

2
z
“f

We now compute zy, showing that it is so large that later annihilations are negligible. The value of z;
is needed to estimate the fraction of dark quarks bound in stable states.

Assuming that dY;/dz ~ 0 is violated at z; so large that annihilation processes are negligible, we
have Yo(z) + 2Y1(2) = Yo(z1) = Y. at temperatures z > z; at which the stable bound states are no
longer in thermal equilibrium. This leads to an effective single Boltzmann equation

1dYo _ Agyz* (Ve - Yg<z>>em>

N~ Subsi(2) <2YQ(2)2 -

. (F.7)

where A = Eg/M, and A = 90/((27)7/?g%,;). The value of z; is defined by imposing that the leading
order term in the 1/X « 1 expansion of the solution Yg(z) ~ Y§(2) + Y§(2)/A is comparable to the
second order term. The leading order term is simply defined by the condition that the derivative of
Yo(z) vanishes

gr

. Z73/4Yc
Yi(2) = A %2 j—ge A <\/<g2g +8 " g]eZA) — gQ> . (F.8)

Inserting the assumptions in eq. (F.7), solving for Ygl(z) and evaluating Yg (21) = Yé(Z[) /A defines z;.
Such equation can be simplified assuming z » 1 and reads

(F.9)

1 ) (32A929)\251,bsf(21)2yc)
A .

21 = —1In
5/2
A2grz;

For a typical value A = Ep/M, ~ 1073 we find z; ~ 10°, which justifies our initial assumptions,
since z5 ~ 25 and the annihilation has no effect at z > 10*. Now the second effective eq. (F.7) which
describes the recombination effect can be integrated in the same manner as the first and leads, after
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the appropriate asymptotic matching, to

1
Vo(oo) - (2 g St | Y51z1)> Vi(or) = 3 (Yolor) ~Yo(®) . (F.10)

Using this method we find that, in the models considered, the relic abundance of stable dark di-quark
states is at most at the percent level of the abundance of free dark quarks at confinement. In conclusion,
perturbative production of stable bound states negligibly affects the final dark matter relic abundance.




Chapter G

Dark Quark Annihilation Cross Section

In this appendix we report the formulas for the annihilation cross section of dark quarks, which are
useful to study the perturbative freeze-out and DM indirect detection.

Dark quarks can annihilate into dark gluons and into SM final states (mainly V'V, Vh, hh and
Y1), where V. = W, Z,v). These latter contribute significantly to the total cross section in the case of
perturbative freeze-out whenever Mg/Apc » 1 and thus the dark color interaction strength does not
exceed much the electroweak one. Final states into SM particles are also expected to be important for
direct detection even though they have a smaller rate compared to DM annihilation into glueballs.

The tree-level annihilation cross-section of dark quarks x;x; in a representation (Apc, Rsw) of the
dark color and SU(2)7, groups into massless vectors at low energy reads,

AL+ A% 1
167 MZ
Ay = |rerertrt| = | rertrert|

)

<0Urel>ij—>VV =

(G.1)

)

where the generators are written as T' = (gpcTpc ® 1) @ (1 ® gsnTsm)- Selecting the neutral component
in the equation above and averaging over dark color gives the perturbative annihilation cross-section
of DM today. Averaging over all initial states as required for the thermal freeze-out one finds,

(ovrel) _ T [ a2DC KI(RDC)+K2(RDC>+ a% K1 (Rsum) + Ka2(Rsn)
T ME | d(Raw)  gxd(Roc)? d(Roc)  gyd(Rsw)? (G.2)
oo 4C’(RDC)C'(RSM)] '
e 2gxd(RSM)d(RDC) ’
where
Ki(R) = d(R)C(R)?, Ka(R) = K1(R) — d(A)C(QA)T(R), d(R) = dim(R).  (G.3)

and A stands for the adjoint representation. T'(R) and C(R) are respectively the Dynkin index and
the quadratic Casimir of the representation R, and g, = 2(4) for real (complex) representations.

Dark quarks can also annihilate into final states with SM fermions and Higgs bosons through their
SM gauge and Yukawa interactions. These channels have been included in eq. (5.12).




Chapter H

Reannihilation

As discussed in section 5.2.3, a second stage of annihilation involving gluequarks can occur after con-
finement. The annihilation can proceed in a single step into glueballs or SM vector and Higgs bosons:

e X+ x — n®/nV: in the heavy quark regime this process has a perturbative cross section; indeed
the exchanged momentum in the interaction is of O(Mg) with Mg » Apc, thus the interaction
strength is governed by gpc(Mg) which is perturbative.

Alternatively, it can take place in two steps, a non-perturbative recombination followed by de-excitation
and decay into SM particles:

o x+x — QOF --» SM: the recombination is two to one and energy conservation implies Mg+ >
2M,,, therefore the opposite decay process is always allowed. The matrix element for the inverse
decay is non-perturbative and the corresponding rate is expected to be much larger than the rate
of the de-excitation process QQ* — QQ + n®/nV.

o x+x— QO*+®/V --» SM: the recombination takes place with the emission of one electroweak
gauge boson or, if kinematically allowed, one glueball. Bound states with Mgo+ < 2M, will
in general be formed which cannot decay back into gluequarks. They can de-excite and decay
into SM particles. The corresponding re-annihilation rate is expected to be non-perturbative and
potentially large.

Only the last of the three processes described above can ignite an epoch of re-annihilation. The dynamics
of re-annihilation is described by a set of coupled Boltzmann equations of the form

dYX _S<UreCU> Y2 2 YQQ* Y@.
dz Hz X X4 YSIQ* Yyl

dy, 1 YoorY. I
QO* 78<0—recv> (YXQ o Y2 QO*I'd ) _ QO* (YQQ* — Ye (Hl)

dz 2 Hz X4 Yéqg* Yg!

dYq> 1 S<Urecv> 2 2 YQQ* Yq; F.:p e
= Y2-Y? e Yo — Y.
dz 2 Hz (Yo —Yy")

- X X,eq YSJQ* qu
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These expressions are simplified in that the actual system of equations involves the number densities
of all possible QQ* bound states. Furthermore, we have omitted the effect of the recombination into
EW vector bosons and of the corresponding inverse process. Equation (H.1) will be however sufficient
for our discussion, and the generalization to the full case is straightforward.

In order to annihilate into SM particles with an unsuppressed rate, an excited QQ* bound state
needs to reach first a state with low angular momentum. Consequently, re-annihilation is efficient only
when the rate of de-excitation is larger than the one of dissociation®.

Obtaining a precise estimate of the ratio between the de-excitation and dissociation rates is difficult
because: i) the dynamics of these processes is non-perturbative and the lifetime depends on the dif-
ferent initial and final QQ* states considered; 7i) the rate of the dissociation process initiated by EW
vector bosons depends on their energy, which follows a thermal distribution and thus varies with the
temperature. The result is that the re-annihilation process can be efficient for some of the QQ* states
and inefficient for others, and it becomes more and more efficient as the temperature decreases.

This can be effectively described as a non-perturbative re-annihilation process happening with a
temperature-dependent cross section that saturates to a maximal value when dissociation becomes
inefficient for all the bound states. Since the evolution of the relic density takes place on relatively
short time scales, the final abundance after this second freeze-out can be approximately characterized
by two parameters: the final (maximal) value of the cross section, and the temperature at which this
final cross section is reached. These two quantities will be dubbed respectively as the re-annihilation
cross section, oyea, and the re-annihilation temperature, T.

During the last stage of re-annihilation, for sufficiently large I'g or I'gg+, the system of equations
given in eq. (H.1) simplifies. The abundance of gluequarks can be described by a single equation, see
eq. (5.28).

H.1 Estimate of the Re-annihilation Cross Section

In this appendix we try to estimate o, using considerations based on energy and angular momentum
conservation and simplified phenomenological models.

First of all, it is useful to determine if (depending on value of the temperature, Apc and Mg)
the recombination process takes place in a semiclassical or fully quantum regime. If the De Broglie
wavelength of the particle A = h/p is of order or larger than the typical interaction range R ~ 1/Apc the
collision is fully quantum mechanical, otherwise a semiclassical picture can be adopted. The condition
for a semiclassical behaviour can be recast as lmax ~ My vR » 1, where [ax is the maximum angular
momentum of the process given the short-range nature of the interaction. We find that the processes
occurring in the very early Universe (at T' = Tg) are always in the semiclassical regime in the region
of parameter space where the DM experimental density can be reproduced. Recombination processes
occurring at the CMB or at later times, instead, turn out to be quantum mechanical because of the
much lower gluequark velocity.

In the quantum regime, the lowest partial wave is expected to dominate in the low momentum

'In the opposite regime of fast dissociation, and much before the glueball decay, the last term in the second and
third lines of eq. (H.1) can be neglected. The solution to the Boltzmann equations is thus given by non-thermal
equilibrium values for the three populations which are close to their initial conditions at dark confinement.
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2 as the one considered here, general arguments of

limit & — 0. In the case of exothermic reactions
scattering theory suggest that the cross section scales as 1/k for k — 0 if the process can take place
in s-wave [281]. In the non-relativistic limit we thus expect a cross section o o 1/v. Since the process
is non-perturbative it is not possible to compute this cross section from first principles; furthermore,
since two different scales (Mg and Apc) appear in the problem, it is not clear what is the cross section

scaling®. In light of this we adopt two different benchmark scenarios:

1
Af
<Uannvrel> ~ (H2)
™
B (03 M3)

In the first one the cross-section is controlled by the size of the gluequark while in the latter is the size
of the s-wave ground state which fixes the cross section.

In the semiclassical regime we estimate the re-annihilation cross section using a simple dynamical
model. We first discuss the process x + x — QQ* + ¢ and then analyse the recombination into EW
vector bosons. Our semiclassical model is defined in terms of the following simplified assumptions:

e The gluequarks are modelled as hard spheres with radius of order R ~ 1/Apc, colliding with
impact parameter b and thermal velocity v.

e The interaction is short range, therefore the maximum impact parameter for which an interaction
occurs is bpax = 2R ~ 2/Apc. We define a corresponding geometric total cross section

41
2
Ttotal = b

max — 92  ° (H3)
Abe

For thermal velocities, by.x can be converted into a maximum angular momentum ly.x =

bmaxMyv ~ 2(M, /Apc)+/3T /M, for the colliding particles.

e Energy conservation implies that only some bound states can be formed. Among these we identify
the states with maximum angular momentum [, allowed by energy conservation and by the short
range constraint [y, < lpmax.

e Angular momentum conservation implies that only interactions with impact parameter smaller
than by, ~ (lx + 1)/(M,v) can lead to bound state formation 4. The short range interaction
constraint then forces b, < bpax. If no bound state is allowed by energy conservation we take
by = 0.

e The recombination cross section is estimated by the geometrical value o = 7b2.

2Exothermic reactions are those where the particles in the final states are lighter than those in the initial
state.

3The electroweak process x + ¥ — QQ* + V has a close nuclear analogue given by p + n — d + 7. Explicit
calculations reproduce the expected 1/v velocity dependence [282]. The non-perturbative constant in that case
can be predicted using elastic nucleon scattering data.

4The factor (I, + 1) takes into account the quantization of [, and ensures that the cross section is not
underestimated for small angular momenta.
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The model predicts a re-annihilation cross section into glueballs that can be conveniently expressed in
terms of a suppression factor €4 as follows:

b 2
Orea,® = Wbi = (b * ) Ototal = €& Ototal » (H4)
max
where €4 is computed to be
1 if 1y > lmax — 1,
AR (I +1)%
Ep = TW if l* < lmax — ].7 (H5)
0 if 1, does not exist.

Notice that € is a function of Mg, Apc and indirectly of the temperature through the value of [, and
.

In order to determine [, we use the energy balance equation in the center-of-mass frame:
2MX + QKX = MQQ* + Mg, (HG)

where K is the kinetic energy of the colliding gluequarks. The gluequark mass can be written in terms
of the quark mass plus a binding energy B,:

M, = Mg + B, (H.7)
Similarly, the mass of the di-quark bound state is decomposed as
MQQ* = 2MQ + BQQ* . (HS)

We set the gluequark binding energy to the value computed in QCD lattice simulations of SU(3)
gauge theories: By = 3.5 Apc [255] °. The binding energy of the QQ* bound state, Bggx, is instead
approximated by the energy levels of a confining model with a Coulomb potential plus a linear term [143]

V(r) ==L +or, (FL.9)

with aeg = apc(Mg) and o = 2.0 NDCAQDC. Therefore, Bgo# is computed numerically as a function
of the principal and orbital quantum numbers of the bound state. The energy balance of eq.(H.6) can
be rewritten as

Boo+ < 2By + 2K, — My, (H.10)

>The bare quark mass and binding energy are renormalization scheme dependent. Here we quote the result of
reference [255] valid in the RS scheme which, according to the authors, smoothly converges to the M S scheme in
the perturbative regime. Since we are interested in just an order-of-magnitude determination of the relic density,
we neglect the scheme dependence of B, in what follows. We notice however that our numerical estimate of
the re-annihilation cross section is rather sensitive to the value of By, hence the scheme dependence can have a
strong impact. We take such theoretical uncertainty effectively into account by considering different benchmark
scenarios, as explained in section 5.2.3.
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Figure H.1: Suppression factors ¢ (left panel) and ey (right panel) at T = Tp as a function
of the ratio Mg/Apc for Apc = 1TeV. In red the results of the numerical computation and in
black the interpolation used to compute the relic density. Discontinuities in the numerical results
are due to the integer nature of .

and implies a constraint on the maximal angular momentum [, (as well as on the principal number). In
general one should also impose the additional condition Mgg+ < 2M,, to ensure that the decay of the
QQ* state back into gluequarks is kinematically forbidden. In terms of binding energies, this condition

reads
BQQ* < QBX . (H.ll)

The average gluequark kinetic energy in eq. (H.10) is of order of the temperature, which in turn is
smaller than Apc. We set the glueball mass to its value computed on the lattice in SU(3) Yang-Mills
theories, Mg ~ TApc, and thus find 2K, — Mg < 0. As a consequence, the condition (H.10) is always
stronger than (H.11).

Since eq. (H.10) depends on the gluequark kinetic energy, which we set to K, = T in our numerical
computation, the value of [, will have a dependence on T'. For illustration we show in Fig. H.1 the value
of 3 as a function of Mg/Apc obtained at T' = Tp for Apc = 1TeV. Changing Apc while keeping
the temperature fixed leads to very small variations of eg. For T' = Apc, on the other hand, e turns
out to be small and of order of a fewx10~2 in the region of interest (100GeV < Apc < 10TeV and
1< MQ/ADC < 100).

In the case of the recombination with the emission of a vector boson, x +x — QQ* + V, we expect
the re-annihilation cross section to be suppressed by at least a factor as. Clearly, this process becomes
relevant only when the recombination with glueball emission is strongly suppressed or forbidden for
kinematic reasons. The transitions xy + x — QQ* + V that are relevant for re-annihilation are those
where the QQ* is sufficiently light so that it cannot decay back in two x’s. Such bound states satisfy
the condition (H.11), which requires the kinetic energy of the emitted vector boson to be larger than the
sum of the kinetic energies of the colliding gluequarks (Ky > 2K, ). The re-annihilation cross section
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can be written as
47

. (H.12)
Abo

Orea,V = EV Q2

and the suppression factor €y, can be estimated using our semiclassical model by following a procedure
similar to the one described for the case of glueball emission. We find that ey has a behaviour similar
to € as a function of its variables, and a slightly larger absolute value, see Fig. H.1.

H.2 Re-annihilation temperature

The temperature at which the re-annihilation cross section saturates and the relic abundance freezes out
is determined by two competing processes: de-excitation and dissociation. The cross section saturates
when the former dominates over the latter for all the bound states with Mg+ < 2M,,. We will now try
to argue that for T' > T'p there are states for which the dissociation rate is larger than the de-excitation
one. Therefore, the most reasonable scenario is one in which the re-annihilation cross section saturates
at Tp < Tp.

States with Mggx > 2M, — Mg can be dissociated by glueballs with vanishing kinetic energy.
Therefore, these states are the most easily dissociated since all the glueballs present in the Universe
contribute to their breaking rate

Lais = ne{oaisv) , (H.13)

where ogis ~ AB% and ng is the number density of glueballs which, at T > Tp, is dominated by the
population coming form the confinement of dark gluons: ne ~ T3. The de-excitation rate can be

estimated using the well known result for spontaneous emission °

FQQ* ~ 2 AE3 ‘<Rf|ﬂR,>’2 y (H.14)

where AF is the difference of energy levels. A reasonable estimate for this rate can be given for
transitions between these states and the ground level. In this case AE ~ Apc + a?.Mg, while the
matrix element is a fraction of the Bohr radius, rp, ~ 1/(apcMg). This estimate gives I'go# smaller than
Iqis and suggests that for T' > Tp re-annihilation cannot proceed through the formation of these states.
At T ~ Tp glueballs start to decay. Their number density decays exponentially and the dissociation
process becomes soon inefficient. Therefore all the states can contribute to the re-annihilation process
and the cross section saturates.

After the decay of the primordial glueballs, dissociation processes involving electroweak gauge
bosons can play a role. However their cross section is suppressed by an electroweak factor and, moreover,
their energy distribution is thermal. At T' < Tp one needs vector bosons in the tail of the Bose-Einstein
distribution in order to have enough energy to dissociate the bound states. As a result, the rate of this
process is exponentially suppressed by a factor exp[—(2By — Bgg+)/T'| and, even if it is efficient at Tp,
it becomes soon inefficient.

For these reasons, we consider the case in which the reannihilation occurs at Tp as the most

6This rate corresponds to dipole transitions and is associated to the usual atomic selection rules. Higher
multipole transitions can be considered, but we limit our discussion to the case of the dipole since we are
interested only in an order-of-magnitude estimate.
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plausible. This is in agreement with what suggested in Ref. [241]. Due to the large uncertainties on the
estimates of the rates, however (especially for what concerns I'gg+, where neither AE nor the matrix
element can be computed from first principles), we do not exclude the possibility that the dissociation
processes are never efficient and re-annihilation takes place directly at Apc.




Chapter 1

A model with hypercharge

In this article we focused on the minimal block V' of Table 5.1 as a benchmark for our analysis. However,
the L ® L model has many peculiarities and deserves a separate discussion. In particular, in this case
the DM candidate has non-vanishing hypercharge and interacts at tree level with the Z boson.

Higher-dimensional operators

This model has a U(1)p accidental symmetry, comprising dark parity as a subgroup, under which the
dark quarks L and L have charge +1. Differently from the other models, this symmetry is broken by
higher-dimensional operators with classical dimension [Ogec] = 5 of the form

Odec = G, 0" L.

In order to have a stable DM candidate and make the model viable, one can gauge the U(1)p in the
ultraviolet and break it spontaneously to the dark parity subgroup by means of a scalar field. For
instance, if a scalar ¢ with charge 2 acquires a vacuum expectation value the symmetry is broken
according to the pattern:

U(l)D - ZQ.

At the scale of the spontaneous breaking only operators that are dark-parity even are generated, hence
the gluequark is absolutely stable.

/-boson mediated direct detection

Below the confinement scale, the spectrum comprises a composite Dirac fermion with SM quantum
numbers 2;,, whose EM neutral component is identified with the DM. The non-zero hypercharge
induces a tree-level interaction with the Z boson which is strongly constrained by direct searches. The
corresponding spin-independent elastic cross section on nuclei N is given by [159]:

G2 M?
o= JFMN

= <N ~ (1 — 4sin? 0W)2>2 :
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where Z and N are the number of protons and neutrons in the nucleus N' and My is its mass. This
cross section is excluded by direct detection experiments for masses M, < 10® GeV [26]. This bound
rules out the model in the scenario Tr = Tp, corresponding to the left panel of Figure 5.4, but can be
satisfied in the scenario Tr = Apc.

In fact, the constraint from direct detection experiments can be also avoided by introducing a
heavy singlet gluequark. In this case the presence of Yukawa couplings induces a splitting among
the electromagnetically neutral Majorana fermions. The DM is the lightest among these fermions, so
that tree-level elastic scattering mediated by the Z boson cannot exist due to its Majorana nature.
Inelastic scatterings are kinematically forbidden if the splitting is large enough; this is easily realized
for My < y? x 10° TeV, where y is the Yukawa coupling. This scenario is analogous to Higgsino DM in
supersymmetry, see [178,58] for an extensive discussion.

Accidentally stable mesons

If the model is not in the conformal window, it is possible to consider the light quark regime. In
this case, the model is characterized by the presence of NGBs made of LL or LL constituents which
have U(1)p number +2 and therefore cannot decay. If the accidental U(1)p is gauged in the UV and
spontaneously broken to dark parity, then dimension-5 operators can be generated which let the NGBs
decay while keeping the gluequarks stable.
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