
Intuitive visualization of surface
properties of biomolecules

Raluca Mihaela Andrei

PhD Thesis in Molecular Biology 2012

Supervisor: Monica Zoppè

Scuola Normale Superiore di Pisa

To my brother,
Ciprian

The greater the obstacle,
the more glory in overcoming it.

(Molière)

RM Andrei – PhD thesis CONTENTS

CONTENTS
CONTENTS..i

LIST OF ABBREVIATIONS...v

ABSTRACT..vii

INTRODUCTION..1

1 General aspects of visualization..1

1.1 Visual perception..1

1.2 Visualization...3

1.2.1 Symbols..3

1.3 Scientific visualization..4

1.3.1 Scientific visualization steps...6

2 Proteins..7

2.1 Protein architecture..7

2.2 Why it is important to see proteins...10

2.3 Historical overview of protein visualization...11

2.3.1 Physical representations...11

2.3.1.1 All atoms representation..12

Kendrew model ...12

The Richards Box (Fred's Folly)..13

2.3.1.2 Backbone trace models...14

Byron Rubin's wire-bender model...15

Blackwell molecular models..16

2.3.2 Computer representations..17

1960's – 1970's..17

1980's..19

1990's..21

Software tools for general use..21

Animations...23

2.4 Experimental visualization techniques...24

2.4.1 Microscopy data..24

2.4.2 Atomic data...26

Interdisciplinarity..27

i

CONTENTS RM Andrei – PhD thesis

2.4.3 Databases...28

Atomic databases..28

Raw data databases..29

Visualization databases...29

2.5 Protein structure and properties representation....................................30

2.5.1 Protein surfaces..30

2.5.2 Protein surface properties...32

2.5.2.1 Hydropathy..32

2.5.2.2 Electrostatic potential..38

2.6 Open issues in protein visualization...40

3 3D animation and rendering..41

3.1 General aspects...41

Modelling..42

Animation...43

Rendering...44

Special effects..45

Compositing...46

3.2 Computer Graphics software...46

4 Molecular motion...46

4.1 Morphing in Blender Game Engine..48

THE AIM OF MY THESIS...53

TOOLS: PROGRAMS AND SCRIPTS..55

1 Programs...55

2 Scripts and scripting language..58

RESULTS..61

1 Early attempts with Maya-Autodesk..61

1.1 Atomic representation..61

1.2 Surface and properties representation...62

1.2.1 Hydropathy..63

1.2.2 Fluorescence..65

1.2.3 Energy content..66

1.2.4 Glycoproteins..67

ii

RM Andrei – PhD thesis CONTENTS

Maya to Blender..69

2 Results in Blender...69

2.1 Molecular surface representation...70

2.2 Molecular Lipophilic Potential...72

2.2.1 MLP calculation...72

2.2.2 MLP rendering...74

2.3 Electrostatic potential...79

2.3.1 EP calculation...79

2.3.2 EP representation...82

2.4 Protein animation...84

2.5 Automation...86

2.6 Movies..88

2.7 BioBlender..88

2.8 3D Interactive and still images...96

2.8.1 3DNP...97

2.8.2 SpiderGL...98

2.9 Ongoing project..101

Hydropathy on van der Waals surface...101

DISCUSSION..103

Choice of Blender...104

BioBlender..104

Elaboration of protein motion...105

Visualization of moving proteins with their molecular surface features...105

CONCLUSIONS AND FUTURE PERSPECTIVES..109

REFERENCES..111

APPENDIX: SCRIPTS..125

MLP.py..125

texture.py..127

import_curves.py..129

render.py ...131

MOVIES (LINKS)..133

NOMINATIONS AND AWARDS..135

iii

CONTENTS RM Andrei – PhD thesis

PUBLICATIONS..137

ACKNOLEDGEMENTS

iv

RM Andrei – PhD thesis LIST OF ABBREVIATIONS

LIST OF ABBREVIATIONS
3D – three-dimensional

aa – amino acid

APBS – Adaptive Poisson-Boltzmann Solver

API – Application Programming Interface

ATP – adenosine tri-phosphate

CG – computer graphics

CPK – Corey-Pauling-Koltun

CPU – central processing unit

EP – electrostatic potential

GE – game engine

GFP – green fluorescence protein

GPU – graphics processing unit

GUI – Graphic User Interface

MD – Molecular Dynamics

MEL – Maya Embedded Language

MLP – molecular lipophilic potential

NMA – Normal Mode Analisys

OS – oligosaccharide chains

RGB – red, green, blue

RMSD – root mean square deviation

v

RM Andrei – PhD thesis ABSTRACT

ABSTRACT

In living cells, proteins are in continuous motion and interaction with the
surrounding medium and/or other proteins and ligands. These interactions are
mediated by protein features such as Electrostatic Potential (EP) and hydropathy
expressed as Molecular Lipophilic Potential (MLP). The availability of protein
structures enables the study of their surfaces and surface characteristics, based
on atomic contribution. Traditionally, these properties are calculated by phisico-
chemical programs and visualized as range of colours that vary according to the
tool used and imposes the necessity of a legend to decrypt it. The use of colour
to encode both characteristics makes the simultaneous visualization almost
impossible. This is why most of the times EP and MLP are presented in two
different images. In this thesis, we describe a novel and intuitive code for the
simultaneous visualization of these properties.

For our purpose we use Blender, an open-source, free, cross-platform 3D
application used for modelling, animation, gaming and rendering. On the basis of
Blender, we developed BioBlender, a package dedicated to biological work:
elaboration of proteins motion with the simultaneous visualization of their
chemical and physical features.

Blender's Game Engine, equipped with specific physico-chemical rules is
used to elaborate the motion of proteins, interpolating between different
conformations (NMR collections or different X-rays of the same protein). We
obtain a physically plausible sequence of intermediate conformations which are
the basis for the subsequent visual elaboration.

A new visual code is introduced for MLP visualization: a range of optical
features that goes from dull-rough surfaces for the most hydrophilic areas to
shiny-smooth surfaces for the most lipophilic ones. This kind of representation
permits a photorealistic rendering of the smooth spatial distribution of the values
of MLP on the surface of the protein.

EP is represented as animated line particles that flow along field lines,
from positive to negative, proportional to the total charge of the protein.

Our system permits EP and MLP simultaneous visualization of molecules
and, in the case of moving proteins, the continuous perception of these features,
calculated for each intermediate conformation. Moreover, this representation
contributes to gain insight into the molecules function by drawing viewer's
attention to the most active regions of the protein.

vii

RM Andrei – PhD thesis INTRODUCTION

INTRODUCTION

1 General aspects of visualization

1.1 Visual perception

We are used to perceive information from the surrounding world through

the five senses: sight, hearing, smell, touch and taste. The information we

receive by sight, apparently without any effort, is the result of an elaboration

process involving the eyes and the brain.

Visual perception is the sense which allows the brain to intercept and

interpret visible light, creating the ability to see. Amongst the senses, Plato [Plato]

considers sight the most noble; while in the other senses, the process implies

two parts (a sensor and the sensed, like an ear and a sound), the sight involves

three parts – the viewer, the seen and the light. “Of all the senses, trust only the

sense of sight”, said Aristotle [Aristotle], ranking sight the first of the five senses.

The primacy of the visual is emphasized also by the popular phrase “seeing is

believing”.

Several different processes are involved in visual perception. Physiological

processes are the reactions of the cones and rods cells to different light waves,

which convert photons into a signal that is delivered to the brain throughout the

optic nerve. Neuro-psychological processes allow the brain to interpret the stimuli

received.

Seeing can be described as the process of decoding the information

1

Figure 1. Examples of incomplete drawings. Our
brain is capable to process the information received
from eyes and fill the gaps so that we can recognize a
triangle with a sphere on each tip, an S shape, a spiky
sphere, a snake and a panda. This technique is also
used for logos, for example IBM and CNR-IFC.

present in the acquired image. The Gestalt school of psychology [Koffka1935]

believed that our perception is the result of the relation between stimuli, rather

than the sum of the existing stimuli. Humans are able to form a complete mental

image from incomplete drawings because our brains fill the gaps (Figure 1); thus,

vision is not necessarily what we see but how our brain interprets the world

around us. Therefore, it is through our own experiences that we shape how we

perceive this world.

The fact that we humans are very good at extracting information through

visual observation is well synthesized in the old adage “a picture is worth a

thousand words”. Psychological studies showed that humans process visual

information very effectively.

Visual perception is a complex process that cannot be treated in details

here. As a short summary it includes [Sutaria1984]:

– colour perception and colour constancy – the ability to distinguish

different colours and to recognise different shades of colour in different

light intensities;

– shape perception and shape constancy – the ability to distinguish

shapes and to recognise a shape regardless of size, colour or the

angle from which it is viewed;

– spatial relations – interpreting the position of one object relative to

others;

– visual analysis and synthesis – the ability to differentiate between

parts and the whole object (e.g. letters that make up words);

– visual closure – the ability to complete an incomplete image (see

Figure 1);

– visual conceptualizing – the ability to make pictures in mind based

on observations, experiences and data;

– visual discrimination – the ability to interpret differences between

objects observed (e.g. b versus d);

– visual figure-ground distinction – the ability to focus on important

characteristics amidst many (e.g. selecting a blue pencil among many

or focusing on a particular word among others);

– visual memory – the ability to store and recall information perceived

with the eyes (e.g. remembering where an object is situated);

– visual pattern-following – the ability to recognise and repeat a visual

pattern;

– visual sequence – interpreting images in a realistic order (e.g.

arranging pictures of events in the sequence in which they are

presented).

1.2 Visualization

Visualization is the process of creating graphical representations such as

diagrams, images, animations, maps, etc. from data. It reflects also creative

ways of representing data visually. Even excluding highly codified visual

elements (letters, words, numbers), there is no limit to what kind of information

can be translated into an image.

Visualization is a human activity that arose thousands of years ago with

cave paintings, in the attempt of people to transmit their ideas to the others.

Since childhood, we use several types of graphical representations to describe

things. At kinder garden we draw houses, animals, trees, flowers, people and we

discover that images are a good way to communicate what we see. Then, at

school, teachers use drawings, schemes, maps to help us understand more

quickly concepts from physics, biology, chemistry, history etc.. We all normally

draw an approximate map to show someone the indications to a specific location

in town. All these are forms of visualization.

1.2.1 Symbols

Symbols surround us in our everyday life, from street signs to computer

icons and marks in scientific disciplines (Figure 2). They are an important issue in

our lives and are introduced to ease the communication of concepts and the

description of phenomena. We all agree on their significance and use them to

indicate precise things. Symbols are good instruments for communication,

convey unequivocal concepts and they do not raise doubts when seen.

1.3 Scientific visualization

In 1987, a special issue of Computer Graphics on 'Visualization in

Scientific Computing' published the formal definition of scientific visualization

[McCormick1987]: “Visualization is a method of computing. It transforms the

symbolic into the geometric, enabling researchers to observe their simulations

and computations. Visualization offers a method for seeing the unseen. It

enriches the process of scientific discovery and fosters profound and unexpected

insights”. The primary goals of Scientific Visualization is to provide insight into

scientific data and to allow scientists an easier way to improve and strengthen

their understanding and share their data. The transformation of numerical data

into a visual representation organizes them in a way that permits the brain to

understand relationships within large amount of data.

The type of data usually visualized are numbers, abstract theoretical

quantities or relationships, or reflect a gradation or a change in some quantity

with respect to others. These datasets are often converted into contours and

isosurfaces, glyphs, colour maps and image information. The main task of these

figures is to convey as much information as possible about the dataset when they

are observed by viewers, facilitating the recognition of patterns and/or the

detection of exceptions.

Visualization represents a way to explore (to search for new things), to

analyse (to verify existing hypotheses) and to present (to communicate results).

Maybe the most important characteristic of visualization is its ability to go beyond

the visual.

Traditional areas of Scientific Visualization are: engineering, medical

imaging, biology, chemistry, physics, astrophysics, meteorology etc..

The necessity of computer-aided scientific visualization emerged as a

Figure 2. Examples of symbols. Some symbols are commonly
used, others are discipline-specific (mathematics-physics, music).

result of rapid advances in computing and electrical engineering technologies,

especially high-performance computing during the mid-1980's. Since that time,

scientists and engineers have been flooded with increasing amount of data from

experimental equipments and computer simulators.

Complementary to the traditional hypothesis-test method of inquiry, data

visualization brings together data from different fields, allowing understanding

and processing of enormous amount of information quickly, as it is all

represented in a simple image or animation. In this way new questions may arise

and more discoveries can be made.

In the last years, the interest in biological processes visualization and

divulgation increased enormously. David Goodsell, in the preface of “The

machinery of life” wrote that his illustrations are meant to “allow us to look at the

molecular structure of cells, if not directly, then in an artistic rendition”. In his

books, the molecular drawings are in scale, which permits a comparison of

various illustrations to understand the dimensions [Goodsell1998]. Recently,

Nature Methods [Nature Methods2010] and Science Magazine [Science2011]

dedicated special issues to visualization of biological data. Computer-based

visualization is widely used in biology to help understand and communicate data,

to generate ideas and to gain insight into biological processes especially with the

advent of 'omics' studies. These journal issues present a collection of reviews

that examine the methods used to visualize genomes, alignments and

phylogenetics, macromolecular structures, system biology data and image-based

data.

The huge amount of programs available is an indication that biologists still

find that their exact requirements are not met by current tools and often prefer to

create their own.

Part of the job of being a scientist is to explain the work to others; these

might be colleagues, a wider scientific community or the general public. When a

scientist is writing for other scientists he or she typically uses very specific

scientific terminology, but when they explain complex cellular mechanisms to the

general public they need to use metaphors related to human experience to better

engage the imagination, and therefore the perception of the audience.

A more direct and very effective way to explain things is by drawing

models. Beyond this basic means of visualizing an idea or an observation, 3D

physical or virtual models are nowadays the most significant communication

method in Molecular Biology. The development of Computer Graphics made

explanations of molecular processes even easier by means of animations.

1.3.1 Scientific visualization steps

The basic elements of scientific visualization follow a series of procedural

steps, whose boundary is not always clear cut, but which can be roughly

classified as:

– data acquisition — scientific data are obtained through an iterative

process which consist of observational processes (satellite, medical,

microscopy imaging, genomics, proteomics), experiments and

simulations;

– data processing — raw data require adequate transformation

processes to organize, extract and enhance information;

– computer graphics — scientific data is converted into a displayable

form through two or three-dimensional geometrical modelling,

rendering and animation processes;

– observation and interaction — visible interaction with the data leads

the user to gain better understanding of the information.

Among the four elements described above, the choices pertaining to the

modelling and rendering processes may have the most significant impact on how

visualized images are perceived by viewers. In particular, good selection of

rendering methods and parameters can produce striking photo-realistic images.

Designers of scientific visualization systems have to consider the influence

of the human visual system on how such visual appearances are perceived. The

selection of appropriate geometries and visual features for rendering holds the

key to generating good information visualization. Colours and parameters of

rendering and animations are important in effectively conveying information.

2 Proteins

2.1 Protein architecture

Proteins are polymers of long sequences of 20 different amino acids. Each

aa consists of a chiral carbon atom (called α carbon) bonded to an amino group

(NH3
+), a carboxyl group (COO–), a hydrogen atom and a distinctive side chain

(residue), see Figure 3.

The specific chemical properties of each aa side chain determine the role

of the amino acid in protein structure and function. Amino acids can be grouped

in four categories according to the properties of the side chains:

– non-polar aa with hydrophobic side chains that tend to be located in

the interior of the protein, where contact with water is minimal;

– polar aa with hydrophilic side chains that tend to be located on the

surface of proteins and form hydrogen bonds with water;

– basic aa with positively charged and hydrophilic side chains located

on the surface of proteins;

– acidic aa with negatively charged and hydrophilic side chains

usually located on the outside of proteins.

Amino acids are chained together by peptide bond between the carboxyl

group of one aa and the amino group of the successive one (Figure 4). They

form polypeptide chains of variable length, up to thousands of aa, with two

distinct ends: N terminus (the one terminating in an amino group) and C terminus

(the one terminating in an carboxyl group).

Figure 4. Polypeptide chain structure. Proteins are formed by a sequence of aa connected by
the planar peptide bond (represented here as a rigid plane). The bond length and the direction of
rotation of the bonds (ϕ and ѱ rotational angles) are depicted.

Figure 3. Amino acid general structure. The structure of
an aa consists of a fixed structure (the same for all aa)
formed of an alpha carbon, an amino group, a carboxyl
group, a hydrogen, and a variable side chain (residue).

Four distinct aspects define protein's structure (Figure 5) as described by

K.U. Linderstrøm-Lang in 1952 [Linderstrøm-Lang1952]:

– primary structure is the sequence of aa in the polypeptide

[Sanger1951, Sanger1953], also called chain, from N terminus to C

terminus;

– secondary structure is the local, regular arrangement of aa in the

polypeptide, stabilized by hydrogen bonds between CO and NH groups

of the main chain; the most common are the α-helix and the β-sheet

[Pauling1951a, Pauling1951b, Pauling1951c]. An α-helix is a coiled

conformation with the CO group of one aa forming a hydrogen bond

with the NH group of the aa located four residues downstream along

the linear polypeptide chain. A β-sheet is formed by two or more

segments of the polypeptide chain (that can be also distant in

sequence) lying side by side and held together by hydrogen bonds. It

can be composed of several strands, oriented either parallel or

antiparallel to each other;

– tertiary structure represents the three-dimensional folding of the

polypeptide chain held by interactions between side chains from

different regions of the primary structure [Kendrew1958]. Usually, α-

helices and β-sheets are connected by loops and fold into compact

globular structures called domains, with hydrophobic aa localized in

the interior and hydrophilic aa facing the surface of the protein. The

tertiary structure is also determined by the interactions between polar

and charged aa side chains, forming hydrogen and ionic bonds. The

structure of the proteins in the secretory pathway are further stabilized

by S-S bonds between cysteines;

– quaternary structure consists of interactions between different

polypeptides in proteins composed of more than one chain

[Svedberg1927].

Additional levels of structural classification can be identified:

– super-secondary structures – proteins show patterns of interaction

between helices and sheets close together in the linear sequence,

including α-helix hairpin, β-hairpin and β-α-β unit;

– domains – many proteins contain compact, independent units, called

domains. They are difficult to define precisely and at present the

subdivision of structures into domains varies according to the

classification used, which can be structural or functional;

Figure 5. Aspects of protein structures.
Primary structure is the sequence of aa. In blue
are coloured the aa that form an α-helix and a
β-sheet (secondary structure). Tertiary
structure represents the 3D organization of the
protein in space. The blue elements of
secondary structure show that distant aa in the
linear sequence may reside close in the 3D
space. Quaternary structure defines the
assembly of different polypeptides in multi-
chains proteins, in red one domain.

– modular proteins – they are multi-domain proteins which often

contain many copies of closely related domains: for example,

fibronectin contains 29 domains including multiple repeats of 3 types of

domains called F1, F2 and F3.

Analysis of the structures of proteins revealed similarities between

proteins, an important issue of structural biology. A classification of proteins

structures can be consulted on SCOP (Structural Classifications of Proteins)

[Murzin1995] and CATH (Class, Architecture, Topology, Homologous superfamily)

[Orengo1997] databases. Although based on different criteria, these two

databases classify proteins structures into 4 categories: all-α (structures

essentially formed by α-helices), all-β (structures essentially formed by β-sheets),

α/β (structures with α-helices and β-strands) and α+β (structures in which α-

helices and β-strands are largely segregated).

2.2 Why it is important to see proteins

Proteins are essential components of cells and are involved in every

aspect of biological activity. They have structural functions (actin, tubulin),

mechanical function (myosin), act as transporters of small molecules (myoglobin,

haemoglobin) or cellular vesicles (kinesin, dynein), transmit information within

(kinases) and between cells (protein hormones), provide defence against

infections (antibodies), act as enzymes, receptors, are involved in cell adhesion,

cell cycle, DNA transcription and replication, RNA synthesis and the production of

more proteins.

Molecular genetics research revealed that many diseases stem from

specific protein defects [Alberts1998, Eisenberg2000]. Vast research activity is

devoted to protein structures and functions, such as in the field of molecular

biology or drug design. Seeing the proteins at work is crucial to understand their

behaviour, the mechanisms they are involved in, to be able to create drugs and

interfere where necessary. By being able to visualize proteins and other

macromolecules in the cellular environment, we could get essential insights in

the mechanisms of life.

To accomplish this, an important aspect is the information of the three-

dimensional structure of proteins which allows understanding of protein fold and

provides an insight into the way the proteins act in vivo. Understanding how

particular amino acids residues are involved in protein function, especially when

combined with knowledge of the 3D structure of proteins, helps to grasp how

particular sequences in proteins are involved in biological functions.

2.3 Historical overview of protein visualization

The solution of the 3D structure of myoglobin in 1958 by Kendrew

[Kendrew1958] marked the beginning of the new era of structural biology. Since

then, a wealth of protein structures has been solved by X-ray crystallography,

NMR spectroscopy and cryo-electron microscopy and today the Protein Data

Bank (PDB) [Berman2000, Protein Data Bank] counts over 67.000 proteins

structures. These data provide much detailed information that help biochemists

understand macromolecular functions. Protein structures are obtained and stored

as atomic coordinates, which are impossible to interpret by the human brain,

therefore they must be presented visually. After solving a protein's structure, its

visual representation became the second preoccupation of scientists. Some

representation methods are described below.

2.3.1 Physical representations

In 1958, the group of John Kendrew solved the myoglobin three-

dimensional structure at 6 Å resolution [Kendrew1958]. Myoglobin is a heme-iron

containing protein that carries and stores oxygen in muscle cells. Two years later

the same laboratory obtained a map of the protein at 2 Å resolution

[Kendrew1960]. For solving the structure of a protein, Kendrew was awarded the

Nobel Prize for chemistry in 1962. The first model of a protein was a plasticine

model of myoglobin (known also as the 'sausage model') made by Kendrew at

Cavendish laboratory in Cambridge (UK). Its cylindrical shape, showing the track

of the main chain and supported by wooden rods protruding from a pegboard

base can be admired at the Science Museum in London (Figure 6).

2.3.1.1 All atoms representation

Kendrew model
In 1969, Kendrew built the first atomic model of a protein (Figure 7 left);

the structure, 1.8 x 2.5 m, looked like a 'forest of rods'.

For the interpretation of the 2 Å map of myoglobin with 1260 atoms

(hydrogens excluded), Kendrew invented a new modelling technique inspired

from the toy construction kit Meccano. About 2500 steel rods, 1.8 m high, were

positioned on the pegboard; these were decorated with coloured clips to indicate

the electron density, so that atoms could be positioned. After the insertion of

atoms of the main chain, the densities related to the side chains could be seen at

appropriate intervals. The scale of the model was chosen 5 cm/1 Å to allow

human hand to reach and fix the clips. The positions of the atoms were

continually adjusted as the structure was refined.

Figure 6. Myoglobin first physical model. The plasticine model of the main chain of myoglobin,
made by Kendrew, is supported on wooden rods.

Most of the objects, that can be now admired at the Science Museum in

London, originally were part of the laboratory where they were handled,

discussed, measured, tested against data and corrected and refined.

A similar procedure was employed for the double-helical model of DNA,

built of brass models and specially-cut metal bases (Figure 7 right) created by

James Watson and Francis Crick from the same Cambridge laboratory.

The Richards Box (Fred's Folly)
In 1968, in a sabbatical year in David Phillips’s lab for structural biology at

Oxford University, just after solving the structure of ribonuclease at Yale

University, Fred Richards and co-workers introduced an optical comparator

[Richards1968] that facilitated the building of Kendrew-style brass models (Figure

8). Electron densities resulting from crystallographic solutions were printed by

computers on paper, and electron density contour lines were traced by

connecting numbers of similar values on the paper. These contour lines were

then traced onto transparent plates (1 x 1 m). The plates were mounted vertically,

equally spaced, creating a sliced three-dimensional electron density map. Half-

silvered (semi-transparent) mirrors were arranged between the map and the

hand-made wire model to superimpose the electron density map upon the brass

model and adjust the brass atomic pieces so that they fit the density. As larger

molecules were solved, the scale was reduced from 5 cm/Å as used initially to

2.5 cm/Å, and then to 1.0 cm/Å.

The Richard's box remained an indispensable tool used by crystallography

labs around the world for about 10 years, when it was finally replaced by

Figure 7. First brass models. (left) Kendrew building the all-atom brass representation of
myoglobin. The rods help building and stabilizing the complex brass model. (right) The brass
model of DNA created by Watson and Crick.

computer graphics systems. The earliest computer systems were referred to as

"electronic Richard's Boxes" and nowadays programs still use the same basic

superposition of electron density maps and atomic models for structure building.

2.3.1.2 Backbone trace models
The physical models containing all atoms were large and cumbersome.

Backbone trace models were used to simplify the polypeptide chain as a series

of virtual bonds connecting the α−carbons. The protein fold is specified by the

bend angles for each α−carbon and the torsion angles along virtual bonds. Two

examples of this category were in use in the 1970's: Byron Rubin's wire-bender

model and Blackwell Molecular Models.

Byron Rubin's wire-bender model
The wire-bender model consists in a 3 mm-diameter steel rod bent

according to the pattern of α-carbon chain of a protein. The bending was

accomplished by means of a machine (Byron's Bender [Rubin1972, Rubin1985])

Figure 8. Richard's Box device.
Behind the half-silvered mirror at
the top is a transparent plastic
sheet with a trace of a section of the
electron density map. Gazing
directly into the mirror, one can see
the electron density superimposed
with the physical model (at bottom).
Light boxes at the bottom sides
illuminate the section of the physical
model represented according to the
electron density map. Multiple
plastic sheets containing different
sections of the electron density map
are stored in a rack at the top right
(out of view).

and a list of torsion and bend angles. The shortcoming is variability of the scale,

since the α−carbon to α−carbon length is not fixed. For the first time, Byron

Rubin introduces the ribbon representation of proteins: helices for α-helices and

arrows for β-strands, a very common representation of proteins structures in

nowadays software. The small backbone wire models from Byron's Bender were

the most manipulable and portable models available at the time (Figure 9).

An example illustrating the importance of models occurred at a scientific

meeting in the mid 1970's. David Davies brought a Bender model of an

immunoglobulin Fab fragment, and Jane and David Richardson brought a

Bender model of superoxide dismutase [Beem1977]. While comparing these

physical models at the meeting, they realized that both proteins use a similar

fold, despite having only about 9% sequence identity. This incident was the first

recognition of the occurrence of what is now recognized as the immunoglobulin

superfamily domain in unrelated proteins. The insight was published in a paper

entitled "Similarity of three-dimensional structure between the immunoglobulin

domain and the copper, zinc superoxide dismutase subunit" [Richardson1976].

Blackwell molecular models
Blackwell Molecular Models [Fletterick1982, Fletterick1985] (Figure 10)

are more complicated and provide more chemical information. It is a ball-and-

stick model system representing α−carbon positions and the peptide link

between adjacent alpha carbons.

Figure 9. Byron Rubin brass ribbon models. (left) rubredoxin and (right) human neutrophil
collagenase (on permanent exhibition at the Smithsonian Institution, Washington DC USA, 28 cm)

They are made of plastic, in twenty different colours to code for amino acid

type, which push-fit together at 1 cm/Å scale and the α-carbon to α-carbon bond

length is 3.8 cm. The scales and indices observed on the balls and rods serve to

mark the angle of bend and the angle of torsion of consecutive amino acids in the

molecule. This system allows the attachment of specific side chains. Support

rods are added after the model is built, to fix some of the distances between α-

carbons and to stabilize the finished model.

Since then, various groups built protein models, a significant collection can

be seen at http://3dmoleculardesigns.com/.

Figure 10. Blackwell representation. The 9 aa of an α −helix are identified by letters from a to i.
Each element from the kit is identified by a number, to ease building of macromolecules. The
spheres and rods are provided with verniers and scales to set atomic diameters and the bend,
torsion and dihedral angles.

http://3dmoleculardesigns.com/

2.3.2 Computer representations

Physical and CG representations co-evolved in the early times of

structural biology, both used to understand protein structure.

1960's – 1970's
In 1966, Cyrus Levinthal and his colleagues at Massachusetts Institute of

Technology developed the first system [Levinthal1966] to display what we call

today a “wireframe” representation of molecules structures on a monochrome

oscilloscope screen (the terminal display was named Kludge, and it was

developed at Project MAC (Mathematics and Computation) [Stotz1963]), shown

in Figure 11.

The three-dimensional effect was achieved by rotating constantly the

structure on the screen. The rate of rotation was controlled by a globe-shaped

device on which the user rested his/her hand (an ancestor of today's trackball).

At that time, the full potential of such a set-up was not completely settled. The

conclusion of Cyrus Levinthal's description of the system in Scientific American,

indicated that there was no doubt that it was paving the way for the future: “It is

too early to evaluate the usefulness of the man-computer combination in solving

real problems of molecular biology. It does seems likely, however, that only with

this combination can the investigator use his 'chemical insight' in an effective

way. We already know that we can use the computer to build and display models

of large molecules and that this procedure can be very useful in helping us to

understand how such molecules function. But it may still be a few years before

we have learned just how useful it is for the investigator to be able to interact

Figure 11. First device for wireframe representation. (left) The screen with the globe that
control the direction and speed of image rotation. (middle) Overview of the molecular modelling
system, with the Kludge in the lower left corner. Notice the space-filling models in front of the
screen. (right) Details of the structure of myoglobin, showing the heme group with two segments
of the polypeptide chain surrounding it.

with the computer while the molecular model is being constructed.”

Levinthal's forecast slowly developed in the following decades. In 1965,

Carroll K. Johnson, from Oak Ridge National Laboratory, released ORTEP (Oak

Ridge Thermal-Ellipsoid Plot Program) [Johnson1965], a program written in

FORTRAN, to produce stereoscopic drawings of molecular and crystal structures

with a pen-plotter (Figure 12). The stereoscopic view aid the visualization of

complex macromolecules. It rapidly became a favourite tool of crystallographers

to produce illustrations of structures for conference presentations and

publications. This program is still in use, and its latest version, ORTEP III, was

released in 2000. The current version retains all features and functionality of the

original, with the exception of the output which is now displayed on the screen,

instead of being printed on paper.

These programs could not directly interpret the crystallographic data; the

electron density maps were converted into Kendrew “sticks” models and the

coordinates, measured by hand were introduced into the computer to build the

virtual model. The next important step molecular visualization was the

development of software tools able to interpret crystallographic data.

In the mid 1970's, superoxide dismutase [Beem1977] was the first protein

solved crystallographically and visualized entirely with computers by David and

Jane Richardson and colleagues. They used a density-fitting computer system

called "GRIP" at the University of North Carolina [Tainer1982].

In the late 1970's, more and more crystallographers made the transition to

building models for newly solved protein crystals with computers ("electronic

Richards' boxes") rather than with physical Kendrew-style models. One of the

major advantages was that the computer kept track of the atomic coordinates,

Figure 12. ORTEP system. (left) ORTEP pen-plotter machine. The physical model of the same
molecule drawn also by ORTEP can be seen in the image. (right) Example of stereoscopic
drawing designed with ORTEP.

contrary to the Kendrew model where atomic coordinates had to be measured

manually, atom by atom. Four systems were widely used: (1) MMS-X, developed

at the Computer Systems Laboratory at Washington Univesity in St. Louis

[Barry1974, Miller1981], (2) GRIP-75 at the Computer Science Department of the

University of North Carolina at Chapel Hill [Tsernoglou1977, Brooks1977,

Wright1981, Lipscomb1981, Pique1991], (3) BILDER developed at the Medical

Research Council Laboratory for Molecular Biology in Cambridge, England

[Diamond1981a, Diamond1981b], and (4) FRODO [Jones1978, Jones1981,

Jones1985].

1980's
In 1980, TAMS (Teaching Aids for Macromolecular Structure) project

[Feldmann1980] produced the first stereo views of macromolecules (Human

Immunoglobulin G). The stereo projection was obtained by using two

conventional slide projectors equipped with orthogonal polarizing filters, each

viewer wearing polarized glasses. This technique is still in use today and to make

easier the understanding of the three-dimensionality of the molecules on printed

documents, the images are displayed side-by-side (Figure 13).

During the 1980's, the most popular computer system for

crystallographers was manufactured by Evans & Sutherland. These computers

displayed the electron density map and enabled an amino acid sequence to be

fitted manually into the map. The colour display showed a wireframe rendering of

the amino acid chain, and could be rotated in real time. These systems used

scalable vector graphics. Rapid rotation was accomplished with three hardware

Figure 13. Stereo slide pair from the TAMS project. The example shown here is a crossed
eyes stereo of human IgG 'DOB', alpha carbons only; carbohydrate white, light chain yellow,
heavy chains red and blue.

matrix multipliers (one for each dimension, X, Y, and Z). The software package

most often used on E&S computers was FRODO (now evolved to Turbo-

FRODO).

During the 1980's, David and Jane Richardson pioneered computer

graphics representations of molecular structure with a series of programs

developed at Duke University. In the late 1980's, this led to a program called

CHAOS written in Evans and Sutherland PS300 function-net language

[Richardson1989].

In 1981 Fermi and Perutz published the 'Atlas of Molecular Structures' with

stereodiagrams of myoglobin and haemoglobin. To facilitate the viewing, the

diagrams were printed in red and green and a foldable pair of red-green glasses

was delivered with the book. This technique to provide images with stereoscopic

3D effect is called anaglyph.

The anaglyph images consist of two colour layers (red and green or cyan)

superimposed with an offset with respect to each other and the 3D effect is

perceived by wearing glasses with coloured lens: red for the left eye and green or

cyan for the right eye.

1990's
With the gradual progress of Computer Graphics tools and techniques, the

development of software for protein visualization increased. For example,

Molscript program [Kraulis1991], by Per Kraulis and released in 1991, was the

successor of ORTEP, developed in 1965. Molscript is one of the main programs

currently used for plotting protein structures.

A team led by TA Jones, from Uppsala, Sweden wrote the program O

[Jones1991], in 1991. The program is designed for scientists with a need to

model, build and display macromolecules. O is mainly aimed at the field of

protein crystallography, bringing into use several tools, which ease the building of

models into electron density, allowing this to be done faster and more correctly.

In 1992, the Richardsons described the kinemage (from kinetic image),

interactive animated images of molecules, and their supporting programs MAGE

and PREKIN [Richardson1992]. By virtue of its implementation on the Macintosh,

this was the first program which brought molecular visualization to a large

number of scientists, educators, and students. The programs were described in

the lead article in the first issue of the journal Protein Science (early 1992), and

the program itself was provided on a diskette which accompanied that issue. This

article also included instructions for using the program PREKIN together with

MAGE for authoring new kinemages. In the subsequent five years, over a

thousand kinemages accompanied articles in Protein Science, the majority being

authored or edited by Jane Richardson.

Software tools for general use
The first tools for visualization of macromolecular structures were used

only by specialists. The increasing number of macromolecular structures solved

contributed to the development of software tools for general use, easier to

handle.

In 1992, Roger Sayle developed RasMol (Raster – the array of pixels on a

computer screen – Molecules), an open-source, command-line and stand-alone

program for macromolecular visualization [Sayle1992, Sayle1995]. The software

included a ray-tracing algorithm that could shade solid objects as they rotated in

space. The users explore the molecules structures via a scripting language which

permits selection of proteins chains, different colouring and representations.

RasMol is one of the most successful software due to an excellent compromise

between rendering speed and image quality which permits even large molecules

to be rotated in real-time. RasMol was the first program to run on personal

computers. Before it, visualization software ran on graphics workstations only.

Since then a wealth of visualization tools have been created and now

everybody can use them with minimum effort. Tools like Chimera [Pettersen2004,

Chimera], MOLMOL [Koradi1996, MOLMOL], PMV [Sanner1999], PyMOL

[DeLano, PyMOL software], Swiss-PDBViewer [Guex1997, Swiss-PdbViewer],

VMD [Humphrey1996, VMD], Yasara [Krieger2002] are widely used. A full list of

free molecular visualization programs can be consulted on The World Index of

BioMolecular Visualization Resources web page [MolVisIndex].

Besides these stand-alone tools, web-based plug-ins were developed

such as Chime MDL [Chime] and Jmol [Jmol viewer, Jmol website], integrated on

Protein Explorer [Martz2002, Protein Explorer] and Proteopedia web-sites

[Hodis2008, Proteopedia] respectively, and FirstGlance, PDBe, RSCB PDB.

Additionally to protein structure visualization, these programs provide also

other important analysis tools for proteins characterization: alignment, side

chains building, energy minimization, calculation of surface properties, such as

electrostatic potential and hydropathy.

Commonly available graphic cards support now the use of OpenGL

Shading Language (included in software such as VMD and PyMOL), which is

used to write small programs, called shaders (described below in Rendering

section), that produce sophisticated visual effects. QuteMol [Tarini2006] (Figure

14 left) goes a step further and uses GLSL to produce illustrative rendering

effects, computing ambient occlusion to better display three-dimensionality of the

molecules. ProteinShader [Weber2009] (Figure 14 right) is a Java-OpenGL

molecular visualization tool that introduces pen-and-ink style rendering for

ribbons to enhance the three-dimensionality and uses shaders to map text labels

onto the surfaces of ribbons and tubes, shown in colours.

Animations
Using 2D images to show the structure of biomolecules, large part of the

3D information is lost. If images are worth a thousand of words, then animations

are worth much more and scientists became aware of the power of molecular

movies to communicate their results. Although animations are costly in terms of

user effort and computing time (hundreds or thousands of individual images are

needed for a rendered movie) they are useful to highlight important features by

offering a 'guided tour' of structures and macromolecules interactions.

In 1978, Harrison's group at Harvard solved the first atomic resolution

structure of a spherical virus [Harrison1978]. A movie was the way they chose to

divulgate the assembly of the virus; they shot with a 16 mm film with a Bolex

camera from a computer screen, frame-by-frame. Thus, the movie showing the

virus assembly became self-explanatory.

The remarkable progress in computer power and software tools permitted

the development of programs to include movie generation, for example Chimera

Figure 14. Examples of protein representations. (left) space-filling representation using
QuteMol and (right) ribbon representation using ProteinShader.

or eMovie [Hodis2007] (a plug-in for PyMOL) enabling scientists to create

informative molecular animations about their research. The commands include

rotations, zooms, fading, colouring and different representations.

2.4 Experimental visualization techniques

Humans curiosity to understand biology contributed to the development of

sophisticated techniques and methods for biological investigation. The easiest

way to understand the shape of things is to look at them, with the help of light.

Visible light is part of the electromagnetic spectrum (Figure 15), which extends

over a wide range of frequencies (or wavelengths) and includes also radiowaves,

microwaves, infrared, ultraviolet, X-rays and γ-rays.

When the objects under investigation are too small to be seen by the

naked eye, proper instruments are needed. By exploiting different regions of the

electromagnetic spectrum and the interaction of atoms with radiation, important

information can be acquired about the structure and dynamics of proteins. A wide

range of techniques are available for studying proteins.

2.4.1 Microscopy data

The basic technique used by biologists is optical microscopy. With a

Figure 15. Electromagnetic spectrum size scale. Electromagnetic spectrum frequencies and
wavelengths and a comparison between the wavelength and the size of macro and micro scale
objects.

resolution of 0.2 µm, cells and large subcellular organelles such as nuclei,

chloroplasts and mitochondria can be observed. Usually, the cells are fixed in

order to stabilize and preserve their structure (brightfield and darkfield

microscopy) and then stained with dyes to increase the contrast between the

different components (brightfield microscopy).

It is also possible the visualization of living cells, without staining (phase-

contrast microscopy) or by labelling the molecules of interest using fluorescent

markers (the most used is Green Fluorescent Protein – GFP) to study their

intracellular distribution (fluorescence microscopy). A variety of methods have

been developed to study the displacement (fluorescence recovery after bleaching

– FRAP) and interactions (fluorescence resonance energy transfer – FRET) of

GFP-labelled proteins in living cells.

2D images are very informative, but cells are three-dimensional entities.

The introduction of laser and various complex arrangements of mirrors

contributed to obtain 3D high-resolution images of the samples (confocal, multi-

photon excitation, super-resolution fluorescence, stimulated emission depletion –

STED, photo-activated localization – PALM, stochastic optical reconstruction

microscopy – STORM) [Cooper2007].

To visualize components of the cell smaller than 100 nm, light microscope

is not suitable due to its limited resolution. Using electrons with wavelength of

0.004 nm, electron microscopes can achieve a greater resolution than light

microscope, down to 1-2 nm. Two distinct phenomena are involved in various EM

techniques: electrons transmission (transmission electron microscopy – TEM)

through the specimen and electrons scattering (scanning electron microscopy –

SEM). The observation of samples in their native environment is possible at

cryogenic temperatures (-195 °C) by means of cryo-electron microscopy and

cryo-electron tomography, which creates 3D reconstructions from 2D images.

These are the classical microscopy techniques, included in textbooks. The

high speed of technical development and newest scientific discoveries contribute

to the continuous development of new microscopy techniques. Almost every

week, a new and sophisticated technique is published.

2.4.2 Atomic data

To investigate molecular structures at atomic level (Ångström – 10-10 m),

the most common methods are X-ray crystallography [Drenth1994] and nuclear

magnetic resonance (NMR) spectroscopy [Wüthrich1995, Kai1997]. The

interpretation of the results obtained by these techniques is not unambiguous

and entails assumptions and approximations depending upon knowledge of the

protein from other sources, including biochemistry.

X-ray crystallography [Drenth1994] is a technique that exploits the fact

that X-rays are diffracted by the crystals. X-rays (wavelength 0.5-1.5 Å) are

scattered by the electron clouds of the atoms of the studied molecule. For good

results, high-quality crystals are needed; the best crystals are pure, perfectly

symmetrical, containing a vast number of three-dimensional repeating arrays of

precisely ordered, identical molecules. The effect of ordering the molecules in

crystals is to enhance the intensity of the scattered signal. The crystals are

usually very small (< 1 mm) and can be of different shape, from perfect cubes to

long needles, obtained by growing concentrated solutions of the molecule in

different conditions, such as temperature, pH and concentration of salts and

protein. The crystal is rotated while it is bombarded with X-rays, providing

electron diffraction maps. From the intensity of each diffraction spot in the 2D

maps for different angles, the value of electron density can be calculated in every

point of 3D coordinates (xyz), using Fourier transform. Next, all values of electron

densities are integrated and 3D maps are obtained. A model is then progressively

built into the experimental electron densities, refined against the data until an

accurate molecular model is obtained and the position of each atom in the crystal

can be retrieved.

Although very important residues have been (and will be) obtained by X-

ray crystallography, the technique has some limitations: for example hydrogen

position is very difficult to retrieve, since they have only one electron. Some

proteins are refractory to crystallization (membrane proteins or very dynamic

loops of proteins, considered disordered parts). The accuracy of the structure

determination is validated by the resolution, a measure of how much data was

collected. More data acquired, more details are present in the electron-density

map features. The resolution is expressed in Å, lower value meaning higher

resolution. Values lower than 1.5 Å indicate less ambiguity in positioning the

atoms. An index of the structural quality is the R-factor, a measure of how well

the model reproduces the experimental data. It is expressed as a percentage of

disagreement between the observed diffraction pattern and the calculated model.

R-factors less than 20% indicate well determined structures.

Nucleic magnetic resonance spectroscopy [Wüthrich1995, Kai1997] is

a method used to obtain information about the structure and the dynamics of

proteins by exploiting the magnetic properties of certain atomic nuclei (2H, 15N or
13C). NMR is performed on aqueous samples of highly purified proteins labelled

with 13C and 15N and introduced in a magnetic field. The results are chemical

shift spectra relative to a reference signal. From these chemical shifts, a set of

distances between atomic nuclei that define both bonded and non-bonded close

contacts in the molecule are retrieved. Using this information, the atoms positions

are calculated, usually more conformations being solved, which may reflect

structural dynamics. In general, more internuclear distances measured indicate a

higher accuracy of the models. NMR spectroscopists report overall RMSD

between the atoms in secondary structure elements in all coordinates sets in the

ensemble of structures as a measure of structure quality. An RMSD value of 0.7

Å indicates high-quality structures. In contrast to X-ray crystallography, NMR has

been limited to relatively small proteins, usually smaller than 35 kDa. New

development allows for NMR study of large proteins as shown in reviews

[Mittermaier2006, Tzakos2006, Foster2007].

Electron microscopy arose as a technique usually used to solve 3D

structures of large ensembles, such as viruses, nucleic pores, ribosomes; with a

few Å resolution, it bridges the gap between the atomic information of single

molecules and the micron size information of cellular data (between the

molecular and cellular structure) [Studer2008, Zhou2011].

Interdisciplinarity
Biology is a discipline that encompasses many orders of magnitude in size

and time. Even considering only the cell level, there is a difference of 6 orders of

magnitude between the size of the cell and the dimension of an atom. In order to

gain a deep understanding of biology it is necessary to combine data provided by

different research fields like biochemistry, genetics, biophysics, molecular and

cellular biology, structural biology, immunology, visualization techniques, etc..

Interdisciplinarity is key to build a rich image of cellular environments and

processes. Cells are delimited by a lipid bilayer, the plasma membrane. The

interior of the cell is a crowded ambient, with the cellular components (nucleus,

endoplasmic reticulum, Golgi apparatus, proteins and small molecules)

immersed in water solution. Here, the inhabitants are involved in a vast range of

processes (from responding to outside signals that induce muscle contraction or

production of antibodies to synthesis of new proteins or cellular division). All

these processes are part of the cellular activity that can be understood only

merging knowledge from various research fields.

2.4.3 Databases

Atomic databases
Protein structures are deposited on the Protein Data Bank [Berman2000,

Protein Data Bank], a freely accessible repository of experimentally determined

three-dimensional structures of macromolecules. The majority, 85%, were solved

using X-ray crystallography. These data are stored in .pdb files (identified by a 4-

digits number), which contain several information: macromolecule's name and its

organism of origin, experimental procedure used to obtain the structure and the

detailed parameters, the authors and the related references, the primary and the

secondary structure, specification of number of NMR models where the case,

various structure refinement methods and their parameters, details about

geometry and stereochemistry (covalent bonds length and angles, torsion

angles, planar groups, cis-trans geometry etc.), list of heterogeneous atoms in

the entry, connectivity between residues and other molecules (oligosaccharide

chains, ligands, etc.). The largest part is dedicated to define the position (3D

coordinates) of all atoms. Each line includes the atom identity, the corresponding

amino acid, the chain identifier, the atomic x, y, z coordinates, occupancy

parameters and thermal parameters (also called B-factor, an indication of the

relative mobility of an atom). The file can also report the connectivity annotation

(covalent bonds, disulfide bonds). The PDB file format can be read by humans.

Each line in a .pdb file is self-identifying and consists of 80 columns.

A crystallographic PDB entry stores atomic coordinates of the crystal

asymmetric unit (ASU), rather than of the biological assembly (also referred to as

the biological unit) which is the functional form of a biomolecule. An ASU may

contain one biological assembly, a portion of a biological assembly or multiple

biological assemblies. Starting from ASU, several symmetry operations

consisting in translations, rotations or their combinations may be needed to

obtain the biological assembly. PDB entries contain two records that define the

biomolecule: REMARK 300, which provides its subunit composition related to

ASU and REMARK 350, which cites the matrices needed to build it from the

ASU. For example, if a homodimeric protein crystallizes with a monomer in the

ASU, REMARK 300 mentions one chain and REMARK 350 two matrices. But if

there is a dimer in the ASU, REMARK 300 cites two chains, and REMARK 350,

only the identity matrix.

Raw data databases
The Protein Data Bank stores the final results of a molecular structure

study: the 3D coordinates of each atom. The raw data, such as NMR spectra and

electron microscopy density maps are stored in more specific data bases

(NMRShiftDB [NMRShiftDB], nmrdb [nmrdb], EMDataBank [EMDataBank],

Electron Microscopy Databank [Electron Microscopy Databank]).

Visualization databases
For human interpretation of structural data, visualization instruments are

needed. Proteopedia is a powerful web tool to communicate 3D information

about macromolecules structures. It is a wiki system that facilitates sharing

among the scientific community and has an additional educational component.

Proteopedia contains a page for every entry of Protein Data Bank and the Jmol

window incorporated allows the user to explore the structure of interest by

rotating, zooming, changing the representation (atoms, ribbon, surface) and

colouring it (by atom, by amino acid, by secondary structure) etc..

Also the Protein Data Bank and its mirrors offer means of visualization and

other ways to explore structural data.

2.5 Protein structure and properties representation

Despite the fact that pdb files are human readable, atomic coordinates

sets are impossible to interpret by humans, therefore protein structures are

presented visually. Several standard representations exist for proteins: balls-and-

sticks for atoms and bonds, to visualize covalent bonds, space-filling diagram

with the atoms visualized as spheres with van der Waals radii to visualize the

space occupied, ribbons as helices or tubes for α-helices and strands or arrows

for β-strands to capture the protein secondary structure and surfaces to visualize

the interaction with the medium: solvent accessible surface (Lee-Richards

[Lee1971]) and solvent-excluded surface (Connolly [Connolly1983]). The

information about the atom identity is often delivered by a standard colour-code

introduced by Corey, Pauling and Koltun in 1953 (known also as the CPK model):

red for oxygen, blue for nitrogen, grey for carbon, white for hydrogen, etc.

[Corey1953, Koltun1965]. Not all visualization tools respect this code, adopting

new ones (e.g. PyMOL uses green for carbon). When studying proteins,

scientists choose the most appropriate of these representations to visualize their

protein according to the interest of their study. When standard codes are used, it

becomes easy to communicate biological information through images,

transmitting to the viewers the author's message.

2.5.1 Protein surfaces

In structural biology, the surface of a protein can be defined in three ways:

van der Waals, solvent accessible and solvent excluded (molecular), as shown in

Figure 16.

The van der Waals surface, also called space-filling molecular model is

obtained by the union of all atoms drawn as rigid spheres with van der Waals

radii. It approximates the space occupied by the macromolecule.

The solvent accessible surface is the part of a molecule exposed to the

solvent, is calculated by the rolling-ball algorithm (usually the water molecule with

the radius of 1.4 Å) and is traced by the centre of the sphere as it rolls over the

van der Waals surface.

The molecular surface is considered as a bulk in the solvent and it is

Figure 16. Surface calculation. Three surfaces are commonly used: Van der Waals, solvent
accessible and solvent excluded (Connolly).

traced by the contact points of the sphere rolling over the van der Waals surface.

The rolling-ball algorithm was developed by Frederic Richards and independently

implemented three-dimensionally by Michael Connolly in 1983 [Connolly1983]

and Tim Richmond in 1984 [Richmond1984].

Several programs are available to calculate the solvent excluded surface,

including MSMS (Michel Sanner's Molecular Surface or Maximal Speed

Molecular Surface) [Sanner1996], NACCESS [NACCESS], Surface Racer

[Tsodikov2002], ASC [Eisenhaber1993, Eisenhaber1995] and Molecular Surface

Package [Connolly1993].

Since the surface of a protein is determined by the position of its atoms at

any given moment, atomic motion implies that the surface can change in time.

This concept applies both to the fast vibrational movements (bond vibrations,

rotameric flipping and rotation of chi angles in long side chains) and to the slower

conformational changes related to protein activities and intrinsic flexibility (such

as disordered loops, or domain motion). For this reason, our system is set to

calculate the surface of moving proteins on a frame by frame basis, showing in a

visual manner the curvature properties of the molecule as they change in time.

Surface curvature is an important feature for the characterization of the

shape of proteins and it is at the basis of shape complementarity; more concave

surfaces are more favourable to binding of small molecules and ligands. In

practice, the application of ambient occlusion during the rendering of images

reveals the curvature feature of the surface.

Two surface properties, electrostatic potential and hydropathy, are usually

visualized on the molecular surface.

2.5.2 Protein surface properties

In living cells, proteins are in continuous interaction with other

macromolecules and the surrounding medium. In these interactions, two

volumetric properties, electrostatic potential and hydropathy have a significant

role. These physico-chemical properties are deployed locally along the surface,

and understanding surface properties is important to understand proteins

functions and interactions with other molecules. Protein-protein interactions are

mediated by their molecular surfaces and are governed by the properties of the

atoms that line the surfaces, such as hydropathy and electrostatic potential.

2.5.2.1 Hydropathy
Hydropathy is an important physico-chemical property of the protein

surface, relevant to its propensity to establish molecular interactions.

Hydrophilicity is the propensity of a surface to establish hydrogen bonds with

water or polar solvents. On the opposite, hydrophobicity is the propensity to

repeal water and preferentially associate with other hydrophobic surfaces. It can

be estimated at the various levels: for example, in proteins it is considered that

aliphatic and aromatic amino acids are non-polar and hydrophobic; O- and N-

containing aa side chains are polar and hydrophilic. Hydropathy is usually

expressed as numerical value calculated according to one of several formula,

whereas hydrophobicity/hydrophilicity is a more practical measure of how

strongly the molecule repeals water.

Walter Kauzmann introduced the term ‘hydrophobic bonding’ to describe

interactions driven by exclusion of water [Kauzmann1959]. Hydrophobic

interactions are important non-covalent forces that are responsible for different

phenomena such as structure stabilization of proteins [Privalov1988,

Hendsch1994, Wimley1996, Southall2002], folding of proteins [Dill1990], protein-

protein interaction [Mueller2002] and maintenance of the lipid bilayer

organization of membranes [Tanford1973]. The importance of hydrophobicity in

protein stability, proposed theoretically by Kauzmann, was confirmed by the

solution of first protein structure showing that hydrophobic residues are indeed

preferentially buried in the protein interior [Kendrew1958].

Calculation of hydrophobicity is important in identifying various protein

features such as membrane spanning regions and buried residues, which are

highly hydrophobic or antigenic sites, exposed on the surface and which are

hydrophilic domains. Usually, these calculations are shown as a plot along the

protein sequence, making it easy to identify the location of potential protein

features. The hydrophobicity is calculated by sliding a fixed size window

(covering an odd number of aa) over the protein sequence. At the central position

of the window, the average hydrophobicity of the entire windows is plotted

(Figure 17).

Kyte-Doolittle scale [Kyte1982] is the most widely used for detecting

hydrophobic regions in proteins. Additionally, several hydrophobicity scales have

been published for various protein studies: Engelman [Engelman1986] for

prediction of transmembrane regions, Hopp-Woods [Hopp1983] for identification

of potential antigenic sites, Cornette [Cornette1987] for prediction of alpha-

helices, Rose [Rose1985] and Janin [Janin1979] for determination of buried

amino acid residues of globular proteins. All these scales assign hydrophobicity

values to each aa (Figure 18).

The differences between the systems shown above, with respect to the

Figure 18. Examples of hydrophobicity scales.

Figure 17. Hydrophobicity/hydrophilicity plot. The plot along the aa sequence, using Kyte-
Doolittle scale.

values of hydrophobicity is due to the different methods used for constructing the

scales of specific amino acids. For example, Janin and Rose scales were both

constructed by examining proteins with known 3-D structures and defining

hydrophobic character as the tendency of a residue to be found inside a protein,

rather than on its surface. Kyte-Doolittle, instead, is derived from the physico-

chemical properties of aa side chains.

In the field of drug design, the propensity of a molecule to interact with the

solvent is usually referred to as lipophilicity (the molecule propensity to interact

with fats). It is a major determinant of pharmacokinetic and pharmacodynamic

properties of drug molecules [Leo1971, Dearden1985, Kubinyi1979]. The

quantitative descriptor of lipophilicity is the partition coefficient P [van de

Waterbeemd1987, Leo1993], which represents the ratio of concentrations of a

compound in the 2 phases of a system of 2 immiscible solvents at equilibrium

(eq. 1 And Figure 19). P is a measure of differential solubility of a compound

between these 2 solvents (usually water and octanol), a measure of how

hydrophobic or hydrophilic a chemical substance is and it is expressed as logP.

P=
[X]oct
[X]w

 (1)

where [X]oct and [X]w are the molar concentrations of the compound in octanol

and water, respectively.

It is mostly used in its logarithmic form, log P. Partition coefficient P values

are in range 10-3 – 107, therefore, logP values are in range [-3, 7].

logP is mainly used to calculate hydrophobicity of small molecules. The

methods for calculating logP can be divided in 2 major approaches: substructure

and whole-molecule.

Substructure approaches consider the molecules as the sum of its basic

groups (fragmental methods) or atoms (atom contribution methods). The final

Figure 19. Partition coefficient. Partition of a compound in a two-
phase system of octanol and water.

logP is obtained summing the substructure contributions.

a) Fragmental methods [Rekker1977, Rekker1979, Hansch1979] evaluate

molecules by fragments and apply correction factors in order to compensate for

intramolecular interactions. Fragmental methods work according to the general

formula given in Eq. 2

log P=∑
i=1

n

ai⋅ f i+∑
j=1

m

b j⋅F j (2)

f = fragmental constant; a = number of fragments; F = correction factor; bj =

frequency of Fj

The first term considers the contribution of fragment constants, fi, and the

incidence of this fragment, ai, in the query structure; the second term considers

the contribution of the correction factor, Fj, and its frequency, bj. Defining

fragments larger than single atoms guarantees that significant electronic

interactions are comprised within one fragment; this is a prime advantage of

using fragments. Arbitrary fragmentations and missing fragments that prevent

calculation frequently hinder the use of this method.

b) Atom-based methods split molecules into single atoms and commonly

do not apply correction rules. They work by summing the products of the

contribution of an atom type i times the frequency of its presence in the studied

molecule (see Eq. 3).

log P=∑ n i⋅a i (3)

ni = number of atoms of type i; ai = contribution of an atom of type i

Since the partition coefficient is not a simple additive property, the

constitutive feature is covered by classifying huge numbers of atom types

according to structural environment. An advantage of atom-based methods is

that ambiguities are avoided; a disadvantage is the failure to deal with long-range

interactions. Another disadvantage is that a huge number of atom types is

needed to describe a set of molecules. Several atom-based approaches are

available: Broto [Broto1984], Ghose-Crippen [Ghose1986], refined Ghose-

Crippen [Ghose1998].

LogP values reflect only the overall lipophilicity of a molecule and it is

usually used for small molecules. This one dimensional parameter contains

limited information and becomes insufficient when topological features of

molecules are analysed in the context of intermolecular interactions with

receptors.

Whole molecule approaches inspect the entire molecule. The most used

approach to quantify hydropathy is molecular lipophilic potential (MLP), which

defines the influence of all lipophilic fragmental or atomic contributions of a

molecule on its environment and offers a quantitative 3D description of

lipophilicity. MLP is a major tool to assess the dependence of lipophilicity on

conformation. The MLP describes how lipophilicity is distributed over the different

parts of a molecule; it represents the spacial distribution of the ability to form

hydrophobic interactions, and is a property that pertains directly to the surface,

since its effect decreases very rapidly with the distance between the interacting

parts.

At a given point in space, the MLP value represents the results of the

intermolecular interactions between all fragments and the solvent system at that

point. Two components are necessary to calculate MLP: a fragment scheme and

a distance function, as shown in Figure 20.

Other whole molecule approaches include molecular properties such as

charge densities [Klopman1981], surface area, volume, shape and dipole

moment [Bodor1989]; molecular weight, heat of formation, SASA and LUMO

energy [Makino1998] and electrostatic potential [Sasaki1991] (a quantum

chemical approach) are used to predict log P.

Figure 20. MLP definition.

However, no universal equation has been proposed for hydropathy

calculation, the most common way being the use of an exponential

[Fauchère1988, Gaillard1994, Testa1996], a hyperbolic [Audry1986, Furet1988]

or a smoothed step-function, also referred to as the Fermi-like potential

[Heiden1993], as shown in Figure 21.

Hydropathy is always visualized on the surface of the protein, using

ranges of colours.

2.5.2.2 Electrostatic potential
Whereas many biologically relevant protein–protein interactions derive

their affinity from the burial of hydrophobic surface, also polar interactions,

hydrogen bonds and electrostatics have been shown to play a key role in

determining specificity and, in some cases, the thermodynamics and kinetics of

macromolecular association [Honig1995, Davis1990, Davis1991]. Protein-protein

associations are mediated both by the hydrophobic effect and by electrostatic

interactions [Cherfiels1991]. In some associations the hydrophobic effect may be

the dominant driving force, while in others electrostatic interactions may play a

very important role particularly when the binding interface is very hydrophilic

[Xu1997b].

Electrostatics plays an essential role in all processes involving proteins,

DNA or RNA, but its evaluation requires elaborate calculations that are highly

sensitive to the solvent model [Sheinerman2000].

The electrostatic potential at a point is defined as the amount of work per

unit charge required to move a charge from infinity to a given point.

Unlike MLP, for the calculation of the electrostatic potential (EP) two

methods are available:

Coulomb formula (eq. 4) is the simplest method, implemented in Swiss-

Figure 21. MLP formulae

PDBViewer software, which assumes the molecule is in vacuum, the calculation

includes point charges and the mobile ions are not considered; nevertheless, it

gives a good overview of a macromolecule in an environment.

V r =k
q2
r

 (4)

Poisson-Boltzmann equation is a more complex and accurate way to

calculate EP taking in consideration the contribution of the neighbour atoms and

simulates the solvent and salts through a continuum model [Sharp1990,

Gilson1987, Zhou1994].

Programs such as APBS [Holst2000, Baker2001] and DelPhi

[Rocchia2002] are specialized in solving this equation.

EP poses great challenges for visualization since the electric field varies in

magnitude and direction in the space surrounding the molecule.

While for EP calculation there is general agreement on the 2 methods

described, for its visualization several solutions have been proposed. The most

common way to visualize EP is using isosurfaces (Figure 22 left) enclosing all

regions with values higher than a given threshold or directly mapped on the

molecular surface (Figure 22 middle). The colours used are usually red indicating

the negative potential and blue the positive potential.

Less common, EP can be visualized by field lines. VMD software

calculates EP through APBS plug-in and displays it as field lines coloured

according to the EP values (Figure 22 right). A combination of representations

can also be used: EP values mapped on surface and field lines (Figure 22 right).

An alternative to field lines, EP can be represented as a grid of little cones

with the tip oriented towards the negative end of the field lines, as implemented

in MOLCAD (Figure 23).

2.6 Open issues in protein visualization

Since the common approach of the software tools is to use colours for

different kinds of representations such as: atoms identity, secondary structure,

electrostatic potential, hydropathy, binding sites, the message is not immediate

captured.

Moreover, every visualization tool provides its own colour-code making

information delivery confusing and imposing the necessity of a legend. Some of

the ranges of colours available in VMD to visualize EP are shown in Figure 24.

Figure 23. EP representation in MOLCAD. The grid of
EP values are visualized as cones oriented towards the
negative end of field lines.

Figure 22. EP representations. (left) isosurfaces; (middle) EP values mapped directly on the
molecular surface; (right) EP values mapped on surface and field lines; the colour range goes
from red (negative) to blue (positive). All images are created using VMD.

Using colours to transmit information (hydropathy and EP in Figure 25),

the simultaneous visualization of surface properties implies colours overlapping,

which would result in a mixture difficult to interpret.

Due to this fact the surface features are always represented separately. A

universal “metaphor” for surface properties should be established and in this

thesis we are presenting two visual codes for EP and MLP representations which

permit their simultaneous visualization.

Figure 24. Colour codes for EP visualization. Various ranges of colours available in VMD are
shown here.

3 3D animation and rendering

3.1 General aspects

Putting together available information about cellular and molecular studies,

a very rich image about cellular environment and molecular processes can be

created, taking advantage of Computer Graphics (CG) techniques. CG refers to

any image or sequence of images generated using a computer and can be

divided into two fields: two-dimensional and three-dimensional. 2D CG (Gimp,

Photoshop) is related to the generation of digital images from two-dimensional

models. In 3D CG, objects are built in a 3D space and not simply drawn on a

plane (canvas) and the depth concept is added (the third dimension). Computer

Graphics are a means of creativity, of expression of ideas and in essence they

are similar to the art of painting, photography and cinema.

Since the late '90s, the development of CG techniques has advanced at

spectacular pace. Among the most widely used tools, is the art and science of 3D

animation. This technique consists in the creation and animation of 3D objects

(complete with surfaces, skeletons, and simulated physical properties) in a virtual

world, which can be 'filmed' using virtual cameras and lights. Several programs

are available for this, including the commercial packages Maya, 3D Studio Max

and Softimage XSI (all from Autodesk [Autodesk]), Cinema 4D (MAXON

Computer GmbH [Maxon]) and the open-source Blender [Blender].

Figure 25. Hydropathy and EP representations. (left) hydropathy, using Kyte-Doolittle aa
values, visualized in Chimera (orange for hydrophobic, blue for hydrophilic); (right) EP
representation using VMD (red for negative, blue for positive).

Not surprising, all of these have been used for the study and

representation of biological molecules and processes. Some examples are

collected and visible on www.molecularmovies.com, www.molshots.com or on

www.scivis.ifc.cnr.it. The films range from the simple representations of the

mechanical functioning of a single protein, to complex events involving many

subjects such as DNA replication and RNA processing, to views of major cellular

processes, such as apoptosis, etc.. These latter ones are important scientific

efforts and add to their educational value the bonus of rising interest in the

general public to approach biology.

For the biology community, some 3D animation tools have developed

special features and interfaces especially created for molecular visualization.

Examples of such tools are Molecular Maya (mMaya) based on Maya software or

Embedded Python Molecular Viewer (ePMV [Johnson2011]), a plugin for Maya,

C4D and Blender.

Traditionally the process of creating a 3D animation film consists of a

number of steps roughly grouped in modelling, animation, rendering, special

effects and compositing.

Modelling
Objects are created in the virtual world by modelling them in the 3D scene

starting from 3D primitives (such as cubes, spheres, cones, pyramids, torus, etc.)

or importing them from other programs. The virtual space is defined by 3 axes (X,

Y and Z) that represent width, hight and depth, respectively. The intersection of

these 3 axes is called 'origin' (0,0,0 coordinates). In Computer Graphics, objects

are defined by vertices, joint together by edges and forming faces with defined

normals. Modelling complex forms is achieved by manipulation of object

components; the user can simply move the vertices, edges or faces to another

location, can extrude them out (duplicate the components and then move them)

or can scale them. Some special transformation techniques include extrude,

revolve, loft, boolean operations, as well as sculpting. The user's creativity and

imagination, combined with the precision of these methods contribute to obtain

pieces of art, from abstract to organic models. Another method to build objects is

by scripting, interfering with the CG system through APIs (Application

Programming Interface), a set of functions that the user can use to communicate

with the software via scripting.

http://www.scivis.ifc.cnr.it/
http://www.molshots.com/
http://www.molecularmovies.com/

Animation
Animation consists in a variation in time of position, colour, dimension,

etc.. The object animation can be achieved in various ways: by direct rotations

and/or translations of the object, by mesh deformation obtained by moving its

components (vertices, edges, faces), via skeleton (inverse or forward

kinematics), by moving object along a path or by using the Game Engine (GE),

typically deployed in video games. Additionally, physics-based animations can be

achieved by simulated forces such as gravity, magnetic, vortex, wind etc.. A new

technique used is motion capture, which consists in registering the movements of

an actor and transferring them in sequence to the 3D character. Particles

animations are used to create special effects simulating snow, fire, explosions,

rain. An animation is built by setting key frames, procedure that assigns values to

an object's attribute (translate, rotate, scale, colour) at a specific time. Cameras

and lights are also objects in the 3D virtual space, and as such, can be keyframe

animated (including lenses and light intensity).

The software interpolates then between them creating an animation curve

for each keyed attribute. The points of the curves indicates the values of an

attribute at a particular time. The animation can be controlled by modifying the

animation curves. A time line holding key frames permits the playback of the

motion frame-by-frame or at film rate of 24, 25 or 30 frames/second. As well as

modelling, animation can be achieved by scripting, using APIs.

Rendering
Once the animation is defined, the scene is 'dressed': objects are given

specific surface properties and appearance (textures), a background is

introduced and lights and cameras are created to proceed with the 'filming'

(rendering of all frames). Rendering is the final process of calculation of lights

and shadows, of the position of the materials and colours of the objects, of the

movement of animated objects, etc. to generate a sequence of 2D images that

display the content of the virtual scene. Rendering of a virtual environment is

similar to taking a photo or filming a scene in real life. The rendering time

depends on the complexity of the scene, the number of lights, the quality and the

dimensions of the output.

For photo-realistic renderings, materials (shaders) and textures are

applied to the objects. A shader is a group of controllable attributes that affect the

material properties. In CG programs, shaders can be matte or reflective,

characteristics that can be combined to obtain particular effects. Materials give

consistence (substance) to an object by adding colour, shininess or tactile

feeling. Textures (procedural or bitmap) help materials become more natural,

affecting how something may feel (smooth or rough) or how it looks (colours and

patterns). Bitmap textures are images, while procedural textures use

mathematical formulas to generate surface appearances. Textures are mapped

onto the surface of the object like wrapping paper. The attribution of the texture to

the object's surface is more complicated than this, as the texture should not be

deformed or wrinkled. The procedure requires a technique called UV mapping

[Catmull1974]. First, the object is unwrapped to generate a texture

parametrization. UV unwrapping is a procedure that consists in flattening a 3D

object (e.g. the world globe) on a 2D plane (e.g. the world map), so that each

vertex of the 3D mesh is assigned a correspondent 2D texture coordinate (Figure

26). The image texture is also called UV map, where U and V are the texture

axes.

In the same way as the 3D space is defined by x,y,z coordinates, the

unwrapped objects have U and V coordinates in a 2D system, describing the

width and the hight, respectively. The UV coordinates help positioning the texture

on the object. The U and V values are comprised between 0 and 1.

When producing totally artificial images, if we want to obtain the

impression of realism, we have to introduce a large set of effects, such as light

sources, that can be point, spot, directional or area lights which permit us to see

the scene and can modify the scene's appearance, casting shadows consistent

with the illumination, assigning optical properties to materials, fixing camera

properties, employing ray tracing (a rendering method where the light rays are

calculated from the surface back to the light source) or radiosity (a rendering

Figure 26. UV unwrapping. It consists in flattering a 3D object onto a 2D plane.

method which considers the light reflected by the various surfaces before

reaching the eye) and so on.

Final rendering of all frames can be very time- and memory-intensive; it

may take days or weeks to complete, so renderings are most of the times

entrusted to a render farm (a bank of computers reserved for renderings).

After rendering, the 2D images are played at a rate of 24, 25 or 30

frames/second (24 is the minimum speed the human eye needs to see to

successfully create the illusion of movement or a continuous variation).

Special effects
Rendering software may simulate a series of visual effects such as depth

of field, motion blur, rain, smoke, fire, fog, dust, caustics (light interaction with

uneven light-refracting surfaces), ambient occlusion (the attenuation of light in

the less exposed regions), subsurface scattering (light reflecting inside the

volumes of solid objects such as human skin), etc..

Compositing
Very often the scenes created in Computer Graphics are rendered as

different layers to gain control on different parts of the scene, such as

background and different elements of the foreground. The process of grouping

the layers to form the final image is called composition.

3.2 Computer Graphics software

As mentioned above, some of the 3D CG packages available are: the

commercial Maya, 3D Studio Max and Softimage XSI (all from Autodesk),

Cinema 4D (MAXON Computer GmbH) and the free, open-source Blender.

These programs share the tools to perform all the steps described above for

movie creation, divided mainly into modelling, animation, rendering. They display

a GUI (Graphical User Interface) formed of various panels (windows), each with

a distinct function: the 3D viewport, a list with the objects in the scene, the

objects properties, for animation, panels for the creation of complex materials

and textures, for scripting, etc.. They also provide a console window in which a

feedback of the user actions is kept and errors appear.

4 Molecular motion

In chapter 3 3D animation and rendering the structures of the proteins

were considered as low energy, unique, native states. Most proteins exert their

functions through some extent of motion, which implies conformational changes

(modifications in the structure). The simplest mechanism of conformational

change in proteins is a hinge motion, in which two parts of the protein move

rigidly with respect to each other (e.g. myosin motion along the actin filaments

[Holmes1998]). Sometimes the domains are packed closely at the interfaces and

the conformational changes are induced by shift of the domains. Such shift are

made possible by small rotations of the side chains. Many proteins (enzymes)

change conformation in response to the binding of a ligand or a cofactor. Usually,

the active site is located in a cleft between two domains and the binding of the

ligand induces the closure of the cleft over it. Some proteins (prion, amyloid)

undergo very large conformational changes, others (serpins, gp41 of HIV/SIV)

are involved in movements known as the stressed → relaxed transitions. These

changes include different folding topology. High-level conformational changes of

complexes of proteins include GroEL-GroES chaperonin complex that catalyses

the protein folding [Xu1997a, Xu1998] and ATP synthase [Abrahams1994,

Noji1997, Stock1999] which pumps protons out of the mitochondrium.

Despite recent advances in highly performant methods, it is very difficult to

obtain direct information on conformational changes of molecules. However,

several techniques shed light on the variability of conformations of single

polypeptide chains, such as X-ray crystallography, NMR spectroscopy, molecular

dynamics simulations, indirect techniques like FRET, and the many disparate

microscopy techniques. All these methods contribute new and important

information that can advance our interpretation of biology in action at atomic

level.

Molecular dynamics (MD) technique is a computer simulation of physical

movements of molecules allowing insights into molecular motion at atomic scale.

Using force-fields (such as AMBER [Case2005], CHARMM [Brooks1983],

GROMOS [Christen2005], GROMACS [Lindahl2001], etc.) containing sets of

parameters for each atom, MD simulate molecules behaviours in a solvent.

Simulations span from nanoseconds to microseconds and require large

computational power, often lasting several CPU-days to CPU-years. These

trajectories can be then analysed with visualization tools (such as Chimera,

PyMOL, VegaZZ [Pedretti2002], VMD, etc.).

Unlike molecular dynamics, NMR spectroscopy provides experimental

information on molecules in solution, and thus free to move. The data are

presented as a collection of conformations in no specific order, that can be

considered as static 'images' of proteins caught during motion. An NMR

collection contains usually 15-50 models.

X-ray crystallography provides different states of a protein captured in

different conditions (with or without a ligand or in association with other proteins).

Analysis of these structures can reveal conformational changes.

4.1 Morphing in Blender Game Engine

Our group, Scientific Visualization Unit, uses Computer Graphics tools to

recreate the biological ambient using the available knowledge from experimental

techniques, some of which were described above. Our collection of movies

shows different biological environments, crossing 7 orders of magnitude from

millimetre 10-3 m (capillary) to micron 10-6 m (cell) and to Ångstrom 10-10 m

(atom). These movies are meant to make visible the invisible world with its

crowdedness, movements, interactions, and can be used as scientific divulgation

instruments for the large public (schools, museums) and scientists. Besides this,

our research work is focused on two main aspects: elaboration of proteins'

motions and visual representation of surface properties of molecules.

Starting from NMR data and assuming that if a protein exists in more than

one conformation it should be able to transit between the different states, our

group developed a system to elaborate proteins' motions using Blender. Initially,

RMSD is performed between all models using SwissPDBViewer (SPDBV); the

two conformations with the highest RMSD are selected and imported in the

scene of Blender as two different positions of the same 'object' and set at

different time (higher the time interval between the positions, slower the motion).

The GE, equipped with physico-chemical mimicking rules (e.g. the bond length is

fixed, only rotation around the bond axis is allowed), interpolates between the

start and the end conformations. For our aims, the essential features of the

engine are the collision detection, the control of rotation with the rigid body

constraints, and the capability of baking (recording) the movements of objects as

calculated during 'game playing'.

As the test material for our procedure, we used the 25 models of

Calmodulin (CaM) stored in 1cfc.pdb file [Kuboniwa1995]. CaM is a well studied

protein composed of 148 amino acids, comprising 1166 atoms (2262 including

hydrogens), well conserved along the evolutionary scale [Baba1984]. CaM is

formed of two globular domains (heads) connected by a flexible linker. Each

domain is also mobile: it consists of four alpha helices, organized in two EF

hand-Calcium binding motifs, which undergo a major transition upon Ca++

binding, but are also quite flexible in solution in the absence of this ion.

The procedure to obtain sequential ordering and motion of a protein

follows the steps shown in Figure 27.

The molecule is built in the 3D environment of Blender by creating a

sphere for each atom (with its covalent radius or with a collision radius equivalent

to the specific Van der Waals radius), and links (corresponding to chemical

bonds, built using an amino acid library inserted in BioBlender) which are set as

rigid body joints, allowing rotation around their own axis.

With these settings, the Blender GE is played and the position of all atoms

Figure 27. The workflow for morphing in
Blender. It includes selection of 2
conformations with max RMSD, calculation of
the transition using Blender GE, comparison
of the intermediate conformations with the
other NMR model and if the condition is
satisfied, add a new model to the sequence,
reiterating the entire process, until the final
sequence is obtained.

at all intermediate frames are recorded. These are exported in a series of files

in .pdb format and compared by RMSD with all the remaining models in the

original NMR collection. Data are plotted in graphic form (Figure 28), and any

model found similar (RMSD ≤ 2 Å) to one of the intermediates calculated by

Blender, is considered a step in the route between the two distant models.

Figure 28. RMSD between intermediate conformations and original NMR models. The
RMSD is performed between all the transition conformations calculated by Blender (frames 1-
100) and the remaining models in 1cfc.pdb. The model with an RMSD ≤ 2 Å from any
intermediate is introduced as a step between the starting conformations, 7 and 21.

The procedure is then repeated, this time introducing in Blender the start

and the end conformations plus the ones found close to the path. By reiterating

the process we are able to order some of the conformations (Figure 29).

Starting again and choosing other two different initial conformations, a

map is built that allows all models of the NMR collection to be reached, starting

from any other one. We plot the map in a 3D graph made with Jmol, in which all

conformations are linked, see Figure 30.

Figure 29. Sequence of models. RMSD between models of the transition and all models of 1cfc
is performed; the result is a sequence of NMR conformations between 7 and 21.

Next, the question of the physical and chemical plausibility of the

intermediate steps calculated by Blender GE is addressed: all the .pdb files of the

sequence are exported and analysed with SPDBV, as shown in Figure 31.

Energy content of each conformation is evaluated by GROMOS 43B force

field [Christen2005] included in SPDBV (script spdbv_energy) and plotted. A

close examination of the contribution to total energy reveals that most peaks are

due to minor geometrical distortions, mainly due to rotameric conversions, or to

close proximity of atoms. Rotamers are manually adjusted, by inverting the

names of the equivalent atoms involved, and distorted geometries are fixed

through energy minimization, performed within SPDBV program using again the

GROMOS force field.

Once validated, .pdb files are re-imported in Blender – one conformation

every frame – so that it can be used to visually inspect the moving protein in a 3D

environment.

Figure 30. The navigation map of NMR file 1cfc. The image is a view of the map in Jmol. The
numbers indicate the model in the NMR file and the colours various paths between the models.

The sequence of files are the basis for the subsequent visual elaboration

described in details in the RESULTS chapter of this thesis.

Figure 31. Intermediates evaluation. The intermediate
conformations obtained with Blender are physico-chemical evaluated
and re-imported in Blender for the final motion.

THE AIM OF MY THESIS
SciVis proposes a step forward in the direction of using bio-animation both

as a divulgation and as a discovery tool. Our aim is to elaborate proteins' internal

motion starting from structural data (as described in section 4.1 Morphing in
Blender Game Engine), and to visualize surface properties of molecules in a

more informative way. Both these tasks are done using Blender in conjunction

with several scientific programs.

In the visualization study we propose a new visual code for the

representation of the surface properties (electrostatic potential and molecular

lipophilic potential) without involving colour. Visualizing them using features

different from colour permits their simultaneous representation and their delivery

in photo-realistic images leaving the utilization of colour for the description of

other biochemical information. Using real-world features, the surface

characteristics can be easily interpretable without the need of a legend. The main

idea of the proposed visual mapping is to exploit perceptual associations

between the values to be mapped and visual characterization of real-world

objects. Ideally, by using already established perceptual association, the viewer

will be able to understand the provided information more naturally.

3D creation software tools are appropriate to accomplish this purpose as

they provide several possibilities to express surface properties: choice of

material, transparency, incandescence/glow, ambient colour, diffuse, bump,

displacement, specular shading, reflection, lights, etc.. Combining these

attributes, it is possible to create realistic images, transmitting both visual

information (such as surface properties and consistence) and tactile sensations.

For MLP mapping, two opposite surface characterizations able to convey

a sense of affinity to oil or to water were selected. In our real-world experience, a

very smooth and reflecting surface (like wax) is completely impervious to water

but can be easily coated by oil. The opposite visual feedback is associated to

grainy, crumbly, dull surfaces (like clay bricks or biscuits) which can be easily

imagined being soaked in water. These considerations led to the showing of

highly lipophilic areas as shiny, smooth material and of highly hydrophilic areas

as dull and rough. These kind of visualizations that resembles our world are

called in CG “photo-realistic representations”.

While the MLP value, due to its very short range effect, is only observable

on the surface itself, electrical phenomena are associated to the idea of an effect

projected in the volume surrounding a charged object, and able to affect other

objects (like in the high school textbook favourite amber rod attracting paper

bits). Field lines are a common way to describe the effect of the electrical field.

EP value is therefore represented by showing particles (drawn as short lines),

moving along the path defined by field lines, from the positive to the negative

end. The particles concentration is proportional to the total charge of the

molecule, visualizing a high concentration of particles in areas where the

electrical fields is strong.

We show MLP and EP as surface characteristics and animated particles,

respectively, permitting their simultaneous visualization on moving molecules.

This new method, by introducing the animated visualization, highlights the

changes in surface features during proteins' conformational transitions.

TOOLS: PROGRAMS AND SCRIPTS

1 Programs

Maya 7 Unlimited/Autodesk – a commercial, cross platform software

package for 3D animation. It includes two internal programming languages, MEL

(Maya Embedded Language) similar to TCL and Perl, and since Maya 2008 also

Python. Maya has a powerful particle system. Particles can be dealt with either

as a unique object (per object), or on a per particle basis. Attributes such as

position, velocity, acceleration, mass, colour, opacity etc. can be assigned to

particles as per object, and in this case all particles have the same value of the

attribute, or they can be assigned as per particle and in this case each particle

has a different value.

Several internal renderers are available with Maya: Maya Software

Renderer, mental ray for Maya Renderer, Maya Vector Renderer, Hardware

Maya Renderer, each one with specific advantages.

RenderMan for Maya 1.0/Pixar [RenderMan for Maya] – a plug-in for

Maya, an add-on module that extends Maya's capabilities customizing it for a

specific rendering. It is specialized in high quality photorealistic renderings.

Pixar’s RenderMan is a high quality renderer, fast, efficient for handling complex

images, it has additional features like deep shadows (offers high-quality

shadows), special effects like motion blur (the image can be blurred if the object

moves), ray-tracing effects such as global illumination (effects that create subtle

soft shadows in a scene). This plug-in, among the internal renderers of Maya,

has the capacity of rendering blobby particles (particles handled as metaballs,

spheres that blend together giving the impression of a single surface that

includes them, when they are close to each other) with colour as per particle

attribute, blending colours as a consequence of blobby particles blending

characteristic.

Blender 2.49 – a free, open-source, cross platform suite of tools for 3D

creation. Mesh creation and assignment of colours to vertices, mesh unwrapping,

UV texture mapping, Node Editor and particles are some of the features used for

this project and are described in details in section 2 Results in Blender. Its

functions can be accessed through the GUI or scripting, through its API's

(Application Programming Interface), using Python scripting language. APIs are a

set of rules and specifications used to communicate with the software from

scripting, without using the interface. The renderings are performed by its internal

renderer which combines all the features needed to obtain photo-realistic

images.

Blender 2.5 – a big change in the internal structure of Blender including

the major advantage that now all Blender's functions can be reached through the

API's. It incorporates a powerful Game Engine (GE), usually used for video

games and special effects. GE instances the Bullet physics library [Bullet Physics

Library], an open-source software for multi-threaded 3D collision detection, soft

body and rigid body dynamics usually used for games and visual effects. Blender

GE uses a system of graphical "logic bricks" (a combination of "sensors",

"controllers" and "actuators") to control the movement and display of objects in

the game.

PyMOL 1.2r3pre – an open-source, user-sponsored, Python-enhanced

molecular graphics tool, used for visualization of .pdb files (proteins, nucleic

acids, other macromolecules). Its internal renderer uses ray tracing to produce

high-resolution images by casting shadows and smoothing the sharp edges. It

calculates the electrostatic potential through APBS plug-in and generates the 3D

mesh of the molecular surface for the molecule. The obtained geometry is

exported in a VRML (Virtual Reality Markup Language) format, easily read by 3D

software tools.

PDB2PQR-1.6.0 [Dolinsky2004, Dolinsky2007] – a Python software

package that automates many of the common tasks of preparing structures for

continuum electrostatics calculations, providing a platform-independent utility for

converting protein files in PDB format to PQR format. It assigns partial atomic

charge to every atom in the .pdb file according to different force fields (AMBER94

[Wang2000], CHARMM27 [MacKerell1998], PARSE [Sitkoff1994] or TYL06

[Tan2006]) and saves a .pqr file in which the occupancy and temperature

columns are replaced by atomic charge and radius, respectively. It also adds

missing hydrogens, calculates pKa values and generates an input (.in) for APBS

calculations. The .in file stores the information on the 3D dimensions of the

protein, the ionic concentration of solvent, biomolecular and solvent dielectric

constants. Ionic concentration of 0.150 mol/l NaCl, biomolecular dielectric

constant of 2 and solvent dielectric constant of 78.54 (water) were used for our

calculation. It is available both as a web service and as a stand-alone program.

APBS-1.2.1 (Adaptive Poisson-Boltzmann Solver) [Holst2000,

Baker2001] – a software for evaluating the electrostatic properties of nanoscale

biomolecular systems, through solution of the Poisson-Boltzmann equation.

APBS takes as inputs a .pqr and an .in files and calculates the electrostatic

potential in every point of a grid in the protein space, which is output as a .dx file.

The electrostatic potential can be then visualized with VMD or PyMOL programs.

OBJCreator – a custom software that maps the MLP values on the mesh

and exports an .obj file. It takes as inputs the mesh (.wrl) created by PyMOL and

the .dx file containing the values of MLP, created by pyMLP.py (see below). For

every vertex of the mesh, the correspondent grid-cell is identified and the value

of potential is calculated using trilinear interpolation. The resulting .obj file stores

information about the position of each vertex of the mesh and its correspondent

MLP value. The mapping process used by this program is the same used by

scivis.exe, described next.

scivis.exe – a custom software written in C++ used to calculate the field

lines and to export them in a ASCII file to be imported in Blender. This tool

imports the 3D surface (.obj) and the Electrostatic Potential grid (.dx) calculated

by the APBS program. The computation of the field lines is a multi-step process

described in details in section 2.3.1 EP calculation. Briefly, EP values are

mapped on the 3D surface by assigning the correspondent EP value, calculated

using trilinear interpolation on the .dx grid data, to each vertex of the 3D mesh; a

gradient grid is calculated in the volume containing the molecule; an automatic

selection of areas with high values of EP is done and the corresponding field

lines are computed for these areas using the gradient field.

When used as primary application, in addition to the described features,

scivis.exe provides visual feedback for all its processing steps. It is possible to

visualize the molecular surface, the EP grid, the gradient grid and the field lines.

Different parameters and visualization modes are available in order to better

understand the various data involved in the processing. For example, it is

possible to restrict the visualization of the EP grid or of the gradient field only to a

certain interval of values; it is also possible to change visualization colour ramps

and to inspect the data in small parts of the computation volume. Most of the

processing parameters can be changed in the interface and affect the processing

in real-time. Thanks to the visual feedback, these options have been particularly

useful when choosing the parameters for the processing of the EP values and

the generation of field lines.

For the static representation of the EP, pyramids (with the tip indicating the

negative charge) are created along the field lines according to two parameters

that can be set by the user: the size of the pyramids and the distance between

them. These 3D objects are exported in an .obj file.

For the 3D interactive representation of EP, the field lines are exported

as .json file; EP is visualized as comets flowing along field lines from positive to

negative charges.

PRODRG2 [Schüttelkopf2004] – a free web server that provides MOL2-

format files that contain bonding information useful for ligand parametrization.

This file is required by PDB2PQR for adding charges to oligosaccharide chains. It

is used along with the .pdb file of glycoproteins.

2 Scripts and scripting language

Python 2.6 – an interpreted, interactive, object-oriented, extensible

programming language with a clear syntax. In this project, Python has been used

in different stages, both as a scripting component of various software tools (like

Blender and PyMOL) and as a stand-alone scripting language.

pyMLP.py [Broto1984, Laguerre1997] – a Python script written and kindly

provided by Julien Lefeuvre (available from

http://code.google.com/p/pymlp/source/browse/trunk/pyMLP.py); it contains a

library of atomic lipophilic potential for every atom in proteins based on its

chemical position (we added the values for sugars and nucleic acids) and it

calculates the Molecular Lipophilic Potential (MLP) in every point of a grid in the

protein space according to various formulae such as Fauchere [Fauchère1988],

Dubost [Audry1986], Brasseur [Brasseur1991], etc. (we introduced Testa formula

[Gaillard1994]). The grid step can be changed by the user to cope with the

protein size and computer performances (in terms of memory occupancy and

calculation time); the default is 1 Å.

MLP.py – a custom Python script used within the Blender integrated

scripting engine to obtain image textures. It imports the .obj files into a Blender

scene and converts the MLP values into vertex colours (levels of grey) assigning

a colour to each vertex. The 3D surface is then unwrapped to obtain a UV texture

parametrization. A texture map is built by baking the computed per-vertex colour

values in the texture image.

http://code.google.com/p/pymlp/source/browse/trunk/pyMLP.py

texture.py – a Python script used within Blender, that builds a suitable

material, including the texture images generated by MLP.py, and assigns it to the

3D meshes imported in the 3D scene.

import_curves.py – a Python script used in Blender to read the ASCII file

where the field lines are saved; it creates NURBS curves in the Blender scene

and associates a particle emitter to the positive end of every curve.

render.py – another Python script executed in the Blender integrated

scripting engine during the final step of rendering. For each frame it selects the

corresponding mesh from all those present in the scene, it assigns the

appropriate image textures to it and renders the scene. It finally saves every

rendered image as a .png or .exr file.

cycle.sh – a shell script for Linux that reads the .pdb files and executes

external programs and scripts such as PyMOL, PDB2PQR, APBS, pyMLP.py and

OBJCreator, saving the two .dx files with EP and MLP values and the .obj file

with the MLP values mapped on the surface of the protein and stored in the V

column.

RM Andrei – PhD thesis RESULTS

RESULTS

1 Early attempts with Maya-Autodesk

In the early stages of our research, motion and visualization studies were

done using small, simple molecules such as Triazine, Bitucarpin A and Alanine

dipeptide. The first attempts to visualize macromolecules' properties were

elaborated with Maya and referred to general properties (hydropathy and EP)

applicable to all proteins and individual properties (fluorescence of GFP or high-

energy bond content of ATP).

1.1 Atomic representation

The simplest representation of molecules is the atomic representation.

Using custom scripts written in MEL by a former lab member, Yuri Porozov, the

atoms identities and positions were imported from .pdb files into the virtual space

of Maya as spheres with the radii proportional to the atoms covalent radii and

coloured using the standard CPK code. This basic visualization of a molecule

reveals only the atom identities and the covalent bonds between them, drawn as

bones which behave like chemical bonds, have fixed length, and are constrained

by codified rules.

An example is Triazine (2-chloro-4-methoxy-6-[(R)-1-phenylethylamino]-

1,3,5-triazine), a small molecule used as a chiral solvating agent in NMR

spectroscopy studies. It is composed of 31 atoms, in a relatively simple structure

made of two rigid disks connected by a bridge. Triazine has been subject to

dynamical simulation studies, [Alagona2007] that have revealed the energy

landscape for all possible conformations that its two rotating bonds can assume.

For this reason we chose it as the initial test molecule of our chemical Maya

system for molecular motions (Figure 32) [Porozov2007].

61

1.2 Surface and properties representation

To visualize molecules as surfaces, every atom was imported in Maya as

blobby particle. Blobby particles are particles handled as metaballs, spheres that

blend together giving the impression of a single surface that includes them, when

they are close to each other (Figure 33). The visual result reminds of mercury

beads which appear to meld into each other as they get closer together. As most

biomolecules contain very large number of atoms, we use the Particle feature to

create them in the 3D space of Maya. Particles are 'light entities' in terms of

processing power in comparison with objects. In other words, large movements

(such as bends on a hinge) and relative movements (of the object in space) can

be imposed and calculated very fast.

Information about atoms identity is delivered using colours according to

CPK code. Alternatively, we use a grey level code with values of grey

proportional to the standard CPK. Atoms colours are a per particle attribute.

Figure 32. Triazine representation. Triazine motion is calculated by a skeleton enriched with
physico-chemical rules (A) and some intermediate frames are presented here (B-I). See the
movie on http://vimeo.com/7391082

Figure 33. Metaballs. The spheres blend into each other at short
distance.

http://vimeo.com/7391082

1.2.1 Hydropathy

The first attempts to display visually the surface properties were

concentrated on hydropathy, considering the predominant molecule's

characteristic: mostly hydrophilic or mostly hydrophobic. For these tests we

chose some representative molecules: Bitucarpin A [Alagona2004], alanine

dipeptide [Wang2004] and ATP as hydrophilic molecules and cholesterol as an

amphipatic, mostly hydrophobic one.

Two real-world surface characteristics were chosen to represent

hydropathy property: roughness for hydrophilicity and sliminess for

hydrophobicity.

Bump and displacement are the two possible ways to achieve the

impression of roughness in Computer Graphics. A bump texture is a feature

applied to the surface at rendering, making the surface appear rough or bumpy,

without altering the shape (i.e without moving the vertices of the mesh): it works

as an optical effect obtained by modifying the trajectory of the reflected light.

Bump mapping [Blinn1978] is a rendering technique generally used to represent

very small scale geometry like scratches, roughness or graininess. By contrast,

displacement mapping [Cook1984] does modify the geometry of an object in

order to specify surface relief. For effective displacement, the object should have

a very fine mesh composed of many polygons.

Bump and displacement texture maps are based on values from a grey

scale image; bright areas appear to protrude from the surface while dark areas

appear to sink into it. Some examples of textures are shown in Figure 34.

The coarse-grained impression was obtained using a dull material. Three

different visualizations for hydrophilicity were tested:

– rough (bumpy) surface and CPK code for atoms as for Bitucarpin A

and ATP (Figure 35 a and b, respectively);

– rough (bumpy) surface and grey level code for atoms as for Alanine

dipeptide molecule (Figure 35 c);

Figure 34. Examples of default textures in CG software. These textures can be used both for
bump and displacement mapping.

– rough (displaced) surface and grey level code for atoms as for ATP

(Figure 35 d).

Cholesterol is a strongly hydrophobic molecule (except the hydroxyl) and

was represented as a slimy surface without considering the hydrophilic influence

of oxygen. The sliminess is given by a shiny material. For the representation of

atoms identity the CPK colour code and the grey level code were used.

Figure 35. Hydrophilicity representation study. (a) Bitucarpin A, bump mapping and CPK code
for atoms identity; (b) ATP, bump mapping and CPK code; (c) Alanine dipeptide, bump mapping
and grey levels for atoms identity; (d) ATP, displacement mapping and grey levels for atoms.

1.2.2 Fluorescence

The representative model for the representation of fluorescence feature is

GFP (Green Fluorescent Protein). It is a naturally fluorescent protein originally

isolated from a jellyfish (Aequorea victoria) which emits green light when

irradiated with UV light. The cromophore is the part of the protein responsible for

the fluorescence emission and it is situated in the centre of the molecule. The

GFP atoms (from 1gfl.pdb [Yang1996]) were rendered as blobbies to form a

surface. Its fluorescence is visualized by using a dull material with green ambient

colour and a green light emitting from the centre of the protein (where the

cromophore is located), as shown in Figure 37.

Figure 36. Hydrophobicity representation study. Cholesterol visualization as shiny material
and atoms identity as (left) levels of grey and (right) CPK code.

Figure 37. GFP representation.

1.2.3 Energy content

ATP (Adenosine Triphosphate from 1xsc.pdb [Swarbrick2005]) is the direct

energy source for the majority of cellular functions which makes it suitable to

study this characteristic. It works as a chemical battery, storing energy and

releasing it when and where required.

Chemical energy is stored in the ester bonds between phosphates, with

the great amount of energy (7 kcal/mole) in the bond between the middle and the

outermost phosphate groups. The terminal phosphate group in particular is

frequently split off by hydrolysis, being transferred to other molecules or water

and releasing energy required for synthetic reactions (Figure 38). These covalent

bonds are known as “high-energy” bonds.

Besides the bond energy content characteristic, ATP is a hydrophilic

molecule. For the visual representation of ATP, the two features were considered

separately. The atoms identities and positions were imported into the virtual

space of Maya as two different groups of particles superposed: the entire ATP

was modelled as blobby particles and the three phosphate groups were modelled

Figure 38. ATP chemical structure.

Figure 39. ATP representation study. (left) bump mapping for hydrophilicity and high value of
incandescence for energy content, CPK for atoms identity; (right) displacement mapping for
hydrophilicity and displacement combined with high value of incandescence for energy content,
grey level code for atoms.

as overlapping clouds (another type of particles). Two different shaders were

created: one for the hydrophilicity and one for the “high-energy bond”

characteristics. As described in chapter 3 3D animation and rendering, a

shader (material) is a collection of attributes that define colour, shininess,

transparency and other surface characteristics.

Two different representations for ATP were tested (as shown in Figure 39).

The hydrophilicity, a property of the entire ATP, is represented as a coarse-

grained surface, created with bump mapping (Figure 39 left) and displacement

mapping (Figure 39 right); the shader gives the impression of a molecule that can

easily interact with water. A second shader is applied to the three phosphates in

order to display in a visible way the chemical energy stored in these covalent

bonds. The high-energy content is represented by high value of incandescence

(like an emitting light source), as shown in Figure 39 left or by displacement and

high value of incandescence, as shown in Figure 39 right. The atoms identities

are highlighted using the CPK code (Figure 39 left) or the grey level code (Figure

39 right). ATP was the first molecule with two of its characteristics represented

simultaneously: hydrophilicity and high-energy bonds.

The representations described above give an overall view of the

characteristics of some molecules. The particularity of our representations is that

the molecules are always presented in motion: conformational changes (Triazine,

Bitucarpin A, Alanine dipeptide) or vibrational motion (ATP, Cholesterol)

calculated by interpolation between different conformations or simple rotations of

the entire macromolecule to inspect better their structures, as in case of GFP.

The animated representations, visible on our website or Vimeo, are more

informative than the static images, providing insight into the three-dimensional

structure and the flexibility of the molecule.

1.2.4 Glycoproteins

Glycoproteins are proteins with oligosaccharide chains covalently attached

to them (at glycosylation sites). The challenge in visualization of glycoproteins is

to transmit visually the different chemical natures of protein and sugars. gp120 is

the first glycoprotein we used in this attempt. gp120 is derived from gp160, the

envelope glycoprotein of HIV (Human Immunodeficiency Virus) and SIV (Simian

Immunodeficiency Virus); gp160 is a homo-trimeric complex, in which each chain

is cleaved, during transport to the surface of the infected cell, into two fragments

known as gp120 (protein on the surface) and gp41 (transmembrane protein)

[Allan1985, Veronese1985, Center2002]. gp120 mediates the first contact

between the virus and the target cell, by binding to the CD4 receptor

[Dalgleish1984], and then to the specific co-receptor.

The crystal structure of unbound SIV gp120 (2BF1.pdb) [Chen2005]

contains only the core of one monomer of the protein; flexible parts were

removed to facilitate crystallization: the V1V2, the V3 and 220-228 loops and N

and C termini. Of the oligosaccharide chains (OS), the most part was excluded,

leaving max 5 OS monomers at each glycosylation site. Our aim was to build the

entire gp120 monomer, including loops and integral OS (Figure 40). The V3 loop

(1CE4.pdb) was positioned by overlapping the cysteines at the basis of the loop

with the corresponding cysteines of the crystallized gp120. Modelling of the other

loops was based on their aa sequence using ChemOffice and performing energy

minimization. The 3D structure of OS were built according to their composition in

gp120 of HIV [Geyer1988], using ChemOffice for proper bonding of monomers

and for energy minimization.

For the visualization of the different chemical nature between the protein

and the sugars surfaces, atoms were imported in Maya as blobbies and two

different shaders were used: a dull material with a soft bump and a bright edge

created with incandescence to represent protein atoms and a dull material with

displacement to indicate sugars hydrophilicity. The atoms identity was revealed

by softened CPK colour code.

As stated above, these representations are only some attempts to

visualize molecules properties in CG without using the red-blue range of colours.

Concluding we can say that the work was not entirely finished as the

representation of electrostatic potential is missing and hydropathy is visualized

only as an overall property of the molecule rather then as locally calculated.

Maya to Blender
In order to achieve our purpose, we faced some limitations, regarding the

possibilities to customize some Maya features for our requirements. This was

overcome by using Blender, an open-source software that permitted to find and

create appropriate features. Being open-source, Blender is a more suitable tool

for us to overcome the limits we had using Maya.

2 Results in Blender

The aim of our research is the visualization of the proteins motions with

their surface properties. When showing proteins in motion as a rendered

animation, every second of the resulting movie contains 24-30 images (we use

25 frames per second, which is one of the standard video speed). Because at

every frame the atomic coordinates change, also the surface features (shape, EP

and MLP) change accordingly, and must be recalculated. This implies a very

large amount of calculations, but allows the elaboration of a sequence of images

that is coherent from frame to frame, thus giving the impression of continuity.

In the production of animated molecular movies representing proteins in

motion, the steps of object creation, surface calculation and data manipulation for

both EP and MLP are elaborated independently using both scientific and CG

programs to obtain the series of frames compositing the animation that include

Figure 40. gp120 visualization. The flexible loops and the long branched sugars are missing for
the crystal. We built the missing parts and displayed the monomer protein with a soft material and
the sugars with displacement mapping. For an animated version, see http://vimeo.com/15800994.

http://vimeo.com/15800994

this information.

2.1 Molecular surface representation

Solvent-excluded surface (Connolly) defines the space occupied by the

molecule as an object, and is a convenient surface to display hydropathy and EP.

Various software such as VMD, Chimera and PyMOL calculate Connolly surfaces

and export them as ASCII files such as .obj and .wrl. The .obj file format,

developed by Wavefront Technologies defines the geometry and it contains

information about vertex coordinates, normals, UV texture coordinates and the

faces that make each polygon of the mesh. An .obj file may access an

external .mtl file that contains definitions of various material types. VRML (Virtual

Reality Markup Language) file, with the extension .wrl, is a text file which

contains the information about the vertices and the edges of a 3D object, along

with surface material characteristics: colour, shininess, transparency, UV mapped

textures, etc., including also the view point coordinates for the initial view of the

3D scene.

Surfaces calculated by VMD and Chimera programs often contain some

disjoint components (small, mostly internal surfaces disconnected from the outer

surface of the molecule), as shown in Figure 41 that are difficult to handle; also,

the .wrl format of VMD was incompatible with Blender (the modifications

introduced by VMD in the formatting of the file were not compatible with the

importer of Blender).

Disabling the creation of disjoint surfaces, continuous surfaces can be

obtained in Chimera; however, these surfaces are not as regular as the surfaces

obtained with PyMOL, as shown in Figure 42.

Figure 41. Examples of Connolly surfaces. The surfaces are calculated using VMD (left),
Chimera (middle) and PyMOL (right). Notice the disjoint surfaces highlighted in orange on
surfaces calculated using VMD and Chimera.

PyMOL was chosen to calculate molecular surfaces because the surfaces

created by this software have a regular triangulation even at low polygon

resolution and it is afflicted at low level by the problem of internal disjoint

surfaces. In the 3D mesh used in the example reported in Figure 42 (bottom) and

in other tests with wider range of dimensions (number of polygons between 4.5

and 50 thousands), all the triangles have similar areas. The surfaces are

calculated starting from the .pdb files and the mesh is exported by PyMOL as

a .wrl (described above).

Figure 42. Irregular and regular surfaces. (top) irregular surface composed of different size
triangles, calculated using Chimera; (bottom) regular surface with triangles of same area,
calculated using PyMOL .

2.2 Molecular Lipophilic Potential

2.2.1 MLP calculation

For the visualization of hydropathy we use the Molecular Lipophilic

Potential calculation method (see chapter 2.5.2.1 Hydropathy), more

appropriate for large molecules like proteins than the substructure approaches,

mainly used for small molecules. The MLP calculation and rendering are done in

several steps, indicated in the scheme in Figure 43.

Starting from a .pdb file, the Connolly surface is calculated using PyMOL

and the MLP calculation is done using pyMLP.py (Figure 43, upper part). This

Python script calculates the lipophilic potential in every point of a grid that

contains the protein; the grid is obtained by sampling the space according to a

parameter (set by the user) called “grid spacing”. The values are exported in a

.dx file, in which the header contains information about the grid and the data

storage (the grid origin, the grid spacing and the number of points on each axis).

The script contains a library of atomic lipophilic potential values for every atom,

based on its chemistry (only for proteins), and several formulas for MLP

calculation, such as Fauchere, Dubost, Brasseur, Buckingham; however it does

not support the Testa formula,

MLP (r)=∑
i
f i⋅e

−∣r−ri∣
2 (5)

where r is any position in the protein space, fi is the atomic lipophilic potential for

the atom i and ri is the position of atom i.

This formula is an atom-based function using Broto fragment scheme and

an exponential distance function, appropriate for protein calculations. Therefore,

we modified pyMLP.py to include the Testa formula. Since, as described above,

the library only contains aa, we also added a library of atomic lipophilic potential

values for sugars and nucleic acids. The MLP accuracy depends on the grid

spacing (the lower the grid spacing, the more accurate the calculation); the

default is set at 1 Å, a dimension comparable to the mean size of the triangle

edge of the 3D mesh, calculated by PyMOL. We selected this combination as a

good compromise between MLP data, mesh triangulation, computer memory and

calculation time. However, it can be changed by the user.

2.2.2 MLP rendering

Starting from data calculated on atomic basis, we propose a more detailed

representation. Our visual code for hydropathy includes specific representations

according to the values calculated: smooth and shiny surfaces for hydrophobic

regions and rough and dull for hydrophilic ones. To obtain the roughness and

shininess impressions, the bump mapping (described in section 1 Early
attempts with Maya-Autodesk) and specular mapping (described below) are

used, respectively. The bump and specular mappings require grey scale textures.

Therefore, the MLP values are converted into a grey scale image texture.

Figure 43. MLP calculation and representation workflow.

Data elaboration for rendering is done in steps (Figure 43 , lower part):

1. MLP values mapping on the mesh. The MLP values (typically between

-3 and 1 for soluble, membrane-embedded and cytoplasmic proteins) are

mapped on the surface of the molecule by assigning values of MLP to the mesh.

The algorithm (included in a custom program, OBJCreator) is simple: for every

vertex of the mesh, the correspondent grid-cell, in the MLP grid, is identified and

the value of potential is calculated using trilinear interpolation (Figure 44) and

assigned to the vertex .

This process is very fast and the mesh vertex density is high enough to

represent smoothly the potential spatial transition. The information about the

MLP values corresponding to every vertex is stored in the V field of an .obj file as

texture coordinates (U and V).

2. MLP values conversion into vertex colours. A classical dull material (the

same material used in Maya) is assigned to the mesh and the MLP values

(previously assigned to the vertices of the mesh) are converted into vertex

colours.

Figure 44. Three-linear interpolation algorithm. To find the
coordinates of P, 3 projections are done on each of the 3 axis. In our
case, P corresponds to a mesh vertex, while the cube vertices to the
MLP grid. Therefore, starting from known MLP values of the cube
vertices, the MLP value of each mesh vertex is easily calculated.

Each colour is defined by 3 RGB (Red, Green and Blue) values, in the range

from 0 to 1 or from 0 to 255, depending on the software used. MLP values are

converted into grey levels, obtained by setting the same value for each RGB

channel. For example, in Blender, black is defined by (0.0, 0.0, 0.0) set of values

while white is defined by (1.0, 1.0, 1.0). For the conversion, the range of the MLP

values ([-3,1]) is normalized to the range of grey scale [0,1]. During

normalization, the value 0 of MLP is set to correspond to the value 0.5 of the grey

scale, resulting in visualization of neutral areas as middle grey. As an output of

this step, protein's hydropathy is visualized in Blender as levels of grey: bright

areas representing hydrophobic regions while dark areas representing

Figure 45. MLP representation. A wireframe visualization, B MLP visualization as levels of grey
and C photo-realistic representation of MLP.

hydrophilic ones (Figure 45 B). The use of this default conversion scale provides

a coherent representation for all proteins; however, at this step, to enhance MLP

features for any particular protein under study, the user can modify the selected

range of MLP values. The representation of MLP as levels of grey is the basis for

the photo-realistic visualization. The code for the representation of hydropathy

that we propose is a range of optical features that go from smooth-shiny surface

for hydrophobic areas to rough-dull for hydrophilic ones, as discussed in chapter

THE AIM OF MY THESIS and shown in Figure 45 C.

3. Creation of the first image texture. The photo-realistic representation is

achieved by using appropriate textures. In our case we create custom textures

starting from the vertex colours. The mesh is unwrapped (a technique described

in section 3 3D animation and rendering) and the vertex colour (grey) values

are saved ('baked') in an image texture (Figure 46 left). The steps 2 (MLP values

conversion into vertex colours) and 3 (Creation of the first image texture) are

achieved executing MLP.py script in Blender (Appendix, p. 125).

4. Creation of the second image texture. In order to make the more

hydrophilic areas rough, the procedure involves the addition of a noise pattern of

amplitude proportional to the degree of grey of the texture. This is achieved using

the Node Editor of Blender: a Gaussian noise (a noise that has a frequency

distribution which follows the Gaussian curve) is added to the texture image

(Figure 47), using a transparency ramp which leaves transparent the black

regions and opaque the white ones. In this way, the combined image contains

Figure 46. MLP image textures. (left) image texture obtained by baking the vertex colours (used
for specular mapping) and (right) noisy image texture obtained as shown in Figure 47 (used for
bump mapping).

strong noise over the black regions which is gradually reduced on grey regions

until reaching a level without noise on white (Figure 46 right). In the rendering

process this noisy image is converted into bump.

5. Addition of specularity and roughness. In the final rendering step, a

default shiny material is assigned to the mesh. The Specular parameter is set to

0 to avoid additive shininess. The image obtained in the first step (grey scale

image texture) is mapped on specularity: the black areas become dull, the white

ones shiny. The second image is mapped on bump, where the bump intensity is

proportional to the density of the noise. In the final image, hydrophobic areas are

represented as reflective and smooth, while the more hydrophilic ones as duller

and rougher (Figure 45 C). The mapping of the specular and bump textures is

done by executing texture.py (Appendix, p. 127)

At some experimental step, the visual code included also the colour

mapping of the grey scale image texture, obtaining dark-dull-rough surfaces for

hydrophilicity and bright-shiny-smooth surfaces for hydrophobicity (Figure 48).

Figure 47. Node Editor of Blender. Noise is added to the image texture using the ColourRamp
tool which leaves the black areas transparent and white areas opaque.

However, colour was omitted, as the non-exposed areas, usually darker in CG

images due to less lightning, might be interpreted as hydrophilic regions.

Compared to other algorithms that assign hydropathy to surfaces (eg.

mapping Kyte-Doolittle values), this method has the advantage that in each point

of the surface MLP is calculated as the contribution of neighbouring atoms,

allowing the perception of a gradual changing on the surface of the protein.

2.3 Electrostatic potential

2.3.1 EP calculation

While the use of movies is mostly intended to show transition between

conformations of a protein, it also allows the introduction of special effects of CG

to convey other information. We have elaborated the following procedure using

both Blender and external programs to calculate and display the EP associated

with molecular (partial) charges (Figure 49, right side).

Figure 48. Alternative MLP representation. The range of features goes from bright-shiny-
smooth surfaces for hydrophobicity to dark-dull-rough surfaces for hydrophilicity.

The .pdb file used for mesh creation and MLP calculation is submitted to

PDB2PQR program which outputs 2 files: .pqr and .in. These files store

information on the size and the charge of every atom (assigned using AMBER

force field), and on the dimensions of the protein, the ionic concentration (0.15

mol/l NaCl), biomolecular and solvent dielectric constant (2 and 78.54 for water,

respectively). Both .pqr and .in are input files for APBS program, that calculates

the EP in every point of a grid that includes the protein and exports the values in

a .dx file, analogous to the one seen above for MLP. The grid spacing is set by

default to 1 Å and, similar to MLP, EP accuracy depends on grid spacing. The

force field, the ion concentration and the grid spacing can be set by the user.

EP is redrawn as field lines calculated by a custom software, scivis.exe,

that combines information from the mesh file (.obj) with EP values following

different steps of computation:

1. Mapping EP on the surface mesh

2. Transformation of the grid of local values into a grid of gradients

3. Selection of most active surface areas by weighted Monte Carlo

sampling

4. Drawing of field lines to be stored in a .txt file

The EP values are mapped on the surface of the protein by assigning a

value of EP to every vertex of the mesh, with a process analogous to the one

used for MLP, i.e. trilinear interpolation (see Figure 44).

A grid of gradient vectors is built starting from the scalar field of EP values:

for each point, the gradient is calculated according to the values in neighbour

points finding the direction and slope of EP change (Figure 50).

Faraday's criterion states that the density of the field lines is proportional

to the electric field. One of the methods for the selection of seed points for field

lines drawing is the evaluation of the gradient magnitude in every vertex of the

EP grid, which is the method used by VMD where the control parameters are the

gradient magnitude and the minimum and the maximum length of the lines. This

implies drawing lines only where the gradient magnitude is the highest; however,

the gradient magnitude is not an efficient parameter to compare two or more

molecules from the electrostatic point of view because it indicates the rate of

increase of the EP field, rather than its actual value. This is the reason why we

start the drawing of field lines from points selected on the basis of absolute

Figure 49. EP calculation and representation workflow.

values of EP. The selection of the seeds is done by Monte Carlo sampling,

weighted with respect to the potential value of the surface in each area.

The gradient data are used to generate the field lines in the space

surrounding the protein. From the infinite possible field lines, we are interested in

generating a 'meaningful' subset comprising the lines associated with areas of

the mesh with high value of EP, obtaining a distribution of lines that is

proportional to the surface EP value: more lines rise in the more electrically

active areas, and the total number of lines is proportional to the global level of

potential of the molecule. Starting from the absolute value of EP, the field lines of

various molecules can be compared.

For the selection of this subset, the user has two controls: the absolute EP

value on the surface from which to create the field lines (lines are generated only

in areas with an EP higher than a threshold – Minimum potential) and a

parameter that represents the general line density (expressed as Number of lines

x eV/Å2). By modulating this parameter users can select the most appropriate

value for a group of proteins, obtaining a concentration of field lines which is

coherent across the various proteins.

Once the most electrically active locations (points) are selected, the lines

Figure 50. Gradient grid calculated by scivis.exe. The gradient is visualized as segments, with
the length proportional to the gradient magnitude and coloured using a range that goes from
green for positive EP values to white for negative ones.

are calculated by following the gradient in both directions, iteratively moving with

small steps according to the gradient (small-step integration). Line points are

added until one of the following three conditions is met: 1. the limit of the

calculated grid is reached, 2. the line intersects the mesh or 3. the field is too low

(the gradient is approximately 0 or equal to the value set by the user). The lines

are saved as sequences of points in an ASCII file (.txt).

Thanks to the random nature of the selection procedure, lines do change

every time the procedure is run but the more electrically active areas (where

more lines are present) are readily identifiable. This property proves to be

particularly effective when represented in animation, since it gives the idea of

fuzziness, useful for electricity representation, while conveying the information

about EP distribution on the surface.

2.3.2 EP representation

Field lines are imported into Blender by a Python script (import_curves.py

– Appendix, p. 129) as NURBS curves which are not rendered (they are invisible

in the final image), but are used to guide a particle effect (Figure 51). Every curve

starts at its most positive end which is associated with a particle emitter. The

particles, drawn as short segments, flow along the curves from positive to

negative, respecting the field lines convention in physics. In Blender, particles

can have a series of attributes among which: the amount of particles, the first and

the last frame of particle emission (particles can be emitted in one frame or

continuously in a range of frames), their life time (the age at which each particle

is switched off), the mesh component from which are emitted (vertices, edges

and faces), the randomness (they can be emitted in the same time or at different

random moments), some global effects can be applied such as acceleration,

Brownian motion, etc.. Their specific appearance can be visualized as points,

lines, crosses, axes, circles or specified objects.

In Blender 2.49 some functions could not be reached through API's and,

among these, was the choice of the representation of particles as lines, points,

etc.. For this reason, the win32lightcut090828.exe branch of Blender was used, a

non-official version, in which the particles representation could be set from

scripting. This branch is a Windows version that permits the import of field lines

calculated by scivis.exe in the scene of Blender, the setting of the particles

emitters at the positive end of curves and the rendering of particles as lines.

The particles are emitted randomly in time to avoid the simultaneous

animation of particles along the lines and the amount of particles can be set by

the user. The flowing of particles along the curves is achieved by converting each

curve in a 'Curve Guide'; in this way the particles path is guided by the curve's

shape.

For the visualization of a single conformation, the animated particles are

emitted for 250 frames (10 sec) and have a lifetime of 20 frames. Representation

of EP as moving particles on a trajectory, played in time, is interpreted easily and

transmits the idea of polarity of the charged areas of a biomolecule.

Finally, for the simultaneous visualization of MLP and EP, the two

representations must be combined: the textured mesh (representing the MLP),

saved previously in a Blender scene, is appended (imported) to the scene

containing the particle system. After setting the lights and the camera, the scene

is ready for rendering (render.py – Appendix, p.131). The result is showed in

Figure 52.

Figure 51. EP visualization in Blender. Field lines are visualized as curves, with a particles
emitter at the positive end (depicted as circles); particles are drawn as small orange lines.

2.4 Protein animation

Our method for the simultaneous visualization of MLP and EP is

conceived to take into consideration the movement of proteins as described in

section 4 Molecular motion. The conformational changes of proteins induce

changes of the surface features, as they are calculated on atomic basis. To test

our system, we do animations.

In the sections 2.2 Molecular Lipophilic Potential and 2.3 Electrostatic
potential in Results, the MLP and EP representation was described for static

proteins. The moving proteins are a challenge in terms of visualization of

physico-chemical properties. The conformational change of proteins is due to

modifications of atoms positions that imply changes in the shape and in the

protein's surface characteristics. To visualize proteins in motion, the surface and

the properties must be recalculated for every frame during the motion.

Therefore, for movies, the mesh and MLP are elaborated frame by frame;

however, EP representation is obtained with an effect that takes several frames,

and thanks to the continuity effect produced by the animated particles, it is not

necessary to calculate EP for every frame. With these considerations, the

method for the EP representation is slightly modified: particles are generated

Figure 52. EP and MLP simultaneous representation.

every 5 frames (when showing proteins in motion, the emitter generates particles

in one frame, in comparison to the static proteins where particles are generated

for 250 frames) and have a life-time of 20 frames. This means that the system

reaches steady state after the sixteenth frame as shown in the scheme in Figure

53; starting from the 16th frame, in every moment of the animation, there are 4

working emitters. Using this setting, the first 15 frames do not fully contribute to

the EP visualization. To avoid the solution of discarding them, it is possible to

create 3 different sets of field lines from the first .pdb file, associate 3 particle

systems and set the start frame of particles generation at negative frames. Due

to the random selection of the surface areas, the 3 sets of field lines are slightly

different and the particles animation assures that the system is in steady state at

the first frame.

The calculation of the particles' positions at each frame is a time

consuming process and, in order to speed it up, particles are 'baked', which

means that for each frame the particle properties and positions are registered to

be reused afterwards, without the need of recalculating them. The registration is

achieved by playing the animation of particles; the result consists in a series of

files (called caches). Subsequently, when the animation is re-played or the

rendering is performed, the information about the particles is read from the cache

files.

In summary, for each frame (conformation) we visualize the molecular

surface as mesh, MLP represented as texture and EP as curves and animated

particles. The result is a sequence of frames showing the moving protein with its

Figure 53. Particle flow. Particles are emitted every 5 frames and have a lifetime of 20 frames;
after the 16tth frame, the system is in steady-state.

surface properties represented together: MLP as a range of visual and tactile

characteristics and EP as flow of particles that move from positive to negative

along the invisible field lines (see PROTEIN EXPRESSION Study N.3).

2.5 Automation

As mentioned above, the visualization of moving proteins with their

surface properties implies calculation of surface, MLP and EP for every frame of

the animation. To achieve this, an automated system is created.

For simplicity, the method for visualization of proteins features is divided

into 2 branches (as described in sections 2.2 and 2.3 in Results): MLP

representation on one hand and EP representation on the other hand, which are

combined in the end for the rendering process. The large amount of data that rise

from calculations at every frame of animation make it impossible to import all the

meshes and all the particles calculated due to computer limitations. Therefore,

the animation is split into various scenes, including a set of meshes with their

associate texture images and the relative particle systems. The major difficulty

encountered when splitting the animation into sets of independent scenes is the

continuity of particles flow. The particles continuity is maintained overlapping

particle systems in consecutive scenes: the first 3 particle systems of a scene are

the last 3 in the previous scene.

As calculations for each .pdb file imply a repetitive work, an automatic

method was applied consisting in:

– calculation of molecular surface, EP and MLP, mapping of MLP on the

surface and storage of MLP corresponding to each vertex in the V

channel of an .obj file (for this step, cycle.sh, a shell script for Linux

was written);

– import of the meshes in Blender, unwrapping, conversion of MLP

values into colours and baking of image textures (MLP.py);

– addition of noise to these images (Node Editor of Blender);

– assigning of image textures to the unwrapped meshes (texture.py);

– calculation of the filed lines starting from the .obj file and the .dx of EP;

the automation was done using a .bat script; this step is done in

Windows;

– import of the field lines in Blender as NURBS curves and set the

positive ends of each curve as a particles emitter (import_curves.py);

saving the cache of particles by playing the animation; due to the

Blender branch OS limitation, the import of curves is done in Windows;

– rendering of each frame of the animation (render.py), is performed in

Linux due to its stability and more efficient RAM usage, resulting in an

increased rendering speed. Render.py is associated to each frame of

the animation and it displays the corresponding mesh (from the list of

all meshes present in the scene), image textures and performs the

rendering, saving an image for every frame of the animation.

This workflow, consisting in systematic execution of a collection of Python

scripts, managing of a set of Blender scenes, switching between OS, is tortuous,

easily exposed to mistakes and difficult to follow. To easy the workflow, we

created BioBlender, a Blender user-friendly interface that coordinates these

steps, as described in section 2.7 BioBlender.

2.6 Movies

As mentioned in section 2.4 Protein animation, we do animations to test

our visualization studies. The testing process resulted in creation of three

movies: PROTEIN EXPRESSIONS Study N.1, PROTEIN EXPRESSIONS Study

N.2 and PROTEIN EXPRESSIONS Study N.3 (all available on our website).

During each test we improved the method for visualization and the automation

steps. In the latest movie, the maximum computational limitations for Calmodulin

scene is 145 meshes, each mesh with 22662 polygons, 2 image textures

1024x1024 and 32 particle systems with 150 curves and 200 particles each.

2.7 BioBlender

BioBlender [Andrei2010, BioBlender] is an extension of Blender 2.5 (see

below), in which custom Python scripts have been implemented for building an

interface especially for biologists. It is a tool dedicated to elaboration of proteins'

motions and to visualization of surface properties of proteins. It outputs

simultaneous visualization of EP and MLP on proteins in motion. The entire

package is an ensemble of computer graphics software and physico-chemical

programs and scripts, described in TOOLS: PROGRAMS AND SCRIPTS
chapter. It includes all the steps previously described, which are now performed

in an easy, but covert manner.

The BioBlender user interface is contained in the vertical Scene Property

Panel (one of the panels of Blender), as shown in Figure 54. The BioBlender

interface allows the user to import and interactively view and manipulate the

macromolecules. BioBlender for Windows, Linux and MacOS is available from

www.bioblender.org. Because of its specialized nature, it requires the installation

of PyMOL, Python 2.6, NumPy (all are provided in the Installer folder from the

downloaded package) and ProDy (available on www.csb.pitt.edu/prody).

As the import of molecules with more than few hundred atoms is very

slow, Blender 2.5 was modified (a patched version was created) including the

generation of atoms by duplication with multiple copies at once. When a .pdb file

is read, the system records the number of atoms of each type, and atoms are

created in the Blender scene by multiple duplication of the reference atoms

saved in a hidden Blender scene (atoms library); for example, if in a .pdb file

there are 1000 carbon atoms, BioBlender makes 1000 copies of the sphere

(included in the library.blend scene), modifies the radius to be equal to the

carbon covalent radius, assigns the proper colour and displays them in the

Blender 3D view at the corresponding coordinates.

Figure 54. BioBlender interface.

http://www.csb.pitt.edu/prody
http://www.bioblender.eu/

BioBlender start-up scene not only has an optimized user-interface layout

for biologists, but it also contains lights, camera and world settings that are ideal

for visualizing and rendering molecules. This set-up ensures that researchers

who are not familiar with the 3D software can still effectively use BioBlender.

Each interface element (buttons, sliders, toggles) has help text associated with it.

By placing the mouse over them a pop-up text describes the function. Errors and

progresses are displayed in the console. Critical errors will appear in the main

BioBlender as a pop-up under the mouse cursor. As the atoms size is of order of

Ångström (Å), the scale used is 1 Blender Unit = 1 Å.

BioBlender interface includes a series of panels roughly divided into

selection and import of .pdb file, visualization of the molecule, physico-chemical

properties calculations and output.

1. Selection and import of a .pdb file

In BioBlender Select PDB File panel, the user can select a .pdb file by

browsing locally for the file saved or by simply typing the 4-letter code of the

protein of interest to be fetched from Protein Data Bank (1 in Figure 55). The

name of the protein may be changed (2 in Figure 55 - by default it is called

'protein0'). Naming the proteins is a good habit that will help keeping the scene

organized. Once a file is selected, the number of models (for NMR files) and the

chains (for proteins with multiple chains) are detected and shown in BioBlender

Import field (3 in Figure 55). In the case of NMR files, the models to be imported

can be selected; these conformations will be then set in time at an interval

determined by the Keyframe Interval slider (4 in Figure 55).

A list of options are available to be considered before importing the protein

in the Blender scene (5 in Figure 55):

Figure 55. BioBlender Select PDB File and BioBlender Import panels.

– Verbose: enable to display in the console extra information for

debugging;

– SpaceFill: enable or disable to display the atoms with Van der Waals or

covalent radii in the 3D scene, respectively;

– Hydrogen: enable to import Hydrogens if they are present in the .pdb

file. This option makes importing much slower and it is important only for

visualization. If the .pdb file does not contain Hydrogens (or if you chose not to

import them), they will be added during the Electrostatic Potential calculation

using external software;

– Make Bonds: enable it to have atoms connected by chemical bonds.

Despite being time consuming (16 seconds for 1166 atoms) this operation is

essential in motion calculation;

– High quality: displays high-quality atom and surface geometries; slow

when enabled;

– Single User: enable to use shared mesh for atoms in Game Engine; slow

when enabled;

– Upload Errors: enable to send us automatically and anonymously an

email with the errors you generate. This makes us aware of the problems that

arise and helps us fix them.

2. Visualization in the 3D viewport of Blender

Once imported, the protein is displayed in the 3D scene of Blender; if more

than one model are selected, Blender interpolates linearly between

conformations and displays the protein in motion. By default, and if the Hydrogen

option was enabled, all atoms are visualized. BioBlender View enables different

views: only alpha Carbons, main chain (N, CA, C), main chain and side chains

(no hydrogens), all atoms and surface (Figure 56).

If the user selects the view as Surface, BioBlender computes Connolly

surface of the protein by invoking PyMOL software. It uses the Solvent Radius

(the radius of the solvent probe sphere, usually 1.4 Å the radius of the water

molecule) to create the molecular surface.

When atoms are displayed, by selecting one atom in the 3D display, the

information of the selected atom is printed in the area outlined in Figure 56; in the

3D view the selection extends to all atoms of the corresponding amino acid.

Once the protein is imported, by pushing Update Lists button more

information about the protein components are displayed (Figure 57); it is possible

to select amino acids, chains and proteins (if more than one protein is imported)

present in the scenes.

3. Calculation of protein motion using game engine

Run in Game Engine button enables the use of Game Engine to calculate

the transition between different conformations. When in Game Engine mode, the

protein visualization is changed: all atoms are white, ambient occlusion effect is

applied (to give a better sense of depth) and the mouse controls the rotation of

the protein, allowing to inspect it from all angles (Figure 58 top). Calculation of

motion is done in 2 ways: simply linear interpolation (setting the Collision to 0)

and linear interpolation considering collisions (Collision to 1); when the latter one

is used, the motion can be recorded (Collision to 2). The positions of all atoms

are recorded by setting a key frame on each frame of the animation. They are

saved in the Timeline panel at different time (200 frames away from the last

model imported) as shown in Figure 58 bottom; in this way both sets of

transitions are available for comparison. These conformations can be exported

Figure 57. BioBlender lists of molecular components. The aa, proteins chains and various
proteins present in the scene can be selected and highlighted in the 3D viewport.

Figure 56. BioBlender View panel. Various kinds of visualization available in BioBlender;
information about the atom selected in the 3D viewport is highlighted.

as described later in section 7.

4. Molecular Lipophilic Potential visualization

BioBlender MLP Visualization panel collects all the scripts and parameters

(1 and 2 in Figure 59 left) necessary for MLP representation. After selecting the

Formula and the Grid Spacing, Show MLP on Surface button invokes PyMOL for

the creation of the molecular surface, pyMLP.py for calculation of MLP in every

point of a grid containing the protein and other scripts to map the MLP values on

the surface, convert them into levels of grey and assign them to vertex colours

(see section 2.2.2 MLP rendering). The protein is imported in the 3D space of

Blender with MLP represented as levels of grey (light areas for hydrophobic

regions and dark areas for hydrophilic ones), as shown in Figure 59 right.

Figure 58.Game Engine in BioBlender. (top) Protein visualization using GE; (middle) GE
parameters; (bottom) timeline panel: keyframes at frames 1 and 21 are the positions of the 2
conformations imported in the scene, and the keyframes from 221 to 242 are all the keyframes
calculated using GE.

As stated in the description of the MLP calculation, the user can enhance

the visualization of the protein of interest by modifying the range of absolute MLP

values. This can be done in BioBlender modulating the Contrast and Brightness

sliders (3 in Figure 59).

Once the user is satisfied with the grey level visualization, the next step is

to obtain the photo-realistic representation. The unwrapping of the surface,

baking of vertex colours into image textures, addition of noise and assignment of

textures to the material of the object are all automatically performed by clicking

Render MLP on Surface button. The bright areas become shiny and smooth

while the dark areas become rough and dull (Figure 60).

5. Electrostatic Potential visualization

Figure 60. MLP photo-realistic representation.

Figure 59. BioBlender MLP Visualization. (left) BioBlender MLP Visualization panel, Formula
and Grid Spacing are the parameters used for MLP calculation, Contrast and Brightness are
parameters used to enhance MLP visualization; (right) MLP visualized as levels of grey.

In BioBlender EP Visualization panel, all the parameters for EP calculation

and representation are included. The input parameters are ForceField, Ion

concentration, Grid Spacing, Minimum Potential, n EP lines*eV/Å2 and Particle

Density (Figure 61). The latter parameter can be changed also after the import of

curves into the Blender scene to modify the number of particles per curve. By

default, for non-moving proteins, the particles are emitted for 250 frames and

have a life-time of 20 frames.

6. Normal Mode Analysis Visualization

BioBlender NMA Visualization panel controls all the parameters needed by

ProDy package [Bakan2011] for NMA calculation performed: Mode (from 1 to

20), NMA steps (number of conformations to be calculated in both directions

along the given mode), RMSD sampling (RMSD between the given and the

farthest conformation), NMA cutoff and NMA Gamma. By pressing Calculate

NMA trajectories (pdb) button, (2 NMA steps + 1) conformations are calculated

and selected for import into the Blender viewport. Press Import PDB button in the

BioBlender Import panel to import them and visualize the movement in Blender.

Figure 62. BioBlender NMA Visualization panel.

Figure 61. BioBlender EP Visualization panel.

7. Output

The movie making parameters are enclosed in BioBlender Output panel.

Various kinds of representations can be chosen from the Visualize curtain, such

as: atom (only atoms), plain surface (only the surface), MLP (surface with MLP),

plain+EP (surface and EP without MLP), EP and MLP (surface with MLP and

EP).

This panel also allows user to export intermediate key frames calculated

with Blender Game Engine in .pdb format, using Export PDB button. The new

conformations can be evaluated with scientific programs, as described in section

4.1 Morphing in Blender Game Engine.

2.8 3D Interactive and still images

The main focus of our lab is the development of tools to visualize proteins'

motions; however this is only possible where sufficient data are available from

the literature. Furthermore, in many cases it may be important to focus on a

single conformation, or a printed image not allowing animation is necessary,

which requires a static representation.

2.8.1 3DNP

As initial attempt for 3D interactive visualization we used 3DNP (3D No

Plugin), developed by Thorsten Schlüter [3DNP], a JavaScript that stores a

series of images into memory and uses web browsers to simulate the 3D view by

analysing the user's mouse movement and quickly swapping the images. 3DNP

is accompanied by a Python script for Blender 2.49 which creates a sphere

around the object of interest. The rendering is then performed by positioning the

Figure 63. BioBlender Output panel.

camera, successively, in each vertex of the sphere.

As well as in still images (Figure 64 left), in 3D interactive mode, particles

cannot transmit the polarity of the charged areas of molecules. Moreover,

interactive exploration result in an effect in which the direction of the particles

seems to depend on the direction in which the mouse is moved. To overcome

this limitation, we propose the use of oriented objects, such as cones or

pyramids. Pyramids are preferred as they are computationally lighter than cones,

being formed by a lower number of polygons. Pyramids are built along the field

lines in scivis software with the tip oriented towards the negative end of the line,

maintaining the convention used in physics as shown in Figure 64 middle.

Pyramids creation is based on 2 parameters: pyramids size and the distance

between them. If the distance between the pyramids is kept constant, the

resulting effect is of concentric spherical waves around the protein (Figure 64

middle). This little shortcoming is overcome by positioning the pyramids at

random distances in the range [-40%,+40%] of the distance parameter set by the

user (Figure 64 right). The 3D interactive representation described here allows its

implementation in Proteopedia [Calmodulin motion on Proteopedia] or in 3D PDF,

delivered as electronic document.

This 3D Interactive visualization permits the protein visual investigation

from all points of view, but it requires computer space to store the rendered

images necessary for a detailed representation. Because of this we took

advantage of SpiderGL, which does not need a pre-rendered set of images, and

adapted it for molecular visualization.

Figure 64. Still images and 3D Interactive visualization. AchE protein based on 1VOT.pdb file,
a very charged protein, with negative charged areas alternating with positive charged ones. (left)
EP visualized as particle as in BioBlender; (middle) EP visualized as cones equidistantly
displayed, resulting in concentric circles; (right) EP displayed as random positioned cones along
the field lines, resulting in a non-uniform distribution of the cones.

2.8.2 SpiderGL

For the 3D Interactive exploration of a protein physico-chemical properties,

we use SpiderGL [Di Benedetto2010], a library for WebGL [Group2009]. WebGL

(Web-based Graphics Library) is a library that extends the capability of the

JavaScript programming language to allow it to generate interactive 3D graphics

within compatible web browsers. It uses HTML5, a language for presenting

content on World Wide Web, implemented in Mozilla Firefox 4 and Google

Chrome and in development releases of Safari and Opera.

SpiderGL provides a set of data structures and algorithms to support the

management of geometrical entities. To ease the creation of graphical

applications, SpiderGL provides a series of classes and functions which cover

the various aspects and levels of implementation of a CG program such as:

– basic structures which include linear algebra algorithms for 3D points;

– management of 2D data for the definition of 3D objects, textures and

other components used in the rendering process;

– scene management through specific helpers to place the objects in the

3D scene, set the viewpoint, and simplifies the user interaction with the

3D elements;

– management of rendering by assignment of materials and textures to

the objects;

– application, enhanced by the interactive visualization of this library. All

the visualization code is embedded in the page, allowing the

transparency of the data processed and the possibility of sharing

knowledge, two important aspects in research and educational tools.

For the visualization of proteins with EP and MLP within SpiderGL, we

developed a visualization method [Callieri2010] which uses data previously

calculated with BioBlender. For the MLP representation we use the 2 image

textures used for bump mapping and specular mapping (visual code described in

section 2.2.2 MLP rendering) and the parametrized mesh (the unwrapped mesh,

ready for texture mapping) exported from BioBlender in an .obj format. For the

EP, calculated with BioBlender, a small modification is introduced: the field lines

are calculated externally, using scivis.exe program, and exported as JSON (Java

Script Object Notation) file, an easy to write format, natively supported by

JavaScript interpreters.

To reproduce the EP representation as moving particles flowing along the

field lines, we create a shader that renders only small fragments of the imported

lines according to a periodic function, animated using an offset. The shader gives

the impression of small comets moving along the field lines, with the head

oriented towards the negative end (Figure 65). This effect is much simpler to

obtain and less CPU/GPU demanding than a real particle system, while still

effective in conveying the electric characteristic of the protein.

When visualizing proteins as molecular surfaces with MLP and EP it might

be useful to know the underling structures in particular regions of the surface. In

SpiderGL, the dual representations, molecular and atomic (van der Waals), are

available using transparency. The user can switch between the global

transparency depending on the viewing angle (Figure 66 A) and the lens

transparency which is focused on the area around the mouse pointer (Figure 66

B). The user can interact with the object using the left mouse button to rotate and

the wheel to zoom. For the stereo 3D visualization, the user can toggle between

anaglyph (Figure 66 C) and side-by-side representation (Figure 66 D).

Figure 65. 3D Interactive representation using SpiderGL. The interaction between Calmodulin
and MLCK head is mainly visible through EP.

The package of programs, complete with instructions, can be downloaded

from http://www.scivis.ifc.cnr.it/index.php/3dinteractive/tutorial.html.

2.9 Ongoing project

Hydropathy on van der Waals surface
Besides this code introduced for the visualization of proteins' hydropathy,

we also experimented a new representation which consists in mapping the

atomic lipophilic values directly on the van der Waals surface and converting

them into grey levels. This procedure is halfway between the visualization of

hydropathy based on amino acid values of hydrophobicity (Kyte-Doolittle) and the

MLP calculation; it is a rapid solution (the values are assigned once, without any

further calculations), providing an overview of the hydropathy according to the

spatial distribution of atoms.

This visualization method was tested in occasion of visual representation

of MD data simulation. As mentioned in section 4 Molecular motion, MD is a

technique used to calculate proteins conformational changes. The result of MD

Figure 66. SpiderGL visualizations. (A) global transparency; (B) focused transparency around
the mouse cursor; (C) anaglyph 3D stereo; (D) side-by-side 3D stereo.

http://www.scivis.ifc.cnr.it/index.php/3dinteractive/tutorial.html

analysis is a collection of a temporal sequence of conformations, called

trajectories; by visualizing them we can actually 'see' the protein's movement.

The most indicated protein representation to analyse its motion is the van der

Waals surface. Instead of CPK code for atoms, we associate some physico-

chemical information: hydropathy, visualized as atomic lipophilic potentials

mapped on the atoms. The vibrational motions retrieved from MD analysis,

translated in terms of CG animations as large movements of side chains during

successive frames, might not permit a good perception of protein's motion if

represented as surface and with hydropathy visualized as surface material

features. The protein of our study is BPTI (bovine pancreatic trypsin inhibitor), a

protein analysed by Shaw et al. [Shaw2010] in a 1 ms MD simulation which

reveals various transitions between 5 stable conformations. The MD data, kindly

provided by the authors, comprise the simulation between 0.3 and 0.9 ms in

which 2 transitions are observed. Starting from these trajectories, we decided to

analyse visually only one transition. The analysis of BPTI, with the atomic

lipophilic potential representation, revealed new insights into the protein's major

movement (transition between conformations). During the motion it is also

possible to see how a hydrophobic area is being exposed.

Figure 67. Hydropathy on van der Waals
surface. Atoms are coloured according to the
atomic lipophilic potentials.

DISCUSSION
The description of biological phenomena has always made use of

graphical presentation, starting from the early botanical and zoological drawings,

including famous anatomical folios, that greatly help viewers, professionals and

not, to understand and learn about nature.

Since these early times, an artistic component has been included, often

unnoticed by viewers, but greatly exploited by the scientists/artists. Even today,

the clearest graphical descriptions of natural and artificial subjects are hand- or

CG-drawn rather than photographic images. The 'artistic' dimension allows for a

better interpretation of the subject, the choice of illumination, and the removal of

irrelevant and disturbing effects.

The same attitude has motivated a number of scientists to use various

graphical tricks when showing data related to structural features of

macromolecules. Although most structural information contained in a .pdb file (a

list of atoms and their 3D coordinates) is actually 'readable', biologists typically

use graphical programs to explore protein structures; indeed the literature has an

abundance of such programs, including some very popular. These programs can

transfer the structural information from a linear list of atoms to a 3D display;

positional information is interpreted with the aid of chemical information stored in

libraries (of amino acids, nucleotides etc.), that introduce chemical bonds, electric

(partial) charges, hydrophobicity scales and so on. In this way the user is

enabled to observe features of the molecules of interest according to her/his

needs.

Recent years have seen the development of 3D computer graphics

techniques that have culminated in the success of the blockbuster movie Avatar,

in which an entire world has been created in CG, including 'floating mountains'

and forest with thousands of (CG built!) plants, animals, insects etc.

Similar techniques can be used to show the nanoscopic world of cells,

populated with all sorts of environments, proteins, nucleic acids, membranes,

small molecules and complexes. Indeed, there are several remarkable examples

of efforts in this new discipline of Bio Animation, some of which have reached a

large public. Besides the beauty and the educational value of these animations,

we consider that the very process of creating such movies includes a heuristic

importance both in the development of the graphical instruments and in the

studies implied in the elaboration of the subjects' (proteins) movements and

interactions.

Our group is among those involved in the development of animated

biology, and my role in this thesis has focused on one aspect of such effort,

namely the elaboration, using Blender, of a code capable of showing two of the

most critical features that determine the behaviour of macromolecules: their

electrostatic and lipophilic potentials.

Choice of Blender
Among the professional packages developed for CG, one only has the

double advantage of being open source and available free of charge: Blender.

Blender is the result of a world-wide, concerted effort to put tools of the

highest standard for CG creations at the reach of any artist (or scientist)

regardless of her/his capability of paying for such tools. The project is guided by

the non-profit Blender Foundation, and animated by countless developers that

voluntarily devote time and effort to constantly introduce the most up to date

techniques into the package, equipping users with any instrument they need.

Blender 2.5, the latest major release, introduced a new design of the user

interface, new physics engine for smoke (volumetrics), particles and soft bodies,

among others. An important, new feature is the possibility to achieve all Blender's

functions from scripting, through APIs. This is a very important characteristic that

enables the use of Blender, including modelling, animation, special effects,

rendering without using the interface.

BioBlender
On the framework on Blender 2.5, we built BioBlender, which includes a

section specifically built for biological work. Inside BioBlender, for the analysis of

proteins structures, various types of visualization are available: alpha carbon,

main chain, main chain and side chains, all atoms (including hydrogens) and

molecular surface. The elaboration of proteins' motions and the simultaneous

representation of surface physico-chemical properties of proteins in motion are

the innovations that BioBlender introduces in macromolecular visualization.

Elaboration of protein motion
We use Blender's Game Engine to elaborate the movement of proteins,

when more than one conformational state is known. Starting from data from NMR

collections or X-ray of the same protein crystallized in different conditions, we

use Blender GE, equipped with special rules approximately simulating atomic

behaviour, to interpolate between known conformations and obtain a physically

plausible sequence of intermediate conformations. This sequence can be

explored within Blender or can be output as a list of pseudo .pdb file (list of

atoms and x,y,z coordinates) which are the basis for the visual elaboration.

It is important to notice that this procedure can be applied to any .pdb or

(better) sequence of .pdb files representing a continuous series describing a

conformational transition, obtained by Blender or by any other means, e.g.

Molecular Dynamics simulation.

Visualization of moving proteins with their molecular surface
features

The development of structural biology that made available tens of

thousands of structures, not only improved our knowledge on structural features

such as the richness of protein folds (secondary and tertiary structure), and of

their association in groups (quaternary structure). It also increased knowledge

associated with protein motion: in fact most proteins exert their function through

some kind of motion. This is best understood by observing the movement in an

animated film. The role of side chains, which are the determinants of such

motions, is at present difficult to appreciate by using present visualization tools

that either provide a fixed all-atom structure, or show dynamically only a limited

number of atoms.

We have presented here a procedure that allows the direct observation of

moving proteins focusing on their surface features, rather than their structure. In

particular, we have focused on hydropathy and electrical fields as they appear,

and change on and around the molecular surface.

These features can be calculated and visualized by a number of

programs, which typically display them with a colour code. We reasoned that for

these properties a more 'photorealistic' display would help viewers in the de-

codification of their meaning, and elaborated the system here reported. The

visualization of molecules physico-chemical properties using Computer Graphics

was a huge challenge. Example of the use of these codes can be seen on

Proteopedia page (http://proteopedia.org/wiki/index.php/Calmodulin_in_motion)

for a single protein and in our movie Protein Expressions – Study N3

(http://www.scivis.ifc.cnr.it/index.php/videos) for a complex of proteins.

The representation of both features in a black and white display allows the

http://www.scivis.ifc.cnr.it/index.php/videos
http://proteopedia.org/wiki/index.php/Calmodulin_in_motion

viewer to grasp their values, without distracting with arbitrary information which is

not interpretable if not associated with a de-coding legend, making it easier to

interpret.

For MLP elaboration we did not consider any of the available programs

accurate enough to provide useful information: most molecular displaying

packages simply attribute a fixed value of hydropathy to every atom of a given

aminoacid, using the Kyte-Doolittle scale. This scale was elaborated almost 30

years ago with the aim of identifying structural features of proteins, namely the

interior portions of globular proteins and membrane spanning segments in

membrane associated proteins, but is not indicated for the evaluation of the

distribution of hydropathy on the molecular surface. Indeed, some other program

includes a more appropriate method of calculation, such as VASCo

[Steinkellner2009] which employs the Brickman formula on an atom based library

and a Fermi-type distance function. We have implemented a calculation that

uses Broto atomic values library, and integrates atoms value in the space around

the molecule by the Testa formula, which uses an atom-based fragment scheme

and an exponential distance function.

The values thus obtained are plotted on the vertices of the molecular

surface by simple trilinear interpolation. These values are then converted into

vertex colours (grey level): brigh areas representing hydrophobic regions and

dark areas hydrophilic ones. This procedure results in a very smooth distribution

of MLP values which is then displayed with a scale of 'tactile' textures, ranging

from dull-rough for hydrophilicity to shiny-smooth for hydrophobicity.

The advantage of such calculation and representation is mostly noticeable

in animated movies showing the transition between different conformations of

proteins, when patches of hydrophobic areas are gradually exposed, which will

facilitate docking onto other macromolecules.

For EP, calculated using Poisson-Boltzmann equation, we developed a

visual code based on animated particles (small lines) flowing along field lines

from positive towards negative charges, proportional to the total charge of the

protein; this is particularly useful for the observation of interacting molecules and

for molecules whose field is changing when the conformation changes.

To elaborate EP we used several programs and integrated them in a flow

whose final result is the continuous display of the EP and its development during

protein conformational transitions. Because this flow has to be repeated for every

frame of the sequence, we put particular effort in the consistency of all steps.

Proteins and their surface properties can also be visualized in a 3D

interactive way on web platform exploiting the new WebGL [Group2009]

component of HTML5. Using this API, it is possible to display 3D content in a

web page without the use of external plugins, by writing an appropriate

visualization program using the OpenGL syntax. Using a javascript support

library, SpiderGL, we built an interactive visualization scheme which accepts as

input the meshes, curves representing the field lines and texture images for MLP

calculated by BioBlender. The use of SpiderGL for biological visualization permits

the 3D Interactive investigation of surface properties of still proteins. This kind of

analysis is limited in movies, as the sequence is set by the author. Converselly,

3D Interactive visualization does not allow for proteins animations.

The protein that we have used as example is Calmodulin: after activation

due to the binding of 4 Calcium ions, the protein undergoes a major

conformational transition in which both its EP and its MLP change considerably:

the Ca ions introduced in the 4 EF hands affect both the EP, by virtue of their

own charge, and MLP by inducing the opening of each globular domain to

expose two major hydrophobic patches which enable the protein to interact with

its partners and push the calcium signal downstream in the biochemical pathway.

Since the calculations involved in the elaboration of both EP and MLP are

computationally heavy and involve large data sets, we have developed

BioBlender to automatically elaborate them, with limited human supervision.

RM Andrei – PhD thesis CONCLUSIONS AND FUTURE PERSPECTIVES

CONCLUSIONS AND FUTURE PERSPECTIVES
In conclusion, we have developed a computational instrument, BioBlender,

which is a combination of a Computer Graphics tool and various scientific

programs. It allows the display molecular surfaces of moving (or still) proteins

and other macromolecules, putting special emphasis on their electrical and

lipophilic properties. We consider that this representation will allow better (or at

least more immediate and intuitive) understanding of the dynamical forces

governing intermolecular interactions and thus facilitate new insights and

discoveries.

Our system permits the fast morphing of proteins, elaborating transition

between conformations in a fast and reliable way, using Blender Game Engine.

BioBlender includes also a novel, intuitive code for the visualization of physico-

chemical characteristics, which contributes to gain insight into the function of

molecules by drawing viewer's attention to the most active regions of the protein.

EP and MLP are shown simultaneously for each intermediate

conformation of moving proteins avoiding the use of colour, which cannot be

interpreted without a legend. Using real world tactile/sight feelings, the nanoscale

world of proteins becomes more understandable, familiar to our everyday life,

making it easier to introduce “un-seen” phenomena (concepts) such as

hydropathy or charges, while leaving the utilization of colour space for the

description of other biochemical information.

BioBlender is a new tool proposed for biological work and only a fraction of

its potential was developed. Biological activities are characterized by many other

features, and visualizing all of them is important for a better understanding of

processes; additional concepts such as pH, oxidative/reduction potential,

numerically calculated surface curvature, etc. can be introduced.

Biological processes at molecular and atomic level take place crossing

different time scales from 10-12 s for side chain rotations to around 10-6 s for

conformational transitions and up to seconds for protein folding. Time scales are

useful concepts that can be introduced in BioBlender to distinguish between fast

movements (vibrations) and slow ones (conformational changes of

109

biomolecules). It would be appropriate to develop a method to extract information

regarding protein transitions, without being 'disturbed' by vibrations.

Our system calculates the mesh for proteins in motion in a frame-by-frame

manner on the basis of atomic coordinates. This procedure is time consuming,

and the process could be improved by developing a system that updates a mesh

through its components, for example vertices could be moved, or even added

and removed when necessary. This method would allow visualization of the

conformational changes of protein surfaces directly in BioBlender workspace.

Interactivity is another interesting feature that can be added to BioBlender

functionalities to offer the user the possibility to navigate through cellular

environment and discover biological activities.

Finally, since we develop intuitive representations for biomolecules

properties, it is important to perform perception tests with users of different

background to evaluate them.

RM Andrei – PhD thesis REFERENCES

REFERENCES
Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J.E. (1994) Structure at 2.8 A resolution of
F1-ATPase from bovine heart mitochondria Nature 370:621-8

Alagona, G., Ghio, C. & Monti, S. (2004) S. B3LYP/6-31G* conformational landscape in vacuo
of some pterocarpan stereoisomers with biological activity. Journal Cover:Phys. Chem.

Chem. Phys., 2004, 6, 2849-2857 6:2849-2857

Alagona, G., Ghio, C. & Monti, S. (2007) A Test Case for Time-Dependent Density Functional
Theory Calculations of Electronic Circular Dichroism: 2-Chloro-4-Methoxy-6-[(R)-1-
Phenylethylamino]-1,3,5-Triazine Theoretical Chemistry Accounts: Theory, Computation, and

Modeling (Theoretica Chimica Acta) 117:783-803

Alberts, B. (1998) The cell as a collection of protein machines: preparing the next
generation of molecular biologists Cell 92:291-4

Allan, J. S., Coligan, J. E., Lee, T. H., McLane, M. F., Kanki, P. J., Groopman, J. E. & Essex, M.

(1985) A new HTLV-III/LAV encoded antigen detected by antibodies from AIDS patients
Science 230:810-3

Andrei, R. M., Pan, M. C. & Zoppè, M. (2010) BioBlender: Blender for Biologists. BlenderArt

Magazine 31:27-32

Aristotle & Ross, W.D. (1924) Aristotle's Metaphysics.

Audry, E., Dubost, J. P., Colleter, J. C. & Dallet, P. (1986) Une nouvelle approache des
relations structure-activité: le potentiel de lipophilie moléculaire Eur. J. Med. Chem 21:71-72

Autodesk [www.autodesk.com]

Baba, M. L., Goodman, M., Berger-Cohn, J., Demaille, J. G. & Matsuda, G. (1984) The early
adaptive evolution of calmodulin Molecular Biology and Evolution 1:442-55

Bakan, A., Meireles, L. M. & Bahar, I. (2011) ProDy: protein dynamics inferred from theory
and experiments Bioinformatics (Oxford, England) 27:1575-7

Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J.A. (2001) Electrostatics of
nanosystems: application to microtubules and the ribosome Proceedings of the National

Academy of Sciences of the United States of America 98:10037-41

Barry, C. D., Bosshard, H. E., Ellis, R. A. & Marshall, G.R. (1974) Evolving macromodular
molecular modeling system Federation Proceedings 33:2368-72

Beem, K. M., Richardson, D. C. & Rajagopalan, K.V. (1977) Metal sites of copper-zinc
superoxide dismutase Biochemistry 16:1930-6

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. &

Bourne, P.E. (2000) The Protein Data Bank Nucleic Acids Research 28:235-42

111

BioBlender [www.bioblender.org]

Blender [www.blender.org]

Blinn, J. (1978) Simulation of wrinkled surfaces. Computer Graphics (Proceedings of

SIGGRAPH 1978) 12(3):286-292

Bodor, N., Gabanyi, Z. & Wong, C.K. (1989) A new method for the estimation of partition
coefficient. Journal of the American Chemical Society 111:289-294

Brasseur, R. (1991) Differentiation of lipid-associating helices by use of three-dimensional
molecular hydrophobicity potential calculations The Journal of Biological Chemistry

266:16120-7

Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M.

(1983) CHARMM: A program for macromolecular energy, minimization, and dynamics
calculations J. Comput. Chem. 4:187-217

Brooks, F. P. J. (1977) The computer 'scientist' as toolsmith -- Studies in interactive
computer graphics. Information Processing 77:625-634

Broto, P., Moreau, G. & Vandycke, C. (1984) Molecular structures: Perception,
autocorrelation descriptor and sar studies. System of atomic contributions for the
calculation of the n-octanol/water partition coefficients. Eu. J. Med. Chem. 19:71-78

Broto, P., Moreau, G. & Vandycke, C. (1984) Molecular structures: Perception,
autocorrelation descriptor and sar studies. System of atomic contributions for the
calculation of the n-octanol/water partition coefficients. Eu. J. Med. Chem. 19.1:71-78

Bullet Physics Library [www.bulletphysics.org]

Callieri, M., Andrei, R., Di Benedetto, M., Zoppè, M. & Scopigno, R. (2010) Visualization
methods for molecular studies on the web platform. Proceedings of the 15th international

Conference on Web 3D Technology 117-126

Calmodulin motion on Proteopedia

[http://proteopedia.org/wiki/index.php/Calmodulin_in_motion]

Case, D. A., Cheatham, T. E. 3., Darden, T., Gohlke, H., Luo, R., Merz, K. M. J., Onufriev, A.,

Simmerling, C., Wang, B. & Woods, R.J. (2005) The Amber biomolecular simulation programs
Journal of Computational Chemistry 26:1668-88

Catmull, E. (1974) A subdivision algorithm for computer display of curved surfaces.

Center, R. J., Leapman, R. D., Lebowitz, J., Arthur, L. O., Earl, P. L. & Moss, B. (2002)

Oligomeric structure of the human immunodeficiency virus type 1 envelope protein on the
virion surface Journal of Virology 76:7863-7

Chen, B., Vogan, E. M., Gong, H., Skehel, J. J., Wiley, D. C. & Harrison, S.C. (2005) Structure of
an unliganded simian immunodeficiency virus gp120 core Nature 433:834-41

Cherfiels, J., Duquerroy, S. & Janin, J. (1991) Protein-protein recognition analyzed by
docking simulation. Proteins: Struct. Funct. Genet. 11:271-280

Chime [www.mdli.com]

Christen, M., Hünenberger, P. H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D. P., Heinz, T. N.,

Kastenholz, M. A., Kräutler, V., Oostenbrink, C., Peter, C., Trzesniak, D. & van Gunsteren, W.F.

(2005) The GROMOS software for biomolecular simulation: GROMOS05 Journal of

Computational Chemistry 26:1719-51

Connolly, M. L. (1983) Solvent-accessible surfaces of proteins and nucleic acids Science

221:709-13

Connolly, M. L. (1993) The molecular surface package Journal of Molecular Graphics 11:139-

41

Cook R L (1984) Shade Trees. Computer Graphics (Proceedings of SIGGRAPH) 18(3):223-231

Cooper, G. & Hausman, R. (2007) The cell: a molecular aproach, forth edition Sinauer

Associates, U.S.A.

Corey, R. & Pauling, L. (1953) Molecular Models of Amino Acids, Peptides, and Proteins.
Review of Scientific Instruments 24:621-627

Cornette, J. L., Cease, K. B., Margalit, H., Spouge, J. L., Berzofsky, J. A. & DeLisi, C. (1987)

Hydrophobicity scales and computational techniques for detecting amphipathic structures
in proteins Journal of Molecular Biology 195:659-85

Dalgleish, A. G., Beverley, P. C., Clapham, P. R., Crawford, D. H., Greaves, M. F. & Weiss, R.A.

(1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS
retrovirus Nature 312:763-7

Davis, M. E. & McCammon, J.A. (1990) Electrostatics in biomolecular
structure and dynamics. Chemical Reviews 90:509-521

Davis, M. E., Madura, J. D., Sines, J., Luty, B. A., Allison, S. A. & McCammon, J.A. (1991)

Diffusion-controlled enzymatic reactions Methods in Enzymology 202:473-97

Dearden, J. C. (1985) Partitioning and lipophilicity in quantitative structure-activity
relationships Environmental Health Perspectives 61:203-28

DeLano, W. L. (2002) The PyMOL molecular graphics system

Di Benedetto, M., Ponchio, F., Ganovelli, F. & Scopigno, R. (2010) SpiderGL: a JavaScript 3D
graphics library for next-generation WWW. Proceedings of the 15th International Conference

on Web 3D Technology 165-174

Diamond, R. (1981) Bilder: A computer graphics program for biopolymers and its
application to the interpretation of the structure of tobacco mosaic virus protein discs at
2.8 resolution. Biomolecular Structure, Conformation, Function and Evolution 1:567-588

Diamond, R. (1981) Bilder: An interactive graphics program for biopolymers. Computational

Crystallography 318-325

Dill, K. A. (1990) Dominant forces in protein folding Biochemistry 29:7133-55

Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G. & Baker, N.A. (2007)

PDB2PQR: expanding and upgrading automated preparation of biomolecular structures
for molecular simulations Nucleic Acids Research 35:W522-5

Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N.A. (2004) PDB2PQR: an automated
pipeline for the setup of Poisson-Boltzmann electrostatics calculations Nucleic Acids

Research 32:W665-7

Drenth, J. (1994) Principles of protein X-ray crystallography Spinger-Verlag, New York &

London

Eisenberg, D., Marcotte, E. M., Xenarios, I. & Yeates, T.O. (2000) Protein function in the post-
genomic era Nature 405:823-6

Eisenhaber, F. & Argos, P. (1993) Improved strategy in analytic surface calculation for
molecular systems: handling of singularities and computational efficiency Journal of

Computational Chemistry 14:1272-1280

Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C. & Scharf, M. (1995) The double cubic lattice
method: Efficient approaches to numerical integration of surface area and volume and to
dot surface contouring of molecular assemblies Journal of Computational Chemistry 16:273-

284

Electron Microscopy Databank [http://www.cgl.ucsf.edu/Research/emdb/]

EMDataBank [http://www.emdatabank.org/]

Engelman, D. M., Steitz, T. A. & Goldman, A. (1986) Identifying nonpolar transbilayer helices
in amino acid sequences of membrane proteins Annual Review of Biophysics and Biophysical

Chemistry 15:321-53

Fauchère, J. L., Quarendon, P. & Kaetterer, L. (1988) Estimating and representing
hydrophobicity potential. J Mol Graphics 6:203-206

Feldmann, R. J. & Bing, D.H. (1980) TAMS: Teaching aids for macromolecular structure.
Teachers manual Division of Computer Research and Technology (DCRT), NIH/PHS/DHEW

Fletterick, R. J. & Matela, R. (1982) Color-coded alpha-carbon models of proteins.
Biopolymers 21:999-1003

Fletterick, R. J., Schroer, T. & Matela, R.J. (1985) Molecular Structure. Blackwell Scientific

Publications, Oxford.

Foster, M. P., McElroy, C. A. & Amero, C.D. (2007) Solution NMR of large molecules and
assemblies Biochemistry 46:331-40

Furet, P., Sele, A. & Cohen, N.C. (1988) 3D molecular lipophilicity potential profiles: a new
tool in molecular modeling J. Mol. Graphics 6:182-189

Gaillard, P., Carrupt, P. A., Testa, B. & Boudon, A. (1994) Molecular lipophilicity potential, a
tool in 3D QSAR: method and applications Journal of Computer-Aided Molecular Design 8:83-

96

Geyer, H., Holschbach, C., Hunsmann, G. & Schneider, J. (1988) Carbohydrates of human
immunodeficiency virus. Structures of oligosaccharides linked to the envelope
glycoprotein 120 The Journal of Biological Chemistry 263:11760-7

Ghose, A. K. & Crippen, G.M. (1986) Atomic Physicochemical Parameters for Three-

Dimensional Structure-Directed Quantitative Structure-Activity Relationships I. Partition
Coefficients as a Measure of Hydrophobicity
 Journal of Computational Chemistry 7(4):565-577

Ghose, A. K., Viswanadhan, V. N. & Wendoloski, J.J. (1998) Prediction of Hydrophobic
(Lipophilic) Properties of Small Organic Molecules Using Fragmental Methods: An
Analysis of AlogP and ClogP Methods Journal of Physical Chemistry A 102(21):3762-3772

Gilson, M. K., Sharp, K. A. & Honig, B. (1987) Calculating the electrostatic potential of
molecules in solution: method and error assessment. J. Comp. Chem. 9:327–335

Goodsell, D. (1998) The machinery of life Springer-Verlag

Group, T. K. (2009) WebGL - OpenGL ES 2.0 for the Web :

Guex, N. & Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment
for comparative protein modeling Electrophoresis 18:2714-23

Hansch, C. & Leo, A.J. (1979) Subsistent constants for correlation analysis in chemistry and
biology. New York: Wiley

Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K. & Bricogne, G. (1978) Tomato bushy
stunt virus at 2.9 A resolution Nature 276:368-73

Heiden, W., Moeckel, G. & Brickmann, J. (1993) A new approach to analysis and display of
local lipophilicity/hydrophilicity mapped on molecular surfaces Journal of Computer-Aided

Molecular Design 7:503-14

Hendsch, Z. S. & Tidor, B. (1994) Do salt bridges stabilize proteins? A continuum
electrostatic analysis Protein Science : a Publication of the Protein Society 3:211-26

Hodis, E., Prilusky, J., Martz, E., Silman, I., Moult, J. & Sussman, J.L. (2008) Proteopedia - a
scientific 'wiki' bridging the rift between three-dimensional structure and function of
biomacromolecules Genome Biology 9:R121

Hodis, E., Schreiber, G., Rother, K. & Sussman, J.L. (2007) eMovie: a storyboard-based tool
for making molecular movies Trends in Biochemical Sciences 32:199-204

Holmes, K. C. (1998) A molecular model for muscle contraction Acta Cryst. A 54:789-97

Holst, M. J., Baker, N. A. & Wang, F. (2000) Adaptive multilevel finite element solution of the
Poisson-Boltzmann equation I. Algorithms and examples. J. Comput. Chem. 21:1319-1342

Honig, B. & Nicholls, A. (1995) Classical electrostatics in biology and chemistry Science

268:1144-9

Hopp, T. P. & Woods, K.R. (1983) A computer program for predicting protein antigenic
determinants Molecular Immunology 20:483-9

Humphrey, W., Dalke, A. & Schulten, K. (1996) VMD: visual molecular dynamics Journal of

Molecular Graphics 14:33-8, 27-8

Janin, J. (1979) Surface and inside volumes in globular proteins Nature 277:491-2

Jmol website [www.jmol.org]

Jmol: an open-source Java viewer for chemical structures in 3D. [www.jmol.org]

Johnson, C. K. (1965) OR TEP: A FORTRAN Thermal-Ellipsoid Plot Program for Crystal
Structure Illustrations ONRL Report No 3794. Oak Ridge, Ten., Oak Ridge National Laboratory

Johnson, G. T., Autin, L., Goodsell, D. S., Sanner, M. F. & Olson, A.J. (2011) ePMV embeds
molecular modeling into professional animation software environments Structure (London,

England : 1993) 19:293-303

Jones, T. A. (1978) A graphics model building and refinement system for macromolecules J.

Appl. Crystallogr. 11:268-272

Jones, T. A. (1981) FRODO: A graphics fitting program for macromolecules Computational

Crystallography 303-317

Jones, T. A. (1985) nteractive computer graphics: FRODO. Methods in Enzymology 115:157-

171

Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. (1991) Improved methods for building
protein models in electron density maps and the location of errors in these models Acta

Crystallographica. Section a, Foundations of Crystallography 47 (Pt 2):110-9

Kai, L. E. (1997) NMR methods for the study of protein structure and dynamics Biochem.

Cell. Biol. 75:1-15

KAUZMANN, W. (1959) Some factors in the interpretation of protein denaturation Advances

in Protein Chemistry 14:1-63

KENDREW, J. C., BODO, G., DINTZIS, H. M., PARRISH, R. G., WYCKOFF, H. & PHILLIPS, D.C.

(1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis
Nature 181:662-6

KENDREW, J. C., DICKERSON, R. E., STRANDBERG, B. E., HART, R. G., DAVIES, D. R.,

PHILLIPS, D. C. & SHORE, V.C. (1960) Structure of myoglobin: A three-dimensional Fourier
synthesis at 2 A. resolution Nature 185:422-7

Klopman, G. & Iroff, L.D. (1981) Calculation of partition coefficients by the charge density
method. Journal of Computational Chemistry 2:157-160

Koffka, K. (1935) Principles of Gestalt Psychology Harcourt (New York)

Koltun, W. L. (1965) Precision space-filling atomic models. Biopolymers 3:665-679

Koradi, R., Billeter, M. & Wüthrich, K. (1996) MOLMOL: a program for display and analysis of
macromolecular structures Journal of Molecular Graphics 14:51-5, 29-32

Kraulis, P. J. (1991) Molscript: A program to produce both detailed and schematic plots of
proteins structures. J. Appl. Cryst. 24:946-950

Krieger, E., Koraimann, G. & Vriend, G. (2002) Increasing the precision of comparative
models with YASARA NOVA--a self-parameterizing force field Proteins 47:393-402

Kubinyi, H. (1979) Lipophilicity and drug activity Progress in Drug Research. Fortschritte der

Arzneimittelforschung. Progres des Recherches Pharmaceutiques 23:97-198

Kuboniwa, H., Tjandra, N., Grzesiek, S., Ren, H., Klee, C. B. & Bax, A. (1995) Solution structure
of calcium-free calmodulin Nature Structural Biology 2:768-76

Kyte, J. & Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of
a protein Journal of Molecular Biology 157:105-32

Laguerre, M., Saux, M., Dubost, J. P. & Carpy, A. (1997) MLPP: A program for the calculation
of molecular lipophilicity potential in proteins. Pharm. Sci. 3.5-6:217-222

Lee, B. & Richards, F.M. (1971) The interpretation of protein structures: estimation of static
accessibility Journal of Molecular Biology 55:379-400

Leo, A. J. (1993) Calculating log Poct from structures Chemical Reviews 93(4):1281-1306

Leo, A., Hansch, C. & Elkins, D. (1971) Partition coefficients and their uses Chem. Reu.

71:525

Levinthal, C. (1966) Molecular model-building by computer Scientific American 214:42-52

Lindahl, E., Hess, B. & van der Spoel, D. (2001) GROMACS 3.0: A package for molecular
simulation and trajectory analysis J. Mol. Mod. 7:306-317

Linderstrøm-Lang, K. U. (1952) Proteins and Enzymes Stanford University Press

Lipscomb, J. S. (1981) Reversed apparent movement and erratic motion with many
refreshes per update. Computer Graphics 14 (4):113-118

MacKerell, A. J., Bashford, D., Bellott, M., Dunbrack, R. J., Evanseck, J., Field, M., Fischer, S.,

Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F., Mattos, C.,

Michnick, S., Ngo, T., Nguyen, D., Prodhom, B., Reiher, W. I., Roux, B., Schlenkrich, M., Smith,

J., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczer, A., Yin, D. & Karplus, M. (1998) All-
Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J Phys

Chem B 102:3586-616

Makino, M. (1998) Dependence of GC-RRTs on the solvent-accessible surface area of
dioxins and related compounds Chemosphere 37:13-26

Martz, E. (2002) Protein Explorer: easy yet powerful macromolecular visualization Trends in

Biochemical Sciences 27:107-9

Maxon [www.maxon.net]

McCormick, B. H., DeFanti, T. A. & Brown, M.D. (1987) Computer Graphics - Visualization in

Scientific Computing 21.6:

Miller, J. R., Abdel-Meguid, S. S., Rossmann, M. G. & Anderson, D.C. (1981) A computer
graphics system for the building of macromolecular models into electronic density maps
Journal of Applied Crystallography 14:94-100

Mittermaier, A. & Kay, L.E. (2006) New tools provide new insights in NMR studies of protein
dynamics Science 312:224-8

MOLMOL [www. mol.biol.ethz.ch/groups/Wuthrich-groups/software]

Mueller, T. D. & Feigon, J. (2002) Solution structures of UBA domains reveal a conserved
hydrophobic surface for protein-protein interactions Journal of Molecular Biology 319:1243-

55

Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. (1995) SCOP: a structural

classification of proteins database for the investigation of sequences and structures
Journal of Molecular Biology 247:536-40

Naccess V2.1.1 - Atomic Solvent Accessible Area Calculations

[www.bioinf.manchester.ac.uk/naccess/]

nmrdb [http://www.nmrdb.org/]

NMRShiftDB [http://www.ebi.ac.uk/nmrshiftdb/]

Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K.J. (1997) Direct observation of the rotation of
F1-ATPase Nature 386:299-302

Nature Methods Journal, March 2010, Volume 7 No 3s ppS1-S68

Orengo, C. A., Michie, A. D., Jones, S., Jones, D. T., Swindells, M. B. & Thornton, J.M. (1997)

CATH--a hierarchic classification of protein domain structures Structure (London, England :

1993) 5:1093-108

Pauling, L. & Corey, R.B. (1951) Configurations of Polypeptide Chains With Favored
Orientations Around Single Bonds: Two New Pleated Sheets Proceedings of the National

Academy of Sciences of the United States of America 37:729-40

PAULING, L. & COREY, R.B. (1951) The pleated sheet, a new layer configuration of
polypeptide chains Proceedings of the National Academy of Sciences of the United States of

America 37:251-6

PAULING, L. & COREY, R.B. (1951) The structure of feather rachis keratin Proceedings of the

National Academy of Sciences of the United States of America 37:256-61

Pedretti, A., Villa, L. & Vistoli, G. (2002) VEGA: a versatile program to convert, handle and
visualize molecular structure on Windows-based PCs Journal of Molecular Graphics &

Modelling 21:47-9

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. &

Ferrin, T.E. (2004) UCSF Chimera--a visualization system for exploratory research and
analysis Journal of Computational Chemistry 25:1605-12

Pique, M. E., Macke, T. J. & Arvai, A.S. (1991) Flex: A light-weight molecular display program.
J. Mol. Graphics 9:40-41

Plato & Jewitt, B. (1941) Plato's The Republic.

Porozov, Y., Andrei, R. & Zoppè, M. (2007) Visualization of moving biomolecules: a new
approach based on professional 3D animation software Nettab 2007 Network Tools and

Applications in Biology. :

Privalov, P. L. & Gill, S.J. (1988) Stability of protein structure and hydrophobic interaction
Advances in Protein Chemistry 39:191-234

Protein Data Bank [www.pdb.org]

Protein Explorer [http://proteinexplorer.org]

Proteopedia [http://proteopedia.org]

Rekker, R. F. (1977) The hydrophobic fragmental constant. Its derivation and application. A

means of characterizing membrane systems. Amsterdam: Elsevier

Rekker, R. F. & de Kort, H.M. (1979) The hydrophobic fragmental constant; an extension to a
1000 data point set. European Journal of Medicinal Chemistry 14:479-488

RenderMan for Maya [http://renderman.pixar.com/]

Richards, F. M. (1968) The matching of physical models to three-dimensional electron-
density maps: a simple optical device Journal of Molecular Biology 37:225-30

Richardson, D. C. & Richardson, J.S. (1992) The kinemage: a tool for scientific
communication Protein Science : a Publication of the Protein Society 1:3-9

Richardson, J. S. & Richardson, D.C. (1989) Principles and patterns of protein conformation..
:pp. 1-98

Richardson, J. S., Richardson, D. C., Thomas, K. A., Silverton, E. W. & Davies, D.R. (1976)

Similarity of three-dimensional structure between the immunoglobulin domain and the
copper, zinc superoxide dismutase subunit Journal of Molecular Biology 102:221-35

Richmond, T. J. (1984) Solvent accessible surface area and excluded volume in proteins.
Analytical equations for overlapping spheres and implications for the hydrophobic effect
Journal of Molecular Biology 178:63-89

Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A. & Honig, B. (2002) Rapid grid-
based construction of the molecular surface and the use of induced surface charge to
calculate reaction field energies: applications to the molecular systems and geometric
objects Journal of Computational Chemistry 23:128-37

Rose, G. D., Geselowitz, A. R., Lesser, G. J., Lee, R. H. & Zehfus, M.H. (1985) Hydrophobicity
of amino acid residues in globular proteins Science 229:834-8

Rubin, B. (1985) Macromolecule backbone models Methods in Enzymology 115:391-7

Rubin, B. & Richardson, J.S. (1972) The simple construction of protein alpha-carbon models
Biopolymers 11:2381-5

SANGER, F. & THOMPSON, E.O.P. (1953) The amino-acid sequence in the glycyl chain of
insulin. I. The identification of lower peptides from partial hydrolysates The Biochemical

Journal 53:353-66

SANGER, F. & TUPPY, H. (1951) The amino-acid sequence in the phenylalanyl chain of
insulin. I. The identification of lower peptides from partial hydrolysates The Biochemical

Journal 49:463-81

Sanner, M. F. (1999) Python: a programming language for software integration and
development Journal of Molecular Graphics & Modelling 17:57-61

Sanner, M. F., Olson, A. J. & Spehner, J.C. (1996) Reduced surface: an efficient way to
compute molecular surfaces Biopolymers 38:305-20

Sasaki, Y., Kubodera, H., Matuszaki, T. & Umeyama, H. (1991) Prediction of octanol/water
partition coefficients using parameters derived from molecular structures. J Pharmacobio-

Dyn 14:207-214

Sayle, R. & Bissell, A. (1992) RasMol: A Program for Fast Realistic Rendering of Molecular
Structures With Shadows. Proceedings of the 10th Eurographics UK '92 Conference, University

of Edinburgh, Scotland :

Sayle, R. A. & Milner-White, E.J. (1995) RASMOL: biomolecular graphics for all Trends in

Biochemical Sciences 20:374

Schlüter, T. [http://www.thoro.de/page/3dnp-introduction-en]

Schüttelkopf, A. W. & van Aalten, D.M.F. (2004) PRODRG: a tool for high-throughput
crystallography of protein-ligand complexes Acta Crystallographica. Section D, Biological

Crystallography 60:1355-63

Science, 18 February 2011 vol 331, issue 6019, pages 807-974

Sharp, K. A. & Honig, B. (1990) Electrostatic interactions in macromolecules: theory and
applications Annual Review of Biophysics and Biophysical Chemistry 19:301-32

Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., Bank, J.

A., Jumper, J. M., Salmon, J. K., Shan, Y. & Wriggers, W. (2010) Atomic-level characterization
of the structural dynamics of proteins Science 330:341-6

Sheinerman, F. B., Norel, R. & Honig, B. (2000) Electrostatic aspects of protein-protein
interactions Current Opinion in Structural Biology 10:153-9

Sitkoff, D., Sharp, K. & Honig, B. (1994) Accurate Calculation of Hydration Free Energies
Using Macroscopic Solvent Models. The Journal of Physical Chemistry 98:1978-88

Southall, N. T., Dill, K. A. & Haymet, A.D.J. (2002) A View of the Hydrophobic Effect Journal of

Physical Chemistry B 106(3):521-533

Steinkellner, G., Rader, R., Thallinger, G. G., Kratky, C. & Gruber, K. (2009) VASCo:
computation and visualization of annotated protein surface contacts BMC Bioinformatics

10:32

Stock, D., Leslie, A. G. & Walker, J.E. (1999) Molecular architecture of the rotary motor in ATP
synthase Science 286:1700-5

Stotz, R. (1963) Man-machine console facilities for computer-aided design. AFIPS

Conference Proceedings 23:323-328

Studer, D., Humbel, B. M. & Chiquet, M. (2008) Electron microscopy of high pressure frozen
samples: bridging the gap between cellular ultrastructure and atomic resolution
Histochemistry and Cell Biology 130:877-89

Sutaria, S. D. (1984) Specific Learning Disabilities: Nature and Needs Charles C Thomas Pub

Ltd

Svedberg, T. & Nichols, J.B. (1927) The application of the oil turbine type of ultracentrifuge
to the study of the stability region of carbon monoxide-hemoglobin Journal of the American

Chemical Society 49 (11):2920–2934

Swarbrick, J. D., Buyya, S., Gunawardana, D., Gayler, K. R., McLennan, A. G. & Gooley, P.R.

(2005) Structure and substrate-binding mechanism of human Ap4A hydrolase The Journal

of Biological Chemistry 280:8471-81

Swiss-PdbViewer [www.expasy.org/spdbv/]

Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S. & Richardson, D.C. (1982)

Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase
Journal of Molecular Biology 160:181-217

Tan, C., Yang, L. & Luo, R. (2006) How Well Does Poisson-Boltzmann Implicit Solvent Agree
with Explicit Solvent? A Quantitative Analysis. J Phys Chem B 110:18680-7

Tanford, C. (1973) The Hydrophobic Effect: Formation of Micelles and Biological
Membranes. Wiley, New York

Tarini, M., Cignoni, P. & Montani, C. (2006) Ambient occlusion and edge cueing to enhace
real time molecular visualization. IEEE Transaction on Visualization and computer Graphics 12

Testa, B., Carrupt, P. A., Gaillard, P., Billois, F. & Weber, P. (1996) Lipophilicity in molecular
modeling Pharmaceutical Research 13:335-43

The PyMOL Molecular Graphics System, Schrödinger, LLC. [www.pymol.org]

Tsernoglou, D., Petsko, G. A., McQueen, J. E. J. & Hermans, J. (1977) Molecular graphics:
application to the structure determination of a snake venom neurotoxin Science 197:1378-

81

Tsodikov, O. V., Record, M. T. J. & Sergeev, Y.V. (2002) Novel computer program for fast exact
calculation of accessible and molecular surface areas and average surface curvature
Journal of Computational Chemistry 23:600-9

Tzakos, A. G., Grace, C. R. R., Lukavsky, P. J. & Riek, R. (2006) NMR techniques for very large
proteins and rnas in solution Annual Review of Biophysics and Biomolecular Structure 35:319-

42

UCSF Chimera [www.cgl.ucsf.edu/chimera/]

van de Waterbeemd, H. & Testa, B. (1987) The parametrization of lipophilicity and other
structural properties in drug design Advances in Drug Research 16:87-227

Veronese, F. D., DeVico, A. L., Copeland, T. D., Oroszlan, S., Gallo, R. C. & Sarngadharan, M.G.

(1985) Characterization of gp41 as the transmembrane protein coded by the HTLV-III/LAV
envelope gene Science 229:1402-5

Visual Molecular Dynamics [www.ks.uiuc.edu/Research/vmd/]

Wang, J., Cieplak, P. & Kollman, P.A. (2000) How well does a restrained electrostatic
potential (RESP) model perform in calculating conformational energies of organic and
biological molecules? Journal of Computational Chemistry 21:1049–1074

Wang, Z. & Duan, Y. (2004) Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-
31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water
Journal of Computational Chemistry 25:1699-716

Weber, J. R. (2009) ProteinShader: illustrative rendering of macromolecules BMC Structural

Biology 9:19

Wimley, W. C., Gawrisch, K., Creamer, T. P. & White, S.H. (1996) Direct measurement of salt-
bridge solvation energies using a peptide model system: implications for protein stability
Proceedings of the National Academy of Sciences of the United States of America 93:2985-90

World Index of Molecular Visualization Resources [www.molvisindex.org]

Wright, W. V. (1981) GRIP -- An interactive computer graphics system for molecular studies.
Computational Crystallography :294-302

Wüthrich, K. (1995) NMR - this other method for protein and nucleic acid structure
determination Acta Crystallographica. Section D, Biological Crystallography 51:249-70

Xu, D., Lin, S. L. & Nussinov, R. (1997) Protein binding versus protein folding: the role of
hydrophilic bridges in protein associations Journal of Molecular Biology 265:68-84

Xu, Z. & Sigler, P.B. (1998) GroEL/GroES: structure and function of a two-stroke folding
machine Journal of Structural Biology 124:129-41

Xu, Z., Horwich, A. L. & Sigler, P.B. (1997) The crystal structure of the asymmetric GroEL-
GroES-(ADP)7 chaperonin complex Nature 388:741-50

Yang, F., Moss, L. G. & Phillips, G.N.J. (1996) The molecular structure of green fluorescent
protein Nature Biotechnology 14:1246-51

Zhou, H. X. (1994) Macromolecular electrostatic energy within the nonlinear Poisson-
Boltzmann equation. J. Chem. Phys. 100:3152–3162

Zhou, Z. H. (2011) Atomic resolution cryo electron microscopy of macromolecular
complexes Adv Protein Chem Struct Biol 82:1-35

RM Andrei – PhD thesis APPENDIX: SCRIPTS

APPENDIX: SCRIPTS

MLP.py
MLP.py imports the .obj files and converts the MLP values stored on V to
colour vertex
Raluca Andrei <r.andrei@sns.it> from SciVis group www.scivis.ifc.cnr.it

import Blender
from Blender import Mathutils
from Blender.Draw import *
from math import *
from Blender import *
from Blender import Material
import time
import datetime
import sys
import bpy

sys.path.append('') # PLACE THE PATH TO YOUR OBJ FILES HERE
import import_obj
from import_obj import subtry

def import_mesh():
#import object
file=".obj" #PLACE YOUR FILES NAME HERE
import_obj.subtry(file)
sc = Scene.GetCurrent()
sc.update
Window.RedrawAll()
ob = sc.objects.active
me = ob.getData(mesh=1)
me.name = "mesh"
#create material
mat = Material.New('Material')
mat.mode |= Material.Modes.VCOL_PAINT
mat.mode |= Material.Modes.SHADELESS
mat1 = bpy.data.materials['Material']

#assign material to object
for me in bpy.data.meshes:

125

me.materials = [mat1]
#remove double vertices and smooth the mesh
me.remDoubles(0.001)
me.vertexColors=1
faces=me.faces
for f in faces:

f.smooth=1
#convert the MLP values from V and assign to vertex color
for i in range(len(faces)):

for e in range (len(faces[i].verts)):
val = faces[i].uv[e][1]
val1=int(ceil(((val+3.0)/6.0)*255)) #change the

range of MLP if necessary!!!!!!
faces[i].col[e].r = val1
faces[i].col[e].g = val1
faces[i].col[e].b = val1

else:
val1=int(ceil(((val+1.0)/2.0)*255))
faces[i].col[e].r = val1
faces[i].col[e].g = val1
faces[i].col[e].b = val1

me.update()
#create new UV layer and unwrap the mesh
me.addUVLayer('UVBake')
me.activeUVLayer = 'UVBake'
me.renderUVLayer = 'UVBake'
Blender.Run('uvcalc_smart_project.py')
#import image used for baking the vertex colour of the mesh
img = Blender.Image.Load("bake.png")
img.updateDisplay()
img.makeCurrent()
Window.RedrawAll()
for f in me.faces:

f.image = img
context = sc.getRenderingContext()
#bake the texture
bakeMode = 'TEXTURE'
context.bake()
#save the current image; the UV/Image Editor should be open
image = Image.GetCurrent()
image.setFilename(".png") # PLACE THE NAME OF YOUR IMAGE HERE
image.save()
#unlink the mesh from the object
me.fakeUser=True
sc.update()

Window.RedrawAll()
#delete the object
sc.unlink(ob)

#save all the meshes in a .blend file
import_mesh()
Blender.Save(".blend",0) #PLACE THE NAME OF YOUR .BLEND FILE HERE

texture.py
this script assigns the texture to the material of the mesh imported
previously. It uses as textures the image obtained with MLP.py and and the
image with the noise added
#Raluca Andrei <r.andrei@sns.it> from SciVis group www.scivis.ifc.cnr.it

import bpy
import Blender
from Blender import *
import Blender, meshtools, os, struct, sys, string
import time
import datetime
sys.path.append('') # PLACE THE PATH TO YOUR OBJ FILES HERE

#import object
import import_obj
ob= Blender.Object.Get("") # PLACE THE NAME OF YOUR FIXED OBJECT TO WHICH YOU
ASSIGN THE MESHES YOU IMPORTED PREVIOUSLY WITH MLP.py
mesheslist0 = Mesh.Get()
mesheslist = []
for m in mesheslist0:

strname=str(m.name)
strname=strname[0:4]
if m.name!="None_out" and strname=="mesh":

mesheslist.append(m)
meshindex=0
me=mesheslist[meshindex]
#create material without specularity
mat = Material.New('Material_New')
mat.setSpec(0.0)
mat_1 = bpy.data.materials['Material_New']
#assign material to object
me.materials = [mat_1]
#create the first texture Image
comptex=Texture.New('bump')
comptex.setType('Image')
img1 = Image.Load('.png') #PLACE THE NAME OF YOUR NOISY IMAGE HERE
link the image to the texture

comptex.image = img1
get the material
mat2 = Material.Get('Material_New')
set the material's first texture
mat2.setTexture(0, comptex)
#get the texture and use the material's UV to map the texture
mtex = mat2.getTextures()
mtex[0].texco=Texture.TexCo.UV
#map the texture to COL and NOR
mtex[0].mapto=Texture.MapTo.NOR
#set the values for col and nor
mtex[0].colfac=0.5
mtex[0].norfac=3.3
#create a second texture
spectex=Texture.New('specular')
spectex.setType('Image')
img2 = Image.Load('.png') #PLACE HERE THE NAME OF YOUR IMAGE USED TO MAP IT
ON THE SPECULAR CHANNEL
link the image to the texture
spectex.image = img2
get the material
mat2 = Material.Get('Material_New')
set the material's first texture
mat2.setTexture(1, spectex)
#get the texture and use the material's UV to map the texture
mtex = mat2.getTextures()
mtex[1].texco=Texture.TexCo.UV
#map the texture to SPEC
mtex[1].mapto=Texture.MapTo.SPEC
#set the value for spec
mtex[1].varfac=0.47
#check no RGB
mtex[1].noRGB=True
#create a thrird texture
coltex=Texture.New('color')
coltex.setType('Image')
img3 = Image.Load('.png') #PLACE HERE THE NAME OF YOUR IMAGE USED TO MAP IT
ON THE SPECULAR CHANNEL
link the image to the texture
coltex.image = img3
get the material
mat2 = Material.Get('Material_New')
mat2.setTexture(2, coltex)
#get the texture and use the material's UV to map the texture
mtex = mat2.getTextures()
mtex[2].texco=Texture.TexCo.UV

#map the texture to SPEC
mtex[2].mapto=Texture.MapTo.COL
Window.RedrawAll()

import_curves.py
#this script reads the vertices of the curves from the .txt files and builds a
mesh that contains all the starting vertices of all curves. This script must be
run in win32lightcut090828.exe blender branch as only this one has API to draw
the particles as lines

Raluca Andrei <r.andrei@sns.it> from SciVis group www.scivis.ifc.cnr.it

import Blender
from Blender import *
import os
import bpy
from Blender.Scene import Render

def import_file():
filename=".txt" #PLACE HERE THE PATH TO THE LINES FILES
f = open(filename,"r")
ik=0 #for the iterations of curves
ibt=0 #for the iterations of the points of the curve
try:

scn = Scene.GetCurrent()
context = scn.getRenderingContext()
context.currentFrame(1)
me = bpy.data.meshes.new('') #CREATE A MESH AND GIVE IT A NAME
obj = scn.objects.new(me, '') #CREATE AN OBJECT TO WHICH THE MESH

IS ATTACHED
mat = Material.New('') #CREATE A MATERIAL AND GIVE IT A NAME
mat.setMode('Halo')
mat.setHaloSize(0.1)
for line in f:

file_line=line.split()
if file_line[0]=="n":

cu = Curve.New() #for every n found it creates a new
curve

ik=ik+1
ob = scn.objects.new(cu)
ob.name = "curve_" + str(ik) #the curves get an

incremental name
ibt=0 #the interation of the points of the curve goes

down to 0 when the building of a new curve is started
elif file_line[0]=="v":

ibt=ibt+1
bt1coor=float(file_line[1]) #get the x,y,z

coordinates of every vertex

bt2coor=float(file_line[2])
bt3coor=float(file_line[3])
bt = BezTriple.New(bt1coor,bt2coor, bt3coor)
if ibt==1:

curb = cu.appendNurb(bt) #the first point is
appended to the curve

me.verts.extend(bt1coor,bt2coor,bt3coor) #add
the vertices to the mesh

elif ibt>1:
curb.append(bt) #the other points are appended

to the curve
AUTO = BezTriple.HandleTypes.AUTO
for point in curb:

point.handleTypes = [AUTO, AUTO]
cu.update()
cu.setFlag(30)

ob.setPIType(5) #set the curve as Curve Guide
ob.setPIUseMaxDist(1)
ob.setPIMaxDist(0.05)

part_sys = Particle.New ('') #CREATE A PARTICLE SYSTEM, IT SHOULD
HAVE THE SAME NAME AS THE OBJECT

part_sys.particleDistribution=0 #emits from verts
part_sys.randemission=1 #emits random
part_sys.startFrame=0
part_sys.endFrame=1
part_sys.amount=200 #the number of particles
part_sys.lifetime=12 #the particles' life time
part_sys.drawAs = Particle.DRAWAS.LINE #particles drawn as lines
for me in bpy.data.meshes:

me.materials = [mat] #assign the material to the particle
system

finally:
f.close()

import_file()
Blender.Save("",0) #PLACE HERE THE PATH OF THE .BLEND FILE YOU WANT TO SAVE

render.py
#this script picks the mesh for every frame, assigns the correct images
textures to the material and renders
#Raluca Andrei <r.andrei@sns.it> from SciVis group www.scivis.ifc.cnr.it

import string
from string import *
import Blender
from Blender import *

from Blender.Scene import Render
import sys

scn = Scene.GetCurrent()
context = scn.getRenderingContext()
Render.EnableDispWin()
context.extensions = True
mesheslist0 = Mesh.Get()
mesheslist = []
for m in mesheslist0:

strname=str(m.name)
strname=strname[0:4]
if m.name!="" and strname=="mesh": #PLACE HERE THE NAME OF THE DEFAULT

MESH OF THE OBJECT
mesheslist.append(m)

for ik in range(): #PLACE HERE THE RANGE OF OBJ FILES SEPARATED BY
COMMA!!!!!! FOR LARGER MOLECULES SPLIT YOUR RANGE OF FILES IN MORE RANGES

j=1+ik
Blender.Set("curframe", j)
fra = str(Blender.Get("curframe"))
print str(fra) + "==" + str(j)
addzeros = 4 - len(str(j))
toprepend=""
for i in range(addzeros):

toprepend += "0"
name = "mesh" + str(j)
mat=Material.Get()
mat1=mat[0]
mat1.setMode()
nomecompos = "" + toprepend + str(j) + ".png" #PLACE HERE THE NAMES

OF THE IMAGES WITH NOISE TO MAP ON BUMP
nomespec ="" + toprepend + str(j) + ".png" #PLACE HERE THE NAMES OF

THE IMAGES WITH NOISE TO MAP ON SPECULAR
nomecol ="" + toprepend + str(j) + ".png" #PLACE HERE THE NAMES OF

THE IMAGES WITH NOISE TO MAP ON COLOR
for obx in scn.objects:

obname=obx.getName()
if obname=="": #PLACE HERE THE NAME OF THE OBJECT TO WHICH ALL

MESHES ARE ASSIGNED
fixobj=obx

text1 = Blender.Texture.Get("bump")
text2 = Blender.Texture.Get("specular")
text3 = Blender.Texture.Get("color")
Mesh.Get(name).activeUVLayer="UVBake"
fixobj.link(Mesh.Get(name))
mymesh=fixobj.getData(mesh=1)
objcomp=Blender.Image.Load(nomecompos)

objspec=Blender.Image.Load(nomespec)
objcol=Blender.Image.Load(nomecol)
text1.setImage(objcomp)
text2.setImage(objspec)
text3.setImage(objcol)
scn.update()
Blender.Window.RedrawAll()
fixobj.makeDisplayList()
context.sFrame = Blender.Get("curframe")
context.eFrame = Blender.Get("curframe")
context.renderAnim()
scn.update()
Blender.Window.RedrawAll()
Render.CloseRenderWindow()
objcomp.glFree()
objspec.glFree()
objcol.glFree()

#Blender.Quit()

MOVIES (LINKS)

Video gallery: http://www.scivis.ifc.cnr.it/index.php/videos.html

NANOPLANET - An expedition to the cell http://vimeo.com/37182826

PROTEIN EXPRESSIONS - Study N 3 http://vimeo.com/12363247 (soon

available on Science Magazine website)

PROTEIN EXPRESSIONS - Study N 3D http://vimeo.com/10979476

PROTEIN EXPRESSIONS - Study N 2 http://vimeo.com/7219809

PROTEIN EXPRESSIONS - Study N 1 http://vimeo.com/7533123

TSH Receptor on Red Blood Cells (English version) http://vimeo.com/30072649

TSH Receptor on Red Blood Cells (Italian version) http://vimeo.com/30072371

BPTI http://vimeo.com/23641380

gp120 http://vimeo.com/15800994

Triazine http://vimeo.com/7391082

BitucarpinA http://vimeo.com/7390965

Calmodulin http://vimeo.com/7390939

Cholesterol http://vimeo.com/7390734

GFP http://vimeo.com/7390920

ATP http://vimeo.com/7390896

Alanine Dipeptide http://vimeo.com/7390816

http://vimeo.com/7390816
http://vimeo.com/7390896
http://vimeo.com/7390920
http://vimeo.com/7390734
http://vimeo.com/7390939
http://vimeo.com/7390965
http://vimeo.com/7391082
http://vimeo.com/15800994
http://vimeo.com/23641380
http://vimeo.com/30072371
http://vimeo.com/30072649
http://vimeo.com/7533123
http://vimeo.com/7219809
http://vimeo.com/10979476
http://vimeo.com/12363247
http://vimeo.com/37182826
http://www.scivis.ifc.cnr.it/index.php/videos.html

RM Andrei – PhD thesis NOMINATIONS AND AWARDS

NOMINATIONS AND AWARDS

PROTEIN EXPRESSIONS – Festival Videominuto, September 2009,

Prato

PROTEIN EXPRESSIONS Study N 2 – Finalist in the Suzanne Award Film

selection, Blender Conference 2009, Amsterdam

PROTEIN EXPRESSIONS Study N 3 – Science Visualization Challenge

2010

PROTEIN EXPRESSIONS Study N 3D – Scienza in piazza, Bologna,

February, 2011

PROTEIN EXPRESSIONS Study N 3 – European Short Film Festival at

MIT, Boston, April 2011

PROTEIN EXPRESSIONS Study N 3D – DogVille Viladecans Film

Festival, April 2011

PROTEIN EXPRESSIONS Study N 3D – Dentro il microscopio: Ottica,

immagini, tecnologie. Mostra didattico-divulgativa sulla microscopia, Pisa, May

2011

PROTEIN EXPRESSIONS Study N 3D – 8th Annual LA 3-D Movie

Festival, Los Angeles, May 2011.

PROTEIN EXPRESSIONS Study N 3 – Vedere la Scienza Festival, Milan,

May 2011

PROTEIN EXPRESSIONS Study N 3D – Oaxaca International Film

Festival, July 2011

PROTEIN EXPRESSIONS Study N 3 – Imagine Science Film Festival,

New York, October 2011

 TSH receptor – View Festival, Turin, October 2011

PROTEIN EXPRESSIONS Study N 3D – Festival della Scienza, Genova,

October-November 2011

135

NANOPLANET - An Expedition to the Cell – Biomolecular Discovery

Dome at the Biophysical Society 56th Annual Meeting, San Diego, February

2012

PROTEIN EXPRESSIONS Study N 3D – “Spazio MeM” special mention of

the jury at Melzo Film Festival, July 2010

Lipid Raft image – 1st place at Art&Science contest at the Biophysical

Society 56th Annual Meeting in San Diego, February 2012

RM Andrei – PhD thesis PUBLICATIONS

PUBLICATIONS

Porozov Y. Andrei R., Zoppè M., Visualization of moving biomolecules: a

new approach based on professional 3D animation software Nettab 2007
Network Tools and Applications in Biology. 12 - 15 June 2007,

Computer Science Department, University of Pisa, Italy

Callieri, M., Andrei R., Di Benedetto M., Zoppè M, Scopigno R. (2010)

Visualization methods for molecular studies on the web platform.
Proceedings of the 15th international Conference on Web 3D Technology

117-126

Andrei R., Pan M., Zoppè M. (2010) BioBlender: Blender for
Biologists. BlenderArt Magazine 31:27-32

Andrei R., Callieri M., Zini M.F., Loni T., Maraziti G., Pan M., Zoppè M.

Intuitive visualization of surface properties of biomolecules. BMC

Bioinformatics 2012, 13(Suppl 4):S16

137

Visualization of moving biomolecules:
a new approach based on professional 3D animation software

Yuri Porozov1,2, Raluca Andrei1,2, Monica Zoppè1,*.

1Scientific Visualization Unit, IFC – CNR, via Moruzzi 1, Pisa. Italy.
2Laboratorio di Biologia Molecolare, Scuola Normale Superiore, Pisa, Italy.

*Corresponding Author. mzoppe@ifc.cnr.it
www.scivis.ifc.cnr.it

ABSTRACT
We are setting up a system that enable us to visualize proteins and other biological molecules in a 3D
virtual environment built according to scientific information and physico-chemical properties. This
system will permit a novel view and understanding of the functioning of cells, of protein interactions
and of dynamical relationships occurring in the small units of all living systems.

INTRODUCTION
The vast amount of knowledge accumulated on the structure of cells, the shapes and movements of its
constituents, the interaction among participants and with the environment is at present in a form which
is accessible only to experts of the fields. Moreover, this information is often difficult to interpret in
terms of dynamic deployment of single events.
Our aim is to use available biological information to describe the inside working of a cell in 3D
animated representation. To reach this aim, we are using Maya/Autodesk, one of the most powerful
software developed by the industry of 3D animation and special effects (1). With data imported
directly from the Protein Data Bank (PDB), we animate protein movements in virtual space, according
to information and rules derived from physics, chemistry, biochemistry and other scientific sources.

Using our Maya script, atomic coordinates of proteins and other molecules are imported, together with
chemical structures. If more than one conformation is present for a molecule, then these are imported
and the program is run to interpolate intermediate position that transit the protein from one
conformation to another.

The first examples we present are two small molecules (Triazine, and Bitucarpin) for which theoretical
dynamic studies already revealed the energy landscape, which is used for validation of our system.
Most biomolecules however, and notably proteins, contain very large number of atoms, requiring
different, more complex programs that can accomodate the large information content of such
molecules.
We will present results obtained with our system and offer demonstration of how it can be applied to
peptides (we used the V3 peptide of HIV-1 gp120) and the entire gp120 protein.

From the point of view of animation programs, animating means inferring intermediate steps between
a start and an end position, i.e. moving the virtual object in space along time. The kind of movement
can be governed by sets of rules defined as mathematical expressions, many of which are already
present in Maya; other can be codified.
It is important to notice that all what our system does is to interpolate positions while avoiding
prohibited ones, therefore the calculations are extremely rapid. In this respect, it is completely different
from the most widely used Molecular Dynamics programs, which compute positions according to very
complex energy calculations. On the other hand, it is possible that some interpolated movements are
patently wrong, which introduce the need for human revision of every animation.

Another important aim of our project is the delivery physico-chemical information of molecules and of
the environment such as pH, electronegativity, hydrophilicity and others that are of importance for the
way biomolecules behave. This process, in Computer Graphics, is called Rendering, and we will also
show some of the progress in this respect.

Small molecules
Animation of molecular structures implies that information relative to the identity of the atoms, their
positions, their reciprocal relations, are first imported in the animation system. After this, different
positions can be assigned to every single atom at different time-points and interpolation of atom's
positions between time points can be calculated. To this aim, we have first used a few small molecules
for which the energy landscape of different positions has been generated through Molecular Dynamics
studies: Triazine (2), Bitucarpin (3) and Di-Ala dipeptide (4).

Triazine (2-chloro-4-methoxy-6-[(R)-1-
phenyl-ethylamino]-1,3,5-triazine) is a small
molecule composed of 31 atoms, with a
relatively simple structure of two rigid disks
connected by a C-N bridge (see Fig.1). The
different conformational positions that
Triazine can assume are basically variations
of τ1 and τ2, i.e. rotations around the two
chemical links that connect N7, C9 and C11.
Dynamical simulation studies by Alagona et
al (2), have revealed the energy landscape for
all possible conformations that Triazine can
assume. For this reason we chose it as the
initial test molecule of our bio-chemical
Maya system.

The program we developed to import chemical
data into Maya assigns every atom to a position.
Atoms are linked through bones (see panel A in
Fig. 2), which behave like chemical bonds, have
fixed length, and are constrained by codified
rules.
Four different conformers, three minimal
energy positions and one intermediate (A-B-C
and H, see Fig. 3) were imported, and assigned
to time points in the animation (key-framed).
Coordinates for all atoms in some intermediate
positions calculated by Maya along two
possible pathways between C and H were
retrieved and fed back into pdb-like files.
Angles τ1 and τ2 were calculated and plotted
entered into the energy map, allowing for
physico-chemical evaluation of the path
calculated by Maya.

Fig. 3 reports the energy landscape, from ref. 2,
with the paths calculated by Maya for transition
between position C and position H, following
the two possible trajectories.
Note that the path labelled with black dots,
which includes an almost 180º rotation of the
phenyl ring, spans the energy field more than
once. This is because the energy is calculated
on a chemical basis, where Carbons 12 and 13
are equivalent; however, in a topological view,
each of them has its own identity, and the
landscape is in fact twice as large.
These results show that Maya can calculate
paths avoiding the energy peaks, i.e. describing

Fig. 1.

Fig. 2.

 Fig. 3

a movement that is chemically acceptable, flowing naturally in the 'valleys' of the landscape.

Results for Bitucarpin, (a plant chemical for which the energy map has also been calculated) and for
the Di-Ala dipeptide will be presented as demonstrations in real time at the meeting.

Peptides and proteins
Proteins can contain up to several thousands or tens of thousands atoms. For some of them, crystal
structures have been determined in different conformations, allowing us to set two key-framed
positions and to elaborate possible interpolations to transit from one conformer to the other. For other
small proteins or peptides, NMR studies provide variable numbers of conformations that the peptide
can assume in solution: we have taken advantage of this information to script an animation program
that runs in Maya.

Fig. 4 shows the interface of our program.
The user can upload the .pdb file to be used
as source and set a number of features,
including the kind of source (X-ray or
NMR), the atoms to be represented
(including or excluding hydrogens), the
timing of animation and the atoms to be
considered for the animation.

For proteins we have used the Particle
feature to create them in the 3D space of
Maya. Particles are 'light objects' in terms of
processing power, and can be dealt with
either as a single object that includes them
all, or on a per particle basis. In other words,
large movements (such as bends on a hinge)
and relative movements (of the object in
space) can be imposed and calculated very
fast. The per particle attributes are used for
rendering (where each kind of atom displays
different), and for imaging detailed
movements.

To test the system for NMR, we have used
the 20 conformers of V3 (5), PDB entry
1CE4. All sructures, after being ordered
using a statistical apporach, were imported
in to Maya. Each conformation was assigned to a different time-point and animated. The resulting
animations will be shown during the demonstration, and can be seen on our website
www.scivis.ifc.cnr.it.

Gp120 structure has been solved in different conformations: either unbound (6) or bound (7) to CD4.
Its interaction with the cellular receptor CD4 triggers a major movement of parts of the protein, in
particular the V3 loop. V3 is implicated in the selection of co-receptor and in the subsequent step of
co-receptor binding.

Rendering
Visual perception of the world is a very complex process that we perform automatically. When
producing totally artificial images, to obtain the impression of realism, we have to introduce a large set
of effects, such as light sources, casting shadows consistent with the illumination, assigning optical
properties to materials, fixing the 'eye settings', i.e. the (virtual) camera properties and so on.
To assign texture to objects is a complicated task even for reproducing properties of 'real' objects,
when all we have to do is to copy the 'visual feel'. The rendering process (i.e. assignment of visual
properties to surfaces) in CG programs involves the setting of material (2d and 3d textures) color,

Fig. 4.

reflection, luminosity, lights, ambient light and camera movements. Proteins and other biological
molecules are, in essence, chemical compounds with specific properties that are determined by the
nature of their atoms and the way they are connected and organized in the 3D space.
These properties are defined, in physico-chemical terms, as potentials, typically expressed with
complex equations and/or numerical values. One of the aims of our effort, is to convey the significance
of these properties in a visual way. Chemical programs can calculate, for example, the electrostatic
potential of a surface, or its hydrophobicity, and report it on the surface using a conventional code,
typically a colour scale.
We report in Fig. 5 some images obtained while studying different ways to render applied to a form
created with a random process or to a shape representing a branched complex sugar typically found on
glycoproteins. Images were obtained using the RenderManForMaya plug-in from Pixar.

Fig. 5.

CONCLUSIONS
The initial work presented here is part of a large project that will bring to virtual (and visible) life the
processes that occur in the real (but invisible) world of cells.
Because the understanding obtained through sight is much more direct than through word description
or intellectual (mental) representation, this will permit researchers to get a more direct grasp of the
phenomena under study. Providing a different vision, it should also enable the formulation of new
questions, or an alternative way to formulate old, still unanswered ones.
Furthermore, the availability of a virtual cell might allow testing new hypothesis in the virtual cell
before performing real experiments.

Also, a direct representation will greatly facilitate the teaching of cellular and molecular biology, at
various levels, from secondary school to higher university, and it will also be available for museums,
thus attracting new students to the fascinating field of biology.

REFERENCES
1. www.alias.com
2. Alagona, G., Ghio, C., Monti, S. (2006). A Test Case for Time-Dependent Density Functional Theory
Calculations of Electronic Circular Dichroism: 2-Chloro-4-Methoxy-6-[(R)-1-Phenylethylamino]-1,3,5-
Triazine Theor. Chem. Acc. (in press). Published online: Jan. 5, 2007.
3. Alagona, G., Ghio, C. and Monti, S. B3LYP/6-31G* conformational landscape in vacuo of some
pterocarpan stereoisomers with biological activity. Phys. Chem. Chem. Phys., 2004, 6, 2849-2857.
4. Wang, Z. X. and Y. Duan (2004). "Solvation effects on alanine dipeptide: A MP2/cc-pVTZ//MP2/6-
31G** study of (Phi, Psi) energy maps and conformers in the gas phase, ether, and water." J Comput Chem
25(14): 1699-716.
5. Vranken, W. F., F. Fant, et al. (2001). Conformational model for the consensus V3 loop of the envelope
protein gp120 of HIV-1 in a 20% trifluoroethanol/water solution. Eur J Biochem 268(9): 2620-8.
6. Chen, B., E. M. Vogan, et al. (2005). Structure of an unliganded simian immunodeficiency virus gp120
core. Nature 433(7028): 834-41.
7. Kwong, P. D., R. Wyatt, Robinson, J., Sweet, R. W., Sodroski, J., Hendrickson, W. A. (1998). Structure
of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human
antibody. Nature 393(6686): 648-59.

http://dx.doi.org/10.1007/s00214-006-0205-2
http://www.alias.com/

Copyright © 2010 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
Web3D 2010, Los Angeles, California, July 24 – 25, 2010.
© 2010 ACM 978-1-4503-0209-8/10/0007 $10.00

Visualization Methods for Molecular Studies on the Web Platform

Marco Callieri∗

Visual Computing Lab
ISTI-CNR

Raluca Mihaela Andrei†

Scuola Normale Superiore, Pisa
Scientific Visualization Unit

IFC-CNR

Marco Di Benedetto‡

Visual Computing Lab
ISTI-CNR

Monica Zoppè§

Scientific Visualization Unit
IFC-CNR

Roberto Scopigno¶

Visual Computing Lab
ISTI-CNR

Figure 1: Standard representation of molecular surface properties using color ramps and field lines (leftmost), the same properties drawn
using complex shading techniques (center) and the electrical interaction of two proteins (rightmost), rendered on a Web Page by using
SpiderGL and WebGL.

Abstract

This work presents a technical solution for the creation of visu-
alization schemes for biological data on the web platform. The
proposed technology tries to overcome the standard approach of
molecular/biochemical visualization tools, which generally provide
a fixed set of visualization methods. This goal is reached by exploit-
ing the capabilities of the WebGL API and the high level objects of
the SpiderGL library, these features will give the users the possibil-
ity to implement an arbitrary visualization scheme, while keeping
simple the implementation process. To better explain the philos-
ophy and capabilities of this technology, we will describe the im-
plementation of the web version of a specific visualization method,
demonstrating how it can deal with both the requirements of sci-
entific rigor in manipulating the data and the necessity to produce
flexible and appealing rendering styles.

CR Categories: I.3.2 [Graphics Systems]: Distributed/network
graphics—; J.3 [Life and Medical Sciences]: Biology and genetics
—;

Keywords: Web platform,Molecular Biology, Molecular Surface
Visualization, Protein Structure, physico-chemical properties, In-
teractive 3D, WebGL

∗e-mail: callieri@isti.cnr.it
†e-mail: r.andrei@sns.it
‡e-mail: dibenedetto@isti.cnr.it
§e-mail: mzoppe@ifc.cnr.it
¶e-mail: scopigno@isti.cnr.it

1 Introduction

Interactive visualization of molecular structures and physico-
chemical data is an important and interesting research field which
span from the Computer Graphics world to the Biological and
Molecular studies. The amount of complex structures that is avail-
able through public repositories and the level of detail of biochem-
ical datasets which can be manipulated by physico-chemical tools
has greatly increased in the last years, making it essential to employ
dedicated visualization techniques to make an effective use of these
data. While it may be easy to draw even large molecular datasets as
a series of atoms (Van der Waals spheres) using simple rendering
methods based on impostors and other tricks, the precise rendering
of a high resolution molecular surface involves the management of
more complex geometry. Furthermore, when it is necessary to rep-
resent interaction between different molecules or to introduce the
rendering of further 3D elements and data layers (as in the examples
of Figure 1), the required computational and rendering capabilities
do increase significantly.

A previous work in the field of visualization of molecular struc-
tures, QuteMol [Tarini et al. 2006], has shown that, by using ad-
vanced shading techniques, it is much easier to convey the infor-
mation regarding the geometry and structure of the molecule. We
believe the same reasoning may also be applied to the visualization
of other physico-chemical data: by using custom shading and ren-
dering techniques the same improvement in clarity and expressive-
ness can be attained. This is however quite difficult at the moment,

117

since it is rarely possible to finely control the rendering pipeline and
shading process inside existing visualization tools, especially when
working on on-line platforms. Here are some possible scenarios we
are considering:

• a research group interested in proposing a new visualization
method may want to publish a web page which shows an in-
teractive version of such visualization;

• a public repository of biological data structures may want to
let its users view the available data using a custom shading,
designed to effectively show the characteristics of the pro-
vided information;

• an educational-oriented entity may want to present biologi-
cal phenomena to a large public, possibly including a non-
specialist audience, by using visualization method that are not
just scientifically accurate, but also visually pleasant.

These three scenarios exemplify the need for advanced visualiza-
tion methods, but also for the use of the web platform. Pervasive
and easy to access, the web platform is becoming more and more
important for sharing data, processing methods and visualization
techniques. It is easy to foresee that the research community work-
ing on visualization for cellular and molecular biology will find in
the web platform the ideal media for the purposes of research, edu-
cation and science divulgation.

Up to now, the capabilities of web browsers to efficiently manip-
ulate and display 3D content have been very limited. The task
of putting online three-dimensional data has exploited the use of
commercial or custom browsers plugins, and has been character-
ized by a series of problems, like low portability (each plugin/ex-
tension would work only on a subset of browsers and operating
systems), scarce flexibility (in most cases the visualization plug-
ins offered no way to configure the drawing pipeline or add special
rendering modes) and poor performance (the different software lay-
ers of network, O.S., sandbox and plugin introduced lag and com-
putational overhead, separating too much the rendering from the
hardware layer). A suitable solution for this problem may reside
in the upcoming standard of WebGL [Group 2009b], which is an
API specification which defines the web-oriented analogous of the
OpenGL API. The most interesting feature of this API is that it is
implemented directly inside the browser, with direct control over
the graphics hardware. This will help overcoming the compatibil-
ity problems and result in a much more efficient and performing
platform. Deriving from the specifications of OpenGL-ES, WebGL
provides a completely customizable rendering pipeline and the en-
tire shading process is controlled through hardware-level GLSL
shaders. This shader-based nature of WebGL is perfectly suited
to cope with the need of creating a custom visualization scheme.
Direct access to the hardware layer means not only better perfor-
mances, but also the possibility to exploit the full repertoire of tech-
niques and experience accumulated in years of computer graphics
research.

Of course, WebGL alone is not enough to answer the needs of peo-
ple interested in biochemical visualization (which are likely not ex-
perts in graphical programming); following the design philosophy
of OpenGL, WebGL is a very low-level API which requires a good
knowledge of computer graphics techniques and coding skills. It is
therefore necessary, to ease the use of this technology, to introduce
a library able to wrap the most low level function, while giving the
user the ability to dive into implementation details, when needed.
As the WebGL standard is taking shape, different wrapping libraries
are appearing on the web [DeLillo 2009; Brunt 2010; Kay 2009];
one of these libraries, SpiderGL [Di Benedetto 2010], seems to pro-
vide the right balance between the ease of use of the higher level
functions and the possibility to fully control the rendering pipeline.

We believe that the use of WebGL through the SpiderGL library
will prove to be a very powerful platform to implement visualiza-
tion methods on the web for the molecular biology and physico-
chemical research community.

We review in Section 2 some of the previous work in the field of
both molecular visualization and on-line publishing of 3D content.
Then, in Section 3, we introduce the basic ideas of the proposed
technology describing its main philosophy and by presenting the
core library used. Finally, as an example of the use of this technol-
ogy, we show in Section 4 how a specific visualization method has
been adapted to the web platform.

2 Previous Work

2.1 Molecular visualization Off-Line and On-Line

The solution of the 3D structure of myoglobin in 1958 by
Kendrew [Kendrew et al. 1958] marked the beginning of the new
era of protein structural biology. Since then, a large number of pro-
tein structures have been solved and today the Protein Data Bank
counts over 60.000 entries [Berman et al. 2003]. With the availabil-
ity of all these data and the advance of computer graphics technolo-
gies, many research groups have developed tools for the manipu-
lation and visualization of 3D structures such as VMD [Humphrey
et al. 1996], SPDBViewer [Guex and Peitsch 1997], Chimera [Pet-
tersen et al. 2004] and PyMOL [Delano 2002]. Beside working on
the atomic structure, most programs can nowadays also calculate
surface features such as electrostatic potential (using, for example,
tools like APBS [Baker et al. 2001] or DelPhi [Rocchia et al. 2002])
and hydropathy [Kyte and Doolittle 1982].

In addition to the many standalone visualization tools, there are also
web viewers especially designed for molecular structures, such as
Jmol [jmo 2002] and MDL Chime, which represent a simple way
to visualize molecules directly on browser. MDL Chime, used by
the Protein Explorer website was gradually phased out in favor of
Jmol, which is nowadays the most used plugin for molecular vi-
sualization, used by websites such as Proteopedia and RCSB PDB
Protein Data Bank.

Following the advance of techniques for the generation of CG
movies, in the last few years many different groups focused on
the creation of animated movies depicting biological molecules and
cellular processes. The movies range from the simple representa-
tions of the mechanical functioning of a single protein, to complex
events involving many subjects. These works are important scien-
tific efforts and add to their educational value the bonus of rising
interest in the general public to approach biology. Some of these
examples are collected on websites [McGill 2010; SCIVIS 2005].

2.2 3D Content on Web

The web platform has acquired through the years the ability to effi-
ciently incorporate and deliver many different kinds of digital data
such as still images, videos and sound. With respect to these addi-
tions, the management of 3D content through the web comes with a
considerable delay. The reasons for this delay are likely to be found
in the higher requirements of 3D graphics in terms of computational
power, but also because the lack of a strong unifying standard be-
hind the 3D content.

Several technologies have been developed over the years to
achieve this integration. The Virtual Markup Modeling Language
(VRML) [Raggett 1994] (then replaced by X3D [Don Brutzmann
2007]) was proposed as a text based format for specifying 3D
scenes in terms of geometry and material properties and for the

118

definition of basic user interaction. The format itself was a stan-
dard, but the rendering in the web browser was relaying on specific
plugins. The Java Applets are probably the most used method to
add dynamic content, not necessarily 3D, in the web browsers. The
philosophy of Java applets is that the URL to the applet and its
data are put in the HTML page and then executed by the Java Vir-
tual Machine, a third part component. The implementation of JVM
on all the operating systems made Java applets ubiquitous and the
introduction of binding to OpenGL such as JOGL [JOG] added
control on the 3D graphics hardware. A similar idea lies behind the
ActiveX [Microsoft Corporation 1996] technology, developed by
Microsoft from 1996. Unlike Java Applets, ActiveX controls are
not bytecode but dynamic linked Windows libraries which share
the same memory space as the calling process (i.e. the browser),
and so much faster to execute. These technologies enable the incor-
poration of 3D graphics in a web page but they all do it by handling
a special element of the page itself with a third party component.

WebGL [Group 2009b] is an API specification produced by the
Khronos group [Group 2009a] and, as the name suggests, defines
the JavaScript analogous of the OpenGL API for C++. WebGL
closely matches OpenGL|ES 2.0 and, extremely important, uses
GLSL as the language for shader programs, which means that
the shader core of existent applications can be reused for their
JavaScript/WebGL version. Since WebGL is a specification, it is
up to the web browsers developer to implement it. At the time of
this writing, WebGL is supported in the nightly build versions of
the most used web browsers (Firefox, Chrome, Safari), and a num-
ber of JavaScript libraries are being developed to provide higher
level functionalities to create 3D graphics applications. For exam-
ple WebGLU [DeLillo 2009], which is the WebGL correspondent
of GLU [OpenGL ARB], provides wrappings for placing the cam-
era in the scene or for creating simple geometric primitives, other
libraries such as GLGE [Brunt 2010] or SceneJS [Kay 2009] uses
WebGL for implementing a scene graph based rendering and ani-
mation engines.

Figure 2: Lipophilic Potential mapped on the surface of a Calcium-
bound Calmodulin. On right, visualization using standard color
ramp; on left, visualization using advanced shaders. The light color
and the specularity clearly indicates a liphophilic patch on the right
part of the molecule, while the dark, dull and rough surface indi-
cates a more hydrophilic area.

3 Building a custom web-based Visualization
Scheme

As stated in the introduction, the aim of this work is to pro-
pose a technology for the implementation of advanced visualiza-
tion schemes for molecular and biochemical data on a web plat-
form. We are interested in a base technology that is able to cope
with the needs of a completely customizable rendering while pro-
viding enough basic structures and higher level functions to be us-

able without a major programming effort.

Our idea is that the WebGL standard is able to provide the perfor-
mances and fine-control over the rendering, since it directly uses the
hardware layer for rendering, is built around the idea of a fully cus-
tomizable rendering pipeline and gives access to the use of GLSL
shaders, a really powerful instrument to achieve the desired visual
output. While these features are absolutely necessary to reach our
goal, they are not sufficient to provide a really usable development
platform because the available functions are too low level to be ef-
fectively used (especially by a community of people with little or
no experience in CG programming). By introducing a wrapping
library as SpiderGL, it is possible to enrich this platform with a se-
ries of higher level functions that may be used as building blocks
to implement the desired rendering method. As a final ingredient,
we have also to consider what can be attained by a clever use of the
JavaScript. Exploiting the ease of use and the expressive power of
this language it is possible to read the source scientific data and do
all the needed calculation.

3.1 SpiderGL

The core library used in this work is SpiderGL: a recent, ongoing
project which aims to provide an easily usable but powerful wrap-
ping to the lower-level WebGL functions. Most of the available
JavaScript graphics libraries and browser plugins for 3D data man-
agement are based on the paradigm of scene graph. This choice is
perfectly natural, in the sense that it mimics the idea of a three-
dimensional scene composed of objects, rendered from a given
point of view. However, this solution cannot fully answer the need
of scientific visualization, where it is often needed to use very di-
verse data, and render them in a very controlled way. SpiderGL, on
the other hand, does not follow this paradigm, but provides a set of
data structures and algorithms to support the management of geo-
metric and mathematical entities, in order to simplify the creation
of arbitrary visualization prototypes. The idea of this library is to
provide a complete wrapping layer to WebGL that, while hiding
the details through higher level functions, allows full access to the
native API.

To ease the creation of graphical applications, SpiderGL provides a
series of classes and functions which cover the various aspects and
levels of implementation of a CG program:
Basic structures: linear algebra algorithms for 3D points and
vectors are very common tools for the CG developer; the geometry
module of SpiderGL implements the essential mathematical
objects such as vectors (2,3 and 4 components), quaternions and
matrices, along with basic operations on them.
2D/3D Data: one of the fundamental parts of a graphics library is
the management of data structures for the definition of 3D objects
(meshes), textures and the other components used in the rendering
process. While at low level, WebGL works directly on streams
of vertex attributes and indices, SpiderGL, to provide a more
structured object to manage, implements a mesh object, based on
the usual paradigm of vertices+triangle connectivity. For a flexible
but efficient use, SpiderGL supplies two different data structures:
the first one, SglMeshJS, can be freely accessed and modified
within the user script; the other, SglMeshGL, is generated from
the first and used at GPU level for rendering. Management of
textures is done through some specific functions which enable
the creation of texture from images or raw data, texture sampler
options and texture unit binding. A final set of classes is used to
manage vertex shaders, fragment shaders and shader programs,
with support from compilation feedback, binding and attribute
management.
Scene management: while not introducing a scene-graph,
SpiderGL provides some specific helpers to place entities in the

119

3D space, set the viewpoint and simplify the user interaction
with the 3D elements. The matrix stack, legacy of the OpenGL
library, is still extremely useful when populating a scene and it
is implemented in the SglTransformStack object, which
offers many different methods to manipulate and access these
matrices. Other helpful classes include a camera object which
implements the typical paradigm used in first-person shooter
games (SglFirstPersonCamera) and a trackball manipulator
(SglTrackball) for object inspection with pan, zoom, rotation
and scaling operations.
Rendering: WebGL redering is a long series of function used
to manage all the data streams, bind streams to attributes, select
shaders and control the GL status. In SpiderGL, 3D mesh rendering
is managed through the SglMeshGLRenderer helper class.
This class takes care of all the setup steps required by WebGL
and tries to simplify the stream mapping process by automatically
match all the most used attributes. Additional helper classes give
finer control over the mapping of data streams and deal with the
management of shader parameters.
Application: interactivity is one of the focus of this library;
for this reason, SpiderGL provides an event-based mechanism
which is able to collect events from all the DOM and efficiently
dispatch them to multiple listeners. Other application-level support
structures like a log system are available through specific classes.
Another extremely useful feature on the web platform is the
asynchronous loading: many rendering algorithms requires the
ability of asynchronous loading of data. Even if JavaScript does
still not support multithreading, SpiderGL implements a simple
mechanism based on the XMLHttpRequest object to queue data
to be loaded and set a callback functions which will be invoked
whenever the transfer of the requested data has completed.

3.2 Data Importing and Management

While using JavaScript it is not possible to read binary data, this
may not be a major problem for the need of importing data from
molecular databases or physico-chemical tools. Many biological-
related file formats use ASCII coding, which make the parsing re-
ally straightforward. As an example, the importer for the PDB file
format, which describe the structure of a molecule, is just a few
lines long. Here it is possible to see part of the importing code and
how the predefined JavaScript functions for tokenization help its
parsing:
f u n c t i o n AtomListFromPDB (atomlist , pdb_txt){
[.]
v a r lines = pdb_txt .split ("\n") ;
f o r (v a r lineIndex i n lines) {
/ / atom l i n e example
/ /ATOM 16 O ASP A 2 1 0 . 6 5 . 1 −6.1 0 . 0 0 . 0 O

tokens = line .split (" ") ;
i f (tokens [0] == "ATOM") { / / atom l i n e

v a r atomtype = tokens [1 1] ;

v a r position = [] ;
position .push (parseFloat (tokens [6])) ;
position .push (parseFloat (tokens [7])) ;
position .push (parseFloat (tokens [8])) ;

[.]

More recent biochemical tools may also export data in XML for-
mat, which is directly readable by JavaScript. Three-dimensional
geometries are normally stored using one of the many standard file
formats, and can generally be converted from one format to another;
SpiderGL does at the moment support OBJ and COLLADA formats
(other importers will follow), and different other formats may be

parsed by using JavaScript. Less structured data may be imported
also by making the data source export in the JSON format, which
is quite easy to write and is natively supported by JavaScript inter-
preters. Since most physico-chemical tools have a scripting layer
which can be used to specify custom data exporters, this is often a
viable option.

Most of the more interesting visualization methods, however are
not just based on loading existing data and displaying it in a con-
trolled fashion, but also relies on some kind of data processing.
JavaScript may be an effective ally also in this case, thanks to its
ease of use, the great flexibility in data structure (dynamic typing,
associative arrays, an advanced garbage collector), the presence of
many built-in functions and its expressive power. And if it is true
that probably JavaScript will never reach the computational effi-
ciency of compiled C++ code, the newest interpreters and the in-
troduction of just-in-time compilers have significantly reduced the
gap. It is possible to say that, in this specific scenario, where most
of the computational requirements have been moved from CPU to
GPU, the difference between the two language is neglectable.

It is also interesting that, since all the computation is done at the
JavaScript level and all the visualization code is embedded in the
page, it is not possible to effectively hide the data or their process-
ing. This impossibility of building a closed, protected system may
be perceived as a serious limitation for industrial-related applica-
tions. However, in these context, this same limitation may turn out
to be a very positive feature, since the transparency of the data pro-
cessing (you may check that no hidden tweaking is done on the
data) and the possibility of sharing knowledge (by letting others
reuse your visualization code) are of capital importance in the fields
of research and educational tools.

3.3 Implementation

Having all the necessary building blocks to load, manipulate and
render the data, it is possible to build the desired visualization
method. The setup of the scene and the definition of the render-
ing pipeline work similarly to a standard visualization application.

Looking at a webpage with dynamic SpiderGL content, it is possi-
ble to see that all of the page logic is defined in the scripting part of
the HEAD section, while on the BODY section there is just the page
structure and the interface elements that will be used for user inter-
action (like buttons, text areas and other controls). Among these
elements, the most important is an html canvas object, that is the
place where the WebGL layer does the on-screen rendering.

<canvas id="SGL_CANVAS" style="border: 1px solid gray" ←↩

width="900" height="600"></canvas>

This canvas is registered as the output area at the end of the script-
ing; a specific function connects the various events of the canvas to
a script object.

v a r glMolViewer = new SpiderGLMolViewer () ;
sglRegisterCanvas ("SGL_CANVAS" , glMolViewer , 3 0 . 0) ;

The glMolViewer object is the main actor for the scene setup and
rendering of our molecular visualization. The structure of this ob-
ject employs the event handling subsystem provided by SpiderGL,
which is inspired from the one used by the GLUT library [Kilgard].
Each event coming from the canvas triggers a specific function with
a given name and parameters; SpiderGL exploits the JavaScript lan-
guage feature to give the possibility to dynamically add or remove
listeners and redirect events. In this simple example, the only lis-
tener is the main object itself.

SpiderGLMolViewer .prototype = {

120

load : f u n c t i o n (gl) { [. . .] } ,
unload : f u n c t i o n (gl) { [. . .] } ,

update : f u n c t i o n (gl , dt) { [. . .] } ,

keyDown : f u n c t i o n (gl , keyCode , keyString) { [. . .] } ,
keyUp : f u n c t i o n (gl , keyCode , keyString) { [. . .] } ,
keyPress : f u n c t i o n (gl , keyCode , keyString) { [. . .] } ,
mouseDown : f u n c t i o n (gl , button , x , y) { [. . .] } ,
mouseUp : f u n c t i o n (gl , button , x , y) { [. . .] } ,
mouseMove : f u n c t i o n (gl , x , y) { [. . .] } ,
mouseWheel : f u n c t i o n (gl , wheelDelta , x , y) { [. . .] } ,
click : f u n c t i o n (gl , button , x , y) { [. . .] } ,
dblClick : f u n c t i o n (gl , button , x , y) { [. . .] } ,

resize : f u n c t i o n (gl , width , height) { [. . .] } ,

draw : f u n c t i o n (gl) { [. . .] } ,
} ;

Most of the initialization and data loading is done in the load func-
tion: it is here that the main properties of the rendering are chosen,
the input data is loaded and the shaders are compiled.

load : f u n c t i o n (gl) {
[. . .]

t h i s .xform = new SglTransformStack () ;
t h i s .camera = new SglFirstPersonCamera () ;
t h i s .camera .lookAt (0 . 0 , 0 . 0 , 1 . 5 , 0 . 0 , 0 . 0 , 0 . 0 , ←↩

sglDegToRad (0 . 0)) ;
t h i s .viewMatrix = t h i s .camera .matrix ;
t h i s .trackball = new SglTrackball () ;

[. . .]
t h i s .prog = new SglProgram (gl , [sglNodeText ("←↩

MY_VERTEX_SHADER")] , [sglNodeText ("←↩

MY_FRAGMENT_SHADER")]) ;
[. . .]

v a r TextureOptions = {
generateMipmap : t r u e ,
minFilter : gl .LINEAR_MIPMAP_LINEAR ,
onload : t h i s .ui .requestDraw
} ;
v a r ColorTexture = new SglTexture2D (gl , "←↩

molecule_color.png" , textureOptions) ;
[. . .]

t h i s .meshJS = new SglMeshJS () ;
t h i s .meshJS .importOBJ ("molecule.obj" , t r u e , f u n c t i o n (←↩

m , url) { [. . .]
t h i s .meshGL_MOL = that .meshJS .toPackedMeshGL (gl , "←↩

triangles" , 65000) ;
[. . .] }) ;

[. . .]
v a r pdbtxt = sglLoadFile ("mol.pdb") ;
t h i s .atomslist = [] ;
v a r res = AtomListFromPDB (t h i s .atomslist , pdbtxt) ;

[. . .]
t h i s .timeOffet = 0 . 0 ; / / p a r t i c l e a n i m a t i o n o f f s e t
t h i s .stereoEnabled = f a l s e ; / / s t a r t w i th no s t e r e o
t h i s .particlesEnabled = t r u e ; / / s t a r t w i th p a r t i c l e s

} ,

This monolithic way of managing data is fine for webpages devoted
to the visualization of a single, compact dataset. More advanced
examples may benefit from the asynchronous loading mechanism
which allows efficient use of large datasets, streaming/progressive
data or letting user dynamically load remote files.

The draw function contains the code for the actual rendering:

draw : f u n c t i o n (gl) {
gl .clearColor (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;
gl .clear (gl .COLOR_BUFFER_BIT | gl .DEPTH_BUFFER_BIT | ←↩

gl .STENCIL_BUFFER_BIT) ;
gl .viewport (0 , 0 , w , h) ;

t h i s .xform .projection .loadIdentity () ;
t h i s .xform .projection .perspective (sglDegToRad (4 5 . 0) , ←↩

w /h , 0 . 1 , 1 0 . 0) ;
[. . .]

v a r uniforms = {
u_mvp : t h i s .xform .modelViewProjectionMatrix ,
u_normal_mat : t h i s .xform .viewSpaceNormalMatrix ,
u_dotrasp : t h i s .atomsEnabled ,
u_mousepos : [t h i s .ui .mousePos .x , t h i s .ui .mousePos .←↩

y]
} ;
v a r samplers = {
s_texture_c : t h i s .ColorTexture ,
s_texture_b : t h i s .BumpTexture
} ;

[. . .]
gl .enable (gl .DEPTH_TEST) ;
gl .enable (gl .CULL_FACE) ;
sglRenderMeshGLPrimitives (t h i s .meshGL_MOL , "triangles←↩

" , t h i s .prog , n u l l , uniforms , samplers) ;
[. . .]
} ,

This function may be called continuously or on demand: when reg-
istering the canvas with the sglRegisterCanvas function, if
the last parameter is 0, then the canvas is only redrawn by explicit
commands, otherwise, the parameters represent the desired frame
rate. At each ”tick” the SpiderGL will call the update func-
tion and then the draw. In both cases, the html rendering engine
will then issue a page composition operation whenever it detects
changes to the associated WebGL framebuffer.

GLSL shaders are included in the web page as script entities in the
HEAD section:

<script id="MY_VERTEXSHADER" type="x-shader/x-vertex">
[. . .]
</script>

The resulting code is very schematic and organized in such a way
that following the various setup and rendering steps is quite easy.
This simple example is an optimal starting point for experimenta-
tion.

This development process is straightforward for someone with an
experience in graphical programming, while may prove to be diffi-
cult for users with a different background, like biology, physics or
chemistry. This kind of setup is for sure more difficult to master
with respect to setup of other existing platforms, like Jmol which,
true to their nature, provide much simpler (but restrictive) access to
their scene graph, with specific functions to import data and a series
of predefined rendering modes. However, the gain in terms of flex-
ibility and expressive power vastly compensate the initial steeper
learning curve. Moreover, the learning of this technology is made
easier by the possibility of initially use the higher level structures
and functions implemented by SpiderGL to easily setup a basic vi-
sualization scheme and then start playing with lower level functions
to obtain more complex effects. It is also important to note that
most of the available JavaScript utility/UI libraries on the net may
be used in conjunction with SpiderGL, adding more ready-made
components to assemble a powerful, interactive, webpage.

4 Visual Mapping of Molecular Properties

As an example of the strategy described in the previous section,
we will describe how a specific visualization scheme may be im-
plemented using the proposed technology in a very straightforward
way.

121

Figure 3: Interaction between two molecules: the particle flow
shows the electrical attraction between the Calmodulin and the
MLCK head.

The aim of this visualization method [Andrei et al. 2010], designed
in the framework of the creation of a CG short movie, was to display
two specific biochemical properties on the surface of molecules.
The two surface properties were the Molecular Lipophilic Potential
(MLP) and the Electrostatic Potential (EP). The ability of a molecu-
lar surface to establish bonds with water is called Hydrophilicity; its
opposite, which is the ability to establish bonds with fat, is called
Lipophilicity. The Electrostatic Potential is easier to understand:
each atom in a molecule may have a charge, the various charges
in the molecule produce an electric field in the surrounding of the
molecule. The main idea of this visual mapping has been to ex-
ploit perceptual associations between the values to be mapped and
visual characterization of real-world objects. Ideally, by using al-
ready established perceptual association, the viewer would be able
to understand the provided information more naturally, without the
use of explicit legends.

For the mapping of the MLP property, it was necessary to choose
two opposite surface characterizations, able to convey a sense of
affinity to water or to oil. In our real-world experience, a very
smooth, hard surface (like porcelain) is completely impervious to
water but can be easily coated by oil. The opposite visual feed-
back is associated to grainy, crumbly, dull surfaces (like clay bricks
or biscuits) which can be easily imagined being soaked in water.
These considerations led to the association of highly lipophilic ar-
eas as white, shiny, smooth material and of highly hydrophilic areas
as dark, dull and rough. While the MLP value is obviously only
observable on the surface itself, electrical phenomena are associ-
ated to the idea of an effect projected in the volume surrounding a
charged object, and able to affect other objects (like the high school
textbook-favorite amber rod attracting paper bits). Field lines are a
common way to describe the effect of the electrical field. EP value
is therefore represented by showing small particles, moving along
the path defined by field lines, visualizing a higher concentration of
particles in areas where the electrical fields is stronger.

A peculiar characteristic of this visual mapping is that it only
uses shades of gray to represent the two molecular properties; this
choice, which seems restrictive at first glance, is however capable
to efficiently convey the two layers of information while leaving
the utilization of color space for the description of other biochem-
ical information. This visualization method is perfect to show the
capabilities of the proposed strategy, since it involves data coming
from BIO tools and rely on a controlled use of shading (bump map-
ping and specular map for MLP) and rendering effects like particles
(moving along the field lines for EP). Moreover, the focus of this

visual mapping is not only towards the scientific accuracy, but also
towards the visual appeal of the representation.

4.1 From Scientific Data to Rendering

This visual mapping has been designed with the explicit purpose
of being used in a CG movie [SCIVIS 2005], produced using the
3D modeling and rendering tool Blender. For this reason, most
of the input data, coming from scientific tools, have been heavily
processed in order to be converted in a format easily used inside
Blender.

The geometry of the molecular surfaces of the depicted proteins has
been generated using PyMOL starting from their atomic structure
contained in their PDB files. The two properties have been calcu-
lated by using scientific tools, starting from atomic structure and
reference tables for atomic electrical and lipophilic contributions.
The lipophilic potential data, calculated using a dedicated python
script (pyMLP) developed by a molecular scientist, is stored as a
series of samples in the proximity of the molecule. These sam-
ples are then mapped on the molecular 3D surface using interpola-
tion. This mapped value are used to generate color, specular and
roughness texture map. The Electrostatic potential, calculated in-
side another physico-chemical tool (APBS), is basically a volumet-
ric dataset which describes the electrostatic value computed in a
regular grid surrounding the molecule. Using this data, it was easy
to compute the potential gradient and use it to generate the field
lines. The obtained lines were used in the movie rendering to ani-
mate a particle system.

In our example, we will start from the processed data, which
is somehow in between biochemical data and standard computer
graphics data, and then consider the kind of problem and possibili-
ties introduced by the direct use of scientific data. In this conversion
from the CG movie to the realtime web environment, it was possible
not only to obtain the same look and feel of the rendered movie, as
visible in Figure 4, but also to introduce additional elements which
are only possible in an interactive context. Beside the usual inter-
activity which may be attained by the use of simple widgets like
a trackball, the ability to configure the rendering pipeline make it
possible to change rendering parameters on the fly, mix multiple
rendering styles to visualize multiple data layers at the same time
and add effects like the direct rendering in anaglyph-stereo. Again,
the important point, more than the mentioned effects, is the pos-
sibility of overcoming the limits of the predefined rendering that
characterize similar systems.

In the next sections we will detail how each component of the ren-
der has been implemented in order to obtain the same look and feel
presented in the video. For each section we discuss possible alter-
natives for data source and rendering methods to show how it is
possible to directly use biochemical data or create more complex
visualizations.

4.2 Geometry

There are many different methods used in molecular biology to vi-
sualize the three-dimensionality of a molecule. There is a clear dis-
tinction between the representation of the molecular structure and
of its surface. The molecular structure is generally displayed atom
by atom (using a Van der Waals spheres, sphere+stick or licorice
rendering) or as a series of structure elements (ribbon, rod+arrow).
Conversely, the molecular surface [Connolly 1983], defined as the
set of points which are ”accessible” to a given solvent (typically wa-
ter), is a more complex three-dimensional structure and it is gener-
ally displayed as a triangulated mesh, or as a series of nurbs patches.

122

Figure 4: Comparison of the molecular surface visualization ren-
dered by Blender for the movie (bottom), and rendered using
SpiderGL and WebGL (top).

In this context we are more interested in the rendering of the molec-
ular surface, since the two properties we visualize show their effect
in proximity of this surface. Many biochemical tools (like PyMOL,
used in this work) are able to compute the geometry of the molec-
ular surface starting from the atomic description of the molecule
itself. The result of this process is generally a triangulated mesh,
which can be exported, depending on the tool, in different 3D file
formats.

For the movie, the used file format was OBJ which is directly
readable from SpiderGL: these models were also the starting point
for the online visualization. We decided to import precalculated
geometries in the scene as they were already available from the
pipeline used to create the movie, but also because this is the most
sensible option. In theory, it would be possible to compute the
molecular surface on the fly starting from the atomic structure of
the molecule, but this process would require a non-trivial amount
of time and system memory.

As previously stated, to render the structure of the molecule using
Van der Waals spheres, it is necessary to know the position, radius
and color-coding of each atom. The standard way to represent a
molecule structure in biochemical applications is through the use
of a PDB file. A PDB file is just an ASCII file which contains
(among other molecular-related info) a list of atoms with an associ-
ated position. Using JavaScript is quite easy to parse it (as shown in
Section 3) and render with SpiderGL a series of colored spheres of
appropriate size in the correct position. The atomic representation
of the molecule shown in Figure 5 has been generated using this
method. A more complex visualization of the molecular structure,
like ribbon, may also be generated on the fly by starting from the
parsed PDB file and a series of pre-defined 3D element templates.
As we said before, since there are many molecular databases avail-
able online, the PDB file could also be retrieved directly from such
a repository.

The availability of alternative representations of a protein structure,
makes also possible their combination in a single scene, providing
the user the ability to switch between the different representations.
Again, this is quite common and nothing new but, since we can
configure the rendering pipeline we can, for example, show the su-
perimposition of the molecular surface and the Van der Waals rep-
resentation by using transparency effects. As shown in Figure 5, it
is possible to implement a ”fresnel” transparency which depends on
the viewing angle, or a more focused ”x- ray vision” transparency
area which follows the mouse pointer. These kinds of transparency
effects are really simple to implement using GLSL shaders and let
perceive both representations at the same time, to better understand
the relationship between the surface properties and the underlying
structure.

4.3 Lipophilic Potential

The visual mapping of lipophilic potential rely on a combination
of color, surface roughness and specularity: these three effects are
mapped on the molecular surface according to the local lipophilic
potential value. For the rendered movie, the potential value has
been used to generate the color/specular and bump texture maps in-
side Blender by baking on the textures a procedural material. To
render these effects, we decided to use the same texture maps used
in the rendering of the movie and to write a shader which uses
simple shading techniques. Bump Mapping and Specular Map-
ping are standard shading techniques, but it is possible to apply a
fine-control over their appearance by having the full control of the
shader setup, which is not generally possible in commercial soft-
ware for web publishing or in general purpose visualization tools.
The result is pleasant and, as visible in the left side of Figure 2, the
characterization of the surface is quite effective.

Again, the use of precomputed texture is the fastest way to produce
this kind of effect. However, it is also possible to start from the
initial data from which those textures have been generated. As in
the case of the molecular structure file, the lipophilic information
is contained in an ASCII file, which can be parsed using JavaScript
and mapped onto the 3D surface as it was done when baking the
texture. Once the values are mapped to the surface, a simple shader
may be used to produce the same effect of the textures using a pro-
cedural approach. Basically, the color of the surface, the intensity
of the roughness and the specularity only depends on the lipophilic
value: there is nothing which cannot be done in the shader. Having
the mapped lipophilic potential makes also possible a more classi-
cal rendering style which uses color ramps (right side of Figure 2).
This second input method is more generic, since it uses directly the
data generated by the biochemical tool, but may be slower (since
no precalculation is done and the mapping has to be done at load-
ing time) and less compact (since the lipophilic data may be larger
than the textures).

4.4 Electrostatic Potential

Field lines are a widely used method to depict vector fields, es-
pecially for electrical and magnetical phenomena. However, the
main problem with field lines is how many and which lines are
needed: too few lines do not convey the necessary information and
too many will obscure entirely the object of interest. The visualiza-
tion method used for the movie tried to compute, from the infinite
possible field lines, a ”meaningful” subset of lines. The aim was to
generate a distribution of lines proportional to the surface EP value:
more lines would rise in the more electrically active areas, and the
total number of lines would be proportional to the global level of
potential of the molecule (in absolute value). This operation was
done by using a Monte Carlo sampling, weighted with respect to
the potential value of the surface in each area. The selected lines
were then exported as a sequence of points, forming various poly-

123

Figure 5: Showing the superimposition of the Molecular Surface and the underlying Atomic Structure using a transparency based on view
angle (left) and a localized transparency area which follows the mouse (right)

lines. Instead of rendering these entities as solid lines (as visible
in Figure 1) each curve was used to drive a particle system. By
using moving particles, in fact, it is easier to perceive the flow di-
rection of the field and thanks to their small size and movement,
they do not hide the underlying molecular surface. The easiest way
to load the lines inside the web implementation was to apply just a
small change in the code for line calculation, in order to export the
polylines JSON format. It was then possible to parse them using
JavaScript. The loaded data may be rendered as a series of solid
line strips, or used to produce a particle effect similar to the one
used in the movie. In this case, since the particles flow on fixed
lines, it is not really necessary to create a particle system, but it is
possible to visualize the moving particles using a fragment shader
which renders only small fragments of the imported polylines ac-
cording to a periodic function, animated using an offset.

uniform float u_timeOffset;
varying float v_texcoord;
void main(void)
{
const float part_density = 4.0;
const vec3 part_color = vec3(0.8,0.8,1.0);
float val = fract((v_texcoord+u_timeOffset)/part_density);
if (val < 0.7)
discard;

else
{

val = smoothstep(0.9, 0.7, val);
gl_FragColor = vec4(part_color * val, val);

}
}

This effect is much more simple and less CPU/GPU demanding
than a real particle system, while still effective in conveying the
carachteristics of the electrical field surrounding the molecule, the
areas of higher electrostatic potential and their polarity. The field
particles are also useful to show the electrical interaction between
different proteins: in Figure 3 it is shown a calcium-bound Calmod-
ulin approaching an MLCK head, at that distance the two electro-
static field do start an interaction process which will eventually lead
to the docking of Calmodulin, and this is shown by the particles
flowing from one protein surface to the other. Also in this case it
is possible to start directly from the raw physico-chemical data: the
volume data of the Electrostatic Potential is saved in ASCII for-
mat and can be easily read using JavaScript. With these data, it
is possible to compute the potential gradient field and extract the
field lines according to the desired parameters. This option would
give full control on the lines extraction and make it possible to con-
trol the selection parameters on the fly during rendering: given the
importance of the line selection, as previously described, this fea-

ture may be useful to study the electrical field of the molecule. In
any case, being able to load the entire volumetric information may
open up new possibilities to visualize the electrostatic field around
the molecule. Rendering methods such as ray-casting, interactive
slicing and volume splatting are possible on this platform.

5 Future Development

The proposed technology is far from being complete: the WebGL
standard is not yet completely finalized and also the SpiderGL
wrapping is still an ongoing project. To provide a complete plat-
form for the development of specialized visualization tools for the
web platform, some more work will be needed to make this tech-
nology accessible to people with not much experience in computer
graphics programming. This effort should ideally result in the cre-
ation of a reusable library of basic functions which will ease the cre-
ation of simple visualization schemes and, at the same time, serve
as a code base for more complex results. In perspective, to give a
useful instrument to the general public of molecular biology scien-
tist, we will have to work in three different directions:

• a series of importers from different file formats which are
common to the biology community: more readable formats
means more diverse data to play with;

• utility functions to manipulate data: because visualization is
always a matter of filtering data using standard mathemati-
cal/statistical approaches;

• a series of standard shaders to be used for rendering: a shader
library would save the time required to write simple visual-
ization techniques and give the base for experimentation in
creating advanced custom shaders;

An active research problem in the biology community is the cal-
culation of protein motion (i.e. the description of atomic trajecto-
ries while transiting from one conformation to another), this kind
of online visualization technology would prove quite useful for the
evaluation and sharing of new results with the research commu-
nity. It is however still difficult to display animation of the molec-
ular surface in a way that is biologically accurate but at the same
time computationally effective. Animating a structure representa-
tion of a molecule (atomic sphere, balls+sticks, ribbon) may be easy
enough, since it involves rigid roto-translation of rigid entities. On
the contrary, the motion of molecules make the surface undergo
major modification and radical change in topology (genus change,
merging/dividing parts) thus making it impossible to use animation
techniques like skeletal or keyframe. The use of techniques like

124

metaballs may produce surfaces in realtime, but with very low ac-
curacy from the biological point of view. A better idea could be to
exploit the GPU processing power to generate the animated geom-
etry on the fly using, for example, ray-casting methods. An effi-
cient storage and retrieval of such animations is another interesting
problem, especially in the context of web-based applications, which
present additional constrains of low resources and low bandwidth.

6 Conclusions

We have presented here a technology, based on the WebGL stan-
dard, which can be profitably used to build, on the web platform, in-
teractive 3D visualization schemes for the scientific data produced
by molecular and cellular biology research. By using the low-level
features of WebGL, enriched by the utility functions and higher-
level classes provided by the SpiderGL library, it is possible to build
web-based visualization prototypes which are not only completely
custom, but also use advanced shading and rendering techniques.
We have discussed the possibilities offered by this technology, de-
scribing the available components and how they are used in the cre-
ation of an interactive visualization scheme. Moreover, we have
shown how it was possible to use this technology to port a specific
visualization method on the web platform, and how it was possible
to enrich it with additional visual elements, made available by the
use of this technology. This technology is still not complete, since
the WebGL standard is not yet completely fixed, and the SpiderGL
library still an ongoing project; nevertheless, this combination of li-
braries and working strategy is a promising instrument to deal with
the needs of the molecular and cellular biology research commu-
nity.

Acknowledgements

This work has been financed from Regione Toscana through the project ”Studio An-
imazione 3D” to Monica Zoppè. This work sprouted from the collaboration between
the VC Lab of ISTI-CNR and the SCIVIS Group of IFC-CNR, the authors want to
thank all components of both groups for their support.

References

ANDREI, R. M., CALLIERI, M., ZINI, M. F., LONI, T., MARAZ-
ITI, G., AND ZOPPÈ, M. 2010. Intuitive visualization of surface
properties of proteins. BMC bioinformatics - in review.

BAKER, N. A., SEPT, D., JOSEPH, S., HOLST, M. J., AND MC-
CAMMON, J. A. 2001. Electrostatics of nanosystems: applica-
tion to microtubules and the ribosome. Proceedings of the Na-
tional Academy of Sciences of the USA, 98, 10037–10041.

BERMAN, H., HENRICK, K., AND NAKAMURA, H. 2003. An-
nouncing the worldwide protein data bank. Nature Structural
Biology, 10, 980.

BRUNT, P., 2010. GLGE: WebGL for the lazy.
http://www.glge.org/.

CONNOLLY, M. L. 1983. Solvent-accessible surfaces of proteins
and nucleic acids. Science, 211, 709–713.

DELANO, W. L., 2002. The pymol molecular graphics system.

DELILLO, B., 2009. WebGLU: A utility library for working with
WebGL . http://webglu.sourceforge.org/.

DI BENEDETTO, M., 2010. SpiderGL: 3D Graphics for Next-
Generation WWW. http://spidergl.org/.

DON BRUTZMANN, L. D. 2007. X3D: Extensible 3D Graphics for
Web Authors. Morgan Kaufmann.

GROUP, T. K., 2009. Khronos: Open Stan-
dards for Media Authoring and Acceleration .
http://http://www.khronos.org.

GROUP, T. K., 2009. WebGL - OpenGL ES 2.0 for the Web.
http://www.khronos.org/webgl/.

GUEX, N., AND PEITSCH, M. C. 1997. Swiss-model and the
swiss-pdbviewer: an environment for comparative protein mod-
eling. Electrophoresis, 18, 2714–2723.

HUMPHREY, W., DALKE, A., AND SCHULTEN, K. 1996. Vmd:
visual molecular dynamics. Journal of Molecular Graphics, 14,
33–38.

2002. Jmol: an open-source Java viewer for chemical structures in
3D. http://www.jmol.org/.

JOGL Java Binding for the OpenGL API.
http://kenai.com/projects/jogl/pages/Home.

KAY, L., 2009. SceneJS . http://www.scenejs.com.

KENDREW, J. C., BODO, G., DINTZIS, H. M., PARRISH, R. G.,
WYCKOFF, H., AND PHILLIPS, D. C. 1958. A three-
dimensional model of the myoglobin molecule obtained by x-ray
analysis. Nature, 181, 662–666.

KILGARD, M. J. GLUT - The OpenGL Utility Toolkit .
http://www.opengl.org/resources/libraries/glut/.

KYTE, J., AND DOOLITTLE, R. F. 1982. A simple method for
displaying the hydropathic character of a protein. Journal of
Molecolar Biology, 157, 105–132.

MCGILL, G., 2010. MolecularMovies.org:
a Portal to Cell & molecular Animation.
http://www.molecularmovies.com/.

MICROSOFT CORPORATION, 1996. Microsoft activex controls.
http://msdn.microsoft.com/en-us/library/
aa751968(VS.85).aspx.

OPENGL ARB. GLU OpenGL Utility Library .
http://www.opengl.org/documentation/specs/
glu/glu1 3.pdf.

PETTERSEN, E. F., GODDARD, T. D., HUANG, C. C., COUCH,
G. S., GREENBLATT, D. M., MENG, E. C., AND FERRIN,
T. E. 2004. Ucsf chimera–a visualization system for exploratory
research and analysis. Journal of Computational Chemistry, 25,
1605–1612.

RAGGETT, D. 1994. Extending WWW to support platform in-
dependent virtual reality. Proceedings of INET’94, the Annual
Conference of the Internet Society.

ROCCHIA, W., SRIDHARAN, S., NICHOLLS, A., ALEXOV, E.,
CHIABRERA, A., AND HONIG, B. 2002. Rapid grid-based con-
struction of the molecular surface and the use of induced surface
charge to calculate reaction field energies: applications to the
molecular systems and geometric objects. Journal of Computa-
tional Chemistry, 23, 128–137.

SCIVIS, 2005. Scientific Visualization Unit, IFC CNR.
http://www.scivis.ifc.cnr.it/index.php/videos.

TARINI, M., CIGNONI, P., AND MONTANI, C. 2006. Ambient
occlusion and edge cueing to enhance real time molecular vi-
sualization. IEEE Transaction on Visualization and Computer
Graphics 12, 6 (sep/oct).

125

126

Introduction
Biologists know that, if the information of
life is stored and transmitted through nu-
cleic acids (DNA and RNA), the processes
that do the actual work are most of the
times proteins. These are active in all as-
pects of life, and in the latest years we are
starting to get a glimpse of how they
work. Proteins are machines composed of
amino acids, which are in turn small
groups of atoms arranged in specific
ways[1]. Scientists are obtaining more and

more information on the 3D arrangement of such
atoms, and are starting to understand their activity
through motion.

On the basis of information obtained by experi-
ments of nuclear magnetic resonance (NMR), 3D
visualization tools provided by BioBlender allow bi-
ologists to build a reasonable sequence of move-
ment for proteins. It also includes a dedicated visual
code to represent important features of their sur-
face (Electric and lipophilic potential) on the protein
itself, using photo realistic rendering and special
effects.

BioBlender is a software extension of Blender 2.5[2],
an interface for biological visualization that allows
the user to import and interactively view and ma-
nipulate proteins. It was developed and is main-
tained by the Scientific Visualization Unit of the
CNR of Italy in Pisa, with the help and contribution
of several members of the Blender community. Ma-
terial, scenes, publications and other relevant infor-
mation can be found at www.BioBlender.net and/or
www.scivis.ifc.cnr.it.

BioBlender for Windows is available from
www.bioblender.net (on Linux machines it can be
used with Wine). Because of its specialized nature,
it requires the installation of PyMOL[3.4] , Python
2.6 [5] and NumPy[6] , which are all provided in In-
staller folder from the downloaded package.

Using BioBlender to build an animation

To start BioBlender, simply go to the Bin folder and
launch blender.exe, then open the template.blend
scene (stored in BioBlender folder).

Notice that the template file not only has an opti-
mized user-interface layout for biologists, but the
template scene also contains lights, camera and
world settings that are ideal for visualizing mole-
cules. This setup ensures that researchers who are
not familiar with the 3D software can still effec-
tively use BioBlender. Each interface element
(buttons, sliders, toggles) has help text associated
with it. By placing the mouse over them a pop-up
text describes the function. Errors and progresses
are displayed in the console. Critical errors will ap-
pear in the main BioBlender as a pop-up under the
mouse. The atoms size is of order of Ångström (Å),
therefore the scale used is 1 Blender Unit = 1 Å.

This tutorial assumes that you already have Bi-
oBlender downloaded on your computer, with the
required programs installed.

1. Select and import a .pdb file

PDB files contain a description of one or multiple
conformations (positions) of a single molecule. Dif-
ferent conformations of the same protein are listed
in one NMR file and are called MODEL 1, MODEL 2
etc.

27ARTICLE - BioBlender: Blender for Biologists

By -
Raluca Mihaela Andrei,

Mike Pan
and Monica Zoppè

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Raluca Mihaela Andrei1,2, Mike
Pan1,* and Monica Zoppè1§

1 Scientific Visualization Unit, Insti-
tute of Clinical Physiology, CNR of
Italy, Area della Ricerca, Pisa, Italy
2 Scuola Normale Superiore, Pisa,
Italy
* Present address: University of Brit-
ish Columbia, Vancouver, Canada
§ Corresponding author

In the BioBlender Select PDB File panel:

� Select the .pdb file by browsing from your data (1
in figure). The file included in sampleData folder
contains the 25 models of Calmodulin [7]. Alterna-
tively, simply type the 4-letter code for the .pdb file
to be fetched from www.pdb.org [8] (make sure to
pick an NMR file);

� Change the name of the protein (by default it is
named “protein0”) in the field on the right (2 in
figure). Naming the proteins is just a good habit
that will help keeping the scene organized. Once a
file is selected, the number of models and the
chains are detected and shown in the BioBlender
Import field (3 in figure);

� Choose 2 models to import in the scene (by default
all models are listed) typing their number sepa-
rated by comma;

� In the Keyframe Interval slider (4 in figure) set the
number of frames between the protein conforma-
tions (Min 1, Max 200).

A list of options are available to be con-
sidered before importing the protein in
the Blender scene (5 in figure):

Verbose: enable to display in the con-
sole extra information for debugging;

SpaceFill: enable or disable to display
the atoms with Van der Waals or cova-
lent radii in the 3D scene, respectively;

Hydrogen: enable to import Hydrogens
if they are present in the .pdb file. This
option makes importing much slower
and it is important only for visualiza-

tion. If the .pdb file does not contain Hydrogens (or if
you chose not to import them), they will be added dur-
ing the Electrostatic Potential calculation using exter-
nal software;

Make Bonds: enable it to have atoms connected by
chemical bonds. Despite being time consuming this
operation is very important in motion calculation;

High quality: displays high-quality atom and surface
geometries; slow when enabled;

Single User: enable to use shared mesh for atoms in
Game Engine; slow when enabled;

Upload Errors: enable to send us automatically and
anonymously an email with the errors you generate.
This makes us aware of the problems that arise and
help us fix them.

Finally, press Import PDB button to import the protein
to the 3D scene of Blender. Blender displays the protein
in motion (by linear interpolation between atoms in
the conformations; Esc to stop the animation).

28ARTICLE - BioBlender: Blender for Biologists

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Raluca Mihaela Andrei1,2,
Mike Pan1,* and Monica
Zoppè1§

1 Scientific Visualization Unit,
Institute of Clinical Physiology,
CNR of Italy, Area della Ricer-
ca, Pisa, Italy
2 Scuola Normale Superiore,
Pisa, Italy
* Present address: University
of British Columbia, Vancou-
ver, Canada
§ Corresponding author

2. Visualization in the 3D viewport

Once imported, the protein is displayed with all atoms,
Hydrogens included (if the Hydrogens check-box was
enabled). The first 4 buttons in the BioBlender View
enable different views: only alpha Carbons, main chain
(N, CA, C), main chain and side chains (no H), or all
atoms.

If the Surface display mode is selected, BioBlender will
compute the surface of the protein by invoking PyMOL
software, an external application. It uses the Solvent
Radius set by the user and returns the Connolly mesh
[9], displayed on the BioBlender 3D view. The default
radius (1.4 Å) is the standard probe sphere, equivalent
to water molecules.

To check the appearance of surface calculated with dif-
ferent solvent radii, change the solvent radius value
and press refresh button. The current surface is deleted
and a new one is created.

When atoms are displayed, by selecting one atom in
the 3D display, the protein information of the selected
atom is printed in the area outlined below; in the 3D
view the selection will extend to the other atoms of he
corresponding aminoacid.

3. Protein motion using the physic engine

To calculate the transition of the protein between the 2
conformations the Blender Physics Engine is used. Press
Run in Game Engine button to see the transition. Press
Esc to leave GE and then 0 on Numerical Board to see
from the camera point of view.

Hit Run in Game Engine button again for an interac-
tively view. When inside the Game Engine, the mouse
controls the rotation of the protein, allowing to inspect
the protein from all angles. The also applies an ambi-
ent occlusion filter to the scene, giving the viewer a
much better sense of depth.

Set the Collisionmode to one of the following states: 0,
1 or 2. When set to 0 the transition between the confor-
mations is done using linear interpolation; the atoms
will simply move from one position to the other. When
set to 1 the collisions between atoms are considered,
resulting in a more physico-chemical accurate
simulation[10].

When set to 2, the newly evaluated movement will be
record to F-Curves. Go to the Timeline panel on Blender
and see that the new conformations are recorded at
different time (200 frames away from the last model
imported) as shown in the figure below; in this way
both sets of transitions are available for comparison.
These conformations can be exported as described later
in section 6.

29ARTICLE - BioBlender: Blender for Biologists

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Raluca Mihaela Andrei1,2,
Mike Pan1,* and Monica
Zoppè1§

1 Scientific Visualization Unit,
Institute of Clinical Physiology,
CNR of Italy, Area della Ricer-
ca, Pisa, Italy
2 Scuola Normale Superiore,
Pisa, Italy
* Present address: University
of British Columbia, Vancou-
ver, Canada
§ Corresponding author

4. Molecular Lipophilic Potential Visualization

This visualization method is a novel way to see the MLP
values of a protein onto the surface. Normally this is a
relatively time consuming and tedious process involv-
ing running different programs from the command
line, but BioBlender simplifies the entire process by al-
lowing the user to do everything under one unified in-
terface.

In BioBlender MLP Visualization section:

� Choose a Formula (1 in figure; Testa formula [11] is
set by default);

� Set the Grid Spacing (2 in figure; expressed in Å,
lower is more accurate but slower) for MLP calcula-
tion;

� Press Show MLP on Surface. It may take some time
as the MLP is calculated in every point of the grid in
the protein space, then mapped on the surface of
the protein and finally visualized as levels of grey
(light areas for hydrophobic and dark areas for hy-
drophilic [12]).

A typical protein has varying degrees of lipophilicity
distributed on its surface, as shown here for CaM.

Use Contrast and Brightness sliders to enhance the
MLP representation of your protein. Once you are satis-
fied with the
grey-levels
visualization
hit Render
MLP to Sur-
face button
for the pho-
torealistic
render. This

process is also
time consuming
and it always re-
fers to last
changes in the
MLP grey-levels
visualization.
When the calcula-
tion is done (the
button is re-
leased) press F12
on your keyboard.

Note:This is the MLP
representation using
our novel code: a
range of visual fea-
tures that goes from
shiny-smooth sur-
faces for hydrophobic
areas to dull-rough
surfaces for hy-
drophilic ones. The
levels of grey are
baked as image texture that is mapped on specular of the material.
A second image is created by adding noise to the first one and map
it on bump. The light areas become shiny and smooth while the
dark ones dull and rough as shown in the figure.

Press Esc to go back to the Blender scene.

5. Electrostatic Potential Visualization

EP is represented as a series of particles flowing along
field lines calculated according to the potential field
due to the charges on the protein surface. For this rea-
son, it is necessary to perform a series of steps (as de-
scribed in [12]), and to decide the physical parameters
to be used in the calculation (2 in the figure).

30ARTICLE - BioBlender: Blender for Biologists

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Raluca Mihaela Andrei1,2,
Mike Pan1,* and Monica
Zoppè1§

1 Scientific Visualization Unit,
Institute of Clinical Physiology,
CNR of Italy, Area della Ricer-
ca, Pisa, Italy
2 Scuola Normale Superiore,
Pisa, Italy
* Present address: University
of British Columbia, Vancou-
ver, Canada
§ Corresponding author

In BioBlender EP Visualization section:

� Choose a ForceField (1 in figure; amber force field is
set by default);

� Set the parameters for EP computation, using the op-
tions shown in the figure below:

� Ion concentration – 0.15 Molar is the default, physio-
logical value;

�Grid Spacing – in Å, lower is more accurate but slow-
er;

�Minimum Potential – the minimum value for which
the field lines are calculated – the default value is 0
which implies
calculation of all
possible lines;
increase it if you
want to enhance
the representa-
tion of EP;

�n EP lines*eV/Å2
– the number of
field lines calcu-
lated for eV/Å2.

Now press Show EP button. The process is time consum-
ing as Show EP button invokes a custom software that cal-
culates the field lines and exports them in the BioBlender
3D scene as NURBS curves. The positive end of each curve
becomes an emitter. The particles flow along the curves
from positive to negative.

Change the Particle Density (3 in figure) to modify the
number of the particles visualized in the scene. Clear
EP to delete the curves and the emitters.

6. Output

To see the protein movement with the surface proper-
ties you have to render a movie. Since the movement
implies a change of the atomic coordinates, the sur-
face properties must be recalculated frame by frame.

In the BioBlender Output panel set the output file path
(by default it is set to tmp folder); choose the kind of
representation you prefer to render from the Visualize
curtain menu:

�Atom – render only atoms;

�Plain Surface – render only surface;

�MLP – render surface with MLP;

� EP + Plain Surface – render surface (no MLP) and EP;

� EP + MLP – render surface with MLP and EP;

set Start Frame – the first frame of the animation;

31ARTICLE - BioBlender: Blender for Biologists

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

Raluca Mihaela Andrei1,2,
Mike Pan1,* and Monica
Zoppè1§

1 Scientific Visualization Unit,
Institute of Clinical Physiology,
CNR of Italy, Area della Ricer-
ca, Pisa, Italy
2 Scuola Normale Superiore,
Pisa, Italy
* Present address: University
of British Columbia, Vancou-
ver, Canada
§ Corresponding author

set End Frame – the last frame of the animation;

set Export Step – the number of frames to skip during
export, mostly used for faster export of .pdb files; ena-
ble Information
Overlay to print
extra information
on the final im-
age; enable Ambi-
ent Light only for
GE visualization;
do not enable it
for MLP represen-
tation as its effect
is confusing for
MLP visual code.

Hit Export Movie to render every frame of the anima-
tion. The output is a sequence of still images, this en-
sures that the rendering is resumed if the rendering
process is disrupted. During section 3 Blender GE calcu-
lated and recorded intermediate conformations as key-
frames. To save these coordinates as .pdb files for
further analysis using external software, press Export
PDB. A .pdb file is saved for each frame in the selected
output.

To obtain the movie follow standard Blender proce-
dures: open the Video Se-
quencer Editor: Add -> Image,
select the sequence of images,
go to Properties window and
set the Output path and the
File Format to AVI JPEG in the
Output panel and Start and
End frame in the Dimensions
panel. Now press Animation
button in the Render panel.

Now you have your protein moving with the surface
properties visualized. An image of CaM with EP and
MLP is shown in the image below

32ARTICLE - BioBlender: Blender for Biologists

www.blenderart.org Issue 31 | Dec 2010 - "Under the Microscope"

References

1 Zoppè, M; Porozov, Y; An-
drei, R M; Cianchetta, S; Zini,
M F; Loni, T; Caudai, C; Calli-
eri, M (2008) Using Blender
for molecular animation and
scientific representation. Pro-
ceedings of the Blender Con-
ference Blender

2 DeLano, WL, The PyMOL Mo-
lecular Graphics System,
2002

3 The PyMOL Molecular Graph-
ics System, Version 1.2r3pre,
Schrödinger, LLC

4 Python

5 NumPy

6 Kuboniwa H, Tjandra N,
Grzesiek S, Ren H, Klee C B,
Bax A (1995) Solution struc-
ture of calcium-free calmod-
ulin. Nat Struct Biol 2: 768-76

7 Berman, H M; Westbrook, J;
Feng, Z; Gil-
liland, G;
Bhat, T N;
Weissig, H;
Shindyalov, I
N; Bourne, P
E (2000) The
Protein Data
Bank. Nu-
cleic Acids
Res 28: 235-
42

8 Connolly, M L (1983) Solvent-
accessible surfaces of pro-
teins and nucleic acids. Sci-
ence 221: 709-13

9 Zini, M F; Porozov, Y; Andrei,
R M; Loni, T; Caudai, C; Zop-
pè, M (2010) Fast and Effi-
cient All Atom Morphing of
Proteins Using a Game En-
gine. (under review)

10 Testa, B; Carrupt, P
A; Gaillard, P; Billois, F; We-
ber, P (1996) Lipophilicity in
molecular modeling. Pharm
Res 13: 335-43

11 Andrei R M, Callieri
M, Zini M F, Loni T, Maraziti
G, Pan M C, Zoppè, M (2010)
A New Visual Code for Intui-
tive Representation of Sur-
face Properties of
Biomolecules. (under review)
Raluca Mihaela Andrei1,2,
Mike Pan1,* and Monica
Zoppè1§

12 Scientific Visualiza-
tion Unit, Institute of Clinical
Physiology, CNR of Italy,
Area della Ricerca,

13 Pisa, Italy

14 2Scuola Normale
Superiore, Pisa, Italy

15 *Present address:
University of British Colum-
bia, Vancouver, Canada Cor-
responding author

Raluca Mihaela Andrei1,2,
Mike Pan1,* and Monica
Zoppè1§

1 Scientific Visualization Unit,
Institute of Clinical Physiology,
CNR of Italy, Area della Ricer-
ca, Pisa, Italy
2 Scuola Normale Superiore,
Pisa, Italy
* Present address: University
of British Columbia, Vancou-
ver, Canada
§ Corresponding author

Intuitive representation of surface properties of
biomolecules using BioBlender

Raluca Mihaela Andrei1,2, Marco Callieri3, Maria Francesca Zini1,† , Tiziana Loni1, Giuseppe

Maraziti4, Mike Chen Pan1,* and Monica Zoppè1, §

1Scientific Visualization Unit, Institute of Clinical Physiology, CNR of Italy, Area

della Ricerca, Pisa, 56124, Italy

2Scuola Normale Superiore, Pisa, 56125, Italy

3Visual Computing Lab, ISTI, CNR of Italy, Area della Ricerca, Pisa, 56124, Italy

4Big Bang Solutions, Navacchio (Pisa), 56023, Italy

† Present address: University of Pisa, Pisa, 56125, Italy

*Present address: Harvard Medical School, Boston, MA 02115. USA

§Corresponding author

Email addresses:

RMA: r.andrei@ifc.cnr.it

MC: callieri@isti.cnr.it

MFZ: myrtil@gmail.com

TL: tialo@tiscali.it

GM: giuseppe.maraziti@libero.it

MCP: mike.c.pan@gmail.com

MZ: mzoppe@ifc.cnr.it

- 1 -

mailto:charles@darwin.co.uk
mailto:giuseppe.maraziti@libero.it
mailto:mzoppe@ifc.cnr.it
mailto:mike.c.pan@gmail.com
mailto:tialo@tiscali.it
mailto:myrtil@gmail.com
mailto:jane@darwin.co.uk

Abstract
Background
In living cells, proteins are in continuous motion and interaction with the surrounding

medium and/or other proteins and ligands. These interactions are mediated by protein

features such as electrostatic and lipophilic potentials. The availability of protein

structures enables the study of their surfaces and surface characteristics, based on

atomic contribution. Traditionally, these properties are calculated by physico-

chemical programs and visualized as range of colors that vary according to the tool

used and imposes the necessity of a legend to decrypt it. The use of color to encode

both characteristics makes the simultaneous visualization almost impossible, requiring

these features to be visualized in different images. In this work, we describe a novel

and intuitive code for the simultaneous visualization of these properties.

Methods
Recent advances in 3D animation and rendering software have not yet been exploited

for the representation of biomolecules in an intuitive, animated form. For our purpose

we use Blender, an open-source, free, cross-platform application used professionally

for 3D work.

On the basis Blender, we developed BioBlender, dedicated to biological work:

elaboration of protein motion with simultaneous visualization of their chemical and

physical features.

Electrostatic and lipophilic potentials are calculated using physico-chemical software

and scripts, organized and accessed through BioBlender interface.

Results
A new visual code is introduced for molecular lipophilic potential: a range of optical

features going from smooth-shiny for hydrophobic regions to rough-dull for

- 2 -

hydrophilic ones. Electrostatic potential is represented as animated line particles that

flow along field lines, proportional to the total charge of the protein.

Conclusions
Our system permits visualization of molecular features and, in the case of moving

proteins, their continuous perception, calculated for each conformation during

motion. Using real world tactile/sight feelings, the nanoscale world of proteins

becomes more understandable, familiar to our everyday life, making it easier to

introduce “un-seen” phenomena (concepts) such as hydropathy or charges. Moreover,

this representation contributes to gain insight into molecular functions by drawing

viewer's attention to the most active regions of the protein. The program, available for

Windows, Linux and MacOS, can be downloaded freely from the dedicated website

www.bioblender.org

Background
The fact that we humans are very good at extracting information through visual

observation is well synthesized in the old adage “a picture is worth a thousand

words”. The solution of the 3D structure of myoglobin in 1958 by Kendrew [1]

marked the beginning of the new era of structural biology. Since then, a wealth of

protein structures has been solved and today the Protein Data Bank (PDB) counts over

67.000 protein structures [2, 3].

With the availability of all these data, and with the advance of computer graphics

(CG) technologies, tools for the visualization of 3D structures were created such as

VMD [4, 5], SPDBViewer [6, 7], Chimera [8, 9], PyMOL [10, 11] and others. Balls

and sticks for atoms and bonds, ribbons for the secondary structures, and molecular

surfaces are some of the possible representations of proteins. Most programs can also

calculate surface features such as electrostatic potential (calculated with APBS [12] or

- 3 -

http://www.bioblender.org/

DelPhi [13]) and hydropathy (Kyte-Doolittle [14]). When present, these features are

represented as field lines and/or as ranges of colors.

Since the late '90s, the development of CG techniques has advanced at spectacular

pace. Among the most widely used tools, is the art and science of 3D animation. This

technique consists in the creation and animation of 3D objects (complete with

surfaces, skeletons, and simulated physical properties) in a virtual world, which can

be 'filmed' using virtual cameras and lights. Several programs are available for this,

including the commercial packages Maya/Autodesk, 3D Studio Max and Softimage

XSI (all from Autodesk, [15]), Cinema 4D (from MAXON Computer GmbH [16])

and the open-source Blender [17].

Not surprising, all of these have been used for the study and representation of

biological molecules and processes. Some examples are collected and visible on

dedicated websites [18, 19]. The films range from the simple representation of the

mechanical functioning of a single protein, to complex events involving many

subjects such as DNA replication and RNA processing, to views of major cellular

processes, such as apoptosis, etc.. These latter ones are important scientific efforts and

add to their educational value the bonus of rising interest in the general public to

approach biology.

For our purpose we use Blender, an open-source, free, cross-platform 3D application.

Blender is a powerful instrument for 3D modeling, animation, gaming and rendering,

that provides a complete workbench for producing still images, simple animations or

very complex scenes with thousand of objects in motion, all textured, lighted and

filmed for proper view.

- 4 -

Traditionally, the process of creating a 3D animation film consists of a number of

steps roughly grouped in modeling, animation, rendering, special effects and

compositing. Blender offers a platform to elaborate and integrate all of these steps.

Objects are created in the virtual world by modeling them in the 3D scene starting

from primitives or by importing them from other programs. A time line holding key

frames (points in time in which objects have defined configuration set-ups) is used to

animate the objects in the scene in various ways: by direct rotations/translations of the

object, by mesh deformation obtained moving its components (vertices, edges, faces),

via skeleton (inverse or forward kinematics) or by using the Game Engine (GE),

typically deployed in video games. Additionally, physics-based animations can be

achieved by simulated forces such as gravity, magnetic, vortex, wind etc. Objects are

given a surface appearance by the use of material shaders and textures. These two

elements define the behavior of the surface when illuminated, by specifying local

information like color, reflectance (dull or shiny) and microstructure (roughness or

smoothness).

Once the animation and texturing is defined, the scene is equipped with other assets

such as a background, lights and cameras and the process concludes with the 'filming'

(rendering of all frames which are assembled to generate a video).

In this article, we illustrate a step forward in the direction of using bio-animation both

as a divulgation and as a discovery tool. Our aim is to visualize molecules in a

directly informative way, also showing their motion obtained from structural data

(Figure 1). This task is done using BioBlender [20], in which Blender is used to

access several scientific programs. BioBlender is an engine built in Blender with an

interface for biological visualization (Figure 2).

- 5 -

The use of Blender GE to elaborate the movement of proteins, starting from 2 or more

conformations is described in Zini et al. (BioBlender: Fast and Efficient All Atom

Morphing of Proteins Using Blender Game Engine, manuscript submitted). Briefly,

starting from data from NMR collections or X-rays of the same protein crystallized in

different conditions, we use Blender GE, equipped with special rules approximately

simulating atomic behavior, to interpolate between known conformations and obtain a

physically plausible sequence of intermediate conformations. This sequence is output

as a list of pseudo .pdb file (list of atoms with their x,y,z coordinates) which are the

basis for the visual elaboration described here.

As the result of this study, we propose a new visual code for the representation of two

important surface properties: electrostatic potential (EP) and molecular lipophilic

potential (MLP). Using features different from color permits their simultaneous

delivery in photo-realistic images leaving the utilization of color space for the

description of other biochemical information. Here we describe the details of this

process.

Methods
Programs and scripts
BioBlender is an extension of Blender, in which custom Python scripts have been

implemented for building the interface, importing the meshes and the curves,

converting MLP values into vertex colors and managing various scientific programs

(www.bioblender.org).

In the construction of BioBlender, we have made ample use of several existing

programs, listed here.

Blender 2.5 – a free, open source, cross platform suite of tools for 3D creation [17].

- 6 -

PyMOL 1.2r3pre – a Python-enhanced molecular graphics tool [10], used for

visualization of .pdb files. It calculates the electrostatic potential through APBS plug-

in. This tool is also used to generate the 3D mesh of the molecular surface for the

molecule. The obtained geometry is exported in .wrl format, easily read by 3D

software tools.

PDB2PQR-1.6.0 – [21, 22] a software package that automates many of the common

tasks of preparing structures for continuum electrostatics calculations, providing a

platform-independent utility for converting protein files from PDB format to PQR

format. It assigns partial atomic charge to every atom according to different force

fields (AMBER 94, CHARMM 27 or PARSE) and saves a .pqr file in which the

occupancy and temperature columns are replaced by atomic charge and radius,

respectively. It also adds missing hydrogens, calculates pKa values and generates an

input (.in) for APBS calculations. The .in file stores information on the 3D dimension

of the protein, the ionic concentration of solvent, biomolecular and solvent dielectric

constants. Ionic concentration of 0.150 mol/l NaCl, biomolecular dielectric constant

of 2 and solvent dielectric constant of 78.54 (water) were used for our calculation.

APBS-1.2.1 (Adaptive Poisson-Boltzmann Solver) – [12] a software for evaluating

the electrostatic properties of nanoscale biomolecular systems, through solution of the

Poisson-Boltzmann equation. APBS takes as inputs a .pqr and an .in file and

calculates the electrostatic potential in every point of a grid in the protein space,

which is output as a .dx file.

scivis.exe – a custom software written in C++ used to calculate the field lines and to

export them in a ASCII file to be imported in Blender. This tool imports the 3D

surface (.obj) and the EP grid (.dx) calculated by APBS. The computation of the field

lines is a multi-step process: EP values are mapped on the 3D surface, a gradient field

- 7 -

is calculated in the volume containing the molecule, an automatic selection of areas

with high values of EP is done and the corresponding field lines are computed for

these areas using the gradient field. When used as primary application, in addition to

the described features, scivis.exe provides visual feedback for all its processing steps.

It is possible to visualize the molecular surface, the EP grid, the gradient grid and the

field lines.

Python 2.6 – an interpreted, interactive, object-oriented, extensible programming

language [23]. In this project, Python has been used in different stages, both as a

scripting component of various software tools (like Blender and PyMOL) and as a

stand-alone scripting language.

pyMLP.py – a Python script written and kindly provided by Julien Lefeuvre

(available from [24]); it contains a library of atomic lipophilic potential for all atoms

present in proteins (we added the values for some mono-saccharides and nucleic

acids) and it calculates the MLP in every point of a grid in the protein space according

to various formulae such as Fauchere, Dubost, Brasseur, etc. (we introduced Testa

formula). The grid step can be changed by the user to cope with the protein size and

computer performances (in terms of memory occupancy and calculation time).

Results

We present here a software/method to produce the simultaneous visualization of EP

and MLP on proteins. In the case of moving proteins, the program produces a

rendered animation, in which every second of the resulting movie contains 25 images

(24-30 frames per second is the standard video speed), and at every frame the shape,

EP and MLP of the molecule are automatically recalculated.

- 8 -

In the elaboration of each frame representing proteins, still or in motion, the steps of

object (mesh) creation, surface calculation and data manipulation for EP and MLP are

elaborated independently using both scientific and CG programs to obtain the series

of frames compositing the animation (Figures 3 and 4).

Protein surfaces
The molecular surface of proteins [25] is calculated in PyMOL starting from the .pdb

file, as shown in Figure 3, upper left. For series of conformations (obtained with

Game Engine or derived from molecular dynamics), the procedure is reiterated.

PyMOL was chosen because the surfaces created by this software have a regular

triangulation even at low polygon resolution and it is only marginally afflicted by the

problem of internal disjoint surfaces. In the 3D mesh used in the example reported in

Figure 5A and in other tests with wider range of dimensions (number of polygons

between 4.5 and 50 thousands), all the triangles have similar areas. The mesh is

exported by PyMOL as a .wrl, a file which contains information about the position of

the vertices, edges, characteristics of the material of the polygon etc..

MLP calculus
The MLP calculus (Figure 3 upper right) is done using pyMLP.py [26, 27]. This

script calculates the lipophilic potential in every point of a grid in the space of the

protein and exports the values in a .dx file. The script contains a library of atomic

lipophilic potential values for every atom based on its chemistry, and several formulae

for MLP calculation. However it does not support the Testa formula [28],

MLP (r)=∑
i

f i e
−∣r−r i∣

2

where r is a point in the protein space, f i is the atomic lipophilic potential for atom i,

and ri is the position of atom i.

- 9 -

The Testa formula is an atom-based function that uses the Broto [26] fragment

scheme and an exponential distance function, appropriate for protein calculations;

therefore we modified pyMLP.py to include Testa formula. The MLP accuracy

depends on the grid spacing (a in Figure 2); in BioBlender the default is set at 1Å, a

dimension comparable to the mean size of the triangle edge of the 3D mesh; this

parameter is a good compromise between MLP data, mesh triangulation, computer

memory and time for calculation (see below).

pyMLP outputs a .dx file in which the header defines the grid origin, the grid step and

the number of points on each axis.

MLP rendering
The code for the representation of hydropathy that we propose is a range of optical

features that go from smooth-shiny surface (hydrophobic) to rough-dull (hydrophilic),

as shown in Figure 5C.

Data elaboration for rendering is done in a series of steps (Figure 3, lower part):

1. MLP values mapping on the mesh. The MLP values (typically between -3 and 1 for

soluble, membrane-embedded and cytoplasmic proteins) are mapped on the surface of

the molecule by assigning values of MLP to the mesh. The algorithm (included in a

custom program, OBJCreator) is simple: for every vertex of the mesh, the

correspondent grid-cell, in the MLP grid, is identified and the value of potential is

calculated using trilinear interpolation and assigned to the vertex.

This process is very fast (about 2 seconds on a personal computer for calmodulin) and

the mesh vertex density is high enough to represent smoothly the potential spatial

transition. The information about the MLP values corresponding to every vertex are

stored in the V field of an .obj file as texture coordinates (U and V).

- 10 -

2. MLP values conversion into vertex colors. MLP values (previously assigned to the

vertices of the mesh) are converted into vertex colors, assigning the same value for

each RGB channel, to obtain levels of gray). For the conversion we normalize the

range of the MLP values ([-3,1]) to the range of gray scale ([0,1]), and set value 0 of

MLP to correspond to the value 0.5 of the gray scale. In this way the hydropathy of

the protein is visualized in Blender as levels of gray: bright areas representing

hydrophobicity and dark areas hydrophilicity (Figure 5B). The use of the default

conversion scale provides a coherent representation for all proteins; however, at this

step, to enhance MLP features for any particular protein under study, the user can

modify contrast and brightness using sliders (b in Figure 2).

3. Creation of the first image texture. The mesh is unwrapped to generate a texture

parametrization and the per-vertex color values are saved ('baked') in a texture image.

UV unwrapping is a procedure that consists in flattening a 3D object (e.g. the world

globe) on a 2D plane (e.g. the world map), so that each vertex of the 3D mesh is

assigned a correspondent 2D texture coordinate [29]. The 2D image is also called

image texture or UV map, where U and V are the texture axes.

4. Creation of the second image texture. In order to make the more hydrophilic areas

rough the procedure involves the addition of a noise pattern of amplitude proportional

to the degree of gray of the texture. This is achieved using the Node Editor of

Blender, adding a Gaussian noise to the texture image, which produces an image with

a strong noise over the black regions, gradually reduced on gray regions to reach a

level of no noise on white. In the rendering process this noise is converted to bump, as

explained below.

5. Addition of specularity and roughness. In the final rendering step, the image

obtained in the first step (gray scale) is finally mapped on specularity from dull to

- 11 -

shiny, and the second image is mapped on bump. Bump mapping is a rendering

technique generally used to represent very small scale geometry like scratches,

roughness or graininess. This technique does not affect the geometry of the object: the

perceived local geometry is only an optical effect obtained by light reflection

modifications. In the final image hydrophobic areas are represented as reflective and

smooth, while the more hydrophilic ones as duller and rougher (Figure 5C). By

avoiding the use of color, as well as of gray scale, the differences in color are only

due to the effect of light interacting with the surface, i.e. the darker areas are the least

illuminated.

EP calculus
While the use of movies is mostly intended to show transition between conformations

of a protein, it also allows the introduction of special effects of CG to convey other

information. We have elaborated the following procedure using both BioBlender and

external programs to display the EP associated with molecular (partial) charges (see

Figure 4, right side). All programs are accessed through BioBlender interface, also

used to set specific parameters.

The .pdb file used for mesh creation and MLP calculus is submitted to PDB2PQR

program [21, 22] which outputs 2 files: .pqr and .in. These files store information on

the size and charge of every atom, and on the dimensions of the protein, the ionic

concentration, biomolecular and solvent dielectric constant, respectively. Both .pqr

and .in are input files for APBS program [12], that calculates the electrostatic

potential in every point of a grid in the space of the protein and exports the values in a

.dx file, analogous to the one seen above for MLP. The force field, the ion

concentration and the grid spacing can be set by the user (c in Figure 2).

- 12 -

EP is redrawn as field lines calculated by a custom software, scivis.exe, that combines

information from the mesh file (.obj) with EP values (see below). This computation

comprises different steps:

1. Mapping EP on the surface mesh

2. Transformation of the grid of EP values into a grid of gradients

3. Selection of more active surface areas by weighted Monte Carlo sampling

4. Drawing of field lines that are stored in a .txt file

The EP values are mapped on the surface of the protein by assigning a value of EP to

every vertex of the mesh, as seen above for MLP, i.e. trilinear interpolation.

A grid of gradient vectors is built starting from the scalar field of EP values: for each

point the gradient is calculated according to the values in neighbor points, finding the

direction and slope of EP change.

The gradient data are used to generate the field lines in the space surrounding the

protein. From the infinite possible lines, we are interested in generating a 'meaningful'

subset comprising the lines associated with areas of the mesh with high value of EP,

obtaining a distribution of lines that is proportional to the surface EP value: more lines

will rise in the more electrically active areas, and the total number of lines will be

proportional to the global level of potential of the molecule. This selection is done by

Monte Carlo sampling weighted with respect to the potential value of the surface in

each area.

For the selection of this subset, the user has two controls (d in Figure 2): the absolute

EP value on the surface from which the creation of the field lines starts (lines are

generated only in areas with an EP higher than a threshold – Minimum potential) and

a parameter that represents the general line density (expressed as Number of lines x

eV/Å2). By modulating this parameter users can select the most appropriate value for

- 13 -

a group of proteins, obtaining a concentration of field lines which is coherent across

the various proteins.

Once the 'interesting' locations (points) are selected, the lines are calculated by

following the gradient in both directions, iteratively moving with small steps

according to the gradient (small-step integration). Line points are added until one of

the following three conditions is met: 1. the limit of the calculated grid is reached, 2.

the line intersects the mesh or 3. the field is too low (the gradient is approximately 0

or equal to the value set by the user). The lines are saved as sequences of points in an

ASCII file (.txt).

Thanks to the random nature of the selection procedure, lines do change every time

the procedure is run but the more electrically active areas (where more lines are

present) are readily identifiable. This property proves to be particularly effective when

represented in animation, since it gives the idea of fuzziness, useful for electricity

representation, while conveying the information about EP distribution on the surface.

In the case of Calmodulin, depicted in Figure 1, and even more evident in the WebGL

animated representation, most lines are directed towards the surface, due to the fact

that the protein is slightly acidic, with an isoelectric point of 4.09.

EP representation
Field lines are imported into Blender as NURBS curves which are not rendered (they

are invisible in the final image), but instead are used to guide a particle effect. Every

curve starts at its most positive end which is associated with a particle emitter. The

particles, drawn as short segments, flow along the curves from positive to negative,

respecting the field lines convention in physics. During animation, the particles are

generated every 5 frames (0.2 sec) and have a life-time of 20 frames (0.8 sec). This

means that the system is in steady state after the sixteenth frame (see the scheme in

- 14 -

Figure 6). Representation of EP as moving particles on a trajectory, played in time, is

interpreted easily and transmits the idea of polarity of the charged areas of a

biomolecule.

If the user is interested in visualization of only one conformation, the animated

particles are displayed/played in loop (they are emitted for 250 frames and have a

lifetime of 20 frames).

Moving proteins
In the visualization of proteins in motion, every frame is elaborated as a single .pdb

file. Because at every frame the atomic coordinates change, also the surface features

(shape itself, EP and MLP, calculated by integrating the atomic values) change

accordingly, and must be recalculated. Due to extremely high-level modifications

(topology changes, merging/separation of surface parts) it is not possible to use a

single geometry and animate it through conventional tools. It is instead necessary to

rebuild the surface geometry, importing a new set of mesh coordinates at each frame.

This implies a very large amount of calculations, but allows the elaboration of a

sequence of images that is coherent from frame to frame, thus giving the impression

of continuity.

In summary, for each frame (conformation) we visualize MLP as textured mesh and

EP as curves and animated particles. The result is a sequence of frames showing the

moving protein with its properties, EP and MLP, represented together: MLP as a

range of visual and tactile characteristics and EP as flow of particles that move from

positive to negative along invisible field lines (as shown in the movie Protein

Expressions - Study N. 3 [30]).

- 15 -

Discussion
The description of biological phenomena has always made use of graphical

presentation, starting from the early botanical and zoological drawings, including

famous anatomical folios, that greatly help viewers, professionals and not, to

understand and learn about nature.

Since the early times, an artistic component has been included, often unnoticed by

viewers, but greatly exploited by the scientists/artists. Even today, the clearest

graphical descriptions of natural and artificial subjects are hand- or CG-drawn rather

than photographic images. The 'artistic' dimension allows for a better interpretation of

the subject, the choice of illumination, and the removal of irrelevant details and

disturbing effects.

The same attitude has motivated a number of scientists to use various graphical tricks

when showing data related to structural features of macromolecules. Although most

structural information contained in a .pdb file (a list of atoms and their 3D

coordinates) is actually 'readable', biologists typically use graphical programs to

explore protein structures; indeed the literature has an abundance of such programs,

including some very popular. These programs can transfer the structural information

from a linear list of atoms to a 3D virtual space and display it on 2D surface;

positional information is interpreted with the aid of chemical information stored in

libraries (of amino acids, nucleotides and other molecules), that introduce chemical

bonds, electric charges, hydrophobicity scales and so on. In this way the user is

enabled to observe features of the molecules of interest according to her/his needs.

Recent years have seen the development of 3D computer graphics techniques that

have culminated in the recent success of the blockbuster movie Avatar, in which an

entire world has been created in CG, including 'floating mountains' and forest with

thousands of (CG built!) plants, animals, insects etc.

- 16 -

Similar techniques can be used to show the nanoscopic world of cells, populated with

all sorts of environments, proteins, nucleic acids, membranes, small molecules and

complexes. Indeed, there are several remarkable examples of efforts in this new

discipline of Bio-Animation, some of which have reached a large public. Beside the

beauty and the educational value of these animations, we consider that the very

process of creating such movies includes a heuristic importance both in the

development of the graphical instruments and in the studies implied in the elaboration

of the subjects' (proteins) movements and interactions. In fact, when a researcher is

induced to take a different point of view, such as needed for the visual elaboration,

s/he will be exposed to possible new insight, facilitating better understanding of the

process under study. In this way a novel spatial reasoning can complement the

classical biochemical reasoning typically employed in molecular research.

Our group is among those involved in the development of animated biology, and in

this paper we report one aspect of such effort, namely the elaboration, using Blender,

of a code capable of showing two of the most critical features that determine the

behavior of macromolecules: their electrostatic and lipophilic potentials.

Choice of Blender
Among the professional packages developed for CG, one only has the double

advantage of being open source and available free of charge: Blender.

Blender is the result of a world-wide, concerted effort to put tools of the highest

standard for CG creations at the reach of any artist (or scientist) regardless of her/his

capability of paying for such tools. The project is guided by the non-profit Blender

Foundation, and animated by countless developers that voluntarily devote time and

effort to constantly introduce the most up to date techniques into the package,

equipping users with any instrument they need. Blender 2.5, the latest major release,

- 17 -

introduced a new design of the user interface, new physics engine for smoke

(volumetric), particles and soft bodies, and, importantly, the possibility to achieve all

Blender's functions from scripting, through APIs.

BioBlender
On the framework of Blender 2.5, we built BioBlender, which includes a section

specifically built for biological work. Inside BioBlender, for the analysis of proteins

structures, various types of visualization are available: alpha carbon, main chain, main

chain and side chains, all atoms (including hydrogens) and molecular surface. The

elaboration of proteins' motions and the simultaneous representation of surface

physico-chemical properties of proteins in motion are the innovations that BioBlender

introduces in macromolecular visualization.

Elaboration of protein motion
We use Blender Game Engine to elaborate the movement of proteins, when more than

one conformational state is known. Starting from data from NMR collections or X-ray

of the same protein crystallized in different conditions, we use Blender GE, equipped

with special rules approximately simulating atomic behavior, to interpolate between

known conformations and obtain a physically plausible sequence of intermediate

conformations. This sequence can be explored within Blender or can be output as a

list of pseudo .pdb file (list of atoms and x,y,z coordinates) which are the basis for the

visual elaboration.

It is important to notice that this procedure can be applied to any .pdb or (better)

sequence of .pdb files representing a continuous series describing a conformational

transition, obtained by Blender or by any other means, e.g. Molecular Dynamics

simulation.

- 18 -

Visualization of moving proteins, and of their molecular surface features
The development of structural biology that made available tens of thousands of

structures, not only improved our knowledge on structural features such as the

richness of protein folds (secondary and tertiary structure), and of their association in

groups (quaternary structure). It also increased knowledge associated with protein

motion: in fact most proteins exert their function through some kind of motion. This is

best understood by observing the movement in an animated film. The role of side

chains, which are the determinants of such motions, is at present difficult to

appreciate by using present visualization tools that either provide a fixed all-atom

structure, or show dynamically only a limited number of atoms.

We present here a procedure that allows the direct observation of moving proteins

focusing on their surface features, rather than on their structure. In particular, we have

focused on hydropathy and electrical fields as they appear on and around the

molecular surface.

These features can be calculated and visualized by a number of programs, which

typically display them with a color code. We reasoned that for these properties a more

'photo-realistic' display would help viewers in the de-codification of their meaning,

and elaborated the system here reported. Example of the use of these codes can be

seen for a single protein in the Proteopedia page [31] (see also Additional file 1) and

for a complex in our movie Protein Expressions – Study N3 [30].

The main idea of the proposed visual mapping is to exploit perceptual associations

between the values to be mapped and visual characterization of real-world objects.

Ideally, by using already established perceptual association, the viewer will be able to

understand the provided information more naturally, without the use of explicit

legends. For MLP mapping, two opposite surface characterizations able to convey a

sense of affinity to water or to oil were selected. In our real-world experience, a very

- 19 -

smooth, hard surface (like porcelain or wax) is completely impervious to water but

can be easily coated by oil. The opposite visual feedback is associated to grainy,

crumbly, dull surfaces (like clay bricks or biscuits) which can be easily imagined

being soaked in water. These considerations led to the 'painting' of highly

hydrophobic areas as shiny, smooth material and of highly hydrophilic areas as dull

and rough.

While the MLP value is only observable on the surface itself, electrical phenomena

are associated to the idea of an effect projected in the volume surrounding a charged

object, and able to affect other objects (like the high school favorite amber rod

attracting paper bits). Field lines are a common way to describe the effect of the

electrical field. EP value is therefore represented by showing small particles, moving

along the path defined by field lines, visualizing a high concentration of particles in

areas where the electrical field is stronger.

The representation of both features in black and white allows the viewer to grasp their

values, without distracting with arbitrary information which is not interpretable if not

associated with a de-coding legend, making it easier to interpret.

For MLP elaboration we considered that none of the available programs are accurate

enough to provide useful information: most molecular displaying packages simply

attribute a fixed value of MLP to every atom of a given amino acid, using the Kyte-

Doolittle scale [14]. This scale was elaborated almost 30 years ago with the aim of

identifying structural features of proteins, namely the interior portions of globular

proteins and membrane spanning segments in membrane associated proteins, but is

not indicated for the evaluation of the distribution of MLP on the molecular surface.

Indeed, some other programs include a more appropriate method of calculation, such

as VASCo [32] which employs the Brickman [33] formula on an atom based library

- 20 -

and a Fermi-type distance function. We have implemented a calculation with the

Testa formula, which uses an atom-based fragment scheme and an exponential

function. The values thus obtained are plotted on the vertices of the molecular surface.

This procedure results in a very smooth distribution of MLP values which is then

displayed with a scale of 'tactile' textures, ranging from dull-rough to shiny-smooth.

The advantage of such calculation and representation is mostly noticeable in animated

movies showing the transition between different conformation of proteins, when

patches of hydrophobic areas are gradually exposed on the surface of proteins which

will facilitate docking onto other macromolecules.

For EP, we developed a visual code based on a flow of particles (small lines) flowing

towards the negative pole: this is particularly useful for the observation of interacting

molecules and for molecules whose field is changing when the conformation changes.

To elaborate EP we made use of several programs and integrated them in a flow

whose final result is the continuous display of the EP and its development during

protein conformational transitions.

Time considerations
The entire process is very fast: a protein of 2262 atoms is imported in 7 sec, while

MLP and EP computation with grid spacing 1 Å take 70 and 19 seconds, respectively,

on a standard personal PC equipped with WindowsXP, Intel Core 2Duo CPU, 2.33

GHz, 3.25 GB RAM.

Our example is Calmodulin: after activation due to the binding of 4 Calcium ions, the

protein undergoes a major conformational transition in which both its EP and its MLP

change considerably: the Ca ions introduced in the 4 EF hand domains affect the EP

by virtue of their own charge and the MLP by inducing the opening of each globular

- 21 -

domain to expose two major hydrophobic patches which enable the protein to interact

with its partners and push the calcium signal downstream in the biochemical pathway.

Proteins and their surface properties can also be visualized in a 3D interactive way on

web platform exploiting the new WebGL component of HTML5. Using this API, it is

possible to display 3D content in a web page without the use of external plug-ins, by

writing an appropriate visualization program using the OpenGL syntax. Using a

javascript support library, SpiderGL [34], we built an interactive visualization scheme

[35] which accepts as input the same data (meshes, field lines and the MLP texture)

calculated by BioBlender.

Conclusions
In conclusion, we have developed a computational instrument that allows the display

of molecular surfaces of moving (or still) proteins, putting special emphasis on their

electrical and lipophilic properties. We consider that this representation allows better

(or at least more immediate and intuitive) understanding of the dynamical forces

governing intermolecular interactions and thus facilitate new insights and discoveries.

Abbreviations
EP – Electrostatic Potential

MLP – Molecular Lipophilic Potential

GE – Game Engine

CG – Computer Graphics

3D – three-dimensional

Competing interests
The authors declare no competing interests.

- 22 -

Authors' contributions
RMA performed research, wrote and tested software; MC, MFZ, GM contributed

programming; MC, MCP contributed scivis.exe and BioBlender interface,

respectively; TL, MZ contributed visual elaboration with Blender; MZ conceived

research; RMA, MZ wrote paper.

Acknowledgements
We thank the PDB2PQR, APBS, PyMol teams, late Warren DeLano and the Blender

users and developers community for kind answers to our many questions. Work

funded by Regione Toscana grant 'Animazione 3D' to MZ.

References
1. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC: A three-

dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature

1958, 181:662-6

2. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov

IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res 2000, 28:235-42

3. Protein Data Bank [www.pdb.org]

4. Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics. J Mol

Graph 1996, 14:33-8, 27-8

5. Visual Molecular Dynamics [http://www.ks.uiuc.edu/Research/vmd/]

6. Guex N, Peitsch MC: SWISS-MODEL and the Swiss-PdbViewer: an

environment for comparative protein modeling. Electrophoresis 1997, 18:2714-23

7. Swiss-PdbViewer [http://www.expasy.org/spdbv/]

8. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC,

Ferrin TE: UCSF Chimera--a visualization system for exploratory research and

analysis. J Comput Chem 2004, 25:1605-12

- 23 -

http://www.ks.uiuc.edu/Research/vmd/
http://www.pdb.org/
http://www.expasy.org/spdbv/

9. UCSF Chimera [http://www.cgl.ucsf.edu/chimera/]

10. DeLano WL: The PyMOL Molecular Graphics System, 2002 DeLano

Scientific, San Carlos, CA, USA

11. The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.

12. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of

nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci

U S A 2001, 98:10037-41

13. Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B: Rapid

grid-based construction of the molecular surface and the use of induced surface

charge to calculate reaction field energies: applications to the molecular systems

and geometric objects. J Comput Chem 2002, 23:128-37

14. Kyte J, Doolittle RF: A simple method for displaying the hydropathic

character of a protein. J Mol Biol 1982, 157:105-32

15. Autodesk [www.autodesk.com]

16. Maxon [www.maxon.net]

17. Blender [www.blender.org]

18. Molecular Movies [www.molecularmovies.com]

19. SciVis Unit [www.scivis.ifc.cnr.it]

20. Andrei RM, Pan CM, Zoppè M: BioBlender: Blender for Biologists. BlenderArt

Magazine 2010, 31:27-32

21. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA: PDB2PQR: an automated

pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic

Acids Res 2004, 32:W665-7

- 24 -

http://www.scivis.ifc.cnr.it/
http://www.blender.org/
http://www.molecularmovies.com/
http://www.maxon.net/
http://www.autodesk.com/
http://www.cgl.ucsf.edu/chimera/

22. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, Baker NA:

PDB2PQR: expanding and upgrading automated preparation of biomolecular

structures for molecular simulations. Nucleic Acids Res 2007, 35:W522-5

23. Python Programming Language [www.python.org]

24. pyMLP.py [http://code.google.com/p/pymlp/source/browse/trunk/pyMLP.py]

25. Connolly ML: Solvent-accessible surfaces of proteins and nucleic acids.

Science 1983, 221:709-13

26. Broto P, Moreau G, Vandycke C: Molecular structures: Perception,

autocorrelation descriptor and sar studies. System of atomic contributions for

the calculation of the n-octanol/water partition coefficients. Eu. J. Med. Chem.

1984, 19.1:71-78

27. Laguerre M, Saux M, Dubost JP, Carpy A: MLPP: A program for the

calculation of molecular lipophilicity potential in proteins. Pharm. Sci. 1997, 3.5-

6:217-222

28. Testa B, Carrupt PA, Gaillard P, Billois F, Weber P: Lipophilicity in molecular

modeling. Pharm Res 1996, 13:335-43

29. Catmull E: A subdivision algorithm for computer display of curved surfaces.

PhD thesis 1974, University of Utah. (available at

www.pixartouchbook.com/storage/catmull_thesis.pdf)

30. SciVis videos [http://www.scivis.ifc.cnr.it/index.php/videos]

31. Calmodulin motion on Proteopedia

[http://proteopedia.org/wiki/index.php/Calmodulin#Calmodulin_in_Motion]

32. Steinkellner G, Rader R, Thallinger GG, Kratky C, Gruber K : VASCo:

computation and visualization of annotated protein surface contacts. BMC

Bioinformatics 2009, 10:32

- 25 -

http://proteopedia.org/wiki/index.php/Calmodulin#Calmodulin_in_Motion
http://code.google.com/p/pymlp/source/browse/trunk/pyMLP.py
http://www.scivis.ifc.cnr.it/index.php/videos
http://www.pixartouchbook.com/storage/catmull_thesis.pdf
http://www.python.org/

33. Heiden W, Moeckel G, Brickmann J: A new approach to analysis and display

of local lipophilicity/hydrophilicity mapped on molecular surfaces. J Comput

Aided Mol Des 1993, 7:503-514.

34. Di Benedetto M, Ponchio F, Ganovelli F, Scopigno R: SpiderGL: a JavaScript

3D graphics library for next-generation WWW . Proceedings of the 15th

International Conference on Web 3D Technology: 22 - 24 July 2010; Los Angeles,

California. Edited by Spencer, SN. ACM: New York, NY, USA; 2010:165-174

35. Callieri M, Andrei R, Di Benedetto M, Zoppè M, Scopigno R: Visualization

methods for molecular studies on the web platform. Proceedings of the 15th

International Conference on Web 3D Technology: 22 - 24 July 2010; Los Angeles,

California. Edited by Spencer, SN. ACM: New York, NY, USA; 2010:117-126

Figures
Figure 1 – Example of BioBlender representation.
The protein (Calmodulin) is shown with its chemical and physical features

represented according to the proposed code, as described in the present article. The

image is a single frame from an animated sequence, showing EP and MLP. For a 3D

interactive example, please visit

http://www.scivis.ifc.cnr.it/images/stories/3d_interactive/VIS_CaCaM/VIS_CaCaM.h

tml

Figure 2 – BioBlender interface
The interface is structured in 9 panels: amino acids list – to select and highlight amino

acids in the 3D viewport, chains list – to select different protein chains, proteins list –

to select different proteins; select .pdb file – upload from user defined path, or access

directly from PDB.org specifying the 4 letter code; import – at the import phase, it is

possible to select various parameters, including covalent/Van der Waals radius,

- 26 -

http://www.scivis.ifc.cnr.it/images/stories/3d_interactive/VIS_CaCaM/VIS_CaCaM.html
http://www.scivis.ifc.cnr.it/images/stories/3d_interactive/VIS_CaCaM/VIS_CaCaM.html

include/exclude Hydrogens and others; view – visualization in 3D working space,

activation of Game Engine; MLP visualization – Parameters for MLP; EP

visualization – parameters for EP; output – export of .pdb files and rendered frames.

a: choice of formula and grid spacing; b: contrast and brightness control; c and d:

calculation and representation, respectively.

Figure 3 – Procedure for MLP calculus and representation
For each .pdb file, PyMOL and pyMLP.py calculate the surface and the MLP values,

respectively; then, MLP (stored in a .dx file) is mapped on the surface and both are

saved as an .obj file; MLP values are converted into vertex colours, and texture

images are saved. These are finally mapped on the material of the mesh, and rendered

as bump and specularity effects.

Figure 4 – Procedure for EP calculus and representation
Starting from the same .pdb file used for MLP calculation, PDB2PQR adds atomic

charge to each atom, then APBS calculates the EP values and stores them in a .dx file;

Scivis uses the information about the mesh (previously calculated for MLP – blue

squares) and the .dx file to calculate the field lines; these are imported in Blender as

curves along which travel particles, emitted from their positive end.

Figure 5 – MLP mapping on the surface of Calmodulin
Steps in the creation of an image of Calmodulin are shown. A Panel of the 3D scene

of Blender with a wireframe view, showing the fine triangulation (average edge size

1Å) of the mesh. B MLP representation as levels of grey. C Final image at high

resolution showing the variation of MLP distribution over the molecular surface.

- 27 -

Figure 6 – Particles generation and representation for moving proteins
Field lines are imported as curves every 5 frames (0.2 seconds). Particles have a life-

time of 20 frames (0.8 seconds). After the sixteenth frame (0.6 seconds) the system is

in ready-state (square).

Supplementary material
1. Additional file 1. Calmodulin in motion. The movie (in .avi format) shows several

transitions of calmodulin in the Apo form (without Calcium) and the major

conformational change induced by the binding of 4 Ca ions. The movie can also be

seen online at

http://proteopedia.org/wiki/index.php/Calmodulin#Calmodulin_in_Motion

- 28 -

http://proteopedia.org/wiki/index.php/Calmodulin#Calmodulin_in_Motion

- 29 -

Figure 1.

- 30 -

Figure 2.

- 31 -

Figure 3.

- 32 -

Figure 4.

- 33 -

Figure 5.

ACKNOLEDGEMENTS
It is a pleasure to thank many people who made this thesis possible. It is

with immense gratitude that I acknowledge the support and help of my tutor Dr.

Monica Zoppè. I thank Monica for her proposal for this PhD project, her advices,

our daily discussions, her patience during the long process of forming myself as

a scientist, helping me to learn biology, write scientific articles and encouraging

me to develop my artistic side to represent visually the magnificent world of

biology.

I am grateful to Scuola Normale Superiore for this opportunity and

especially to Prof. Arturo Falaschi who strongly believed in this project. Also, I

would like to thank Prof. Antonino Cattaneo for assuring the continuity of my

project in the Molecular Biology lab. Special thanks to Lucia Monacci, Marina

Barsotti and Ambra Vettori.

I am very indebted to my colleagues from the multidisciplinary group Scivis

for the fruitful collaboration, their precious help and their friendship: Mauro

Lorusso and Stefano Cianchetta for helping me with Maya, Tiziana Loni for

introducing me to Blender and helping me solving any problem with Blender,

Mike Pan, Giuseppe Maraziti and Maria Francesca Zini for helping me with

scripting, Ilaria Carlone, Maria Antonietta Pascali, Claudia Caudai and Davide

Cornolti. I would like to thank my tutor for encouraging us to work in team. I thank

Marco Callieri for his patience during our work, for our interesting discussions

and his friendship.

The words are not enough to express how much it meant my brother's

love, support and encouragement in my 'pepsi moments'. I thank Madi for her

'ready for battle' words and for being beside me for all these years despite the

distance. I am deeply grateful to Mitică for his encouragement to follow my dream

to study abroad. I thank Mirela for her friendship despite the distance and for her

positive attitude.

I would like to thank Betta, Vincenzo, Massimo, Denise, Patrizia for their

friendship and Italian “classes”, Simona for her help during my first days in Italy. I

owe my PhD also to Anda and Florin who encouraged me to apply to SNS. I

would like to thank Miriam for her friendship, support and for teaching me some

words in Sicilian dialect.

It was a pleasure to meet Awatef in the Molecular Biology lab and I thank

her for her precious advices.

I would like to thank PyMOL, APBS, PDB2PQR, VMD, Blender, Blender

Artists, Kino3D forums and mailing lists for helping me finding the answers to

some questions that arose during my project.

I thank my grandmother and dna Dorina for their precious life advices.

I thank my parents Doina and Ştefan for who I am.

	CONTENTS
	LIST OF ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	1 General aspects of visualization
	1.1 Visual perception
	1.2 Visualization
	1.2.1 Symbols

	1.3 Scientific visualization
	1.3.1 Scientific visualization steps

	2 Proteins
	2.1 Protein architecture
	2.2 Why it is important to see proteins
	2.3 Historical overview of protein visualization
	2.3.1 Physical representations
	2.3.1.1 All atoms representation
	2.3.1.2 Backbone trace models

	2.3.2 Computer representations

	2.4 Experimental visualization techniques
	2.4.1 Microscopy data
	2.4.2 Atomic data
	2.4.3 Databases

	2.5 Protein structure and properties representation
	2.5.1 Protein surfaces
	2.5.2 Protein surface properties
	2.5.2.1 Hydropathy
	2.5.2.2 Electrostatic potential

	2.6 Open issues in protein visualization

	3 3D animation and rendering
	3.1 General aspects
	3.2 Computer Graphics software

	4 Molecular motion
	4.1 Morphing in Blender Game Engine

	THE AIM OF MY THESIS
	TOOLS: PROGRAMS AND SCRIPTS
	1 Programs
	2 Scripts and scripting language

	RESULTS
	1 Early attempts with Maya-Autodesk
	1.1 Atomic representation
	1.2 Surface and properties representation
	1.2.1 Hydropathy
	1.2.2 Fluorescence
	1.2.3 Energy content
	1.2.4 Glycoproteins

	2 Results in Blender
	2.1 Molecular surface representation
	2.2 Molecular Lipophilic Potential
	2.2.1 MLP calculation
	2.2.2 MLP rendering

	2.3 Electrostatic potential
	2.3.1 EP calculation
	2.3.2 EP representation

	2.4 Protein animation
	2.5 Automation
	2.6 Movies
	2.7 BioBlender
	2.8 3D Interactive and still images
	2.8.1 3DNP
	2.8.2 SpiderGL

	2.9 Ongoing project

	DISCUSSION
	CONCLUSIONS AND FUTURE PERSPECTIVES
	REFERENCES
	APPENDIX: SCRIPTS
	MOVIES (LINKS)
	NOMINATIONS AND AWARDS
	PUBLICATIONS
	thesis_IntuitiveVisualizationOfSurfacePropert LAST.pdf
	CONTENTS
	LIST OF ABBREVIATIONS
	ABSTRACT
	INTRODUCTION
	1 General aspects of visualization
	1.1 Visual perception
	1.2 Visualization
	1.2.1 Symbols

	1.3 Scientific visualization
	1.3.1 Scientific visualization steps

	2 Proteins
	2.1 Protein architecture
	2.2 Why it is important to see proteins
	2.3 Historical overview of protein visualization
	2.3.1 Physical representations
	2.3.1.1 All atoms representation
	2.3.1.2 Backbone trace models

	2.3.2 Computer representations

	2.4 Experimental visualization techniques
	2.4.1 Microscopy data
	2.4.2 Atomic data
	2.4.3 Databases

	2.5 Protein structure and properties representation
	2.5.1 Protein surfaces
	2.5.2 Protein surface properties
	2.5.2.1 Hydropathy
	2.5.2.2 Electrostatic potential

	2.6 Open issues in protein visualization

	3 3D animation and rendering
	3.1 General aspects
	3.2 Computer Graphics software

	4 Molecular motion
	4.1 Morphing in Blender Game Engine

	THE AIM OF MY THESIS
	TOOLS: PROGRAMS AND SCRIPTS
	1 Programs
	2 Scripts and scripting language

	RESULTS
	1 Early attempts with Maya-Autodesk
	1.1 Atomic representation
	1.2 Surface and properties representation
	1.2.1 Hydropathy
	1.2.2 Fluorescence
	1.2.3 Energy content
	1.2.4 Glycoproteins

	2 Results in Blender
	2.1 Molecular surface representation
	2.2 Molecular Lipophilic Potential
	2.2.1 MLP calculation
	2.2.2 MLP rendering

	2.3 Electrostatic potential
	2.3.1 EP calculation
	2.3.2 EP representation

	2.4 Protein animation
	2.5 Automation
	2.6 Movies
	2.7 BioBlender
	2.8 3D Interactive and still images
	2.8.1 3DNP
	2.8.2 SpiderGL

	2.9 Ongoing project

	DISCUSSION
	CONCLUSIONS AND FUTURE PERSPECTIVES
	REFERENCES
	APPENDIX: SCRIPTS
	MOVIES (LINKS)
	NOMINATIONS AND AWARDS
	PUBLICATIONS
	Intuitive representation of surface properties of biomolecules using BioBlender
	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Programs and scripts

	Results
	Protein surfaces
	MLP calculus
	MLP rendering
	EP calculus
	EP representation
	Moving proteins

	Discussion
	Choice of Blender
	BioBlender
	Elaboration of protein motion
	Visualization of moving proteins, and of their molecular surface features
	Time considerations

	Conclusions
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Figures
	Figure 1 – Example of BioBlender representation.
	Figure 2 – BioBlender interface
	Figure 3 – Procedure for MLP calculus and representation
	Figure 4 – Procedure for EP calculus and representation
	Figure 5 – MLP mapping on the surface of Calmodulin
	Figure 6 – Particles generation and representation for moving proteins

	Supplementary material
	ACKNOLEDGEMENTS

	Ack.pdf
	ACKNOLEDGEMENTS

