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ABSTRACT

In living cells, proteins are in continuous motion and interaction with the 
surrounding medium and/or other proteins and ligands. These interactions are 
mediated by protein features such as Electrostatic Potential (EP) and hydropathy 
expressed  as  Molecular  Lipophilic  Potential  (MLP).  The  availability  of  protein 
structures enables the study of their surfaces and surface characteristics, based 
on atomic contribution.  Traditionally, these properties are calculated by phisico-
chemical programs and visualized as range of colours that vary according to the 
tool used and imposes the necessity of a legend to decrypt it. The use of colour 
to  encode  both  characteristics  makes  the  simultaneous  visualization  almost 
impossible.  This is why most of  the times EP and MLP are presented in two 
different images. In this thesis, we describe a novel and intuitive code for the 
simultaneous visualization of these properties.

For our purpose we use Blender, an open-source, free, cross-platform 3D 
application used for modelling, animation, gaming and rendering. On the basis of 
Blender,  we  developed  BioBlender,  a  package  dedicated  to  biological  work: 
elaboration  of  proteins  motion  with  the  simultaneous  visualization  of  their 
chemical and physical features.

Blender's Game Engine, equipped with specific physico-chemical rules is 
used  to  elaborate  the  motion  of  proteins,  interpolating  between  different 
conformations  (NMR collections  or  different  X-rays  of  the  same protein).  We 
obtain a physically plausible sequence of intermediate conformations which are 
the basis for the subsequent visual elaboration.

A new visual code is introduced for MLP visualization: a range of optical 
features that  goes from dull-rough surfaces for  the most  hydrophilic  areas to 
shiny-smooth surfaces for the most lipophilic ones. This kind of representation 
permits a photorealistic rendering of the smooth spatial distribution of the values 
of MLP on the surface of the protein. 

EP is represented as animated line particles that flow along field lines, 
from positive to negative, proportional to the total charge of the protein.

Our system permits EP and MLP simultaneous visualization of molecules 
and, in the case of moving proteins, the continuous perception of these features, 
calculated  for  each  intermediate  conformation.  Moreover,  this  representation 
contributes  to  gain  insight  into  the  molecules  function  by  drawing  viewer's 
attention to the most active regions of the protein.

vii
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INTRODUCTION

1 General aspects of visualization

1.1 Visual perception

We are used to perceive information from the surrounding world through 

the  five  senses:  sight,  hearing,  smell,  touch  and  taste.  The  information  we 

receive by sight,  apparently without any effort,  is  the result  of  an elaboration 

process involving the eyes and the brain.

Visual  perception is  the sense which  allows the brain  to  intercept  and 

interpret visible light, creating the ability to see. Amongst the senses, Plato [Plato] 

considers sight the most noble; while in the other senses, the process implies 

two parts (a sensor and the sensed, like an ear and a sound), the sight involves 

three parts – the viewer, the seen and the light. “Of all the senses, trust only the  

sense of sight”, said Aristotle [Aristotle], ranking sight the first of the five senses. 

The primacy of the visual is emphasized also by the popular phrase “seeing is 

believing”.

Several different processes are involved in visual perception. Physiological 

processes are the reactions of the cones and rods cells to different light waves, 

which convert photons into a signal that is delivered to the brain throughout the 

optic nerve. Neuro-psychological processes allow the brain to interpret the stimuli  

received.

Seeing  can  be  described  as  the  process  of  decoding  the  information 

1

Figure  1.  Examples of  incomplete  drawings. Our 
brain is capable to process the information received 
from eyes and fill the gaps so that we can recognize a 
triangle with a sphere on each tip, an S shape, a spiky 
sphere, a snake and a panda. This technique is also 
used for logos, for example IBM and CNR-IFC.



present in the acquired image. The Gestalt school of psychology [Koffka1935] 

believed that our perception is the result of the relation between stimuli, rather 

than the sum of the existing stimuli. Humans are able to form a complete mental  

image from incomplete drawings because our brains fill the gaps (Figure 1); thus, 

vision is  not  necessarily what  we see but  how our  brain  interprets the world 

around us. Therefore, it is through our own experiences that we shape how we 

perceive this world. 

The fact that we humans are very good at extracting information through 

visual  observation is  well  synthesized in  the old  adage  “a  picture is  worth a  

thousand  words”.  Psychological  studies  showed  that  humans  process  visual 

information very effectively. 

Visual perception is a complex process that cannot be treated in details 

here. As a short summary it includes [Sutaria1984]: 

– colour perception and colour constancy – the ability to distinguish 

different colours and to recognise different shades of colour in different 

light intensities;

– shape perception and shape constancy – the ability to distinguish 

shapes and to  recognise a shape regardless of  size,  colour  or  the 

angle from which it is viewed;

– spatial relations – interpreting the position of one object relative to 

others;

– visual analysis and synthesis – the ability to differentiate between 

parts and the whole object (e.g. letters that make up words);

– visual  closure –  the  ability to  complete  an incomplete  image (see 

Figure 1);

– visual conceptualizing – the ability to make pictures in mind based 

on observations, experiences and data;

– visual  discrimination –  the  ability  to  interpret  differences between 

objects observed (e.g. b versus d);

– visual figure-ground distinction – the ability to focus on important 

characteristics amidst many (e.g. selecting a blue pencil among many 

or focusing on a particular word among others);

– visual memory – the ability to store and recall information perceived 

with the eyes (e.g. remembering where an object is situated);

– visual pattern-following – the ability to recognise and repeat a visual 



pattern;

– visual  sequence –  interpreting  images  in  a  realistic  order  (e.g. 

arranging  pictures  of  events  in  the  sequence  in  which  they  are 

presented).

1.2 Visualization

Visualization is the process of creating graphical representations such as 

diagrams,  images,  animations,  maps,  etc. from data.  It  reflects  also  creative 

ways  of  representing  data  visually.  Even  excluding  highly  codified  visual 

elements (letters, words, numbers), there is no limit to what kind of information 

can be translated into an image.

Visualization is a human activity that arose thousands of years ago with 

cave paintings, in the attempt of  people to transmit  their  ideas to the others. 

Since childhood, we use several types of graphical representations to describe 

things. At kinder garden we draw houses, animals, trees, flowers, people and we 

discover that images are a good way to communicate what we see. Then, at 

school,  teachers  use  drawings,  schemes,  maps  to  help  us  understand  more 

quickly concepts from physics, biology, chemistry, history  etc.. We all normally 

draw an approximate map to show someone the indications to a specific location 

in town. All these are forms of visualization.

1.2.1 Symbols

Symbols surround us in our everyday life, from street signs to computer 

icons and marks in scientific disciplines (Figure 2). They are an important issue in 

our lives and are introduced to ease the communication of  concepts and the 

description of phenomena.  We all agree on their significance and use them to 

indicate  precise  things.  Symbols  are  good  instruments  for  communication, 

convey unequivocal concepts and they do not raise doubts when seen.



1.3 Scientific visualization

In  1987,  a  special  issue  of  Computer  Graphics on  'Visualization  in 

Scientific  Computing'   published the formal  definition of  scientific  visualization 

[McCormick1987]:  “Visualization  is  a  method  of  computing.  It  transforms  the  

symbolic into the geometric, enabling researchers to observe their simulations  

and  computations.  Visualization  offers  a  method  for  seeing  the  unseen.  It  

enriches the process of scientific discovery and fosters profound and unexpected  

insights”. The primary goals of Scientific Visualization is to provide insight into 

scientific data and to allow scientists an easier way to improve and strengthen 

their understanding and share their data. The transformation of numerical data 

into a visual representation organizes them in a way that permits the brain to 

understand relationships within large amount of data.

The  type  of  data  usually  visualized  are  numbers,  abstract  theoretical 

quantities or relationships, or reflect a gradation or a change in some quantity 

with respect  to  others.  These datasets are often converted into contours and 

isosurfaces, glyphs, colour maps and image information. The main task of these 

figures is to convey as much information as possible about the dataset when they 

are  observed  by  viewers,  facilitating  the  recognition  of  patterns  and/or  the 

detection of exceptions.

Visualization represents a way to explore (to search for new things), to 

analyse (to verify existing hypotheses) and to present (to communicate results). 

Maybe the most important characteristic of visualization is its ability to go beyond 

the visual.

Traditional  areas  of  Scientific  Visualization  are:  engineering,  medical 

imaging, biology, chemistry, physics, astrophysics, meteorology etc..

The  necessity  of  computer-aided  scientific  visualization  emerged  as  a 

Figure  2. Examples of symbols. Some symbols are commonly 
used, others are discipline-specific (mathematics-physics, music).



result of rapid advances in computing and electrical engineering technologies, 

especially high-performance computing during the mid-1980's. Since that time, 

scientists and engineers have been flooded with increasing amount of data from 

experimental equipments and computer simulators.

Complementary to the traditional hypothesis-test method of inquiry, data 

visualization  brings together  data from different  fields,  allowing understanding 

and  processing  of  enormous  amount  of  information  quickly,  as  it  is  all 

represented in a simple image or animation. In this way new questions may arise 

and more discoveries can be made.

In  the  last  years,  the  interest  in  biological  processes  visualization  and 

divulgation  increased  enormously.  David  Goodsell,  in  the  preface  of  “The 

machinery of life” wrote that his illustrations are meant to “allow us to look at the 

molecular structure of cells,  if  not directly,  then in an artistic rendition”.  In his 

books,  the  molecular  drawings  are  in  scale,  which  permits  a  comparison  of 

various  illustrations  to  understand  the  dimensions  [Goodsell1998].  Recently, 

Nature  Methods  [Nature  Methods2010] and  Science  Magazine  [Science2011] 

dedicated  special  issues  to  visualization  of  biological  data.  Computer-based 

visualization is widely used in biology to help understand and communicate data, 

to generate ideas and to gain insight into biological processes especially with the 

advent of 'omics' studies. These journal issues present a collection of reviews 

that  examine  the  methods  used  to  visualize  genomes,  alignments  and 

phylogenetics, macromolecular structures, system biology data and image-based 

data.

The huge amount of programs available is an indication that biologists still 

find that their exact requirements are not met by current tools and often prefer to 

create their own. 

Part of the job of being a scientist is to explain the work to others; these 

might be colleagues, a wider scientific community or the general public. When a 

scientist  is  writing  for  other  scientists  he  or  she  typically  uses  very  specific 

scientific terminology, but when they explain complex cellular mechanisms to the 

general public they need to use metaphors related to human experience to better 

engage the imagination, and therefore the perception of the audience. 

A more  direct  and  very  effective  way  to  explain  things  is  by  drawing 

models. Beyond this basic means of visualizing an idea or an observation, 3D 

physical  or  virtual  models  are  nowadays  the  most  significant  communication 



method  in  Molecular  Biology.  The  development  of  Computer  Graphics  made 

explanations of molecular processes even easier by means of animations.

1.3.1 Scientific visualization steps

The basic elements of scientific visualization follow a series of procedural 

steps,  whose  boundary  is  not  always  clear  cut,  but  which  can  be  roughly 

classified as:

– data acquisition — scientific data are obtained through an iterative 

process which consist of observational processes (satellite,  medical, 

microscopy  imaging,  genomics,  proteomics),  experiments  and 

simulations;

– data  processing —  raw  data  require  adequate  transformation 

processes to organize, extract and enhance information;

– computer graphics — scientific data is converted into a displayable 

form  through  two  or  three-dimensional  geometrical  modelling, 

rendering and animation processes;

– observation and interaction — visible interaction with the data leads 

the user to gain better understanding of the information.

Among the four elements described above, the choices pertaining to the 

modelling and rendering processes may have the most significant impact on how 

visualized  images  are  perceived  by  viewers.  In  particular,  good  selection  of 

rendering methods and parameters can produce striking photo-realistic images.

Designers of scientific visualization systems have to consider the influence 

of the human visual system on how such visual appearances are perceived. The 

selection of appropriate geometries and visual features for rendering holds the 

key  to  generating  good  information  visualization.  Colours  and  parameters  of 

rendering and animations are important in effectively conveying information. 

2 Proteins

2.1 Protein architecture

Proteins are polymers of long sequences of 20 different amino acids. Each 

aa consists of a chiral carbon atom (called α carbon) bonded to an amino group 

(NH3
+), a carboxyl group (COO–), a hydrogen atom and a distinctive side chain 

(residue), see Figure 3.



The specific chemical properties of each aa side chain determine the role 

of the amino acid in protein structure and function. Amino acids can be grouped 

in four categories according to the properties of the side chains: 

– non-polar aa with hydrophobic side chains that tend to be located in 

the interior of the protein, where contact with water is minimal;

– polar  aa with  hydrophilic side chains that tend to be located on the 

surface of proteins and form hydrogen bonds with water;

– basic aa with positively charged and hydrophilic side chains located 

on the surface of proteins;

– acidic aa  with  negatively  charged and  hydrophilic side  chains 

usually located on the outside of proteins.

Amino acids are chained together by peptide bond between the carboxyl 

group of one aa and the amino group of the successive one (Figure  4). They 

form polypeptide  chains  of  variable  length,  up  to  thousands  of  aa, with  two 

distinct ends: N terminus (the one terminating in an amino group) and C terminus 

(the one terminating in an carboxyl group).

Figure 4. Polypeptide chain structure. Proteins are formed by a sequence of aa connected by 
the planar peptide bond (represented here as a rigid plane). The bond length and the direction of 
rotation of the bonds (ϕ and ѱ rotational angles) are depicted.

Figure 3. Amino acid general structure. The structure of 
an aa consists of a fixed structure (the same for all  aa) 
formed of  an alpha carbon, an amino group, a carboxyl 
group, a hydrogen, and a variable side chain (residue).



Four distinct aspects define protein's structure (Figure 5) as described by 

K.U. Linderstrøm-Lang in 1952 [Linderstrøm-Lang1952]:

– primary  structure is  the  sequence  of  aa  in  the  polypeptide 

[Sanger1951, Sanger1953],  also called chain, from N terminus to C 

terminus;

– secondary structure is  the local,  regular arrangement of  aa in the 

polypeptide, stabilized by hydrogen bonds between CO and NH groups 

of the main chain; the most common are the  α-helix and the  β-sheet 

[Pauling1951a,  Pauling1951b,  Pauling1951c].  An  α-helix  is  a  coiled 

conformation with the CO group of one aa forming a hydrogen bond 

with the NH group of the aa located four residues downstream along 

the  linear  polypeptide  chain.  A  β-sheet  is  formed  by  two  or  more 

segments  of  the  polypeptide  chain  (that  can  be  also  distant  in 

sequence) lying side by side and held together by hydrogen bonds. It  

can  be  composed  of  several  strands,  oriented  either  parallel  or 

antiparallel to each other;

– tertiary  structure represents  the  three-dimensional  folding  of  the 

polypeptide  chain  held  by  interactions  between  side  chains  from 

different regions of the primary structure [Kendrew1958]. Usually,  α-

helices and  β-sheets are connected by loops and fold into compact 

globular structures called domains, with hydrophobic aa localized in 

the interior and hydrophilic aa facing the surface of the protein. The 

tertiary structure is also determined by the interactions between polar 

and charged aa side chains, forming hydrogen and ionic bonds. The 

structure of the proteins in the secretory pathway are further stabilized 

by S-S bonds between cysteines;



– quaternary  structure consists  of  interactions  between  different 

polypeptides  in  proteins  composed  of  more  than  one  chain 

[Svedberg1927].

Additional levels of structural classification can be identified:

– super-secondary structures  – proteins show patterns of interaction 

between  helices  and sheets  close together  in  the  linear  sequence, 

including α-helix hairpin, β-hairpin and β-α-β unit;

– domains – many proteins contain compact, independent units, called 

domains.  They  are  difficult  to  define  precisely  and  at  present  the 

subdivision  of  structures  into  domains  varies  according  to  the 

classification used, which can be structural or functional;

Figure  5. Aspects  of  protein  structures. 
Primary structure is the sequence of aa. In blue 
are coloured the aa that form an α-helix and a 
β-sheet  (secondary  structure).  Tertiary 
structure represents the 3D organization of the 
protein  in  space.  The  blue  elements  of 
secondary structure show that distant aa in the 
linear  sequence  may  reside  close  in  the  3D 
space.  Quaternary  structure defines  the 
assembly  of  different  polypeptides  in  multi-
chains proteins, in red one domain.



– modular  proteins  – they  are  multi-domain  proteins  which  often 

contain  many  copies  of  closely  related  domains:  for  example, 

fibronectin contains 29 domains including multiple repeats of 3 types of 

domains called F1, F2 and F3.

Analysis  of  the  structures  of  proteins  revealed  similarities  between 

proteins,  an  important  issue  of  structural  biology.  A classification  of  proteins 

structures  can  be  consulted  on  SCOP (Structural  Classifications  of  Proteins) 

[Murzin1995] and CATH (Class, Architecture, Topology, Homologous superfamily) 

[Orengo1997] databases.  Although  based  on  different  criteria,  these  two 

databases  classify  proteins  structures  into  4  categories:  all-α (structures 

essentially formed by α-helices), all-β (structures essentially formed by β-sheets), 

α/β (structures with  α-helices and  β-strands) and  α+β (structures in  which  α-

helices and β-strands are largely segregated).

2.2 Why it is important to see proteins

Proteins  are  essential  components  of  cells  and  are  involved  in  every 

aspect  of  biological  activity.  They  have  structural  functions  (actin,  tubulin), 

mechanical function (myosin), act as transporters of small molecules (myoglobin, 

haemoglobin)  or  cellular  vesicles (kinesin,  dynein),  transmit  information within 

(kinases)  and  between  cells  (protein  hormones),  provide  defence  against 

infections (antibodies), act as enzymes, receptors, are involved in cell adhesion, 

cell cycle, DNA transcription and replication, RNA synthesis and the production of 

more proteins.

Molecular  genetics  research  revealed  that  many  diseases  stem  from 

specific protein defects [Alberts1998, Eisenberg2000]. Vast research activity is 

devoted to  protein structures and functions,  such as in  the field of  molecular 

biology or drug design.  Seeing the proteins at work is crucial to understand their  

behaviour, the mechanisms they are involved in, to be able to create drugs and 

interfere  where  necessary.  By  being  able  to  visualize  proteins  and  other 

macromolecules in the cellular environment, we could get essential insights in 

the mechanisms  of life.

To accomplish this, an important aspect is the information of the three-

dimensional structure of proteins which allows understanding of protein fold and 

provides an insight  into  the way the proteins act  in  vivo.  Understanding how 

particular amino acids residues are involved in protein function, especially when 



combined with knowledge of the 3D structure of proteins, helps to grasp how 

particular sequences in proteins are involved in biological functions.

2.3 Historical overview of protein visualization

The  solution  of  the  3D  structure  of  myoglobin  in  1958  by  Kendrew 

[Kendrew1958] marked the beginning of the new era of structural biology. Since 

then, a wealth of protein structures has been solved by X-ray crystallography, 

NMR spectroscopy and cryo-electron microscopy and today the Protein  Data 

Bank  (PDB)  [Berman2000,  Protein  Data  Bank] counts  over  67.000  proteins 

structures.  These data provide much detailed information that help biochemists 

understand macromolecular functions. Protein structures are obtained and stored 

as atomic coordinates, which are impossible to interpret by the human brain, 

therefore they must be presented visually. After solving a protein's structure, its 

visual  representation  became  the  second  preoccupation  of  scientists.  Some 

representation methods are described below.

2.3.1 Physical representations

In  1958,  the  group  of  John  Kendrew  solved  the  myoglobin  three-

dimensional structure at 6 Å resolution [Kendrew1958]. Myoglobin is a heme-iron 

containing protein that carries and stores oxygen in muscle cells. Two years later 

the  same  laboratory  obtained  a  map  of  the  protein  at  2  Å  resolution 

[Kendrew1960]. For solving the structure of a protein, Kendrew was awarded the 

Nobel Prize for chemistry in 1962. The first model of a protein was a plasticine 

model of  myoglobin (known also as the 'sausage model') made by Kendrew at 

Cavendish laboratory in Cambridge (UK). Its cylindrical shape, showing the track 

of the main chain and supported by wooden rods protruding from a pegboard 

base can be admired at the Science Museum in London (Figure 6).



2.3.1.1 All atoms representation

Kendrew model 
In 1969, Kendrew built the first atomic model of a protein (Figure  7 left); 

the structure, 1.8 x 2.5 m, looked like a 'forest of rods'. 

For  the  interpretation  of  the  2  Å  map  of  myoglobin  with  1260  atoms 

(hydrogens excluded),  Kendrew invented a  new modelling  technique inspired 

from the toy construction kit Meccano. About 2500 steel rods, 1.8 m high, were 

positioned on the pegboard; these were decorated with coloured clips to indicate 

the electron density,  so that  atoms could be positioned.  After the insertion of 

atoms of the main chain, the densities related to the side chains could be seen at  

appropriate intervals.  The scale of  the model  was chosen 5 cm/1 Å to  allow 

human  hand  to  reach  and  fix  the  clips.  The  positions  of  the  atoms  were 

continually adjusted as the structure was refined.

Figure 6. Myoglobin first physical model. The plasticine model of the main chain of myoglobin, 
made by Kendrew, is supported on wooden rods.



Most of the objects, that can be now admired at the Science Museum in 

London,  originally  were  part  of  the  laboratory  where  they  were  handled, 

discussed, measured, tested against data and corrected and refined. 

A similar procedure was employed for the double-helical model of DNA, 

built of brass models and specially-cut metal bases (Figure  7 right) created by 

James Watson and Francis Crick from the same Cambridge laboratory.

The Richards Box (Fred's Folly)
In 1968, in a sabbatical year in David Phillips’s lab for structural biology at 

Oxford  University,  just  after  solving  the  structure  of  ribonuclease  at  Yale 

University,  Fred  Richards  and  co-workers  introduced  an  optical  comparator 

[Richards1968] that facilitated the building of Kendrew-style brass models (Figure 

8).  Electron densities resulting from crystallographic solutions were printed by 

computers  on  paper,  and  electron  density  contour  lines  were  traced  by 

connecting numbers of similar values on the paper. These contour lines were 

then traced onto transparent plates (1 x 1 m). The plates were mounted vertically,  

equally spaced, creating a sliced three-dimensional electron density map. Half-

silvered  (semi-transparent)  mirrors  were  arranged  between  the  map  and  the 

hand-made wire model to superimpose the electron density map upon the brass 

model and adjust the brass atomic pieces so that they fit the density. As larger 

molecules were solved, the scale was reduced from 5 cm/Å as used initially to 

2.5 cm/Å, and then to 1.0 cm/Å.

The Richard's box remained an indispensable tool used by crystallography 

labs  around  the  world  for  about  10  years,  when  it  was  finally  replaced  by 

Figure  7.  First  brass  models.  (left) Kendrew building  the  all-atom brass  representation  of 
myoglobin. The rods help building and stabilizing the complex brass model.  (right) The brass 
model of DNA created by Watson and Crick.



computer graphics systems. The earliest computer systems were referred to as 

"electronic Richard's Boxes" and nowadays programs still  use the same basic 

superposition of electron density maps and atomic models for structure building.

 

2.3.1.2 Backbone trace models
The physical models containing all  atoms were large and cumbersome. 

Backbone trace models were used to simplify the polypeptide chain as a series 

of virtual bonds connecting the  α−carbons. The protein fold is specified by the 

bend angles for each α−carbon and the torsion angles along virtual bonds. Two 

examples of this category were in use in the 1970's: Byron Rubin's wire-bender 

model and Blackwell Molecular Models.

Byron Rubin's wire-bender model
The  wire-bender  model  consists  in  a  3  mm-diameter  steel  rod  bent 

according  to  the  pattern  of  α-carbon  chain  of  a  protein.  The  bending  was 

accomplished by means of a machine (Byron's Bender [Rubin1972, Rubin1985]) 

Figure  8.  Richard's  Box  device. 
Behind  the  half-silvered  mirror  at 
the  top  is  a  transparent  plastic 
sheet with a trace of a section of the 
electron  density  map.  Gazing 
directly into the mirror, one can see 
the  electron  density  superimposed 
with the physical model (at bottom). 
Light  boxes  at  the  bottom  sides 
illuminate the section of the physical 
model represented according to the 
electron  density  map.  Multiple 
plastic  sheets  containing  different 
sections of the electron density map 
are stored in a rack at the top right 
(out of view).



and a list of torsion and bend angles. The shortcoming is variability of the scale,  

since the  α−carbon to  α−carbon length is  not  fixed.  For  the first  time,  Byron 

Rubin introduces the ribbon representation of proteins: helices for α-helices and 

arrows for  β-strands,  a  very common representation  of  proteins  structures  in 

nowadays software. The small backbone wire models from Byron's Bender were 

the most manipulable and portable models available at the time (Figure 9).

An example illustrating the importance of models occurred at a scientific 

meeting  in  the  mid  1970's.  David  Davies  brought  a  Bender  model  of  an 

immunoglobulin  Fab  fragment,  and  Jane  and  David  Richardson  brought  a 

Bender  model  of  superoxide  dismutase  [Beem1977].  While  comparing  these 

physical models at the meeting, they realized that both proteins use a similar 

fold, despite having only about 9% sequence identity. This incident was the first  

recognition of the occurrence of what is now recognized as the immunoglobulin 

superfamily domain in unrelated proteins. The insight was published in a paper 

entitled  "Similarity  of  three-dimensional  structure between the immunoglobulin  

domain and the copper, zinc superoxide dismutase subunit" [Richardson1976].

Blackwell molecular models
Blackwell  Molecular  Models  [Fletterick1982,  Fletterick1985] (Figure  10) 

are more complicated and provide more chemical information. It is a ball-and-

stick  model  system  representing  α−carbon  positions  and  the  peptide  link 

between adjacent alpha carbons. 

Figure  9. Byron Rubin brass ribbon models. (left) rubredoxin and  (right) human neutrophil 
collagenase (on permanent exhibition at the Smithsonian Institution, Washington DC USA, 28 cm)



They are made of plastic, in twenty different colours to code for amino acid 

type, which push-fit together at 1 cm/Å scale and the α-carbon to α-carbon bond 

length is 3.8 cm. The scales and indices observed on the balls and rods serve to 

mark the angle of bend and the angle of torsion of consecutive amino acids in the 

molecule.  This  system allows the attachment of  specific side chains. Support 

rods are added after the model is built, to fix some of the distances between α-

carbons and to stabilize the finished model.

Since then, various groups built protein models, a significant collection can 

be seen at http://3dmoleculardesigns.com/.

Figure 10. Blackwell representation. The 9 aa of an α −helix are identified by letters from a to i. 
Each element from the kit is identified by a number, to ease building of macromolecules. The 
spheres and rods are provided with verniers and scales to set atomic diameters and the bend, 
torsion and dihedral angles.

http://3dmoleculardesigns.com/


2.3.2 Computer representations

Physical  and  CG  representations  co-evolved  in  the  early  times  of 

structural biology, both used to understand protein structure.

1960's – 1970's
In 1966, Cyrus Levinthal and his colleagues at Massachusetts Institute of 

Technology developed the first system [Levinthal1966]  to display what we call 

today a “wireframe” representation of molecules structures on a monochrome 

oscilloscope  screen  (the  terminal  display  was  named  Kludge,  and  it  was 

developed at Project MAC (Mathematics and Computation) [Stotz1963]), shown 

in Figure 11.

The  three-dimensional  effect  was  achieved  by  rotating  constantly  the 

structure on the screen. The rate of rotation was controlled by a globe-shaped 

device on which the user rested his/her hand (an ancestor of today's trackball). 

At that time, the full potential of such a set-up was not completely settled. The 

conclusion of Cyrus Levinthal's description of the system in Scientific American, 

indicated that there was no doubt that it was paving the way for the future: “It is 

too early to evaluate the usefulness of the man-computer combination in solving  

real problems of molecular biology. It does seems likely, however, that only with  

this combination can the investigator use his 'chemical insight'  in an effective  

way. We already know that we can use the computer to build and display models  

of large molecules and that this  procedure can be very useful in helping us to  

understand how such molecules function. But it may still be a few years before  

we have learned just how useful it is for the investigator to be able to interact  

Figure  11.  First  device for wireframe representation. (left)  The screen with the globe that 
control the direction and speed of image rotation. (middle) Overview of the molecular modelling 
system, with the Kludge in the lower left corner. Notice the space-filling models in front of the 
screen. (right) Details of the structure of myoglobin, showing the heme group with two segments 
of the polypeptide chain surrounding it. 



with the computer while the molecular model is being constructed.” 

Levinthal's forecast slowly developed in the following decades. In 1965, 

Carroll K. Johnson, from Oak Ridge National Laboratory, released ORTEP (Oak 

Ridge  Thermal-Ellipsoid  Plot  Program)  [Johnson1965],  a  program  written  in 

FORTRAN, to produce stereoscopic drawings of molecular and crystal structures 

with  a pen-plotter  (Figure  12).  The stereoscopic  view aid  the  visualization  of 

complex macromolecules. It rapidly became a favourite tool of crystallographers 

to  produce  illustrations  of  structures  for  conference  presentations  and 

publications. This program is still in use, and its latest version, ORTEP III, was 

released in 2000. The current version retains all features and functionality of the  

original, with the exception of the output which is now displayed on the screen,  

instead of being printed on paper.

These programs could not directly interpret the crystallographic data; the 

electron  density  maps  were  converted  into  Kendrew “sticks”  models  and the 

coordinates, measured by hand were introduced into the computer to build the 

virtual  model.  The  next  important  step  molecular  visualization  was  the 

development of software tools able to interpret crystallographic data.

In the mid 1970's, superoxide dismutase [Beem1977] was the first protein 

solved crystallographically and visualized entirely with computers by David and 

Jane Richardson and colleagues. They used a density-fitting computer system 

called "GRIP" at the University of North Carolina [Tainer1982]. 

In the late 1970's, more and more crystallographers made the transition to 

building  models  for  newly  solved  protein  crystals  with  computers  ("electronic 

Richards' boxes") rather than with physical Kendrew-style models. One of the 

major advantages was that the computer kept track of the atomic coordinates, 

Figure 12. ORTEP system. (left) ORTEP pen-plotter machine. The physical model of the same 
molecule drawn also by ORTEP can be seen in the image.  (right)  Example of  stereoscopic 
drawing designed with ORTEP.



contrary to the Kendrew model where atomic coordinates had to be measured 

manually, atom by atom. Four systems were widely used: (1) MMS-X, developed 

at  the  Computer  Systems  Laboratory  at  Washington  Univesity  in  St.  Louis 

[Barry1974, Miller1981], (2) GRIP-75 at the Computer Science Department of the 

University  of  North  Carolina  at  Chapel  Hill  [Tsernoglou1977, Brooks1977, 

Wright1981, Lipscomb1981, Pique1991], (3) BILDER developed at the Medical 

Research  Council  Laboratory  for  Molecular  Biology  in  Cambridge,  England 

[Diamond1981a, Diamond1981b],  and  (4)  FRODO  [Jones1978, Jones1981, 

Jones1985].

1980's
In  1980,  TAMS  (Teaching  Aids  for  Macromolecular  Structure)  project 

[Feldmann1980] produced  the  first  stereo  views  of  macromolecules  (Human 

Immunoglobulin  G).  The  stereo  projection  was  obtained  by  using  two 

conventional  slide  projectors  equipped with  orthogonal  polarizing  filters,  each 

viewer wearing polarized glasses. This technique is still in use today and to make 

easier the understanding of the three-dimensionality of the molecules on printed 

documents, the images are displayed side-by-side (Figure 13).

During  the  1980's,  the  most  popular  computer  system  for 

crystallographers was manufactured by Evans & Sutherland. These computers 

displayed the electron density map and enabled an amino acid sequence to be 

fitted manually into the map. The colour display showed a wireframe rendering of 

the amino acid chain, and could be rotated in real time. These systems used 

scalable vector graphics. Rapid rotation was accomplished with three hardware 

Figure  13. Stereo slide pair from the TAMS project. The example shown here is a crossed 
eyes stereo of human IgG 'DOB', alpha carbons only; carbohydrate white, light chain yellow,  
heavy chains red and blue. 



matrix multipliers (one for each dimension, X, Y, and Z). The software package 

most  often  used  on  E&S  computers  was  FRODO  (now  evolved  to  Turbo-

FRODO).

During  the  1980's,  David  and  Jane  Richardson  pioneered  computer 

graphics  representations  of  molecular  structure  with  a  series  of  programs 

developed at Duke University.  In the late 1980's, this led to a program called 

CHAOS  written  in  Evans  and  Sutherland  PS300  function-net  language 

[Richardson1989]. 

In 1981 Fermi and Perutz published the 'Atlas of Molecular Structures' with 

stereodiagrams  of  myoglobin  and  haemoglobin.  To  facilitate  the  viewing,  the 

diagrams were printed in red and green and a foldable pair of red-green glasses 

was delivered with the book. This technique to provide images with stereoscopic 

3D effect is called anaglyph.

The anaglyph images consist of two colour layers (red and green or cyan) 

superimposed with  an  offset  with  respect  to  each other  and the  3D effect  is 

perceived by wearing glasses with coloured lens: red for the left eye and green or 

cyan for the right eye.

1990's
With the gradual progress of Computer Graphics tools and techniques, the 

development  of  software  for  protein  visualization  increased.  For  example, 

Molscript program [Kraulis1991], by Per Kraulis and released in 1991, was the 

successor of ORTEP, developed in 1965. Molscript is one of the main programs 

currently used for plotting protein structures.

A team led by TA Jones, from Uppsala, Sweden wrote the program O 

[Jones1991],  in  1991.  The program is  designed for  scientists  with  a need to 

model,  build  and  display  macromolecules.  O  is  mainly  aimed  at  the  field  of  

protein crystallography, bringing into use several tools, which ease the building of 

models into electron density, allowing this to be done faster and more correctly.

In 1992, the Richardsons described the  kinemage (from kinetic image), 

interactive animated images of molecules, and their supporting programs MAGE 

and PREKIN [Richardson1992]. By virtue of its implementation on the Macintosh, 

this  was  the  first  program  which  brought  molecular  visualization  to  a  large 

number of scientists, educators, and students. The programs were described in 

the lead article in the first issue of the journal Protein Science (early 1992), and 

the program itself was provided on a diskette which accompanied that issue. This 



article also included instructions for using the program PREKIN together with 

MAGE  for  authoring  new  kinemages.  In  the  subsequent  five  years,  over  a 

thousand kinemages accompanied articles in Protein Science, the majority being 

authored or edited by Jane Richardson.

Software tools for general use
The first  tools for visualization of macromolecular structures were used 

only by specialists. The increasing number of macromolecular structures solved 

contributed  to  the  development  of  software  tools  for  general  use,  easier  to 

handle.

In 1992, Roger Sayle developed RasMol (Raster – the array of pixels on a 

computer screen – Molecules), an open-source, command-line and stand-alone 

program for macromolecular visualization [Sayle1992, Sayle1995]. The software 

included a ray-tracing algorithm that could shade solid objects as they rotated in 

space. The users explore the molecules structures via a scripting language which 

permits  selection  of  proteins  chains,  different  colouring  and  representations. 

RasMol is one of the most successful software due to an excellent compromise 

between rendering speed and image quality which permits even large molecules 

to  be  rotated  in  real-time.  RasMol  was  the  first  program to  run  on personal 

computers. Before it, visualization software ran on graphics workstations only.

Since then a wealth  of  visualization tools  have been created and now 

everybody can use them with minimum effort. Tools like Chimera [Pettersen2004, 

Chimera], MOLMOL  [Koradi1996,  MOLMOL], PMV  [Sanner1999],  PyMOL 

[DeLano,  PyMOL software], Swiss-PDBViewer  [Guex1997,  Swiss-PdbViewer], 

VMD [Humphrey1996, VMD], Yasara [Krieger2002] are widely used. A full list of 

free molecular visualization programs can be consulted on The World Index of 

BioMolecular Visualization Resources web page [MolVisIndex]. 

Besides  these  stand-alone  tools,  web-based  plug-ins  were  developed 

such as Chime MDL [Chime] and Jmol [Jmol viewer, Jmol website], integrated on 

Protein  Explorer  [Martz2002,  Protein  Explorer] and  Proteopedia  web-sites 

[Hodis2008, Proteopedia] respectively, and FirstGlance, PDBe, RSCB PDB.

Additionally to protein structure visualization, these programs provide also 

other  important  analysis  tools  for  proteins  characterization:  alignment,  side 

chains building, energy minimization, calculation of surface properties, such as 

electrostatic potential and hydropathy. 

Commonly  available  graphic  cards  support  now  the  use  of  OpenGL 



Shading Language (included in software such as VMD and PyMOL), which is 

used to  write  small  programs,  called  shaders  (described below in  Rendering 

section), that produce sophisticated visual effects. QuteMol [Tarini2006] (Figure 

14 left)  goes  a  step  further  and  uses  GLSL to  produce  illustrative  rendering 

effects, computing ambient occlusion to better display three-dimensionality of the 

molecules.  ProteinShader  [Weber2009] (Figure  14 right)  is  a  Java-OpenGL 

molecular  visualization  tool  that  introduces  pen-and-ink  style  rendering  for 

ribbons to enhance the three-dimensionality and uses shaders to map text labels 

onto the surfaces of ribbons and tubes, shown in colours.

Animations
Using 2D images to show the structure of biomolecules, large part of the 

3D information is lost. If images are worth a thousand of words, then animations 

are worth much more and scientists became aware of the power of molecular 

movies to communicate their results. Although animations are costly in terms of 

user effort and computing time (hundreds or thousands of individual images are 

needed for a rendered movie) they are useful to highlight important features by 

offering a 'guided tour' of structures and macromolecules interactions. 

In  1978,  Harrison's  group at  Harvard  solved the first  atomic  resolution 

structure of a spherical virus [Harrison1978]. A movie was the way they chose to 

divulgate the  assembly of the virus; they shot with a 16 mm film with a Bolex 

camera from a computer screen, frame-by-frame. Thus, the movie showing the 

virus assembly became self-explanatory.

The remarkable progress in computer power and software tools permitted 

the development of programs to include movie generation, for example Chimera 

Figure  14.  Examples  of  protein  representations.  (left)  space-filling  representation  using 
QuteMol and (right) ribbon representation using ProteinShader.



or  eMovie  [Hodis2007] (a  plug-in  for  PyMOL)  enabling  scientists  to  create 

informative molecular  animations about their research. The commands include 

rotations, zooms, fading, colouring and different representations.

2.4 Experimental visualization techniques

Humans curiosity to understand biology contributed to the development of 

sophisticated techniques and methods for biological  investigation. The easiest 

way to understand the shape of things is to look at them, with the help of light.  

Visible light is part of the electromagnetic spectrum (Figure  15), which extends 

over a wide range of frequencies (or wavelengths) and includes also radiowaves, 

microwaves, infrared, ultraviolet, X-rays and γ-rays.

When the objects under  investigation are too small  to  be seen by the 

naked eye, proper instruments are needed. By exploiting different regions of the 

electromagnetic spectrum and the interaction of atoms with radiation, important 

information can be acquired about the structure and dynamics of proteins. A wide 

range of techniques are available for studying proteins.

2.4.1 Microscopy data

The  basic  technique  used  by  biologists  is  optical  microscopy. With  a 

Figure  15. Electromagnetic spectrum size scale. Electromagnetic spectrum frequencies and 
wavelengths and a comparison between the wavelength and the size of macro and micro scale 
objects. 



resolution  of  0.2  µm, cells  and  large  subcellular  organelles  such  as  nuclei, 

chloroplasts and mitochondria can be observed. Usually, the cells are fixed in 

order  to  stabilize  and  preserve  their  structure  (brightfield  and  darkfield 

microscopy) and then stained with dyes to increase the contrast between the 

different components (brightfield microscopy). 

It is also possible the visualization of living cells, without staining (phase-

contrast microscopy) or by labelling the molecules of interest using fluorescent 

markers  (the  most  used is  Green Fluorescent  Protein  –  GFP)  to  study their 

intracellular  distribution (fluorescence microscopy).  A variety of  methods have 

been developed to study the displacement (fluorescence recovery after bleaching 

– FRAP) and  interactions (fluorescence resonance energy transfer – FRET) of 

GFP-labelled proteins in living cells. 

2D images are very informative, but cells are three-dimensional entities. 

The  introduction  of  laser  and  various  complex  arrangements  of  mirrors 

contributed to obtain 3D high-resolution images of the samples (confocal, multi-

photon excitation, super-resolution fluorescence, stimulated emission depletion – 

STED,  photo-activated  localization  –  PALM,  stochastic  optical  reconstruction 

microscopy – STORM) [Cooper2007]. 

To visualize components of the cell smaller than 100 nm, light microscope 

is not suitable due to its limited resolution. Using electrons with wavelength of  

0.004  nm,  electron  microscopes can  achieve  a  greater  resolution  than  light 

microscope, down to 1-2 nm. Two distinct phenomena are involved in various EM 

techniques:  electrons transmission  (transmission  electron  microscopy –  TEM) 

through the specimen and electrons scattering (scanning electron microscopy – 

SEM).  The observation  of  samples  in  their  native  environment  is  possible  at 

cryogenic  temperatures  (-195 °C)  by means of  cryo-electron  microscopy and 

cryo-electron tomography, which creates 3D reconstructions from 2D images.

These are the classical microscopy techniques, included in textbooks. The 

high speed of technical development and newest scientific discoveries contribute 

to  the  continuous  development  of  new microscopy  techniques.  Almost  every 

week, a new and sophisticated technique is published.

2.4.2 Atomic data

To investigate molecular structures at atomic level  (Ångström – 10-10 m), 

the most common methods are X-ray crystallography [Drenth1994] and nuclear 



magnetic  resonance  (NMR)  spectroscopy  [Wüthrich1995,  Kai1997].  The 

interpretation of the results obtained by these techniques is not unambiguous 

and entails assumptions and approximations depending upon knowledge of the 

protein from other sources, including biochemistry. 

X-ray crystallography [Drenth1994]  is a technique that exploits the fact 

that  X-rays  are  diffracted  by  the  crystals.  X-rays  (wavelength  0.5-1.5  Å)  are 

scattered by the electron clouds of the atoms of the studied molecule. For good 

results,  high-quality crystals  are needed;  the best  crystals  are pure,  perfectly 

symmetrical, containing a vast number of three-dimensional repeating arrays of 

precisely ordered, identical molecules. The effect of ordering the molecules in 

crystals  is  to  enhance  the  intensity  of  the  scattered  signal.  The  crystals  are 

usually very small (< 1 mm) and can be of different shape, from perfect cubes to  

long needles,  obtained by growing concentrated  solutions  of  the  molecule  in 

different  conditions,  such as  temperature,  pH and concentration  of  salts  and 

protein.  The  crystal  is  rotated  while  it  is  bombarded  with  X-rays,  providing 

electron diffraction maps.  From the intensity of each diffraction spot in the 2D 

maps for different angles, the value of electron density can be calculated in every 

point of 3D coordinates (xyz), using Fourier transform. Next, all values of electron 

densities are integrated and 3D maps are obtained. A model is then progressively 

built  into the experimental electron densities, refined against the data until  an 

accurate molecular model is obtained and the position of each atom in the crystal 

can be retrieved. 

Although very important residues have been (and will be) obtained by X-

ray crystallography, the technique has some limitations: for example hydrogen 

position is  very difficult  to  retrieve,  since they have only one electron.  Some 

proteins  are  refractory to  crystallization  (membrane  proteins  or  very  dynamic 

loops of proteins, considered disordered parts).  The accuracy of the structure 

determination is validated by the resolution, a measure of how much data was 

collected. More data acquired, more details are present in the electron-density 

map features.  The resolution  is  expressed in  Å,  lower  value  meaning higher 

resolution.  Values lower  than 1.5 Å indicate less ambiguity in  positioning the 

atoms. An index of the structural quality is the R-factor, a measure of how well 

the model reproduces the experimental data. It is expressed as a percentage of 

disagreement between the observed diffraction pattern and the calculated model. 

R-factors less than 20% indicate well determined structures.



Nucleic magnetic resonance spectroscopy [Wüthrich1995, Kai1997] is 

a method used to obtain information about the structure and the dynamics of 

proteins by exploiting the magnetic properties of certain atomic nuclei (2H, 15N or 
13C). NMR is performed on aqueous samples of highly purified proteins labelled 

with  13C and  15N and introduced in a magnetic field. The results are chemical 

shift spectra relative to a reference signal. From these chemical shifts, a set of 

distances between atomic nuclei that define both bonded and non-bonded close 

contacts in the molecule are retrieved. Using this information, the atoms positions 

are  calculated,  usually  more  conformations  being  solved,  which  may  reflect 

structural dynamics. In general, more internuclear distances measured indicate a 

higher  accuracy  of  the  models.  NMR  spectroscopists  report  overall  RMSD 

between the atoms in secondary structure elements in all coordinates sets in the 

ensemble of structures as a measure of structure quality. An RMSD value of 0.7 

Å indicates high-quality structures. In contrast to X-ray crystallography, NMR has 

been  limited  to  relatively  small  proteins,  usually  smaller  than  35  kDa.  New 

development  allows  for  NMR  study  of  large  proteins  as  shown  in  reviews 

[Mittermaier2006, Tzakos2006, Foster2007].

Electron microscopy arose as  a  technique usually  used  to  solve  3D 

structures of large ensembles, such as viruses, nucleic pores, ribosomes; with a 

few Å resolution, it  bridges the gap between the atomic information of single 

molecules  and  the  micron  size  information  of  cellular  data  (between  the 

molecular and cellular structure) [Studer2008, Zhou2011].

Interdisciplinarity
Biology is a discipline that encompasses many orders of magnitude in size 

and time. Even considering only the cell level, there is a difference of 6 orders of 

magnitude between the size of the cell and the dimension of an atom. In order to 

gain a deep understanding of biology it is necessary to combine data provided by 

different  research fields like biochemistry,  genetics,  biophysics,  molecular  and 

cellular  biology,  structural  biology,  immunology,  visualization  techniques,  etc.. 

Interdisciplinarity  is  key  to  build  a  rich  image  of  cellular  environments  and 

processes.  Cells  are  delimited by a lipid  bilayer,  the plasma membrane.  The 

interior of the cell is a crowded ambient, with the cellular components (nucleus, 

endoplasmic  reticulum,  Golgi  apparatus,  proteins  and  small  molecules) 

immersed in water solution. Here, the inhabitants are involved in a vast range of 



processes (from responding to outside signals that induce muscle contraction or 

production  of  antibodies  to  synthesis  of  new proteins  or  cellular  division).  All 

these processes are  part  of  the  cellular  activity that  can be understood only 

merging knowledge from various research fields.

2.4.3 Databases

Atomic databases
Protein structures are deposited on the Protein Data Bank [Berman2000, 

Protein Data Bank], a freely accessible repository of experimentally determined 

three-dimensional structures of macromolecules. The majority, 85%, were solved 

using X-ray crystallography. These data are stored in .pdb files (identified by a 4-

digits number), which contain several information: macromolecule's name and its 

organism of origin, experimental procedure used to obtain the structure and the 

detailed parameters, the authors and the related references, the primary and the 

secondary structure, specification of number of  NMR models where the case, 

various  structure  refinement  methods  and  their  parameters,  details  about 

geometry  and  stereochemistry  (covalent  bonds  length  and  angles,  torsion 

angles, planar groups, cis-trans geometry  etc.), list of heterogeneous atoms in 

the entry,  connectivity between residues and other molecules (oligosaccharide 

chains, ligands,  etc.).  The largest part  is dedicated to define the position (3D 

coordinates) of all atoms. Each line includes the atom identity, the corresponding 

amino  acid,  the  chain  identifier,  the  atomic  x,  y,  z  coordinates,  occupancy 

parameters and thermal parameters (also called B-factor,  an indication of the 

relative mobility of an atom). The file can also report the connectivity annotation 

(covalent bonds, disulfide bonds). The PDB file format can be read by humans. 

Each line in a .pdb file is self-identifying and consists of 80 columns.

A crystallographic  PDB  entry  stores  atomic  coordinates  of  the  crystal 

asymmetric unit (ASU), rather than of the biological assembly (also referred to as 

the biological unit) which is the functional form of a biomolecule. An ASU may 

contain one biological assembly, a portion of a biological assembly or multiple 

biological  assemblies.  Starting  from  ASU,  several  symmetry  operations 

consisting  in  translations,  rotations  or  their  combinations  may  be  needed  to 

obtain the biological assembly. PDB entries contain two records that define the 

biomolecule: REMARK 300,  which provides its subunit  composition related to 

ASU and REMARK 350, which cites the matrices needed to build it  from the 



ASU. For example, if a homodimeric protein crystallizes with a monomer in the 

ASU, REMARK 300 mentions one chain and REMARK 350 two matrices. But if 

there is a dimer in the ASU, REMARK 300 cites two chains, and REMARK 350, 

only the identity matrix.

Raw data databases
The Protein Data Bank stores the final  results of  a molecular structure 

study: the 3D coordinates of each atom. The raw data, such as NMR spectra and 

electron  microscopy  density  maps  are  stored  in  more  specific  data  bases 

(NMRShiftDB   [NMRShiftDB],  nmrdb  [nmrdb],  EMDataBank  [EMDataBank], 

Electron Microscopy Databank [Electron Microscopy Databank]).

Visualization databases
For human interpretation of structural data, visualization instruments are 

needed.  Proteopedia is  a  powerful  web tool  to  communicate  3D information 

about  macromolecules  structures.  It  is  a  wiki  system  that  facilitates  sharing 

among the scientific community and has an additional educational component.  

Proteopedia contains a page for every entry of Protein Data Bank and the Jmol  

window  incorporated  allows  the  user  to  explore  the  structure  of  interest  by 

rotating,  zooming,  changing  the  representation  (atoms,  ribbon,  surface)  and 

colouring it (by atom, by amino acid, by secondary structure) etc..

Also the Protein Data Bank and its mirrors offer means of visualization and 

other ways to explore structural data.

2.5 Protein structure and properties representation

Despite the fact that pdb files are human readable, atomic coordinates 

sets  are  impossible  to  interpret  by  humans,  therefore  protein  structures  are 

presented visually. Several standard representations exist for proteins: balls-and-

sticks for atoms and bonds, to visualize covalent bonds,  space-filling diagram 

with the atoms visualized as spheres with van der Waals radii to visualize the 

space occupied, ribbons as helices or tubes for α-helices and strands or arrows 

for β-strands to capture the protein secondary structure and surfaces to visualize 

the  interaction  with  the  medium:  solvent  accessible  surface  (Lee-Richards 

[Lee1971])  and  solvent-excluded  surface  (Connolly  [Connolly1983]).  The 

information about the atom identity is often delivered by a standard colour-code 

introduced by Corey, Pauling and Koltun in 1953 (known also as the CPK model):  



red  for  oxygen,  blue  for  nitrogen,  grey  for  carbon,  white  for  hydrogen,  etc. 

[Corey1953,  Koltun1965]. Not all visualization tools respect this code, adopting 

new  ones  (e.g.  PyMOL  uses  green  for  carbon).  When  studying  proteins, 

scientists choose the most appropriate of these representations to visualize their 

protein according to the interest of their study. When standard codes are used, it  

becomes  easy  to  communicate  biological  information  through  images, 

transmitting to the viewers the author's message.

2.5.1 Protein surfaces

In structural biology, the surface of a protein can be defined in three ways: 

van der Waals, solvent accessible and solvent excluded (molecular), as shown in 

Figure 16.

The van der Waals surface, also called space-filling molecular model is 

obtained by the union of all atoms drawn as rigid spheres with van der Waals 

radii. It approximates the space occupied by the macromolecule.

The solvent accessible surface is the part of a molecule exposed to the 

solvent, is calculated by the rolling-ball algorithm (usually the water molecule with 

the radius of 1.4 Å) and is traced by the centre of the sphere as it rolls over the 

van der Waals surface.

The molecular surface is considered as a bulk in  the solvent and it  is 

Figure  16.  Surface calculation. Three surfaces are commonly used: Van der Waals, solvent 
accessible and solvent excluded (Connolly). 



traced by the contact points of the sphere rolling over the van der Waals surface. 

The rolling-ball algorithm was developed by Frederic Richards and independently 

implemented three-dimensionally by Michael  Connolly in  1983 [Connolly1983] 

and Tim Richmond in 1984 [Richmond1984].

Several programs are available to calculate the solvent excluded surface, 

including  MSMS  (Michel  Sanner's  Molecular  Surface  or  Maximal  Speed 

Molecular  Surface)  [Sanner1996],  NACCESS  [NACCESS],  Surface  Racer 

[Tsodikov2002], ASC [Eisenhaber1993, Eisenhaber1995] and Molecular Surface 

Package [Connolly1993].

Since the surface of a protein is determined by the position of its atoms at 

any given moment, atomic motion implies that the surface can change in time. 

This concept applies both to the fast vibrational  movements (bond vibrations, 

rotameric flipping and rotation of chi angles in long side chains) and to the slower 

conformational changes related to protein activities and intrinsic flexibility (such 

as disordered loops, or domain motion). For this reason, our system is set to 

calculate the  surface of moving proteins on a frame by frame basis, showing in a 

visual manner the curvature properties of the molecule as they change in time.

Surface curvature is an important feature for the characterization of the 

shape of proteins and it is at the basis of shape complementarity; more concave 

surfaces  are  more  favourable  to  binding  of  small  molecules  and  ligands.  In 

practice,  the application of  ambient  occlusion during the rendering of  images 

reveals the curvature feature of the surface. 

Two surface properties, electrostatic potential and hydropathy, are usually 

visualized on the molecular surface. 

2.5.2 Protein surface properties

In  living  cells,  proteins  are  in  continuous  interaction  with  other 

macromolecules  and  the  surrounding  medium.  In  these  interactions,  two 

volumetric properties,  electrostatic potential  and hydropathy have a significant 

role. These physico-chemical properties are deployed locally along the surface, 

and  understanding  surface  properties  is  important  to  understand  proteins 

functions and interactions with other molecules. Protein-protein interactions are 

mediated by their molecular surfaces and are governed by the properties of the 

atoms that line the surfaces, such as hydropathy and electrostatic potential. 



2.5.2.1 Hydropathy
Hydropathy  is  an  important  physico-chemical  property  of  the  protein 

surface,  relevant  to  its  propensity  to  establish  molecular  interactions. 

Hydrophilicity is the propensity of a surface to establish hydrogen bonds with 

water  or  polar  solvents.  On the  opposite,  hydrophobicity  is  the  propensity  to 

repeal water and preferentially associate with other hydrophobic surfaces. It can 

be estimated at the various levels: for example, in proteins it is considered that  

aliphatic and aromatic amino acids are non-polar and hydrophobic; O- and N-

containing  aa  side  chains  are  polar  and  hydrophilic.  Hydropathy  is  usually 

expressed as numerical value calculated according to one of several formula, 

whereas  hydrophobicity/hydrophilicity  is  a  more  practical  measure  of  how 

strongly the molecule repeals water.

Walter Kauzmann introduced the term ‘hydrophobic bonding’ to describe 

interactions  driven  by  exclusion  of  water  [Kauzmann1959].  Hydrophobic 

interactions are important non-covalent forces that are responsible for different 

phenomena  such  as  structure  stabilization  of  proteins  [Privalov1988, 

Hendsch1994, Wimley1996, Southall2002], folding of proteins [Dill1990], protein-

protein  interaction  [Mueller2002] and  maintenance  of  the  lipid  bilayer 

organization of membranes [Tanford1973]. The importance of hydrophobicity in 

protein  stability,  proposed  theoretically  by  Kauzmann,  was  confirmed  by  the 

solution of first protein structure showing that hydrophobic  residues are indeed 

preferentially buried in the protein interior [Kendrew1958].

Calculation  of  hydrophobicity  is  important  in  identifying  various  protein 

features such as membrane spanning regions and buried residues, which are 

highly hydrophobic or  antigenic sites,  exposed on the surface and which are 

hydrophilic domains. Usually, these calculations are shown as a plot along the 

protein  sequence,  making  it  easy to  identify  the  location  of  potential  protein 

features.  The  hydrophobicity  is  calculated  by  sliding  a  fixed  size  window 

(covering an odd number of aa) over the protein sequence. At the central position 

of  the  window,  the  average  hydrophobicity  of  the  entire  windows  is  plotted 

(Figure 17).



Kyte-Doolittle  scale  [Kyte1982] is  the  most  widely  used  for  detecting 

hydrophobic regions in proteins. Additionally, several hydrophobicity scales have 

been  published  for  various  protein  studies:  Engelman  [Engelman1986] for 

prediction of transmembrane regions, Hopp-Woods [Hopp1983] for identification 

of  potential  antigenic  sites,  Cornette  [Cornette1987] for  prediction  of  alpha-

helices,  Rose  [Rose1985] and  Janin  [Janin1979] for  determination  of  buried 

amino acid residues of globular proteins. All these scales assign hydrophobicity 

values to each aa (Figure 18).

The differences between the systems shown above, with respect to the 

Figure 18. Examples of hydrophobicity scales.

Figure  17.  Hydrophobicity/hydrophilicity plot. The plot along the aa sequence, using Kyte-
Doolittle scale.



values of hydrophobicity is due to the different methods used for constructing the 

scales of specific amino acids. For example, Janin and Rose scales were both 

constructed  by  examining  proteins  with  known  3-D  structures  and  defining 

hydrophobic character as the tendency of a residue to be found inside a protein, 

rather than on its surface. Kyte-Doolittle, instead, is derived from the physico-

chemical properties of aa side chains. 

In the field of drug design, the propensity of a molecule to interact with the 

solvent is usually referred to as lipophilicity (the molecule propensity to interact 

with fats). It is a major determinant of  pharmacokinetic and pharmacodynamic 

properties  of  drug  molecules  [Leo1971,  Dearden1985,  Kubinyi1979].  The 

quantitative  descriptor  of  lipophilicity  is  the  partition  coefficient  P  [van  de

Waterbeemd1987,  Leo1993],  which  represents the ratio of concentrations of a 

compound in the 2 phases of a system of 2 immiscible solvents at equilibrium 

(eq.  1 And Figure  19). P is a measure of differential solubility of a compound 

between  these  2  solvents  (usually  water  and  octanol),  a  measure  of  how 

hydrophobic or hydrophilic a chemical substance is and it is expressed as logP.

P=
[ X ]oct
[X ]w

 (1)

where [X]oct and [X]w are the molar concentrations of the compound in octanol 

and water, respectively. 

It is mostly used in its logarithmic form, log P. Partition coefficient P values 

are in range 10-3 – 107, therefore, logP values are in range [-3, 7]. 

logP is mainly used to calculate hydrophobicity of small molecules. The 

methods for calculating logP can be divided in 2 major approaches: substructure 

and whole-molecule.

Substructure approaches consider the molecules as the sum of its basic 

groups (fragmental  methods)  or  atoms (atom contribution methods).  The final 

Figure  19.  Partition coefficient.  Partition of  a compound in  a two-
phase system of octanol and water.



logP is obtained summing the substructure contributions. 

a) Fragmental methods [Rekker1977, Rekker1979, Hansch1979] evaluate 

molecules by fragments and apply correction factors in order to compensate for 

intramolecular interactions. Fragmental methods work according to the general 

formula given in Eq. 2

log P=∑
i=1

n

ai⋅ f i+∑
j=1

m

b j⋅F j  (2)

f  = fragmental constant;  a = number of  fragments;  F = correction factor;  bj = 

frequency of Fj

The first term considers the contribution of fragment constants, fi, and the 

incidence of this fragment,  ai, in the query structure; the second term considers 

the  contribution  of  the  correction  factor,  Fj,  and  its  frequency,  bj. Defining 

fragments  larger than  single  atoms  guarantees  that  significant  electronic 

interactions are comprised within  one fragment;  this  is  a  prime advantage of 

using fragments.  Arbitrary fragmentations and missing fragments that  prevent 

calculation frequently hinder the use of this method.

b) Atom-based methods split molecules into single atoms and commonly 

do  not  apply  correction  rules.  They  work  by  summing  the  products  of  the 

contribution of an atom type i times the frequency of its presence in the studied 

molecule (see Eq. 3). 

log P=∑ n i⋅a i  (3)

ni = number of atoms of type i; ai = contribution of an atom of type i

Since  the  partition  coefficient  is  not  a  simple  additive  property,  the 

constitutive  feature  is  covered  by  classifying  huge  numbers  of  atom  types 

according to structural  environment.  An advantage of  atom-based methods is 

that ambiguities are avoided; a disadvantage is the failure to deal with long-range 

interactions.  Another  disadvantage  is  that  a  huge  number  of  atom  types  is 

needed to  describe  a set  of  molecules.  Several  atom-based approaches are 

available:  Broto  [Broto1984],  Ghose-Crippen  [Ghose1986], refined  Ghose-

Crippen [Ghose1998]. 

LogP values reflect  only the overall  lipophilicity of  a molecule and it  is 

usually  used  for  small  molecules.  This  one  dimensional  parameter  contains 

limited  information  and  becomes  insufficient  when  topological  features  of 

molecules  are  analysed  in  the  context  of  intermolecular  interactions  with 



receptors.

Whole molecule approaches inspect the entire molecule. The most used 

approach to quantify hydropathy is  molecular lipophilic  potential  (MLP),  which 

defines  the  influence  of  all  lipophilic  fragmental  or  atomic  contributions  of  a 

molecule  on  its  environment  and  offers  a  quantitative  3D  description  of 

lipophilicity.  MLP is a major  tool  to assess the dependence of  lipophilicity on 

conformation. The MLP describes how lipophilicity is distributed over the different 

parts of a molecule; it represents the spacial distribution of the ability to form 

hydrophobic interactions, and is a property that pertains directly to the surface, 

since its effect decreases very rapidly with the distance between the interacting 

parts. 

At a given point in space, the MLP value represents the results of the 

intermolecular interactions between all fragments and the solvent system at that 

point. Two components are necessary to calculate MLP: a fragment scheme and 

a distance function, as shown in Figure 20.

Other whole molecule approaches include  molecular properties such as 

charge  densities  [Klopman1981],  surface  area,  volume,  shape  and  dipole 

moment  [Bodor1989];  molecular  weight,  heat  of  formation,  SASA and  LUMO 

energy  [Makino1998] and  electrostatic  potential  [Sasaki1991] (a  quantum 

chemical approach) are used to predict log P. 

Figure 20. MLP definition. 



However,  no  universal  equation  has  been  proposed  for  hydropathy 

calculation,  the  most  common  way  being  the  use  of  an  exponential 

[Fauchère1988, Gaillard1994,  Testa1996], a hyperbolic [Audry1986,  Furet1988] 

or  a  smoothed  step-function,  also  referred  to  as  the  Fermi-like  potential  

[Heiden1993], as shown in Figure 21.

Hydropathy  is  always  visualized  on  the  surface  of  the  protein,  using 

ranges of colours.

2.5.2.2 Electrostatic potential
Whereas  many  biologically  relevant  protein–protein  interactions  derive 

their  affinity  from  the  burial  of  hydrophobic  surface,  also  polar  interactions, 

hydrogen  bonds  and  electrostatics  have  been  shown  to  play  a  key  role  in 

determining specificity and, in some cases, the thermodynamics and kinetics of 

macromolecular association [Honig1995, Davis1990, Davis1991]. Protein-protein 

associations are mediated both by the hydrophobic effect and by electrostatic 

interactions [Cherfiels1991]. In some associations the hydrophobic effect may be 

the dominant driving force, while in others electrostatic interactions may play a 

very important  role  particularly  when  the  binding  interface is  very  hydrophilic 

[Xu1997b].

Electrostatics plays an essential role in all processes involving proteins, 

DNA or  RNA, but its evaluation requires elaborate calculations that are highly 

sensitive to the solvent model [Sheinerman2000].

The electrostatic potential at a point is defined as the amount of work per 

unit charge required to move a charge from infinity to a given point. 

Unlike  MLP,  for  the  calculation  of  the  electrostatic  potential  (EP)  two 

methods are available:

Coulomb formula (eq. 4) is the simplest method, implemented in Swiss-

Figure 21. MLP formulae



PDBViewer software, which assumes the molecule is in vacuum, the calculation 

includes point charges and the mobile ions are not considered; nevertheless, it  

gives a good overview of a macromolecule in an environment.

V  r =k
q2
r

 (4)

Poisson-Boltzmann equation is a more complex and accurate way to 

calculate EP taking in consideration the contribution of the neighbour atoms and 

simulates  the  solvent  and  salts  through  a  continuum  model  [Sharp1990, 

Gilson1987, Zhou1994].

Programs  such  as  APBS  [Holst2000, Baker2001] and  DelPhi 

[Rocchia2002] are specialized in solving this equation.

EP poses great challenges for visualization since the electric field varies in 

magnitude and direction in the space surrounding the molecule. 

While for EP calculation there is general  agreement on the 2 methods 

described, for its visualization several solutions have been proposed. The most 

common way to visualize EP is using isosurfaces (Figure  22 left)  enclosing all 

regions with  values higher  than a given threshold  or  directly mapped on the 

molecular surface (Figure 22 middle). The colours used are usually red indicating 

the negative potential and blue the positive potential.

Less  common,  EP  can  be  visualized  by  field  lines.  VMD  software 

calculates  EP  through  APBS  plug-in  and  displays  it  as  field  lines  coloured 

according to the EP values (Figure  22 right). A combination of representations 

can also be used: EP values mapped on surface and field lines (Figure 22 right).



An alternative to field lines, EP can be represented as a grid of little cones 

with the tip oriented towards the negative end of the field lines, as implemented 

in MOLCAD (Figure 23).

2.6 Open issues in protein visualization

Since the common approach of the software tools is to use colours for 

different kinds of representations such as: atoms identity, secondary structure, 

electrostatic potential, hydropathy, binding sites, the message is not immediate 

captured.

Moreover,  every visualization tool  provides its  own colour-code making 

information delivery confusing and imposing the necessity of a legend. Some of 

the ranges of colours available in VMD to visualize EP are shown in Figure 24.

Figure 23. EP representation in MOLCAD. The grid of 
EP values are visualized as cones oriented towards the 
negative end of field lines. 

Figure 22. EP representations. (left) isosurfaces; (middle) EP values mapped directly on the 
molecular surface; (right) EP values mapped on surface and field lines; the colour range goes 
from red (negative) to blue (positive). All images are created using VMD.



Using colours to transmit information (hydropathy and EP in Figure  25), 

the simultaneous visualization of surface properties implies colours overlapping, 

which would result in a mixture difficult to interpret.

Due to this fact the surface features are always represented separately. A 

universal  “metaphor”  for  surface properties  should be established and in  this 

thesis we are presenting two visual codes for EP and MLP representations which 

permit their simultaneous visualization.

Figure 24. Colour codes for EP visualization. Various ranges of colours available in VMD are 
shown here.



3 3D animation and rendering

3.1 General aspects

Putting together available information about cellular and molecular studies, 

a very rich image about cellular environment and molecular processes can be 

created, taking advantage of Computer Graphics (CG) techniques. CG refers to 

any image  or  sequence  of  images  generated  using  a  computer  and  can  be 

divided into two fields: two-dimensional and three-dimensional. 2D CG (Gimp, 

Photoshop) is related to the generation of digital images from two-dimensional 

models. In 3D CG, objects are built in a 3D space and not simply drawn on a 

plane (canvas) and the depth concept is added (the third dimension). Computer 

Graphics are a means of creativity, of expression of ideas and in essence they 

are similar to the art of painting, photography and cinema. 

Since the late '90s, the development of CG techniques has advanced at 

spectacular pace. Among the most widely used tools, is the art and science of 3D 

animation. This technique consists in the creation and animation of 3D objects 

(complete with surfaces, skeletons, and simulated physical properties) in a virtual 

world, which can be 'filmed' using virtual cameras and lights. Several programs 

are available for this, including the commercial packages Maya, 3D Studio Max 

and  Softimage  XSI  (all  from  Autodesk  [Autodesk]),  Cinema  4D  (MAXON 

Computer GmbH [Maxon]) and the open-source Blender [Blender].

Figure  25.  Hydropathy and  EP representations. (left) hydropathy,  using  Kyte-Doolittle  aa 
values,  visualized  in  Chimera  (orange  for  hydrophobic,  blue  for  hydrophilic);  (right) EP 
representation using VMD (red for negative, blue for positive). 



Not  surprising,  all  of  these  have  been  used  for  the  study  and 

representation  of  biological  molecules  and  processes.  Some  examples  are 

collected and visible  on  www.molecularmovies.com,  www.molshots.com or  on 

www.scivis.ifc.cnr.it.  The  films  range  from  the  simple  representations  of  the 

mechanical  functioning of a  single protein,  to complex events involving many 

subjects such as DNA replication and RNA processing, to views of major cellular 

processes,  such as apoptosis,  etc..  These latter  ones are important  scientific 

efforts  and add to  their  educational  value  the  bonus  of  rising  interest  in  the 

general public to approach biology. 

For  the  biology  community,  some  3D  animation  tools  have  developed 

special  features  and  interfaces  especially  created  for  molecular  visualization. 

Examples of such tools are Molecular Maya (mMaya) based on Maya software or 

Embedded Python Molecular Viewer (ePMV [Johnson2011]), a plugin for Maya, 

C4D and Blender. 

Traditionally the  process of  creating  a  3D animation  film consists  of  a 

number  of  steps  roughly  grouped  in  modelling,  animation,  rendering,  special 

effects and compositing. 

Modelling
Objects are created in the virtual world by modelling them in the 3D scene 

starting from 3D primitives (such as cubes, spheres, cones, pyramids, torus, etc.) 

or importing them from other programs. The virtual space is defined by 3 axes (X, 

Y and Z) that represent width, hight and depth, respectively. The intersection of 

these 3 axes is called 'origin' (0,0,0 coordinates). In Computer Graphics, objects 

are defined by vertices, joint together by edges and forming faces with defined 

normals.  Modelling  complex  forms  is  achieved  by  manipulation  of  object 

components; the user can simply move the vertices, edges or faces to another 

location, can extrude them out (duplicate the components and then move them) 

or  can  scale  them.  Some  special  transformation  techniques  include  extrude, 

revolve, loft, boolean operations, as well as sculpting. The user's creativity and 

imagination, combined with the precision of these methods contribute to obtain 

pieces of art, from abstract to organic models. Another method to build objects is 

by  scripting,  interfering  with  the  CG  system  through  APIs  (Application 

Programming Interface), a set of functions that the user can use to communicate 

with the software via scripting.

http://www.scivis.ifc.cnr.it/
http://www.molshots.com/
http://www.molecularmovies.com/


Animation
Animation consists in a variation in time of position, colour,  dimension, 

etc.. The object animation can be achieved in various ways: by direct rotations 

and/or translations of the object, by mesh deformation obtained by moving its 

components  (vertices,  edges,  faces),  via  skeleton  (inverse  or  forward 

kinematics), by moving object along a path or by using the Game Engine (GE), 

typically deployed in video games. Additionally, physics-based animations can be 

achieved by simulated forces such as gravity, magnetic, vortex, wind etc.. A new 

technique used is motion capture, which consists in registering the movements of 

an  actor  and  transferring  them  in  sequence  to  the  3D  character.  Particles 

animations are used to create special effects simulating snow, fire, explosions, 

rain. An animation is built by setting key frames, procedure that assigns values to 

an object's attribute (translate, rotate, scale, colour) at a specific time. Cameras 

and lights are also objects in the 3D virtual space, and as such, can be keyframe 

animated (including lenses and light intensity). 

The software interpolates then between them creating an animation curve 

for each keyed attribute.  The points of  the curves indicates the values of  an  

attribute at a particular time. The animation can be controlled by modifying the 

animation curves. A  time line  holding key frames permits the playback of the 

motion frame-by-frame or at film rate of 24, 25 or 30 frames/second. As well as 

modelling, animation can be achieved by scripting, using APIs.

Rendering
Once the animation is defined, the scene is 'dressed': objects are given 

specific  surface  properties  and  appearance  (textures),  a  background  is 

introduced  and  lights  and  cameras  are  created  to  proceed  with  the  'filming' 

(rendering of all frames). Rendering is the final process of calculation of lights  

and shadows, of the position of the materials and colours of the objects, of the 

movement of animated objects, etc. to generate a sequence of 2D images that  

display the content of the virtual scene. Rendering of a virtual environment is 

similar  to  taking  a  photo  or  filming  a  scene  in  real  life.  The  rendering  time 

depends on the complexity of the scene, the number of lights, the quality and the 

dimensions of the output.

For  photo-realistic  renderings,  materials  (shaders)  and  textures  are 

applied to the objects. A shader is a group of controllable attributes that affect the 

material  properties.  In  CG  programs,  shaders  can  be  matte  or  reflective, 



characteristics that can be combined to obtain particular effects. Materials give 

consistence  (substance)  to  an  object  by  adding  colour,  shininess  or  tactile 

feeling.  Textures (procedural  or  bitmap)  help materials  become more natural, 

affecting how something may feel (smooth or rough) or how it looks (colours and 

patterns).  Bitmap  textures  are  images,  while  procedural  textures  use 

mathematical formulas to generate surface appearances. Textures are mapped 

onto the surface of the object like wrapping paper. The attribution of the texture to 

the object's surface is more complicated than this, as the texture should not be 

deformed or wrinkled. The procedure  requires a technique called UV mapping 

[Catmull1974].  First,  the  object  is  unwrapped  to  generate  a  texture 

parametrization. UV unwrapping is a procedure that consists in flattening a 3D 

object (e.g. the world globe) on a 2D plane (e.g. the world map), so that each 

vertex of the 3D mesh is assigned a correspondent 2D texture coordinate (Figure 

26). The image texture is also called UV map, where U and V are the texture 

axes.

In the same way as the 3D space is defined by x,y,z  coordinates,  the 

unwrapped objects have U and V coordinates in a 2D system, describing the 

width and the hight, respectively. The UV coordinates help positioning the texture 

on the object. The U and V values are comprised between 0 and 1.

When  producing  totally  artificial  images,  if  we  want  to  obtain  the 

impression of realism, we have to introduce a large set of effects, such as light 

sources, that can be point, spot, directional or area lights which permit us to see 

the scene and can modify the scene's appearance, casting shadows consistent 

with  the  illumination,  assigning  optical  properties  to  materials,  fixing  camera 

properties, employing ray tracing (a rendering method where the light rays are 

calculated from the surface back to the light source) or radiosity (a rendering 

Figure 26. UV unwrapping. It consists in flattering a 3D object onto a 2D plane.



method  which  considers  the  light  reflected  by  the  various  surfaces  before 

reaching the eye) and so on.

Final rendering of all frames can be very time- and memory-intensive; it  

may  take  days  or  weeks  to  complete,  so  renderings  are  most  of  the  times 

entrusted to a render farm (a bank of computers reserved for renderings).

After  rendering,  the  2D images  are  played  at  a  rate  of  24,  25  or  30 

frames/second  (24  is  the  minimum  speed  the  human  eye  needs  to  see  to 

successfully create the illusion of movement or a continuous variation).

Special effects
Rendering software may simulate a series of visual effects such as depth 

of field, motion blur, rain, smoke, fire, fog, dust, caustics (light interaction with 

uneven light-refracting surfaces), ambient occlusion (the attenuation of light in 

the  less  exposed  regions),  subsurface  scattering  (light  reflecting  inside  the 

volumes of solid objects such as human skin), etc.. 

Compositing
Very often  the  scenes  created  in  Computer  Graphics  are  rendered  as 

different  layers  to  gain  control  on  different  parts  of  the  scene,  such  as 

background and different elements of the foreground. The process of grouping 

the layers to form the final image is called composition. 

3.2 Computer Graphics software

As mentioned above,  some of  the 3D CG packages available are:  the 

commercial  Maya,  3D  Studio  Max  and  Softimage  XSI  (all  from  Autodesk), 

Cinema  4D  (MAXON  Computer  GmbH)  and  the  free,  open-source  Blender. 

These programs share the tools to perform all  the steps described above for 

movie creation, divided mainly into modelling, animation, rendering. They display 

a GUI (Graphical User Interface) formed of various panels (windows), each with 

a  distinct  function:  the  3D viewport,  a  list  with  the  objects  in  the  scene,  the 

objects properties, for animation, panels for the creation of complex materials 

and textures, for scripting, etc.. They also provide a console window in which a 

feedback of the user actions is kept and errors appear.



4 Molecular motion

In chapter  3 3D animation and rendering the structures of the proteins 

were considered as low energy, unique, native states. Most proteins exert their 

functions through some extent of motion, which implies conformational changes 

(modifications  in  the  structure).  The  simplest  mechanism  of  conformational 

change in proteins is a hinge motion, in which two parts of the protein move 

rigidly with respect to each other (e.g. myosin motion along the actin filaments 

[Holmes1998]). Sometimes the domains are packed closely at the interfaces and 

the conformational changes are induced by shift of the domains. Such shift are 

made possible by small rotations of the side chains. Many proteins (enzymes) 

change conformation in response to the binding of a ligand or a cofactor. Usually,  

the active site is located in a cleft between two domains and the binding of the 

ligand induces the closure of the cleft  over it.  Some proteins (prion, amyloid) 

undergo very large conformational changes, others (serpins, gp41 of HIV/SIV) 

are involved in movements known as the stressed → relaxed transitions. These 

changes include different folding topology. High-level conformational changes of 

complexes of proteins include GroEL-GroES chaperonin complex that catalyses 

the  protein  folding  [Xu1997a,  Xu1998] and  ATP  synthase  [Abrahams1994, 

Noji1997, Stock1999] which pumps protons out of the mitochondrium. 

Despite recent advances in highly performant methods, it is very difficult to 

obtain  direct  information  on  conformational  changes  of  molecules.  However, 

several  techniques  shed  light  on  the  variability  of  conformations  of  single 

polypeptide chains, such as X-ray crystallography, NMR spectroscopy, molecular 

dynamics simulations,  indirect  techniques like FRET, and the many disparate 

microscopy  techniques.  All  these  methods  contribute  new  and  important 

information that  can advance our  interpretation of  biology in  action at  atomic 

level.

Molecular dynamics (MD) technique is a computer simulation of physical 

movements of molecules allowing insights into molecular motion at atomic scale. 

Using  force-fields  (such  as  AMBER  [Case2005],  CHARMM  [Brooks1983], 

GROMOS  [Christen2005],  GROMACS  [Lindahl2001],  etc.)  containing  sets  of 

parameters  for  each  atom,  MD  simulate  molecules  behaviours  in  a  solvent. 

Simulations  span  from  nanoseconds  to  microseconds  and  require  large 

computational  power,  often  lasting  several  CPU-days  to  CPU-years.  These 



trajectories  can  be  then  analysed  with  visualization  tools  (such  as  Chimera, 

PyMOL, VegaZZ [Pedretti2002], VMD, etc.).

Unlike  molecular  dynamics,  NMR spectroscopy provides  experimental 

information  on  molecules  in  solution,  and  thus  free  to  move.  The  data  are  

presented  as  a  collection  of  conformations  in  no  specific  order,  that  can  be 

considered  as  static  'images'  of  proteins  caught  during  motion.  An  NMR 

collection contains usually 15-50 models.

X-ray crystallography provides different states of a protein captured in 

different conditions (with or without a ligand or in association with other proteins). 

Analysis of these structures can reveal conformational changes.

4.1 Morphing in Blender Game Engine

Our group, Scientific Visualization Unit, uses Computer Graphics tools to 

recreate the biological ambient using the available knowledge from experimental 

techniques,  some  of  which  were  described  above.  Our  collection  of  movies 

shows different  biological  environments,  crossing 7 orders of  magnitude from 

millimetre  10-3 m (capillary)  to  micron  10-6 m (cell)  and  to  Ångstrom 10-10 m 

(atom).  These  movies  are  meant  to  make  visible  the  invisible  world  with  its 

crowdedness, movements, interactions, and can be used as scientific divulgation 

instruments for the large public (schools, museums) and scientists. Besides this, 

our  research  work  is  focused  on  two  main  aspects:  elaboration  of  proteins'  

motions and visual representation of surface properties of molecules.

Starting from NMR data and assuming that if a protein exists in more than 

one conformation it should be able to transit between the different states, our 

group developed a system to elaborate proteins' motions using Blender. Initially, 

RMSD is performed between all  models using SwissPDBViewer (SPDBV); the 

two  conformations  with  the  highest  RMSD are  selected  and  imported  in  the 

scene  of  Blender  as  two  different  positions  of  the  same  'object'  and  set  at 

different time (higher the time interval between the positions, slower the motion).  

The GE, equipped with physico-chemical mimicking rules (e.g. the bond length is 

fixed, only rotation around the bond axis is allowed), interpolates between the 

start  and the  end conformations.  For  our  aims,  the  essential  features  of  the 

engine  are  the  collision  detection,  the  control  of  rotation  with  the  rigid  body 

constraints, and the capability of baking (recording) the movements of objects as 

calculated during 'game playing'. 



As  the  test  material  for  our  procedure,  we  used  the  25  models  of 

Calmodulin (CaM) stored in 1cfc.pdb file [Kuboniwa1995]. CaM is a well studied 

protein composed of 148 amino acids, comprising 1166 atoms (2262 including 

hydrogens),  well  conserved along the  evolutionary scale  [Baba1984].  CaM is 

formed of  two globular  domains (heads)  connected by a flexible  linker.  Each 

domain is  also mobile:  it  consists  of  four alpha helices,  organized in two EF 

hand-Calcium  binding  motifs,  which  undergo  a  major  transition  upon  Ca++ 

binding, but are also quite flexible in solution in the absence of this ion.

The  procedure  to  obtain  sequential  ordering  and  motion  of  a  protein 

follows the steps shown in Figure 27.

The  molecule  is  built  in  the  3D environment  of  Blender  by  creating  a 

sphere for each atom (with its covalent radius or with a collision radius equivalent 

to  the  specific  Van  der  Waals  radius),  and  links  (corresponding  to  chemical 

bonds, built using an amino acid library inserted in BioBlender) which are set as 

rigid body joints, allowing rotation around their own axis.

With these settings, the Blender GE is played and the position of all atoms 

Figure  27. The workflow for  morphing in 
Blender. It  includes  selection  of  2 
conformations with max RMSD, calculation of 
the transition using Blender GE, comparison 
of  the  intermediate  conformations  with  the 
other  NMR  model  and  if  the  condition  is 
satisfied, add a new model to the sequence, 
reiterating  the  entire  process,  until  the  final 
sequence is obtained.



at all intermediate frames are recorded. These are exported in a series of files 

in  .pdb format and compared by RMSD with  all  the remaining models in the 

original NMR collection. Data are plotted in graphic form (Figure  28), and any 

model found similar (RMSD  ≤ 2  Å) to one of the intermediates calculated by 

Blender, is considered a step in the route between the two distant models.

Figure  28.  RMSD  between  intermediate  conformations  and  original  NMR  models. The 
RMSD is performed between all the transition conformations calculated by Blender (frames 1-
100)  and  the  remaining  models  in  1cfc.pdb.  The  model  with  an  RMSD  ≤ 2  Å  from  any 
intermediate is introduced as a step between the starting conformations, 7 and 21.



The procedure is then repeated, this time introducing in Blender the start 

and the end conformations plus the ones found close to the path. By reiterating 

the process we are able to order some of the conformations (Figure 29).

Starting  again  and choosing other  two different  initial  conformations,  a 

map is built that allows all models of the NMR collection to be reached, starting 

from any other one. We plot the map in a 3D graph made with Jmol, in which all  

conformations are linked, see Figure 30.

Figure 29. Sequence of models. RMSD between models of the transition and all models of 1cfc 
is performed; the result is a sequence of NMR conformations between 7 and 21.



Next,  the  question  of  the  physical  and  chemical  plausibility  of  the 

intermediate steps calculated by Blender GE is addressed: all the .pdb files of the 

sequence are exported and analysed with SPDBV, as shown in Figure 31.

Energy content of each conformation is evaluated by GROMOS 43B force 

field  [Christen2005] included  in  SPDBV (script  spdbv_energy)  and  plotted.  A 

close examination of the contribution to total energy reveals that most peaks are 

due to minor geometrical distortions, mainly due to rotameric conversions, or to 

close  proximity  of  atoms.  Rotamers  are  manually  adjusted,  by  inverting  the 

names  of  the  equivalent  atoms  involved,  and  distorted  geometries  are  fixed 

through energy minimization, performed within SPDBV program using again the 

GROMOS force field.

Once validated, .pdb files are re-imported in Blender – one conformation 

every frame – so that it can be used to visually inspect the moving protein in a 3D 

environment.

Figure 30. The navigation map of NMR file 1cfc. The image is a view of the map in Jmol. The 
numbers indicate the model in the NMR file and the colours various paths between the models.



The sequence of files are the basis for the subsequent visual elaboration 

described in details in the RESULTS chapter of this thesis.

Figure  31.  Intermediates  evaluation.  The  intermediate 
conformations obtained with Blender are  physico-chemical evaluated 
and re-imported in Blender for the final motion.



THE AIM OF MY THESIS
SciVis proposes a step forward in the direction of using bio-animation both 

as a divulgation and as a discovery tool. Our aim is to elaborate proteins' internal  

motion starting from structural data (as described in section 4.1  Morphing in
Blender Game Engine), and to visualize surface properties of molecules in a 

more informative way. Both these tasks are done using Blender in conjunction 

with several scientific programs. 

In  the  visualization  study  we  propose  a  new  visual  code  for  the 

representation  of  the  surface properties  (electrostatic  potential  and  molecular 

lipophilic  potential)  without  involving  colour.  Visualizing  them  using  features 

different from colour permits their simultaneous representation and their delivery 

in photo-realistic images leaving the utilization of colour for the description of  

other  biochemical  information.  Using  real-world  features,  the  surface 

characteristics can be easily interpretable without the need of a legend. The main 

idea  of  the  proposed  visual  mapping  is  to  exploit  perceptual  associations 

between  the  values  to  be  mapped  and  visual  characterization  of  real-world 

objects. Ideally, by using already established perceptual association, the viewer 

will be able to understand the provided information more naturally.

3D creation software tools are appropriate to accomplish this purpose as 

they  provide  several  possibilities  to  express  surface  properties:  choice  of 

material,  transparency,  incandescence/glow,  ambient  colour,  diffuse,  bump, 

displacement,  specular  shading,  reflection,  lights,  etc.. Combining  these 

attributes,  it  is  possible  to  create  realistic  images,  transmitting  both  visual 

information (such as surface properties and consistence) and tactile sensations.

For MLP mapping, two opposite surface characterizations able to convey 

a sense of affinity to oil or to water were selected. In our real-world experience, a 

very smooth and reflecting surface (like wax) is completely impervious to water  

but can be easily coated by oil. The opposite visual feedback is associated to 

grainy, crumbly, dull surfaces (like clay bricks or biscuits) which can be easily 

imagined being soaked in  water.  These considerations led  to  the showing of 

highly lipophilic areas as shiny, smooth material and of highly hydrophilic areas 

as dull  and rough.  These kind of visualizations that  resembles our  world are 

called in CG “photo-realistic representations”.

While the MLP value, due to its very short range effect, is only observable 



on the surface itself, electrical phenomena are associated to the idea of an effect 

projected in the volume surrounding a charged object, and able to affect other 

objects  (like in  the high school  textbook favourite  amber rod attracting paper 

bits). Field lines are a common way to describe the effect of the electrical field. 

EP value is therefore represented by showing particles (drawn as short lines), 

moving along the path defined by field lines, from the positive to the negative 

end.  The  particles  concentration  is  proportional  to  the  total  charge  of  the 

molecule,  visualizing  a  high  concentration  of  particles  in  areas  where  the 

electrical fields is strong.

We show MLP and EP as surface characteristics and animated particles, 

respectively,  permitting  their  simultaneous  visualization  on  moving  molecules. 

This  new  method,  by  introducing  the  animated  visualization,  highlights  the 

changes in surface features during proteins' conformational transitions.  



TOOLS: PROGRAMS AND SCRIPTS

1 Programs

Maya  7  Unlimited/Autodesk  – a  commercial,  cross  platform software 

package for 3D animation. It includes two internal programming languages, MEL 

(Maya Embedded Language) similar to TCL and Perl, and since Maya 2008 also 

Python. Maya has a powerful particle system. Particles can be dealt with either 

as a unique object (per object),  or on a  per particle basis.  Attributes such as 

position,  velocity,  acceleration,  mass,  colour,  opacity  etc. can be assigned to 

particles as per object, and in this case all particles have the same value of the  

attribute, or they can be assigned as per particle and in this case each particle 

has a different value.

Several  internal  renderers  are  available  with  Maya:  Maya  Software 

Renderer,  mental  ray  for  Maya  Renderer,  Maya  Vector  Renderer,  Hardware 

Maya Renderer, each one with specific advantages.

RenderMan for  Maya 1.0/Pixar [RenderMan for  Maya] – a plug-in  for 

Maya,  an add-on module that extends Maya's capabilities customizing it for a 

specific  rendering.  It  is  specialized  in  high  quality  photorealistic  renderings. 

Pixar’s RenderMan is a high quality renderer, fast, efficient for handling complex 

images,  it  has  additional  features  like  deep  shadows  (offers  high-quality 

shadows), special effects like motion blur (the image can be blurred if the object  

moves), ray-tracing effects such as global illumination (effects that create subtle 

soft shadows in a scene). This plug-in, among the internal renderers of Maya, 

has the capacity of rendering blobby particles (particles handled as  metaballs, 

spheres  that  blend  together  giving  the  impression  of  a  single  surface  that 

includes them, when they are close to each other) with colour as per particle 

attribute,  blending  colours  as  a  consequence  of  blobby  particles  blending 

characteristic.

Blender 2.49 – a free, open-source, cross platform suite of tools for 3D 

creation. Mesh creation and assignment of colours to vertices, mesh unwrapping, 

UV texture mapping, Node Editor and particles are some of the features used for 

this project  and are described in details in section 2  Results in Blender.  Its 

functions  can  be  accessed  through  the  GUI  or  scripting,  through  its  API's 

(Application Programming Interface), using Python scripting language. APIs are a 



set  of  rules  and  specifications  used  to  communicate  with  the  software  from 

scripting, without using the interface. The renderings are performed by its internal  

renderer  which  combines  all  the  features  needed  to  obtain  photo-realistic 

images.

Blender 2.5 – a big change in the internal structure of Blender including 

the major advantage that now all Blender's functions can be reached through the 

API's.  It  incorporates  a  powerful  Game Engine  (GE),  usually  used  for  video 

games and special effects. GE instances the Bullet physics library [Bullet Physics

Library], an open-source software for multi-threaded 3D collision detection, soft 

body and rigid body dynamics usually used for games and visual effects. Blender 

GE  uses  a  system  of  graphical  "logic  bricks"  (a  combination  of  "sensors", 

"controllers" and "actuators") to control the movement and display of objects in 

the game. 

PyMOL 1.2r3pre  –  an open-source,  user-sponsored,  Python-enhanced 

molecular  graphics  tool,  used  for  visualization  of  .pdb  files  (proteins,  nucleic 

acids, other macromolecules). Its internal renderer uses ray tracing to produce 

high-resolution images by casting shadows and smoothing the sharp edges. It 

calculates the electrostatic potential through APBS plug-in and generates the 3D 

mesh  of  the  molecular  surface  for  the  molecule.  The  obtained  geometry  is 

exported in a VRML (Virtual Reality Markup Language) format, easily read by 3D 

software tools. 

PDB2PQR-1.6.0 [Dolinsky2004, Dolinsky2007] –  a  Python  software 

package that automates many of the common tasks of preparing structures for 

continuum electrostatics calculations, providing a platform-independent utility for 

converting protein files in PDB format to PQR format. It assigns partial atomic 

charge to every atom in the .pdb file according to different force fields (AMBER94 

[Wang2000],  CHARMM27  [MacKerell1998], PARSE  [Sitkoff1994] or  TYL06 

[Tan2006])  and  saves  a  .pqr  file  in  which  the  occupancy  and  temperature 

columns are replaced by atomic charge and radius, respectively.  It  also adds 

missing hydrogens, calculates pKa values and generates an input (.in) for APBS 

calculations.  The  .in  file  stores  the  information  on  the  3D dimensions  of  the 

protein,  the ionic  concentration of  solvent,  biomolecular  and solvent  dielectric 

constants.  Ionic  concentration  of  0.150  mol/l  NaCl,  biomolecular  dielectric 

constant of 2 and solvent dielectric constant of 78.54 (water) were used for our 

calculation. It is available both as a web service and as a stand-alone program.



APBS-1.2.1  (Adaptive  Poisson-Boltzmann  Solver) [Holst2000, 

Baker2001] – a software for evaluating the electrostatic properties of nanoscale 

biomolecular  systems,  through  solution  of  the  Poisson-Boltzmann  equation. 

APBS takes as inputs  a .pqr  and an .in  files and calculates the electrostatic 

potential in every point of a grid in the protein space, which is output as a .dx file. 

The electrostatic potential can be then visualized with VMD or PyMOL programs.

OBJCreator – a custom software that maps the MLP values on the mesh 

and exports an .obj file. It takes as inputs the mesh (.wrl) created by PyMOL and 

the .dx file containing the values of MLP, created by pyMLP.py (see below). For 

every vertex of the mesh, the correspondent grid-cell is identified and the value 

of potential is calculated using trilinear interpolation. The resulting .obj file stores 

information about the position of each vertex of the mesh and its correspondent 

MLP value. The mapping process used by this program is the same used by 

scivis.exe, described next.

scivis.exe – a custom software written in C++ used to calculate the field 

lines and to  export  them in  a ASCII  file  to  be imported in  Blender.  This  tool 

imports the 3D surface (.obj) and the Electrostatic Potential grid (.dx) calculated 

by the APBS program. The computation of the field lines is a multi-step process 

described  in  details  in  section  2.3.1  EP calculation.  Briefly,  EP values  are 

mapped on the 3D surface by assigning the correspondent EP value, calculated 

using trilinear interpolation on the .dx grid data, to each vertex of the 3D mesh; a 

gradient grid is calculated in the volume containing the molecule; an automatic 

selection of areas with high values of EP is done and the corresponding field 

lines are computed for these areas using the gradient field. 

When used as primary application, in addition to the described features, 

scivis.exe provides visual feedback for all its processing steps. It is possible to 

visualize the molecular surface, the EP grid, the gradient grid and the field lines.  

Different  parameters  and visualization  modes are  available  in  order  to  better 

understand  the  various  data  involved  in  the  processing.  For  example,  it  is 

possible to restrict the visualization of the EP grid or of the gradient field only to a 

certain interval of values; it is also possible to change visualization colour ramps 

and to inspect the data in small parts of the computation volume. Most of the 

processing parameters can be changed in the interface and affect the processing 

in real-time. Thanks to the visual feedback, these options have been particularly 

useful when choosing the parameters for the processing of the EP values and 



the generation of field lines. 

For the static representation of the EP, pyramids (with the tip indicating the 

negative charge) are created along the field lines according to two parameters 

that can be set by the user: the size of the pyramids and the distance between 

them. These 3D objects are exported in an .obj file.

For the 3D interactive representation of EP, the field lines are exported 

as .json file; EP is visualized as comets flowing along field lines from positive to  

negative charges.

PRODRG2  [Schüttelkopf2004]  – a free web server that provides MOL2-

format files that contain bonding information useful  for  ligand parametrization. 

This file is required by PDB2PQR for adding charges to oligosaccharide chains. It 

is used along with the .pdb file of glycoproteins.

2 Scripts and scripting language

Python  2.6  –  an  interpreted,  interactive,  object-oriented,  extensible 

programming language with a clear syntax. In this project, Python has been used 

in different stages, both as a scripting component of various software tools (like 

Blender and PyMOL) and as a stand-alone scripting language.

pyMLP.py [Broto1984, Laguerre1997] – a Python script written and kindly 

provided  by  Julien  Lefeuvre  (available  from 

http://code.google.com/p/pymlp/source/browse/trunk/pyMLP.py); it  contains  a 

library  of  atomic  lipophilic  potential  for  every  atom  in  proteins  based  on  its 

chemical  position  (we added the values for  sugars and nucleic  acids)  and it  

calculates the Molecular Lipophilic Potential (MLP) in every point of a grid in the 

protein space according to various formulae such as Fauchere [Fauchère1988], 

Dubost [Audry1986], Brasseur [Brasseur1991], etc. (we introduced Testa formula 

[Gaillard1994]).  The  grid  step  can be  changed  by the  user  to  cope  with  the 

protein size and computer performances (in terms of memory occupancy and 

calculation time); the default is 1 Å.

MLP.py –  a  custom  Python  script  used  within  the  Blender  integrated 

scripting engine to obtain image textures. It imports the .obj files into a Blender 

scene and converts the MLP values into vertex colours (levels of grey) assigning 

a colour to each vertex. The 3D surface is then unwrapped to obtain a UV texture 

parametrization. A texture map is built by baking the computed per-vertex colour 

values in the texture image. 

http://code.google.com/p/pymlp/source/browse/trunk/pyMLP.py


texture.py – a Python script used within Blender, that builds a suitable 

material, including the texture images generated by MLP.py, and assigns it to the 

3D meshes imported in the 3D scene. 

import_curves.py – a Python script used in Blender to read the ASCII file 

where the field lines are saved; it creates NURBS curves in the Blender scene 

and associates a particle emitter to the positive end of every curve. 

render.py –  another  Python  script  executed  in  the  Blender  integrated 

scripting engine during the final step of rendering. For each frame it selects the 

corresponding  mesh  from  all  those  present  in  the  scene,  it  assigns  the 

appropriate image textures to it  and renders the scene. It  finally saves every 

rendered image as a .png or .exr file.

cycle.sh – a shell script for Linux that reads the .pdb files and executes 

external programs and scripts such as PyMOL, PDB2PQR, APBS, pyMLP.py and 

OBJCreator, saving the two .dx files with EP and MLP values and the .obj file 

with the MLP values mapped on the surface of the protein and stored in the V 

column.
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RESULTS

1 Early attempts with Maya-Autodesk

In the early stages of our research, motion and visualization studies were 

done using small, simple molecules such as Triazine, Bitucarpin A and Alanine 

dipeptide.  The  first  attempts  to  visualize  macromolecules'  properties  were 

elaborated with Maya and referred to general properties (hydropathy and EP) 

applicable to all proteins and individual properties (fluorescence of GFP or high-

energy bond content of ATP).

1.1 Atomic representation

The simplest  representation  of  molecules  is  the  atomic  representation. 

Using custom scripts written in MEL by a former lab member, Yuri Porozov, the 

atoms identities and positions were imported from .pdb files into the virtual space 

of Maya as spheres  with the radii proportional to the atoms covalent radii and 

coloured using the standard CPK code. This basic visualization of a molecule 

reveals only the atom identities and the covalent bonds between them, drawn as 

bones which behave like chemical bonds, have fixed length, and are constrained 

by codified rules. 

An  example  is  Triazine  (2-chloro-4-methoxy-6-[(R)-1-phenylethylamino]-

1,3,5-triazine),  a  small  molecule  used  as  a  chiral  solvating  agent  in  NMR 

spectroscopy studies. It is composed of 31 atoms, in a relatively simple structure 

made of two rigid disks connected by a bridge.  Triazine has been subject to 

dynamical  simulation  studies,  [Alagona2007] that  have  revealed  the  energy 

landscape for all possible conformations that its two rotating bonds can assume. 

For this reason we chose it as the initial test molecule of our chemical Maya 

system for molecular motions (Figure 32) [Porozov2007].
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1.2 Surface and properties representation

To visualize  molecules  as  surfaces,  every atom was  imported  in  Maya as 

blobby particle. Blobby particles are particles handled as metaballs, spheres that 

blend together giving the impression of a single surface that includes them, when 

they are close to each other (Figure  33). The visual result reminds of mercury 

beads which appear to meld into each other as they get closer together. As most  

biomolecules contain very large number of atoms, we use the Particle feature to 

create them in the 3D space of Maya. Particles are 'light entities'  in terms of 

processing power in comparison with objects. In other words, large movements 

(such as bends on a hinge) and relative movements (of the object in space) can 

be imposed and calculated very fast.

Information about atoms identity is delivered using colours according to 

CPK  code.  Alternatively,  we  use  a  grey  level  code  with  values  of  grey 

proportional to the standard CPK. Atoms colours are a per particle attribute.

Figure  32.  Triazine representation. Triazine motion is calculated by a skeleton enriched with 
physico-chemical  rules  (A) and some intermediate frames are presented here  (B-I).  See the 
movie on http://vimeo.com/7391082 

Figure  33.  Metaballs. The  spheres  blend  into  each  other  at  short 
distance.

http://vimeo.com/7391082


1.2.1 Hydropathy

The  first  attempts  to  display  visually  the  surface  properties  were 

concentrated  on  hydropathy,  considering  the  predominant  molecule's 

characteristic:  mostly  hydrophilic  or  mostly  hydrophobic.  For  these  tests  we 

chose  some  representative  molecules:  Bitucarpin  A  [Alagona2004],  alanine 

dipeptide [Wang2004] and ATP as hydrophilic molecules and cholesterol as an 

amphipatic, mostly hydrophobic one.

Two  real-world  surface  characteristics  were  chosen  to  represent 

hydropathy  property:  roughness  for  hydrophilicity  and  sliminess  for 

hydrophobicity. 

Bump  and  displacement  are  the  two  possible  ways  to  achieve  the 

impression  of  roughness in  Computer  Graphics.  A  bump  texture  is  a  feature 

applied to the surface at rendering, making the surface appear rough or bumpy, 

without altering the shape (i.e without moving the vertices of the mesh): it works 

as an optical  effect obtained by  modifying the trajectory of  the reflected light. 

Bump mapping [Blinn1978] is a rendering technique generally used to represent 

very small scale geometry like scratches, roughness or graininess. By contrast, 

displacement mapping [Cook1984]  does  modify  the geometry of  an  object  in 

order to specify surface relief. For effective displacement, the object should have 

a very fine mesh composed of many polygons. 

Bump and displacement texture maps are based on values from a grey 

scale image; bright areas appear to protrude from the surface while dark areas 

appear to sink into it. Some examples of textures are shown in Figure 34.

The coarse-grained impression was obtained using a dull material.  Three 

different visualizations for hydrophilicity were tested:

– rough (bumpy) surface and CPK code for atoms as for Bitucarpin A 

and ATP (Figure 35 a and b, respectively); 

– rough (bumpy) surface and grey level code for atoms as for Alanine 

dipeptide molecule (Figure 35 c);

Figure 34. Examples of default textures in CG software. These textures can be used both for 
bump and displacement mapping.



– rough (displaced) surface and grey level code for atoms as for ATP 

(Figure 35 d).

Cholesterol is a strongly hydrophobic molecule (except the hydroxyl) and 

was represented as a slimy surface without considering the hydrophilic influence 

of oxygen. The sliminess is given by a shiny material. For the representation of 

atoms identity the CPK colour code and the grey level code were used. 

Figure 35. Hydrophilicity representation study. (a) Bitucarpin A, bump mapping and CPK code 
for atoms identity; (b) ATP, bump mapping and CPK code; (c) Alanine dipeptide, bump mapping 
and grey levels for atoms identity; (d) ATP, displacement mapping and grey levels for atoms.



1.2.2 Fluorescence

The representative model for the representation of fluorescence feature is 

GFP (Green Fluorescent Protein). It is a naturally fluorescent protein originally 

isolated  from  a  jellyfish  (Aequorea  victoria)  which  emits  green  light  when 

irradiated with UV light. The cromophore is the part of the protein responsible for 

the fluorescence emission and it is situated in the centre of the molecule. The 

GFP atoms (from 1gfl.pdb [Yang1996])  were  rendered as  blobbies  to  form a 

surface. Its fluorescence is visualized by using a dull material with green ambient 

colour  and  a  green  light  emitting  from the  centre  of  the  protein  (where  the 

cromophore is located), as shown in Figure 37.

Figure  36. Hydrophobicity representation study.  Cholesterol  visualization as shiny material 
and atoms identity as (left) levels of grey and (right) CPK code.

Figure 37. GFP representation. 



1.2.3 Energy content

ATP (Adenosine Triphosphate from 1xsc.pdb [Swarbrick2005]) is the direct 

energy source for the majority of cellular functions which makes it  suitable to 

study  this  characteristic.  It  works  as  a  chemical  battery,  storing  energy  and 

releasing it when and where required. 

Chemical energy is stored in the ester bonds  between phosphates, with 

the great amount of energy (7 kcal/mole) in the bond between the middle and the 

outermost  phosphate  groups.  The  terminal  phosphate  group  in  particular  is 

frequently split off by hydrolysis, being transferred to other molecules or water  

and releasing energy required for synthetic reactions (Figure 38). These covalent 

bonds are known as “high-energy” bonds.

Besides  the  bond  energy  content  characteristic,  ATP  is  a  hydrophilic 

molecule. For the visual representation of ATP, the two features were considered 

separately.  The  atoms  identities  and  positions  were  imported  into  the  virtual  

space of Maya as two different groups of particles superposed: the entire ATP 

was modelled as blobby particles and the three phosphate groups were modelled 

Figure 38. ATP chemical structure.

Figure 39. ATP representation study. (left) bump mapping for hydrophilicity and high value of 
incandescence for  energy content,  CPK for  atoms identity;  (right) displacement  mapping for 
hydrophilicity and  displacement combined with high value of incandescence for energy content, 
grey level code for atoms.



as overlapping clouds (another  type of particles).  Two different shaders were 

created:  one  for  the  hydrophilicity  and  one  for  the  “high-energy  bond” 

characteristics.  As  described  in  chapter  3  3D  animation  and  rendering,  a 

shader  (material)  is  a  collection  of  attributes  that  define  colour,  shininess, 

transparency and other surface characteristics. 

Two different representations for ATP were tested (as shown in Figure 39). 

The  hydrophilicity,  a  property  of  the  entire  ATP,  is  represented  as  a  coarse-

grained surface, created with bump mapping (Figure  39 left) and displacement 

mapping (Figure 39 right); the shader gives the impression of a molecule that can 

easily interact with water. A second shader is applied to the three phosphates in 

order to display in a visible way the chemical energy stored in these covalent 

bonds. The high-energy content is represented by  high value of incandescence 

(like an emitting light source), as shown in Figure 39 left or by displacement and 

high value of incandescence, as shown in Figure 39 right. The atoms identities 

are highlighted using the CPK code (Figure 39 left) or the grey level code (Figure 

39 right). ATP was the first molecule with two of its characteristics represented 

simultaneously: hydrophilicity and high-energy bonds.

The  representations  described  above  give  an  overall  view  of  the 

characteristics of some molecules. The particularity of our representations is that 

the molecules are always presented in motion: conformational changes (Triazine, 

Bitucarpin  A,  Alanine  dipeptide)  or  vibrational  motion  (ATP,  Cholesterol) 

calculated by interpolation between different conformations or simple rotations of 

the entire macromolecule to inspect better their structures, as in case of GFP. 

The  animated  representations,  visible  on  our  website  or  Vimeo,  are  more 

informative than the static images, providing insight into the three-dimensional 

structure and the flexibility of the molecule.

1.2.4 Glycoproteins

Glycoproteins are proteins with oligosaccharide chains covalently attached 

to them (at glycosylation sites). The challenge in visualization of glycoproteins is 

to transmit visually the different chemical natures of protein and sugars. gp120 is 

the first glycoprotein we used in this attempt. gp120 is derived from gp160, the 

envelope glycoprotein of HIV (Human Immunodeficiency Virus) and SIV (Simian 

Immunodeficiency Virus); gp160 is a homo-trimeric complex, in which each chain 

is cleaved, during transport to the surface of the infected cell, into two fragments 



known as gp120 (protein  on  the  surface)  and gp41 (transmembrane protein) 

[Allan1985, Veronese1985, Center2002].  gp120  mediates  the  first  contact 

between  the  virus  and  the  target  cell,  by  binding  to  the  CD4  receptor 

[Dalgleish1984], and then to the specific co-receptor. 

The  crystal  structure  of  unbound  SIV  gp120  (2BF1.pdb)  [Chen2005] 

contains  only  the  core  of  one  monomer  of  the  protein;  flexible  parts  were 

removed to facilitate crystallization: the V1V2, the V3 and 220-228 loops and N 

and C termini. Of the oligosaccharide chains (OS), the most part was excluded, 

leaving max 5 OS monomers at each glycosylation site. Our aim was to build the 

entire gp120 monomer, including loops and integral OS (Figure 40). The V3 loop 

(1CE4.pdb) was positioned by overlapping the cysteines at the basis of the loop 

with the corresponding cysteines of the crystallized gp120. Modelling of the other 

loops was based on their aa sequence using ChemOffice and performing energy 

minimization. The 3D structure of OS were built according to their composition in 

gp120 of HIV [Geyer1988], using ChemOffice for proper  bonding  of monomers 

and for energy minimization. 

For the visualization of the different chemical nature between the protein 

and the sugars surfaces,  atoms were imported in Maya as blobbies and two 

different shaders were used: a dull material with a soft bump and a bright edge 

created with incandescence to represent protein atoms and a dull material with 

displacement to indicate sugars hydrophilicity. The atoms identity was revealed 

by softened CPK colour code.

As  stated  above,  these  representations  are  only  some  attempts  to 

visualize molecules properties in CG without using the red-blue range of colours. 

Concluding  we  can  say  that  the  work  was  not  entirely  finished  as  the 

representation of electrostatic potential is missing and hydropathy is visualized 

only as an overall property of the molecule rather then as locally calculated. 



Maya to Blender
In order to achieve our purpose, we faced some limitations, regarding the 

possibilities to customize some Maya features for our requirements. This was 

overcome by using Blender, an open-source software that permitted to find and 

create appropriate features. Being open-source, Blender is a more suitable tool 

for us to overcome the limits we had using Maya.

2 Results in Blender

The aim of our research is the visualization of the proteins motions with 

their  surface  properties.  When  showing  proteins  in  motion  as  a  rendered 

animation, every second of the resulting movie contains 24-30 images (we use 

25 frames per second, which is one of the standard video speed). Because at 

every frame the atomic coordinates change, also the surface features (shape, EP 

and MLP) change accordingly,  and must be recalculated.  This implies a very 

large amount of calculations, but allows the elaboration of a sequence of images 

that is coherent from frame to frame, thus giving the impression of continuity.

In the production of animated molecular movies representing proteins in 

motion, the steps of object creation, surface calculation and data manipulation for 

both EP and MLP are elaborated independently using both scientific  and CG 

programs to obtain the series of frames compositing the animation that include 

Figure 40. gp120 visualization. The flexible loops and the long branched sugars are missing for 
the crystal. We built the missing parts and displayed the monomer protein with a soft material and 
the sugars with displacement mapping. For an animated version, see http://vimeo.com/15800994.

http://vimeo.com/15800994


this information.

2.1 Molecular surface representation

Solvent-excluded surface (Connolly)  defines the space occupied by the 

molecule as an object, and is a convenient surface to display hydropathy and EP. 

Various software such as VMD, Chimera and PyMOL calculate Connolly surfaces 

and  export  them  as  ASCII  files  such  as  .obj  and  .wrl.  The  .obj  file  format, 

developed  by  Wavefront  Technologies  defines  the  geometry  and  it  contains 

information about vertex coordinates, normals, UV texture coordinates and the 

faces  that  make  each  polygon  of  the  mesh.  An  .obj  file  may  access  an 

external .mtl file that contains definitions of various material types. VRML (Virtual 

Reality  Markup  Language)  file,  with  the  extension  .wrl,  is  a  text  file  which 

contains the information about the vertices and the edges of a 3D object, along 

with surface material characteristics: colour, shininess, transparency, UV mapped 

textures, etc., including also the view point coordinates for the initial view of the 

3D scene.

Surfaces calculated by VMD and Chimera programs often contain some 

disjoint components (small, mostly internal surfaces disconnected from the outer 

surface of the molecule), as shown in Figure 41 that are difficult to handle; also, 

the  .wrl  format  of  VMD  was  incompatible  with  Blender  (the  modifications 

introduced by VMD in  the formatting of the file were not  compatible  with  the 

importer of Blender).

Disabling  the  creation  of  disjoint  surfaces,  continuous surfaces can be 

obtained in Chimera; however, these surfaces are not as regular as the surfaces 

obtained with PyMOL, as shown in Figure 42.

Figure  41.  Examples of  Connolly surfaces. The surfaces are calculated using VMD  (left), 
Chimera  (middle) and  PyMOL  (right).  Notice  the  disjoint  surfaces  highlighted  in  orange on 
surfaces calculated using VMD and Chimera.



PyMOL was chosen to calculate molecular surfaces because the surfaces 

created  by  this  software  have  a  regular  triangulation  even  at  low  polygon 

resolution  and  it  is  afflicted  at  low  level  by  the  problem  of  internal  disjoint 

surfaces. In the 3D mesh used in the example reported in Figure 42 (bottom) and 

in other tests with wider range of dimensions (number of polygons between 4.5 

and  50  thousands),  all  the  triangles  have  similar  areas.  The  surfaces  are 

calculated starting from the .pdb files  and the mesh is exported by PyMOL as 

a .wrl (described above).

Figure  42. Irregular and regular surfaces. (top)  irregular surface composed of different size 
triangles,  calculated  using  Chimera;  (bottom) regular  surface  with  triangles  of  same  area, 
calculated using PyMOL .



2.2 Molecular Lipophilic Potential

2.2.1 MLP calculation

For  the  visualization  of  hydropathy  we  use  the  Molecular  Lipophilic 

Potential  calculation  method  (see  chapter  2.5.2.1  Hydropathy),  more 

appropriate for large molecules like proteins than the substructure approaches, 

mainly used for small molecules. The MLP calculation and rendering are done in  

several steps, indicated in the scheme in Figure 43.

Starting from a .pdb file, the Connolly surface is calculated using PyMOL 

and the MLP calculation is done using pyMLP.py (Figure  43, upper part). This 

Python  script  calculates  the  lipophilic  potential  in  every  point  of  a  grid  that 

contains the protein; the grid is obtained by sampling the space according to a  

parameter (set by the user) called “grid spacing”. The values are exported in a 

.dx file, in which the header contains information about the grid and the data 

storage (the grid origin, the grid spacing and the number of points on each axis).  

The script contains a library of atomic lipophilic potential values for every atom, 

based  on  its  chemistry  (only  for  proteins),  and  several  formulas  for  MLP 

calculation, such as Fauchere, Dubost, Brasseur, Buckingham; however it does 

not support the Testa formula,

MLP (r )=∑
i
f i⋅e

−∣r−ri∣
2  (5)

where r is any position in the protein space, fi is the atomic lipophilic potential for 

the atom i and ri is the position of atom i. 

This formula is an atom-based function using Broto fragment scheme and 

an exponential distance function, appropriate for protein calculations. Therefore, 

we modified pyMLP.py to include the Testa formula. Since, as described above, 

the library only contains aa, we also added a library of atomic lipophilic potential  

values for sugars and nucleic acids. The MLP accuracy depends on the grid 

spacing (the  lower  the  grid  spacing,  the  more  accurate  the  calculation);  the 

default is set at  1 Å, a dimension comparable to the mean size of the triangle 

edge of the 3D mesh, calculated by PyMOL. We selected this combination as a 

good compromise between MLP data, mesh triangulation, computer memory and 

calculation time. However, it can be changed by the user.



2.2.2 MLP rendering

Starting from data calculated on atomic basis, we propose a more detailed 

representation. Our visual code for hydropathy includes specific representations 

according to the values calculated: smooth and shiny surfaces for hydrophobic 

regions and rough and dull for hydrophilic ones. To obtain the roughness and 

shininess  impressions,  the  bump  mapping  (described  in  section  1  Early
attempts with Maya-Autodesk) and specular mapping (described below) are 

used, respectively. The bump and specular mappings require grey scale textures. 

Therefore, the MLP values are converted into a grey scale image texture.

Figure 43. MLP calculation and representation workflow.



Data elaboration for rendering is done in steps (Figure 43 , lower part):

1. MLP values mapping on the mesh. The MLP values (typically between 

-3  and  1  for  soluble,  membrane-embedded  and  cytoplasmic  proteins)  are 

mapped on the surface of the molecule by assigning values of MLP to the mesh. 

The algorithm (included in a custom program, OBJCreator) is simple: for every 

vertex of the mesh, the correspondent grid-cell, in the MLP grid, is identified and 

the value of potential is calculated using trilinear interpolation (Figure  44) and 

assigned to the vertex .

This process is very fast and the mesh vertex density is high enough to 

represent  smoothly  the  potential  spatial  transition.  The  information  about  the 

MLP values corresponding to every vertex is stored in the V field of an .obj file as 

texture coordinates (U and V).

2. MLP values conversion into vertex colours. A classical dull material (the 

same material  used  in  Maya)  is  assigned  to  the  mesh  and  the  MLP values 

(previously  assigned  to  the  vertices  of  the  mesh)  are  converted  into  vertex 

colours.

Figure  44.  Three-linear  interpolation  algorithm. To  find  the 
coordinates of P, 3 projections are done on each of the 3 axis. In our 
case, P corresponds to a mesh vertex,  while the cube vertices to the 
MLP  grid.  Therefore,  starting  from  known  MLP  values  of  the  cube 
vertices, the MLP value of each mesh vertex is easily calculated.



Each colour is defined by 3 RGB (Red, Green and Blue) values, in the range 

from 0 to 1 or from 0 to 255, depending on the software used. MLP values are 

converted into grey levels, obtained by setting the same value for each RGB 

channel. For example, in Blender, black is defined by (0.0, 0.0, 0.0) set of values 

while white is defined by (1.0, 1.0, 1.0). For the conversion, the range of the MLP 

values  ([-3,1])  is  normalized  to  the  range  of  grey  scale  [0,1].  During 

normalization, the value 0 of MLP is set to correspond to the value 0.5 of the grey 

scale, resulting in visualization of neutral areas as middle grey. As an output of 

this step,  protein's hydropathy is visualized in Blender as levels of grey: bright 

areas  representing  hydrophobic  regions  while  dark  areas  representing 

Figure 45. MLP representation. A wireframe visualization, B MLP visualization as levels of grey 
and C photo-realistic representation of MLP. 



hydrophilic ones (Figure 45 B). The use of this default conversion scale provides 

a coherent representation for all proteins; however, at this step, to enhance MLP 

features for any particular protein under study, the user can modify the selected 

range of MLP values. The representation of MLP as levels of grey is the basis for 

the photo-realistic visualization. The code for the representation of hydropathy 

that we propose is a range of optical features that go from smooth-shiny surface 

for hydrophobic areas to rough-dull  for hydrophilic ones, as discussed in chapter  

THE AIM OF MY THESIS and shown in Figure 45 C.

3. Creation of the first image texture. The photo-realistic representation is 

achieved by using appropriate textures. In our case we create custom textures 

starting from the vertex colours. The mesh is unwrapped (a technique described 

in section 3  3D animation and rendering) and the vertex colour (grey) values 

are saved ('baked') in an image texture (Figure 46 left). The steps 2 (MLP values 

conversion into vertex colours)  and 3 (Creation of the first image texture) are 

achieved executing MLP.py script in Blender (Appendix, p. 125).

4.  Creation  of  the  second  image  texture.  In  order  to  make  the  more 

hydrophilic areas rough, the procedure involves the addition of a noise pattern of 

amplitude proportional to the degree of grey of the texture. This is achieved using 

the Node Editor of  Blender:  a Gaussian noise (a noise that has a frequency 

distribution  which  follows  the  Gaussian  curve)  is  added to  the  texture  image 

(Figure  47),  using  a  transparency  ramp  which  leaves  transparent  the  black 

regions and opaque the white ones. In this way, the combined image contains 

Figure 46. MLP image textures. (left) image texture obtained by baking the vertex colours (used 
for specular mapping) and (right) noisy image texture obtained as shown in Figure 47 (used for 
bump mapping).



strong noise over the black regions which is gradually reduced on grey regions 

until reaching a level without noise on white (Figure  46 right). In the rendering 

process this noisy image is converted into bump.

5.  Addition of specularity  and roughness. In  the final  rendering step, a 

default shiny material is assigned to the mesh. The Specular parameter is set to  

0 to avoid additive shininess. The image obtained in the first step (grey scale 

image texture) is mapped on specularity: the black areas become dull, the white 

ones shiny. The second image is mapped on bump, where the bump intensity is 

proportional to the density of the noise. In the final image, hydrophobic areas are 

represented as reflective and smooth, while the more hydrophilic ones as duller 

and rougher (Figure  45 C). The mapping of the specular and bump textures is 

done by executing texture.py (Appendix, p. 127)

At  some  experimental  step,  the  visual  code  included  also  the  colour 

mapping of the grey scale image texture, obtaining dark-dull-rough surfaces for 

hydrophilicity and bright-shiny-smooth surfaces for  hydrophobicity (Figure  48). 

Figure 47. Node Editor of Blender. Noise is added to the image texture using the ColourRamp 
tool which leaves the black areas transparent and white areas opaque.



However, colour was omitted, as the non-exposed areas, usually darker in CG 

images due to less lightning, might be interpreted as hydrophilic regions.

Compared  to  other  algorithms  that  assign  hydropathy  to  surfaces  (eg. 

mapping Kyte-Doolittle values), this method has the advantage that in each point 

of  the  surface  MLP is  calculated  as  the  contribution  of  neighbouring  atoms, 

allowing the perception of a gradual changing on the surface of the protein.

2.3 Electrostatic potential

2.3.1 EP calculation

While the use of movies is mostly intended to show transition between 

conformations of a protein, it also allows the introduction of special effects of CG 

to convey other information. We have elaborated the following procedure using 

both Blender and external programs to calculate and display the EP associated 

with molecular (partial) charges (Figure 49, right side). 

Figure  48.  Alternative  MLP representation. The range of  features  goes from bright-shiny-
smooth surfaces for hydrophobicity to dark-dull-rough surfaces for hydrophilicity.



The .pdb file used for mesh creation and MLP calculation is submitted to 

PDB2PQR  program  which  outputs  2  files:  .pqr  and  .in.  These  files  store 

information on the size and the charge of every atom (assigned using AMBER 

force field), and on the dimensions of the protein, the ionic concentration (0.15 

mol/l NaCl), biomolecular and solvent dielectric constant (2 and 78.54 for water, 

respectively). Both .pqr and .in are input files for APBS program, that calculates 

the EP in every point of a grid that includes the protein and exports the values in  

a .dx file, analogous to the one seen above for MLP. The grid spacing is set by 

default to 1 Å and, similar to MLP, EP accuracy depends on grid spacing. The 

force field, the ion concentration and the grid spacing can be set by the user. 

EP is redrawn as field lines calculated by a custom software, scivis.exe, 

that  combines  information  from the  mesh  file  (.obj)  with  EP values  following 

different steps of computation: 

1. Mapping EP on the surface mesh

2. Transformation of the grid of local values into a grid of gradients

3.  Selection  of  most  active  surface  areas  by  weighted  Monte  Carlo  

sampling

4. Drawing of field lines to be stored in a .txt file

The EP values are mapped on the surface of the protein by assigning a 

value of EP to every vertex of the mesh, with a process analogous to the one 

used for MLP, i.e. trilinear interpolation (see Figure 44). 



A grid of gradient vectors is built starting from the scalar field of EP values: 

for each point, the gradient is calculated according to the values in neighbour 

points finding the direction and slope of EP change (Figure 50).

Faraday's criterion states that the density of the field lines is proportional 

to the electric field. One of the methods for the selection of seed points for field  

lines drawing is the evaluation of the gradient magnitude in every vertex of the  

EP grid, which is the method used by VMD where the control parameters are the 

gradient magnitude and the minimum and the maximum length of the lines. This 

implies drawing lines only where the gradient magnitude is the highest; however,  

the gradient magnitude is not an efficient parameter to compare two or more 

molecules from the electrostatic point of view because it  indicates the rate of 

increase of the EP field, rather than its actual value. This is the reason why we 

start  the  drawing of  field  lines  from points  selected on the  basis  of  absolute 

Figure 49. EP calculation and representation workflow.



values  of  EP.  The selection  of  the  seeds is  done  by Monte  Carlo  sampling, 

weighted with respect to the potential value of the surface in each area.

The  gradient  data  are  used  to  generate  the  field  lines  in  the  space 

surrounding the protein. From the infinite possible field lines, we are interested in 

generating a 'meaningful' subset comprising the lines associated with areas of 

the  mesh  with  high  value  of  EP,  obtaining  a  distribution  of  lines  that  is 

proportional  to  the  surface EP value:  more  lines  rise  in  the  more  electrically 

active areas, and the total number of lines is proportional to the global level of  

potential of the molecule. Starting from the absolute value of EP, the field lines of 

various molecules can be compared.

For the selection of this subset, the user has two controls: the absolute EP 

value on the surface from which to create the field lines (lines are generated only 

in  areas  with  an  EP  higher  than  a  threshold  –  Minimum  potential)  and  a 

parameter that represents the general line density (expressed as Number of lines 

x eV/Å2).  By modulating this parameter users can select the most appropriate 

value for a group of proteins, obtaining a concentration of field lines which is 

coherent across the various proteins.

Once the most electrically active locations (points) are selected, the lines 

Figure 50. Gradient grid calculated by scivis.exe. The gradient is visualized as segments, with 
the length proportional to the gradient magnitude and coloured using a range that goes from 
green for positive EP values to white for negative ones.



are calculated by following the gradient in both directions, iteratively moving with 

small  steps according to the gradient (small-step integration).  Line points  are 

added  until  one  of  the  following  three  conditions  is  met:  1.  the  limit  of  the 

calculated grid is reached, 2. the line intersects the mesh or 3. the field is too low 

(the gradient is approximately 0 or equal to the value set by the user). The lines  

are saved as sequences of points in an ASCII file (.txt).

Thanks to the random nature of the selection procedure, lines do change 

every time the procedure is run but the more electrically active areas (where 

more  lines  are  present)  are  readily  identifiable.  This  property  proves  to  be 

particularly effective when represented in animation, since it gives the idea of 

fuzziness, useful  for electricity representation, while conveying the information 

about EP distribution on the surface. 

2.3.2 EP representation

Field lines are imported into Blender by a Python script (import_curves.py 

– Appendix, p. 129) as NURBS curves which are not rendered (they are invisible 

in the final image), but are used to guide a particle effect (Figure 51). Every curve 

starts at its most positive end which is associated with a particle emitter. The 

particles,  drawn  as  short  segments,  flow  along  the  curves  from  positive  to 

negative, respecting the field lines convention in physics. In Blender, particles 

can have a series of attributes among which: the amount of particles, the first and 

the last  frame of  particle  emission (particles can be emitted in  one frame or 

continuously in a range of frames), their life time (the age at which each particle 

is switched off), the mesh component from which are emitted (vertices, edges 

and faces), the randomness (they can be emitted in the same time or at different 

random moments),  some global  effects  can be applied  such as  acceleration, 

Brownian motion,  etc..  Their specific appearance can be visualized as points, 

lines, crosses, axes, circles or specified objects.

In Blender 2.49 some functions could not be reached through API's and, 

among these, was the choice of the representation of particles as lines, points,  

etc.. For this reason, the win32lightcut090828.exe branch of Blender was used, a 

non-official  version,  in  which  the  particles  representation  could  be  set  from 

scripting. This branch is a Windows version that permits the import of field lines 

calculated  by  scivis.exe  in  the  scene  of  Blender,  the  setting  of  the  particles 

emitters at the positive end of curves and the rendering of particles as lines. 



The  particles  are  emitted  randomly  in  time  to  avoid  the  simultaneous 

animation of particles along the lines and the amount of particles can be set by 

the user. The flowing of particles along the curves is achieved by converting each 

curve in a 'Curve Guide'; in this way the particles path is guided by the curve's  

shape.

For the visualization of a single conformation, the animated particles are 

emitted for 250 frames (10 sec) and have a lifetime of 20 frames. Representation 

of EP as moving particles on a trajectory, played in time, is interpreted easily and 

transmits the idea of polarity of the charged areas of a biomolecule. 

Finally,  for  the  simultaneous  visualization  of  MLP  and  EP,  the  two 

representations must be combined: the textured mesh (representing the MLP), 

saved  previously  in  a  Blender  scene,  is  appended  (imported)  to  the  scene 

containing the particle system. After setting the lights and the camera, the scene 

is ready for rendering (render.py – Appendix,  p.131).  The result  is showed in 

Figure 52.

Figure  51.  EP visualization in Blender.  Field lines are visualized as curves, with a particles 
emitter at the positive end (depicted as circles); particles are drawn as small orange lines. 



2.4 Protein animation

Our  method  for  the  simultaneous  visualization  of  MLP  and  EP  is 

conceived to take into consideration the movement of proteins as described in 

section  4 Molecular  motion.  The conformational  changes of  proteins  induce 

changes of the surface features, as they are calculated on atomic basis. To test 

our system, we do animations.

In the sections 2.2 Molecular Lipophilic Potential and 2.3 Electrostatic
potential in Results, the MLP and EP representation was described for static 

proteins.  The  moving  proteins  are  a  challenge  in  terms  of  visualization  of 

physico-chemical  properties.  The conformational  change of  proteins is due to 

modifications  of  atoms positions  that  imply changes in  the shape and in  the 

protein's surface characteristics. To visualize proteins in motion, the surface and 

the properties must be recalculated for every frame during the motion.

Therefore, for movies, the mesh and MLP are elaborated frame by frame; 

however, EP representation is obtained with an effect that takes several frames, 

and thanks to the continuity effect produced by the animated particles, it is not 

necessary  to  calculate  EP  for  every  frame.  With  these  considerations,  the 

method for  the EP representation is slightly modified:  particles are generated 

Figure 52. EP and MLP simultaneous representation.



every 5 frames (when showing proteins in motion, the emitter generates particles 

in one frame, in comparison to the static proteins where particles are generated 

for 250 frames) and have a life-time of 20 frames. This means that the system 

reaches steady state after the sixteenth frame as shown in the scheme in Figure 

53; starting from the 16th frame, in every moment of the animation, there are 4 

working emitters. Using this setting, the first 15 frames do not fully contribute to 

the EP visualization. To avoid the solution of discarding them, it is possible to  

create 3 different sets of field lines from the first .pdb file, associate 3 particle  

systems and set the start frame of particles generation at negative frames. Due 

to the random selection of the surface areas, the 3 sets of field lines are slightly 

different and the particles animation assures that the system is in steady state at 

the first frame. 

The  calculation  of  the  particles'  positions  at  each  frame  is  a  time 

consuming process and,  in order  to  speed it  up,  particles are 'baked',  which 

means that for each frame the particle properties and positions are registered to 

be reused afterwards, without the need of recalculating them. The registration is 

achieved by playing the animation of particles; the result consists in a series of  

files  (called  caches).  Subsequently,  when  the  animation  is  re-played  or  the 

rendering is performed, the information about the particles is read from the cache 

files. 

In  summary,  for  each  frame (conformation)  we  visualize  the  molecular 

surface as mesh, MLP represented as texture and EP as curves and animated 

particles. The result is a sequence of frames showing the moving protein with its  

Figure 53. Particle flow. Particles are emitted every 5 frames and have a lifetime of 20 frames; 
after the  16tth frame, the system is in steady-state.



surface properties represented together: MLP as a range of visual and tactile 

characteristics and EP as flow of particles that move from positive to negative 

along the invisible field lines (see PROTEIN EXPRESSION Study N.3). 

2.5 Automation

As  mentioned  above,  the  visualization  of  moving  proteins  with  their 

surface properties implies calculation of surface, MLP and EP for every frame of 

the animation. To achieve this, an automated system is created. 

For simplicity, the method for visualization of proteins features is divided 

into  2  branches  (as  described  in  sections  2.2  and  2.3  in  Results):  MLP 

representation on one hand and EP representation on the other hand, which are 

combined in the end for the rendering process. The large amount of data that rise 

from calculations at every frame of animation make it impossible to import all the 

meshes and all the particles calculated due to computer limitations. Therefore, 

the animation is split into various scenes, including a set of meshes with their 

associate texture images and the relative particle systems.  The major difficulty 

encountered when splitting the animation into sets of independent scenes is the 

continuity  of  particles  flow.  The  particles  continuity  is  maintained  overlapping 

particle systems in consecutive scenes: the first 3 particle systems of a scene are 

the last 3 in the previous scene.

As calculations for each .pdb file imply a  repetitive work, an automatic 

method was applied consisting in:

– calculation of molecular surface, EP and MLP, mapping of MLP on the 

surface and storage of  MLP corresponding to  each vertex in  the V 

channel of an .obj file (for this step, cycle.sh, a shell script for Linux 

was written);

– import  of  the  meshes  in  Blender,  unwrapping,  conversion  of  MLP 

values into colours and baking of image textures (MLP.py);

– addition of noise to these images (Node Editor of Blender);

– assigning of image textures to the unwrapped meshes (texture.py);

– calculation of the filed lines starting from the .obj file and the .dx of EP; 

the  automation  was  done  using  a  .bat  script;  this  step  is  done  in 

Windows;

– import  of  the  field  lines  in  Blender  as  NURBS curves  and  set  the 

positive ends of each curve as a particles emitter (import_curves.py); 



saving  the  cache  of  particles  by playing  the  animation;  due  to  the 

Blender branch OS limitation, the import of curves is done in Windows;

– rendering of each frame of the animation (render.py), is performed in 

Linux due to its stability and more efficient RAM usage, resulting in an 

increased rendering speed. Render.py is associated to each frame of 

the animation and it displays the corresponding mesh (from the list of 

all  meshes present  in the scene),  image textures and performs the 

rendering, saving an image for every frame of the animation.

This workflow, consisting in systematic execution of a collection of Python 

scripts, managing of a set of Blender scenes, switching between OS, is tortuous, 

easily  exposed  to  mistakes  and  difficult  to  follow.  To  easy  the  workflow,  we 

created  BioBlender,  a  Blender  user-friendly  interface  that  coordinates  these 

steps, as described in section 2.7 BioBlender.

2.6 Movies

As mentioned in section 2.4 Protein animation, we do animations to test 

our  visualization  studies.  The  testing  process  resulted  in  creation  of  three 

movies: PROTEIN EXPRESSIONS Study N.1, PROTEIN EXPRESSIONS Study 

N.2  and PROTEIN EXPRESSIONS Study N.3  (all  available  on  our  website). 

During each test we improved the method for visualization and the automation 

steps. In the latest movie, the maximum computational limitations for Calmodulin 

scene  is  145  meshes,  each  mesh  with  22662  polygons,  2  image  textures 

1024x1024 and 32 particle systems with 150 curves and 200 particles each. 

2.7 BioBlender

BioBlender [Andrei2010, BioBlender] is an extension of Blender 2.5 (see 

below), in which custom Python scripts have been implemented for building an 

interface especially for biologists. It is a tool dedicated to elaboration of proteins' 

motions  and  to  visualization  of  surface  properties  of  proteins.  It  outputs 

simultaneous  visualization  of  EP and  MLP on  proteins  in  motion.  The  entire 

package is an ensemble of computer graphics software and physico-chemical 

programs  and  scripts,  described  in  TOOLS:  PROGRAMS  AND  SCRIPTS 
chapter. It includes all the steps previously described, which are now performed 

in an easy, but covert manner.

The BioBlender user interface is contained in the vertical Scene Property 



Panel (one of the panels of Blender), as shown in Figure  54. The  BioBlender 

interface allows the user  to  import  and interactively view and manipulate the 

macromolecules. BioBlender for Windows, Linux and MacOS is available from 

www.bioblender.org. Because of its specialized nature, it requires the installation 

of PyMOL, Python 2.6, NumPy (all are provided in the Installer folder from the 

downloaded package) and ProDy (available on www.csb.pitt.edu/prody).

As the import  of  molecules with  more than few hundred atoms is very 

slow, Blender 2.5 was modified (a patched version was created) including the 

generation of atoms by duplication with multiple copies at once. When a .pdb file 

is read, the system records the number of atoms of each type, and atoms are 

created  in  the  Blender  scene  by  multiple  duplication  of  the  reference  atoms 

saved in a hidden Blender scene (atoms library); for example, if in a .pdb file 

there  are  1000 carbon atoms,  BioBlender  makes 1000 copies  of  the  sphere 

(included  in  the  library.blend  scene),  modifies  the  radius  to  be  equal  to  the 

carbon  covalent  radius,  assigns  the  proper  colour  and  displays  them in  the 

Blender 3D view at the corresponding coordinates.

Figure 54. BioBlender interface.

http://www.csb.pitt.edu/prody
http://www.bioblender.eu/


BioBlender start-up scene not only has an optimized user-interface layout 

for biologists, but it also contains lights, camera and world settings that are ideal 

for  visualizing and rendering molecules. This set-up ensures that researchers 

who are not familiar with the 3D software can still  effectively use BioBlender. 

Each interface element (buttons, sliders, toggles) has help text associated with it. 

By placing the mouse over them a pop-up text describes the function. Errors and 

progresses are displayed in the console. Critical errors will appear in the main 

BioBlender as a pop-up under the mouse cursor. As the atoms size is of order of 

Ångström (Å), the scale used is 1 Blender Unit = 1 Å.

BioBlender  interface  includes  a  series  of  panels  roughly  divided  into 

selection and import of .pdb file, visualization of the molecule, physico-chemical 

properties calculations and output. 

1. Selection and import of a .pdb file

In  BioBlender Select PDB File panel, the user can select a .pdb file by 

browsing locally for the file saved or by simply typing the 4-letter code of the 

protein of interest to be fetched from Protein Data Bank (1 in Figure  55). The 

name of the protein may be changed (2 in Figure  55 - by default  it  is called 

'protein0'). Naming the proteins is a good habit that will help keeping the scene 

organized. Once a file is selected, the number of models (for NMR files) and the 

chains (for proteins with multiple chains) are detected and shown in BioBlender 

Import field (3 in Figure 55). In the case of NMR files, the models to be imported 

can  be  selected;  these  conformations  will  be  then  set  in  time  at  an  interval  

determined by the Keyframe Interval slider (4 in Figure 55).

A list of options are available to be considered before importing the protein 

in the Blender scene (5 in Figure 55):

Figure 55. BioBlender Select PDB File and BioBlender Import panels.



– Verbose:  enable  to  display  in  the  console  extra  information  for 

debugging;

– SpaceFill: enable or disable to display the atoms with Van der Waals or 

covalent radii in the 3D scene, respectively;

– Hydrogen: enable to import Hydrogens if they are present in the .pdb 

file.  This  option  makes  importing  much  slower  and  it  is  important  only  for 

visualization. If the .pdb file does not contain Hydrogens (or if you chose not to 

import  them),  they will  be added during the Electrostatic  Potential  calculation 

using external software;

– Make Bonds: enable it  to have atoms connected by chemical bonds. 

Despite being time consuming (16 seconds for  1166 atoms) this  operation is 

essential in motion calculation;

– High quality:  displays high-quality atom and surface geometries; slow 

when enabled;

– Single User: enable to use shared mesh for atoms in Game Engine; slow 

when enabled;

– Upload Errors: enable to send us automatically and anonymously an 

email with the errors you generate. This makes us aware of the problems that 

arise and helps us fix them.

2. Visualization in the 3D viewport of Blender

Once imported, the protein is displayed in the 3D scene of Blender; if more 

than  one  model  are  selected,  Blender  interpolates  linearly  between 

conformations and displays the protein in motion. By default, and if the Hydrogen 

option was enabled, all atoms are visualized. BioBlender View enables different 

views: only alpha Carbons, main chain (N, CA, C), main chain and side chains 

(no hydrogens), all atoms and surface (Figure 56). 

If  the user selects the view as  Surface,  BioBlender computes Connolly 

surface of the protein by invoking PyMOL software. It uses the Solvent Radius 

(the radius of the solvent probe sphere, usually 1.4  Å the radius of the water 

molecule) to create the molecular surface.



When atoms are displayed, by selecting one atom in the 3D display, the 

information of the selected atom is printed in the area outlined in Figure 56; in the 

3D view the selection extends to all atoms of the corresponding amino acid.

Once  the  protein  is  imported,  by  pushing  Update  Lists button  more 

information about the protein components are displayed (Figure 57); it is possible 

to select amino acids, chains and proteins (if more than one protein is imported) 

present in the scenes.

3. Calculation of protein motion using game engine

Run in Game Engine button enables the use of Game Engine to calculate 

the transition between different conformations. When in Game Engine mode, the 

protein visualization is changed: all atoms are white, ambient occlusion effect is 

applied (to give a better sense of depth) and the mouse controls the rotation of 

the protein, allowing to inspect it from all angles (Figure 58 top). Calculation of 

motion is done in 2 ways: simply linear interpolation (setting the  Collision to 0) 

and linear interpolation considering collisions (Collision to 1); when the latter one 

is used, the motion can be recorded (Collision to 2). The positions of all atoms 

are recorded by setting a key frame on each frame of the animation. They are 

saved in the Timeline panel  at  different time (200 frames away from the last  

model  imported)  as  shown  in  Figure  58 bottom;  in  this  way  both  sets  of 

transitions are available for comparison. These conformations can be exported 

Figure  57. BioBlender lists of molecular components. The aa, proteins chains and various 
proteins present in the scene can be selected and highlighted in the 3D viewport.

Figure  56.  BioBlender  View  panel.  Various  kinds  of  visualization  available  in  BioBlender; 
information about the atom selected in the 3D viewport is highlighted.



as described later in section 7.

4. Molecular Lipophilic Potential visualization

BioBlender MLP Visualization panel collects all the scripts and parameters 

(1 and 2 in Figure 59 left) necessary for MLP representation. After selecting the 

Formula and the Grid Spacing, Show MLP on Surface button invokes PyMOL for 

the creation of the molecular surface, pyMLP.py for calculation of MLP in every 

point of a grid containing the protein and other scripts to map the MLP values on 

the surface, convert them into levels of grey and assign them to vertex colours  

(see section 2.2.2 MLP rendering). The protein is imported in the 3D space of 

Blender  with  MLP represented as  levels  of  grey (light  areas for  hydrophobic 

regions and dark areas for hydrophilic ones), as shown in Figure 59 right.

Figure  58.Game Engine  in  BioBlender.  (top) Protein  visualization  using  GE;  (middle) GE 
parameters;  (bottom) timeline panel: keyframes at frames 1 and 21 are the positions of the 2 
conformations imported in the scene, and the keyframes from 221 to 242 are all the keyframes 
calculated using GE. 



As stated in the description of the MLP calculation, the user can enhance 

the visualization of the protein of interest by modifying the range of absolute MLP 

values. This can be done in BioBlender modulating the Contrast and Brightness 

sliders (3 in Figure 59).

Once the user is satisfied with the grey level visualization, the next step is 

to  obtain  the  photo-realistic  representation.  The  unwrapping  of  the  surface, 

baking of vertex colours into image textures, addition of noise and assignment of 

textures to the material of the object are all automatically performed by clicking 

Render MLP on Surface button.  The bright  areas become shiny and smooth 

while the dark areas become rough and dull (Figure 60).

5. Electrostatic Potential visualization

Figure 60. MLP photo-realistic representation.

Figure 59.  BioBlender MLP Visualization. (left) BioBlender MLP Visualization panel, Formula 
and Grid Spacing are the parameters used for MLP calculation,  Contrast and Brightness are 
parameters used to enhance MLP visualization; (right) MLP visualized as levels of grey.



In BioBlender EP Visualization panel, all the parameters for EP calculation 

and  representation  are  included.  The  input  parameters  are  ForceField,  Ion 

concentration,  Grid Spacing,  Minimum Potential,  n EP lines*eV/Å2 and  Particle 

Density (Figure 61). The latter parameter can be changed also after the import of 

curves into the Blender scene to modify the number of particles per curve. By 

default,  for non-moving proteins, the particles are emitted for 250 frames and 

have a life-time of 20 frames.

6. Normal Mode Analysis Visualization

BioBlender NMA Visualization panel controls all the parameters needed by 

ProDy package [Bakan2011] for NMA calculation performed:  Mode (from 1 to 

20),  NMA steps  (number of  conformations to  be calculated in both directions 

along  the  given mode),  RMSD sampling (RMSD between the  given and  the 

farthest  conformation),  NMA cutoff and  NMA Gamma.  By pressing  Calculate 

NMA trajectories (pdb) button, (2  NMA steps + 1) conformations are calculated 

and selected for import into the Blender viewport. Press Import PDB button in the 

BioBlender Import panel to import them and visualize the movement in Blender.

Figure 62. BioBlender NMA Visualization panel.

Figure 61. BioBlender EP Visualization panel.



7. Output

The movie making parameters are enclosed in  BioBlender Output panel. 

Various kinds of representations can be chosen from the Visualize curtain, such 

as: atom (only atoms), plain surface (only the surface), MLP (surface with MLP), 

plain+EP (surface and EP without MLP), EP and MLP (surface with MLP and 

EP).

This panel also allows user to export intermediate key frames calculated 

with Blender Game Engine in .pdb format, using  Export PDB button. The new 

conformations can be evaluated with scientific programs, as described in section 

4.1 Morphing in Blender Game Engine.

2.8 3D Interactive and still images

The main focus of our lab is the development of tools to visualize proteins'  

motions;  however this is only possible where sufficient data are available from 

the literature.  Furthermore, in many cases it  may be important to focus on a 

single  conformation,  or  a  printed  image not  allowing animation  is  necessary, 

which requires a static representation.

2.8.1 3DNP

As initial attempt for 3D interactive visualization we used 3DNP (3D No 

Plugin),  developed  by  Thorsten  Schlüter  [3DNP],  a  JavaScript  that  stores  a 

series of images into memory and uses web browsers to simulate the 3D view by 

analysing the user's mouse movement and quickly swapping the images. 3DNP 

is  accompanied by a  Python script  for  Blender  2.49  which  creates  a sphere 

around the object of interest. The rendering is then performed by positioning the 

Figure 63. BioBlender Output panel.



camera, successively, in each vertex of the sphere.

As well as in still images (Figure 64 left), in 3D interactive mode, particles 

cannot  transmit  the  polarity  of  the  charged  areas  of  molecules.  Moreover, 

interactive exploration result in an effect in which the direction of the particles 

seems to depend on the direction in which the mouse is moved. To overcome 

this  limitation,  we  propose  the  use  of  oriented  objects,  such  as  cones  or 

pyramids. Pyramids are preferred as they are computationally lighter than cones, 

being formed by a lower number of polygons. Pyramids are built along the field  

lines in scivis software with the tip oriented towards the negative end of the line,  

maintaining  the  convention  used  in  physics  as  shown  in  Figure  64 middle. 

Pyramids creation is based on 2 parameters:  pyramids size and the distance 

between  them.  If  the  distance  between  the  pyramids  is  kept  constant,  the 

resulting effect is of concentric spherical waves around the protein (Figure  64 

middle).  This  little  shortcoming  is  overcome  by  positioning  the  pyramids  at 

random distances in the range [-40%,+40%] of the distance parameter set by the 

user (Figure 64 right). The 3D interactive representation described here allows its 

implementation in Proteopedia [Calmodulin motion on Proteopedia] or in 3D PDF, 

delivered as electronic document.

This  3D Interactive visualization permits  the protein  visual  investigation 

from all  points  of  view,  but  it  requires computer  space to  store the rendered 

images  necessary  for  a  detailed  representation.  Because  of  this  we  took 

advantage of SpiderGL, which does not need a pre-rendered set of images, and 

adapted it for molecular visualization.

Figure 64. Still images and 3D Interactive visualization. AchE protein based on 1VOT.pdb file, 
a very charged protein, with negative charged areas alternating with positive charged ones. (left) 
EP  visualized  as  particle  as  in  BioBlender;  (middle) EP  visualized  as  cones  equidistantly 
displayed, resulting in concentric circles; (right) EP displayed as random positioned cones along 
the field lines, resulting in a non-uniform distribution of the cones.



2.8.2 SpiderGL

For the 3D Interactive exploration of a protein physico-chemical properties, 

we use SpiderGL [Di Benedetto2010], a library for WebGL [Group2009]. WebGL 

(Web-based  Graphics  Library)  is  a  library  that  extends  the  capability  of  the 

JavaScript programming language to allow it to generate interactive 3D graphics 

within  compatible  web  browsers.  It  uses  HTML5,  a  language  for  presenting 

content  on  World  Wide  Web,  implemented  in  Mozilla  Firefox  4  and  Google 

Chrome and in development releases of Safari and Opera. 

SpiderGL provides a set of data structures and algorithms to support the 

management  of  geometrical  entities.  To  ease  the  creation  of  graphical 

applications, SpiderGL provides a series of classes and functions which cover 

the various aspects and levels of implementation of a CG program such as: 

– basic structures which include linear algebra algorithms for 3D points;

– management of 2D data for the definition of 3D objects, textures and 

other components used in the rendering process; 

– scene management through specific helpers to place the objects in the 

3D scene, set the viewpoint, and simplifies the user interaction with the 

3D elements; 

– management of rendering by assignment of materials and textures to 

the objects; 

– application, enhanced by the interactive visualization of this library. All 

the  visualization  code  is  embedded  in  the  page,  allowing  the 

transparency  of  the  data  processed  and  the  possibility  of  sharing 

knowledge, two important aspects in research and educational tools. 

For the visualization of proteins with EP and MLP within SpiderGL, we 

developed  a  visualization  method  [Callieri2010] which  uses  data  previously 

calculated  with  BioBlender.  For  the  MLP representation  we  use the  2  image 

textures used for bump mapping and specular mapping (visual code described in 

section 2.2.2 MLP rendering) and the parametrized mesh (the unwrapped mesh, 

ready for texture mapping) exported from BioBlender in an .obj format. For the 

EP, calculated with BioBlender, a small modification is introduced: the field lines 

are calculated externally, using scivis.exe program, and exported as JSON (Java 

Script  Object  Notation)  file,  an  easy  to  write  format,  natively  supported  by 

JavaScript interpreters. 

To reproduce the EP representation as moving particles flowing along the 



field lines, we create a shader that renders only small fragments of the imported 

lines according to a periodic function, animated using an offset. The shader gives 

the  impression  of  small  comets  moving  along  the  field  lines,  with  the  head 

oriented towards the negative end (Figure  65). This effect is much simpler to 

obtain  and  less  CPU/GPU demanding  than  a  real  particle  system,  while  still  

effective in conveying the electric characteristic of the protein.

When visualizing proteins as molecular surfaces with MLP and EP it might 

be useful to know the underling structures in particular regions of the surface. In 

SpiderGL, the dual representations, molecular and atomic (van der Waals), are 

available  using  transparency.  The  user  can  switch  between  the  global 

transparency  depending  on  the  viewing  angle  (Figure  66 A)  and  the  lens 

transparency which is focused on the area around the mouse pointer (Figure 66 

B). The user can interact with the object using the left mouse button to rotate and 

the wheel to zoom. For the stereo 3D visualization, the user can toggle between 

anaglyph (Figure 66 C) and side-by-side representation (Figure 66 D).

Figure 65. 3D Interactive representation using SpiderGL. The interaction between Calmodulin 
and MLCK head is mainly visible through EP.



The package of programs, complete with instructions, can be downloaded 

from http://www.scivis.ifc.cnr.it/index.php/3dinteractive/tutorial.html.

2.9 Ongoing project

Hydropathy on van der Waals surface
Besides this code introduced for the visualization of proteins' hydropathy, 

we  also  experimented  a  new  representation  which  consists  in  mapping  the 

atomic lipophilic  values directly on the van der Waals surface and converting 

them into grey levels.  This  procedure is  halfway between the visualization of 

hydropathy based on amino acid values of hydrophobicity (Kyte-Doolittle) and the 

MLP calculation; it is a rapid solution (the values are assigned once, without any 

further calculations), providing an overview of the hydropathy according to the 

spatial distribution of atoms. 

This visualization method was tested in occasion of visual representation 

of MD data simulation. As mentioned in section 4  Molecular motion, MD is a 

technique used to calculate proteins conformational changes. The result of MD 

Figure 66. SpiderGL visualizations. (A) global transparency;  (B) focused transparency around 
the mouse cursor; (C) anaglyph 3D stereo; (D) side-by-side 3D stereo.

http://www.scivis.ifc.cnr.it/index.php/3dinteractive/tutorial.html


analysis  is  a  collection  of  a  temporal  sequence  of  conformations,  called 

trajectories; by visualizing them we can  actually 'see' the protein's movement. 

The most indicated protein representation to analyse its motion is the van der 

Waals surface.  Instead of  CPK code for  atoms, we associate  some physico-

chemical  information:  hydropathy,  visualized  as  atomic  lipophilic  potentials 

mapped  on  the  atoms.  The  vibrational  motions  retrieved  from  MD  analysis, 

translated in terms of CG animations as large movements of side chains during 

successive  frames,  might  not  permit  a  good perception of  protein's  motion if 

represented  as  surface  and  with  hydropathy  visualized  as  surface  material 

features. The protein of our study is BPTI (bovine pancreatic trypsin inhibitor), a 

protein analysed by Shaw  et  al.  [Shaw2010] in  a 1 ms MD simulation which 

reveals various transitions between 5 stable conformations. The MD data, kindly 

provided by the  authors,  comprise the simulation between 0.3 and 0.9 ms in 

which 2 transitions are observed. Starting from these trajectories, we decided to 

analyse  visually  only  one  transition.  The  analysis  of  BPTI,  with  the  atomic 

lipophilic potential representation, revealed new insights into the protein's major 

movement  (transition  between  conformations).  During  the  motion  it  is  also 

possible to see how a hydrophobic area is being exposed. 

Figure  67.  Hydropathy on van  der  Waals 
surface. Atoms are coloured according to the 
atomic lipophilic potentials.  



DISCUSSION
The  description  of  biological  phenomena  has  always  made  use  of 

graphical presentation, starting from the early botanical and zoological drawings, 

including famous anatomical folios, that greatly help viewers, professionals and 

not, to understand and learn about nature.

Since these early times, an artistic component has been included, often 

unnoticed by viewers, but greatly exploited by the scientists/artists. Even today, 

the clearest graphical descriptions of natural and artificial subjects are hand- or 

CG-drawn rather than photographic images. The 'artistic' dimension allows for a 

better interpretation of the subject, the choice of illumination, and the removal of  

irrelevant and disturbing effects.

The same attitude has motivated a number of scientists to use various 

graphical  tricks  when  showing  data  related  to  structural  features  of 

macromolecules. Although most structural information contained in a .pdb file (a 

list of atoms and their 3D coordinates) is actually 'readable', biologists typically 

use graphical programs to explore protein structures; indeed the literature has an 

abundance of such programs, including some very popular. These programs can 

transfer the structural  information from a linear list  of  atoms to a 3D display; 

positional information is interpreted with the aid of chemical information stored in 

libraries (of amino acids, nucleotides etc.), that introduce chemical bonds, electric 

(partial)  charges,  hydrophobicity  scales  and  so  on.  In  this  way  the  user  is 

enabled to  observe features of the molecules of  interest  according to her/his 

needs.

Recent  years  have  seen  the  development  of  3D  computer  graphics 

techniques that have culminated in the success of the blockbuster movie Avatar, 

in which an entire world has been created in CG, including 'floating mountains' 

and forest with thousands of (CG built!) plants, animals, insects etc.

Similar techniques can be used to show the nanoscopic world of cells, 

populated with  all  sorts  of  environments,  proteins,  nucleic  acids,  membranes, 

small molecules and complexes. Indeed, there are several remarkable examples 

of efforts in this new discipline of Bio Animation, some of which have reached a 

large public. Besides the beauty and the educational value of these animations, 

we consider that the very process of creating such movies includes a heuristic 

importance  both  in  the  development  of  the  graphical  instruments  and  in  the 



studies  implied  in  the  elaboration  of  the  subjects'  (proteins)  movements  and 

interactions. 

Our  group  is  among  those  involved  in  the  development  of  animated 

biology, and my role in this thesis has focused on one aspect of such effort,  

namely the elaboration, using Blender, of a code capable of showing two of the 

most  critical  features  that  determine  the  behaviour  of  macromolecules:  their 

electrostatic and lipophilic potentials. 

Choice of Blender
Among the professional  packages developed for CG, one only has the 

double advantage of being open source and available free of charge: Blender. 

Blender is the result of a world-wide, concerted effort to put tools of the 

highest  standard  for  CG  creations  at  the  reach  of  any  artist  (or  scientist)  

regardless of her/his capability of paying for such tools. The project is guided by 

the non-profit Blender Foundation, and animated by countless developers that 

voluntarily devote time and effort  to  constantly introduce the most up to date 

techniques into the package, equipping users with any instrument they need. 

Blender  2.5,  the  latest  major  release,  introduced  a  new  design  of  the  user 

interface, new physics engine for smoke (volumetrics), particles and soft bodies, 

among others. An important, new feature is the possibility to achieve all Blender's 

functions from scripting, through APIs. This is a very important characteristic that 

enables  the  use  of  Blender,  including  modelling,  animation,  special  effects, 

rendering without using the interface. 

BioBlender
On the framework on Blender 2.5, we built BioBlender, which includes a 

section specifically built for biological work. Inside BioBlender, for the analysis of 

proteins structures,  various types of  visualization are available:  alpha carbon, 

main chain, main chain and side chains, all  atoms (including hydrogens) and 

molecular  surface.  The elaboration of  proteins'  motions and the simultaneous 

representation of surface physico-chemical properties of proteins in motion are 

the innovations that BioBlender introduces in macromolecular visualization.

Elaboration of protein motion
We use Blender's Game Engine to elaborate the movement of proteins, 

when more than one conformational state is known. Starting from data from NMR 

collections or X-ray of the same protein crystallized in different conditions, we 



use Blender GE, equipped with  special  rules approximately simulating atomic 

behaviour, to interpolate between known conformations and obtain a physically 

plausible  sequence  of  intermediate  conformations.  This  sequence  can  be 

explored within Blender or can be output as a list of  pseudo .pdb file (list of 

atoms and x,y,z coordinates) which are the basis for the visual elaboration. 

It is important to notice that this procedure can be applied to any .pdb or 

(better)  sequence of  .pdb files  representing  a  continuous series  describing  a 

conformational  transition,  obtained  by  Blender  or  by  any  other  means,  e.g. 

Molecular Dynamics simulation.

Visualization  of  moving  proteins  with  their  molecular  surface 
features

The  development  of  structural  biology  that  made  available  tens  of 

thousands of structures, not only improved our knowledge on structural features 

such as the richness of protein folds (secondary and tertiary structure), and of 

their association in groups (quaternary structure). It also increased knowledge 

associated with protein motion: in fact most proteins exert their function through 

some kind of motion. This is best understood by observing the movement in an 

animated  film.  The  role  of  side  chains,  which  are  the  determinants  of  such 

motions, is at present difficult to appreciate by using present visualization tools 

that either provide a fixed all-atom structure, or show dynamically only a limited 

number of atoms.

We have presented here a procedure that allows the direct observation of 

moving proteins focusing on their surface features, rather than their structure. In 

particular, we have focused on hydropathy and electrical fields as they appear, 

and change on and around the molecular surface. 

These  features  can  be  calculated  and  visualized  by  a  number  of 

programs, which typically display them with a colour code. We reasoned that for 

these properties a more 'photorealistic'  display would help viewers in  the de-

codification  of  their  meaning,  and  elaborated  the  system here  reported.  The 

visualization of molecules physico-chemical properties using Computer Graphics 

was  a  huge challenge.  Example  of  the  use of  these codes can be seen on 

Proteopedia  page  (http://proteopedia.org/wiki/index.php/Calmodulin_in_motion) 

for  a  single  protein  and  in  our  movie  Protein  Expressions  –  Study  N3 

(http://www.scivis.ifc.cnr.it/index.php/videos) for a complex of proteins.

The representation of both features in a black and white display allows the 

http://www.scivis.ifc.cnr.it/index.php/videos
http://proteopedia.org/wiki/index.php/Calmodulin_in_motion


viewer to grasp their values, without distracting with arbitrary information which is 

not interpretable if not associated with a de-coding legend, making it easier to  

interpret.

For MLP elaboration we did not consider any of the available programs 

accurate  enough  to  provide  useful  information:  most  molecular  displaying 

packages simply attribute a fixed value of hydropathy to every atom of a given 

aminoacid, using the Kyte-Doolittle scale. This scale was elaborated almost 30 

years ago with the aim of identifying structural features of proteins, namely the 

interior  portions  of  globular  proteins  and  membrane  spanning  segments  in 

membrane associated  proteins,  but  is  not  indicated  for  the  evaluation  of  the 

distribution of hydropathy on the molecular surface. Indeed, some other program 

includes  a  more  appropriate  method  of  calculation,  such  as  VASCo 

[Steinkellner2009] which employs the Brickman formula on an atom based library 

and a  Fermi-type distance function.  We have implemented a  calculation  that 

uses Broto atomic values library, and integrates atoms value in the space around 

the molecule by the Testa formula, which uses an atom-based fragment scheme 

and an exponential distance function.

The  values  thus obtained  are  plotted  on the  vertices  of  the  molecular 

surface by simple trilinear interpolation. These values are then converted into 

vertex colours (grey level):  brigh areas representing hydrophobic regions and 

dark areas hydrophilic ones. This procedure results in a very smooth distribution 

of MLP values which is then displayed with a scale of 'tactile' textures, ranging 

from dull-rough for hydrophilicity to shiny-smooth for hydrophobicity.

The advantage of such calculation and representation is mostly noticeable 

in animated movies showing the transition between different conformations of 

proteins, when patches of hydrophobic areas are gradually exposed, which will  

facilitate docking onto other macromolecules.

For  EP,  calculated using Poisson-Boltzmann equation,  we developed a 

visual code based on animated particles (small  lines) flowing along field lines 

from positive towards negative charges, proportional to the total charge of the 

protein; this is particularly useful for the observation of interacting molecules and 

for molecules whose field is changing when the conformation changes. 

To elaborate EP we used several programs and integrated them in a flow 

whose final result is the continuous display of the EP and its development during 



protein conformational transitions. Because this flow has to be repeated for every 

frame of the sequence, we put particular effort in the consistency of all steps.

Proteins  and  their  surface  properties  can  also  be  visualized  in  a  3D 

interactive  way  on  web  platform  exploiting  the  new  WebGL  [Group2009] 

component of HTML5. Using this API, it is possible to display 3D content in a 

web  page  without  the  use  of  external  plugins,  by  writing  an  appropriate 

visualization  program  using  the  OpenGL  syntax.  Using  a  javascript  support 

library, SpiderGL, we built an interactive visualization scheme which accepts as 

input the meshes, curves representing the field lines and texture images for MLP 

calculated by BioBlender. The use of SpiderGL for biological visualization permits 

the 3D Interactive investigation of surface properties of still proteins. This kind of 

analysis is limited in movies, as the sequence is set by the author. Converselly, 

3D Interactive visualization does not allow for proteins animations.

The protein that we have used as example is Calmodulin: after activation 

due  to  the  binding  of  4  Calcium  ions,  the  protein  undergoes  a  major 

conformational transition in which both its EP and its MLP change considerably: 

the Ca ions introduced in the 4 EF hands affect both the EP, by virtue of their 

own  charge,  and  MLP by  inducing  the  opening  of  each  globular  domain  to 

expose two major hydrophobic patches which enable the protein to interact with 

its partners and push the calcium signal downstream in the biochemical pathway.

Since the calculations involved in the elaboration of both EP and MLP are 

computationally  heavy  and  involve  large  data  sets,  we  have  developed 

BioBlender to automatically elaborate them, with limited human supervision.
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CONCLUSIONS AND FUTURE PERSPECTIVES
In conclusion, we have developed a computational instrument, BioBlender, 

which  is  a  combination  of  a  Computer  Graphics  tool  and  various  scientific 

programs. It  allows the display molecular surfaces of moving (or still) proteins 

and  other  macromolecules,  putting  special  emphasis  on  their  electrical  and 

lipophilic properties.  We consider that  this representation will allow better (or at 

least  more  immediate  and  intuitive)  understanding  of  the  dynamical  forces 

governing  intermolecular  interactions  and  thus  facilitate  new  insights  and 

discoveries. 

Our system permits the fast morphing of proteins, elaborating transition 

between conformations in a fast and reliable way, using Blender Game Engine. 

BioBlender includes also a novel, intuitive code for the visualization of physico-

chemical  characteristics,  which contributes to  gain insight  into  the function of 

molecules by drawing viewer's attention to the most active regions of the protein.

EP  and  MLP  are  shown  simultaneously  for  each  intermediate 

conformation of  moving proteins avoiding the use of  colour,  which cannot  be 

interpreted without a legend. Using real world tactile/sight feelings, the nanoscale 

world of proteins becomes more understandable, familiar to our everyday life, 

making  it  easier  to  introduce  “un-seen”  phenomena  (concepts)  such  as 

hydropathy  or  charges,  while  leaving  the  utilization  of  colour  space  for  the 

description of other biochemical information.

BioBlender is a new tool proposed for biological work and only a fraction of 

its  potential was developed. Biological activities are characterized by many other 

features, and visualizing all  of them is important for a better understanding of 

processes;  additional  concepts  such  as  pH,  oxidative/reduction  potential, 

numerically calculated surface curvature, etc. can be introduced. 

Biological  processes at molecular and atomic level  take place crossing 

different  time scales from 10-12  s for  side chain rotations to  around 10-6  s for 

conformational transitions and up to seconds for protein folding. Time scales are 

useful concepts that can be introduced in BioBlender to distinguish between fast 

movements  (vibrations)  and  slow  ones  (conformational  changes  of 
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biomolecules). It would be appropriate to develop a method to extract information 

regarding protein transitions, without being 'disturbed' by vibrations.

Our system calculates the mesh for proteins in motion in a frame-by-frame 

manner on the basis of atomic coordinates. This procedure is time consuming, 

and the process could be improved by developing a system that updates a mesh 

through its components, for example vertices could be moved, or even added 

and  removed  when  necessary.  This  method  would  allow visualization  of  the 

conformational changes of protein surfaces directly in BioBlender workspace.

Interactivity is another interesting feature that can be added to BioBlender 

functionalities  to  offer  the  user  the  possibility  to  navigate  through  cellular 

environment and discover biological activities. 

Finally,  since  we  develop  intuitive  representations  for  biomolecules 

properties,  it  is  important  to  perform perception  tests  with  users  of  different 

background to evaluate them.
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MLP.py
# MLP.py imports the .obj files and converts the MLP values stored on V to 
colour vertex 
# Raluca Andrei  <r.andrei@sns.it> from SciVis group www.scivis.ifc.cnr.it

import Blender
from Blender import Mathutils
from Blender.Draw import *
from math import *
from Blender import *
from Blender import Material
import time
import datetime
import sys
import bpy
                
sys.path.append('')    # PLACE THE PATH TO YOUR OBJ FILES HERE
import import_obj
from import_obj import subtry

def import_mesh():
#import object
file=".obj"       #PLACE YOUR FILES NAME HERE
import_obj.subtry(file)
sc = Scene.GetCurrent()
sc.update
Window.RedrawAll()
ob = sc.objects.active
me = ob.getData(mesh=1)
me.name = "mesh"
#create material
mat = Material.New('Material')
mat.mode |= Material.Modes.VCOL_PAINT
mat.mode |= Material.Modes.SHADELESS
mat1 = bpy.data.materials['Material']

#assign material to object
for me in bpy.data.meshes:
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me.materials = [mat1]
#remove double vertices and smooth the mesh 
me.remDoubles(0.001)
me.vertexColors=1
faces=me.faces
for f in faces:

f.smooth=1
#convert the MLP values from V and assign to vertex color
for i in range(len(faces)):

for e in range (len(faces[i].verts)):
val = faces[i].uv[e][1]
val1=int(ceil(((val+3.0)/6.0)*255))    #change  the 

range of MLP if necessary!!!!!!
faces[i].col[e].r = val1
faces[i].col[e].g = val1
faces[i].col[e].b = val1

else:
val1=int(ceil(((val+1.0)/2.0)*255))
faces[i].col[e].r = val1
faces[i].col[e].g = val1
faces[i].col[e].b = val1

me.update()
#create new UV layer and unwrap the mesh
me.addUVLayer('UVBake')
me.activeUVLayer = 'UVBake'
me.renderUVLayer = 'UVBake'
Blender.Run('uvcalc_smart_project.py')
#import image used for baking the vertex colour of the mesh
img = Blender.Image.Load("bake.png" ) 
img.updateDisplay()
img.makeCurrent()
Window.RedrawAll()
for f in me.faces:

f.image = img
context = sc.getRenderingContext()
#bake the texture
bakeMode = 'TEXTURE'
context.bake()
#save the current image; the UV/Image Editor should be open
image = Image.GetCurrent()
image.setFilename(".png")  # PLACE THE NAME OF YOUR IMAGE HERE
image.save()
#unlink the mesh from the object 
me.fakeUser=True
sc.update()



Window.RedrawAll()
#delete the object
sc.unlink(ob)

#save all the meshes in a .blend file
import_mesh()
Blender.Save(".blend",0) #PLACE THE NAME OF YOUR .BLEND FILE HERE

texture.py
#  this  script  assigns  the  texture  to  the  material  of  the  mesh  imported 
previously. It uses as textures the image obtained with MLP.py and and the 
image  with  the  noise  added   
#Raluca Andrei  <r.andrei@sns.it> from SciVis group www.scivis.ifc.cnr.it

import bpy
import Blender
from Blender import *
import Blender, meshtools, os, struct, sys, string
import time
import datetime            
sys.path.append('') # PLACE THE PATH TO YOUR OBJ FILES HERE

#import object
import import_obj
ob= Blender.Object.Get("") # PLACE THE NAME OF YOUR FIXED OBJECT TO WHICH YOU 
ASSIGN THE MESHES YOU IMPORTED PREVIOUSLY WITH MLP.py
mesheslist0 = Mesh.Get()
mesheslist = []
for m in mesheslist0:

strname=str(m.name)
strname=strname[0:4]
if m.name!="None_out" and strname=="mesh":

mesheslist.append(m)
meshindex=0
me=mesheslist[meshindex]
#create material without specularity
mat = Material.New('Material_New')
mat.setSpec(0.0)
mat_1 = bpy.data.materials['Material_New']
#assign material to object
me.materials = [mat_1]
#create the first texture Image
comptex=Texture.New('bump')
comptex.setType('Image')
img1 = Image.Load('.png')       #PLACE THE NAME OF YOUR NOISY IMAGE HERE 
# link the image to the texture  



comptex.image = img1
# get the material
mat2 = Material.Get('Material_New') 
# set the material's first texture
mat2.setTexture(0, comptex)
#get the texture and use the material's UV to map the texture
mtex = mat2.getTextures()
mtex[0].texco=Texture.TexCo.UV 
#map the texture to COL and NOR
mtex[0].mapto=Texture.MapTo.NOR
#set the values for col and nor
mtex[0].colfac=0.5
mtex[0].norfac=3.3
#create a second texture
spectex=Texture.New('specular')
spectex.setType('Image')  
img2 = Image.Load('.png')    #PLACE HERE THE NAME OF YOUR IMAGE  USED TO MAP IT 
ON THE SPECULAR CHANNEL
# link the image to the texture  
spectex.image = img2
# get the material
mat2 = Material.Get('Material_New') 
# set the material's first texture
mat2.setTexture(1, spectex)
#get the texture and use the material's UV to map the texture
mtex = mat2.getTextures()
mtex[1].texco=Texture.TexCo.UV 
#map the texture to SPEC
mtex[1].mapto=Texture.MapTo.SPEC
#set the value for spec
mtex[1].varfac=0.47
#check no RGB
mtex[1].noRGB=True
#create a thrird texture
coltex=Texture.New('color')
coltex.setType('Image')   
img3 = Image.Load('.png')   #PLACE HERE THE NAME OF YOUR IMAGE  USED TO MAP IT 
ON THE SPECULAR CHANNEL
# link the image to the texture  
coltex.image = img3
# get the material
mat2 = Material.Get('Material_New') 
mat2.setTexture(2, coltex)
#get the texture and use the material's UV to map the texture
mtex = mat2.getTextures()
mtex[2].texco=Texture.TexCo.UV 



#map the texture to SPEC
mtex[2].mapto=Texture.MapTo.COL
Window.RedrawAll()

import_curves.py
#this script reads the vertices of the curves from the .txt files and builds a 
mesh that contains all the starting vertices of all curves. This script must be 
run in win32lightcut090828.exe blender branch as only this one has API to draw 
the  particles  as  lines

#  Raluca  Andrei   <r.andrei@sns.it>  from  SciVis  group  www.scivis.ifc.cnr.it

import Blender
from Blender import *  
import os
import bpy   
from Blender.Scene import Render 

def import_file():
filename=".txt"    #PLACE HERE THE PATH TO THE LINES FILES
f = open(filename,"r")
ik=0    #for the iterations of curves
ibt=0   #for the iterations of the points of the curve
try:

scn = Scene.GetCurrent()  
context = scn.getRenderingContext()
context.currentFrame(1)
me = bpy.data.meshes.new('')  #CREATE A MESH AND GIVE IT A NAME
obj = scn.objects.new(me, '')  #CREATE AN OBJECT TO WHICH THE MESH 

IS ATTACHED
mat = Material.New('')  #CREATE A MATERIAL AND GIVE IT A NAME
mat.setMode('Halo')
mat.setHaloSize(0.1)
for line in f:

file_line=line.split()
if file_line[0]=="n":

cu = Curve.New() #for every n found it creates a new 
curve

ik=ik+1
ob = scn.objects.new(cu)
ob.name  =  "curve_"  +  str(ik)  #the  curves  get  an 

incremental name
ibt=0 #the interation of the points of the curve goes 

down to 0 when the building of a new curve is started
elif file_line[0]=="v":

ibt=ibt+1
bt1coor=float(file_line[1])   #get  the  x,y,z 

coordinates of every vertex



bt2coor=float(file_line[2])
bt3coor=float(file_line[3])
bt = BezTriple.New(bt1coor,bt2coor, bt3coor)
if ibt==1:

curb = cu.appendNurb(bt) #the first point is 
appended to the curve

me.verts.extend(bt1coor,bt2coor,bt3coor)  #add 
the vertices to the mesh

elif ibt>1:
curb.append(bt) #the other points are appended 

to the curve
AUTO = BezTriple.HandleTypes.AUTO
for point in curb:

point.handleTypes = [AUTO, AUTO]
cu.update()
cu.setFlag(30)

ob.setPIType(5)  #set the curve as Curve Guide
ob.setPIUseMaxDist(1)
ob.setPIMaxDist(0.05)

part_sys = Particle.New ('')  #CREATE A PARTICLE SYSTEM, IT SHOULD 
HAVE THE SAME NAME AS THE OBJECT

part_sys.particleDistribution=0 #emits from verts
part_sys.randemission=1  #emits random
part_sys.startFrame=0
part_sys.endFrame=1
part_sys.amount=200  #the number of particles
part_sys.lifetime=12  #the particles' life time
part_sys.drawAs = Particle.DRAWAS.LINE   #particles drawn as lines
for me in bpy.data.meshes:

me.materials = [mat] #assign the material to the particle 
system

finally:
f.close()

import_file()
Blender.Save("",0)  #PLACE HERE THE PATH OF THE .BLEND FILE YOU WANT TO SAVE

render.py 
#this  script  picks  the  mesh  for  every  frame,  assigns  the  correct  images 
textures to the material and renders 
#Raluca Andrei  <r.andrei@sns.it> from SciVis group www.scivis.ifc.cnr.it

import string
from string import *
import Blender
from Blender import *



from Blender.Scene import Render
import sys

scn = Scene.GetCurrent()
context = scn.getRenderingContext()
Render.EnableDispWin()
context.extensions = True
mesheslist0 = Mesh.Get()
mesheslist = []
for m in mesheslist0:

strname=str(m.name)
strname=strname[0:4]
if m.name!="" and strname=="mesh":    #PLACE HERE THE NAME OF THE DEFAULT 

MESH OF THE OBJECT 
mesheslist.append(m)

for  ik  in  range():    #PLACE  HERE  THE  RANGE  OF  OBJ  FILES  SEPARATED  BY 
COMMA!!!!!!  FOR LARGER MOLECULES SPLIT YOUR RANGE OF FILES IN MORE RANGES

j=1+ik
Blender.Set("curframe", j)
fra = str(Blender.Get("curframe"))
print str(fra) + "==" + str(j) 
addzeros = 4 - len(str(j))
toprepend=""
for i in range(addzeros):

toprepend += "0"
name = "mesh" + str(j) 
mat=Material.Get()
mat1=mat[0]
mat1.setMode()
nomecompos =  "" + toprepend + str(j) + ".png"    #PLACE HERE THE NAMES 

OF THE IMAGES WITH NOISE TO MAP ON BUMP
nomespec =""  + toprepend + str(j) + ".png"      #PLACE HERE THE NAMES OF 

THE IMAGES WITH NOISE TO MAP ON SPECULAR
nomecol =""  + toprepend + str(j) + ".png"       #PLACE HERE THE NAMES OF 

THE IMAGES WITH NOISE TO MAP ON COLOR
for obx in scn.objects:

obname=obx.getName()
if obname=="":     #PLACE HERE THE NAME OF THE OBJECT TO WHICH ALL 

MESHES ARE ASSIGNED
fixobj=obx

text1 = Blender.Texture.Get("bump")
text2 = Blender.Texture.Get("specular")
text3 = Blender.Texture.Get("color")
Mesh.Get(name).activeUVLayer="UVBake"
fixobj.link(Mesh.Get(name))
mymesh=fixobj.getData(mesh=1)
objcomp=Blender.Image.Load(nomecompos)



objspec=Blender.Image.Load(nomespec)
objcol=Blender.Image.Load(nomecol)
text1.setImage(objcomp)
text2.setImage(objspec)
text3.setImage(objcol)
scn.update()
Blender.Window.RedrawAll()
fixobj.makeDisplayList()
context.sFrame = Blender.Get("curframe")
context.eFrame = Blender.Get("curframe")
context.renderAnim()  
scn.update()
Blender.Window.RedrawAll()
Render.CloseRenderWindow()
objcomp.glFree()
objspec.glFree()
objcol.glFree()

#Blender.Quit()



MOVIES (LINKS)

Video gallery: http://www.scivis.ifc.cnr.it/index.php/videos.html 

NANOPLANET - An expedition to the cell http://vimeo.com/37182826

PROTEIN  EXPRESSIONS  -  Study  N  3  http://vimeo.com/12363247 (soon 

available on Science Magazine website)

PROTEIN EXPRESSIONS - Study N 3D http://vimeo.com/10979476  

PROTEIN EXPRESSIONS - Study N 2  http://vimeo.com/7219809 

PROTEIN EXPRESSIONS - Study N 1 http://vimeo.com/7533123 

TSH Receptor on Red Blood Cells (English version) http://vimeo.com/30072649

TSH Receptor on Red Blood Cells (Italian version) http://vimeo.com/30072371

BPTI http://vimeo.com/23641380 

gp120 http://vimeo.com/15800994 

Triazine http://vimeo.com/7391082 

BitucarpinA http://vimeo.com/7390965 

Calmodulin http://vimeo.com/7390939 

Cholesterol http://vimeo.com/7390734 

GFP http://vimeo.com/7390920 

ATP http://vimeo.com/7390896 

Alanine Dipeptide http://vimeo.com/7390816 

http://vimeo.com/7390816
http://vimeo.com/7390896
http://vimeo.com/7390920
http://vimeo.com/7390734
http://vimeo.com/7390939
http://vimeo.com/7390965
http://vimeo.com/7391082
http://vimeo.com/15800994
http://vimeo.com/23641380
http://vimeo.com/30072371
http://vimeo.com/30072649
http://vimeo.com/7533123
http://vimeo.com/7219809
http://vimeo.com/10979476
http://vimeo.com/12363247
http://vimeo.com/37182826
http://www.scivis.ifc.cnr.it/index.php/videos.html
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NOMINATIONS AND AWARDS

PROTEIN  EXPRESSIONS  –  Festival  Videominuto,  September  2009, 

Prato

PROTEIN EXPRESSIONS Study N 2 – Finalist in the Suzanne Award Film 

selection, Blender Conference 2009, Amsterdam

PROTEIN EXPRESSIONS Study N 3 – Science Visualization Challenge 

2010

PROTEIN  EXPRESSIONS Study N  3D  –  Scienza  in  piazza,  Bologna, 

February, 2011

PROTEIN EXPRESSIONS Study N 3 – European Short Film Festival at 

MIT, Boston, April 2011

PROTEIN  EXPRESSIONS  Study  N  3D  –  DogVille  Viladecans  Film 

Festival, April 2011

PROTEIN EXPRESSIONS Study N 3D – Dentro il  microscopio:  Ottica, 

immagini,  tecnologie.  Mostra didattico-divulgativa sulla microscopia, Pisa, May 

2011 

PROTEIN  EXPRESSIONS  Study  N  3D  –  8th Annual  LA  3-D  Movie 

Festival, Los Angeles, May 2011.

PROTEIN EXPRESSIONS Study N 3 – Vedere la Scienza Festival, Milan, 

May 2011

PROTEIN  EXPRESSIONS  Study  N  3D  –  Oaxaca  International  Film 

Festival, July 2011

PROTEIN EXPRESSIONS Study N 3 – Imagine Science Film Festival, 

New York, October 2011

 TSH receptor – View Festival, Turin, October 2011

PROTEIN EXPRESSIONS Study N 3D – Festival della Scienza, Genova, 

October-November 2011
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NANOPLANET  -  An  Expedition  to  the  Cell  –  Biomolecular  Discovery 

Dome at  the  Biophysical  Society  56th  Annual  Meeting,  San Diego,  February 

2012

PROTEIN EXPRESSIONS Study N 3D – “Spazio MeM” special mention of 

the jury at Melzo Film Festival, July 2010

Lipid  Raft  image –  1st place at  Art&Science contest  at  the Biophysical 

Society 56th Annual Meeting in San Diego, February 2012 



RM Andrei – PhD thesis PUBLICATIONS

PUBLICATIONS

Porozov Y. Andrei R., Zoppè M., Visualization of moving biomolecules: a 
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ABSTRACT
We are setting up a system that enable us to visualize proteins and other biological molecules in a 3D 
virtual  environment built  according to scientific  information and physico-chemical properties.  This 
system will permit a novel view and understanding of the functioning of cells, of protein interactions 
and of dynamical relationships occurring in the small units of all living systems.

INTRODUCTION
The vast amount of knowledge accumulated on the structure of cells, the shapes and movements of its 
constituents, the interaction among participants and with the environment is at present in a form which 
is accessible only to experts of the fields. Moreover, this information is often difficult to interpret in 
terms of dynamic deployment of single events. 
Our aim is  to use available biological  information to describe the inside working of a cell  in 3D 
animated representation. To reach this aim, we are using Maya/Autodesk, one of the most powerful 
software  developed by  the  industry  of  3D animation  and  special  effects  (1).  With  data  imported 
directly from the Protein Data Bank (PDB), we animate protein movements in virtual space, according 
to information and rules derived from physics, chemistry, biochemistry and other scientific sources.

Using our Maya script, atomic coordinates of proteins and other molecules are imported, together with 
chemical structures. If more than one conformation is present for a molecule, then these are imported 
and  the  program  is  run  to  interpolate  intermediate  position  that  transit  the  protein  from  one 
conformation to another.

The first examples we present are two small molecules (Triazine, and Bitucarpin) for which theoretical 
dynamic studies already revealed the energy landscape, which is used for validation of our system.
Most  biomolecules  however,  and notably proteins,  contain very large number  of  atoms,  requiring 
different,  more  complex  programs  that  can  accomodate  the  large  information  content  of  such 
molecules. 
We will present results obtained with our system and offer demonstration of how it can be applied to 
peptides (we used the V3 peptide of HIV-1 gp120) and the entire gp120 protein.

From the point of view of animation programs, animating means inferring intermediate steps between 
a start and an end position, i.e. moving the virtual object in space along time. The kind of movement 
can be governed by sets of rules defined as mathematical expressions, many of which are already 
present in Maya; other can be codified.
It  is  important  to  notice that  all  what   our system does  is  to  interpolate  positions while avoiding 
prohibited ones, therefore the calculations are extremely rapid. In this respect, it is completely different 
from the most widely used Molecular Dynamics programs, which compute positions according to very 
complex energy calculations. On the other hand, it is possible that some interpolated movements are 
patently wrong, which introduce the need for human revision of every animation. 
 
Another important aim of our project is the delivery physico-chemical information of molecules and of 
the environment such as pH, electronegativity, hydrophilicity and others that are of importance for the 
way biomolecules behave. This process, in Computer Graphics, is called Rendering, and we will also 
show some of the progress in this respect.



Small molecules
Animation of molecular structures implies that information relative to the identity of the atoms, their 
positions, their  reciprocal relations, are first imported in the animation system. After this, different 
positions can be assigned to every single atom at different time-points and interpolation of atom's 
positions between time points can be calculated. To this aim, we have first used a few small molecules 
for which the energy landscape of different positions has been generated through Molecular Dynamics 
studies: Triazine (2), Bitucarpin (3) and Di-Ala dipeptide (4).

Triazine  (2-chloro-4-methoxy-6-[(R)-1-
phenyl-ethylamino]-1,3,5-triazine)  is  a  small 
molecule  composed  of  31  atoms,  with  a 
relatively simple structure of two rigid disks 
connected by a C-N bridge (see Fig.1). The 
different  conformational  positions  that 
Triazine can assume are basically variations 
of  τ1 and  τ2,  i.e.  rotations  around  the  two 
chemical links that connect N7, C9 and C11.
Dynamical simulation studies by Alagona et 
al (2),  have revealed the energy landscape for 
all  possible conformations  that  Triazine can 
assume.  For  this  reason  we  chose  it  as  the 
initial  test  molecule  of  our  bio-chemical 
Maya system. 

The program we developed to import chemical 
data into Maya assigns every atom to a position. 
Atoms are linked through bones (see panel A in 
Fig. 2), which behave like chemical bonds, have 
fixed  length,  and  are  constrained  by  codified 
rules.
Four  different   conformers,  three  minimal 
energy positions and one intermediate (A-B-C 
and H, see Fig. 3) were imported, and assigned 
to time points in the animation (key-framed).
Coordinates for all atoms in some intermediate 
positions  calculated  by  Maya  along  two 
possible  pathways  between  C  and  H  were 
retrieved  and  fed  back  into  pdb-like  files. 
Angles  τ1 and  τ2 were  calculated  and  plotted 
entered  into  the  energy  map,  allowing  for 
physico-chemical  evaluation  of  the  path 
calculated by Maya.

Fig. 3 reports the energy landscape, from ref. 2, 
with the paths calculated by Maya for transition 
between position C and position H, following 
the two possible trajectories.
Note  that  the  path  labelled  with  black  dots, 
which includes an almost 180º  rotation of the 
phenyl ring, spans the energy field more than 
once. This is because the energy is calculated 
on a chemical basis, where Carbons 12 and 13 
are equivalent; however, in a topological view, 
each  of  them  has  its  own  identity,  and  the 
landscape is in fact twice as large.
These  results  show  that  Maya  can  calculate 
paths avoiding the energy peaks, i.e. describing 

Fig. 1.

Fig. 2.

 Fig. 3



a movement that is chemically acceptable, flowing naturally in the 'valleys' of the landscape.

Results for Bitucarpin, (a plant chemical for which the energy map has also been calculated) and for 
the Di-Ala dipeptide will be presented as demonstrations in real time at the meeting.

Peptides and proteins
Proteins can contain up to several thousands or tens of thousands atoms. For some of them, crystal 
structures  have  been  determined  in  different  conformations,  allowing  us  to  set  two  key-framed 
positions and to elaborate possible interpolations to transit from one conformer to the other. For other 
small proteins or peptides, NMR studies provide variable numbers of conformations that the peptide 
can assume in solution: we have taken advantage of this information to script an animation program 
that runs in Maya.

Fig. 4 shows the interface of our program. 
The user can upload the .pdb file to be used 
as  source  and  set  a  number  of  features, 
including  the  kind  of  source  (X-ray  or 
NMR),  the  atoms  to  be  represented 
(including  or  excluding  hydrogens),  the 
timing  of  animation  and  the   atoms to  be 
considered for the animation. 

For  proteins  we  have  used  the  Particle 
feature  to  create  them in  the  3D space  of 
Maya. Particles are 'light objects' in terms of 
processing  power,  and  can  be  dealt  with 
either as a single object that includes them 
all, or on a per particle basis. In other words, 
large movements (such as bends on a hinge) 
and  relative  movements  (of  the  object  in 
space) can be imposed and calculated very 
fast. The per particle attributes are used for 
rendering (where each kind of atom displays 
different),  and  for  imaging  detailed 
movements.

To test the system for NMR, we have used 
the  20  conformers  of  V3  (5),  PDB  entry 
1CE4.  All  sructures,  after  being  ordered 
using a  statistical  apporach,  were  imported 
in to Maya. Each conformation was assigned to a different time-point and animated. The resulting 
animations  will  be  shown  during  the  demonstration,  and  can  be  seen  on  our  website 
www.scivis.ifc.cnr.it.

Gp120 structure has been solved in different conformations: either unbound (6) or bound (7) to CD4. 
Its interaction with the cellular receptor CD4 triggers a major movement of parts of the protein, in 
particular the V3 loop. V3 is implicated in the selection of co-receptor and in the subsequent step of 
co-receptor binding.

Rendering
Visual  perception  of  the  world  is  a  very  complex  process  that  we  perform automatically.  When 
producing totally artificial images, to obtain the impression of realism, we have to introduce a large set 
of effects, such as light sources, casting shadows consistent with the illumination, assigning optical 
properties to materials, fixing the 'eye settings', i.e. the (virtual) camera properties and so on.
To assign texture to objects is a complicated task even for reproducing properties of 'real' objects, 
when all we have to do is to copy the 'visual feel'. The rendering process  (i.e. assignment of visual 
properties to surfaces)  in CG programs involves the setting of material (2d and 3d textures) color, 

Fig. 4.



reflection,  luminosity,  lights,  ambient  light  and  camera  movements.  Proteins  and  other  biological 
molecules are, in essence, chemical compounds with specific properties that are determined by the 
nature of their atoms and the way they are connected and organized in the 3D space.
These  properties  are  defined,  in  physico-chemical  terms,  as  potentials,  typically  expressed  with 
complex equations and/or numerical values. One of the aims of our effort, is to convey the significance 
of these properties in a visual way. Chemical programs can calculate, for example, the electrostatic 
potential of a surface, or its hydrophobicity, and report it on the surface using a conventional code, 
typically a colour scale. 
We report in Fig. 5 some images obtained while studying different ways to render  applied to a form 
created with a random process or to a shape representing a branched complex sugar typically found on 
glycoproteins. Images were obtained using the RenderManForMaya plug-in from Pixar.

Fig. 5.

CONCLUSIONS
The initial work presented here is part of a large project that will bring to virtual (and visible) life the 
processes that occur in the real (but invisible) world of cells. 
Because the understanding obtained through sight is much more direct than through word description 
or intellectual (mental) representation, this will permit researchers to get a more direct grasp of the 
phenomena under study.  Providing a different vision, it should also enable the formulation of new 
questions, or an alternative way to formulate old, still unanswered ones.
Furthermore, the availability of a virtual cell might allow testing new hypothesis in the virtual cell 
before performing real experiments.

Also, a direct representation will greatly facilitate the teaching of cellular and molecular biology, at 
various levels, from secondary school to higher university, and it will also be available for museums, 
thus attracting new students to the fascinating field of biology.
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Figure 1: Standard representation of molecular surface properties using color ramps and field lines (leftmost), the same properties drawn
using complex shading techniques (center) and the electrical interaction of two proteins (rightmost), rendered on a Web Page by using
SpiderGL and WebGL.

Abstract

This work presents a technical solution for the creation of visu-
alization schemes for biological data on the web platform. The
proposed technology tries to overcome the standard approach of
molecular/biochemical visualization tools, which generally provide
a fixed set of visualization methods. This goal is reached by exploit-
ing the capabilities of the WebGL API and the high level objects of
the SpiderGL library, these features will give the users the possibil-
ity to implement an arbitrary visualization scheme, while keeping
simple the implementation process. To better explain the philos-
ophy and capabilities of this technology, we will describe the im-
plementation of the web version of a specific visualization method,
demonstrating how it can deal with both the requirements of sci-
entific rigor in manipulating the data and the necessity to produce
flexible and appealing rendering styles.
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1 Introduction

Interactive visualization of molecular structures and physico-
chemical data is an important and interesting research field which
span from the Computer Graphics world to the Biological and
Molecular studies. The amount of complex structures that is avail-
able through public repositories and the level of detail of biochem-
ical datasets which can be manipulated by physico-chemical tools
has greatly increased in the last years, making it essential to employ
dedicated visualization techniques to make an effective use of these
data. While it may be easy to draw even large molecular datasets as
a series of atoms (Van der Waals spheres) using simple rendering
methods based on impostors and other tricks, the precise rendering
of a high resolution molecular surface involves the management of
more complex geometry. Furthermore, when it is necessary to rep-
resent interaction between different molecules or to introduce the
rendering of further 3D elements and data layers (as in the examples
of Figure 1), the required computational and rendering capabilities
do increase significantly.

A previous work in the field of visualization of molecular struc-
tures, QuteMol [Tarini et al. 2006], has shown that, by using ad-
vanced shading techniques, it is much easier to convey the infor-
mation regarding the geometry and structure of the molecule. We
believe the same reasoning may also be applied to the visualization
of other physico-chemical data: by using custom shading and ren-
dering techniques the same improvement in clarity and expressive-
ness can be attained. This is however quite difficult at the moment,
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since it is rarely possible to finely control the rendering pipeline and
shading process inside existing visualization tools, especially when
working on on-line platforms. Here are some possible scenarios we
are considering:

• a research group interested in proposing a new visualization
method may want to publish a web page which shows an in-
teractive version of such visualization;

• a public repository of biological data structures may want to
let its users view the available data using a custom shading,
designed to effectively show the characteristics of the pro-
vided information;

• an educational-oriented entity may want to present biologi-
cal phenomena to a large public, possibly including a non-
specialist audience, by using visualization method that are not
just scientifically accurate, but also visually pleasant.

These three scenarios exemplify the need for advanced visualiza-
tion methods, but also for the use of the web platform. Pervasive
and easy to access, the web platform is becoming more and more
important for sharing data, processing methods and visualization
techniques. It is easy to foresee that the research community work-
ing on visualization for cellular and molecular biology will find in
the web platform the ideal media for the purposes of research, edu-
cation and science divulgation.

Up to now, the capabilities of web browsers to efficiently manip-
ulate and display 3D content have been very limited. The task
of putting online three-dimensional data has exploited the use of
commercial or custom browsers plugins, and has been character-
ized by a series of problems, like low portability (each plugin/ex-
tension would work only on a subset of browsers and operating
systems), scarce flexibility (in most cases the visualization plug-
ins offered no way to configure the drawing pipeline or add special
rendering modes) and poor performance (the different software lay-
ers of network, O.S., sandbox and plugin introduced lag and com-
putational overhead, separating too much the rendering from the
hardware layer). A suitable solution for this problem may reside
in the upcoming standard of WebGL [Group 2009b], which is an
API specification which defines the web-oriented analogous of the
OpenGL API. The most interesting feature of this API is that it is
implemented directly inside the browser, with direct control over
the graphics hardware. This will help overcoming the compatibil-
ity problems and result in a much more efficient and performing
platform. Deriving from the specifications of OpenGL-ES, WebGL
provides a completely customizable rendering pipeline and the en-
tire shading process is controlled through hardware-level GLSL
shaders. This shader-based nature of WebGL is perfectly suited
to cope with the need of creating a custom visualization scheme.
Direct access to the hardware layer means not only better perfor-
mances, but also the possibility to exploit the full repertoire of tech-
niques and experience accumulated in years of computer graphics
research.

Of course, WebGL alone is not enough to answer the needs of peo-
ple interested in biochemical visualization (which are likely not ex-
perts in graphical programming); following the design philosophy
of OpenGL, WebGL is a very low-level API which requires a good
knowledge of computer graphics techniques and coding skills. It is
therefore necessary, to ease the use of this technology, to introduce
a library able to wrap the most low level function, while giving the
user the ability to dive into implementation details, when needed.
As the WebGL standard is taking shape, different wrapping libraries
are appearing on the web [DeLillo 2009; Brunt 2010; Kay 2009];
one of these libraries, SpiderGL [Di Benedetto 2010], seems to pro-
vide the right balance between the ease of use of the higher level
functions and the possibility to fully control the rendering pipeline.

We believe that the use of WebGL through the SpiderGL library
will prove to be a very powerful platform to implement visualiza-
tion methods on the web for the molecular biology and physico-
chemical research community.

We review in Section 2 some of the previous work in the field of
both molecular visualization and on-line publishing of 3D content.
Then, in Section 3, we introduce the basic ideas of the proposed
technology describing its main philosophy and by presenting the
core library used. Finally, as an example of the use of this technol-
ogy, we show in Section 4 how a specific visualization method has
been adapted to the web platform.

2 Previous Work

2.1 Molecular visualization Off-Line and On-Line

The solution of the 3D structure of myoglobin in 1958 by
Kendrew [Kendrew et al. 1958] marked the beginning of the new
era of protein structural biology. Since then, a large number of pro-
tein structures have been solved and today the Protein Data Bank
counts over 60.000 entries [Berman et al. 2003]. With the availabil-
ity of all these data and the advance of computer graphics technolo-
gies, many research groups have developed tools for the manipu-
lation and visualization of 3D structures such as VMD [Humphrey
et al. 1996], SPDBViewer [Guex and Peitsch 1997], Chimera [Pet-
tersen et al. 2004] and PyMOL [Delano 2002]. Beside working on
the atomic structure, most programs can nowadays also calculate
surface features such as electrostatic potential (using, for example,
tools like APBS [Baker et al. 2001] or DelPhi [Rocchia et al. 2002])
and hydropathy [Kyte and Doolittle 1982].

In addition to the many standalone visualization tools, there are also
web viewers especially designed for molecular structures, such as
Jmol [jmo 2002] and MDL Chime, which represent a simple way
to visualize molecules directly on browser. MDL Chime, used by
the Protein Explorer website was gradually phased out in favor of
Jmol, which is nowadays the most used plugin for molecular vi-
sualization, used by websites such as Proteopedia and RCSB PDB
Protein Data Bank.

Following the advance of techniques for the generation of CG
movies, in the last few years many different groups focused on
the creation of animated movies depicting biological molecules and
cellular processes. The movies range from the simple representa-
tions of the mechanical functioning of a single protein, to complex
events involving many subjects. These works are important scien-
tific efforts and add to their educational value the bonus of rising
interest in the general public to approach biology. Some of these
examples are collected on websites [McGill 2010; SCIVIS 2005].

2.2 3D Content on Web

The web platform has acquired through the years the ability to effi-
ciently incorporate and deliver many different kinds of digital data
such as still images, videos and sound. With respect to these addi-
tions, the management of 3D content through the web comes with a
considerable delay. The reasons for this delay are likely to be found
in the higher requirements of 3D graphics in terms of computational
power, but also because the lack of a strong unifying standard be-
hind the 3D content.

Several technologies have been developed over the years to
achieve this integration. The Virtual Markup Modeling Language
(VRML) [Raggett 1994] (then replaced by X3D [Don Brutzmann
2007]) was proposed as a text based format for specifying 3D
scenes in terms of geometry and material properties and for the
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definition of basic user interaction. The format itself was a stan-
dard, but the rendering in the web browser was relaying on specific
plugins. The Java Applets are probably the most used method to
add dynamic content, not necessarily 3D, in the web browsers. The
philosophy of Java applets is that the URL to the applet and its
data are put in the HTML page and then executed by the Java Vir-
tual Machine, a third part component. The implementation of JVM
on all the operating systems made Java applets ubiquitous and the
introduction of binding to OpenGL such as JOGL [JOG ] added
control on the 3D graphics hardware. A similar idea lies behind the
ActiveX [Microsoft Corporation 1996] technology, developed by
Microsoft from 1996. Unlike Java Applets, ActiveX controls are
not bytecode but dynamic linked Windows libraries which share
the same memory space as the calling process (i.e. the browser),
and so much faster to execute. These technologies enable the incor-
poration of 3D graphics in a web page but they all do it by handling
a special element of the page itself with a third party component.

WebGL [Group 2009b] is an API specification produced by the
Khronos group [Group 2009a] and, as the name suggests, defines
the JavaScript analogous of the OpenGL API for C++. WebGL
closely matches OpenGL|ES 2.0 and, extremely important, uses
GLSL as the language for shader programs, which means that
the shader core of existent applications can be reused for their
JavaScript/WebGL version. Since WebGL is a specification, it is
up to the web browsers developer to implement it. At the time of
this writing, WebGL is supported in the nightly build versions of
the most used web browsers (Firefox, Chrome, Safari), and a num-
ber of JavaScript libraries are being developed to provide higher
level functionalities to create 3D graphics applications. For exam-
ple WebGLU [DeLillo 2009], which is the WebGL correspondent
of GLU [OpenGL ARB ], provides wrappings for placing the cam-
era in the scene or for creating simple geometric primitives, other
libraries such as GLGE [Brunt 2010] or SceneJS [Kay 2009] uses
WebGL for implementing a scene graph based rendering and ani-
mation engines.

Figure 2: Lipophilic Potential mapped on the surface of a Calcium-
bound Calmodulin. On right, visualization using standard color
ramp; on left, visualization using advanced shaders. The light color
and the specularity clearly indicates a liphophilic patch on the right
part of the molecule, while the dark, dull and rough surface indi-
cates a more hydrophilic area.

3 Building a custom web-based Visualization
Scheme

As stated in the introduction, the aim of this work is to pro-
pose a technology for the implementation of advanced visualiza-
tion schemes for molecular and biochemical data on a web plat-
form. We are interested in a base technology that is able to cope
with the needs of a completely customizable rendering while pro-
viding enough basic structures and higher level functions to be us-

able without a major programming effort.

Our idea is that the WebGL standard is able to provide the perfor-
mances and fine-control over the rendering, since it directly uses the
hardware layer for rendering, is built around the idea of a fully cus-
tomizable rendering pipeline and gives access to the use of GLSL
shaders, a really powerful instrument to achieve the desired visual
output. While these features are absolutely necessary to reach our
goal, they are not sufficient to provide a really usable development
platform because the available functions are too low level to be ef-
fectively used (especially by a community of people with little or
no experience in CG programming). By introducing a wrapping
library as SpiderGL, it is possible to enrich this platform with a se-
ries of higher level functions that may be used as building blocks
to implement the desired rendering method. As a final ingredient,
we have also to consider what can be attained by a clever use of the
JavaScript. Exploiting the ease of use and the expressive power of
this language it is possible to read the source scientific data and do
all the needed calculation.

3.1 SpiderGL

The core library used in this work is SpiderGL: a recent, ongoing
project which aims to provide an easily usable but powerful wrap-
ping to the lower-level WebGL functions. Most of the available
JavaScript graphics libraries and browser plugins for 3D data man-
agement are based on the paradigm of scene graph. This choice is
perfectly natural, in the sense that it mimics the idea of a three-
dimensional scene composed of objects, rendered from a given
point of view. However, this solution cannot fully answer the need
of scientific visualization, where it is often needed to use very di-
verse data, and render them in a very controlled way. SpiderGL, on
the other hand, does not follow this paradigm, but provides a set of
data structures and algorithms to support the management of geo-
metric and mathematical entities, in order to simplify the creation
of arbitrary visualization prototypes. The idea of this library is to
provide a complete wrapping layer to WebGL that, while hiding
the details through higher level functions, allows full access to the
native API.

To ease the creation of graphical applications, SpiderGL provides a
series of classes and functions which cover the various aspects and
levels of implementation of a CG program:
Basic structures: linear algebra algorithms for 3D points and
vectors are very common tools for the CG developer; the geometry
module of SpiderGL implements the essential mathematical
objects such as vectors (2,3 and 4 components), quaternions and
matrices, along with basic operations on them.
2D/3D Data: one of the fundamental parts of a graphics library is
the management of data structures for the definition of 3D objects
(meshes), textures and the other components used in the rendering
process. While at low level, WebGL works directly on streams
of vertex attributes and indices, SpiderGL, to provide a more
structured object to manage, implements a mesh object, based on
the usual paradigm of vertices+triangle connectivity. For a flexible
but efficient use, SpiderGL supplies two different data structures:
the first one, SglMeshJS, can be freely accessed and modified
within the user script; the other, SglMeshGL, is generated from
the first and used at GPU level for rendering. Management of
textures is done through some specific functions which enable
the creation of texture from images or raw data, texture sampler
options and texture unit binding. A final set of classes is used to
manage vertex shaders, fragment shaders and shader programs,
with support from compilation feedback, binding and attribute
management.
Scene management: while not introducing a scene-graph,
SpiderGL provides some specific helpers to place entities in the
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3D space, set the viewpoint and simplify the user interaction
with the 3D elements. The matrix stack, legacy of the OpenGL
library, is still extremely useful when populating a scene and it
is implemented in the SglTransformStack object, which
offers many different methods to manipulate and access these
matrices. Other helpful classes include a camera object which
implements the typical paradigm used in first-person shooter
games (SglFirstPersonCamera) and a trackball manipulator
(SglTrackball) for object inspection with pan, zoom, rotation
and scaling operations.
Rendering: WebGL redering is a long series of function used
to manage all the data streams, bind streams to attributes, select
shaders and control the GL status. In SpiderGL, 3D mesh rendering
is managed through the SglMeshGLRenderer helper class.
This class takes care of all the setup steps required by WebGL
and tries to simplify the stream mapping process by automatically
match all the most used attributes. Additional helper classes give
finer control over the mapping of data streams and deal with the
management of shader parameters.
Application: interactivity is one of the focus of this library;
for this reason, SpiderGL provides an event-based mechanism
which is able to collect events from all the DOM and efficiently
dispatch them to multiple listeners. Other application-level support
structures like a log system are available through specific classes.
Another extremely useful feature on the web platform is the
asynchronous loading: many rendering algorithms requires the
ability of asynchronous loading of data. Even if JavaScript does
still not support multithreading, SpiderGL implements a simple
mechanism based on the XMLHttpRequest object to queue data
to be loaded and set a callback functions which will be invoked
whenever the transfer of the requested data has completed.

3.2 Data Importing and Management

While using JavaScript it is not possible to read binary data, this
may not be a major problem for the need of importing data from
molecular databases or physico-chemical tools. Many biological-
related file formats use ASCII coding, which make the parsing re-
ally straightforward. As an example, the importer for the PDB file
format, which describe the structure of a molecule, is just a few
lines long. Here it is possible to see part of the importing code and
how the predefined JavaScript functions for tokenization help its
parsing:
f u n c t i o n AtomListFromPDB (atomlist , pdb_txt ){
[ . . . . . ]
v a r lines = pdb_txt .split ("\n" ) ;
f o r ( v a r lineIndex i n lines ) {
/ / atom l i n e example
/ /ATOM 16 O ASP A 2 1 0 . 6 5 . 1 −6.1 0 . 0 0 . 0 O

tokens = line .split (" " ) ;
i f (tokens [ 0 ] == "ATOM" ) { / / atom l i n e

v a r atomtype = tokens [ 1 1 ] ;

v a r position = [ ] ;
position .push (parseFloat (tokens [ 6 ] ) ) ;
position .push (parseFloat (tokens [ 7 ] ) ) ;
position .push (parseFloat (tokens [ 8 ] ) ) ;

[ . . . . . ]

More recent biochemical tools may also export data in XML for-
mat, which is directly readable by JavaScript. Three-dimensional
geometries are normally stored using one of the many standard file
formats, and can generally be converted from one format to another;
SpiderGL does at the moment support OBJ and COLLADA formats
(other importers will follow), and different other formats may be

parsed by using JavaScript. Less structured data may be imported
also by making the data source export in the JSON format, which
is quite easy to write and is natively supported by JavaScript inter-
preters. Since most physico-chemical tools have a scripting layer
which can be used to specify custom data exporters, this is often a
viable option.

Most of the more interesting visualization methods, however are
not just based on loading existing data and displaying it in a con-
trolled fashion, but also relies on some kind of data processing.
JavaScript may be an effective ally also in this case, thanks to its
ease of use, the great flexibility in data structure (dynamic typing,
associative arrays, an advanced garbage collector), the presence of
many built-in functions and its expressive power. And if it is true
that probably JavaScript will never reach the computational effi-
ciency of compiled C++ code, the newest interpreters and the in-
troduction of just-in-time compilers have significantly reduced the
gap. It is possible to say that, in this specific scenario, where most
of the computational requirements have been moved from CPU to
GPU, the difference between the two language is neglectable.

It is also interesting that, since all the computation is done at the
JavaScript level and all the visualization code is embedded in the
page, it is not possible to effectively hide the data or their process-
ing. This impossibility of building a closed, protected system may
be perceived as a serious limitation for industrial-related applica-
tions. However, in these context, this same limitation may turn out
to be a very positive feature, since the transparency of the data pro-
cessing (you may check that no hidden tweaking is done on the
data) and the possibility of sharing knowledge (by letting others
reuse your visualization code) are of capital importance in the fields
of research and educational tools.

3.3 Implementation

Having all the necessary building blocks to load, manipulate and
render the data, it is possible to build the desired visualization
method. The setup of the scene and the definition of the render-
ing pipeline work similarly to a standard visualization application.

Looking at a webpage with dynamic SpiderGL content, it is possi-
ble to see that all of the page logic is defined in the scripting part of
the HEAD section, while on the BODY section there is just the page
structure and the interface elements that will be used for user inter-
action (like buttons, text areas and other controls). Among these
elements, the most important is an html canvas object, that is the
place where the WebGL layer does the on-screen rendering.

<canvas id="SGL_CANVAS" style="border: 1px solid gray" ←↩

width="900" height="600"></canvas>

This canvas is registered as the output area at the end of the script-
ing; a specific function connects the various events of the canvas to
a script object.

v a r glMolViewer = new SpiderGLMolViewer ( ) ;
sglRegisterCanvas ("SGL_CANVAS" , glMolViewer , 3 0 . 0 ) ;

The glMolViewer object is the main actor for the scene setup and
rendering of our molecular visualization. The structure of this ob-
ject employs the event handling subsystem provided by SpiderGL,
which is inspired from the one used by the GLUT library [Kilgard ].
Each event coming from the canvas triggers a specific function with
a given name and parameters; SpiderGL exploits the JavaScript lan-
guage feature to give the possibility to dynamically add or remove
listeners and redirect events. In this simple example, the only lis-
tener is the main object itself.

SpiderGLMolViewer .prototype = {
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load : f u n c t i o n (gl ) { [ . . . ] } ,
unload : f u n c t i o n (gl ) { [ . . . ] } ,

update : f u n c t i o n (gl , dt ) { [ . . . ] } ,

keyDown : f u n c t i o n (gl , keyCode , keyString ) { [ . . . ] } ,
keyUp : f u n c t i o n (gl , keyCode , keyString ) { [ . . . ] } ,
keyPress : f u n c t i o n (gl , keyCode , keyString ) { [ . . . ] } ,
mouseDown : f u n c t i o n (gl , button , x , y ) { [ . . . ] } ,
mouseUp : f u n c t i o n (gl , button , x , y ) { [ . . . ] } ,
mouseMove : f u n c t i o n (gl , x , y ) { [ . . . ] } ,
mouseWheel : f u n c t i o n (gl , wheelDelta , x , y ) { [ . . . ] } ,
click : f u n c t i o n (gl , button , x , y ) { [ . . . ] } ,
dblClick : f u n c t i o n (gl , button , x , y ) { [ . . . ] } ,

resize : f u n c t i o n (gl , width , height ) { [ . . . ] } ,

draw : f u n c t i o n (gl ) { [ . . . ] } ,
} ;

Most of the initialization and data loading is done in the load func-
tion: it is here that the main properties of the rendering are chosen,
the input data is loaded and the shaders are compiled.

load : f u n c t i o n (gl ) {
[ . . . ]

t h i s .xform = new SglTransformStack ( ) ;
t h i s .camera = new SglFirstPersonCamera ( ) ;
t h i s .camera .lookAt ( 0 . 0 , 0 . 0 , 1 . 5 , 0 . 0 , 0 . 0 , 0 . 0 , ←↩

sglDegToRad ( 0 . 0 ) ) ;
t h i s .viewMatrix = t h i s .camera .matrix ;
t h i s .trackball = new SglTrackball ( ) ;

[ . . . ]
t h i s .prog = new SglProgram (gl , [sglNodeText ("←↩

MY_VERTEX_SHADER" ) ] , [sglNodeText ("←↩

MY_FRAGMENT_SHADER" ) ] ) ;
[ . . . ]

v a r TextureOptions = {
generateMipmap : t r u e ,
minFilter : gl .LINEAR_MIPMAP_LINEAR ,
onload : t h i s .ui .requestDraw
} ;
v a r ColorTexture = new SglTexture2D (gl , "←↩

molecule_color.png" , textureOptions ) ;
[ . . . ]

t h i s .meshJS = new SglMeshJS ( ) ;
t h i s .meshJS .importOBJ ("molecule.obj" , t r u e , f u n c t i o n (←↩

m , url ) { [ . . . ]
t h i s .meshGL_MOL = that .meshJS .toPackedMeshGL (gl , "←↩

triangles" , 65000) ;
[ . . . ] }) ;

[ . . . ]
v a r pdbtxt = sglLoadFile ("mol.pdb" ) ;
t h i s .atomslist = [ ] ;
v a r res = AtomListFromPDB ( t h i s .atomslist , pdbtxt ) ;

[ . . . ]
t h i s .timeOffet = 0 . 0 ; / / p a r t i c l e a n i m a t i o n o f f s e t
t h i s .stereoEnabled = f a l s e ; / / s t a r t w i th no s t e r e o
t h i s .particlesEnabled = t r u e ; / / s t a r t w i th p a r t i c l e s

} ,

This monolithic way of managing data is fine for webpages devoted
to the visualization of a single, compact dataset. More advanced
examples may benefit from the asynchronous loading mechanism
which allows efficient use of large datasets, streaming/progressive
data or letting user dynamically load remote files.

The draw function contains the code for the actual rendering:

draw : f u n c t i o n (gl ) {
gl .clearColor ( 0 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ) ;
gl .clear (gl .COLOR_BUFFER_BIT | gl .DEPTH_BUFFER_BIT | ←↩

gl .STENCIL_BUFFER_BIT ) ;
gl .viewport ( 0 , 0 , w , h ) ;

t h i s .xform .projection .loadIdentity ( ) ;
t h i s .xform .projection .perspective (sglDegToRad ( 4 5 . 0 ) , ←↩

w /h , 0 . 1 , 1 0 . 0 ) ;
[ . . . ]

v a r uniforms = {
u_mvp : t h i s .xform .modelViewProjectionMatrix ,
u_normal_mat : t h i s .xform .viewSpaceNormalMatrix ,
u_dotrasp : t h i s .atomsEnabled ,
u_mousepos : [ t h i s .ui .mousePos .x , t h i s .ui .mousePos .←↩

y ]
} ;
v a r samplers = {
s_texture_c : t h i s .ColorTexture ,
s_texture_b : t h i s .BumpTexture
} ;

[ . . . ]
gl .enable (gl .DEPTH_TEST ) ;
gl .enable (gl .CULL_FACE ) ;
sglRenderMeshGLPrimitives ( t h i s .meshGL_MOL , "triangles←↩

" , t h i s .prog , n u l l , uniforms , samplers ) ;
[ . . . ]
} ,

This function may be called continuously or on demand: when reg-
istering the canvas with the sglRegisterCanvas function, if
the last parameter is 0, then the canvas is only redrawn by explicit
commands, otherwise, the parameters represent the desired frame
rate. At each ”tick” the SpiderGL will call the update func-
tion and then the draw. In both cases, the html rendering engine
will then issue a page composition operation whenever it detects
changes to the associated WebGL framebuffer.

GLSL shaders are included in the web page as script entities in the
HEAD section:

<script id="MY_VERTEXSHADER" type="x-shader/x-vertex">
[ . . . ]
</script>

The resulting code is very schematic and organized in such a way
that following the various setup and rendering steps is quite easy.
This simple example is an optimal starting point for experimenta-
tion.

This development process is straightforward for someone with an
experience in graphical programming, while may prove to be diffi-
cult for users with a different background, like biology, physics or
chemistry. This kind of setup is for sure more difficult to master
with respect to setup of other existing platforms, like Jmol which,
true to their nature, provide much simpler (but restrictive) access to
their scene graph, with specific functions to import data and a series
of predefined rendering modes. However, the gain in terms of flex-
ibility and expressive power vastly compensate the initial steeper
learning curve. Moreover, the learning of this technology is made
easier by the possibility of initially use the higher level structures
and functions implemented by SpiderGL to easily setup a basic vi-
sualization scheme and then start playing with lower level functions
to obtain more complex effects. It is also important to note that
most of the available JavaScript utility/UI libraries on the net may
be used in conjunction with SpiderGL, adding more ready-made
components to assemble a powerful, interactive, webpage.

4 Visual Mapping of Molecular Properties

As an example of the strategy described in the previous section,
we will describe how a specific visualization scheme may be im-
plemented using the proposed technology in a very straightforward
way.
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Figure 3: Interaction between two molecules: the particle flow
shows the electrical attraction between the Calmodulin and the
MLCK head.

The aim of this visualization method [Andrei et al. 2010], designed
in the framework of the creation of a CG short movie, was to display
two specific biochemical properties on the surface of molecules.
The two surface properties were the Molecular Lipophilic Potential
(MLP) and the Electrostatic Potential (EP). The ability of a molecu-
lar surface to establish bonds with water is called Hydrophilicity; its
opposite, which is the ability to establish bonds with fat, is called
Lipophilicity. The Electrostatic Potential is easier to understand:
each atom in a molecule may have a charge, the various charges
in the molecule produce an electric field in the surrounding of the
molecule. The main idea of this visual mapping has been to ex-
ploit perceptual associations between the values to be mapped and
visual characterization of real-world objects. Ideally, by using al-
ready established perceptual association, the viewer would be able
to understand the provided information more naturally, without the
use of explicit legends.

For the mapping of the MLP property, it was necessary to choose
two opposite surface characterizations, able to convey a sense of
affinity to water or to oil. In our real-world experience, a very
smooth, hard surface (like porcelain) is completely impervious to
water but can be easily coated by oil. The opposite visual feed-
back is associated to grainy, crumbly, dull surfaces (like clay bricks
or biscuits) which can be easily imagined being soaked in water.
These considerations led to the association of highly lipophilic ar-
eas as white, shiny, smooth material and of highly hydrophilic areas
as dark, dull and rough. While the MLP value is obviously only
observable on the surface itself, electrical phenomena are associ-
ated to the idea of an effect projected in the volume surrounding a
charged object, and able to affect other objects (like the high school
textbook-favorite amber rod attracting paper bits). Field lines are a
common way to describe the effect of the electrical field. EP value
is therefore represented by showing small particles, moving along
the path defined by field lines, visualizing a higher concentration of
particles in areas where the electrical fields is stronger.

A peculiar characteristic of this visual mapping is that it only
uses shades of gray to represent the two molecular properties; this
choice, which seems restrictive at first glance, is however capable
to efficiently convey the two layers of information while leaving
the utilization of color space for the description of other biochem-
ical information. This visualization method is perfect to show the
capabilities of the proposed strategy, since it involves data coming
from BIO tools and rely on a controlled use of shading (bump map-
ping and specular map for MLP) and rendering effects like particles
(moving along the field lines for EP). Moreover, the focus of this

visual mapping is not only towards the scientific accuracy, but also
towards the visual appeal of the representation.

4.1 From Scientific Data to Rendering

This visual mapping has been designed with the explicit purpose
of being used in a CG movie [SCIVIS 2005], produced using the
3D modeling and rendering tool Blender. For this reason, most
of the input data, coming from scientific tools, have been heavily
processed in order to be converted in a format easily used inside
Blender.

The geometry of the molecular surfaces of the depicted proteins has
been generated using PyMOL starting from their atomic structure
contained in their PDB files. The two properties have been calcu-
lated by using scientific tools, starting from atomic structure and
reference tables for atomic electrical and lipophilic contributions.
The lipophilic potential data, calculated using a dedicated python
script (pyMLP) developed by a molecular scientist, is stored as a
series of samples in the proximity of the molecule. These sam-
ples are then mapped on the molecular 3D surface using interpola-
tion. This mapped value are used to generate color, specular and
roughness texture map. The Electrostatic potential, calculated in-
side another physico-chemical tool (APBS), is basically a volumet-
ric dataset which describes the electrostatic value computed in a
regular grid surrounding the molecule. Using this data, it was easy
to compute the potential gradient and use it to generate the field
lines. The obtained lines were used in the movie rendering to ani-
mate a particle system.

In our example, we will start from the processed data, which
is somehow in between biochemical data and standard computer
graphics data, and then consider the kind of problem and possibili-
ties introduced by the direct use of scientific data. In this conversion
from the CG movie to the realtime web environment, it was possible
not only to obtain the same look and feel of the rendered movie, as
visible in Figure 4, but also to introduce additional elements which
are only possible in an interactive context. Beside the usual inter-
activity which may be attained by the use of simple widgets like
a trackball, the ability to configure the rendering pipeline make it
possible to change rendering parameters on the fly, mix multiple
rendering styles to visualize multiple data layers at the same time
and add effects like the direct rendering in anaglyph-stereo. Again,
the important point, more than the mentioned effects, is the pos-
sibility of overcoming the limits of the predefined rendering that
characterize similar systems.

In the next sections we will detail how each component of the ren-
der has been implemented in order to obtain the same look and feel
presented in the video. For each section we discuss possible alter-
natives for data source and rendering methods to show how it is
possible to directly use biochemical data or create more complex
visualizations.

4.2 Geometry

There are many different methods used in molecular biology to vi-
sualize the three-dimensionality of a molecule. There is a clear dis-
tinction between the representation of the molecular structure and
of its surface. The molecular structure is generally displayed atom
by atom (using a Van der Waals spheres, sphere+stick or licorice
rendering) or as a series of structure elements (ribbon, rod+arrow).
Conversely, the molecular surface [Connolly 1983], defined as the
set of points which are ”accessible” to a given solvent (typically wa-
ter), is a more complex three-dimensional structure and it is gener-
ally displayed as a triangulated mesh, or as a series of nurbs patches.
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Figure 4: Comparison of the molecular surface visualization ren-
dered by Blender for the movie (bottom), and rendered using
SpiderGL and WebGL (top).

In this context we are more interested in the rendering of the molec-
ular surface, since the two properties we visualize show their effect
in proximity of this surface. Many biochemical tools (like PyMOL,
used in this work) are able to compute the geometry of the molec-
ular surface starting from the atomic description of the molecule
itself. The result of this process is generally a triangulated mesh,
which can be exported, depending on the tool, in different 3D file
formats.

For the movie, the used file format was OBJ which is directly
readable from SpiderGL: these models were also the starting point
for the online visualization. We decided to import precalculated
geometries in the scene as they were already available from the
pipeline used to create the movie, but also because this is the most
sensible option. In theory, it would be possible to compute the
molecular surface on the fly starting from the atomic structure of
the molecule, but this process would require a non-trivial amount
of time and system memory.

As previously stated, to render the structure of the molecule using
Van der Waals spheres, it is necessary to know the position, radius
and color-coding of each atom. The standard way to represent a
molecule structure in biochemical applications is through the use
of a PDB file. A PDB file is just an ASCII file which contains
(among other molecular-related info) a list of atoms with an associ-
ated position. Using JavaScript is quite easy to parse it (as shown in
Section 3) and render with SpiderGL a series of colored spheres of
appropriate size in the correct position. The atomic representation
of the molecule shown in Figure 5 has been generated using this
method. A more complex visualization of the molecular structure,
like ribbon, may also be generated on the fly by starting from the
parsed PDB file and a series of pre-defined 3D element templates.
As we said before, since there are many molecular databases avail-
able online, the PDB file could also be retrieved directly from such
a repository.

The availability of alternative representations of a protein structure,
makes also possible their combination in a single scene, providing
the user the ability to switch between the different representations.
Again, this is quite common and nothing new but, since we can
configure the rendering pipeline we can, for example, show the su-
perimposition of the molecular surface and the Van der Waals rep-
resentation by using transparency effects. As shown in Figure 5, it
is possible to implement a ”fresnel” transparency which depends on
the viewing angle, or a more focused ”x- ray vision” transparency
area which follows the mouse pointer. These kinds of transparency
effects are really simple to implement using GLSL shaders and let
perceive both representations at the same time, to better understand
the relationship between the surface properties and the underlying
structure.

4.3 Lipophilic Potential

The visual mapping of lipophilic potential rely on a combination
of color, surface roughness and specularity: these three effects are
mapped on the molecular surface according to the local lipophilic
potential value. For the rendered movie, the potential value has
been used to generate the color/specular and bump texture maps in-
side Blender by baking on the textures a procedural material. To
render these effects, we decided to use the same texture maps used
in the rendering of the movie and to write a shader which uses
simple shading techniques. Bump Mapping and Specular Map-
ping are standard shading techniques, but it is possible to apply a
fine-control over their appearance by having the full control of the
shader setup, which is not generally possible in commercial soft-
ware for web publishing or in general purpose visualization tools.
The result is pleasant and, as visible in the left side of Figure 2, the
characterization of the surface is quite effective.

Again, the use of precomputed texture is the fastest way to produce
this kind of effect. However, it is also possible to start from the
initial data from which those textures have been generated. As in
the case of the molecular structure file, the lipophilic information
is contained in an ASCII file, which can be parsed using JavaScript
and mapped onto the 3D surface as it was done when baking the
texture. Once the values are mapped to the surface, a simple shader
may be used to produce the same effect of the textures using a pro-
cedural approach. Basically, the color of the surface, the intensity
of the roughness and the specularity only depends on the lipophilic
value: there is nothing which cannot be done in the shader. Having
the mapped lipophilic potential makes also possible a more classi-
cal rendering style which uses color ramps (right side of Figure 2).
This second input method is more generic, since it uses directly the
data generated by the biochemical tool, but may be slower (since
no precalculation is done and the mapping has to be done at load-
ing time) and less compact (since the lipophilic data may be larger
than the textures).

4.4 Electrostatic Potential

Field lines are a widely used method to depict vector fields, es-
pecially for electrical and magnetical phenomena. However, the
main problem with field lines is how many and which lines are
needed: too few lines do not convey the necessary information and
too many will obscure entirely the object of interest. The visualiza-
tion method used for the movie tried to compute, from the infinite
possible field lines, a ”meaningful” subset of lines. The aim was to
generate a distribution of lines proportional to the surface EP value:
more lines would rise in the more electrically active areas, and the
total number of lines would be proportional to the global level of
potential of the molecule (in absolute value). This operation was
done by using a Monte Carlo sampling, weighted with respect to
the potential value of the surface in each area. The selected lines
were then exported as a sequence of points, forming various poly-
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Figure 5: Showing the superimposition of the Molecular Surface and the underlying Atomic Structure using a transparency based on view
angle (left) and a localized transparency area which follows the mouse (right)

lines. Instead of rendering these entities as solid lines (as visible
in Figure 1) each curve was used to drive a particle system. By
using moving particles, in fact, it is easier to perceive the flow di-
rection of the field and thanks to their small size and movement,
they do not hide the underlying molecular surface. The easiest way
to load the lines inside the web implementation was to apply just a
small change in the code for line calculation, in order to export the
polylines JSON format. It was then possible to parse them using
JavaScript. The loaded data may be rendered as a series of solid
line strips, or used to produce a particle effect similar to the one
used in the movie. In this case, since the particles flow on fixed
lines, it is not really necessary to create a particle system, but it is
possible to visualize the moving particles using a fragment shader
which renders only small fragments of the imported polylines ac-
cording to a periodic function, animated using an offset.

uniform float u_timeOffset;
varying float v_texcoord;
void main(void)
{
const float part_density = 4.0;
const vec3 part_color = vec3(0.8,0.8,1.0);
float val = fract((v_texcoord+u_timeOffset)/part_density);
if (val < 0.7)
discard;

else
{

val = smoothstep(0.9, 0.7, val);
gl_FragColor = vec4(part_color * val, val);

}
}

This effect is much more simple and less CPU/GPU demanding
than a real particle system, while still effective in conveying the
carachteristics of the electrical field surrounding the molecule, the
areas of higher electrostatic potential and their polarity. The field
particles are also useful to show the electrical interaction between
different proteins: in Figure 3 it is shown a calcium-bound Calmod-
ulin approaching an MLCK head, at that distance the two electro-
static field do start an interaction process which will eventually lead
to the docking of Calmodulin, and this is shown by the particles
flowing from one protein surface to the other. Also in this case it
is possible to start directly from the raw physico-chemical data: the
volume data of the Electrostatic Potential is saved in ASCII for-
mat and can be easily read using JavaScript. With these data, it
is possible to compute the potential gradient field and extract the
field lines according to the desired parameters. This option would
give full control on the lines extraction and make it possible to con-
trol the selection parameters on the fly during rendering: given the
importance of the line selection, as previously described, this fea-

ture may be useful to study the electrical field of the molecule. In
any case, being able to load the entire volumetric information may
open up new possibilities to visualize the electrostatic field around
the molecule. Rendering methods such as ray-casting, interactive
slicing and volume splatting are possible on this platform.

5 Future Development

The proposed technology is far from being complete: the WebGL
standard is not yet completely finalized and also the SpiderGL
wrapping is still an ongoing project. To provide a complete plat-
form for the development of specialized visualization tools for the
web platform, some more work will be needed to make this tech-
nology accessible to people with not much experience in computer
graphics programming. This effort should ideally result in the cre-
ation of a reusable library of basic functions which will ease the cre-
ation of simple visualization schemes and, at the same time, serve
as a code base for more complex results. In perspective, to give a
useful instrument to the general public of molecular biology scien-
tist, we will have to work in three different directions:

• a series of importers from different file formats which are
common to the biology community: more readable formats
means more diverse data to play with;

• utility functions to manipulate data: because visualization is
always a matter of filtering data using standard mathemati-
cal/statistical approaches;

• a series of standard shaders to be used for rendering: a shader
library would save the time required to write simple visual-
ization techniques and give the base for experimentation in
creating advanced custom shaders;

An active research problem in the biology community is the cal-
culation of protein motion (i.e. the description of atomic trajecto-
ries while transiting from one conformation to another), this kind
of online visualization technology would prove quite useful for the
evaluation and sharing of new results with the research commu-
nity. It is however still difficult to display animation of the molec-
ular surface in a way that is biologically accurate but at the same
time computationally effective. Animating a structure representa-
tion of a molecule (atomic sphere, balls+sticks, ribbon) may be easy
enough, since it involves rigid roto-translation of rigid entities. On
the contrary, the motion of molecules make the surface undergo
major modification and radical change in topology (genus change,
merging/dividing parts) thus making it impossible to use animation
techniques like skeletal or keyframe. The use of techniques like
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metaballs may produce surfaces in realtime, but with very low ac-
curacy from the biological point of view. A better idea could be to
exploit the GPU processing power to generate the animated geom-
etry on the fly using, for example, ray-casting methods. An effi-
cient storage and retrieval of such animations is another interesting
problem, especially in the context of web-based applications, which
present additional constrains of low resources and low bandwidth.

6 Conclusions

We have presented here a technology, based on the WebGL stan-
dard, which can be profitably used to build, on the web platform, in-
teractive 3D visualization schemes for the scientific data produced
by molecular and cellular biology research. By using the low-level
features of WebGL, enriched by the utility functions and higher-
level classes provided by the SpiderGL library, it is possible to build
web-based visualization prototypes which are not only completely
custom, but also use advanced shading and rendering techniques.
We have discussed the possibilities offered by this technology, de-
scribing the available components and how they are used in the cre-
ation of an interactive visualization scheme. Moreover, we have
shown how it was possible to use this technology to port a specific
visualization method on the web platform, and how it was possible
to enrich it with additional visual elements, made available by the
use of this technology. This technology is still not complete, since
the WebGL standard is not yet completely fixed, and the SpiderGL
library still an ongoing project; nevertheless, this combination of li-
braries and working strategy is a promising instrument to deal with
the needs of the molecular and cellular biology research commu-
nity.
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Introduction
Biologists know that, if the information of
life is stored and transmitted through nu-
cleic acids (DNA and RNA), the processes
that do the actual work are most of the
times proteins. These are active in all as-
pects of life, and in the latest years we are
starting to get a glimpse of how they
work. Proteins are machines composed of
amino acids, which are in turn small
groups of atoms arranged in specific
ways[1]. Scientists are obtaining more and

more information on the 3D arrangement of such
atoms, and are starting to understand their activity
through motion.

On the basis of information obtained by experi-
ments of nuclear magnetic resonance (NMR), 3D
visualization tools provided by BioBlender allow bi-
ologists to build a reasonable sequence of move-
ment for proteins. It also includes a dedicated visual
code to represent important features of their sur-
face (Electric and lipophilic potential) on the protein
itself, using photo realistic rendering and special
effects.

BioBlender is a software extension of Blender 2.5[2],
an interface for biological visualization that allows
the user to import and interactively view and ma-
nipulate proteins. It was developed  and is main-
tained by the Scientific Visualization Unit of the
CNR of Italy in Pisa, with the help and contribution
of several members of the Blender community. Ma-
terial, scenes, publications and other relevant infor-
mation can be found at www.BioBlender.net and/or
www.scivis.ifc.cnr.it.

BioBlender for Windows is available from
www.bioblender.net  (on Linux machines it can be
used with Wine). Because of its specialized nature,
it requires the installation of PyMOL[3.4] , Python
2.6 [5] and NumPy[6] , which are all provided in In-
staller folder from the downloaded package.

Using BioBlender to build an animation

To start BioBlender, simply go to the Bin folder and
launch blender.exe, then open the template.blend
scene (stored in BioBlender folder).

Notice that the template file not only has an opti-
mized user-interface layout for biologists, but the
template scene also contains lights, camera and
world settings that are ideal for visualizing mole-
cules. This setup ensures that researchers who are
not familiar with the 3D software can still effec-
tively use BioBlender. Each interface element
(buttons, sliders, toggles) has help text associated
with it. By placing the mouse over them a pop-up
text describes the function. Errors and progresses
are displayed in the console. Critical errors will ap-
pear in the main BioBlender as a pop-up under the
mouse. The atoms size is of order of Ångström (Å),
therefore the scale used is 1 Blender Unit = 1 Å.

This tutorial assumes that you already have Bi-
oBlender downloaded on your computer, with the
required programs installed.

1. Select and import a .pdb file

PDB files contain a description of one or multiple
conformations (positions) of a single molecule. Dif-
ferent conformations of the same protein are listed
in one NMR file and are called MODEL 1, MODEL 2
etc.
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In the BioBlender Select PDB File panel:

� Select the .pdb file by browsing from your data (1
in figure). The file included in sampleData folder
contains the 25 models of Calmodulin [7]. Alterna-
tively, simply type the 4-letter code for the .pdb file
to be fetched from www.pdb.org [8] (make sure to
pick an NMR file);

� Change the name of the protein (by default it is
named “protein0”) in the field on the right (2 in
figure). Naming the proteins is just a good habit
that will help keeping the scene organized. Once a
file is selected, the number of models and the
chains are detected and shown in the BioBlender
Import field (3 in figure);

� Choose 2 models to import in the scene (by default
all models are listed) typing their number sepa-
rated by comma;

� In the Keyframe Interval slider (4 in figure) set the
number of frames between the protein conforma-
tions (Min 1, Max 200).

A list of options are available to be con-
sidered before importing the protein in
the Blender scene (5 in figure):

Verbose: enable to display in the con-
sole extra information for debugging;

SpaceFill: enable or disable to display
the atoms with Van der Waals or cova-
lent radii in the 3D scene, respectively;

Hydrogen: enable to import Hydrogens
if they are present in the .pdb file. This
option makes importing much slower
and it is important only for visualiza-

tion. If the .pdb file does not contain Hydrogens (or if
you chose not to import them), they will be added dur-
ing the Electrostatic Potential calculation using exter-
nal software;

Make Bonds: enable it  to have atoms connected by
chemical bonds. Despite being time consuming this
operation is very important in motion calculation;

High quality: displays high-quality atom and surface
geometries; slow when enabled;

Single User: enable to use shared mesh for atoms in
Game Engine; slow when enabled;

Upload Errors: enable to send us automatically and
anonymously an email with the errors you generate.
This makes us aware of the problems that arise and
help us fix them.

Finally, press Import PDB button to import the protein
to the 3D scene of Blender. Blender displays the protein
in motion (by linear interpolation between atoms in
the conformations; Esc to stop the animation).
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2. Visualization in the 3D viewport

Once imported, the protein is displayed with all atoms,
Hydrogens included (if the Hydrogens check-box was
enabled). The first 4 buttons in the BioBlender View
enable different views: only alpha Carbons, main chain
(N, CA, C), main chain and side chains (no H), or all
atoms.

If the Surface display mode is selected, BioBlender will
compute the surface of the protein by invoking PyMOL
software, an external application. It uses the Solvent
Radius set by the user and returns the Connolly mesh
[9], displayed on the BioBlender 3D view. The default
radius (1.4 Å) is the standard probe sphere, equivalent
to water molecules.

To check the appearance of surface calculated with dif-
ferent solvent radii, change the solvent radius value
and press refresh button. The current surface is deleted
and a new one is created.

When atoms are displayed, by selecting one atom in
the 3D display, the protein information of the selected
atom is printed in the area outlined below; in the 3D
view the selection will extend to  the other atoms of he
corresponding aminoacid.

3. Protein motion using the physic engine

To calculate the transition of the protein between the 2
conformations the Blender Physics Engine is used. Press
Run in Game Engine button to see the transition. Press
Esc to leave GE and then 0 on Numerical Board to see
from the camera point of view.

Hit Run in Game Engine button again for an interac-
tively view. When inside the Game Engine, the mouse
controls the rotation of the protein, allowing to inspect
the protein from all angles. The  also applies an ambi-
ent occlusion filter to the scene, giving the viewer a
much better sense of depth.

Set the Collisionmode to one of the following states: 0,
1 or 2. When set to 0 the transition between the confor-
mations is done using linear interpolation; the atoms
will simply move from one position to the other. When
set to 1 the collisions between atoms are considered,
resulting in a more physico-chemical accurate
simulation[10].

When set to 2, the newly evaluated movement will be
record to F-Curves. Go to the Timeline panel on Blender
and see that the new conformations are recorded at
different time (200 frames away from the last model
imported) as shown in the figure below; in this way
both sets of transitions are available for comparison.
These conformations can be exported as described later
in section 6.
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4. Molecular Lipophilic Potential Visualization

This visualization method is a novel way to see the MLP
values of a protein onto the surface. Normally this is a
relatively time consuming and tedious process involv-
ing running different programs from the command
line, but BioBlender simplifies the entire process by al-
lowing the user to do everything under one unified in-
terface.

In BioBlender MLP Visualization section:

� Choose a Formula (1 in figure; Testa formula [11] is
set by default);

� Set the Grid Spacing (2 in figure; expressed in Å,
lower is more accurate but slower) for MLP calcula-
tion;

� Press Show MLP on Surface. It may take some time
as the MLP is calculated in every point of the grid in
the protein space, then mapped on the surface of
the protein and finally visualized as levels of grey
(light areas for hydrophobic and dark areas for hy-
drophilic [12]).

A typical protein has varying degrees of lipophilicity
distributed on its surface, as shown here for CaM.

Use Contrast and Brightness sliders to enhance the
MLP representation of your protein. Once you are satis-
fied with the
grey-levels
visualization
hit Render
MLP to Sur-
face button
for the pho-
torealistic
render. This

process is also
time consuming
and it always re-
fers to last
changes in the
MLP grey-levels
visualization.
When the calcula-
tion is done (the
button is re-
leased) press F12
on your keyboard.

Note:This is the MLP
representation using
our novel code: a
range of visual fea-
tures that goes from
shiny-smooth sur-
faces for hydrophobic
areas to dull-rough
surfaces for hy-
drophilic ones. The
levels of grey are
baked as image texture that is mapped on specular of the material.
A second image is created by adding noise to the first one and map
it on bump. The light areas become shiny and smooth while the
dark ones dull and rough as shown in the figure.

Press Esc to go back to the Blender scene.

5. Electrostatic Potential Visualization

EP is represented as a series of particles flowing along
field lines calculated according to the potential field
due to the charges on the protein surface. For this rea-
son, it is necessary to perform a series of steps (as de-
scribed in [12]), and to decide the physical parameters
to be used in the calculation (2 in the figure).
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In BioBlender EP Visualization section:

� Choose a ForceField (1  in figure;  amber force field is
set by default);

� Set the parameters for EP computation, using the op-
tions shown in the figure below:

� Ion concentration –  0.15 Molar is the default, physio-
logical value;

�Grid Spacing – in Å, lower is more accurate but slow-
er;

�Minimum Potential – the minimum value for which
the field lines are calculated – the default value is 0
which implies
calculation of all
possible lines;
increase it if you
want to enhance
the representa-
tion of EP;

�n EP lines*eV/Å2
–  the number of
field lines calcu-
lated for eV/Å2.

Now press Show EP button. The process is time consum-
ing as Show EP button invokes a custom software that cal-
culates the field lines and exports them in the BioBlender
3D scene as NURBS curves. The positive end of each curve
becomes an emitter. The particles flow along the curves
from positive to negative.

Change the Particle Density  (3 in figure) to modify the
number of the particles visualized in the scene. Clear
EP to delete the curves and the emitters.

6. Output

To see the protein movement with the surface proper-
ties you have to render a movie. Since the movement
implies a change of the atomic coordinates, the sur-
face properties  must be recalculated frame by frame.

In the BioBlender Output panel set the output file path
(by default it is set to tmp folder); choose the kind of
representation you prefer to render from the Visualize
curtain menu:

�Atom – render only atoms;

�Plain Surface – render only surface;

�MLP – render surface with MLP;

� EP + Plain Surface – render surface (no MLP) and EP;

� EP + MLP – render surface with MLP and EP;

set Start Frame – the first frame of the animation;
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set End Frame – the last frame of the animation;

set Export Step – the number of frames to skip during
export, mostly used for faster export of .pdb files; ena-
ble Information
Overlay to print
extra information
on the final im-
age; enable Ambi-
ent Light only for
GE visualization;
do not enable it
for MLP represen-
tation as its effect
is confusing for
MLP visual code.

Hit Export Movie to render every frame of the anima-
tion. The output is a sequence of still images, this en-
sures that the rendering is resumed if the rendering
process is disrupted. During section 3 Blender GE calcu-
lated and recorded intermediate conformations as key-
frames. To save these coordinates as .pdb files for
further analysis using external software, press Export
PDB. A .pdb file is saved for each frame in the selected
output.

To obtain the movie follow standard Blender proce-
dures: open the Video Se-
quencer Editor: Add -> Image,
select the sequence of images,
go to Properties window and
set the Output path and the
File Format to AVI JPEG in the
Output panel and Start and
End frame in the Dimensions
panel. Now press Animation
button in the Render panel.

Now you have your protein moving with the surface
properties visualized. An image of CaM with EP and
MLP is shown in the image below
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Abstract 
Background
In living cells, proteins are in continuous motion and interaction with the surrounding 

medium and/or other proteins and ligands. These interactions are mediated by protein 

features such as electrostatic and lipophilic potentials. The availability of protein 

structures enables the study of their surfaces and surface characteristics, based on 

atomic contribution. Traditionally, these properties are calculated by physico-

chemical programs and visualized as range of colors that vary according to the tool 

used and imposes the necessity of a legend to decrypt it. The use of color to encode 

both characteristics makes the simultaneous visualization almost impossible, requiring 

these features to be visualized in different images. In this work, we describe a novel 

and intuitive code for the simultaneous visualization of these properties.

Methods
Recent advances in 3D animation and rendering software have not yet been exploited 

for the representation of biomolecules in an intuitive, animated form. For our purpose 

we use Blender, an open-source, free, cross-platform application used professionally 

for  3D work.

On the basis Blender, we developed BioBlender, dedicated to biological work: 

elaboration of protein motion with simultaneous visualization of their chemical and 

physical features.

Electrostatic and lipophilic potentials are calculated using physico-chemical software 

and scripts, organized and accessed  through BioBlender interface.

Results
A new visual code is introduced for molecular lipophilic potential: a range of optical 

features going from smooth-shiny for hydrophobic regions to rough-dull for 
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hydrophilic ones. Electrostatic potential is represented as animated line particles that 

flow along field lines, proportional to the total charge of the protein. 

Conclusions
Our system permits visualization of molecular features and, in the case of moving 

proteins, their continuous perception, calculated for each  conformation during 

motion. Using real world tactile/sight feelings, the nanoscale world of proteins 

becomes more understandable, familiar to our everyday life, making it easier to 

introduce “un-seen” phenomena (concepts) such as hydropathy or charges. Moreover, 

this representation contributes to gain insight into molecular functions by drawing 

viewer's attention to the most active regions of the protein. The program, available for 

Windows, Linux and MacOS, can be downloaded freely from the dedicated website 

www.bioblender.org

Background 
The fact that we humans are very good at extracting information through visual 

observation is well synthesized in the old adage “a picture is worth a thousand 

words”. The solution of the 3D structure of myoglobin in 1958 by Kendrew [1] 

marked the beginning of the new era of structural biology. Since then, a wealth of 

protein structures has been solved and today the Protein Data Bank (PDB) counts over 

67.000 protein structures [2, 3]. 

With the availability of all these data, and with the advance of computer graphics 

(CG) technologies, tools for the visualization of 3D structures were created such as 

VMD [4, 5], SPDBViewer [6, 7], Chimera [8, 9], PyMOL [10, 11] and others. Balls 

and sticks for atoms and bonds, ribbons for the secondary structures, and molecular 

surfaces are some of the possible representations of proteins. Most programs can also 

calculate surface features such as electrostatic potential (calculated with APBS [12] or 
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DelPhi [13]) and hydropathy (Kyte-Doolittle [14]). When present, these features are 

represented as field lines and/or as ranges of colors. 

Since the late '90s, the development of CG techniques has advanced at spectacular 

pace. Among the most widely used tools, is the art and science of 3D animation. This 

technique consists in the creation and animation of 3D objects (complete with 

surfaces, skeletons, and simulated physical properties) in a virtual world, which can 

be 'filmed' using virtual cameras and lights. Several programs are available for this, 

including the commercial packages Maya/Autodesk, 3D Studio Max and Softimage 

XSI (all from Autodesk, [15]), Cinema 4D (from MAXON Computer GmbH [16]) 

and the open-source Blender [17].

Not surprising, all of these have been used for the study and representation of 

biological molecules and processes. Some examples are collected and visible on 

dedicated websites [18, 19]. The films range from the simple representation of the 

mechanical functioning of a single protein, to complex events involving many 

subjects such as DNA replication and RNA processing, to views of major cellular 

processes, such as apoptosis, etc.. These latter ones are important scientific efforts and 

add to their educational value the bonus of rising interest in the general public to 

approach biology. 

For our purpose we use Blender, an open-source, free, cross-platform 3D application. 

Blender is a powerful instrument for 3D modeling, animation, gaming and rendering, 

that provides a complete workbench for producing still images, simple animations or 

very complex scenes with thousand of objects in motion, all textured, lighted and 

filmed for proper view. 
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Traditionally, the process of creating a 3D animation film consists of a number of 

steps roughly grouped in modeling, animation, rendering, special effects and 

compositing. Blender offers a platform to elaborate and integrate all of these steps.

Objects are created in the virtual world by modeling them in the 3D scene starting 

from primitives or by importing them from other programs. A time line holding key 

frames (points in time in which objects have defined configuration set-ups) is used to 

animate the objects in the scene in various ways: by direct rotations/translations of the 

object, by mesh deformation obtained moving its components (vertices, edges, faces), 

via skeleton (inverse or forward kinematics) or by using the Game Engine (GE), 

typically deployed in video games. Additionally, physics-based animations can be 

achieved by simulated forces such as gravity, magnetic, vortex, wind etc. Objects are 

given a surface appearance by the use of material shaders and textures. These two 

elements define the behavior of the surface when illuminated, by specifying local 

information like color, reflectance (dull or shiny) and microstructure (roughness or 

smoothness).

Once the animation and texturing is defined, the scene is equipped with other assets 

such as a background, lights and cameras and the process concludes with the 'filming' 

(rendering of all frames which are assembled to generate a video).

In this article, we illustrate a step forward in the direction of using bio-animation both 

as a divulgation and as a discovery tool. Our aim is to visualize molecules in a 

directly informative way, also showing their motion obtained from structural data 

(Figure 1). This task is done using BioBlender [20], in which Blender is used to 

access several scientific programs. BioBlender is an engine built in Blender with an 

interface for biological visualization (Figure 2). 
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The use of Blender GE to elaborate the movement of proteins, starting from 2 or more 

conformations is described in Zini et al. (BioBlender: Fast and Efficient All Atom 

Morphing of Proteins Using Blender Game Engine, manuscript submitted). Briefly, 

starting from data from NMR collections or X-rays of the same protein crystallized in 

different conditions, we use Blender GE, equipped with special rules approximately 

simulating atomic behavior, to interpolate between known conformations and obtain a 

physically plausible sequence of intermediate conformations. This sequence is output 

as a list of pseudo .pdb file (list of atoms with their x,y,z coordinates) which are the 

basis for the visual elaboration described here. 

As the result of this study, we propose a new visual code for the representation of two 

important surface properties: electrostatic potential (EP) and molecular lipophilic 

potential (MLP). Using features different from color permits their simultaneous 

delivery in photo-realistic images leaving the utilization of color space for the 

description of other biochemical information. Here we describe the details of this 

process. 

Methods
Programs and scripts
BioBlender is an extension of Blender, in which custom Python scripts have been 

implemented for building the interface, importing the meshes and the curves, 

converting MLP values into vertex colors and managing various scientific programs 

(www.bioblender.org). 

In the construction of BioBlender, we have made ample use of several existing 

programs, listed here.

Blender 2.5 – a free, open source, cross platform suite of tools for 3D creation [17]. 
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PyMOL 1.2r3pre – a Python-enhanced molecular graphics tool [10], used for 

visualization of .pdb files. It calculates the electrostatic potential through APBS plug-

in. This tool is also used to generate the 3D mesh of the molecular surface for the 

molecule. The obtained geometry is exported in .wrl format,  easily read by 3D 

software tools.

PDB2PQR-1.6.0 – [21, 22] a software package that automates many of the common 

tasks of preparing structures for continuum electrostatics calculations, providing a 

platform-independent utility for converting protein files from PDB format to PQR 

format. It assigns partial atomic charge to every atom according to different force 

fields (AMBER 94, CHARMM 27 or PARSE) and saves a .pqr file in which the 

occupancy and temperature columns are replaced by atomic charge and radius, 

respectively. It also adds missing hydrogens, calculates pKa values and generates an 

input (.in) for APBS calculations. The .in file stores  information on the 3D dimension 

of the protein, the ionic concentration of solvent, biomolecular and solvent dielectric 

constants. Ionic concentration of 0.150 mol/l NaCl, biomolecular dielectric constant 

of 2 and solvent dielectric constant of 78.54 (water) were used for our calculation. 

APBS-1.2.1 (Adaptive Poisson-Boltzmann Solver) – [12] a software for evaluating 

the electrostatic properties of nanoscale biomolecular systems, through solution of the 

Poisson-Boltzmann equation. APBS takes as inputs a .pqr and an .in file and 

calculates the electrostatic potential in every point of a grid in the protein space, 

which is output as a .dx file.

scivis.exe – a custom software written in C++ used to calculate the field lines and to 

export them in a ASCII file to be imported in Blender. This tool imports the 3D 

surface (.obj) and the EP grid (.dx) calculated by APBS. The computation of the field 

lines is a multi-step process: EP values are mapped on the 3D surface, a gradient field 
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is calculated in the volume containing the molecule, an automatic selection of areas 

with high values of EP is done and the corresponding field lines are computed for 

these areas using the gradient field. When used as primary application, in addition to 

the described features, scivis.exe provides visual feedback for all its processing steps. 

It is possible to visualize the molecular surface, the EP grid, the gradient grid and the 

field lines.

Python 2.6 – an interpreted, interactive, object-oriented, extensible programming 

language [23]. In this project, Python has been used in different stages, both as a 

scripting component of various software tools (like Blender and PyMOL) and as a 

stand-alone scripting language.

pyMLP.py – a Python script written and kindly provided by Julien Lefeuvre 

(available from [24]); it contains a library of atomic lipophilic potential for all atoms 

present in proteins (we added the values for some mono-saccharides and nucleic 

acids) and it calculates the MLP in every point of a grid in the protein space according 

to various formulae such as Fauchere, Dubost, Brasseur, etc. (we introduced Testa 

formula). The grid step can be changed by the user to cope with the protein size and 

computer performances (in terms of memory occupancy and calculation time).

Results 

We present here a software/method to produce the simultaneous visualization of EP 

and MLP on proteins. In the case of moving proteins, the program produces a 

rendered animation, in which every second of the resulting movie contains 25 images 

(24-30 frames per second is the standard video speed), and at every frame the shape, 

EP and MLP of the molecule are automatically recalculated. 
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In the elaboration of each frame representing proteins, still or in motion, the steps of 

object (mesh) creation, surface calculation and data manipulation for EP and MLP are 

elaborated independently using both scientific and CG programs to obtain the series 

of frames compositing the animation (Figures 3 and 4). 

Protein surfaces
The molecular surface of proteins [25] is calculated in PyMOL starting from the .pdb 

file, as shown in Figure 3, upper left. For series of conformations (obtained with 

Game Engine or derived from molecular dynamics), the procedure is reiterated. 

PyMOL was chosen because the surfaces created by this software have a regular 

triangulation even at low polygon resolution and it is only marginally afflicted by the 

problem of internal disjoint surfaces. In the 3D mesh used in the example reported in 

Figure 5A and in other tests with wider range of dimensions (number of polygons 

between 4.5 and 50 thousands), all the triangles have similar areas. The mesh is 

exported by PyMOL as a .wrl, a file which contains information about the position of 

the vertices, edges, characteristics of the material of the polygon etc.. 

MLP calculus 
The MLP calculus (Figure 3 upper right) is done using pyMLP.py [26, 27].  This 

script calculates the lipophilic potential in every point of a grid in the space of the 

protein and exports the values in a .dx file. The script contains a library of atomic 

lipophilic potential values for every atom based on its chemistry, and several formulae 

for MLP calculation. However it does not support the Testa formula [28],

MLP (r )=∑
i

f i e
−∣r−r i∣

2

where r is a point in the protein space, f i  is the atomic lipophilic potential for atom i, 

and ri is the position of atom i.
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The Testa formula is an atom-based function that uses the Broto [26] fragment 

scheme and an exponential distance function, appropriate for protein calculations; 

therefore we modified pyMLP.py to include Testa formula. The MLP accuracy 

depends on the grid spacing (a in Figure  2); in BioBlender the default is set at 1Å, a 

dimension comparable to the mean size of the triangle edge of the 3D mesh; this 

parameter is a good compromise between MLP data, mesh triangulation, computer 

memory and time for calculation (see below).

pyMLP outputs a .dx file in which the header defines the grid origin, the grid step and 

the number of points on each axis. 

MLP rendering
The code for the representation of hydropathy that we propose is a range of optical 

features that go from smooth-shiny surface (hydrophobic) to rough-dull (hydrophilic), 

as shown in Figure 5C.

Data elaboration for rendering is done in a series of steps (Figure 3, lower part):

1. MLP values mapping on the mesh. The MLP values (typically between -3 and 1 for 

soluble, membrane-embedded and cytoplasmic proteins) are mapped on the surface of 

the molecule by assigning values of MLP to the mesh. The algorithm (included in a 

custom program, OBJCreator) is simple: for every vertex of the mesh, the 

correspondent grid-cell, in the MLP grid, is identified and the value of potential is 

calculated using trilinear interpolation and assigned to the vertex. 

This process is very fast (about 2 seconds on a personal computer for calmodulin) and 

the mesh vertex density is high enough to represent smoothly the potential spatial 

transition. The information about the MLP values corresponding to every vertex are 

stored in the V field of an .obj file as texture coordinates (U and V).
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2. MLP values conversion into vertex colors. MLP values (previously assigned to the 

vertices of the mesh) are converted into vertex colors, assigning the same value for 

each RGB channel, to obtain levels of gray). For the conversion we normalize the 

range of the MLP values ([-3,1]) to the range of gray scale ([0,1]), and set value 0 of 

MLP to correspond to the value 0.5 of the gray scale. In this way the hydropathy of 

the protein is visualized in Blender as levels of gray: bright areas representing 

hydrophobicity and dark areas hydrophilicity (Figure 5B). The use of the default 

conversion scale provides a coherent representation for all proteins; however, at this 

step, to enhance MLP features for any particular protein under study, the user can 

modify contrast and brightness using sliders (b in Figure 2 ). 

3. Creation of the first image texture. The mesh is unwrapped to generate a texture 

parametrization and the per-vertex color values are saved ('baked') in a texture image. 

UV unwrapping is a procedure that consists in flattening a 3D object (e.g. the world 

globe) on a 2D plane (e.g. the world map), so that each vertex of the 3D mesh is 

assigned a correspondent 2D texture coordinate [29]. The 2D image is also called 

image texture or UV map, where U and V are the texture axes.

4. Creation of the second image texture. In order to make the more hydrophilic areas 

rough the procedure involves the addition of a noise pattern of amplitude proportional 

to the degree of gray of the texture. This is achieved using the Node Editor of 

Blender, adding a Gaussian noise to the texture image, which produces an image with 

a strong noise over the black regions, gradually reduced on gray regions to reach a 

level of no noise on white. In the rendering process this noise is converted to bump, as 

explained below. 

5. Addition of specularity and roughness. In the final rendering step, the image 

obtained in the first step (gray scale) is finally mapped on specularity from dull to 
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shiny, and the second image is mapped on bump. Bump mapping is a rendering 

technique generally used to represent very small scale geometry like scratches, 

roughness or graininess. This technique does not affect the geometry of the object: the 

perceived local geometry is only an optical effect obtained by light reflection 

modifications. In the final image hydrophobic areas are represented as reflective and 

smooth, while the more hydrophilic ones as duller and rougher (Figure 5C). By 

avoiding the use of color, as well as of gray scale, the differences in color are only 

due to the effect of light interacting with the surface, i.e. the darker areas are the least 

illuminated. 

EP calculus
While the use of movies is mostly intended to show transition between conformations 

of a protein, it also allows the introduction of special effects of CG to convey other 

information. We have elaborated the following procedure using both BioBlender and 

external programs to display the EP associated with molecular (partial) charges (see 

Figure 4, right side). All programs are accessed through BioBlender interface, also 

used to set specific parameters.

The .pdb file used for mesh creation and MLP calculus is submitted to PDB2PQR 

program [21, 22] which outputs 2 files: .pqr and .in. These files store information on 

the size and charge of every atom, and on the dimensions of the protein, the ionic 

concentration, biomolecular and solvent dielectric constant, respectively. Both .pqr 

and .in are input files for APBS program [12], that calculates the electrostatic 

potential in every point of a grid in the space of the protein and exports the values in a 

.dx file, analogous to the one seen above for MLP. The force field, the ion 

concentration and the grid spacing can be set by the user (c in Figure 2). 
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EP is redrawn as field lines calculated by a custom software, scivis.exe, that combines 

information from the mesh file (.obj) with EP values (see below). This computation 

comprises different steps: 

1. Mapping EP on the surface mesh

2. Transformation of the grid of EP values into a grid of gradients

3. Selection of more active surface areas by weighted Monte Carlo sampling

4. Drawing of field lines that are stored in a .txt file

The EP values are mapped on the surface of the protein by assigning a value of EP to 

every vertex of the mesh, as seen above for MLP, i.e. trilinear interpolation. 

A grid of gradient vectors is built starting from the scalar field of EP values: for each 

point the gradient is calculated according to the values in neighbor points, finding the 

direction and slope of EP change. 

The gradient data are used to generate the field lines in the space surrounding the 

protein. From the infinite possible lines, we are interested in generating a 'meaningful' 

subset comprising the lines associated with areas of the mesh with high value of EP, 

obtaining a distribution of lines that is proportional to the surface EP value: more lines 

will rise in the more electrically active areas, and the total number of lines will be 

proportional to the global level of potential of the molecule. This selection is done by 

Monte Carlo sampling weighted with respect to the potential value of the surface in 

each area. 

For the selection of this subset, the user has two controls (d in Figure 2): the absolute 

EP value on the surface from which the creation of the field lines starts (lines are 

generated only in areas with an EP higher than a threshold – Minimum potential) and 

a parameter that represents the general line density (expressed as Number of lines x 

eV/Å2). By modulating this parameter users can select the most appropriate value for 
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a group of proteins, obtaining a concentration of field lines which is coherent across 

the various proteins.

Once the 'interesting' locations (points) are selected, the lines are calculated by 

following the gradient in both directions, iteratively moving with small steps 

according to the gradient (small-step integration). Line points are added until one of 

the following three conditions is met: 1. the limit of the calculated grid is reached, 2. 

the line intersects the mesh or 3. the field is too low (the gradient is approximately 0 

or equal to the value set by the user). The lines are saved as sequences of points in an 

ASCII file (.txt).

Thanks to the random nature of the selection procedure, lines do change every time 

the procedure is run but the more electrically active areas (where more lines are 

present) are readily identifiable. This property proves to be particularly effective when 

represented in animation, since it gives the idea of fuzziness, useful for electricity 

representation, while conveying the information about EP distribution on the surface.

In the case of Calmodulin, depicted in Figure 1, and even more evident in the WebGL 

animated representation, most lines are directed towards the surface, due to the fact 

that the protein is slightly acidic, with an isoelectric point of 4.09. 

EP representation
Field lines are imported into Blender as NURBS curves which are not rendered (they 

are invisible in the final image), but instead are used to guide a particle effect. Every 

curve starts at its most positive end which is associated with a particle emitter. The 

particles, drawn as short segments, flow along the curves from positive to negative, 

respecting the field lines convention in physics. During animation, the particles are 

generated every 5 frames (0.2 sec) and have a life-time of 20 frames (0.8 sec). This 

means that the system is in steady state after the sixteenth frame (see the scheme in 
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Figure 6). Representation of EP as moving particles on a trajectory, played in time, is 

interpreted easily and transmits the idea of polarity of the charged areas of a 

biomolecule. 

If the user is interested in visualization of only one conformation, the animated 

particles are displayed/played in loop (they are emitted for 250 frames and have a 

lifetime of 20 frames).

Moving proteins
In the visualization of proteins in motion, every frame is elaborated as a single .pdb 

file. Because at every frame the atomic coordinates change, also the surface features 

(shape itself, EP and MLP, calculated by integrating the atomic values) change 

accordingly, and must be recalculated. Due to extremely high-level modifications 

(topology changes, merging/separation of surface parts) it is not possible to use a 

single geometry and animate it through conventional tools. It is instead necessary to 

rebuild the surface geometry, importing a new set of mesh coordinates at each frame.

This implies a very large amount of calculations, but allows the elaboration of a 

sequence of images that is coherent from frame to frame, thus giving the impression 

of continuity.

In summary, for each frame (conformation) we visualize MLP as textured mesh and 

EP as curves and animated particles. The result is a sequence of frames showing the 

moving protein with its properties, EP and MLP, represented together: MLP as a 

range of visual and tactile characteristics and EP as flow of particles that move from 

positive to negative along invisible field lines (as shown in the movie Protein 

Expressions - Study N. 3 [30]). 
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Discussion 
The description of biological phenomena has always made use of graphical 

presentation, starting from the early botanical and zoological drawings, including 

famous anatomical folios, that greatly help viewers, professionals and not, to 

understand and learn about nature.

Since the early times, an artistic component has been included, often unnoticed by 

viewers, but greatly exploited by the scientists/artists. Even today, the clearest 

graphical descriptions of natural and artificial subjects are hand- or CG-drawn rather 

than photographic images. The 'artistic' dimension allows for a better interpretation of 

the subject, the choice of illumination, and the removal of irrelevant details and 

disturbing effects.

The same attitude has motivated a number of scientists to use various graphical tricks 

when showing data related to structural features of macromolecules. Although most 

structural information contained in a .pdb file (a list of atoms and their 3D 

coordinates) is actually 'readable', biologists typically use graphical programs to 

explore protein structures; indeed the literature has an abundance of such programs, 

including some very popular. These programs can transfer the structural information 

from a linear list of atoms to a 3D virtual space and display it on 2D surface; 

positional information is interpreted with the aid of chemical information stored in 

libraries (of amino acids, nucleotides and other molecules), that introduce chemical 

bonds, electric charges, hydrophobicity scales and so on. In this way the user is 

enabled to observe features of the molecules of interest according to her/his needs.

Recent years have seen the development of 3D computer graphics techniques that 

have culminated in the recent success of the blockbuster movie Avatar, in which an 

entire world has been created in CG, including 'floating mountains' and forest with 

thousands of (CG built!) plants, animals, insects etc.
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Similar techniques can be used to show the nanoscopic world of cells, populated with 

all sorts of environments, proteins, nucleic acids, membranes, small molecules and 

complexes. Indeed, there are several remarkable examples of efforts in this new 

discipline of Bio-Animation, some of which have reached a large public. Beside the 

beauty and the educational value of these animations, we consider that the very 

process of creating such movies includes a heuristic importance both in the 

development of the graphical instruments and in the studies implied in the elaboration 

of the subjects' (proteins) movements and interactions. In fact, when a researcher is 

induced to take a different point of view, such as needed for the visual elaboration, 

s/he will be exposed to possible new insight, facilitating better understanding of the 

process under study. In this way a novel spatial reasoning can complement the 

classical biochemical reasoning typically employed in molecular research.

Our group is among those involved in the development of animated biology, and in 

this paper we report one aspect of such effort, namely the elaboration, using Blender, 

of a code capable of showing two of the most critical features that determine the 

behavior of macromolecules: their electrostatic and lipophilic potentials. 

Choice of Blender
Among the professional packages developed for CG, one only has the double 

advantage of being open source and available free of charge: Blender. 

Blender is the result of a world-wide, concerted effort to put tools of the highest 

standard for CG creations at the reach of any artist (or scientist) regardless of her/his 

capability of paying for such tools. The project is guided by the non-profit Blender 

Foundation, and animated by countless developers that voluntarily devote time and 

effort to constantly introduce the most up to date techniques into the package, 

equipping users with any instrument they need. Blender 2.5, the latest major release, 
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introduced a new design of the user interface, new physics engine for smoke 

(volumetric), particles and soft bodies, and, importantly, the possibility to achieve all 

Blender's functions from scripting, through APIs. 

BioBlender
On the framework of Blender 2.5, we built BioBlender, which includes a section 

specifically built for biological work. Inside BioBlender, for the analysis of proteins 

structures, various types of visualization are available: alpha carbon, main chain, main 

chain and side chains, all atoms (including hydrogens) and molecular surface. The 

elaboration of proteins' motions and the simultaneous representation of surface 

physico-chemical properties of proteins in motion are the innovations that BioBlender 

introduces in macromolecular visualization. 

Elaboration of protein motion
We use Blender Game Engine to elaborate the movement of proteins, when more than 

one conformational state is known. Starting from data from NMR collections or X-ray 

of the same protein crystallized in different conditions, we use Blender GE, equipped 

with special rules approximately simulating atomic behavior, to interpolate between 

known conformations and obtain a physically plausible sequence of intermediate 

conformations. This sequence can be explored within Blender or can be output as a 

list of  pseudo .pdb file (list of atoms and x,y,z coordinates) which are the basis for the 

visual elaboration. 

It is important to notice that this procedure can be applied to any .pdb or (better) 

sequence of .pdb files representing a continuous series describing a conformational 

transition, obtained by Blender or by any other means, e.g. Molecular Dynamics 

simulation.
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Visualization of moving proteins, and of their molecular surface features
The development of structural biology that made available tens of thousands of 

structures, not only improved our knowledge on structural features such as the 

richness of protein folds (secondary and tertiary structure), and of their association in 

groups (quaternary structure). It also increased knowledge associated with protein 

motion: in fact most proteins exert their function through some kind of motion. This is 

best understood by observing the movement in an animated film. The role of side 

chains, which are the determinants of such motions, is at present difficult to 

appreciate by using present visualization tools that either provide a fixed all-atom 

structure, or show dynamically only a limited number of atoms.

We present here a procedure that allows the direct observation of moving proteins 

focusing on their surface features, rather than on their structure. In particular, we have 

focused on hydropathy and electrical fields as they appear on and around the 

molecular surface. 

These features can be calculated and visualized by a number of programs, which 

typically display them with a color code. We reasoned that for these properties a more 

'photo-realistic' display would help viewers in the de-codification of their meaning, 

and elaborated the system here reported. Example of the use of these codes can be 

seen for a single protein in the Proteopedia page [31] (see also Additional file 1) and 

for a complex in our movie Protein Expressions – Study N3 [30].

The main idea of the proposed visual mapping is to exploit perceptual associations 

between the values to be mapped and visual characterization of real-world objects. 

Ideally, by using already established perceptual association, the viewer will be able to 

understand the provided information more naturally, without the use of explicit 

legends. For MLP mapping, two opposite surface characterizations able to convey a 

sense of affinity to water or to oil were selected. In our real-world experience, a very 
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smooth, hard surface (like porcelain or wax) is completely impervious to water but 

can be easily coated by oil. The opposite visual feedback is associated to grainy, 

crumbly, dull surfaces (like clay bricks or biscuits) which can be easily imagined 

being soaked in water. These considerations led to the 'painting' of highly 

hydrophobic areas as shiny, smooth material and of highly hydrophilic areas as dull 

and rough. 

While the MLP value is only observable on the surface itself, electrical phenomena 

are associated to the idea of an effect projected in the volume surrounding a charged 

object, and able to affect other objects (like the high school favorite amber rod 

attracting paper bits). Field lines are a common way to describe the effect of the 

electrical field. EP value is therefore represented by showing small particles, moving 

along the path defined by field lines, visualizing a high concentration of particles in 

areas where the electrical field is stronger.

The representation of both features in black and white allows the viewer to grasp their 

values, without distracting with arbitrary information which is not interpretable if not 

associated with a de-coding legend, making it easier to interpret.

For MLP elaboration we considered that none of the available programs are accurate 

enough to provide useful information: most molecular displaying packages simply 

attribute a fixed value of MLP to every atom of a given amino acid, using the Kyte-

Doolittle scale [14]. This scale was elaborated almost 30 years ago with the aim of 

identifying structural features of proteins, namely the interior portions of globular 

proteins and membrane spanning segments in membrane associated proteins, but is 

not indicated for the evaluation of the distribution of MLP on the molecular surface. 

Indeed, some other programs include a more appropriate method of calculation, such 

as VASCo [32] which employs the Brickman [33] formula on an atom based library 
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and a Fermi-type distance function. We have implemented a calculation with the 

Testa formula, which uses an atom-based fragment scheme and an exponential 

function. The values thus obtained are plotted on the vertices of the molecular surface.

This procedure results in a very smooth distribution of MLP values which is then 

displayed with a scale of 'tactile' textures, ranging from dull-rough to shiny-smooth.

The advantage of such calculation and representation is mostly noticeable in animated 

movies showing the transition between different conformation of proteins, when 

patches of hydrophobic areas are gradually exposed on the surface of proteins which 

will facilitate docking onto other macromolecules.

For EP, we developed a visual code based on a flow of particles (small lines) flowing 

towards the negative pole: this is particularly useful for the observation of interacting 

molecules and for molecules whose field is changing when the conformation changes. 

To elaborate EP we made use of several programs and integrated them in a flow 

whose final result is the continuous display of the EP and its development during 

protein conformational transitions.

Time considerations
The entire process is very fast: a protein of 2262 atoms is imported in 7 sec, while 

MLP and EP computation with grid spacing 1 Å take 70 and 19 seconds, respectively, 

on a standard personal PC equipped with WindowsXP, Intel Core 2Duo CPU, 2.33 

GHz, 3.25 GB RAM.

Our example is Calmodulin: after activation due to the binding of 4 Calcium ions, the 

protein undergoes a major conformational transition in which both its EP and its MLP 

change considerably: the Ca ions introduced in the 4 EF hand domains affect the EP 

by virtue of their own charge and the MLP by inducing the opening of each globular 
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domain to expose two major hydrophobic patches which enable the protein to interact 

with its partners and push the calcium signal downstream in the biochemical pathway. 

Proteins and their surface properties can also be visualized in a 3D interactive way on 

web platform exploiting the new WebGL component of HTML5. Using this API, it is 

possible to display 3D content in a web page without the use of external plug-ins, by 

writing an appropriate visualization program using the OpenGL syntax. Using a 

javascript support library, SpiderGL [34], we built an interactive visualization scheme 

[35] which accepts as input the same data (meshes, field lines and the MLP texture) 

calculated by BioBlender.

Conclusions 
In conclusion, we have developed a computational instrument that allows the display 

of molecular surfaces of moving (or still) proteins, putting special emphasis on their 

electrical and lipophilic properties. We consider that this representation allows better 

(or at least more immediate and intuitive) understanding of the dynamical forces 

governing intermolecular interactions and thus facilitate new insights and discoveries. 
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Figures
Figure 1 – Example of BioBlender representation.
The protein (Calmodulin) is shown with its chemical and physical features 

represented according to the proposed code, as described in the present article. The 

image is a single frame from an animated sequence, showing EP and MLP. For a 3D 

interactive example, please visit 

http://www.scivis.ifc.cnr.it/images/stories/3d_interactive/VIS_CaCaM/VIS_CaCaM.h

tml 

Figure 2 – BioBlender interface
The interface is structured in 9 panels: amino acids list – to select and highlight amino 

acids in the 3D viewport, chains list – to select different protein chains, proteins list – 

to select different proteins; select .pdb file – upload from user defined path, or access 

directly from PDB.org specifying the 4 letter code; import – at the import phase, it is 

possible to select various parameters, including covalent/Van der Waals radius, 
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include/exclude Hydrogens and others; view – visualization in 3D working space, 

activation of Game Engine; MLP visualization – Parameters for MLP;  EP 

visualization – parameters for EP; output – export of .pdb files and rendered frames.

a: choice of formula and grid spacing; b: contrast and brightness control;  c and d: 

calculation and representation, respectively.

Figure 3 – Procedure for MLP calculus and representation 
For each .pdb file, PyMOL and pyMLP.py calculate the surface and the MLP values, 

respectively; then, MLP (stored in a .dx file) is mapped on the surface and both are 

saved as an .obj file; MLP values are converted into vertex colours, and texture 

images are saved. These are finally mapped on the material of the mesh, and rendered 

as bump and specularity effects.

Figure 4 – Procedure for EP calculus and representation
Starting from the same .pdb file used for MLP calculation, PDB2PQR adds atomic 

charge to each atom, then APBS calculates the EP values and stores them in a .dx file; 

Scivis uses the information about the mesh (previously calculated for MLP – blue 

squares) and the .dx file to calculate the field lines; these are imported in Blender as 

curves along which travel particles, emitted from their positive end.

Figure 5 – MLP mapping on the surface of Calmodulin
Steps in the creation of an image of Calmodulin are shown. A Panel of the 3D scene 

of Blender with a wireframe view, showing the fine triangulation (average edge size 

1Å) of the mesh. B MLP representation as levels of grey. C Final image at high 

resolution showing the variation of MLP distribution over the molecular surface.
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Figure 6 – Particles generation and representation for moving proteins
Field lines are imported as curves every 5 frames (0.2 seconds). Particles have a life-

time of 20 frames (0.8 seconds). After the sixteenth frame (0.6 seconds) the system is 

in ready-state (square).

Supplementary material
1. Additional file 1. Calmodulin in motion. The movie (in .avi format) shows several 

transitions of calmodulin in the Apo form (without Calcium) and the major 

conformational change induced by the binding of 4 Ca ions. The movie can also be 

seen online at 

http://proteopedia.org/wiki/index.php/Calmodulin#Calmodulin_in_Motion 
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