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ABSTRACT 

 

The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency 

characterized by recurrent infections, thrombocytopenia and a predisposition to develop 

autoimmune phenomena and lymphoreticular malignancies. The disease arises form 

mutations in the gene that codes for the WAS protein (WASp), a key regulator of actin 

dynamics in hematopoietic cells. Extensive analysis of WASp activation, regulation and 

function in T lymphocytes, have contributed to the understanding of the molecular basis of 

the immunodeficiency in WAS patients. However, it is increasingly evident that a general 

impairment of hematopoietic cell functions contributes to the pathogenesis of the disease 

 

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) pivotal in the 

initiation of primary immune responses against pathogens and in the maintenance of 

peripheral T-cell tolerance against self-antigens. Despite clear indications of a role of 

WASp in the cytoarchitecture and migration of immature DCs, little is known about the 

effect of WASp deficiency on the ability of DCs to handle antigens and to interact with and 

activate naïve T-cells 

 

The aim of this project was to extend the present knowledge on the biology of DCs by 

studying the role of WASp in several aspects of their activity and to increase our 

understanding of the role of DCs in WAS pathogenesis. Using a murine model of WASp 

deficiency (WASp-) we focused on four main topics in DCs. First, we evaluated the ability 

of WASp- DCs to internalize and process physiologically relevant forms of antigens. 

Second, we measured the ability to migrate and encounter naïve T cells in vivo and in 

vitro. Third, we studied the ability to physically interact, present antigens and form stable 

synapses with T cells. Finally, we evaluated the efficacy of WASp- DCs to support T-cell 

activation in vivo and in vitro. In this work we demonstrate that WASp is a key protein in 

DCs, required to properly activate T cells. We also reveal a new mechanism of polarization 

in DCs that supports the synaptic delivery of cytokines and enhances T-cell activation. 
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1. INTRODUCTION  

 

1.1. Wasp Disease, general traits 
 

The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder 

characterized by thrombocytopenia, small platelet volume, eczema, recurrent 

bacterial and viral infections, autoimmune diseases, increased risk of malignancies 

and abnormal B- and T-cell function. 

 

The disease was linked to a single gene composed of 1823 bp and 12 exons, 

which is present in the X chromosome and only transcribed in the hematopoietic 

cells. The product is a 502 amino acid called the Wiskott-Aldrich protein (WASp). 

The protein contains an N-terminal domain called EVH1 or WH1, a basic region 

followed by a 14 residue stretch (GTPase binding domain or cdc42/Rac-interacting 

binding motif) a proline-rich region containing multiple consensus motifs for Scr3 

homology 3 (SH3) domain binding and an acidic C-terminal region (VCA domain).   

 

The C-terminus of WASp is responsible of binding and activating the Arp2/3 

complex, a potent nucleator of actin polymerization1. This domain is made up of a 

WASp homology 2 (WH2) sequence followed by a short central (C) sequence and 

a terminal acidic (A) sequence. WH2 domains bind monomeric actin 2, while the C 

and A sequences bind to the Arp2/3 complex. 

 

The N-terminal domain binds to the WASp interacting protein (WIP) that regulates 

WASp  

activity3 . WASP also possesses a binding domain (CRIB, also called GBD) for the 

GTP-bound (activated) form of the small GTPase cdc42, as well as a basic 

sequence that binds to phosphatidylinositol 4,5-bisphosphate (PIP2) 4.  

 

The native form of WASp suppresses its capacity to trigger Arp 2/3 complex-

mediated actin nucleation. This autoinhibitory behavior is obtained by folding the 

GBD and the EVH1 domains to residues within the VCA domain. WASp activity is 



Introduction 

 5 

evoked following cell stimulation by three different ways: disruption of the 

blockage by interactions between cdc42 and the GBD domain, interaction between 

SH3 domain-containing proteins and the proline-rich region, or by phosphorylation 

of tyrosine residues (Figure1). 

 
Figure 1. Functional domains of WASp and their interacting proteins.  In the 
inactive state, WASP has an autoinhibitory conformation, with the molecule folded in such 
a way as to enable a stable interaction between the CRIB and C domains. This structural 
constraint is disrupted by interactions between activated cdc42 and the WASp GBD or, 
alternatively, between SH3 domain-containing proteins, such as PSTPIP1 and Nck, and 
the WASp proline rich domain.  
 

 

WASp is a member of a family of proteins that participate in the transduction of 

signals from the cell surface to the actin cytoskeleton 5. Other members of this 

proteins family are the three isoforms of SCAR/WAVE 1-3 and the ubiquitously 

expressed N-WASp.  

 

The mechanisms responsible for the pathophysiology of WAS are directly linked to 

deficient actin organization in haematopoietic cells. The aberrant cell migration in 

hematopoietic stem lineage precursors has been proposed as the basis of the 

profound disorders of the immune cell development, functioning, and homeostasis 

in WAS patients6.  However, the biological defects that have the most profound 

effects on the functioning of the immune system as a whole have not yet been 

clearly determined.  
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Actin remodeling represents an integral component of cell activation. Regulating 

the temporal and spatial distribution of actin polymerization is therefore essential 

for eliciting appropriate cell responses to environmental signals7.  

 

Several studies performed with lymphocytes from WAS patients have revealed 

both signaling and cytoskeletal defects, including aborted mitosis, abnormal 

pattern of actin filaments, impaired macrophage phagocytosis8, NK cell 

cytotoxicity9, reduced B-cell adhesion and migration10 and T-cell activation11 7. The 

human WAS gene has 86% of similarity with the murine WAS gene. Thus, to 

better understand the role of WASp in the immune system, Snapper’s group 

generated a WASp-deficient mouse containing a targeted disruption of the 

GBD/CRIB motif. This murine model share most of the pathology features 

reported in humans5. A summary of the cellular defects that have been reported7 

for the WASp-deficient mouse model is listed in Table 1. 

 

Table 1.  Functional defects in WASp-deficient cells 

Cell type Functional defects 
Haematopoietic progenitors12 
 

Decreased homing efficiency  
 
 
 

Monocytes/macrophages7; 13 
 

Abnormal morphology 
Absent podosomes 
Chemotactic/migratory defects 
Adhesion defects 
Phagocytic defects 

 
T cells11; 12 14 
 

Abnormal morphology  
Impaired CD3-mediated proliferation  
Impaired thymocyte development 
Impaired capping of actin and T-cell receptors 

 
B cells15 
 

Abnormal morphology with shortened microvilli  
 

Platelets16  
 

Reduced number and volume 

 

Lack of WASp leads to defective development and maturation of T-cell and B-cell 

lineage cells in mice. However, it is not clear whether a functional redundancy of 

WASp and N-WASp is present. Cotta de Almeida et al. addressed this problem 
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generating a conditional double-knockout strain and suggested that T-cell 

development depends on the combined activity of WASp and N-WASp17. 

Nonetheless, WASp serves a unique role for peripheral T cell function. In 

peripheral T cells WASp plays a critical role in the reorganization of the actin 

cytoskeleton. WASp-deficient T cells show a reduced capacity to form an 

asymmetric patch of adhesion molecules and surface receptor following TCR 

engagement that leads to an impaired migration and proliferation14; 16.  

 

WASp plays a crucial role in the cytoskeletal regulation of B lymphocytes. WASp-

deficient B cells are unable to respond to chemotactic gradients and have an 

impaired motility, caused by their inability to polarize the cell body10. Moreover, 

actin polymerization mediated by cdc42/Rac1, has been shown to be affected in 

WASp deficient B cells, causing an aberrant pattern of membrane protrusions 

upon stimulation with IL-415. These defects have been proposed as an explanation 

to the aberrant peripheral B-cell maturation and homeostasis in WASp-deficient B 

cells (Westerberg 2008). 

 

1.1.1. Role of WASp in DCs 
 
 

Several defects in the cytoskeletal architecture of DCs such as aberrant podosome 

formation and altered membrane adjustments required for migration, have been 

reported18 in human and mouse cells. To examine the functional role of WASp in 

DCs, most of the studies have been carried out using the murine deficient model. 

WASp- DCs fail to assembly podosomes during the response to chemotactic 

gradients, in particular, it has been shown that formation of podosomes and 

recruitment of the integrin Beta-2 is strongly compromised in the absence of 

WASp, causing a defect on the ability of adhesion to the Intracellular adhesion 

marker ICAM-1. ICAM-1 is a relevant molecule in stabilizing cell-cell interactions 

and facilitating endothelial migration. In vitro experiments resulted in abnormal DC 

membrane polarization and motility on a fibronectin matrix. Similarly de Noronha 

et al, shown in vitro impaired migration of WASp- DCs towards the chemokine 
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ligands CCL19, CCL3 and CCL2119. In vivo, WASp- DCs have a defective migration 

from skin and periphery towards the secondary lymph organs, which correlates 

with a reduced priming of naïve T cells20.  

 

1.2. Dendritic cells  
 
 
DCs can be catalogued as a heterogeneous family of leukocytes that integrate 

information and transmit it to lymphocytes. Their main role is to recognize specific 

molecules upon infection of invading pathogens that trigger their differentiation 

into immunogenic Antigen Presenting Cells (APC), capable of priming and 

sustaining the expansion of naïve T cells. 

 

Known as professional APC, DCs have a notable role in the initiation and 

modulation of the immune response due to their distribution and capacity to reach 

the lymphoid organs, areas where the CD4+ and CD8+ T cells accumulate. They 

have a unique capacity to translate the environmental signals into specific classes 

of adaptive immune responses by polarizing T-cell development. DCs have an 

inherent high efficiency for antigen presentation that allows them to induce strong 

T cell responses in small number and low levels of antigen21. DCs play also an 

essential role in the generation of both central and peripheral T-cell tolerance by 

inducing deletion, anergy or regulation of T lymphocytes22. 

 

1.2.1. Subsets of dendritic cells 
 
 
The phenotypic and functional analyses of DCs found in thymus, spleen and lymph 

nodes have revealed that DCs are a heterogeneous population of cells that can be 

classified in several ways that are still debated. In general, they can be divided 

into 2 major populations: (1) non-lymphoid tissue migratory and lymphoid tissue–

resident DCs and (2) plasmacytoid DCs (pDCs, also called natural interferon-

producing cells)21. 
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Migratory and tissue-resident DCs have two main functions: the maintenance of 

self-tolerance and the induction of specific immune responses against invading 

pathogens (figure 2)23 , while the major function of pDCs is to secrete interferon-

alpha in response to viral infections and to prime T cells against viral antigens.  

 

1.2.1.1. DCs in non-lymphoid tissues 
 
 
Non-lymphoid tissue DCs are present in the pancreas and the heart, at filtering 

sites such as the liver and the kidney, and at environmental interfaces as lung, 

gut, and skin. Among interface DCs, epidermal DCs also called Langerhans cells 

(LC) are the most studied. LC constitutively express major histocompatibility 

complex (MHC) class II and high levels of the lectin langerin24. These interstitial 

DCs express low levels of the integrin CD11b and coexpress alpha-Eβ7 (CD103), a 

ligand of the cell adhesion molecule E-cadherin expressed by most epithelial cells. 

In addition to CD103+ DCs, tissues also contain another major DC population that 

is characterized as MHC class II+ CD11c+ CD11bhi CD103–langerin. 

 

Langerhans cells were first described by Steinman in 197825, who proposed a 

model where the DCs can be found in the epidermis or in the spleen. In this 

model, DCs can exist in two functional states: immature and mature. Immature 

DCs are located in the periphery and efficiently uptake self and non-self antigens 

but are quite inefficient for T cell activation. Only upon encounter of pathogens 

and mediators of inflammation, DCs enter to a development program called 

maturation. Maturation causes downregulation of their endocytic capacity, 

activation of the antigen processing machinery that generates complex of MHC 

molecules with peptides derived from the internalized antigens and an increase of 

T-cell costimulatory molecules. In parallel, changes in the pattern of chemokine 

receptors and adhesion molecules and modifications in the cytoskeleton structure 

induce the migration from the periphery to secondary lymphoid organs, where the 

antigens are efficiently presented to T cells, thus initiating adaptive immune 

responses. 
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In summary, tissue DCs uptake antigens and migrate continuously through 

afferent lymphatics vessels to the T-cell areas of lymph nodes (LN), a process that 

increases in response to inflammatory signals. The constant DC efflux from tissues 

to the tissue-draining LN requires constant replacement with new cells in order to 

keep the tissue-DC homeostasis26. 

 

1.2.1.2. DCs in lymphoid tissues 
 

Lymphoid tissue–resident DCs are the most studied DC population in mice, but 

little information is available on their human counterparts. Lymph node DCs are a 

heterogeneous population as they include blood-derived lymphoid tissue–resident 

CD8+, CD4+, double-negative spleen equivalent DCs, and migratory DCs 

entering via the afferent lymphatics that vary according to the LN draining site26. 

 

In mice, splenic DCs constitutively express MHC class II and the integrin CD11c. 

They are further classified into two major subsets that include CD4+CD8–

CD11b+ DCs that localize mostly in the marginal zone and CD8+CD4–CD11b– 

DCs localized mostly in the T-cell zone27. CD4- CD8- CD11b+ DCs have also been 

identified and are called double-negative DCs. CD8+ DCs are specialized in MHC 

class I presentation, whereas CD4+ DC subset is specialized in MHC class II 

presentation. CD8+ DCs have also been shown to cross-present cell-associated 

antigens, whereas CD4+ DCs are unable to do so28. The DC population present in 

the mucosa-associated lymphoid tissues, is equivalent to the one found in the 

spleen. 

 

DCs that reside in the LN and in the spleen play a major role in the induction of 

immune response against blood-borne pathogens, since their function is to 

monitor the blood for the presence of infectious agents that spread through 

circulation. Intravenous inoculation of inflammatory compounds such as 

lipopolysaccharide (LPS) or CpG induce the activation of the LN DCs, their 

migration to the T-cell areas of spleen and LNs, the acquisition of a mature 
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phenotype and the secretion of large amount of IL-12, confirming their major role 

in immunosurveillance.  

 

       
Figure 2. Role of the two main DC populations. Migratory DCs scan the periphery 
looking for pathogens, they drift away towards the lymphoid organs and encounter 
resident DCs, where they present those antigens to CD4 and CD8 T cells. 
 

1.2.1.3. Plasmacytoid DCs in lymphoid and non-lymphoid tissues 
 

Plasmacytoid DCs (pDCs) are a subset of DCs in both humans and mice with the 

ability to sense and respond to viral infections mainly by secreting large amounts 

of type I interferons. pDCs constitutively express MHC class II molecules and lack 

most lineage markers29. Murine pDCs lack CD11b and express low levels of the 

integrin CD11c and the lineage markers CD45RA/B220+ and ly6C /GR-1+, express 

PDCA1 and siglec-H,  identified as a specific surface markers for mouse pDCs30. 

Human pDCs express very low to no level of CD11c, they express CD4 and 

CD45RA antigens, the c-type lectin receptor BDCA2, and the molecule BDCA4, a 

neuronal receptor often used to isolate pDCs, and high levels of the interleukin-3 

receptor (CD123). pDCs constitutively express the IFN regulatory factor (IRF-7) 

that allows the rapid secretion of vast amounts of IFN- in a signaling pathway 

that starts by engagement of Toll-like receptors 7 and 931. pDCs circulate in blood 

and are found in steady-state at the spleen, thymus, LN, and the liver. Human and 

mice pDCs enter the LN through the high endothelial venules and accumulate in 

the paracortical T-cell rich areas. In contrast to the other DCs subtypes, pDCs do 

not efficiently migrate to peripheral tissue in the steady state with the exception of 

the liver29.  
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1.2.1.4. In vitro generated DCs 
 

The establishment of defined cell culture systems to generate DCs in vitro has 

been useful for functional and intracellular studies. The first method reported to 

differentiate mouse DCs in vitro involves cultures of bone-marrow or spleen 

precursors in medium that is supplemented with granulocyte/macrophage colony 

stimulating factor (GM-CSF), with or without interleukin-4 (IL-4). Surface marker 

examinations showed that the resulting DCs are partially similar to some of the 

lymphoid-organ-resident DC subsets found in vivo32.  

 

A more accurate system to generate lymphoid organ-like DCs emerged with the 

use of the FMS-like tyrosine kinase 3 ligand (FLT3L). Bone marrow precursors 

cultured with FLT3L differentiate into DCs with similar expression patterns of 

CD11b, CD24, CD172, Toll-like receptors, chemokine receptors and the ability to 

secrete IL-12 and the chemokine ligand 5 (CCL5)33. 

 

1.2.2. DC specific functions 
 

 

The main function of DCs is the internalization of pathogens, followed by 

processing and presentation of antigen peptides to naïve T cells.  

 

1.2.2.1. Antigen uptake and pathogen recognition 
 

One of the properties that define DCs as potent antigen-presenting cells, is their 

ability to efficiently uptake particles and pathogens by endocytosis. Endocytosis is 

highly active in immature DCs and downregulated upon cell maturation, assuring 

the efficient sampling of the environment in the periphery and simultaneously 

limits the range of antigens that the cells will be able to present after leaving the 

marginal tissues34. There are three main endocytosis pathways: receptor mediated 

endocytosis, phagocytosis and macropinocytosis35.  
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1.2.2.1.1. Receptor mediated endocytosis 
 

The efficiency of endocytosis is increased by non-specific binding of solutes to the 

cell membrane and even more by the capture of soluble antigens through specific 

high affinity receptors that are concentrated into specialized endocytic transport 

vesicles. DCs express a wide range of endocytic receptors that are grouped into 

two main families. The first encloses receptors for the Fc portion of 

immunoglobulins (FcRs) and complement receptors (CRs) which are involved in 

the uptake of particles that are opsonized by immungloublins or complement 

factors. A second class of endocytic receptors comprises the scavenger receptors 

(SRs) and C-type lectin family receptors that directly recognize specific structures 

on both self-antigens and pathogens36. 

 

1.2.2.1.2. Phagocytosis 
 

The uptake of large particulate antigens by phagocytosis is the prevalent form of 

antigen uptake in vivo for both pathogen-derived and endogenous antigens. The 

process starts with the engagement of specific cell surface receptors, that trigger 

a signaling cascade mediated by the Rho-family GTPases (Rho, Rac and Cdc42) 

that ends up with the extensive reorganization of the actin cytoskeleton, forming 

cell-surface extensions that zip up around the pathogen and engulf it37.  

 

The membrane protrusion and the activation of signaling pathways depend on the 

nature of the particle to be ingested and the receptors that recognize it. 

Phagocytosis might take place by engagement of specific receptors. In the FcR-

mediated phagocytosis, the cells extend pseudopods that engulf the particle and 

subsequently fuse to form a phagosome, a process that requires the activation of 

cdc42 for the pseudopod extension and Rac for pseudopod fusion and phagosome 

closure. On the other hand, the CR-mediated phagocytosis does not induce 

pseudopod formation. The coordinated action of chemokines and integrin ligation 

controlled by Rho induces the formation of the phagocytic cup38.  
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Phagocytosis by DCs is essential in host defense against infections.  Immature DCs 

are able to phagocytose Gram positive and Gram negative bacteria, mycobacteria, 

yeast cells and parasites39. Additionally DCs have a main role in the clearance of 

apoptotic cells by the recognition of molecules that are absent on live cells, as 

calreticulin, phosphatidylserine and lysophospholipin.  

 

1.2.2.1.3. Macropinocytosis 
 

Macropinocytosis contributes to bulk fluid-phase uptake via the formation of 

membrane protrusions that collapse and fuse with the plasma membrane 

generating large endocytic vesicles that allow the sampling of large volumes of 

extracellular milieu. Macropinocytosis is constitutively active in immature DCs. This 

process is essential for the uptake of soluble antigens released by pathogens or 

externally provided upon intradermal or intravenous injection.     

 

1.2.2.2. Antigen presentation by DCs 
 

Upon internalization, antigens are degraded into small immunogenic epitopes that 

associate with the MHC and are transported to the plasma membrane where they 

trigger the activation of naïve T lymphocytes. In particular, the activation of CD8+ 

and CD4+ T lymphocytes requires recognition by the T cell receptor (TCR) of 

epitopes associated with MHC class I and MHC class II, respectively. The antigen 

processing pathways that lead to the formation of peptide-MHC complexes rely on 

proteolysis occurring in the proteasomes and lysosomes35.   

 

It is accepted that MHC class II molecules encounters exogenous antigens in the 

endocytic pathway and MHC class I is loaded with endogenous antigens in the 

endoplasmic reticulum (ER). However, it has been shown that MHC-II complexes 

can present intracellular antigens from intracellular proteins and MHC-I can 

present peptides derived from exogenous antigens, a process called cross-

presentation40; 41.  
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DCs perform antigen processing and presentation via MHC class I in proteins 

coming from alternative translation products, proteins found in the cytosol (either 

endogenous or viral) and proteins retrotranslocated to the cytosol and imported 

into the ER. Regardless the route of entry, most of the peptides loaded on the 

MHC-I complex are produced by the proteasome and further trimmed by cytosolic 

or ER resident peptidases. Proteins are trimmed in their N-terminal region by the 

proteasome and peptide products are shuttled in the ER where the final MHC-I 

peptide complex is formed and eventually presented on the cell surface42. 

 

DCs have the highest cross-presentation efficiency, allowing the entry of 

exogenous antigens into the MHC class I pathway of antigen presentation43. 

Soluble proteins, immune complexes, pathogens and cellular antigens have been 

reported to be cross-presented. However, the mechanisms by which the APCs 

transfer internalized antigens to the MHC class I loading pathway are not well 

understood. In most of the cases a limited endocytic degradation and transport 

into ER seem to be required, being a mechanism to allow the release of the 

antigen from the endocytic structures to the cytosol44.   

 

DC cross-presentation plays a key role in priming of CD8+ T cells in response to 

exogenous agents such as bacterial or viral infection, as well as in the 

maintenance of both, central and peripheral tolerance to self antigens by the 

deletion or anergy of self-reacting cytotoxic lymphocytes45.  

 

Antigens loaded on the MHC-II come from exogenous proteins that are 

internalized by DCs through different mechanisms of endocytosis or endogenous 

proteins that reside in the secretory system. The MHC-II is assembled in the ER 

and transported to early endosomes and further on to late endosomes and 

lysosomes, along this path it can bind polypeptide precursors that are trimmed by 

various proteases to end up reaching the plasma membrane46 (Figure 3).    
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Figure 3. Antigen presentation pathways by DCs. All DCs have functional MHC class 
I and MHC class II presentation pathways. MHC class I molecules present peptides that 
are derived from proteins degraded mainly in the cytosol, which in most DC types 
comprise almost exclusively endogenous proteins. MHC class II molecules acquire peptide 
cargo that is generated by proteolytic degradation in endosomal compartments. The 
precursor proteins of these peptides include exogenous material that is endocytosed from 
the extracellular environment and also endogenous components. CD8+ DCs have a 
unique ability to deliver exogenous antigens to the MHC class I (cross-presentation) 
pathway, although the mechanisms involved in this pathway are still poorly understood. 
TAP, transporter associated with antigen processing47. 
 

1.2.2.2.1. Dendritic cell maturation  
 

Concomitantly to the uptake and processing of the antigens, DCs recognize 

pathogen associated patterns (PAMPs) and sense inflammatory signals by different 

classes of membrane and intracellular receptors.  Receptor engagement triggers 

signal cascades that lead to the production of inflammatory cytokines, 

upregulation of co-stimulatory molecules and to the altered expression of 

chemokine receptor profiles, providing them the ability to stimulate naïve T 

lymphocytes48.  

 

One of the best characterized classes of receptors that directly contribute to the 

inflammatory responses to pathogens is the Toll-like receptor family (TLR). 

Mammalian TLRs are a family of at least 12 transmembrane proteins that 

collectively recognize lipids, carbohydrate, peptide and nucleic acid molecules 
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expressed by different microorganisms, and differ from each other in ligand 

specificities, expression patterns and the inducible target genes49.  

 

Expression of TRLs 1, 2, 4, 5 and 6 is confined to the cell surface and appears to 

be specialized mainly in the recognition of bacterial products, where TLR4 plays an 

essential role in the recognition of LPS, a major component of Gram- bacteria. 

TLRs 3, 7, 8 and 9 are expressed on the membrane of endocytic vesicles or other 

intracellular organelles and are specialized in the detection of viral nucleic acids. 

This family of TLRs has an essential role in the antiviral immune responses 

mediated by the secretion of type I interferons. TLRs 9 and 7 are involved in the 

recognition of the 2’-deoxyribo(cytodine-phosphato-guanosine) (CpG) DNA motifs 

found in bacteria and viral DNA, while TLR3 is engaged by double-stranded RNA 

('mimicked' by poly(I:C))50.  

 

Upon activation of their ligands, TLRs transduce signals through pathways 

involving diverse adaptor proteins containing Toll/IL-1R (TIR) domains. TIR 

activation triggers signaling cascades that end up with expression of host defense 

genes including inflammatory cytokines, type I interferon cytokines, the up-

regulation of co-stimulatory molecules (CD40, CD80 and CD86), downregulation of 

chemokine receptors such as CCR1, CCR5 and CCR6 and upregulation of CCR2, 5, 

7 and 19, which drives DCs into the afferent lymphatic vessels and the LN51.  
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1.2.2.2.2. DC trafficking 
 

After antigen uptake and processing, DCs sense and integrate different 

environmental signals and eventually migrate to T-cell rich areas of secondary 

lymphoid organs. There, antigen-specific immune responses are initiated by 

engagement of the TCR with the cognate peptide-MHC complex presented by the 

DC.   

 

Antigen-loaded tissue DCs migrate to draining LNs through the lymph. These DCs 

penetrate the endocortex and reach the high endothelial venules (HEV). Thus, T 

and B cells that home to LNs by route of HEVs are first exposed to antigen loaded 

tissue DCs than lymphoid resident DCs. In this way, T cells are preferentially 

updated with information of antigens in the periphery52. 

 

The entry of DCs from peripheral tissues into the draining lymphatic vessels as 

well as their migration from the lymph into the LN cortex depends on the 

chemokine receptor CCR7 and its ligands CCL19 and CCL21. The prevailing model 

to explain how CCR7+ DCs arrive at peripheral lymphatic vessels is that they 

respond to a chemotactic gradient of CCR7 ligands, which originates from the 

lymphatic vessel. In mice, there are two known functional genes that encode 

CCL21. One form of CCL21, the CCL21-Leu, is expressed in the periphery by initial 

lymphatic vessels. The other form of CCL21, CCL21-Ser, is only expressed in the 

terminal lymphatic vessels and LN. The gradient caused by this divergent 

chemokine expression pattern might be the cause of DC migration53. 

 

DC migration from the periphery to the T-cell zone of lymphoid organs is a process 

that requires reorganization of the cytoskeleton and the plasma membrane. It has 

been shown that RAC1 and RAC2 are required for migration from the skin to the 

lymph nodes. Absence of both RAC1 and RAC2 strongly impairs the extension of 

dendrites by DCs and the mobilization of DCs to LN54; 55. 

  

Is widely accepted that migratory DCs have a major role in carrying outer antigens 

from peripheral tissues to the lymph nodes and these can be somehow presented 
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to the CD8+ DCs. Instead, self antigens are presented in the steady state on MHC 

class I and II molecules by both immature resident in lymphoid organs CD8+ DCs 

and mature migratory DCs, with the former being biased towards MHC class I 

cross-presentation and the latter towards MHC class II presentation. 

 

Three different scenarios can be hypothesized for antigen-presenting functions of 

migratory and lymphoid resident DCs (Figure 6). A first situation is one in which 

the migratory DCs are themselves infected by a virus that has no deleterious 

effect on the DCs. In this situation, the migratory DCs are the main subset that 

presents endogenously produced antigens on MHC class I molecules 56and MHC 

class II molecules, in the draining LN.  

 

The second situation is one in which the migratory DCs are not infected, but the 

migratory DCs are still required to carry viral antigens to the lymph nodes, 

whether endogenously expressed or captured from infected cells, and transfer the 

antigens to the resident DCs in the form of endosomal vesicles or apoptotic 

bodies57. The main resident DC population that acquires the antigen would be the 

CD8+ DCs, due to their special ability to capture dead cells or cell fragments. The 

migratory DCs that survive and have not been inactivated by viral immunoevasins, 

as well as the resident CD8+ DCs, present the antigens according to their intrinsic 

abilities 58; 59. 

 

The third scenario occurs in large scale infection of tissues that are drained by the 

lymph node. In this case the relative antigen presentation efficiency of the 

lymphoid and non-lymphoid DCs is almost the same on a per-cell basis, but the 

comparative number of migratory DCs that display antigen is much higher and 

their relative contribution to cross-presentation within the lymph node increases59. 

This hypothetical model implies the recruitment of monocytes to sites of 

inflammation, followed by their conversion into DCs.  In this way, the monocyte-

derived DCs may share some of the antigen-presenting functions that are initially 

carried out by the migratory and lymphoid-organ-resident DC subsets60. 
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Figure 4. DC migration and antigen presentation. An scheme with three 
hypothetical scenarios showing how different populations of DCs may migrate and act in a 
synergetic way to counteract tissue infection47. 
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1.2.3. T-cell stimulation by DCs 
 

DCs play a crucial role in the induction of adaptive immunity and in the 

maintenance of peripheral tolerance to self and non-pathogenic environmental 

antigens. They can determine the fate of naïve T cells by three signals. The first 

occurs with engagement of the TCR with the cognate peptide-MHC complex, 

which triggers a TCR cascade that determine the antigen-specificity of the 

response. The second consists in the engagement of the CD28 and CTLA-4 co-

stimulating receptors, to respectively influence the T cell response in a positively 

or negative way, controlling in this manner the initiation of the protective 

immunity. The last signal is delivered by cytokines and chemokines produced by 

DCs, which are sensed and integrated by the T cells. The combined effect of 

diverse released cytokines determine the proliferation, survival and ability to 

differentiate into effector cytotoxic T cells, Th1, Th2, Th17 or T regulatory cells47.   

 

It is widely accepted that DC maturation state is the critical switch that provides 

the signals for effector and memory T cell development, diverting T cells from 

anergy or deletion to protective immunity. On the other hand, immature DCs have 

been reported to have a inefficient antigen-presenting capacity, inducing 

peripheral T cell tolerance by antigen-specific T cell deletion, functional 

inactivation or by generation of regulatory T cells61.  DCs capacity to efficiently 

prime naïve T cells resides in the increased expression of MHC complexes, 

adhesion and co-stimulatory molecules, which controls the stability and the 

duration of the DC-T cell contact62. In addition, mature DCs secrete enhancing 

cytokines like the interleukin-12 (IL-12) and interferons type I/II that support the 

survival and the differentiation into effector T cells.  
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1.2.3.1. Immune synapse    
 

In order to deliver the three signals required to prime naïve T cells, a physical 

contact must be established with the antigen presenting cell (APC). The organized 

structure that takes place in the region of contact is called the immune synapse 

(IS). The formation of the IS is driven by different molecular mechanisms such as 

polarized recycling of receptors, passive lateral diffusion and cytoskeletal-mediated 

movement of molecules. 

 

Immune synapses can have different morphological patterns with specific 

arrangements of membrane proteins and receptors. The simplest type of synapse 

experimentally observed has simple enrichment of receptors at the contact site. A 

more complex arrangement with central accumulation of both TCRs and adhesion 

molecules at the contact site is known as mature synapse63.  

 

The mature IS is composed of two concentric regions; first, the central 

supramolecular activation cluster (cSMAC), where the TCR, the co-stimulatory 

molecules (mainly CD40-CD40L and CD28-B7) and the intracellular signaling 

molecules PKCθ (105), lck, fyn, and ZAP-70 are concentrated in the inner side of 

the T cell membrane63; 64. Although it is accepted that the initiation of TCR signals 

occurs in peripheral microclusters that begin to form prior to IS formation, the 

cSMAC has been proposed as a place for TCR signal enhancement and TCR 

degradation65 or as a site for enhanced receptor engagement and prolonged 

signaling 66. Surrounding the cSMAC, a peripheral integrin-rich ring (pSMAC) is 

found, where LFA-1 interacts with ICAM-1 and which concentrates intracellular 

talin in the T cell provides an adhesive anchoring64 (Figure 5). 
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Figure 5. Structure of the Immune Synapse from the T cell side. TCR interaction 
with peptide–MHC class II molecules recruits tyrosine kinases such as ζ-chain-associated 
protein 70 kDa (ZAP70) and FYN, adaptor proteins and actin polymerization-regulatory 
molecules such as the small GTPases cdc42 and RhoA, WASP, inducing localized actin 
polymerization at the cSMAC through the ARP2/3 complex. The pSMAC is composed of 
leukocyte function-associated antigen 1 (LFA1) molecules that interact with ICAM1 
expressed by the DC and also regulates the actin cytoskeleton through LFA1 interaction 
with talin67.  
 

1.2.3.1.1. IS and T cell activation  
 
 

After formation of the IS, engagement of the TCR initiates a signaling cascade 

involving Lck, ZAP70, Itk and Vav, which result in the accumulation of Cdc42. 

Cdc42 in turns induces WASp activation and triggering of cytoskeletal 

rearrangements that results in polarization and activation of the T cell67. 

 

As the TCR is engaged, cortical actin concentrates at the contact region following 

its clearance towards the edges of the contact sites, in order to form a peripheral 

ring to the pSMAC68. These changes are thought to depend on increased 

membrane fluidity, caused by a transient dephosphorylation of ezrin, radixin and 

moesin (ERM), which blocks the crosslink of the actin cytoskeleton with the 

plasma membrane and provokes a decreased cellular motility. This in turn is 

associated with Ca2+ dependent phosphorylation and deactivation of the motor 

protein MyH9. 
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Accumulation of F-actin at the T cell-DC interface is the result of induced localized 

activation of multiple actin regulatory pathways, in particular the actin related 

proteins 2/3 (Arp2/3) complex. Activation of Arp2/3 is mediated by the interaction 

with WASp, WAVE2 and HS1. WASp is recruited to the site of TCR activation 

through its interaction with the SLP-76 associated adapter protein Nck, where it is 

activated via Vav-1 dependent stimulation of cdc4269. Vav-1 also activates Rac1, 

which results in the activation of WAVE2. However, experiments indicate that 

WASp deficient T cells still polymerize F-actin at the T cell–DC contact region, 

implying that WASp might control T cell activation in an alternative way, affecting 

the endocytosis and the exocytosis70. 

 

Inhibition of actin polymerization in T cells by cytochalasin D prevents synapse 

formation, and interferes with actin-myosin functions preventing movement of 

surface proteins to the contact zone71; 72.  

 

1.2.3.1.2. T cell polarization  
 

Formation of the IS results in the polarization of the T cell, which is orchestrated 

by a protein network that includes four complexes, the Scribbled (Scrib), 

partitioning defect (PAR), Crumbs and a core planar cell polarity (PCP). 

 

The Scrib complex consists of scrib, Lgl and Dlgh. In particular, Dlg has been 

found to be translocated to the IS, and it is thought to be responsible of 

reorganization of the cytoplasm, rearrangements of surface proteins and 

redirection in the transport of RNA and proteins73. Other proteins such as scrib, 

Crumbs 3 and Par3 rapidly relocalize to the IS, and their absence causes a 

reduction in the cell motility, conjugate formation and lytic activity74.  

 

Polarization of the T cell also provokes that the centrosome, which is the main 

microtubules organizing center (MTOC), dissociates from its position near the 

nuclear envelope and moves towards the contact site T cell-DC. MTOC movement 
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reorients the microtubule network and the whole cell, bringing the MTOC-

associated organelles, such as Golgi complex and the endocytic recycling 

compartment 75 (Figure 6).  

 

The centrosome (MTOC) is found in the center of the microtubule cytoskeleton 

and contains the centrioles (barrel-shaped cylinders composed of microtubule 

triples) and the pericentriolar material (PCM) which is mainly composed by -

tubulin. The -tubulin is a key player in the polymerization of microtubules from  

and - tubulin subunits. Microtubules have a minus end that is proximal to the 

MTOC and a more dynamic plus end that lengthens away.  Microtubule stability 

given by acetylation of the alfa and beta tubules was shown to be important for 

TCR-mediated polarization76.  MTOC reorientation is a hallmark of cell polarity in 

various cellular processes like asymmetric cell division and directional migration. 

 

A study by Combs77, shows that MTOC polarization is integrated into the TCR 

signaling through interaction between the dynein and the adhesion-and-

degranulation-adaptor protein (ADAP), which might provide a link between the 

microtubule cytoskeleton, microtubule motor proteins and the actin cytoskeleton 

through ADAP/VASP actin binding.   This hypothetical linkage between plus-end 

microtubules and the cortical actin cytoskeleton is supported by data where 

inhibition of microtubule polarization by colchicine, induced an early retraction of 

the actin-based protrusions in T cells before IS formation68 .  

 

Another event that makes part of T cell polarization is the formation of the distal-

pole complex. An actin-rich structure which is thought to have a role for pulling 

away and sequestering negative regulators from the TCR activation complex, and 

might be required for distinguishing the fate of recently activated T cells into 

memory or effector79. 
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A      B   

Figure 6. T cell polarization upon IS formation. A) Upon TCR recognition, the T cell 
reorient the MTOC beneath the contact region with the DC. MTOC polarization is 
commanded by signaling coming from the IS. A complex that consists of adhesion- and 
degranulation-adaptor protein (ADAP) and the microtubule motor dynein is thought to 
“grab” the MTOC. Microtubules have been shown to anchor to the pSMAC during TCR 
engagement. Moreover, microtubule plus-end complexes are proposed to link the 
microtubule cytoskeleton to the cortical T-cell actin cytoskeleton, thereby providing 
additional force for MTOC movement through an unknown mechanism. Histone 
deacetylase-6 (HDAC6), which is important for microtubule stability, is required for TCR-
mediated MTOC polarization. Once the MTOC is polarized, cargo travels along 
microtubules using minus-end directed movement to the MTOC, which directs secretion 
towards the DC surface78. B) Reorganization resulting from T-cell activation leads to the 
formation of the distal pole complex which is formed by the ERM cytolinkers and interacts 
with DLG1 in order to recruit away from the SMACs molecules such as CD43 or the P-
selectin glycoprotein ligand 1 (PSGL1)67; 78. 
 
 

1.2.3.1.3. T cell activation in vivo 
 

IS formation has been mainly studied using in vitro models which do not consider 

the gradients, factors and external signals that might affect the contacts between 

T cells and APCs. In 2002, the first in vivo studies showed that in intact LN, T cells 

are highly motile and DCs are able to scan a high number of them over time. 

Nevertheless, when DCs are loaded with specific antigen the interactions became 

stable, with an average duration in the order of hours80; 81. 

 

Von Andrian and colleagues recently proposed a three-phase model for T-cell–DC 

interaction in vivo. According to this model, antigen-specific interactions of T 

lymphocytes with DCs are transient between 2 and 8 h following the encounters, 
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stable between 8 and 24 h, and again transient by 24–36 h. The stable interaction 

in the 8–24 h period probably corresponds to the organization and maintenance of 

the IS, and is required for complete T-cell activation82.  

 

It is likely that in vivo, T-cell behavior is strongly influenced by chemoattractant 

forces in the presence of lymph and blood flow. Since T cell activation is 

characterized by both transient and stable interactions, it has been proposed that 

chemokine-mediated signals compete with TCR-mediated stop signals and that the 

combination of the two types of signals determines the duration of T cell−APC 

interactions. Studies have demonstrated that the accumulation of chemokine 

receptors at the T cell−APC contact site requires formation of a productive IS and 

chemokine (CXCL12 and 5) directed secretion by APCs.  In this way, T cell 

responsiveness to other chemoattractant sources is reduced and stability of T 

cell−APC interactions is increased83 (Figure 7).  

 

 
Figure 7. Chemokine receptors in T-DC synapses. Chemokine receptors recruitment 
to the IS in T cells is mediated by recruitment of chemokines 5 and CXCL12. In DCs 
represents a mechanism used to reinforce the synapse and avoid early splitting due to 
external chemoattractant sources, thus, enhancing T cell activation83. 
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1.2.3.1.4. DCs in synapse formation 
 

Molecular events that contribute to synapse formation and maintenance in T cells 

have been characterized quite extensively using artificial APC, whereas little is 

known about the mechanisms controlling the coordinated transfer of different 

signals from DCs to T cells. 

 

The first evidences of the active role of the APC in the IS were given by Al-alwan 

et al, who demonstrated that DCs actively polarize F-actin and fascin, during 

formation of IS with CD4 T cells84; 85. Later, it was assessed that DCs rearrange 

their actin cytoskeleton towards naive CD4+ T cells only in the presence of 

specific MHC-peptide complexes69. Concomitantly, Kondo et al 86 showed that IS 

could take place in the absence of antigen, inducing TCR signaling and T cell 

proliferation, probably caused by the density of HLA class II molecules on the 

surface of DCs in conjunction with the pool of displayed self-peptides.  Benvenuti 

et al. described for the first time the functional role of the maturation state of the 

DC together with the presence of antigens on IS. Immature DCs were able to 

establish multiple transient contacts of low stability and with no mature immune 

synapses taking place. However, they observed that in the absence of antigen, DC 

maturation induced a minor increase in CD3, LFA-1, and LAT clustering at the 

immune synapse, but effective clustering, TCR signaling and T cell activation 

required both DC maturation and antigen recognition 62; 87. 

 

Bloom has documented the role of spinophilin in formation of IS by DCs. This 

adaptor protein initially found in the dendritic spines of neurons in nervous central 

system, shows dramatic changes in its distribution accompanying the formation of 

the immunological synapse. Spinophilin contains a PDZ domain, which is often 

found in scaffold proteins that bind the cytoskeleton as in T cells, and controls 

polarity as SCRIB88(figure 8). The spinophilin null phenotype has a great impact on 

the triggering of a highly effective immune response. 
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Figure 8. DCs polarization in Immune synapses. In immature DCs, spinophilin is 
located throughout the cytoplasm but redistributes to the plasma membrane upon 
stimulus-induced maturation. In DCs interacting with T cells, spinophilin is polarized 
dynamically towards the IS in an antigen-dependent manner and induce the polarization 
of adaptors proteins such as the plexins88. 
 

 

Another adaptor protein with a shared role in neuronal synapses is plexin-A1. 

Plexin-A1 belongs to a family of cell surface proteins that are known to act as 

receptors for semaphorins. In DCs, plexin-A1 appears to be retained in an 

intracellular compartment, making its way to the cell surface after TNF- 

stimulation, where it clusters in a multifocal pattern localizing to the T cell 

synapse89.  

 

A recent report revealed an unexpected function of synapse formation in DCs.  

Riol-blanco et al. demonstrated that CD40 signaling upon IS formation induce 

ATK1 activation, which inhibits the apoptosis of DCs in stable conjugates with T 

cells. In parallel, they claimed that soluble factors secreted by both T cell and DC 

are not enough to increase DC survival90. 
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1.2.3.1.5.Information exchange at the IS 
 

 

Factors secreted by lymphocytes are often released into an environment that is 

densely populated with many cell types, which brings the problem of specificity of 

intercellular communication. In particular, CD8+ and CD4+ T cells must operate 

their secretory responses in a targeted way as to avoid activating or killing the 

wrong cell. First studies of the MTOC, secretory organelles and Golgi in T cells 

suggested the existence of a mechanism for targeted secretion towards the APC. 

 

Currently, it is established that many hematopoietic cells are able to perform 

directed secretion. Mast cells and granulocytes polarize their degranulation in 

response to FcR cross-linking91, while natural killer cells and cytotoxic lymphocytes 

direct the content of their secretory lysosomes towards a specific target92.  

 

Imaging studies have shown that lytic granules are released by cytotoxic T 

lymphocytes (CTL) at a defined point within the synapse75.  In particular, it has 

been shown that CTL first reorient the MTOC upon TCR signaling towards the IS, 

next the MTOC docks at the cellular membrane and finally the lytic granules are 

secreted. Recently, it has been shown that MTOC and lytic granule polarization are 

independently regulated in response to the strength of TCR signaling93.  

 
In vitro and in vivo experiments have shown that several important cytokines, 

such as IL-2, accumulate beneath the IS in T helper cells after stimulation by an 

APC94. Huse et al have shown that T helper cells use 2 directionally distinct 

pathways for secretion of cytokines and chemokines. The first one, release directly 

towards the IS in an antigen specific way molecules such as IL-2, interferon- and 

IL-10. The second is multidirectional and includes the secretion of TNF, IL-4 and 

CCL3, which seems to be involved in inflammation responses and the mobilization 

of bystander cells95. 

 

 



Introduction 

 31 

Ii is very likely that the polarized and the multidirectional secretion pathways are 

regulated by specific vesicle markers that control their fate after being produced in 

the Golgi and anchored to the microtubules. This phenomenon was observed by 

Stow in macrophages, tracing the trafficking markers of different cytokine-

containing vesicles96; 97. 

  

Signals are continuously delivered to the T cell during prolonged interactions with 

DCs. MTOC reorientation controls the directed secretion of cytokines and 

chemokines, which might travel along the microtubules using their slow-growing 

end and then being released towards the engaged DC. Alternatively,  stores of IL-

2, IL 4 and IL-5 are directed towards the DC after MTOC reorientation98(Figure 6). 

 

There have been some reports suggesting that also DCs might make use of the 

polarized secretion. Semino et al showed that in conjugates with NK cells, 

immature DC increase their free Ca2+ concentration, rearrange their cytoskeleton 

and co-ordinately secret IL-18 towards the interacting NK cell99. Borg et al. 

showed that the formation of specific DC/NK  conjugates induces the polarization 

of the IL-12 toward the synapse and provoke NK cell activation100. There is only 

one report that studies the directed secretion in T cell-DC conjugates, suggesting 

that IL-1B and cathepsin D are released toward the IS. However, the mechanism 

and the molecular complexes that support polarization in DCs are not well 

understood101.  

 

MTOC polarization has been functionally linked to polarized secretion of cytokines 

and lytic in immune cells. A list of the proteins linked to these processes and the 

cell type where they have been studies is summarized in the Table 2. 
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Table 2 Proteins identified in polarization and secretion pathways in several cell types. 

Process Protein Cell type 
ADAP Jurkat T cells77 
Dynein Jurkat T cells77 
FMNL1 NIH 3t3102 
Rac, Cdc42 NIH 3t3102; 103 
Pyk2 Natural Killer (NK)104 
Erk Cytotoxic T lymphocytes 

(CTL)105, NK106 
HDAC6 CD4 T helper 

Mtoc Polarization 

WASp CD4 T95 
Rab27a 
 

CTL107 

AP-3 CTL108 
Munc13-4 CTL, Mast cells109 
Syntaxin 11 CTL110 
Slp1, Slp2 CTL111 
Paxilin CTL105 

Lytic-granule release 

WIP NK112 
Rab3d, Rab19 CD4 T helper95 
Syntaxin 4-23 Jurkat T cells113 

Polarized cytokine 
secretion 

WASp CD4 T cells, NK95 

 

1.2.4. Interleukin 12, an example of the three signals integration  
 

IL-12 is one of the most important cytokines produces by DCs upon TLR 

engagement. IL-12 is produced by several DC subsets after challenging with 

different bacterial strains, that stimulates TLRs  3, 4 or 9114. IL-12 is a covalenty 

linked heterodimer formed by a 35 kDa light chain, known as p35, and a 40 kDa 

heavy chain known as p40. The p35 protein is homologous to other single-chain 

four-alpha helical cytokines like IL-6 and granulocyte colony-stimulating factor (G-

CSF), whereas p40 is homologous to the extracellular domain of members of the 

hematopoietic cytokine-receptor family (Figure 9)115.   

 

IL-12 positively regulates its own production via the induction of IFN-gamma, 

which primes monocytes and neutrophils for further IL-12 production. Conversely, 

IL-12 production is inhibited by other cytokines including IL-10, IL-11, IL-13 and 

type I interferons117; 118. 
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Figure 9. IL-12 structure.  IL-12 is an heterodimer composed by a light chain (p35) 
and a heavy chain (p40). The bioactive form known as p70 binds the IL-12 receptor 
expressed by T cells116.  
 

Studies with deficient mice for both IL-12 subunits or for the IL-12 receptor have 

revealed that IL-12 has an important role in favoring T helper 1 (Th1) response119. 

Both in vivo and in vitro, IL-12 is required for the optimal differentiation of CD4+ 

T cells into high-level IFN--producing Th1 cells120.   

 

Though initially it was believed that IL-12 was sufficient to induce Th-1 cell 

differentiation, it has been shown that it may be more important for amplifying 

and fixing the phenotype of already committed Th1 cells than for directly priming 

naive CD4+ T cells for Th1-cell differentiation121. 

 

IL-12 is synergistic with CD28 stimulation, and facilitates the T-cell proliferation 

and IFN-gamma production. In particular, IL-12 enhances the generation and 

cytotoxicity of T lymphocytes, inducing the transcription of genes that encode 

cytotoxic granule-associated molecules and upregulating the expression of 

adhesion molecules122; 123. 

 

The Il-12 receptor is composed of two chains, 1 and 2 123and is mainly 

expressed by activated T cells, NK, DCs and in low levels by resting T cells. The 

affinity of IL-12 for either subunit alone is low, but coexpression of both 1 and 2 
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subunits generates IL-12 high-affinity binding sites. IL-12p40 interacts 

predominantly with the 1 subunit, whereas p35 interacts largely with the 2 

subunit. 

 

The specific effects of IL-12 are caused by ligand-induced autophosphorylation 

and transphosphorylation of receptor-associated Janus kinases (JAK). JAK 

activation induces tyrosine phosphorylation of the receptor subunits located in the 

intracellular domain. These phosphorylated tyrosines serve as docking sites for 

STATs (signal transducers and activators of transcription) and potentially other 

signaling molecules. IL- 12 specifically induces the tyrosine phosphorylation and 

DNA binding of two STAT family members, STAT3 and STAT4 (Figure 10). Their 

activation has been shown to be necessary but not sufficient to explain the ability 

of IL-12 to induce Th1 differentiation124.  

 

 
Figure 10. IL-12 receptor signaling pathway The interleukin-12 (IL-12) receptor is 
composed of two chains, IL-12Rβ1 and IL-12Rβ2.  Signal transduction through IL-12R 
induces tyrosine phosphorylation, primarily of the Janus family kinases JAK2 and TYK2, 
which, in turn, phosphorylate and activate signal transducer and activator of transcription 
1 (STAT1), STAT3, STAT4 and STAT5. The specific cellular effects of IL-12 are due mainly 
to its ability to induce activation of STAT4116. 



Results 

2. MATERIALS AND METHODS 

 
Mice  

Six to eight weeks old C57BL/6 females were purchased from Harlan (Milano, 

Italy).  WASp- mice on a C57BL/6 (CD45.2) genetic background were a gift from 

S. Snapper (Massachussets General Hospital, Boston). GFP-centrin mice were 

generated from a construct given by Michel Bornens (Institut Curie, Paris) and 

were a gift from Chantal Desdouets (Institut Cochin, Paris). OVA-specific, MHC 

class-I OT-I and MHC class-II OT-II, TCR transgenic mice were purchased from 

the Jackson Laboratories. CD45.1 congenic C57BL/6 (kind gift from Pierre 

Guermonprez, Institut Curie, Paris) were bred to OT-I mice to obtain OT-I/CD45.1. 

 

Mice were bred and maintained in sterile isolators. Animal care and treatment 

were conducted in conformity with institutional guidelines in compliance with 

national and international laws and policies (European Economic Community [EEC] 

Council Directive 86/609; OJL 358; December 12, 1987).   

 

Cells 

 

Bone marrow-derived DCs were differentiated in vitro from the bone marrow of 

the different mouse genotypes using culture medium containing Fms-like tyrosine 

kinase 3 ligand (Flt3L). DCs were used for experiments between day 7 and 8 when 

expression of Cd11c was higher than 80%.  

 

For experiments with endogenous DCs, spleens from mice were extracted, 

homogenized and digested with collagenase D (1,6 mg/ml, Roche) and DNase I 

(0,1 mg/ml, Roche). Enrichment of DCs was performed by density gradient in an 

Optiprep solution (Sigma) 1,068 g/cm3 .The very low density fraction mainly 

composed by DCs was recovered and subjected to purification using CD11c 

microbeads (Miltenyi Biotec). OT-I and OT-II cells were isolated from total lymph 

node suspension by negative selection using MACS® isolation kits.   
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Antibodies and FACS reagents 

 

The following antibodies for FACS analysis were purchased from BD Pharmingen: 

FITC and PE-conjugated anti-CD11c, FITC and PE-conjugated anti I-Ab, PE-

conjugated anti-CD86, PE-conjugated anti-CD11b, PE-Cy5-conjugated anti-CD8, 

PE-conjugated anti CD45.1, biotinylated anti-CD69, biotinylated anti-CD3. CFSE (5-

(6)-carboxyfluorescein diacetate succinimidyl diester), SNARF and CMTMR were 

purchased from Molecular Probes.  

 

Bacterial Infection 

 

Salmonella typhymurium strain ATK-GFP was kindly gifted by M. Rescigno (IEO, 

Milan). Bacteria were grown in LB medium (kanamicin 25 mg/ml + ampicilin 50 

mg/ml) until it reached an O.D of 0.6. HEK293 or BM-DCs were infected at 

different infection ratios in IMDM medium during 1 hour, gentamicin (50g/ml) 

was added for an additional hour. Medium was washed away thoroughly and cells 

were lysed with Triton X-100 (0.5%). The bacteria internalized were released and 

plated on agar petri dishes with kanamicin + ampicilin. The day after, the number 

of grown colonies was counted and correlated with the initial number of bacteria.  

For FACS reading, cells were not lysed after treatment with gentamicin but 

collected and the intensity of the GFP signal was correlated to the number of 

bacteria phagocytosed for each DC. 

 

Time-lapse video microscopy (Trajectories) 

 

For the dynamic analysis of DCs trajectories, 3x105 immature or LPS-pulsed DCs 

(overnight, 10 g/ml) were plated on fibronectin-coated coverslips and placed into 

a chamber on a Zeiss LSM510 META Axiovert 200M reverse microscope at 37°C in 

a 5% CO2 atmosphere. Transmitted light images were taken with a 63X objective 

and a 3CCD camera every 30 seconds during 40 minutes. Recording of the 

trajectories, displacement analysis, and velocity measurements were made using 

the Image J software. For analysis of the conjugate formation, mature DCs were 

incubated for one hour with the MHC class-I restricted peptide of ovalbumin 257-
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264(SIINFEKL) (0,1 nM) before plating. 1 x105 OT-I cells were added to the dish 

and images were taken starting 5 min after landing on the same plane of DCs. 

Each DC was analyzed along the length of the movie and the number and duration 

of contacts established with T cells was scored. 

 

In vivo migration assay 

 

WASp- and wild-type (WT) BM-DCs were harvested at day 7 and labeled with 5-

(6)-carboxyfluorescein diacetate succinimidyl diester(CFSE, molecular probes) 

2M, according to manufacturer instructions. After labeling, 5x105 or 2x106 cells, 

depending on the experiments, were injected into the footpad of C57BL/6 mice. 

To quantify the number of migrating DCs single cell suspensions from the draining 

popliteal lymph node were obtained by digestion in collagenase D at day 1, 2 and 

3 post-injection. The absolute numbers of CFSE+/CD11c+ cells were quantified by 

FACS by acquiring all cells in each sample.  

 

Immunostaining on lymph node sections 

 

For localization of DCs within lymph nodes C57BL/6 WT mice were injected with 

5x105 WT or 1x106 WASp- CFSE-labeled DCs. Lymph nodes were harvested at day 

2 and fixed in paraformaldehyde. Tissues were snap frozen in Tissue-Tek. Frozen 

sections were fixed in cold acetone and incubated with biotinylated anti-mouse 

CD3 followed by Alexa-647-conjugated streptavidin. Images were acquired using a 

LSM 510 Meta using 40 /0.40 NA oil objectives and MetaView 4.6 software 

(Molecular Devices, Downingtown, PA). 

 

Adoptive transfer and T cell activation  

 

1x106 OT-I/CD45.1 cells were purified as described above and injected intra 

venously into recipient host. For priming with BM-DCs, cells were pulsed with 

graded dose of the MHC class-I restricted peptide of ovalbumin (SIINFEKL) for 3 

hr in complete medium washed and labeled with CFSE.  2x105 WT or 6x105 WASp- 

DCs were injected sub-cutaneously 24 hours after transfer of OT-I cells. At day 3 
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after DC injection, popliteal draining LNs were collected, digested in collagenase 

and the percentage of OT-I/CD45.1 cells was evaluated by gating on OT-

I/CD45.1. For comparison of the priming ability of DCs in LN, we quantified the 

number of CFSE+ DCs in each sample (by gating on CFSE+ cells). To analyze the 

CFSE dilution profile of transferred OT-I cells, T cells were labeled with CFSE and 

the dilution profile was analyzed by gating on CD8+/CD45.1+ cells.  

 

Time-lapse video microscopy (MTOC reorientation) 

 

For the analysis of MTOC dynamics of reorientation, 2x105 centrin-GFP DCs pulsed 

for 5 hours with CpG (1 g/ml), LPS (1 ng/ml) and SIINFEKL peptide (10 nM). DCs 

were plated on fibronectin-coated coverslips, placed into a chamber with IMDM 

medium on a Zeiss LSM510 META Axiovert 200M reverse microscope at 37°C in a 

5% CO2 atmosphere. OT-I cells labeled with the vital dye SNARF (Molecular 

Probes) were added few minutes before starting the record. Transmitted light and 

fluorescence images were taken with a 63X objective and a 3CCD camera every 

30 seconds for at least 40 minutes. The dynamics of centrin-GFP spots 

corresponding to the MTOC were tracked frame by frame in every single cell, 

choosing the plane with the brightest GFP spot. Number of cells that reoriented 

the MTOC, elapsed time between the establishment of the contact and 

reorientiation, and duration of the polarized condition were analyzed using the 

Image J software.  

 

DC-T conjugates formation  

 

The formation of DC-T conjugates was assessed by FACS analysis. 5 x105 DCs 

activated by TLR agonist for time periods from 0 to 12 hours. DCs were pulsed 

with SINFEKL peptide, stained with SNARF and mixed with CFSE-labeled T cells 

(1:1 ratio). Green/red doublets were quantified by FACS after 20 min of interaction 

at 37°C. Data were expressed as percentage of T cells engaged in doublets over 

the total number of T cells. 
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Immunocytochemistry 

 

DCs were stimulated at different time points with CpG (1 g/ml), LPS (1 ng/ml), 

pulsed with graded doses of SIINFEKL peptide and transferred to slides coated 

with fibronectin (Sigma-Aldrych, 10 g/ml). For synapse formation, OT-I or OT-II 

cells were added to DCs in a 1:1 ratio and incubated at 37 for 30 minutes. In 

some experiments, OT-I cells were labeled with CFSE (2 M). After fixation with 

4% paraformaldehyde/PBS, primary and secondary antibody staining was done in 

PBS/BSA 0,1% /saponin 0,05%. The dilutions for the primary antibodies were: rat 

-tubulin (1:400), IL-12 p40/p70 (1:100), Vb5.1/5.2 (1:100), TNF (1:100), VAMP-

7(1:500), cd11c (1:100). Anti VAMP-7 antibodies were a kind gift of Thierry Gally 

(Institut Jaques Monod, Paris), anti-tubulin antibody was purchased from AbD 

Serotec, all the other antibodies were purchased from BD-Pharmingen. The 

secondary antibodies were mouse Alexa-647, rat Alexa-488, rat Alexa-555, rabbit 

Alexa-555 from Molecular Probes. Phalloidin-Texas red (Sigma) was used to detect 

polymerized F-actin. Confocal images were acquired in a LSM510 META Axiovert 

200M reverse microscope with a 63x objective. Z-projection of slices, 3D and 

image analysis were performed using Zeiss LSM image examiner and image J. At 

least 30 conjugates for slide were analyzed in at least three independent 

experiments.  

 

Analysis of polarization  

 

The analysis of polarization was performed on individual DCs in contact with a 

single T cell. This was the most represented condition in our experiments. To 

score conjugates with polarized MTOC, we calculated the ratio between the DC 

diameter and the distance of the MTOC to the synapse region. Conjugates in 

which such value was lower than 0,3 were considered as “polarized”. We defined 

cytokine-containing vesicles using a standardized threshold calculated with Image 

J on Z-projections of confocal sections. The distance between the MTOC and all 

vesicles was measured on individual cells and plotted as average distance in at 

least 30 cells/condition. We measured the distance between the synapse region 

and each cytokine vesicle. The ratio between the mean distances of cytokine 
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vesicles and synapse region/diameter of the DC was calculated. The cytokine was 

considered polarized when this ratio was lower than 0,3. For the WASp- DCs, 

polarization was assessed on cells with IL-12 signal intensity comparable to the 

observed in WT DCs. 

 

ELISA 

 

7,5 x105 DCs (WT or WASp-) were stimulated with CpG/LPS for different periods. 

At the end of the incubation period the cell culture supernatant was harvested and 

the cell pellets washed 2 times in PBS and lysed in 120 l of TNN + 1 l of 

protease inhibitor cocktail(PIC). The levels of IL-12p40, IL-12p70 and TNF in the 

supernatants and lysates were determined by commercial ELISA kits (Bd 

Biosciences and eBioscience) according to the manufacturer instructions.  

 

Cytoskeletal disruption  

 

To inhibit microtubule polymerization cells were treated with colchicine or 

colcemide (SIGMA) (1 g/ml) for the last 5 min of the pulsing period with TLR 

agonist. The cells were extensively washed before mixing to T cell to avoid carry 

over of the drug.  

 

STAT4 phosphorylation 

 

For analysis of STAT4 phosphorylation by Western Blot 2x105 DCs were mixed to 

4x106 OT-I in a 96 wells plate by spinning at 800 rpm for 1 min. After 30 min of 

incubation at 37C, the cells were lysed and cell lysates resolved by 10% SDS-

PAGE. PDVF membranes were blocked with TBS/BSA 5% during 30 min and 

incubated with of Rabbit-anti-pSTAT4-ser721 antibody (SantaCruz) (dilution 

1:500) followed by an anti-rabbit-HRP antibody (Sigma) (dilution 1:5000).  

 

For FACS analysis, DC-T synapses were formed as above. T cells were incubated 

with supernatant of TLR stimulated DCs as a control (referred to as soluble IL-12). 
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At the end of incubation at 37C cells were fixed with 1% PFA (10 min) and 

permeabilized with methanol 80% (20 min). After washing, cells were stained with 

pSTAT4-FITC or mouse IgG isotype control (Pharmingen, 1:25), CD45.1-

rhodamine (1:400) and CD8-Cy5 (1:400). For FACS analysis, cells were gated on 

CD8-CD45.1 double positive events and inside this population, T cells alone or 

conjugated with DCs were distinguished by the FSC/SSC profile. 

  

Statistical Analysis 

 

All data were reported as the mean ± standard error mean (SEM) as calculated 

using GraphPad Prism 5 software. The unpaired student t test was performed as 

indicated in the text to assess significance.  



Results 

3. RESULTS 

 

WASp knockout (WASp-) mice proved to be a valid model to study cellular 

functions and gene therapy approaches20; 125; 126. For our studies we used a WASp 

knockout mouse model on the H-2b C57/BL6 background that has been a 

generous gift from Scott Snapper. Since the WAS gene is on the X chromosome, 

we used throughout the study WAS-/- homozygous female or WASp- males and 

wild type (WT) littermate as control. Briefly, the strategy used by Snapper to 

disrupt the murine WASP gene consisted in gene-targeted mutational techniques 

to insert a neomycin-resistance gene (neo) into exon 7(figure 11). 

 

 

 
Figure 11. WASp deficient murine model. The WASp gene was disrupted by 
homologous recombination with the neomycine-resistance gene5.  
 

 

Mice genotyping by PCR was performed using specific primers (see Materials). A 

889 bp band corresponding to the neo inserted gene was observed in the WASp- 

mice, whereas a 457 bp band, corresponding to the WAS gene was observed in 

WT mice. Absence of WASp was further confirmed by Western blot analysis and 

intracellular FACS (not shown) in randomly chosen mice (Figure 12). 
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Figure 12. Genotyping of WASp mice. A)  PCR products after amplification with 
specific primers from DNA samples obtained from WT or WASp- genomic DNA were 
runned by electrophoresis in agarose gels. 889 bp band corresponding to the neo inserted 
gene was observed in the WASp- mice, while a 457 bp band, corresponding to WASp 
gene was observed in WT mice. B) Lysates obtained from spleen cells were resolved by 
SDS 10% and Western blotting with WASP-specific antibodies. A 62 kDa specific band is 
observed only in WT cellular extracts. 
 
 

Maturation of WASp- DCs  

 

We first evaluated the capacity of DCs from WASp- mice to differentiate and 

mature after TLR stimulation. To this aim BM differentiated WASp- and WT DCs 

were stimulated for six hours in the presence of CpG and LPS, stained with CD86 

(a costimulatory molecule associated with maturation in DCs) and cd11c 

antibodies and analyzed by FACS. The percentage of CD11c+-CD86+ in immature 

DCs was 11,50 and 10,18 for WASp and WT respectively. Upon stimulation the 

percentage of CD11c+-CD86+ cells raised up to 71,48 and 65,84 for WASp- and 

WT respectively (figure 13). This result indicates that maturation upon TLR 

stimulation is not affected by the lack of WASp in DCs. 

 

Phagocytic defect in WASp- DCs 

 

We next moved to analyze the ability of WASp- DCs to uptake pathogens by 

phagocytosis. Different models have been used to check the internalization 

capacity of dendritic cells. We used as a model a Salmonella typhimurium (ATK) 
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strain that is defective for the TTSS (Type Three Secretion System) and thus rely 

exclusively on the endocytic mechanisms of the infected cell127. To detect bacterial 

internalization by immunofluorescence and FACS analysis we used a strain 

containing the GFP protein (ATK-GFP hereafter). 

 

  Immature     TLR stimulated 

WT 

           

WASp- 

          
 
 
Figure 13. Maturation profile of WASp- DCs. WT and WASp- BM-derived DCs were 
collected on day 7 and were stimulated or not with CpG and LPS during 6 hours. Cells 
were marked with CD11c (x axis) and cd86(y axis) antibodies and analyzed by FACS. Dot 
plots show that both populations have practically the same percentage of DCs CD11c+-
CD86+ before and after TLR stimulation. 
 

 

Cells were pulsed with Salmonella ATK for one hour in culture medium without 

antibiotics. Gentamicin was then added for an additional hour to kill the remaining 

bacteria outside, whereas the phagocytosed bacteria were protected. A 

quantification of the Salmonella ATK-GFP ingested by the cells was done by 
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measurement of the fluorescence by FACS or by colony counting, after plating the 

internalized bacteria on Petri dishes (see Materials). 

 

We first set up the incubation times, ratio of bacteria for each DC and the dose of 

gentamicin required to inhibit bacterial growth after one hour. Then, we validated 

our model and checked if internalization was caused by phagocytosis and not by 

autonomous bacterial infection. HEK293 cells (with no phagocytic activity) or WT 

BM-derived DCs were pulsed with Salmonella ATK-GFP (ratio 1:10) and green 

fluorescence was measured by FACS. We observed that after 1 hour of infection 

20% of WT DCs have internalized at least one fluorescent bacterium. In contrast, 

HEK293 cells had no GFP signal inside (Figure 14). This result confirmed that the 

ATK-GFP strain is defective for autonomous infection under our working 

conditions. 

 

  HEK      DCs 

                          
    
Figure 14. Salmonella ATK-GFP is impaired for autonomous infection. 1x105 
HEK293 or WT BM-derived DCs were pulsed with 1x106 Salmonella ATK-gfp bacteria, after 
1 hour medium was extensively washed and green fluorescence was read by FACS. While 
no HEK293 cell internalized any bacteria (left panel, right quadrant), 20 % of BM-derived 
DCs phagocytosed at least one bacterium (right panel, right quadrant). 
 

Next, we proceed to evaluate the efficacy of Salmonella internalization by WASp- 

DCs. 1x105 WT or WASp- BM-derived DCs were pulsed with Salmonella ATK-GFP 

bacteria (ratio, 1:10). Gentamicin (50 g/ml) was added after one hour of 

infection and left for an additional hour. Medium was extensively washed away 

and DCs were lysed. Exposed bacteria after DC lysis were plated on Petri dishes 

and the number of colonies grown was correlated to the number of bacteria 

phagocytosed by DCs. A series of six independent experiments with at least two 
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mice for conditions, and triplicates for infection and bacteria plating were 

performed. The difference on the number of bacteria internalized by the two 

populations of DCS was plotted as the mean percentage of reduction in the 

number of bacteria internalized by WASp- DCs with respect to the WT DCs (Figure 

15). We observed a decrease on the Salmonella typhimurium uptake by WASp- 

DCs that corresponded to 42.1 +/- 6 %.  

 

To extend this result to a physiologic population of DCs, we performed the same 

assay using endogenous DCs. The CD11c fraction from spleens of WT and WASp- 

mice was purified and pulsed with Salmonella ATK-GFP (ratio1:10). Gentamicin 

(50 g/ml) was added after one hour and left for an additional hour. Medium was 

extensively washed away and DCs were lysed. The bacteria inside were plated on 

Petri dishes and the number of colonies grown was correlated to the number of 

bacteria phagocytosed by DCs. Two independent experiments were perfomed with 

triplicates of colony plating. We observed again a clear defect on the S. 

typhimurium uptake by endogenous WASp- DCs that corresponded to the 44.6 +/- 

6.5 % (Figure 15). These results indicate that lack of WASp significantly reduces 

the phagocytic capacity of DCs.  

 

We next asked whether bacteria internalized by WASp- DCs, besides being 

reduced in number, were delivered to the same intracellular compartment in WT 

and WASp- DCs. To this aim DCs were stained with specific markers of early 

endocytic vesicles after infection. 1x105 WT and WASp- DCs were pulsed for one 

hour with 1x106 Salmonella ATK-GFP. After infection cells were fixed and stained 

with LAMP-I, EEA1 and phalloidin (to detect F-actin). Z-projection images were 

obtained by confocal microscopy.  Image analysis revealed that a single DC may 

uptake more than one bacterium. The bacteria were surrounded by intracellular 

compartments positive for LAMP-I and EEA-1 markers. However, no apparent 

difference in the intracellular distribution of bacteria between WASp- and WT DCs 

was observed (figure 16). 
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Figure 15. Phagocytic defect in WASp- DCs. A) 1x105 WT or WASp- BMDCs were 
pulsed with Salmonella ATK-gfp (ratio 1:10) during one hour, gentamicin was added to 
the culture medium. After one hour medium was washed away several times and then 
cells were lysed. Exposed bacteria were plated on Petri dishes and colonies were counted 
the day after. The percentage of defect in Salmonella ATK-GFP uptake by WASp- DCs 
respect to WT DCs is plotted. Each point corresponds to the mean defect of a series of six 
independent experiments. B) Spleen DCs purified from WT or WASp- mice were pulsed as 
in (A). Colony counting confirmed the impairment of WASp- seen using BMDCs. Two 
independent experiments were performed with triplicates for colony plating. Mean of the 
defect +/- SEM is plotted. 
 

     WT        WASp-    

 

ACTIN           

LAMP-I          

EEA-I            

Figure 16. Intracellular Salmonella localization in DCs. WT and WASp- BMDCs 
were pulsed with Salmonella ATK-gfp during one hour, cells were fixed and stained with 
phalloidin (actin), LAMP-I and EEA-I antibodies (red). Demonstrative Z-projections of 
single cells revealed no difference in the bacterial (green) intracellular localization.  
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 From this analysis we conclude that WASp- DCs are impaired in the ability to 

uptake bacterial antigens (45% of reduction). However, our preliminary data 

indicates that once internalized, bacteria reach the same endocytic compartment. 

 

Role of WASp on DC displacement and migration 

 

After we assessed that WASp deficiency affects bacterial phagocytosis by DCs, we 

next moved to study its role in other DC functions. It has been shown that during 

the initial phases of T cell priming, DCs project polarized membrane extension that 

facilitate the formation of DC-T cell conjugates. This activity is regulated by small 

GTPases of the Rho family 55. Since WASp drives actin polymerization downstream 

of Rho GTPases, we investigated whether WASp deficiency in DCs affects the 

ability to displace, find naïve T cells and establish stable contacts.  

 

DC trajectories in vivo and in vitro 

 

We first evaluated the ability of DCs to migrate in vitro by time lapse video 

microscopy. BM-derived WT or WASp- DCs were plated on fibronectin-coated 

chambers. Time-lapse movies of DC movements were recorded during 30 minutes 

(See materials). We first tracked random movements of WT and WASp- immature 

DCs. Immature WASp- DCs displayed an altered morphology, failed to extend a 

polarized leading edge and to retract the rear (Figure 17) As a consequence, the 

speed of cell migration was reduced as compared to WT cells (WT=0.058 ± 0.003 

m/sec (n=54), WASp- =0.032 ± 0.002 m/sec (n=46); p<0,001) (Fig 17b) 

(supplementary movies 1 and 2).. 

  

To compare the morphology and dynamics of mature DCs, cells were stimulated 

with LPS overnight and plated on fibronectin-coated chambers. Under the 

microscope we observed reduced morphological differences between WT and 

WASp cells since ruffling and dendrites extensions were present in both cases 

(Figure 17a). Migration velocities were increased by LPS treatment, but despite 
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apparent rescue of morphological abnormalities WASp- cells remained slower than 

WT cells (WT= 0.080 ± 0.0052m/sec (n=36), WASp-=0.059 ± 0.0042 m/sec 

(n=31); p<0,01) (Figure 17b) (supplementary movies 3 and 4).  

 

 

     
Figure 17. Dendritic cells motility. A). WT or WASp- BMDCs were stimulated or not 
with LPS, plated on fibronectin-coated chambers and recorded by time-lapse video 
microscopy. Snapshots show that immature (im) WASp- DCs have a defect to retract the 
dendrites after migration. A similar ruffling pattern is observed in both mature (mat) 
populations. B). BM-derived DCs were recorded for 40 minutes on fibronectin-coated 
chambers. The mean velocity of displacement was measured for WT and WASp- DCs. The 
graph shows mean velocities of cells analyzed in three single experiments, where each 
point corresponds to a single cell.  T-student test was used to assess statistical 
significance. (P<0,01) 
 

 

These results indicate that lack of WASp reduces the ability of DCs to travel on a 

fibronectin matrix, probably because an impairment in dendrites retraction. The 

impairment is independent on the maturation status of the DCs. This confirms 

previous published data from Thrasher using a similar model20. 

 

We next moved to examine if altered DC mobility affects the ability to form 

conjugates with naïve T lymphocytes. To this aim, we recorded time-lapse movies 

of the first phases of DC-T cell interaction during priming. To specifically detect 

the role of WASp expression in DCs, we studied synapse formation using CD8+ T 

cells of wild type origin.  In order to bypass the defective antigen uptake 
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previously shown (figure 15), cells were pulsed with processed peptide, ready to 

be loaded on the MHC complexes.  

 

WT and WASp- BMDCs were matured by LPS treatment and pulsed with the 

SIINFEKL peptide or left un-pulsed. Naïve OT-I cells were added to DCs at 1:1 

ratio and differential interference images were collected every 30 seconds for the 

first 40 minutes of the co-culture. Figure 18a illustrates an example of WT or 

WASp- DCs in the presence of OT-I cells. The majorities of WT DCs flap their 

dendrites in all directions and polarize to trap T cells as soon as they arrive in 

close proximity. However, the cell body of a proportion of WASp- DCs remained 

anchored to the substrate and failed to trap and establish tight contacts with 

nearby T cells (Supplementary movies 5 and 6). We quantified the percentage of 

DCs that established a contact that last more than 20 minutes with at least one 

naïve T cell. As shown in Figure 18, both WT and WASp- DCs establish only few 

long contacts in the absence of OVA specific peptide (WT=13,7; WASp-=14,5). 

Addition of 0,1 nM of OVA peptide induced a high proportion of WT DCs to form 

long-lasting contacts with antigen specific T cells (470,13). In contrast, peptide 

loading on WASp- DCs induced only a modest increase in the percentage of long-

lasting interactions (210,15;  p<0,001). To confirm these observations we moved 

to examine DC-T cell conjugates using endogenous CD11c+ cells isolated from 

lymph nodes (Figure 19 d). The overall duration of antigen specific DC-T cell 

interaction was significantly decreased also in the case of freshly isolated WASp- 

DCs (WT=18.58 min ± 1.412; WASp-=13.05 ± 1.738, p<0,05).  

 

Collectively these results indicate that WASp expression in DCs is required to 

optimize the encounters and to establish stable interactions with naïve T cells. 

However, these results were only valid for an in vitro model, in the absence of 

chemotactic signals and in a restricted space where the T cells and the DCs where 

in close proximity. Thus, we moved to an in vivo model, and we asked whether 

the ability of DCs to migrate from periphery to lymphoid organs, and once there, 

their capacity to form stable synapses and activate naïve T cells was affected by 

the absence of WASp. 
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Figure 18. Dc-T cell stable contact formation. A) BM- derived DCs were matured, 
loaded with OVA peptide and cocultured with OT-I CD8 T cells on a fibronectin matrix. 
Interactions were recorded during 40 minutes. Snapshots of time-lapse videos show that 
WT DCs establish stable conjugates with the T cells, while WASp- DCs contact T cells in a 
transitory way. B) Duration of the contacts between a single T cell and a WT or WASp- 
DC were measured in at least 60 conjugates. Each point corresponds to a single 
conjugate DC-T cell. The pool of 5 independent experiments is plotted (p<0,01) C) WT 
and WASp- mature BM- derived DCs were loaded with increasing doses of peptide and co-
cultured with OVA specific T cells. The percentage of single contacts lasting more than 20 
minutes was scored. Mean percentage +/- SEM of three independent experiments is 
plotted. D) Endogenous WT and WASp- DCs were purified, stimulated with LPS and 
loaded with OVA peptide. DCs were mixed with OVA specific T cells and recorded for 40 
minutes. DCs that established stable contacts for more than 20 minutes were scored. Bars 
indicate mean percentage +/- SEM of DCs with stable contacts and are representative of 
a series of three independent experiments (p>0,01). 
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To this aim, we first examined trafficking of adoptively transferred BM-derived DCs 

to sites of immune induction. BM-derived WT or WASp- DCs labeled with CFSE 

were injected into the footpad of WT recipient animals to analyze the kinetics of 

arrival to draining lymph nodes. After one day, the number of WASp- DCs that 

reached the draining LN was decreased by more than 3-fold as compared to WT 

cells. At day 2 and 3 we found a similar reduction in the number of recovered 

WASp- DCs indicating that migration is not simply delayed (Figure 19 a). When we 

increased the DCs input dose by two and fourfold, we observed a linear increase 

in the number of recovered DCs. However, the inhibition of at least twofold in 

migration of WASp- cells was maintained along the entire range of doses tested 

(Figure 20b). Thus, lack of WASp expression in DCs causes a two-fold reduction in 

migration from the injection site to the draining lymph node.  

 
 
 

           
Figure 19. Impaired migration in vivo. A) 5x105 WT or WASp- DCs BMDC labeled 
with CFSE were injected into the footpad of WT recipient animals to analyze the kinetics 
of arrival to draining lymph nodes. A reduced amount of WASp- DCs recovered in the LN 
was observed during the following three days. B) Increasing amount of WASp- and WT 
DCs were injected on the footpad of WT recipient mice and recovered on the LN after one 
day. Mean of migrated DCs +/- SEM is plotted.  
 
  
Since we wanted to study the intrinsic ability of WASp- DCs to prime naïve T cell 

we looked for a way to bypass homing defects. To this aim, we titrated the 

number of input DCs necessary to achieve comparable numbers of WT and WASp- 

DCs in lymph nodes. This was achieved at low DCs doses by injecting 2x105 WT 

DC and 6x105 WASp- DCs (Figure 20a).  Once we managed to adjust the 

migration defect we examined in detail the regions where the DCs localized inside 

the LN. WASp- (CFSE labeled) and WT (SNARF labeled) DCs were injected 
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simultaneously into the footpad of a WT recipient. After one day, LNs were 

extracted and snap frozen. LN sections were stained with CD3, B220 and PNAd 

antibodies. These are specific markers that respectively define the T cell zone, B 

cell folicles or endothelial venules inside the LN. After fluorescence analysis we 

found that WASp- DCs that have migrated to LN homed to T cell areas similarly to 

WT DCs (Figure 20b). 

 

A B   

Figure 20. Rescue of defective migration.  A) The defect on migration from the 
footpad to the LN was recovered injecting 2x105 WT DC and 6x105 WASp- DCs, after the 
three following days, equivalent numbers of CFSE stained DCs were recovered. B) LNs of 
recipient mice were immunostained with CD3, B220 and PNAd (HEV) antibodies to 
evaluate the localization of WT and WASp- DCs injected. Both populations migrated to 
corresponding areas in the inner layers of the LN.  

 

Naïve T cell priming 

 

Once established that WASp- DCs normally home to T-cell areas we moved to 

evaluate the priming of naïve T cells.  2x105 WT and 6x105 WASp- BMDCs were 

left un-pulsed or pulsed with two different doses of OVA peptide and used to 

immunize WT hosts that were adoptively transferred with OT-I cells (CD45.1 

congenic). LN near the injection sites were harvested after 3 days. Proliferation 

and accumulation was evaluated by FACS. As shown in figure 21a, the ratio 

between OT-I/CD45+ (adoptively transferred) over the endogenous CD8+ T was 

higher in LN of mice injected with WT DCs.  This result indicate that despite 

equivalent number of WASp- DCs in the LN, OT-I cell expansion was significantly 

inhibited in mice immunized with WASp- DCs.   

 

To get insight into the mechanism of defective T cell accumulation induced by 

WASp- DCs we analyzed the CFSE dilution profiles of transferred OT-I (Figure 21).  
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Immunization with 2x105 WT DCs loaded with 0,01 nM OVA peptide was already 

sufficient to induce up to 40% of T cells to enter division and 30% of the cells to 

undergo more than seven cycles of division (fully divided cells). After immunization 

with 6x105 WASp- DCs at the same peptide dose most OT-I cells primed remained 

undivided (60%) and a little proportion underwent two to seven division (13%). At 

0,05 nM WT DCs induced all OT-I to enter the cell cycle and a large proportion of 

fully divided cells to accumulate (56%). Interestingly, priming with WASp- DCs 

loaded with 0,05 nM of peptide caused up to 70% of OT-I cells to enter division 

but the cells remained trapped between 2 to 7 cycles with very few cells beyond 

the 7th division (13%).  

 

To rule out the possibility that inefficient priming was due to impaired DCs 

maturation in WASp- DCs128, we measured by FACS the maturation profile of DCs 

before and after homing to LN. WT and WASp- DCs were injected into the footpad 

of WT recipient mice and cells were recovered at day 3 after injection. DCs were 

stained with maturation markers, MHC-II and CD86, before and after infection and 

populations were analyzed by FACS. We found no differences in the maturation 

profile between WT and WASp- DCs recovered in the LN (Figure 21d).  
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Figure 21. Defective priming of naïve T cells A) Mice were adoptively transferred 
with CD45.1, CFSE labeled OT-I cells. T cell priming was induced by injection of 2x105 WT 
or 6x105 WASp- DCs loaded with the indicated doses of MHC class-I OVA peptide. 
Percentage of OT-I cells over the total CD8+ population at day 3 post-immunization 
(gated on CD45.1/CD8+ cells). Values are the means ± SEM of four mice per group. B) 
The histogram plots show the CFSE dilution profile of transferred OT-I (gated on 
CD8+/CD45.1+) in draining LN at day 3. Values are means± SEM of 4 mice per group. C) 
Percentage of OT-I cells that remained undivided (undivided), that underwent 2 to 7 
division (2 to 7) or that fully diluted CSFE (fully divided) was plotted. D) Mean 
fluorescence histograms show the staining profiles of MHC-II and CD86 (maturation 
markers) in WT and WASp– DCs before injection (input) or recovered at day three after 
injection (DCs recovered in LN).  
 

 

The above results indicate that DCs require WASp expression in order to induce 

efficient T cell proliferation when transferred into a host. Thus, WASp expression 

in DCs is important to initiate CD8+ T cells responses at two levels: by promoting 

the migration to draining LN and by supporting efficient T cell activation. 

 

In vitro DC-T cell interaction  

 

Our data on T cell activation indicate that WASp- DCs do not efficiently prime 

naïve T cells in LN. As we have shown, this in part due to impaired ability to form 

DC-T conjugates. However, our data suggest that other factors may contribute to 

the strong reduction in T cell priming. It has been proved that an intact 

cytoskeleton is required for the formation of stable synapses in a variety of cellular 

models129; 130 . Taking into account that WASp is an actin polymerizator, we moved 

to study the distribution of actin and tubulin cytoskeleton in formed DC-T 

synapses to understand whether WASp deficiency affects appropriate cross talk at 

the immune synapse.  

 

To this aim, we examined the structure of the cytoskeleton in DCs during 

interaction with T cells. BM-derived WT or WASp- DCs were activated by TLRs 

agonist to induce maturation and were loaded or not with OVA class-I peptide. 

DCs were then mixed with CD8+ OVA specific T cells (OT-I cells) for 30 minutes, 

fixed and analyzed by confocal microscopy. To visualize the microtubule 

cytoskeleton we used immunolabeling with anti-tubulin- antibodies and to see 
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the actin we used phalloidin.  Additionally, to corroborate that the conjugates 

observed corresponded to mature IS we checked by immunofluorescence the 

recruitment of CD3 at the T cell side. CD3 binds to the T Cell Receptor(TCR) and it 

is a hallmark in the formation of the c- SMAC64. 

 

Given our previous results, we spun together DC and T cells to overcome defective 

conjugate formation by WASp- DCs. The number of DC-T conjugates was identical 

in WASP- and WT cells. WASp- DCs showed that shape and distribution of 

microtubules looked undistinguishable from those in WT cells.  

 

First analysis by confocal microscopy showed that in a high percentage of WT DC-

T conjugates the DC’s MTOC was in close proximity to the synaptic membrane 

respect to WASp- DCs (Figure 22) . Since MTOC polarization, a process widely 

studied in T cells, has never been described in DCs we decided to evaluate in 

depth this phenomena. We first evaluate the role of specific peptide recognition by 

T cells on DCs MTOC polarization. To this aim, WT and WASp- DCs were loaded 

with increasing doses of OVA peptide, co-cultured with OT-I cells during 30 

minutes, fixed and immunostained. The percentage of cells showing polarized 

MTOC was quantified according to the criteria described before (see Materials). As 

shown in Figure 22 the percentage of DCs showing a reoriented MTOC depended 

on antigen dose. Only few DCs (5,3%±0.3) were polarized in the absence of 

peptide, a figure that increased to 20%±2.02 and 42% ±1.8 at 1 and 10 nM 

peptide respectively. MTOC polarization in WASp- DCs did not response to the 

increase of peptide dose. Thus, we found a remarkable reduction in the 

percentage of WASp- DCs with the MTOC facing the DC-T contact region (Up to 

70 % of reduction with respect to WT cells at the highest peptide doses, p<0.01) 

(Figure 22b) 

 

Thus, DCs engaged in antigen specific synapses reorganize the microtubules 

cytoskeleton by redirecting the MTOC towards the interacting T cell in an antigen 

dose dependent manner, a process where the presence of WASp is essential. 
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Figure 22. MTOC polarization in DCs depends on peptide dose A)BM-derived DCs 
of WT or WASp- mice were activated by TLR, loaded with different peptide doses, mixed 
with OVA specific T cells and stained with phalloidin (red) and -tubulin (green) 
antibodies. Representative images of WT DCs with the MTOC polarized towards the T cell 
and a WASp- DC with the MTOC not reoriented. For analysis, DCs were divided in three 
regions and cells with the MTOC localized to the nearest region to the IS were scored as 
polarized. B) Plotted data show the percentage of DC-T conjugates with the MTOC 
polarized at different peptide doses. Confocal images of five independent experiments 
with at least 30 conjugates were analyzed for each condition. (p> 0,01). C) 
Representative confocal plane showing TCR enrichment (CD3, red) facing the polarized 
MTOC (-tubulin, green) at the IS. 
 

In order to have an indication about the kinetics of MTOC polarization we 

performed experiments using WT and WASp- DCs varying the times of culture 

with T cells. DCs were TLR stimulated, loaded with OVA-peptide (1nm). DC-T cell 

interactions were stopped by fixation after 15, 30 and 90 minutes. Cells were 

labeled with -tubulin antibodies and analyzed by confocal microscopy.  After 15 

minutes we observed the highest percentage of dendritic cells polarized, this 

phenomenon decreased after 90 minutes of coculture. We observed a marked 

defect on the WASp- DCs MTOC polarization, which slightly recovered at longer 

interaction times. This indicates that probably the lack of the WAS protein induces 

a severe delay in the polarization of the MTOC towards the immune synapse 

(Figure 23. 
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Figure 23. Kinetics of MTOC polarization. WT and WASp- DCs were TLR stimulated 
for 6 hours, loaded with specific OVA peptide and cocultured with naïve OT-1 cells. 
Interactions were stopped by fixation at indicated times.  The percentage of DCs with the 
MTOC polarized toward the Immune synapse was quantified by confocal microscopy. 
Mean ± SEM of a pool of three independent experiments is plotted. 
 

 

To further characterize the event of polarization in WT DCs, we evaluated the 

importance of maturation by TLR stimulation on cytoskeleton reorganization. It is 

established that TLR-stimulated, mature, DCs are more efficient in inducing T cell 

activation than immature DCs. We have previously shown that this correlates to 

formation of stronger and long-lasting DC-T cell interactions that in turn depend 

on an intact actin cytoskeleton62. We first examined the kinetics of activation of T 

cells and formation of conjugates after TLR stimulation. To this aim, DCs were 

labeled with CFSE, T cells with SNARF and mixed (1:1 ratio) at different times post 

TLR engagement. Green/red doublets were quantified by FACS after 20 min of 

interaction at 37°C. We observed that after 6hr post TLR-engagement, DCs have 

reached the highest capacity to cluster. This time point correlates to maximal T 

cell activation capacity as shown by production of IL-2 (an interleukin produced at 

early stages of T cell activation) in DC- T cell co-cultures (figure 24). 
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Figure 24. TLR stimulation and MTOC polarization in DCs A) DCs were treated 
with TLR agonist for the indicated periods and loaded with 1nM peptide before synapse 
formation. The percentage of polarized DCs was scored in at least 50 conjugates for each 
condition in three independent experiments. B) The formation of DC-T conjugates was 
assessed by FACS analysis. DC activated by TLR agonist for the indicated periods were 
incubated with peptide, stained with SNARF and mixed with CFSE labeled T cells. The 
number of Green/red doublets after 20 min of interaction was quantified for each point. 
Data are expressed as percentage of T cells engaged in doublets over the total number of 
T cells. C) T cell activation induced by DCs that have been stimulated by TLR agonist for 
the indicated periods. Peptide loaded DCs (1 nM OVA class-I peptide) were mixed to OT-I 
cells for 12 hr. Levels of IL-2 in the cell culture medium were measured by ELISA using 
standard procedures. D) DCs were left untreated or stimulated with a combination of TLR 
agonist (TLR) and loaded or not with peptide before mixing to OVA specific T cells. Cells 
were fixed and stained with phalloidin (red) and anti-tubulin antibodies (green). 
Representative confocal images show the MTOC position for each condition. 
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To understand whether microtubules were preferentially polarized in mature DC-T 

cell contacts we cocultured T cells and antigen-loaded DCs that were or were not 

incubated during 2, 4, 6 and 12 hours with TLR agonists. DC-T conjugates formed 

by DCs that had not been stimulated by TLR agonists showed low degree of MTOC 

polarization. As soon as 2hr post-activation the number of conjugates with the 

MTOC facing the T-cell increased, reaching maximal levels at 6hr post stimulation 

(Figure 24). These results indicate that after 4-6 hours of TLR engagement, DCs 

are able to polarize the MTOC towards the IS, a time point that correlates with the 

maximal capacity to activate naïve T cells. 

 

We next analyzed the dynamics of MTOC reorientation in WT DCs. To this aim we 

recorded by live-fluorescence imaging DCs differentiated from the BM of centrin 

GFP knock-in mice to allow a sharper visualization of the MTOC. Cells were pulsed 

with 10 nM OVA peptide, plated on coated-fibronectin chambers, mixed to labeled 

OT-I cells and recorded during the first 50 minutes of interaction. The MTOC spot 

localized mostly to a central position in isolated DCs. Upon contact with a T cell we 

observed DCs to traslocate the MTOC towards the membrane contacting the T cell 

in about half of the conjugates formed during the recording period (Figure 25 + 

supplementary video 7). Full MTOC polarization required 7.5±1.2 min after the 

initial contact. In the majority of cases (82%±5.6) once the MTOC became 

polarized it remained closed to the T cell membrane for the rest of the movie (up 

to 40 min), with little oscillation forward and back. This was valid even when the 

DC-T doublet moved rapidly along the x-y plane (Supplementary video 8). In few 

cases (9%±4) the MTOC moved on a distal position after repeated contact with 

the membrane facing the T cell (Figure 25b). Thus, rapidly after contact formation 

the DC’s MTOC is repositioned in the region underneath the synaptic membrane 

and it remains confined in this area. 

 

 

 

 

 

 



Results 

 61 

A B 

 

 

                     
 
 
Figure 25. Time-lapse analysis of MTOC polarization. A) BM-derived centrin-gfp 
DCs matured by treatment with CpG/LPS were loaded with 1 nM of the MHC class-I OVA 
peptide and let to adhere to fibronectin. OT-I cells prestained with SNARF marker were 
added to the culture (1:1 ratio) and time-lapse movies were recorded during the first 50 
min of interaction. Sequential images show an example of a single conjugate. In the 
sequence the DC forms a stable contact after few frames, then the centrin spot (green) 
corresponding to the MTOC, reorients towards the synapse region and remains in close 
proximity until the end of the video. B) Elapsed time for MTOC reorientation towards the 
contact region and duration of the MTOC polarized condition until the end of the video 
were measured for each T-Dc synapse. Conjugates with the MTOC polarized for at least 
20 minutes were scored as stably polarized (stable) while conjugates where the MTOC 
was polarized and move back to the central region of the DC in less than 20 minutes were 
considered as transiently polarized (transient). Mean ± SEM is plotted for 60 conjugates in 
three independent experiments (p<0,01) 
 

We next tested if MTOC polarization was exclusive of conjugates with CD8 T cells, 

or if it was also present in synapses formed with CD4 T lymphocytes.  We 

performed the same assay as with OT-I cells. After TLR engagement, WT or 

WASp– BMDCS, were loaded or not with MHC-II OVA peptide (0,1 mg/ml) and co-

cultured with CD4 naïve T cells (OT-II). After 30 minutes of interaction cells were 

fixed and stained with tubulin- antibodies. We observed a very similar picture, 

where a high percentage of WT DCs reorient their MTOC towards the T cells in the 

presence of specific peptide (Figure 26). Quantification of the WASp- DCs with the 

MTOC polarized showed that despite little increase caused by the loading of 

specific peptide, there is a strong reduction with respect to WT DCs. 
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Figure 26. DCs MTOC polarization in synapses with CD4 T cells.  BM-derived DCs 
of WT or WASp-mice were activated by TLR, loaded or not with (0,1 mg/ml) MHC II OVA 
peptide and mixed with OT-II T-cells.  Cells were fixed and stained with phalloidin and -
tubulin antibodies and single conjugates were analyzed by confocal microscopy. The 
graph bar shows the percentage of DCs with the MTOC polarized towards the IS. 
Representative data of a series of three independent experiments was plotted (n=40).  
 
 
 
Together these data show that DCs maturation induced by TLRs ligation confers 

the ability to polarize the MTOC at the IS rapidly after formation of antigen specific 

conjugates with T cells. The kinetic of MTOC polarization after TLR ligation 

corresponds to the acquisition of maximal T cell priming potential.  

 

Role of the MTOC in DC signaling  

 

MTOC reorientation in DCs after contact formation with T cells has not been 

previously reported. However, MTOC polarization is a hallmark of cell polarity in 

processes like cell asymmetric cell division and directional migration. In immune 

cells, MTOC polarization has been functionally linked to directed secretion of 

cytokines and lytic granules toward the target cell and most recently it was shown 

to be important to sustain TCR signaling. Thus, we wonder what would be the 

functional significance of MTOC polarization in DCs.    

 

To this aim we first sought for intracellular localization of cytokines related with T 

cell activation. Interleukin 12 (IL-12), which is produced in high amounts by DCs 

upon TLR stimulation, has key roles in Th1/2 fate determination and in 
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differentiation and expansion of memory CD8+ T cells. It has been suggested that 

IL-12 is secreted in a polarized way at the DC-NK synapse99. TNF is a cytokine 

also produced by DCs upon TLR stimulation, has a proinflammatory role and in 

another cell types has been found secreted in a multidirectional way95. 

 

We first analyzed the kinetic of production and the intracellular distribution of 

these two cytokines in DCs after TLR engagement.  WT BM-derived DCs were 

pulsed with CpG and LPS and harvested at different time points after stimulation 

to analyze the cytokine content in supernatants and cell lysates by ELISA. The 

bioactive form of IL-12 is the heterodimeric IL-12p70 composed of the p40 and 

the p35 chains. The IL12p40 begins to appear in the intracellular fraction as early 

as 1 hour post-stimulation and reaches very abundant levels by 4-6 hours before 

declining. Secretion and accumulation in the extracellular fraction begins at 2 

hours and increases up to 18 hours post-activation (Figure27). The bioactive form 

IL12p70 starts to be secreted slightly later than p40 and only transiently 

accumulates intracellularly (2-6 hours). TNF can be detected intracellularly after 

30 minutes and start to be secreted already at 1 hour, peaks at 4 hours and start 

to decline at 6 hours, indicating a faster secretion rate (Figure 27).  

 

We next moved to the single cell level, to study the intracellular localization of IL-

12 and TNF in DCs. WT BM-derived DCs were pulsed with CpG/LPS for different 

times. Cells were fixed and stained with anti-tubulin, anti -IL-12 and anti-TNF 

antibodies. Single cells were analyzed by confocal microscopy. A divergent 

intracellular staining profile between IL-12 and TNF was observed. Quantification 

of the distance between the cytokine containing vesicles and the MTOC revealed 

that at early and at late time points IL-12 is highly enriched around the MTOC. In 

contrast, TNF staining concentrates in a ring around the MTOC at the earliest time 

point (30min), but rapidly translocates through the microtubules at 1 hour and is 

found mostly in a MTOC distal position at later time points (4-6 hours) (Figure 28). 

Additionally, coimmunolabelling with TNF and IL-12 antibodies after 4 hours of 

TLR stimulation showed the divergent localization pattern of the two cytokines in 

the same cell (figure 28d). 
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Figure 27. Kinetic of cytokines production and secretion in DCs. A) BM-derived 
DCs were stimulated with a combination of CpG and LPS for the indicated times (time 
post TLR). The relative content of TNF, IL-12 p40 and p70 in cell culture supernatants 
(black bars) and cell lysates (white bars) was determined by ELISA. Bars show means ± 
SEM of 5 independent experiments  
 
 

In order to detect the intracellular localization of the secretory machinery in DCs, 

we performed immunofluorescence assays in TLR-engaged DCs, using -tubulin 

and giantin (a cis-golgi marker) antibodies. We observed a closed association 

between the Golgi complex and the MTOC (Figure 28e). 

 

These results indicate that IL-12 is concentrated in the MTOC/Golgi region at a 

time point after TLR induction that corresponds to maximal capacity to form 

synapses and to polarize the MTOC toward the interacting T cells. In contrast, TNF 

is almost completely secreted before DCs acquire full capacity to form synapses. 
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Figure 28. Intracellular localization of cytokines in DCs A) DCs were stimulated for 
different periods of time with CpG and LPS and then adhered to a fibronectin matrix and 
fixed. Cells were stained with alfa-tubulin (green), TNF (red) and Il-12 (red) specific 
antibodies. Representative confocal Z-projection images show localization of TNF and IL-
12 respect to the MTOC. B) Histograms of the fluorescence intensity profiles of IL-12 and 
TNF with respect to the MTOC for one representative cell after 4 hours of TLR stimulation. 
C) DCs were stimulated with CpG/LPS at indicated times (time post TLR), fixed and 
immunostained. The distance (m) from the MTOC to the IL-12 or TNF containing vesicles 
were measured (every point corresponds to the average of the distances for a single cell). 
Mean ± S.E.M was plotted for a pool of three independent experiments (n=25 DCs 
analyzed for each condition, P<0,001). D) Representative confocal images of a DC TLR 
stimulated for 4 hours, after fixation and co-staining with IL-12 (green), TNF (red) and -
tubulin (blue) antibodies. A contrasting localization pattern for both cytokines is observed. 
E) Representative confocal images of DCs TLR-stimulated for 4 hours, after fixation and 
co-staining with giantin (green) and alfa-tubulin (red) antibodies. Golgi apparatus is 
observed around the MTOC. 
 

 

Next, we wanted to know if WASp deficiency affects cytokines production and 

intracellular localization. For WASp- DCs study we focused our attention on the 

analysis of IL-12 since it showed to be spatially linked to the MTOC. We first 

checked for the intra and extracellular levels after stimulation of the TLR 

performing the same assay performed for WT DCs. We observed that both 

fractions are considerably reduced with respect to the production of WT DCs. In 

particular the bioactive form p70 shows a strong reduction in the extracellular 

fraction (Figure 29), revealing a role of WASp in upstream events to IL-12 

production. 

 

We next moved to the single cell level analysis. WASp- DCs were TLR stimulated, 

fixed and immunostained. Analysis of confocal images revealed that IL-12 in 

WASp- DC has a distribution similar to that observed in WT DCs with the MTOC 

surrounded by IL-12 containing vesicles at different times of TLR stimulation 

(Figure 30). This suggest that absence of the WAS protein affects total IL-12 

levels but does not disrupt the linkage between, Golgi, IL-12 vesicles and MTOC. 

 

 

 

 

 



Results 

 67 

B A 

WT + 
colcemide 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 29. IL-12 production and secretion by WASp- DCs. WT and WASp- BM DCs 
were stimulated with a combination of CpG and LPS for the indicated times. The relative 
content of IL-12 p40 and p70 in cell culture supernatants (extracellular) and cell lysates 
(intracellular) was determined by ELISA. Data are mean values ±SEM of 3 independent 
experiments each with pooled cells form 3 mice/genotype. (p>0,05). 
 

Next, we wanted to study the localization of IL-12 vesicles in the absence of 

microtubules. We treated DCs with a tubulin depolymerizing agent (colcemide) 

which prevents the linking between  and  tubulin. DCs were TLR stimulated, 

treated with colcemide, fixed and stained with -tubulin and IL-12 antibodies. IL-

12 is mainly found dissociated from the MTOC, both for WT and WASp- DCs 

treated with colcemide. This indicates that IL-12 binding to the MTOC is not WASp 

dependent, but it requires microtubules integrity (Figure 30). 
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Figure 30. Association between IL-12 containing vesicles and MTOC. A) DCs 
were stimulated with CpG/LPS for 6 hours and treated with colcemide during the last 5 
minutes of stimulation. Cells were fixed and immunolabeled with IL-12 and  -tubulin 
antibodies. The distance (m) of IL-12 containing vesicles from the MTOC was measured 
at the single cell level. Bars represent mean values ± SEM of 25 cells/condition (p<0.01). 
B) Representative z-projection images of a colcemide treated DC (upper panel) or an 
untreated WASp- DC (lower panel), stained with IL-12 (red) and -tubulin (green) 
antibodies. 
 

We conclude that IL-12 is mainly found around the MTOC/Golgi region at early 

time points post TLR stimulation, and that this association requires microtubules 

integrity. The intracellular distribution of IL-12 was maintained in WASp- DCs. 

However the total levels of IL-12 were reduced, suggesting a role of WASp- in 

upstreaming events in the TLR signaling cascade.  

 

Cytokine polarization at the immune synapse 

 

Next, we followed the intracellular localization of cytokines during synapse 

formation in WT and WASp- DCs. To this aim, WT or WASp – DC were pulsed with 

CpG/LPS for 5hr (a time-point that correspond to the highest intracellular 

accumulation), loaded with increasing doses of OVA peptide, cocultured with naïve 

CD8+ T cells during 30 minutes, fixed and immunostained for confocal analysis. To 

facilitate the detection of DC-T cell doublets, T cells were pre-labeled with CFSE. 

 

Confirming the data showed in Figure 28, labeling with anti-TNF antibodies 

showed that 5 hours post TLR induction only few DCs contain intracellular TNF 

(10-12%). Within conjugates with TNF signal in DCs,  the majority of TNF was 

detected in vesicles close to the cell membrane with little MTOC-associated TNF at 

the synapse, despite TCR clustering (Figure 31d). 

 

We quantified recruitment of IL-12 at the synapse in conjugates formed with WT 

DCs bearing intracellular IL-12 signal. In the presence of peptide up to 60% of 

conjugates showed enrichment of IL-12 at the DC-T interface. In most of the 

cases IL-12 enrichment correlates to TCR clustering in the T cell further confirming 

the requirement for TCR/MHC recognition to trigger IL-12 polarization.  
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Analysis of the IL-12 recruitment at the IS in WASp- cells showed a dramatic 

reduction (up to 80 % of reduction at the highest dose of peptide with respect to 

WT cells) in the percentage of WASp- DCs with polarized IL-12 vesicles (Figure 

31).  

 

To further establish a correlation between MTOC polarization and IL-12 

recruitment, we used a microtubule depolymerizing drug that has been previously 

shown to disrupt the IL-12/MTOC association (as shown in figure 30). WT BM-

derived DCs were loaded with specific OVA peptide and TLR-stimulated for 5 

hours, during the last 5 minutes were treated with colchicine (equivalent to 

colcemide). Medium was washed away and OT-I cells were cocultured for 30 

minutes, cells were fixed and stained with IL-12 and -tubulin antibodies. 

Pretreatment of DCs with colchicine before synapse formation caused a significant 

reduction in the number of conjugates showing enriched IL-12 at the contact site 

(Figure 31e), without any remarkable effect on the total number of conjugates or 

the levels of intracellular IL-12. This data shows that IL-12 is dragged to the 

synapse because of its association with the MTOC. 

 

In conclusion, these observations strongly suggest that T cells exposed to DCs in 

the early phases upon TLR induction receive highly concentrated IL-12.  IL-12 

vesicles are delivered through WASp dependent MTOC trafficking in a spatially 

restricted region within the synaptic cleft.  
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Figure 31. Cytokines polarization at the Immune Synapse. A) WT or WASp- BM-
derived DC were stimulated by treatment with LPS and CpG, pulsed with increasing doses 
of OVA peptide, then adhered to fibronectin-coated coverslips. Cells were cocultured with 
OT-1 T cells previously labeled with CFSE (green) during 30 minutes, fixed and stained 
with -tubulin (blue) and IL-12(red). Left panel, Z-projections of single DC-T conjugates 
showing IL-12 polarization in WT DCs opposite to WASp-. Right panel, single conjugates 
were analyzed by confocal analysis. Percentage of DCs with IL-12 polarized was 
quantified (see Materials). A pull of five independent experiments is plotted (n=30, for 
each condition) B) WT BM-derived DCs were TLR stimulated by treatment with LPS and 
CpG, pulsed or not with OVA peptide, then adhered to fibronectin-coated coverslips. Cells 
were cocultured with OT-1 T cells previously labeled with CFSE (green) during 30 
minutes, fixed and stained with -tubulin (blue) and TNF (red). Very few cells show a 
detectable TNF intracellular signal. Left panel, Z-projections of single DC-T conjugates 
showing TNF distribution in DCs, distant from the IS. Right panel, single conjugates were 
analyzed by confocal analysis. Percentage of DCs with TNF polarized was quantified (see 
Materials). A pull of three independent experiments is plotted (n=30, for each condition). 
C) WT BM-derived DCs TLR-stimulated and loaded with OVA peptide were mixed with OT-
I cells and stained with vB5.1 (TCR, green) antibodies and IL-12 or TNF (red). 
Representative images of Z-plane with the highest V5.1 fluorescence signal. D) DCs 
were stimulated with CpG/LPS, loaded with peptide. Cells were then rapidly treated with 
colchicine and mixed to OVA specific T cells. The percentage of conjugates with IL-12 
enriched at the contact site was quantified. Bars represent mean values ± SEM of three 
independent experiments (n=50 for each condition). 
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We wanted to further examine cytokine polarization in WT DCs. To this aim, we 

immunostained DC-T cell conjugates with markers that detect coupling to the 

cellular membrane. We were able to visualize vesicles of IL-12 in the membrane 

region contacting the T cell by counterstaining the DC membrane with anti-CD11c 

antibodies. Furthermore, VAMP-7 positive vesicles (TI-VAMP-7 that marks the late 

endocytic pathway and mediates fusion of intracellular vesicles with the plasma 

membrane), were found enriched at the DC-T interfaces of antigen specific 

conjugates in close proximity to IL-12 positive vesicles. This suggests that IL-12 

recruitment is accompanied by alignment of secretory organelles at the synaptic 

cleft (Figure 32). 

 

 

 

 

 

 

Figure 32. IL-12 localization at the IS.  Left panel. TLR-stimulated DCs were loaded 
with specific peptide and mixed with OT-1 cells, stained and labelled with antibodies 
against CD11c(green) and IL-12(red) antibodies. One representative image of IL-12 
(white arrow) distribution in the plasma membrane at the contact site is shown. Right 
panel. DC-T conjugates were formed with OT-I T cells previously stained with CFSE 
(green) fixed and stained with anti VAMP-7 (blue) and IL-12 (red) antibodies. A 
representative Z-projection of images is shown. 
 

We finally tested our model of IL-12 polarization with different DC populations. 

First, we used endogenous DCs. CD11c fraction was freshly purified from the 

spleen of WT mice, pulsed or not with OVA peptide, TLR stimulated during 5 

hours, and co-cultured with OT-I CD8+ T cells for 30 minutes. Immuonstaining 

with IL-12 antibodies revealed the same event of polarization towards the CD8 T 

cells upon antigen specific presentation (Figure 33). 

 

We next tested if IL-12 polarization was exclusive of conjugates with CD8 T cells, 

or if it was also present in synapses formed with CD4 T lymphocytes. BM-derived 

DCs were TLR stimulated and loaded with specific OVA-MHC-II peptide, mixed 

with OT-II CD4 T cells, fixed and immunostained. After confocal analysis, we 
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observed that the percentage of DCs with IL-12 vesicles polarized greatly 

increased when DCs are loaded with specific peptide (Figure 33).  

 

 

 

 

 

 

 

 

     

     
Figure 33. IL-12 polarization in DCs  A) DCs from spleen of WT mice were purified. 
Cells were TLR stimulated, pulsed or not with OVA peptide and mixed with previously 
stained OT-I T cells (CFSE-green). After fixation, and immunostaining with IL-12(red) 
antibodies single DC-T conjugates were analyzed by confocal microscopy. Representative 
images of IL-12 intracellular localization in DC-T conjugates where DCs were previously 
loaded or not with OVA peptide are shown. B) BM-derived DCs were activated by TLR 
stimulation, loaded or not with (0,1 mg/ml) MHC II OVA peptide and mixed with OT-II 
Tcells.  Cells were fixed and stained Il-12 (red) antibodies and single conjugates were 
analyzed by confocal microscopy. The graph bar shows the percentage of DCs with the 
IL-12 vesicles polarized towards the IS. Representative data of a series of three 
independent experiments was plotted (n=40). Right panel, a representative image of a 
DC-T conjugate with IL-12 concentrated at the IS region. 
 

Therefore, early after TLR stimulation a proportion of DCs contain intracellular 

stores of IL-12 that are recruited to the membrane contacting the T cell during 

class-I and class-II antigen specific synapses formation. In contrast, TNF has 

already been secreted and the few remaining intracellular vesicles are mainly 

uncoupled form the MTOC and do not polarize at the DC-T interface. 
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T-cell activation after specific polarized signaling 

 

Our results suggested that IL-12 polarization may lead to directed release toward 

the synaptic cleft in DC-T conjugates. Thus, we asked whether IL-12 synaptic 

delivery towards the IS has a functional effect on T cells. 



Recently, it has been reported that cytokine receptors cluster at the DC-T interface 

facilitating the signaling131. Thus, we examined whether the IL-12 receptor is 

enriched at the DC-T cell synapse. BM-derived DCs were TLR stimulated and 

loaded with specific OVA-MHC-I peptide, mixed with OT-I T cells, fixed and 

immunostained with IL-12 and IL-12R1 antibodies. After confocal analysis we 

concluded that IL-12R1 gives an undetectable signal when compared to the 

isotype control, an event probably caused by the low levels of the receptor in 

naïve T cells132 (Figure 34). 

 

 

 

 

 
Figure 34. Failure to detect IL-12 receptor on T cells. DC-T peptide specific 
conjugates were stained with IL-12(red), IL-12RB1 and mouse-Isotype(green) antibodies. 
Pattern of staining between specific IL-12 receptor (left panel) and anti-isotype (right 
panel) is indistinguishable.  
 

 

Nonetheless, IL-12 receptor engagement initiates a signaling cascade via the 

Janus-associated kinases that leads to phosphorylation of the STAT4 transcription 

factor and transactivation of IL-12 regulated genes116. Consequently, we moved to 

study levels of phosphorylated-STAT4 (pSTAT4) in T cells after formation of the 

IS.  

 

To this aim, we set up an assay to read intracellular pSTAT4 levels by Western 

blot. First, OT-I cells were pulsed or not with soluble IL-12 during 30 minutes. 

Cells were lysed, resolved by SDS electrophoresis and blotted against pSTAT4 
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antibodies (see Materials). Stimulation of T cells with soluble IL-12 induced 

detectable levels of pSTAT4. We next studied the pSTAT4 level in T cells that had 

been stimulated by IL-12 bearing DCs.  

 

BM-derived DCs were left untreated (immature) or stimulated with TLR agonists 

for 5hr (mature) and loaded or not with peptide. DCs were then mixed with 

antigen specific OT-I cells and lysed after 30’ of interaction. Analysis of cell lysates 

by immunoblot showed a clearly detectable pSTAT4 signal upon incubation of T 

cells with mature DCs, but not with immature DCs, in agreement with the fact that 

they do not contain IL-12. Most importantly T cells mixed to mature DCs pulsed 

with antigen showed higher pSTAT4 levels than T cells incubated in the absence 

of antigen (Figure 35). 

 

 

 

 

 

 

 

 

 

 

Figure 35. Activation of STAT4 in T cells upon specific antigen presentation. BM-
derived DCs were pre-treated with TLRs agonist, loaded with OVA peptide and mixed with 
OT-I cells. After 20 minutes of incubation, cells were lysed and analyzed by Western blot 
against the phosphorylated form of STAT4 (pSTAT4). Control lanes (1-4) are T cells alone 
(1) or incubated with soluble IL-12 (2) and DCs alone not stimulated (3) or stimulated (4) 
with TLR agonist. Lanes 5-8: lysates of DC stimulated or not with TLR agonist (5,7) and 
peptide (6,8) co-incubated with T cells. A strong increase in the pSTAT4 levels is observed 
when T cells formed peptide specific conjugates with mature DCs.  

 

To further analyze IL-12 signaling in T cells, we established an accurate assay to 

detect pSTAT4 by intracellular FACS analysis, with specific markers for DCs and T 

cells. OT-I cells incubated for 20’ with soluble IL-12 showed a clear positive 

staining with anti-pSTAT4 Alexa 488 antibodies, indicating that the assay is 

appropriate to detect early events of phosphorylation in T cells (Figure 36). Then, 
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we studied pSTAT4 signaling in T cells engaged in antigen specific synapses. To 

this aim, DCs were left untreated (immature) or stimulated with TLR agonist for 

5hr (mature), loaded or not with peptide and mixed with antigen specific OT-I 

cells. After 20’ cells were fixed, permeabilized and labeled with anti-pSTAT4 

antibodies.  

 

The percentage of pSTAT4 positive T cells was determined by gating on the region 

of DC-T doublets (Figure 36). As a control, levels of pSTAT4 were also measured 

on T cells not engaged in synapse (see Materials). T cells alone showed a low 

background level similar in all cases. Instead, in DC-T doublets gates we observed 

a higher background and a specific pSTAT4 signal that varied depending on the 

DCs state. Immature DCs induced an equivalent signal regardless of the presence 

of peptide. In contrast, incubation with mature antigen loaded DCs as compared 

to not loaded DC induced an increase of 42% in the pSTAT4 signal in T cells 

engaged in synapse (p=0,0029) (Figure 37). Therefore, these data show that 

formation of antigen specific synapses increases IL-12 dependent signaling in T 

cells.  

 

 

                      

A       B 

Figure 36. Detection of pSTAT4 signaling by intracellular FACS analysis. A) OT-I 
cells were incubated in the presence of soluble IL-12 (empty curve) or control medium 
(gray curve) and labelled with anti-pSTAT4 Alexa-488 antibody. B) Dot plots of T cells 
alone and T cells in conjugates. Left panel, OT-I T cells were pulsed with IL-12 and 
stained with CD8 and CD45.1 markers, dot plot illustrates the FSC/SSC profile. Right 
panel, BM-DCs and OT-I cells were cocultured, fixed and stained with CD8 and CD45.1 
antibodies. Double positive correspond to T cells (red dots).  FSC/SSC profile illustrates 
the three different populations present in cocultures.  
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Finally we wanted to test if interfering with IL-12 polarization affected the overall 

phosphorylation of STAT4 in T cells in DC-T conjugates. To this aim, we use WT 

BM- derived DCs pretreated with colchicine and WASp- DCs.  WT and WASp- BM 

DCs were stimulated with TLR agonists for 5hr and loaded or not with peptide. WT 

DCs were treated with colchicine during the last 5 minutes of incubation. DCs were 

mixed with antigen specific OT-I cells. After 20’ cells were fixed, permeabilized 

and labeled with anti-pSTAT4 antibodies. In conjugates formed using colchicine-

treated DCs the pSTAT4 signal was reduced of 48 % when compared to untreated 

DCs. Moreover, T cells exposed to WASp- DCs showed an overall lower level of 

pSTAT4 activation that did not increase in antigen loaded DCs synapses (Figure 

37). 

 

   A  B  

Figure 37. Detection of pSTAT4 signaling by intracellular FACS analysis. A) DCs 
were either resting or stimulated with TLR agonist (TLR), loaded (pep) or not loaded (no 
pep) with OVA peptide and mixed with OVA T-cells for 20 minutes. The median 
fluorescence intensity (MFI) was determined on isolated T cells (gate T cells alone) and 
DC-T cell doublets (gate conjugates). Data represent the mean values ± SEM (subtracted 
for the isotype control values), obtained in three independent experiments. B) Control 
DCs (WT), DCs treated with colchicine (colc) or WASp- DCs (WASp-) were activated by 
TLR agonist, loaded with peptide and mixed with antigen specific T cells. Data show the 
MFI of pSTAT4 signal determined on T cells engaged in doublets in four independent 
experiments.  
 

Together these data indicate that polarization of IL-12 vesicles in DCs is required 

for an enhanced IL-12 signaling in T-DC conjugates. T cells in synapse with WASp- 

DCs have a reduced STAT4 activation probably caused by the combined effect of a 

reduced MTOC polarization, a reduced IL-12 polarization toward the IS and lower 

levels of IL-12 secretion. 



Discussion 

4. DISCUSSION 

 
 

DCs are professional antigen-presenting cells (APC) pivotal in the initiation of 

primary immune responses against pathogens and in the maintenance of 

peripheral T-cell tolerance against self-antigens. DCs share several conserved 

mechanisms and pathways common to other immune cells. However, they also 

have unique characteristics that make them highly efficient at presenting antigens 

and mediating T cell responses. At present the cellular mechanisms that support 

the various functions they perform are not fully understood.  

 

The actin cytoskeleton plays a main role in supporting antigen internalization and 

migration in DCs. A key regulator of actin polymerization in hematopoietic cells is 

the WAS protein. Despite clear indications of a role of WASp in the 

cytoarchitecture and migration of DCs20, little is known about the effect of WASp 

deficiency on the ability of DCs to handle antigens and to interact with and 

activate naïve T-cells. Using a murine model of WASp deficiency (WASp-), here we 

demonstrated that WASp absence affects the capacity of DCs to internalize 

antigens, migrate and physically interact with T cells to support their activation.  

 

Evaluation of the ability of DCs to uptake Salmonella typhimurium, revealed a 

severe impairment in WASp- DCs on the number of bacteria phagocytosed. After 

one hour of infection and using a ratio of infection 1:10 (DC-bacteria) we detected 

a significantly reduced number of Salmonella internalized by WASp- DCs. 

Increasing the time and ratio of infection did not correct the phagocytosis defect 

(data not shown). Since the Salmonella typhimurium strain we used was depleted 

for the TTSS, bacterial internalization exclusively relied on the phagocytic capacity 

of the DCs. Our results indicate that phagocytic capacity is strongly affected in the 

absence of WASp. This is in line with previous report showing that formation of 

the phagocytic cup is a process that relies on the polymerization and 

depolymerization of actin. Moreover, actin polymerization plays a key role in 

vesicle fission and trafficking inside the cell133. 
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To study phagocytosis in DCs we performed an assay that measures the number 

of bacteria that were viable after internalization. Thus, to rule out that the reduced 

number of bacteria observed after one hour of infection was caused only by an 

impaired internalization in WASp- DCs and not to a higher rate of cellular 

processing, we proceed to analyze the intracellular compartments where the 

pathogen was delivered upon phagocytosis. It has been shown that S. 

typhimurium is able to manipulate the endocytic machinery to create a 

compartment to avoid degradation, called the salmonella containing vesicle 

SCV134. The surface markers of the SCV are still on debate, however LAMP-I a 

lysosomal marker related with the late endocytic pathway and EEA1- an early 

endosomal marker are expressed on SCV135. Both of them seem to be present on 

the compartments where Salmonella resides in WASp- and WT DCs. Therefore, 

with this bacterial model we can conclude that WASp does not affect the 

processing of Salmonella typhimurium.  

 

In order to bypass the defective antigen internalization and to focus on the 

evaluation of downstream functions in further analyses of WASp- DCs, we used 

along our study soluble preprocessed peptides prompt to be loaded on MHC 

complexes. 

 
 
Along with internalization and processing of particles, DCs sense pathogen 

associated patterns (PAMP) that are recognized by TLRs and trigger signaling 

cascades that enhance T cell activation. Immature DCs are mainly devoted to 

uptake of exogenous particles. This is supported by a high endocytic activity which 

is in turn regulated by the actin cytoskeleton. After TLR engagement they become 

mature, a process that causes an increase in the migration and in the ability to 

present processed antigens to activate TCR specific T cells.  We observed that 

upregulation of maturation markers was similar in WT and WASp- DCs. However, 

later on when we evaluated the levels of IL-12 produced by WASp- DCs after TLR 

engagement by CpG and LPS, we observed a strong impairment when compared 

with WT DCs. The role of WASp in TLR signaling has not been studied yet, 
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nevertheless it has been shown in murine macrophages that stimulation of TLR4 

leads to activation of an actin-Cdc42/Rac signaling pathway that specifically 

increase the phagocytic capacity136. Similarly, Arbibe et al. demonstrated that 

TLR2 stimulation in human cells lead to Rac activation and results in NF-kappa B 

transcriptional activity137. These studies indicate that TLR signaling and regulators 

of the actin/tubulin cytoskeleton may be related. Therefore, it would be relevant 

to examine the role of WASp in the downstream signaling of TLRs 4 and 9 in DCs. 

 

We investigated the role of WASp in DCs ability to displace, find naïve T cells and 

establish stable contacts. By time-lapse video microscopy we studied the 

morphology and migration of DCs on a fibronectin matrix. Immature WASp- DCs 

displayed an altered morphology with respect to WT DCs. WASp- DCs failed to 

extend a polarized leading edge causing a reduction in the speed of cell migration. 

Maturation upon TLR engagement caused and apparent rescue of morphological 

abnormalities. Ruffling activity and dendrites extensions were observed equally in 

WT and WASp- DCs, yet WASp- cells remained slower than WT DCs. We 

confirmed previously reports where defective actin polymerization in WASp- DCs 

cause failure in the assembly of specialized substratum contacts points called 

podosomes and response to CCR7 gradients, resulting into defective migration19.  

 

We evaluated the effect of WASp- DCs impaired migration on the ability to 

establish contacts with T cells. By time-lapse movies we detected that WASp- DCs 

remained anchored to the fibronectin matrix. As a consequence, when WASp- DCs 

randomly contacted neighboring T cells, they were unable to trap them and to 

establish stable conjugates. Increasing the peptide dose presented by WASp- DCs 

was not enough to correct the reduced duration and frequency of contacts. These 

results suggested us an additional effect of WASp on synapse formation besides 

the reduced capacity to migrate and encounter T cells. 

 
Our in vivo model confirmed data reported by Bouma et al, where BM DC WASp- 

adoptively transferred into wild type recipient were poor stimulators of T cell 

responses because of altered trafficking to secondary lymphoid organs20. The 

most plausible explanation for this behaviour in WASp- DCs is the combined effect 
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of defective podosome and dendrite formation and the impairment to respond to 

CCR7 gradients. Our study further extended on these observations by showing 

that not only migration to LN but also priming within LNs is affected by the 

absence of WASp protein in DCs. This was demonstrated by setting up the 

conditions to correct the homing defect of WASp- DCs to LNs and by measuring T 

cell activation. DCs injected in a ratio of 1:3 (WT: WASp-) resulted in an 

equivalent number and proper localization of WASp- DCs in LNs during the next 

three days. Still, when we evaluated the T cell priming upon DC encounter in LN 

we found that proliferation induced by WASp- DC was severely reduced. However, 

T cell division profiles induced by WASp– DCs in vivo indicates that OT-I cells do 

encounter antigen-bearing WASp- DCs because they enter division, but they fail to 

fully divide and accumulate. These data are in agreement with a recent report 

indicating that long-lasting stable interactions are required for full T cell 

expansion138; 139.It remains to be established the long-term fate of T cells primed 

by WASp deficient DCs in terms of memory development. 

 

Our study reveals a second important mechanism to explain defective priming by 

WASp- DCs, i.e., the inability to stabilize the interaction with T cells. So far, the 

analysis of the role of WASp in synapse formation was limited to its effect on T 

cells whereas we show here that WASp is required also on the other side of the 

immune synapse. WASp- cells extend ruffles similarly to WT cells indicating that 

WASp does not control peripheral actin protrusions in mature cells. Additional data 

by live imaging of cell movements in LNs proves that WASp expression in DCs is 

necessary to stably interact with T cells in vivo. In addition, quantification of DC-T 

interactions in lymph nodes evidenced reduced contact duration with WASp– DCs 

(not shown). 

 

To further understand the impact of WASp in DCs during T cell priming we 

analyzed the cytoskeletal reorganization upon synapse formation with T cells. We 

did not notice any striking difference in the actin and tubulin cytoskeleton between 

WASp- and WT DCs. During this analysis we noticed that in a high proportion of 

WT mature DCs the MTOC was reoriented toward the region of contact with the T 

cells. MTOC polarization in DCs was dependent on TLR stimulation and antigen 
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recognition by the T cell. DCs reached the maximum capacity to reorient their 

MTOC after 6 hours of TLR stimulation. This may depend on the fact that mature 

DCs form more stable synapses and induce stronger signaling in T cells than 

immature DCs62; 87. Alternatively, intrinsic remodelling of the actin cytoskeleton 

induced by TLR ligation140 may in turn affect MT dynamics enabling MTOC 

movements.  It would be interesting to study the role of different TLRs and their 

effect on DCs ability to reorient the tubulin cytoskeleton.  

 

We found that MTOC reorientation in DCs is dependent on the dose of antigen 

presented to the cognate T cell. This implies that surface molecules at the T cell 

side might trigger the signaling that leads to MTOC reorientation. In migrating 

astrocytes, polarization of the MTOC and Golgi is triggered by integrins that induce 

recruitment of cdc42 and activation of the mPar6/PKCzeta complex141. In T cells, 

LFA-1/ICAM-1 crosstalk was shown to be involved in microtubule dynamics142. 

Looking for a plausible candidate that activates tubulin cytoskeleton signaling we 

tried to set up and assay using latex beads coated with ICAM-1. Despite our 

efforts, we were not able to detect any striking difference in the reorientation of 

the MTOC between DCs stimulated with ICAM-1 beads or uncoated beads (not 

shown). This could be due to the fact that DCs recognized beads as particles to be 

internalized and trigger a different signaling cascade. However, it would be 

relevant to further study the events that lead to the polymerization of 

microtubules and MTOC reorientation in DCs.  

 

MTOC reorientation is a phenomenon largely described in T cells, yet, in DCs has 

not been documented before. We think that this observation passed unrevealed in 

previous studies most likely because of the use of artificial antigen presenting cells 

to study events in T cells. 

 

Immunofluorescence analysis only allows detection of the MTOC position in fixed 

DCs at a given time after contacting the T cell. So, it was not clear to us whether 

MTOC reorientation was a fluctuating or a steady event. By time-lapse videos, we 

established that polarization of the MTOC in DCs is a very early event occurring 

after contact with T cells. The reorientation of the tubulin cytoskeleton is stable 
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and remains even in situations where the DC-T conjugates are on movement. This 

indicates that MTOC polarization might play an important role in sustaining the 

crosstalk at the early stages of the immune synapse establishment.  

 

MTOC polarization in DCs occurred both, during interaction with CD4 and CD8 T 

cells. As it has been described before, MTOC polarization is hallmark of the IS 

formation in T cells, NK, and macrophages13; 68; 85; 106. Therefore, MTOC 

reorientation probably makes part of a series of conserved events required to 

induce cell polarization towards the IS and support the informational crosstalk 

between interacting cells. 

Our results indicate that MTOC polarization is highly reduced in WASp deficient 

cells. It has been demonstrated that polarization of the MTOC requires the action 

of the cdc42 GTPase, in T cells103 and in NK cells it is dependent on activation-

induced signaling106. In parallel, it has been shown that cdc42 mediates 

MTOC/Golgi reorientation through the Par6/aPKC pathway in fibroblasts. In order 

to study the pathway that leads to MTOC reorientation, we have attempted to 

deplete cdc42 from WT DCs and study their capacity to interact and activate T 

cells. Our preliminary results suggest that MTOC polarization is impaired in cdc42 

null DCs (not shown). A key protein that links cdc42 activity in actin 

polymerization and microtubule dynamics is CIP4. CIP4 is able to interact with 

Cdc42 and with WASp through the SH3 domain143 and also contains a Fes/CIP4 

homology (FCH) domain, which enables it to interact with tubulin144. Hence, we 

propose that defective MTOC polarization in WASp- DCs may be related with a 

protein, as CIP4, that links the actin and the tubulin cytoskeleton.  

 

The discovery of MTOC polarization occurring at the DC side upon formation of 

specific IS, led us to focus our attention on the description of the phenomena and 

its functional significance. Thus, we followed the production and secretion kinetics 

of IL-12 and TNF, two important cytokines in T cell activation. Both cytokines are 

involved on the late innate resistance and adaptive immunity responses. TNF is 

produced upon engagement of TLRs 2, 4 and 9 and makes part of the pro-

inflammatory cytokines that control the early immune responses upon infection97; 

114; 145. The kinetic of TNF secretion in cell cultures coupled to analysis of the 
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intracellular content of this cytokine indicate that is released early after TLR 

stimulation (2 hours) and is absent intracellularly when DCs reach a full mature 

phenotype (6 hours).  

 

IL-12 has been shown to be produced in DCs upon stimulation of TLRs 4, 7 or 9. 

IL-12 plays a main role in the Th-1 cell differentiation and enhances the 

generation and cytotoxicity of T lymphocytes. The kinetic of IL-12 secretion and 

production in cell cultures coupled to analysis of the intracellular content of this 

cytokine indicated that it is produced after one hour of stimulation and reaches 

the highest levels of intracellular accumulation at 4-6 hours. We established a 

criterion that allowed us to measure the association between the cytokines and 

the MTOC at the single cell level. While IL-12 is found associated to the MTOC 

during the entire kinetics of production, TNF is produced and associated to the 

MTOC at the early stages and released in a multidirectional manner. Furthermore, 

we detected that both cytokines are produced in the Golgi, which is coupled to the 

MTOC.  

 

Since we detected that the peak of IL-12 production (six hours) is synchronized 

with highest DCs MTOC reorientation, upregulation of costimulatory molecules and 

maximum ability to cluster and activate T cells, we focused our attention on the 

functional study of IL-12. Nonetheless, it would be interesting to study other 

cytokines that are produced upon TLR stimulation and might be synchronized with 

the acquisition of the mature phenotype. Our preliminary results indicate that IL-6 

and IFN-are produced by DCs upon stimulation with LPS and are mainly found at 

the MTOC region. However, a deep study on the kinetics of production and 

secretion and how they correlate with intracellular stores is needed. We found that 

the association between the MTOC/Golgi region and the IL-12 vesicles is 

dependent on the integrity of the microtubules. A close association between the 

Golgi complex and the MTOC has been described in different cellular models. 

Cytoskeletal motor proteins as the dynein146 and protein kinases such as YSK1147 

and MST4 are required to maintain the association between the MTOC and Golgi. 

Microtubules disruption leads to disruption of the Golgi complex. However, the 

remaining membrane Golgi stacks function normally, inducing glycosylation and 
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delivery of proteins to the cellular membrane146. It has been proposed that 

association of Golgi with the MTOC (that only occurs in animal cells) arises as an 

evolutionary novelty that allows them to perform directional transport and 

secretion. Our results are in line with this hypothesis, since DCs with disrupted 

microtubules, show IL-12 dispersed over the cell (Figure 30).  

 

The Golgi complex can support microtubule nucleation148. Moreover, Golgi-

emanating microtubules may contribute to the asymmetric microtubule networks 

in polarized cells and support diverse processes including post-Golgi transport to 

the cell front149. Recently it has been proposed that post translational 

modifications (i.e. phosphorylation, acetylation) of the tubulin may play a role, 

recruiting specific protein complexes and thus regulate organelle-specific 

properties of microtubules150. It would be interesting to study how the formation 

of antigen specific synapses regulates the association between the microtubule 

cytoskeleton and the Golgi. 

The association between the MTOC and IL-12 vesicles led us to think that this 

cytokine can be transported to the IS during MTOC polarization. We provide 

evidences that DCs in the early phases upon TLR stimulation reorient highly 

concentrated IL-12 vesicles in a MTOC dependent way towards the region of 

contact with the interacting CD4 and CD8 T cells. Indeed, we observed a 

correlation between IL-12 recruitment at the IS and MTOC polarization. In WASp- 

DCs, that do not polarize the MTOC, IL-12 vesicles remained associated to the 

MTOC but were not reoriented towards the T-cell side. This picture was confirmed 

in WT DCs treated with tubulin-depolymerizing agents, where the association 

MTOC-Golgi-IL-12 was disrupted and cells did not have the ability to polarize IL-12 

vesicles (Figure 30).  

 

Lack of MTOC and cytokine polarization in WASp- DCs offers a clue to understand 

previous observations made in several WASp-deficient cells. WASp was shown to 

control via interaction with WIP and CIP4 the polarization of lytic granules in NK 

cells resulting in inhibition of NK cell cytotoxic activity151; 152. This is likely to 

depend on MTOC polarization although not formally demonstrated in these 



Discussion 

 85 

studies. Similarly, our findings may provide an explanation to previous 

observations showing that WASp-deficient CD4 T cells are impaired to recruit and 

release cytokines at the IS153.  

 

Directed secretion has been shown to be a very useful mechanism to stimulate 

and communicate between different immune cells. Previous reports indicate that 

polarized secretion is always accompanied by translocation of the MTOC and the 

secretory machinery.  Cytokine secretion by immune cells can be either 

constitutive or regulated through interaction of vesicles with the plasma 

membrane and Ca2+ membrane fusion. The physical contact between vesicles and 

the plasma membrane is mediated by the N-ethlymalemide-sensitive factor 

attachment protein receptors (SNARE). The classification of the SNARE is still 

under discussion154. According to the classical model, vesicle-associated ligands (v-

SNARE) specifically recognize and interact with receptor target molecules (t-

SNAREs) found in the plasma membrane to form SNARE complexes which mediate 

membrane fusion and exocytosis. Various studies have been focused on the role 

of SNARE proteins in the immune system. Das et al. show that the t-SNAREs 

cluster at the immunological synapse of Jurkat T cells. Also, inactivation of the v-

SNARES VAMP2 and VAMP3 impairs the delivery and accumulation of TCRs at the 

immunological synapse113. The v-SNARE protein Ti-VAMP-7 is present both in the 

Golgi apparatus and in the endosomal system and has been involved in 

inflammatory responses mediated by mastocytes, basophils, eosinophils and 

macrohages154. TI-VAMP-7 is also involved in the secretion of lysosomal granules 

by NK cells. We found that IL-12 vesicles are beneath the cell membrane in the 

synapse region surrounded by VAMP7, suggesting that IL-12 release is mediated 

by a SNARE complex in a polarized way toward the interacting T cell. 

 

It has been proposed that WASp play a key role in the redistribution of SNAREs to 

the IS in T cells. Morales-Tirado et al. have shown that WASp absence in T cells is 

required for the polarization of cytokines toward antigen presenting cells and 

blocks the secretory pathway of IL-2, IL-4 and IFN-g, but does not disrupt 

chemokines trafficking153.  It would be interesting to study in details the role of 
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WASp in the trafficking of the SNARE complex and its role in the directed secretion 

of cytokines in DCs.  

 

The finding that DCs polarize IL-12 during antigen presentation is interesting in 

terms of the potential role in T cell programming. Antigen presentation by 

immature DCs to naïve CD8+ T cells results in tolerance induction, whereas 

presentation by mature DCs stimulates the generation of CTLs and memory155; 156; 

157. The increased capacity to present specific antigens and to upregulate 

costimulatory signals is considered the major basis for T cell activation by mature 

DCs.  However, it has been demonstrated that T cell activation by antigen loaded 

DCs expressing high levels of B7 can fail158.  Hochrein et al demonstrated that 

artificial antigen presenting cells (aAPC), which only deliver antigen and B7 

signals, are effective in stimulating clonal expansion and development of cytolytic 

activity by memory cells but are ineffective in stimulating responses by naïve cells. 

However, when IL-12 was added to the culture medium, a strong clonal expansion 

and development of cytolytic activity by naïve T cells was observed 159.  These 

experiments demonstrated that IL-12 must be delivered as a third signal, in order 

to induce an effective immune response160. 

 

We tried different strategies to prove that IL-12 is secreted in a polarized way and 

induces signaling events on T cells. We first tried to detect the localization of the 

IL-12 receptor in T cells upon stimulation with IL-12. It has been previously 

reported that naïve T cells express very low levels of the IL-122 receptor, and 

coupling of IL-12 induces a positive loop of expression and delivery to the 

membrane. We failed to track the recruitment of the IL-12 receptor probably 

because we checked at very early time points where the activation events had not 

occur yet and the IL-12 receptor is found at basal levels. However, it has been 

described that IL-12R2 expressed at low levels in naive OT-I T cells is able to 

signal and impact the response to antigen stimulation132.  

 

As a second approach we studied the downstream events of IL-12 receptor 

engagement. The specific cellular effects of IL-12 are mainly mediated by 

phosphorylation of the transcription factor STAT4. It has been shown that IL-12 
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exposure during antigen stimulation induces transient phosphorylation of STAT4 

which conditions CD8 cells for robust effector differentiation and long-term 

responses132. Our experimental models, allowed us to detect phosphorylation of 

STAT 4 in T cells briefly after stimulation with soluble IL-12. The absence of 

pSTAT4 in synapses with immature DCs confirmed that IL-12 produced upon TLR 

stimulation is required to induce STAT4 signaling in T cells.  Culture of T cells with 

mature DCs in absence of antigen induced detectable levels of pSTAT4 in T cells 

found in conjugates. More interesting, synapses formed with mature DCs bearing 

a specific antigen induce higher levels of pSTAT4 in T cells. These data strongly 

suggest that IL-12 is delivered through the synapse in antigen-specific DC-T cell 

conjugates, leading to stronger T cell activation that exposure to soluble IL-12. 

 

To correlate induction of pSTAT4 signaling to MTOC reorientation we used as a 

model DCs  that based on our results were unable to polarize the MTOC (Figure 

33). In the case of colchicine treated DCs (association IL-12 and microtubules 

disrupted / IL-12 not polarized at the IS) we detected reduced levels of STAT4 

phosphorylation in T cells forming conjugates, regardless the peptide dose.  In the 

case of WASp- DCs (IL-12 and MTOC associated / IL-12 not polarized at the IS) 

we observed a similar picture with a significantly lower concentration of pSTAT4 in 

T cells with respect to conjugates formed with WT DCs. Unfortunately, a clear 

interpretation of the data obtained with WASp- DCs is hampered by the reduced 

levels of IL-12 produced by WASp- cells (Figure 29). Therefore, we conclude that 

the decreased levels of STAT4 signaling induced by WASp- DCs are caused by the 

combined deficiency in IL-12 production upon TLR stimulation and defective 

MTOC/Golgi polarization towards the IS.  

 

Despite a lot of information on the pathways that induce IL-12 production in DCs 

and on its effects on T-cell differentiation116; 161, this is to our knowledge the first 

evidence that IL-12 signals can be transmitted synaptically to T cells during 

priming, thus enhancing the local concentration that is delivered to antigen 

specific T cells. Based on our data, synaptic transmission would be limited to a 

short period of time in the DCs maturation program, i.e., early after TLR ligation 

(4-6hr), when DCs contain abundant intracellular IL-12. Importantly, at this time 
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point DCs have processed and transported to the membrane pathogen derived 

antigens and they have acquired full capacity to interact with T cells. At later time 

points fully mature DCs are devoid of intracellular IL-12, suggesting that 

interaction with T cells at this stage would not result in a strong burst in IL-12 

signaling transmitted through the synapse. It is interesting to speculate that this 

would have important implications for T-cell fate determination.  

 

Here, we revealed a mechanism for DCs polarization in IS that enhances the 

signaling towards the interacting T cell. Studies in different cellular models have 

shown that polarity is controlled by five interrelated systems73. Besides 

microtubule cytoskeleton and vesicle trafficking, the actomyosin cytoskeleton, 

surface receptors and polarity proteins contribute to establish and modulate cell 

architecture. It would be interesting to study the role of each of these systems in 

the polarization of DCs. 

 

Altogether, this study discloses new important mechanisms to understand WAS 

pathogenesis. The inability of WASp- DCs to properly polarize the MTOC at the IS 

may affect focal delivery of adhesion molecules thus explaining reduced DC-T 

contact duration. In addition defective MTOC polarization reduces polarization of 

soluble mediators like IL-12 that combined with an impaired IL-12 production 

upon TLR signaling certainly contributes to the strong defect observed on T-cell 

priming. 

 
 
 
 
 
 
 



Conclusions 

5. CONCLUSIONS 
 
 
 
 
In this work we demonstrate that WASp has a key role at different levels of DC 

functioning and it is required to properly activate T cells. This is the first report 

that demonstrates a direct effect of WASp on synapse formation and T cell 

activation by DCs beyond their role on cell migration.  

 

By studying the role of WASp in DCs we discovered that mature DCs polarize their 

tubulin cytoskeleton towards the interacting T cell during antigen recognition. We 

show that the capacity of DCs to polarize the MTOC is synchronized with the 

acquisition of a mature phenotype upon TLR engagement that correlates with the 

maximum ability to form conjugates and activate T cells. Moreover, we 

demonstrate that WASp- DCs have both, a defective TLR signaling and an 

impairment to reorient the MTOC. 

 

Evaluating the functional implication of polarization in DCs we demonstrate that 

the MTOC/Golgi/IL-12 complex is relocated beneath the IS region upon formation 

of antigen-specific synapses. Remarkably, IL-12 signals can be transmitted 

synaptically to T cells during priming, thus enhancing the local concentration that 

is delivered to antigen-specific T cells, inducing a stronger downstream signaling. 

The directed delivery of IL-12 is dependent on MTOC reorientation, thus WASp- 

DCs provoke an ineffective response in T cells.  

 

Altogether, our data are of interest for the understanding of DCs biology and its 

role in T-cell activation and provide the basis for new studies on the polarization 

events in DCs upon synapse formation. Besides basic knowledge, this study 

provides interesting clues to understand the cellular basis of WAS pathogenesis. 
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