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INTRODUCTION 

 
 

All behavioural functions of the brain – the perception of sensory input, the control of 

motor and emotional output and the cognitive functions such as learning and memory – are 

performed by groups of neurons interconnected by means of their axons. During development, 

axons  grow along  precise pathways, selecting the appropriate targets and forming specific 

synaptic connections within the target.  This process is initially controlled by genetically 

determined molecular programs but its final completion requires the individual interaction with 

the environment. A common feature of many brain areas is the ability to change dynamically in 

response to experience, a property that is referred to as experience-dependent neuronal plasticity. 

The mammalian visual cortex represents a classic model for the study of plastic changes driven 

by sensory experience. Experience-dependent modifications can be elicited in the visual cortex 

throughout the life but properties of neurons are most susceptible to alteration in the visual input, 

during an early period of postnatal development, called “critical period” (Sherman and Spear, 

1982; Berardi et al., 2000).  

Classic works (Rosenzweig, 1966; see for review Rosenzweig and Bennet, 1996; Benefiel 

et al., 2005),  show that physiology, biochemistry and morphology of the nervous system are 

affected by a complex sensory-motor stimulation, called environmental enrichment (EE), used as 

experimental paradigm to test the influence of experience on the brain. EE affects the brain both 

at functional level, enhancing cognitive functions, particularly learning and memory (Rampon et 

al., 2000a; van Praag et al., 1999; van Praag et al., 2000; Tang et al., 2001) and at an anatomical 

level, promoting structural changes such as increment in hippocampal neurogenesis 

(Kempermann et al., 1997 and 2002), dendritic arborization (Greenough et al., 1973) and 

synaptic density in cerebral cortex, hippocampus and cerebellum (Rampon et al., 2000a; Kolb 

and Gibbs, 1993).  

A few recent works from our laboratory have shown that development of visual system, 

both at cortical and retinal level, is sensitive to the experience provided by environment. EE has 

been shown to induce precocious acceleration of visual cortex development (Cancedda et al., 

2004) and to prevent dark rearing effects on visual acuity maturation and critical period closure 

(Bartoletti et al., 2004). The same effect of acceleration has been observed also on retina 

development (Landi et al., 2007).  At the functional level, EE animals show an acceleration of 
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visual cortical and retinal acuity development (Cancedda et al., 2004; Landi et al., 2007a). At 

molecular level, we observe a precocious and increased BDNF expression in retinal ganglion cell 

layer (Landi et al., 2007a), while in the visual cortex we observe an increment of GAD 65/67 

protein at postnatal day 7 (P7) and P15 and a precocious peak of BDNF expression at P7 

(Cancedda et al., 2004). The molecular mechanisms triggering EE effects on visual system 

development and plasticity are still unclear.  

 
The Rodent visual system 
 

In the Mammalian visual system, visual information is processed in the retina and sent to 

different structures of central nervous system (CNS) trough retinal ganglion cells (RGC) axons, 

which represent the output of the retina. RGCs project  to the visual centres of the brain that are 

located in the midbrain and in the thalamus. The pattern of retinal projections differ from species 

to species. In Rodents, the great majority of RGCs project to superior colliculus  (SC) and the 

pretectal nuclei, with about 30% of them sending collaterals to dorsal-lateral geniculate nucleus 

(dLGN) of the thalamus (Dreher et al., 1985). RGCs axons from each eye project to both side of 

the brain; however inside the dLGN cells are monocular. In higher mammals retinal axon 

terminals  are segregated into alternate eye-specific layers.  Each layer is strictly monocular 

(Hickey and Guillery, 1974). In rodents the majority of afferents to the SC and dLGN arise from 

the contralateral eye and only 5% of optic axons projects ipsilaterally; there is not a proper 

lamination of the dLGN; however ipsilateral and contralateral retinal fibers are segregated in a 

patchy fashion, two eye-specific territories in the dLGN: the ipsilateral patch or inner core and 

the contralateral patch or outer shell (Reese and Jeffery, 1983, Reese, 1988). The lateral 

geniculate  body is the most important subcortical station projecting to the visual cortex via 

thalamo-cortical connections that terminate in layer IV of the primary visual cortex. In primates 

and carnivores, afferents by dLGN segregates by eye within cortical layer IV, in alternate, equal-

sized stripes called  ocular dominance column (Hubel and Wiesel, 1963; Shatz and Stryker, 

1978).  Layer 4 neurons relay their information to layers 2-3 neurons and in turn these 

communicate with layers 5-6 neurons. These eye-specific stripes form the anatomical basis for 

the functionally defined columnar organisation of ocular dominance that spans all cortical layers. 

The major difference between the rat visual cortex and that of cat and other mammals is the lack 

of anatomical ocular dominance columns. However Thurlow and Copper (1988) found hints of a 
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patchy organisation of ipsilateral and contralateral inputs in the visual cortex of the rats, using a 

functional mapping by means of deoxyglucose. Recently, this issue has been confirmed trough 

electrophysiological techniques (Caleo at al., 1999a).  

 

 

The retina 

 
Architecture of mammalian retina 

 

Anatomical and physiological studies have provided a detailed description of the point-to 

point connectivity of the visual system where neighboring relations in the retina are conserved in 

their central projections. The primary visual cortex has been shown to contain a retinotopic map 

of the visual word in which each point is represented by neurons by specific receptive field that 

encodes basic visual features.  

The retina is part of the CNS and its synaptic organization is similar to that of other 

central neural structures. It presents a complicate pattern of connections and includes many 

parallel, anatomically equipotent microcircuits rearranged in anatomical layers. Mammalian 

retina contains a great number of different neuronal types, approximately 75, each with a 

different function. Five different layers can be identified: ONL -outer nuclear layer- with cell 

bodies of photoreceptors, OPL -outer plexiform layer- with cone and rod axons, horizontal cell 

dendrites, bipolar dendrites, INL -inner nuclear layer- with nuclei of horizontal cells, bipolar 

cells, amacrine cells and Müller cells, IPL -inner plexiform layer- with axons of bipolar cells and 

amacrine cells, dendrites of ganglion cells and GCL -ganglion cell layer- with the soma of 

ganglion cells and displaced amacrine cells.   

 

Photoreceptors 

 

The photoreceptors mosaic is optimized to cover the full range of environmental light 

intensities. This design specification requires two types of detector with different sensitivities, the 

rod and the cone. In Rodents the number of rods is many-fold that of cones; in particular, in mice 

cones are about 3% of photoreceptors (Jeon et al., 1998). The output of the cone photoreceptors is 

separated into ON and OFF signals. All cone synapses release glutamate, but bipolar cell types 
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respond to glutamate differently. Some bipolar cells have ionotropic glutamate receptors: 

glutamate opens a cation channel, and the cell depolarizes. Other bipolar cells have a sign-

inverting synapse mediated by metabotropic glutamate receptors, mainly mGluR6; these bipolar 

cells hyperpolarize in response to glutamate (Nawy et al., 1991). When the retina is stimulated by 

light, one type of bipolar cell hyperpolarizes and the other type depolarizes. OFF and ON bipolar 

cells occur in approximately equal numbers. The distinction, created at the first retinal synapse, is 

propagated throughout the visual system.  

 

Bipolar cells  

 
The two major classes of bipolar axons segregate at different levels of the IPL, dividing it into 

OFF and ON laminae and whitin a laminae each type of bipolar axon occupied a defined stratum. 

The classes of ON and OFF bipolars are each further subdivided; there are three to five distinct 

types of ON and three to five types of OFF bipolars. The purpose of the subdivision is, at least in 

part, to provide separate channels for high-frequency (transient) and low-frequency (sustained) 

information. Thus, there are separate ON-transient, ON-sustained, OFF-transient and OFF-

sustained bipolar cells (Kaneko et al., 1970; Awatramani et al., 2000). A series of experiments 

show that the distinction is caused by different glutamate receptors on the respective OFF bipolar 

cells; they recover from desensitization quickly in the transient cells and more slowly in the 

sustained cells (DeVries et al., 2000). The output of each cone is tapped by several bipolar cell 

types to provide many parallel channels. Most amacrine cells and all ganglion cells receive their 

main bipolar cell synapses from cone bipolars, but retinas work in starlight as well as daylight, 

and this range is created by a division of labor between cones (for bright light) and rods (for dim 

light). Signals originating in rod photoreceptors reach the RGCs via an indirect route using as its 

final path the axon terminals of the cone bipolar cells (Famiglietti and Kolb, 1975; Strettoi et al., 

1990 and 1992). 

 

Horizontal cells  

 

Horizontal  cells are a small portion of the retina’s interneurons, generally less than 5% of cells of 

the inner nuclear layer (Jeon et al., 1998). Rodents have one type of horizontal cell, while in most 

mammals, there are two morphologically distinct types of horizontal cells. All rods and cones 
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receive feedback from horizontal cells which are said to enhance contrast between adjacent light 

and dark regions. Excitation of a central cone causes feedback inhibition of both the excited cone 

and a ring of neighbouring ones. Because each cone both the central one and its neighbours 

transmits a signal to the inner retina, the upshot is that a small stimulus excites those ganglion 

cells that lie directly under the stimulus, but inhibits neighbouring ganglion cells. This is the 

‘center–surround’ organization, in which a ganglion cell is excited or inhibited by stimuli falling 

in its receptive field centre, whereas stimulation of the surrounding region has an opposite effect.  

 

Amacrine  cells  

 

RGCs receive input from cone bipolar cells, but direct synapses from bipolar cells are a 

minority of all synapses on the ganglion cells; most are from amacrine cells (Freed et al., 1988; 

Calkins et al., 1994). Amacrine cells also make inhibitory synapses on the axon terminals of 

bipolar cells, thus controlling their output to ganglion  cells. Amacrine cells have dedicated 

functions since they carry out specific tasks concerned with shaping and control of ganglion cell 

responses. The different amacrine cells have distinct pre- and postsynaptic partners, contain a 

variety of neurotransmitters, survey narrow areas of the visual scene or broad ones, branch within 

one level of the inner synaptic layer or communicate among many. Both the specific molecules 

expressed and their morphology point to diverse functions.  

 

Retinal ganglion cells 

 

RGCs process and transfer information from the retina to visual centres in the brain. These output 

neurons comprise subpopulations with distinct structure and function (Sernagor et al., 2001). The 

morphology of RGCs is variable; their somata and dendritic field vary in size, and they exhibit 

strikingly varied dendritic architecture (Wassle and Boycott, 1991; Rodieck, 1993) and axonal 

projection patterns (Garraghty and Sur, 1993; Yamagata and Sanes, 1995a,b). Functionally, 

RGCs differ in their response to light in a variety of ways (reviewed by Wassle and Boycott, 

1991; Rodieck, 1993; Dacey, 1999). In Primate retina, RGCs fall into two functional classes, M 

(for magno or large) or parasol cells and P (for parvo or small) or midget cells. Each class 

includes both on-center and off-center cells. M cells have large receptive fields (reflecting in their 

large dendritic arbors) and respond relatively transiently to sustained illumination. They respond 
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optimally to large objects and are able to follow rapid changes in the stimulus; on the contrary, 

the smaller P cells, which are numerous, have small receptive fields, respond specifically to 

certain wavelengths and are involved in the perception of form and colour. P cells are thought to 

be responsible for the analysis of fine details in the visual image, although some M cells may also 

be involved in this function. Within a species, each subtype of RGC shares key features: (i) their 

dendritic branching patterns and arbor size are similar at any fixed retinal location; (ii) their 

dendritic fields overlap forming mosaics that cover the retinal surface effectively (Wassle et al., 

1983; Cook and Chalupa, 2000); (iii) they receive the same complement of presynaptic inputs; 

(iv) they project to common regions within targets in the brain. In all species studied thus far, the 

IPL, the plexus within which RGCs form intraretinal connections, is organized into structurally 

and functionally distinct sublaminae. Irrespective of RGC subclass, ON RGCs have dendritic 

arbors that stratify in the inner region (sublamina b) of the IPL, whereas OFF RGCs stratify in the 

outer sublamina (sublamina a) of the IPL (Famiglietti and Kolb, 1976; Nelson et al., 1978). Cells 

with arbors in both sublaminae have ON and OFF responses (e.g. Amthor et al., 1984). The 

diversity of RCGs structure and function make these neurons ideal for studies of cell-fate 

determination (reviewed by Cepko et al., 1996; Harris,1997; Rapaport and Dorsky, 1998) and 

axonal and dendritic development (Goodman and Shatz, 1993; Wong et al., 2000).  

 

Development of mammalian retina 

 

Vision in mammals is very poor at birth and develops over a relatively long period 

(weeks, months, year according to the species) in parallel with anatomical an functional 

maturation of the visual system. Like other regions of the CNS, the retina is derived from the 

neural tube and each eye originates as on outgrowth on either side of the neural tube. 

Proliferation and evagination give rise to the optic vesicles. Their infolding into optic cups and 

their progressive determination originates the optic stalk, the neural retina and the retinal pigment 

epithelium. In the retina, cell differentiation from retinal precursors is initiated in the inner layer 

of the central portion of the optic cup to progress concentrically in a wave-like fashion towards 

the peripheral edges of the retina (Isenmann et al., 2003). Extrinsic signals that have been 

implicated in cell fate determination include neurotrophic factor, such NGF and ciliar 

neurotrophic factor (CNTF), as well as other factors such as insulin-like growth factor (IGF) and 

thyroid hormone (reviewed in Harris, 1997). Neurones seems to be generated in the same 
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sequence during the first phase of ventricular cytogenesis in all species analyzed apart from 

minor differences: RGC, displaced amacrine cells, horizontal cells and cone photoreceptors. 

 Progenitor cells in the neurepithelium lining the surface of the neural tube, later become 

the ventricular zone of the optic vesicles, optic cup and early retina. Postmitotic cells migrate to 

one of three cell layers in the retina to occupy positions characteristic of their phenotype. Upon 

becoming postmitotic, retinal cells became polarized  and dendrites and axons grow out 

appropriately, undergoing an extensive process of outgrowth. For each type of inner retinal 

neuron, such as amacrine cells, process of the same kind ramify in one or a few distinct 

sublaminae,  forming a continuous plexus across the retinal surface. 

Synapse formation in the retina has been assessed by electron microscopy (for a review 

see Robinson, 1991). Synaptogenesis in both plexiform layer begins before eye opening, 

occurring first in the inner plexiform layer. Ultrastructural studies (Olney, 1968; Fisher, 1979; 

Blanks et al., 1974) suggest that synaptogenesis between the major neuronal classes of the 

vertebrate retina occurs in three major steps. Amacrine cells form synapses between themselves 

and with retinal ganglion cells extending neurites into the inner plexiform layer (IPL) (Maslim 

and Stone, 1986 and 1988, Nishimura and Rakic, 1987) and originating the earliest functional 

circuits in the IPL of the developing retina . 

 Synapses in the outer plexiform layer (OPL) are first formed between horizontal cells and 

photoreceptors (McArdle et al., 1977). The vertical networks in the inner and outer retina are 

later interconnected when bipolar cells are born and connections with ganglion cells are 

established. Bipolar cells, rod photoreceptors and Muller cells are generated throughout the 

second phase. Bipolar cells appear to be contacted first by cones. Rod bipolar cell differentiation 

occur later, and synapses from rods are established after those of cones. Synaptogenesis  in the 

OPL continues after eye opening, raising the possibility that the properties of OPL may be more 

susceptible to sculpting by visual OPL mat be more susceptible to sculpting by visual stimulation 

(Robinson, 1991). 

A fundamental process in retinal development is cell loss by apoptosis; 54-74% of axons initially 

present in the mammalian optic nerve are eliminated during development and so a corresponding 

number of RGCs and amacrine cells undergo this fate (Dreher and Robinson, 1988).  

There is good evidence that neurotransmitters, such as acetylcholine (Ach) and  γ−aminobutyric 

acid (GABA) can be found at the earliest stages of retinal development and these 
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neurotransmitters can function in the absence of traditional synapses (Redburn and Rowe-

Rendleman, 1996).  

 

Development of Retino-Geniculo pathway 

 

In the adult visual system, information from the two eyes is kept separate thought the 

early stages of visual processing. In the LGN, RGCs axons from the two eye project to separate 

eye-specific layer and all LGN cells respond only to visual stimulation from one eye. This adult 

pattern of segregate inputs from the two eyes is not present in early development, indeed axons 

from the two eyes are completely overlapping throughout a large portion of the LGN in both 

carnivores and primates (Linden et al., 1981; Rakic, 1976; Shatz, 1983). During postnatal 

development in carnivores, adult-like specific segregation of afferents gradually appears as 

axonal branches in inappropriate locations are pruned and branches in appropriate locations grow 

and elaborate (Sretavan and Shatz, 1986). Evidence that the segregation of retinal axons into eye-

specific layer might be occurring trough a competitive process came from experiments in which 

one eye was removed from an animal early in development. When the axonal projection from the 

remaining eye was labeled later in development or in adulthood, axons were found to occupy 

early the entire LGN (Chalupa and Williams, 1984; Rakic, 1981) suggesting that interaction 

between afferents and LGN cells are necessary for normal eye-specific segregation in LGN. 

While the process of segregation of retinal afferents into LGN layers does not depend clearly on 

visual experience because it occurs in utero in most species and before eye opening in others, it 

has be found to on spontaneous activity of RGCs. Galli and Maffei. (1988) demonstrated that 

RGCs are spontaneously active in utero. The pharmacological blockade of  this activity it has 

been shown to prevent the segregation of reticulo-geniculate afferents (Penn et al., 1988; Shatz 

and Striker, 1988), producing a LGN where afferents form the two eyes remain overlapping. 

However  axonal growth  is not prevented by the activity blockade (Sretavan et al., 1988), nor the 

axons ability to interact with postsynaptic targets is completely abolished (Sretavan et al., 1988). 

These data suggest that during development a competitive, activity dependent process is 

responsible fro driving eye-specific segregation in the LGN. Moreover, the following series of 

experiment demonstrated that the more active eye “win” on the less active eye.  If the 

spontaneous activity of one eye is completely blocked, the LGN area occupied from silenced 

eye’s ganglion cells is reduced, while area occupied by the normal eye is expanded (Penn et al., 
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1988). On the contrary, if the amount of spontaneous activity in one eye is increased, that eye’s 

axons gain territories in the LGN (Stellwagen and Shatz, 2002). If spontaneous activity is 

blocked during development, in a time immediately after the process of retinogeniculate 

segregation is completed, the axons desegregate and the projections from the two retinas become 

overlapping in LGN (Chapman, 2000). 

 
 

Development of thalamocortical pathways 

 

A series of experiments have shown that patterned visual experience is not necessary for 

the development of either ocular dominance or orientation preference between the two eyes. For 

instance, in new born monkeys,  after in utero development, and therefore, in the absence of 

stimulation of the retina, the left and right inputs to the cortex were found to be well segregated 

into ocular dominance columns (Horton and Hocking, 1996; Rakic, 1976). This led to the 

suggestion that spontaneous activity, possibly originating in the periodic spontaneous waves of 

excitation in the immature retina, which are present even before eye-opening, drove segregation 

(Galli and Maffei, 1988; Maffei and Galli-Resta, 1990; Meister et al., 1991; Mooney et al., 1993; 

Wong et al., 1993). The existence of spontaneous waves of activity is coming out also in other 

part of the visual system. Multielectrode recordings in the LGN of awake behaving ferrets, before 

eye opening, revealed patterns of spontaneous activity that emerge from interactions between 

retina, thalamus and cortex (Weliky and Katz, 1999; Weliky, 2000). 

However another series of studied have suggested that the development of ocular 

dominance columns can proceed relatively normal in the absence of the retina. Cytochrome 

oxidase-rich blobs in layer 2/3 in the monkey relate to the ocular dominance columns 

(Hendrickson, 1985; Hendry and Yoshioka, 1994) and have been shown to develop in the 

absence of the retina (Dehay et al., 1989; Kennedy et al., 1990; Kuljis and Rakic, 1990) and to 

show a normal periodicity (Kennedy et al., 1990). More direct evidence for the formation of 

ocular dominance columns in the absence of the retina has recently been obtained from studies on 

neonatal enucleated ferrets in which tracer injection in the LGN revealed alternating stripes of 

label in the striate cortex showing that the ocular dominance columns formations has not been 

affected (Crowley and Katz, 1999). Subsequently, Crowley and Katz. (2000) have show that the 

ocular dominance patches are already present in the ferret visual cortex during the initial period 
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of synaptogenesis in layer 4 (around P15-P18) before the critical period and the period in which 

geniculostriate axons had been thought to undergo retraction. Katz and colleagues suggest that 

axons arising from each LGN are molecularly distinct, and that interaction with corresponding 

cortical cues determines the termination pattern of each sets of axons.  Although these results do 

not exclude a role for sensory periphery in the central development, they suggest that molecular 

cues play a major role in the formations of ocular dominance columns.   The effects of visual 

experience and  deprivation on the development of orientation columns has been a disputed issue 

(Blakemore and Cooper, 1970; Hirsch and Spinelli, 1970; Stryker and Sherk, 1975) recently 

reexamined using optical imaging of orientation column during development in normal and 

deprived animals. This work show that orientation selectivity develops independently of visual 

experience, but neuronal activity is required to fine-tune and maintain the orientation maps in to 

adulthood (Crair et al., 1998; Sengpiel et al., 1999; White et al,. 2001; Wiesel and Hubel, 1974).  

The emerging consensus on the development of the functional architecture of the cortex is 

that the construction of both orientation and ocular dominance columns is largely activity 

independent, but the fine-tuning and maintenance of  columns during the critical period depends 

on activity.  

 

Refinement of connections during development 

 

Even if the relative contribute of intrinsic, genetically, sensory dependent factors on the  

pattern of neural connections is still unclear, there is a wide consensus about the essential role of 

sensory driven neural activity in shaping the pattern of developing systems in late phase of 

development. Visual experience is necessary to achieve the typical electrophysiological 

properties of adult visual cortex. Hubel and Wiesel had demonstrated that the adjacent territories 

of area 17 receive input alternatively from the right and left eye.  These ocular dominance 

columns had been explored both by single-unit recording in the cortex, as well as by injections of 

anterograde tracers in the eye, following transynaptic transport of the tracer to area 17 (Hubel and 

Wiesel, 1962, 1977).  

To investigate the role of the sensory periphery, they carried out similar experiments in 

normal kittens, as well as kittens having one eye, closed throughout the development. 

Physiological changes due to monocular deprivation are accompanied by profound changes the 

anatomical organization of the geniculocortical axons in layer 4. While in normal primates and 
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cats, the thalamic inputs deriving from the two eyes reach the cortical layer 4 into alternating, 

equally seized stripes eye,  trans-synaptic labeling has shown that, following monocular 

deprivation, there is an expansion of column receiving inputs from the open eye and the reduction 

of the cortical territory of deprived eyes to shrunken, broken stripes with its territory invaded by 

inputs representing the open eye (Hubel and Wiesel, 1977; LeVay et al., 1980). These 

experiments emphasizes the role of sensory experience in shaping neuronal connections and gave 

rise to the concept that, during development, the geniculate afferents conveying responses to the 

right and left initially are extensive and, therefore, overlap. Because binocular deprivation 

allowed segregation of the two sets of inputs while segregation was prevented by blockage of 

activity (Stryker and Harris,  1986), it was though that the formation of ocular dominance 

columns depend on competitive interactions between inputs  from both eyes during the critical 

period. Guillery (1972) supported this hypothesis closing one eye and destroying a small group of 

retinal ganglion cell in the open eye. As a consequence of this manipulation, the effects on 

monocular deprivation were present everywhere in the cortex except within the small region 

receiving input  from the lesioned area and the corresponding region of the closed eye. The 

definitive demonstration that competition between afferent fibers is at the base of the formation 

of ocular dominance columns derived from the experiment of Costantin-Paton and Law (1978). 

They proposed that if development of ocular dominance column depends on the competition 

between afferent fibers, it may be possible to induce the formation of segregated columns where 

they are normally absent by establishing competition between the two sets of axons. They 

transplanted a third eye into a region of the frog head near one of the normal eyes during early 

development. In frogs the retinal ganglion cells from each eye project only to the contralateral 

side of the brain, thus the afferent fibers do not compete for the same target cells. In the 

transplanted frog, ganglion cells axons from the extra eye extended to the contralateral optic 

tectum. Axon terminals from the normal and the transplanted eyes segregated generating a 

pattern of regular alternating columns. These results suggest than an activity-based competitive 

process between two sets of afferent neurons for the same population of target neurons is 

sufficient to segregate the terminals of the presynaptic cells into distinct territories.        

 

 

 



 17

The visual cortex 
 

Physiological properties of cortical neurons 

 

Early electrophysiological studies on the visual system of adult rats found that cortical 

neurons have well defined functional properties (Parnavelas et al., 1981; Maffei et al., 1992) and 

are distributed in distinct classes of ocular dominance, with high proportion of binocular cells, 

comparable to that in cats and monkeys (Maffei et al., 1992; Berardi et al., 1993). Fagiolini et al. 

(1994) performed a fundamental study on postnatal development of functional properties of rat 

visual cortical neurons. The physiological properties of visual cortical neurons of the rat are 

immature at postnatal day 17 (P17), three days later than opening of the eyes (P14) and develop 

gradually during the first month of postnatal life. Visual cortical responses are sluggish and 

variable at P17, in particularly they present habituation, that is the tendency of cell response to 

diminish after several stimulation. Neuron responsiveness, evaluated in term amplitude of 

modulation of cell discharge in response to an optimal visual stimulus (peak response divided 

spontaneous discharge), increases progressively with age over the third postnatal week:  the 

sluggishness and tendency to habituation disappeared by P23. Ocular dominance distribution 

does not change significantly through development, indeed the vast majority of visual cortical 

neurons are binocular and preferentially driven by the contralateral eye. The major component of 

age dependent changes in ocular dominance distribution is the increase of monocular, 

contralaterally driven cells.  

Receptive fields in adult rats are small and well defined, but this is not the case in younger 

animals; indeed at P17 receptive fields are very large, extending through almost the whole 

binocular  hemifield. At P19-21 receptive field size is around 34 degrees (deg), and it reaches the 

value of 10 deg or less in the adult. The progressive decrease in receptive field size is consistent 

with the time course of visual acuity development. Visual acuity increased from 0,5 c/deg to 0,9 

c/deg whiting the first month of life and then reaches the  value of 1 c/deg in the adult at P40-45 

(Fagiolini at al., 1994). 
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Critical periods of development 
 
 

The visual cortex of mammals is immature at birth, both anatomically and 

physiologically, and develops gradually during the first weeks or months of postnatal life (Hubel 

and Wiesel, 1963; Sherman and Spear, 1982; Fagiolini et al., 1994, Gordon and Stryker, 1996). 

Psychologist D.O. Hebb postulated more than a half century ago that experience modifies cortical 

connections (Hebb, 1947, 1949). Subsequent evidences indicated that Hebb was correct and that 

neural connections change in response to experience. Cortical circuits are extremely sensitive to 

manipulation of the sensory environment, in particular during short periods of early postnatal 

development called “critical period” (for review see Berardi et al., 2000).  

The concept of critical period was introduced by Hubel and Wiesel in 1960s. They 

described for the first time the existence of a columnar organization in the cat primary visual 

cortex. By electrophysiological recordings  Hubel and Wiesel shown that the two eyes 

differentially activate cortical neurons and that the cells with similar preference for one eye were 

grouped in columns called dominance ocular columns (Hubel and Wiesel, 1963). They also 

reported the great finding that occluding one eye early in development (an experimental treatment 

called monocular deprivation, MD) led to reduction in the number of cortical cells responding to 

that eye, with a strong increment in the number of neurons activated by the open eye (Hubel and 

Wiesel, 1963). Since MD treatment is ineffective in the adult life,  this period of enhanced 

plasticity during early development is a clear example of critical period. During critical period, 

experience modifications, such as visual deprivation, produce permanent and extensive 

modifications of cortical organization. If during this period of heightened plasticity, one eye is 

deprived of patterned vision, as in the case of following unilateral congenital cataract or 

experimental lid suturing (MD), there is an irreversible reduction of visually driven activity in the 

visual cortex through  the deprived eye, which is reflected in a strongly shift in the ocular 

preference of binocular neurons towards non deprived eye in all mammals tested (Berardi et al., 

2000). This dramatic plastic modification occurred when MD is performed during the temporal 

window of critical period is phylogenetically conserved, as it is present in mice (Gordon and 

Stryker, 1996), rats (Fagiolini et al., 1994), ferrets (Issa et al., 1999), cats (Hubel and Wiesel, 

1998), monkeys (Blakemore et al., 1978) and humans (Ellemberg et al., 2000). Critical periods 

are known to occur also during human development including visual function development (Levi, 

2005) but also language acquisition (Doupe  and Khul, 1999) and maternal attachment 
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establishment (Leiderman, 1981). Following monocular deprivation treatment, visual acuity and 

contrast sensitivity of the deprived eye develops poorly originating the phenomenon of 

amblyopia,  which is permanent if the vision is not restored before critical period closure 

(reviewed in Odom, 1983).  The great majority of MD effects have been interpreted as the 

outcome of an activity driven competition process that follow Hebbian rules. Hebb’s principle 

states that if an electrical activity in a set of afferent fibers is temporally correlated with the 

activity of postsynaptic neurons (neurons with fire together with together), then afferents will be 

allowed to maintain and even expand the connections with it. Critical periods are time windows 

in which brain circuits that perform a given function are particularly receptive to acquiring 

certain kinds of information or even need the instructive signal for their continued normal 

development.  Visual experience acts by modulating the level and the patterning of neuronal 

activity  within the visual pathway. What remain uncertain is whether the role of neural activity 

in development is instructive or permissive: it is not clear if patterns of neural activity affects 

directly the development of neural connections or whether it is simply the presence of neural 

activity that move other developmental cues, such as molecular factor, to guide appropriate 

neural connection refinement (for a review, see Crair, 1999). 

Plastic and adaptive response to sensory stimulation are present also in  the adult but 

much reduced respect to development: monocular deprivation in the adults produces no effects 

and the recovery from amblyopia is very limited after the closure of critical period.  Classical 

studies shows that critical period closure is prevented by rearing animals in complete darkness 

from birth (dark rearing, DR) (Mower et al., 1991; Fagiolini et al., 1994; Gianfranceschi et al., 

2003) suggesting that patterned visual experience is crucial for critical period closure. However  a 

recent work (Bartoletti et., 2004) has shown that it is possible to prevent dark rearing effects in 

the rat visual cortex by varying just the environmental conditions.  

  

 
Visual cortical plasticity: determinants of critical period 
 

The cellular and molecular mechanisms that control the developmental plasticity of visual 

cortical connections and restrict experience-dependent plasticity to short critical periods are still 

unclear, though intensively studied.  The first step of neural plasticity which are changes in 

synaptic efficacy, that no require protein synthesis, are followed by long-lasting changes in 
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neuronal circuitry that require gene expression and protein synthesis. The molecular basis of 

plasticity in the visual cortex are summarized in Berardi et al. (2003). 

 

NMDA receptors   

 

NMDA function is thought to be crucial for mechanisms of synaptic plasticity that follow 

Hebbian rules and rely on NMDA-dependent modification in synaptic efficacy, likely the first 

modification induced by experience in the visual cortical circuits. NMDA receptors, are synaptic 

receptors with the characteristic of being both  transmitter and voltage-dependent, and their 

coupling via Ca2+ influx to plasticity-related intracellular signalling, has led to the notion that 

they might be a neural implementation of  Hebbian synapse. Involvement of NMDA receptors in 

developmental plasticity of the visual system has been initially suggested by Bear et al., 1990, 

where block of NMDARs in the visual cortex blocks MD effect.  

Recently, the use of NMDAR antagonists (Daw et al., 1999) or antisense oligonucleotide 

(Roberts et al., 1998) has overcome the problem that pharmacologically NMDARs blocking 

significantly affects visually driven activity, showing that is possible to block the effects of 

monocular deprivation without affects visual response (Roberts et al., 1998) and confirming 

NMDAR involvement in visual cortical plasticity.  Two properties of NMDARs that make them 

candidates to be molecular determinants of critical period are that the characteristics of NMDAR 

mediated synaptic transmission are developmentally regulated, and that their expression is 

modified by electrical activity (Livingston and Mooney, 1997; Catalano et al., 1997). In 

particular, their subunit composition varies in the visual cortex, from a dominant presence of 

receptors containing the subunit 2B to a high presence of receptors containing the subunit 2A, 

with a time course that parallels that of critical period and functional visual cortical development. 

Expression of the 2A subunit correlates with the progressive shortening of NMDA current. Dark 

rearing, which delays critical period closure and impairs development of function properties of 

the visual cortex and of visual acuity, delays the developmental shortening of NMDA-receptor 

currents and of subunit 2A expression, suggest that the 2B-to-2A switch is related to visual 

cortical development and, possibly to the closure of the critical period (Berardi et al., 2000). 

However, recent results have shown that mice with deletion of the NMDA-receptor 2A subunit, 

the sensitivity to monocular deprivation is restricted to the normal critical period, suggesting that 

the expression  of 2A subunit is not essential to delineate the time course of the critical period of 
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ocular dominant plasticity (Fagiolini et al., 2003) and might be related to other features of visual 

cortical plasticity. 

 

Neurotrophins 

 

The family of mammalian neurotrophins comprises nerve growth factor (NGF) and tree 

closely related factors: brain-derived neurotrophic factor (BDNF), neurotrophins-3 (NT-3) and 

neurotrophic factor-4 (NT-4). These molecules exert their action on target cells through the 

binding of two classes of transmembrane receptor: a low affinity receptor (p75), which is bound 

by all neurotrophins, and high-affinity receptors of the Trk family of receptor tyrosine kinases 

(TrkA, TrkB, TrkC). Whereas NGF interacts specifically with TrkA, BDNF and NT-4 bind to 

TrkB, NT-3 has been reported to bind to TrkA and TrkB in addition to its interaction with TrkC.   

The neurotrophins have been originally characterized from their effects on proliferation, 

differentiation, and survival of neurons during nervous system development (Lewin and Barde, 

1996). More recently, several observations suggest that neurotrophins have additional functions 

related to activity-dependent plasticity of the brain, particularly of neocortex and hippocampus  

(Thoenen, 1995; Bonhoeffer, 1996; McAllister et al., 1999). Many insights into the roles played 

by neurotrophins in synaptic plasticity have come from studies of the mammalian visual cortex 

(Berardi and Maffei, 1999). For instance, it was shown that exogenous supply of neurotrophins 

counteracts the effect of MD  and DR (Maffei et al., 1992; Riddle et al., 1995; Pizzorusso et al., 

2000) and prevents the formation of ocular dominance column (Cabelli et al., 1995). Other 

studies, which followed the opposite course of antagonizing the action of endogenous 

neurotrophins, have shown that neurotrophins are important for normal visual cortical 

development and plasticity (Cabelli et al., 1997; Berardi et al., 1994). There is a clear evidence 

that neurotrophins control the duration of the critical period; in fact, they are the first molecules 

for which a causal relation has been established between their action and the duration of critical 

period in mammals. The first evidence come from the finding that block of endogenous NGF 

trough the use of antibodies prolongs the duration of critical period, an effect similar to dark 

rearing (Berardi et a., 1994). More recently, in a study using transgenic mice overexpressing 

BDNF in the visual cortex, Huang et al., 1999; have found that BDNF overexpression accelerates 

both the visual acuity development and early closure of the critical period. These effects are 

accompanied by a precocious development of inhibition and by an early closure of synaptic 



 22

plasticity that is usually enabled by LTP in the visual cortex. These findings suggest that BDNF 

controls the time course of the critical period by accelerating the maturation of GABAergic 

inhibition.   

 

              Inhibitory circuitry  

 

Recently it has become clear that inhibition has an important role in sculpting the pattern of 

electrical activity and two sets of experiments pointed out its role in visual cortex plasticity 

during critical period. The first performed by Hensch and colleagues demonstrated that inhibitory 

interactions are necessary for the manifestation of experience-dependent plasticity. They shown 

that experience-dependent plasticity is prevented in transgenic (Tg) mice lacking the 65kDa 

isoform of the GABA synthesizing  enzyme GAD (GAD65) and that it can be rescued if 

GABAergic transmission is enhanced in the visual cortex by means of benzodiazepines (Hensch 

et al., 1998). The second set of experiments highlighted the role of inhibition as a determinant of 

critical period. Accelerated development of GABA-mediated inhibition, obtained in mice with 

overexpression of BDNF, results in an early opening and closure of the critical period (Huang et 

al., 1999). In according to this finding, the precocious increased of intracortical inhibition by 

early diazepam administration to the visual cortex accelerates opening of the critical period 

(Fagiolini and Hensch, 2000). The development of inhibition lags behind that of excitation and 

this mismatch  between inhibition and excitation could determine a time window, the critical 

period, during which cortical circuitry are particular sensitive to sensory experience. According 

to these researches, it is becoming clear that excitatory and inhibitory circuit elements reach an 

optimal balance one in life during which plasticity may occur. 

Premature enhancement of intracortical inhibition triggers a precocious onset of the critical 

period for OD plasticity (Fagiolini and Hensch 2000; Iwai et al., 2003) 

 

Intracellular signalling  

 

Three kinases  have been resulted necessary for shift of ocular dominance during MD: c-

AMP dependent protein kinase (PKA), extracellular-signal-regulated kinase (ERK) and α 

Ca2+/calmodulin-dependent protein kinase II (α CaMKII) (Taha et al., 2002; Di Cristo et al., 

2001). Each kinase is activated by specific extracellular signal and after visual activation, the 
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possible targets of these three kinases could be both at cytoplasm and nucleus level. At cytoplasm 

level, the activated PKA, ERK and α CaMKII could phosphorylate  substrates crucial for 

synaptic transmission, neuronal excitability and morphological stabilization (reviewed in Berardi 

et al., 2003). Because the PKA, ERK and αCaMKII  pathways vary in the signal integration that 

lead to their activation and in their downstream targets, it’s surprising that interfering with the 

activation of any of these pathways produces the suppression of ocular dominance shift after MD. 

This could be due to extensive overlap and cross talk of these pathways, so that the blockade of a 

single kinase reverberates on the entire network (Berardi et al., 2003).  

 

Regulation of gene expression 

 

The pattern of kinase activation has to be translated into a pattern of gene expression, 

trough the activation of transcription factors. Several transcription factors, such as early-growth-

response 1 (erg1/zif 268), are regulated by visual activity (Caleo et al., 1999; Kaczmarek et and 

Chaudhuri, 1997), but the condition of being visual-activity-dependent does not imply that the 

factor is necessary for ocular-dominance-plasticity.  For instance, mice knock out for  erg1/zif 

268 exhibit a normal response to MD (Mataga et al., 2001). An important indication to identify 

the transcription factors necessary for visual cortical plasticity is offered by the finding that the 

activation of CREB is necessary for ocular-dominance-plasticity (Mower et al., 2002, Liao et al., 

2002; Pham et al., 1999). To phosphorylate CREB, activated kinase must translocate to the 

nucleus, where they start the expression of genes under c-AMP-response-element (CRE) 

promoter, with the consequent production of gene transcripts essential fro establishment and 

maintenance of plastic changes (Silva et al., 1998). Both PKA and ERK are well-known 

activators of CREB (Impey et al., 1996; Mayr and Montminy, 2001), although the ability of 

αCaMKII  to translocate in to the nucleus and directly activate CREB is far less certain (Wu and 

McMurray, 2001; Matthews et al., 1994; Deisseroth et al., 2002).  In vivo studies allowed to 

clarify the pathway responsible for CRE-mediated gene expression activated by visual 

stimulation. Recently it has been shown that patterned vision is powerful activator of ERK in 

neurons of the visual cortex and visually induced ERK activation relies, at least partially, on the 

cAMP-PKA system.  Pharmacological block of ERK phosphorylation completely suppress CRE-

mediated gene expression after visual stimulation (Cancedda et al., 2002). These results are 

strong indicators that ERK is the final effector linking extracellular signals with gene expression 
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in the visual system during the critical period. Our present knowledge about the plasticity-related 

signalling can be designed with the following scheme: NMDA coincidence detection activates 

αCaMKII, possibly helped by the co-occuring activation of PKA and the consequent inhibition of 

the αCaMKII phosphatase, protein phosphatase  1 (PP1) (Bhalla and Iyengar, 1999; Brown et al., 

2000). Activated αCaMKII acts on local targets, such as AMPA receptors (Benke et al., 1998; 

Esteban et al., 2003), contributing to further depolarization. ERK detects the simultaneous and 

stabilized activation of αCaMKII and PKA, integrates these signals with those of the 

neurotrophin signalling cascades, and controls CRE-mediated gene expression and the induction 

of long-lasting modification of cortical circuitry (Berardi et al., 2003). A recent study (Majdan 

and Shatz, 2006) conducted with microarray technique, reported that critical period in mice has a 

specific pattern of gene regulation. Four days of MD regulated one set of genes during the critical 

periods, and different sets  before and after. Moreover between the signalling pathways visually 

experience regulated, they still found the mitogen-activate-protein (MAP) kinase pathway: it was 

downregulated after MD at every age studied, suggesting that visual deprivation lead to a 

sustained, rather than transient, downregulation of MAP pathway. These results expands on 

previous studies reporting that visual stimulation enhances MAP kinase activity (Cancedda et al., 

2003; Di Cristo et al., 2001) and that MEK1/2 is necessary for OD shifts induced  by MD during 

the critical period (Di Cristo et al., 2001). Majdan and Shatz, (2006) findings further confirm that 

a dynamic interplay between experience and gene expression drives activity-dependent circuit 

maturation and imply also that although gene regulation in response to visual deprivation occurs 

throughout the life for some genes, the critical period is fundamentally distinct from other 

developmental time windows in term of its molecular signature.  

Recently, Putignano et al. (2007) suggested that intracellular pathways that control gene 

expression in the visual cortex and are activated by visual experience, could modulate the critical 

period closure. They found that that visual experience activates intracellular signalling pathways 

which differ in juvenile and adult animal; indeed  in the adult they observe a developmental 

downregulation of a few signalling pathways which are highly activated during development. 

Results obtained by Putignano and colleagues suggest that reduction of plasticity occurring in the 

adult visual cortex could be induced by the reduced activation of molecular targets responsible 

for plasticity process in the young animal.   

In particular, they demonstrated that during the critical period ERK is strongly activated 

by visual experience and its activation is required for the molecular cascades that involve MSK, 
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CREB and histone  H3 and H4. Putignano and colleagues observe that, in the adult, ERK and 

MSK are still fully responsive to visual stimulation, while there is a downregulation of the effects 

of visual stimulation on CREB phosphorylation, H3 phosphoacetylation, and H4 acetylation. The 

hypothesis that a reduction in experience-dependent regulation of CREB mediated gene 

transcription could be involved in regulating the closure of critical period is also supported by the 

observation that MD in the adult mice produce a form of plasticity can be rendered persistent by 

the expression of a constitutively  active CREB mutant (Pham et al., 2004). Moreover, the 

hypothesis the critical period closure is also associated with a decrease in the ability of visual 

experience to drive changes in histone phosphorylation and acetylation is supported by the result 

that  pharmacologically increasing histone acetylation in adult animals restores MD-dependent 

plasticity to the visual cortex (Putignano et al., 2007).  

 

Extracellular environment 

 

Recent findings indicate that degradation of factors present in the extracellular 

environment is necessary for the experience dependent modification of visual cortical circuits. 

The extracellular protease tissue plasminogen activator (tPA) is induced by electrical activity as 

an immediate early-gene(Qian et al., 1993) and its proteolytic activity in the visual cortex is 

increased during MD (Mataga et al., 2002). The first investigations on the role of tPA in visual 

cortical plasticity indicated that its pharmacological inhibition attenuates the OD shift induced by 

MD (Mataga et al., 1996) and prevents the effects of reverse suture (a form of plasticity in which 

the deprived eye is reopened while the contralater, previously open is monocular deprived). 

During development, this procedure is able to revert the effects of the previous MD, but reverse 

suture resulted ineffective in kittens treated with tPA activity inhibitors (Muller and Griesinger, 

1998). The implications of these studies have been deepened analyzing tPA-knockout mice. 

These mice displayed an impaired ocular-dominance shift that could be rescued by exogenous 

tPA (Mataga et al., 2002). tPA has a wide spectrum of possible molecular targets, including 

extracellular-matrix proteins (Wu et al., 2000), growth factors (Yuan et al., 2002), membrane 

receptors (Nicole et al., 2001), cell adhesion molecules (Endo et al., 1999), but the available 

information is not sufficient to distinguish  which  of these tPA actions are necessary for cortical 

plasticity.  tPA has been recently implicated in the regulation in dendritic spine dynamism after 

brief MD in two works (Oray et al., 2004; Mataga et al., 2004). Oray et al., 2004 demonstrated 
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that application of tPA on visual cortical slices induces a dramatic increase in spine motility. If 

tPA is applied to visual cortical slices obtained from MD animals, they found that the effect of 

tPA was not additive to the effect elicited by MD, suggesting that tPA is a mediator of MD action 

on spine motility. Mataga et al. (2004) demonstrated that tPA activity is necessary for MD-

changes induced in spine density. Counting the number of spines on dendrites of layer III 

pyramids, they found that the decrease in spine density caused by 4 days of MD is not present in 

tPA knockout mice and this effect could  be rescued by exogenous tPA. 

Recent data (Pizzorusso et al., 2002 and 2006), however, suggest that at least part of the 

inhibitory action of the extracellular environment could reside in components of the extracellular 

matrix, the chondrointin-sulfate proteoglycans (CSPGs), a class of glycoproteins that are the 

major components of the extracellular matrix of the CNS. CSPGs are abundantly expressed in 

CNS where they are used mainly to create barriers. It has been shown that in the developing 

CNS, barriers between the two sides of the brain contain large amount of CSPGs (Faissner and 

Steundler, 1995). CSPGs are inhibitory for axonal sprouting and the are upregulated in the CNS 

after injury with the effect of blocking axon regeneration (Bradbury et al., 2002).  

In the adult CSPGs are condensed in perineuronal nets (PNNs), which completely 

ensheath neuronal cell bodies and dendrites. PNNs are mainly formed by a family of CSPGs, 

lecticans and by other CSPGs, such as phosphocan. This specialized form of ECM (called 

perineuronal network) constitutes  aggregates around subpopulation of neurons in the form of 

network-like aggregates. In the visual cortex the process of condensation of CSPGs into PNNs 

begins during late development and is completed after the end of critical period (Pizzorusso et  

al., 2002; Bruckner at al., 2000; Hockfield et al., 1990). Dark rearing, which is known to prolong 

the critical period for ocular-dominance plasticity (Berardi et al., 2000), also prevents PNN 

formation (Pizzorusso et al., 2002). The correlation between CSPGs maturation and critical 

period closure (Sur et al., 1988) suggest that CSPGs could hinder ocular-dominance plasticity in 

the adult visual cortex (Hockfield et al., 1990). A direct demonstration of this theory comes from 

the recent analysis of the effects of degradation of CS-GAG chains in vivo with the enzyme 

chondroitinase ABC which destabilizes PNNs and cause their disappearance from the adult visual 

cortex (Pizzorusso et al., 2002 and 2006). Removal of CSPGs, after this treatment, was able to 

reactivate ocular-dominance plasticity in MD adult rats, suggesting that developmental 

maturation of PNNs could contribute to the progressive reduction of plasticity that occurs in the 

visual cortex at the end of critical periods. A more recent work (Pizzorusso et a., 2006),  showed 
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that degradation of CSPGs by chondroitinase ABC combined with reverse lid-suturing produces 

a complete recovery of ocular dominance and visual acuity, in adult rats. In this case a functional 

recovery is accompanied by significant recovery of dendritic spine density; infact, reopening the 

formerly promotes the restores spine density to normal values in adult animals treated with 

chondroitinase ABC.  

  

Effects of the environment on nervous system and behaviour: 

enriched environment 

 
Complex genetic and epigenetic programs generate the mammalian brain and ensure that 

cells and structural areas are in place by birth. Several studies demonstrated that sensory, 

cognitive and motor stimulation through the interaction with the environment has a key role in 

refining the neuronal circuitry required for normal brain function, both during development than 

in adulthood.  

It is difficult to establish the different contribution of genes or environment  in shaping 

nervous system, and  in the second half of the last century  a large number of studies has focussed 

on the so-called “nature versus nurture” debate. The central question of this debate was “what is 

the contribution of genes to overt and covert behaviour, and what is the contribution of 

environment on the same behaviours?” (for review, see Krubitzer and Kahn, 2003). This debate 

was solved by the Nobel Price Konrad Lorenz which introduced for the first time the concept of 

“innate predisposition to learn” (Lorenz, 1961). “Innate” and “learned” constitute the two ways 

trough which information are available to the organism, registered to the nervous system and 

resulting in an adaptive behaviour (Lorenz, 1961; Rescorla, 1988). Since species are different 

physiologically and morphologically and these difference are subjected to the genetic laws of 

selection and heredity, the potentiality to acquire new information trough learning is also 

regulated and programmed under specie-specific constraints, so, genetic inheritance during 

phylogenesis and learning and memory during ontogenesis  are intermingled in the construction 

of  the individual personality. 

In 1940s Hebb was the first to introduce the idea  of  the “enriched environment” like an 

experimental concept. He described that rats that he took home as family pets, and that he reared 
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in an extremely more complexes environment than a  laboratory rodent’s setting, showed 

behavioural improvements in learning task. Subsequently the finding that a more complex and 

stimulating rearing environment enhanced performance on complex learning tasks was repeated 

by Hebb’s students and by others (Bingham and Griffiths, 1952; Forgays and Read, 1962).  

The most direct approach to investigate the effect of experience on nervous system is the 

manipulation of environmental stimulation pattern  in which animals are reared. In this ambit, in 

the 1960s, two experimental approaches originated to investigate the effects of experience on the 

brain. On one side, Hubel and Wiesel started to investigate the effects of visual deprivation on the 

anatomy and physiology of the visual cortex during development (Wiesel and Hubel, 1965; 

Hubel and Wiesel, 1970). On the other side, Rosenzweig and colleagues introduced enriched 

environment as an experimental paradigm used to analyze the effects of experience on nervous 

system,  showing that the morphology, biochemistry and physiology of brain can be deeply 

affected by the quality and the intensity of environmental stimulation (Rosenzweig et al., 1962, 

Rosenzweig, 1966; Rosenzweig and Bennett, 1969). 

 

Enriched environment: definition and peculiarity of the 

experimental protocol 

 
Enriched environment was defined for the first time by Rosenzweig et al., 1978 as “ a 

combination of complex inanimate and social stimulation”. Environmental enrichment refers to 

housing conditions, either home cages or exploratory chambers, that facilitate enhanced sensory, 

cognitive and motor stimulation relative to standard housing conditions. In our experimental 

paradigm, enrichment include also increased social stimulation through the larger numbers of 

animals per cage. In particular, enriched animals are reared in groups of numerous individuals (6-

12 individuals is the  most common situation) and in large dimension cages, with three floors 

containing running wheels to improve physical activity, and differently shaped objects (tunnels, 

shelters, stairs) that were completely substituted with others once a week. The enriched 

environment rearing is compared with standard rearing condition in which animals are reared in 

groups of at most tree animals in small dimensions cage without particular objects besides water 

and food ad libitum, and impoverishment rearing condition in which animal is reared alone in a 

cage identical to the standard one.  
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The environment produced in the enriched condition stimulates animals at varies levels. 

First of all, presence of running wheels allow animals to perform voluntary physical activity 

providing a strong stimulation of motor cortex and enhancing motor activity.  

On the other and, the environmental complexity, with different objects provides a range of 

opportunities for  a complex multi-sensorial stimulation at a visual, somatosensory and cognitive 

levels. An important aspect of enriched rearing  is the environmental complexity and novelty, 

obtained by changing the objects and the position of objects which might provide additional 

cognitive stimulation with respect to the formation of spatial maps (for a review see Rosenzweig, 

1966; Rosenzweig and Bennett, 1969; Nithianantharajah et al., 2006). 

It is interesting to note, that most of the effects elicited in animals reared in EE, are 

common  to animals reared in standard cage but submitted to voluntary physical exercise for the 

presence of a running wheel or for a treadmill running (for a review see Cotman and Berchtold, 

2002). Physical exercise increases neurotrophins levels in the brain (Neeper et al., 1996; Oliff et 

al., 1998; Carro et al., 2000, Johnson et al., 2003; Farmer et al., 2004; Klintsova et al., 2004) and 

increases important survival factors levels such as insulin-like growth factor1 (IGF-1) (Carro et 

al., 2000; Schwart et al., 1996) which considered the mediator of the effects of exercise (Carro et 

al., 2000) and of EE (Koopmans et al., 2006) and a key molecule related to functional and 

anatomical plasticity in the brain (for review see Torres-Alemann, 1999 and 2000, Carro and 

Torres-Aleman, 2005; Aberg et al., 2006). Furthermore physical exercise improves cognitive 

functions in rats and aging humans (Fordyce and Farrar, 1991; Kramer et al., 1999, Churchill et 

al., 2002; van Praag et al., 1999a and 2005), attenuates motor deficit (Klintsova et al., 1998), 

increases neurogenesis (van Praag et al., 1999 a, b),  increases angiogenesis (Black et al., 1990; 

Isaacs et al., 1992) and is neuroprotective ameliorating neurological impairment in different 

neurodegenerative processes (Arkin et al., 1999; Petajan and White, 1999; Larsen et al., 2000; 

Mattson et al., 2000; Carro et al., 2000 and 2001).  

Since all the effects produced by physical exercise are elicited also by rearing in enriched 

environment, it is rightful to suppose that physical exercise and EE affect common pathways and 

common endpoints in the nervous system, including neurogenesis, anatomical changes, 

production of growth factor and survival factors such as IGF-1 and neurotrophins. For this 

reason, it is extremely difficult to distinguish the single contribution of physical exercise to the 

effects produced by EE. Enrichment including exercise, is more effective than exercise alone in 

improving memory functions (Berstein,1973), while neurogenesis in the adult is more strongly 
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increase by exercise than by enriched environment. Moreover, a recent work (Stranahan et al., 

2006) showed that isolation housing prevents the positive effects of running on adult 

hippocampal neurogenesis and in the presence of additional stress suppresses the generation of 

new neurons, likely because individually housed runners had higher levels of corticosterone. 

Thus, all these results suggest that physical exercise and all the other components of EE 

(increased exploration, social interactions and novelty) are important and act in synergistic way 

to evoke EE effects.  
 

Environmental enrichment effects on adult brain and behaviour 

 
Behavioural changes 

 

Hebb’s observation about the improvement in behavioural tasks of rats reared freely in his 

home for some weeks compared to those reared in laboratory (Hebb, 1949),  pioneered a large 

number of studies  which showed that the experience of a complex environment can induce the 

improvement of animals performances in tasks involving superior cognitive function, mostly 

learning and memory (for a review see  Rampon and Tsien, 2000).   

EE effects are especially evident in hippocampal-dependent tasks involving spatial 

memory, such as  the Morris water maze task. In this task, animals have to swim in a circular 

pool filled with opaque water, learning to reach a submerged platform which they can’t perceive, 

but has to be deduced from a spatial map based  on the position of visual stimuli external to the 

pool (D’Hooge and De Deyn, 2001). EE  improves the execution of Morris water maze task  

enhancing spatial learning and memory (Pacteau et al., 1989; Tees et al., 1990; Falkenberg et al., 

1992; Paylor et al., 1992; Moser et al., 1997; Kempermann et al., 1998; Tees, 1999; Williams et 

al., 2001) independently on the gender and age of tested animals, or reducing the cognitive 

decline of spatial memory typically associated with aging (for a review see Winocur, 1998). This 

latter effect it has been linked to general signs of “cellular health” in the hippocampus, including 

increment in the levels of synaptophysin, a glycoprotein present in the membrane of presynaptic 

vesicles containing neurotransmitters (Saito et al., 1994; Frick and Fernandez, 2003), reduced 

lipofuscin deposits (Kempermann et al., 2002), indicators of oxidative stress (Terman and Brunk, 

1998) and a strong induction of hippocampal neurogenesis (Kempermann et al., 2002). EE 
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animals have better performances than the standard one, also in nonspatial tasks; in fact  

enrichment enhances mnemonic performances in three different nonspatial tasks (Rampon et al., 

2000b). In particularly, Rampon et al. (2000b) shown that EE animals have enhanced visual 

recognition memory in a novel object recognition task and retention of memory in contextual 

fear-conditioning task. Moreover the effects of EE on behavioural task are extended also to tasks 

independent on the hippocampus, such as the cued fear-conditioning task (Rampon et al., 2000b) 

in which the animals learn to associate an acoustic stimulus with a mild footshock. Thus, these 

data suggest that enriched experience has a general impact on various spatial and nonspatial, 

hippocampal-dependent and –independent tasks.  

The other behavioural consequence of  enriched experience is the modification of 

emotionally and  stress reaction. The issue about the capability of EE to diminish stress levels has 

remained controversial for a long time, but the study of Chapillon et al., (1999) on BALB/c mice, 

a strain usually described as pathologically anxious (Trullas and Skolnick, 1993) which display 

decreased levels of anxiety if reared in EE, supported the assumption of the EE anxiolitic action. 

A possible mechanism of action of EE on emotional reactivity could be represented by lowering 

stress hormone levels such as ACTH and corticosterone. Glucocorticoids are physiological 

indicators of stress levels (Jost, 1966) and it is interesting to note that Mlynarik et al., (2004) 

showed that EE prevents the elevation of glucocorticoids elicited by repeated injections of 

lipopolysaccharide (LPS):  treatment with LPS resulted in increased corticosterone levels in non-

EE but on EE animals. Furthermore, enriched animals did not display signs of discomfort after 

LPS treatment, such as suppression of grooming and decrease in body weight, suggesting that the 

prevention in corticosterone rise was beneficial and likely responsible for the better ability of EE 

mice to face with stress. This assumption is reinforced by work of Banaroya-Milsthein et al., 

(2004) that show how a stressing procedure significantly increases serum corticosterone levels  in 

animals reared in standard condition, while does not affect corticosterone levels of EE animals 

which also display higher natural cells killer cytotoxicity, an effect not abolished by stressing 

protocol. The study of interaction between behavioural, neural and endocrine function and 

immunity is a very fascinating topic. Banaroya-Milsthein et al., (2004) confirm the hypothesis of 

Larsson et al. (2002) that the EE effect on emotional behaviour could be partially due to the 

action on the hypothalamic-pituitary-adrenocortical (HPA) axis and to a more efficient action of 

corticosteroids in these animals. At the same time, EE may regulated the activity of immune 

system in response to distressing situation as confirmed by Kingston and Hoffman-Goetz, (1996) 
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which found lower splenic proliferative responses to an acute distressing episode relative to 

responses  obtained in non-EE mice. Thus, EE may affect at different levels the communication 

pathways existing  among the immune, nervous and endocrine system with relevant implications 

in the field of psychoneuroimmunology.  

 

Anatomical changes 

 

Rosenzweig and colleagues demonstrated that the improvements in learning an 

behavioural tasks observed in EE animals were accompanied with deeply changes at 

neurochemical and anatomical level in brain. The initial experiments of Rosenzweig et al. (1964) 

showed that the entire dorsal cortex, including frontal, parietal and occipital cortex of enriched 

lived rats for 30 days, increased in thickness a weight compared with that of standard reared rats. 

Since this pioneer observation, many other studies have reported wide anatomical changes 

elicited by exposure to EE, such as  an increment of the size and of the nucleus of nerve cells 

(Diamond, 1988); increased dendritic arborisation (Holloway, 1996; Globus et al., 1973; 

Greenough et al., 1973), increased length of dendritic spines, synaptic size and number 

(Mollgaared et al., 1971; Turner and Greenough, 1985; Black et al., 1990), increased post-

synaptic thickening (Diamond et al., 1964) and gliogenesis (Diamond et al., 1966).  

It has been found that almost four consecutive days of enrichment in one month old rats, 

are able to increase cortical thickness in the visual association area (Diamond, 1988) and an 

increase in total dendritic length and total branches number in the primary visual cortex (Wallace 

et al., 1992). Longer periods, such as thirty days beginning at P23-25, of enriched living 

conditions produced long lasting effects persisting even after thirty days of housing individual 

cages (Camel et al., 1986). The anatomical changes are not limited to the cortical regions, but 

include other areas such as hippocampus. Indeed, similar effects to that reported for the cerebral 

cortex, have been found for pyramidal cells of CA1 and CA3 and for dentate granule neurons 

(Walsh et al., 1969; Walsh and Cummins, 1979; Rosenzweig and Bennet, 1996; Rampon et al., 

2000b).  

Another anatomical effect of EE has been described on hippocampal neurogenesis. 

Studies about this problem, have started when it has been shown that some brain structures, such 

as the olfactory bulb and the hippocampal dentate gyrus, maintain the potentiality of 

neurogenesis even after sexual maturity (Gueneau et al., 1982; Kuhn et al., 1996) like monkeys 
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and humans respectively brain (respectively, Gould et al., 1999; Eriksson et al., 1998). Recent 

studies have revealed that enriched experience produce a significant increases in hippocampal 

and dentate gyrus neurogenesis (Kempermann et al., 1997; Nilsson et al., 1999). EE increases 

hippocampal neurogenesis and the integration of these new newly born cells into functional 

circuits (van Praag et al., 2000; Kempermann et al., 1997; Bruel-Jungerman et al., 2005). It has 

been suggested that increase in neurogenesis could be mediated by mechanisms involving 

vascular endothelial factor (VEGF) (During and Cao, 2006) and the recruitment of T cells and the 

activation of microglia (Ziv et al., 2006). Both enrichment  and physical exercise, in particular 

running,  fundamental component of EE for the presence of running wheels, increases 

neurogenesis (van Praag et al., 1999a, b); however the mechanism by which new neurons are 

generated seems to differ between the two conditions.  Running alone, in standard cages is 

responsible for both proliferation of neural precursor and  of survival of new generated neurons, 

while enriched living increases number of survival new borne neurons without affecting cell 

proliferation (van Praag et al., 1999b, van Praag et al., 2005). The capability of EE to interact 

with these programs of nervous  cells goes beyond the action on neurogenesis, because it reduce 

cell death in the rat hippocampus under both physiological and pathological conditions (Young et 

al., 1999).  

 

Molecular changes 

 

Many of the anatomical and behavioural effects observed in EE animals, are consistent 

with enriched experience modulation of neurotransmitter systems and expression of genes 

involved in synaptic function and cellular plasticity (for review see Rampon and Tsien, 2000; van 

Praag et al., 2000; Nithianantharajah et al., 2006).   

It has been shown that EE affects the functioning of cholinergic, serotoninergic an 

noradrenergic system increasing acetylcholinesterasi activity (Rosenzweig et al., 1962 and 1967); 

augmenting mRNA expression levels of serotonin 1A receptor for serotonin (Rasmuson et al., 

1995) and increasing beta-adrenoceptor transduction system (Escorihuela et al., 1995; Naka et al., 

2002). All these neurotransmitters have been reported to influence learning and plasticity in the 

adult brain (van Praag et al., 2000) and to regulate the arousal state of the brain (Hobson et al., 

1975; Berridge and Waterhouse, 2003). 
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Enrichment can increase levels and action of neurotrophins, a class of secreted proteins 

promoting neural development and survival and implicated in structural and functional neural 

circuits rearrangement both during development and adult life plasticity processes (reviewed in 

Bonhoeffer, 1996; Berardi and Maffei, 1999; Thoenen, 2000; Berardi et al., 2003; Caleo and 

Cenni, 2004).  In particular, EE increases levels of mRNA for NT-3 and NGF in the visual 

cortex, hippocampus (Torasdotter et al., 1996 and 1998) and other brain regions (Ickes et al., 

2000; Pham et al., 2002) of the early candidate-plasticity gene, the early growth factor induced-A 

(NGFI-A or Zif/268) throughout the brain (Pinaud et al., 2002). 

Moreover, enriched experience also increases the phosphorylation of the transcription 

factor cyclic-cAMP response element binding protein (CREB; Cancedda et al., 2004), which is 

known to regulate BDNF expression (Tao et al., 1998), to mediate the plasticity changes required 

for memory formation (Bailey et al., 1996; Yin and Tully, 1996; Silva et al., 1998) and  involved 

in visual cortical development and plasticity (Berardi et al., 2003).  

As previous reported, many of the effects elicited by EE are common to those produced 

by physical exercise. Sustained  levels of physical activity occurring in enriched living condition 

can increase the production and the brain uptake of IGF-1. IGF-1 is considered the molecular 

mediator of most of the effects of physical exercise on the brain including increase of BDNF 

expression and c-fos activation (Carro et al., 2000), increased hippocampal neurogenesis (Trejo et 

al., 2001), protective effects of exercise and possible of EE against brain insults and on neuronal 

cell death (Carro et al., 2001, Koopmans et al., 2006) and the enhancement in hippocampal 

plasticity and in learning and memory (Markowska  et al., 1998; Cotman and Berchtold , 2002; 

Aberg et al., 2006). 

EE affects expression levels of a large number of genes grouped in functional class of 

genes linked to neuronal structure, synaptic plasticity and transmission, neuronal excitability, 

neuroprotection and learning and memory capacity (Rampon et al., 2000a; Keyvani et al., 2004). 

The expression of several synaptic proteins, such as the presynaptic vesicle protein, 

synaptophysin and postsynaptic density protein (PSD-95) are affected by enriched experience 

(Frick and Fernandez, 2003; Nithianantharajah et al., 2004).  

Development of conditional gene knockout techniques offered a valuable way to study the 

molecular mediators of EE effects on the brain. A conditional knock out mice in which the 

NMDA (N-methyl-D-aspartate) receptor for the excitatory neurotransmitter glutamate was 

deleted in the CA1 sub-region of hippocampus (CA1-KO mice) was used to study the role of  
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NMDA receptor in functional and anatomical changes elicited by EE (Rampon et al., 2000b). 

These CA1-KO mice, lacking of NMDA current and LTP/LTD resulted profoundly impaired in 

spatial and non spatial memory tasks (Tsien et al., 1996; McHugh et al., 1996; Rampon et al., 

2000b). The learning deficits exhibited by CA1-KO mice in tree hippocampus-dependent 

behavioural tasks (novel objects recognition, social transmission of food preference and 

contextual-fear conditioning) are largely or completed healed after two months of daily training 

in the EE (Rampon et al., 2000b). A first attempt to clarify the mechanisms by which EE restore 

memory capacity of CA1-KO mice proposed that EE increased the density of nonperforated 

synapses, the most abundant kind of synapses in cortex and hippocampus  (Eichenbaum and 

Harris, 2000). On the other and, Rampon et al. (2000b) proposed the compensation of EE could 

be due an enhancement in the connectivity outside the functionally deleted region of the 

hippocampus, likely the neocortex. The existence of overlapping mechanisms between EE and 

the NMDA receptor function was suggested also by Tang et al. (2001) which studied transgenic 

(Tg) mice whit an enhanced NMDA receptor function in the forebrain showing an enhanced 

learning and memory ability in hippocampal-dependent task. Tang and colleagues  found that 

while EE improved performances of wild type mice in the same behavioural tasks, it was no able 

to further increase performances of  Tg mice,  likely for a saturation toward EE effects. Also the 

expression of AMPA (α-amino-3-hydroxy-5-methyl-4-isoazole propionic acid) receptors  

subunits, involving in glutamatergic  signalling (Tand et al., 2001; Naka et al., 2005) are affected 

by EE. The alterations on NMDA and AMPA receptors subunits confirm the increased elicited by 

EE in synaptic strength, including long term potentiation (LTP), a specific form of synaptic 

plasticity (Green and Greenough, 1986, Foster et al., 1996; Artola et al., 2006).  

  

Environmental enrichment effects on visual system development 
 

Despite the large numbers of data showing the effects of the complex sensory-motor 

stimulation provided by enriched living condition in the adult brain, just recently have began to 

be investigated the effects of EE during development. Analysing the Rodent visual system 

development as a paradigmatic model of nervous system development, a series of experiments 

performed in our laboratory showed that EE strongly affects visual cortex and retinal 

development and plasticity (Cancedda et al., 2004; Sale et al., 2004; Landi et al., 2007) and 
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prevents dark rearing effects on visual acuity development and critical period closure (Bartoletti 

et al, 2004).  

 

Effects of environmental enrichment  on visual cortex development  

 

Cancedda et al. (2004) demonstrated that rearing mice in EE from birth produces a strong 

acceleration of visual system development at behavioural, electrophysiological and molecular 

level. Surprisingly these EE mice showed a precocious eye-opening, a precocious developmental 

decline of the white-matter long term potentiation (WT-LTP), in vitro parameter of visual cortical 

maturation (Kirkwood et al., 1995) and an accelerated maturation of visual acuity development 

tested both electrophysiologically with VEPs and behaviourally with Prusky task (Prusky et al., 

2000). In particular, at P25 VEPs acuity of EE mice was higher than that of non-EE mice, and in 

EE animals visual acuity development was accelerated significantly by 6 days compared with 

non-EE mice. 

  Some of the molecular changes found in EE mice were observed at very early age (P7-

P15), when pups spend all their time in the nest: enriched pups shown an increment of GAD 

65/67 protein at P7 and P15 and a precocious peak of BDNF expression at P7. Using Tg mice 

that carry the LacZ  reporter gene under the control of CRE promoter (Impey et al., 1996), 

Cancedda et al. (2004) demonstrated that EE is able to affect also the cAMP/CREB pathway, 

crucial hub in the development and plasticity of visual system (Impey et al., 1996; Pham et al., 

1999a; Barth et al., 2000; Mower et al., 2002; Cancedda et al., 2003). EE mice from birth shown 

an acceleration of the developmentally regulated CRE-mediated gene expression with a 

precocious peak at P20, and treatment of non-EE mice with rolipram, a specific inhibitor of the 

high-affinity phosphodiesterase type IV that activate cAMP system, resulting in an increased 

phosphorylation of the transcription factor CREB (Tohda et al., 1996; Kato et al., 1998; 

Nakagawa et al., 2002) partially mimics EE effects on CREB pathway and on visual system 

development.  

Bartoletti et al. (2004) demonstrated that post-weaning EE (starting from P18) prevents 

the effects of dark rearing (DR) on the closure of critical period for MD and on the Chondroitin 

Sulphate Proteoglycans (CSPG) developmental organization into perineuronal nets (PNNs) in the 

visual cortex. While a week of MD is effective in dark reared rats also after critical period closure 

(Cynader and Mitchell, 1980; Mower, 1991; Fagiolini et al., 1994), this same protocol of 
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sensorial alteration is not effective in dark reared enriched rats (Bartoletti et al., 2004) as in adult 

rats with a normal visual experience. Thus enriched living condition promoted the consolidation 

of developing visual connections, allowing a normal critical period closure in dark reared rats. 

Dark rearing also inhibit the maturation of intracortical inhibitory system maturation (Benevento 

et al., 1995) and prevents the developmental organization into PNNs of CSPGs (Pizzorusso et al., 

2002 and 2006), two determinant events for the of critical period  closure (Berardi et al., 2003). 

Bartoletti and colleagues. (2004) found that EE significantly reduces the effects of dark rearing 

on the development of PNNs and of GABAergic system. These findings suggests that molecules 

not exclusively under the control of visual experience, responding to EE, may contribute to visual 

cortical development. A particularly good candidate is IGF-1 the brain levels of which are 

increased by physical exercise (Carro et al., 2000). IGF-1 receptors are present  in the occipital 

cortex (Frolich et al., 1998) and therefore it could influence the expression of molecules relevant 

for visual cortical plasticity such as NGF and BDNF. Moreover the demonstration that IGF-1 is 

involved in experience-dependent plasticity of the visual cortex arise from the recent work of 

Tropea et al. (2006),  showing that monocular deprivation (MD) affects IGF-1 pathway 

increasing the expression of IGF-1 binding protein 5 (IGFBP-5) and exogenous application of 

IGF-1 prevents the physiological effects of MD on ocular dominance plasticity examined in vivo. 

 

Effects of environmental enrichment  on retinal development 

 

A more recent finding (Landi et al., 2007) was the demonstration that also retina 

development, commonly assumed to be independent from sensory inputs, is affected by 

experience provided by EE both at electrophysiological and molecular level. Landi and 

colleagues showed that EE from birth elicits a strong acceleration of retinal acuity development 

such as starting from P25-26 up to P34, retinal acuity is significantly higher in EE than non-EE 

rats and the final acuity level is reached almost 10 days before in EE than in non-EE rats. The 

same effect is obtained exposing animals to EE just for the first ten days of life. Effects produced 

by EE on retinal acuity development seem to be due to the precocious increment of BDNF 

protein levels in the retinal ganglion cell (RGC) layer of EE rats in which at P10 BDNF 

immunoreactivity is higher than in non-EE rats. This hypothesis has been confirmed by the 

observation that reduction of BDNF levels in EE rats by means of BDNF antisense 

oligonucleotides intraocular injections during the time window of its enhanced expression, 
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prevents the precocious development of retinal acuity (Landi et al., 2007). Since the complete 

effect of EE from birth on retinal acuity maturation is reproduced also by enrichment up to P10, 

before eye opening, the acceleration in visual acuity elicited by EE cannot be dependent on 

vision.  

Results of Landi et al. (2007) are in line with previous findings that show that it is 

possible to modulate the outcome of visual deprivation by varying the environmental conditions 

(Bartoletti et al., 2004) or the availability of BDNF to cortical neurons (Gianfranceschi et al., 

2003). These data confirm, according to Bartoletti et al. (2004),  that developmental factors that 

are not under exclusively visual experience but are modified by EE (Cotman and Berchtold., 

2002; Gomez-Pinilla et al., 2002), such as IGF-1, may contribute to visual system development. 

Experiments done recently in our laboratory, have support the hypothesis of IGF-1 role in 

mediating EE effects. It has been seen that maternal enrichment during pregnancy affects retinal 

development of the fetus, influencing the dynamics of neuronal cell death.. This effect seem 

under the control of IGF-1 levels of which higher in enriched pregnant rats and their milk, are 

increased also in the retina of their pups. Blockade of IGF-1 action obtained by the infusion of an 

IGF-1 receptor antagonist in EE females prevents the effects of maternal enrichment on retinal 

development, while infusion of recombinant IGF-1 to standard-reared females, mimics the effects 

of EE on the fetus (Sale A., Cenni MC., Ciucci F., Putignano E., Chierzi S., Maffei L. 

unpublished data). 

 

Maternal care and early environmental enriched 

 

The very precocious effects (between P7 and P15) elicited by EE in the expression of 

GAD65/67 and BDNF (Cancedda et al., 2004), and in the development of retinal acuity (Landi et 

al., 2007) are unlikely elicited by the direct interaction of pups with the richness of the 

environment, but they are supposed to derive from the higher levels of licking behaviour 

provided by adult females to their pups in the enriched condition (Cancedda et al., 2004; Sale et 

al., 2004). Detailed analysis of maternal behaviour shown that EE pups receive higher levels of 

maternal care respect to standard one (Cancedda et al., 2004; Sale et al., 2004). In rodents 

maternal care occur at intervals of time, alternate to period with  the mother is absent from the 

nest and pups remain lonely: the time spent from pups in the nest without mother is much shorter 

in EE animals than in non-EE pups (Cancedda et al., 2004). In the first two weeks of life, rodent 
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spend all their time in the nest, do not interact with environment and their most important sources 

of  sensory experience is maternal influence (Hofer et al., 1984; Ronca et al., 1993; Liu et al., 

2000). Licking and physical contact given by mother and by filler females constitutes a tactile 

stimulation that could facilitated the precocious eye-opening seen in EE pups (Cancedda et al., 

2004).  

The hypothesis that higher levels of maternal care can accelerate visual system 

development is confirmed by results showing that alterations in maternal care can affect BDNF 

levels and neural development of pups (Liu et al., 2000) and artificial manipulations and tactile 

stimulation in pups can influence eye-opening in rodents (Barnett and Burn, 1967; Smart et al., 

1990).  

This finding is extremely important because BDNF and neurotrophins in general, have a 

major role in the control of visual cortical development and plasticity during a critical period 

early in life (for a review see Berardi et al., 2003). Liu et al. (2000) demonstrated that the 

offspring of mothers that supplied higher levels of maternal care showed higher levels of NMDA 

receptor subunit and of BDNF mRNA in the hippocampus, enhanced hippocampal 

synaptogenesis and spatial learning and memory. Early work by Levine (1957) has shown that 

stimulation of neonatal rodents affects their endocrine and behavioral responses later in life. Long 

term consequences of maternal alterations on behavioral and neuroendocrine responses have been 

reported also by following works (reviewed in Cirulli et al., 2003). Maternal care influences 

several process regulating pups development such as the synthesis of ornithine decarboxilase, an 

enzyme essential for cell growth and development, DNA synthesis, neuroendocrine secretion, 

and the response to growth hormone, prolactin and insulin (Kuhn and Schanberg, 1998; 

Schanberg et al., 2003). Thus all these data confirm that different levels of in maternal care in 

different rearing condition, could act like an indirect mediator to elicit the more precocious 

effects of enrichment.   Maternal behaviour, can affect other factor important for visual system 

development, such as growth factors present in maternal milk, as for example IGF-1, that are 

involved in regulation of the development. In particular, the finding that pups injected with IGF-1 

from P3 until P15 exhibit precocious eye opening (Philips et al., 1988), suggest that increased 

levels of maternal care could be directly involved in the eye opening acceleration found in EE 

pups, affecting IGF-1 production or expression levels. 
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Insulin like growth factor 1 (IGF-1) 
 

Historical perspective 

 
Classically, IGF-1 has been implicated in prenatal and postnatal events in CNS 

development such as the control of cell proliferation, gliogenesis, neurogenesis, neuron survival, 

differentiation, synaptogenesis, myelination (D’Ercole et al., 1996 and 2002; O’Kusky et al., 

2000; Aberg et al., 2006). Recently, IGF-1 has been shown to be neuroprotective against the 

effects of lesions in the adult CNS and to mediate both the neuroprotective effects of physical 

exercise and possibly of EE on neuronal death (Carro et al., 2001; Koopmans et al., 2006) and the 

enhancement caused by exercise in hippocampal plasticity and in learning and memory 

(Markowska et al., 1998; Cotman and Berchtold, 2002; Aberg et al., 2006). Running induces 

uptake of IGF-1 by specific groups of neurons and IGF-1 enhances neuronal electrical activity 

(Carro et al., 2000). It has been suggested that the increase in IGF-1 caused by EE and exercise 

determines an increase in BDNF (Cotman and Berchtold, 2002). This hypothesis has been 

confirmed by Carro et al. (2000) showing that IGF-1 administration produces increment of 

BDNF expression in cortex and hippocampus. More recently, it has been demonstrated (Ding et 

al., 2006) that IGF-1 affects BDNF system to mediate exercise effects on cognitive processes and 

synaptic plasticity and that IGF-1 enhance the activity of BDNF on cerebrocortical neurons 

(McCusker et al., 2006). All these data support the hypothesis that IGF-1 could be a mediator of 

the EE effects on visual system development. For these reason we have chosen to investigate the 

role of IGF-1 on visual cortex and retina development and to deepen its action on BDNF 

expression. Indeed, all results demonstrating a causal relationship between IGF-1 and BDNF 

concern with the adult brain, but it is not known whether this holds true also for the developing 

brain. 

In 1957, Salmon and Daughaday reported a serum factor that mediated the cartilage 

sulfation and longitudinal bone growth activity of somatotrophic hormone (growth hormone, GH) 

(Rinderknecht and Humbel, 1976a; Daughaday et al., 1972). This factor was termed “sulfation 

factor” and was produced by hepatic cells after exposure to GH (Salmon and Daughaday, 1957). 

In conjunction, Dulak and Termin were investigating the cell proliferative factors in serum, and 

termed one such activity Multiplication-Stimulating Activity (MSA) (Dulak and Termin, 1973). 
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These circulating factors, which also showed insulin-like activity not suppressible by anti-insulin 

antibodies (non suppressible insulin-like activity, NSILA I/II), were later found to have similar 

biochemical structure to β chain of insulin (Rinderknecht and Humbel, 1976b; Rinderknecht and 

Humbel, 1978a; Rinderknecht and Humbel, 1978b). It was apparent that this activity represented 

a similar group of substances with a wider biological activity than first suspected. Daughaday, 

1972 proposed that NSILA I and II were two forms of an insulin-like hormone with predominant 

effects on cell and tissue growth (Rinderknecht and Humbel, 1976b). These two small molecular 

mass peptides (NSILA I and II), were later renamed as somatomedins (mediator of growth-

hormone actions) replacing the “non suppressible insulin-like activity” and sulfaction factor 

terminology. Further investigation revealed that these factors mediated the actions of pituitary 

derived GH, giving birth to the Somatomedin Hypotesis (Daughaday, 1972).  

Two mammalian somatomedins were identified by protein sequence and cDNA data 

(Rinderknecht and Humbel, 1976b; Humbel, 1990; Hintz and Rinderknecht, 1980; Jansen et al., 

1985; Jansen et al., 1983; de Pagter et al., 1989) and their structural homology with proinsulin led 

to their current designation of insulin-like growth factors I and II (IGF-I and IGF-II).  

In 1980’s Sara et al., 1993; identified a brain specific variant of IGF-1, des(1-3) or “truncated” 

IGF-1, which lacks the first tree aminoacids and is more potent than intact IGF-1 in various cell 

culture system (Sara et al., 1993; Giacobini et al., 1990; Russo et al., 1994), probably due to its 

lower affinity for IGFBP binding proteins (Oh et al., 1993). These findings suggested brain 

synthesis of IGF-1 or its truncated form. Some in situ  hybridisation studies (Bondy et al., 1990; 

Bondy et al., 1992) demonstrated that IGF-1 and IGF-1 receptor mRNA is synthesised in the rat 

brain in specific regions, such as olfactory bulb, hippocampus and cerebellulm (Werther et al., 

1990). In addition IGF-carrier proteins, later named as insulin-like growth factor binding proteins 

(IGFBPs), were also found expressed in similar regions of the brain (Pons et al., 1991; Bondy 

and Lee, 1993; Lee et al., 1993, Russo et al., 1994). The finding of IGF-1 mRNA co-localisation 

with IGF-1 receptors and the presence of IGFBPs, suggested a pacrine or autocrine role for IGF-

1, potentially modulated by IGFBPs, in developing brain (Werther et al., 1990; D’Ercole et al., 

1996; Leventhal et al., 1999; Werther et al., 1998). The presence of IGF-1 (D’Ercole et al., 1984) 

and IGF-1R mRNA (Lund et al., 1986) in multiple tissue has necessitated the revision of the 

original “somatomedin hypotesis” to include both autocrine and paracrine actions of IGF-1 in 

addition to its classical endocrine aspects. The somatomedin hypothesis has been studied 

employing the specific IGF-1 deficient mice (LID), that have reduced circulating IGF-1 and 
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elevated GH (Yakar et al., 1999; Sjogren et al., 1999) and the acid-labile subunit knockout 

ALSKO mice (Ueki et al., 2000) that have reduced circulating IGF-1 and IGFBP-3, but normal 

GH levels. The LID mice showed normal postnatal growth and development (Ueki et al., 2000; 

Haluzik et al., 2003), while the ALSKO mice, despite the 65% reduction in circulating IGF-1, 

demonstrated only 10% reduction in body weight. When LID mice were crossed with the 

ALSKO mice, the LID- ALSKO mice (very low IGF-I and very high GH levels) showed 

postnatal growth retardation and osteopenia, suggesting that IGF-1 is important for post-natal 

growth and development (Haluzik et al., 2003) exerting its functions in and endocrine and 

paracrine fashion (Russo et al., 2005). Growing evidence suggest that IGF-1 may have a 

neutrophic role. 

 

The IGF-1 peptide: structure and synthesis 
 

IGF-1 is a growth promoting peptide, member of a superfamily of related insulin-

hormones that includes insulin and relaxin in the vertebrates (Rinderknecht and Humbel., 1978a; 

Rinderknecht and Humbel., 1978b; Isaacs et al., 1978); however, insulin and IGFs are the most 

closely related in terms of primary sequence and biological activity. IGF-1 is a major growth 

factor whereas insulin predominantly regulates glucose uptake and cellular metabolism. They 

consist of A, B, C and D domains. Large parts of the sequence within the A and B domains are 

homologous to the α and β of the human pro-insulin. This sequence homology is 43% for IGF-I. 

No sequence homology exist between the C domains of IGF-1 and C region of human proinsulin 

(Russo et al., 2005). The C domain of IGF-1 is not removed during pro-hormone processing, thus 

the mature IGF-1 peptide is a single chain polypeptides (Zapf et al., 1986; Daughaday et al., 

1989). The gene encoding IGF-1 is highly conserved, such that 57 of 70 residues of the mature 

protein are identical among mammals, birds and amphibians (Zapf et al., 1986; Shimatsu et al., 

1987; Kajimoto et al., 1987; Perfetti et al., 1994; Koval et al., 1994; Chan et al., 1990).  

Expression of the IGF-1 gene is affected at many levels including gene transcription, 

splicing, translation and secretion (Russo et al., 2005). IGF-1 expression is also influenced by 

hormonal (GH) (Salmon et al., 1957; Bichell et al., 1992; Gronowski et al., 1995; Gluckman, 

1994; Benbassat et al., 1999; Meton et al., 1999), nutritional (Thissen et al., 1994; Rabkin, 1997; 

Muaku et al., 1996), tissue-specific and developmental factors (D’Ercole et al., 1996, D’Ercole, 
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1987; Sara et al., 1994; Milner and Hill., 1989; Rappolee and Hill, 1991). IGF-1 is synthesized 

mainly by liver (Haselbacher et al., 1980) and its synthesis is regulated by ipophisary GH 

(Daugaday and Rotwein, 1989; Clemmons and Underwood, 1991). However IGF-1 is 

synthesized also locally in many other tissues, among them the nervous system: these findings 

suggest that IGF-1 could have both autocrine and paracrine tissue-specific role during 

development (Behringer et al., 1990). 

 

The IGF-1 receptor and its functions 

 

The biological effects of IGF-1 are triggered by specific binding to the α subunit of a 

membrane-bound tyrosin-kinase receptor that is called IGF type I receptor (IGF-1R) 

(Schlessinger and Ullrich, 1992; White and Khan, 1994). The insulin-like growth factor 1 

receptor is synthesized as a single polypeptide precursor that is cleaved in α and β subunits. The 

mature receptor is an α2β2 heterotetramer. The glycosylated α subunits are entirely extracellular 

and bind its ligand. 

 The β subunit of the receptor is a transmembrane polypeptide which contains a highly 

conserved tyrosinekinase catalytic domain. The first step of the pathway transducing the IGF-1 

stimulus is binding to IGF-1 tyrosine receptor. Binding of the ligand induces a rapid 

autophosphorilation of the tyrosines in the  β subunits and the activated receptor signals to the 

cytoplasm and nucleus by phosphorylation or recruitment, or both, of several endogenous 

substrates, member of the insulin receptor substrate family (Izumi et al., 1987; Shemer et al., 

1987). The best known is insulin-receptor substrate 1 (IRS-1) (White and Khan, 1994), which 

then serves as a docking protein by binding the numerous SH2 domain containing proteins. These 

include the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3K) and the guanine 

nucleotide exchange factor Grb2/Sos (Myers et al., 1992; Backer et al., 1993; Skolnik et al., 

1993a,b).  

IGF-1R is known to mediate the activation of a variety of overlapping pathways promoting 

cell proliferation, cell differentiation, cell survival and metabolic events. Among them, the main 

downstream signalling cascade activated by IGF-1R phosphorylation is the phosphatidylinositol 

3-kinase (PI3K) cascade, while a second signalling pathway activated by IGF-1 is the  the 

mitogen-activated protein kinase (MAPK) pathway. Both PI3K and MAPK pathways are known 
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to be involved in IGF-1 actions on severall cell types (van der Geer et al., 1994; Guan, 1994; 

Chakravarthy et al., 2000; Prisco et al., 1999; Baserga et al., 1999; Melmed et al., 1996). 

Activation of PI3K and formation of its lipid products in vivo lead to activation of 

Akt/PKB and p70S6 kinase, two downstream serine-treonine kinase involved in cell survival and 

protein synthesis pathways, respectively (Brunet et al., 2001; Cheatham et al., 1994; Datta et al., 

1996). PI3K leads to the phosphorilation of protein kinase B/Akt (Summers and Birnbaum, 1997) 

regulating synthesis and translocation of glucose transporters (GLUTs), in particular GLUT4 

(Cheng et al., 2000), from intracellular pool to plasmatic membrane, enhancing in this way 

glucose entry into cells (Khon et al., 1996; Summers and Birnbaum, 1997). Cheng et al., 2000; 

demonstrated that in Igf1-null  mice brains, both GLUT4 immunoreactivity and hexokinase I 

activity, responsible for neuronal glucose utilization, are reduced: this finding suggest a role of 

IGF-1 to augment glucose utilisation during brain development.  

Another target of Akt protein in IGF-1 signalling, is the glycogen sinthasis kinase 3β 

(GSK3β): IGF-1 stimulates the GSK3β phosphorylation in cultured of human neurons (Hong and 

Lee; 1997) preventing  the inhibition of glycogen synthasis and of transcription factor (eIF2B), 

promoting glycogen and protein synthesis (Summers et al., 1999). Cheng et al., 2000 supports the 

role of IGF-1 in GSK3β activation because ser9-phospgo- GSK3β is abundant in IGF-1 

expressing neurons in WT brains, but is rarely found in theses same neurons in Igf1-/- brains. The 

presence of phospho- GSK3β is associated with abundant glycogen stores, consisting with the 

hypothesis that IGF-1 promotes glucose uptake and storage as glycogen in developing projection 

neurons.  Neuronal glycogen synthesis is abundant during postnatal development  and it is 

spatiotemporally correlated with a peak of IGF-1 expression (Borke and Nau, 1984; Bondy, 

1991).   

A substrate of GSK3β is also tau, a protein associated to microtubular filaments and 

involved in their  stabilization. In vitro studies, demonstrated that IGF-1 by means of  GSK3β, 

enhances tau phosphorylation (Hong and Lee, 1997; Lesort and Jhonson, 2000), leading to 

cytoskeleton reorganization necessary for neurite growth and develompent. Iperphosphorylated 

tau proteins leads to formation of intracellular neurofibrillar clusters, responsible for neuronal 

degeneration (Cheng et al., 2004). It has been demonstrated that tau phosphorylation is enhanced 

in Igf-1 -/- mice respectt to WT (Bondy and Cheng, 2004). The finding that IGF-1 modulates thau 
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phosphorylation, suggest the GSK3β inhibition induced by IGF-1 is central mechanism of IGF-1 

actions on central nervous system.  

Finally protein kinase Akt causes phosphorylation of Bcl-2 proteins family, involved in 

apoptosis regulation; in particular IGF-1 stimulates antiapoptotic protein and in inhibit apoptotic 

one. 

Coupling of Grb2 to IGF-IR appears to occur through IRS-1 and Shc and results in a 

sequential activation of Ras, the protein kinase Raf and the mitogen activated protein kinase 

(MEK1), which then activates MAPKs [also called extracellular signal-regulated protein kinases 

(ERKs)] (Kyriakis et al., 1992; Wood et al., 1992; Moodie et al., 1993). Activation of the 

Ras/MAPK pathway is known to mediate signalling leading to proliferation in many cell types 

(Blenis et al., 1993; Coolican et al., 1997; Reiss et al., 1998) and to activate other kinases and 

protein mediating genic expression. One well-studied target of MAPK is the transcription factor 

cAMP-response element (CRE)-binding protein (CREB; Shaywitz and Greenberg, 1999). CREB 

is a transcription factor with a fundamental role in development and plasticity of the visual 

system either at a cortical level (Pham et al., 1999; Cancedda et al., 2003) and at geniculate level 

(Pham et al., 2001) and its expression is affected by EE (Cancedda et al., 2004). Several findings 

demonstrated that IGF-1 activates CREB in different cell types. Fernandez et al., 2005 shows that 

treatment of pituitary cells with IGF-1 promotes a rapid phosphorylation of CREB through the 

activation of MAPK signalling pathway (Ras-Raf1-MEK). Palacios et al., 2005 demonstrated that 

IGF-1 activates CREB and CREB activation is necessary for IGF-1 to induce myelin basic 

protein (MBP) in oligodendrocytes. 

 

The IGFBPs 

 

IGF-1 biological activity is regulated by a family of high affinity IGF-binding proteins 

(IGFBPs) of which six have been characterized to date (IGFBP-1 through IGFBP-6). IGFBPs 

regulate IGF-1 pharmacokinetics, both in circulation and at the tissue level, in several ways, 

including regulation of IGF-1 transport in plasma and control of its diffusion between intra- and 

extravascular space; prolongation of IGF-1 half-life in circulation; modulation of IGF-1 binding 

to its receptor (Jones and Clemmons; 1995; Rajaram et al., 1997; Bach et al., 1995; Russo et al., 

1997; Firth and Baxter; 2002; Monzavi and Cohen, 2002). They might serve to transport IGF-1 
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from CSF to cells, present ligand that are synthesized in one cell to receptors in neighbouring 

cells, sequester IGF-1 in the extracellular matrix or protect it from enzymatic degradation. 

IGFBPs biological activity is regulated by post-translation modifications such as 

glycosylation and phosphorylation and by proteases (BP-Pr) that cleave them, generating 

fragments whit reduced or no binding affinity for the IGF-1(Jones and Clemmons; 1995; Firth 

and Baxter; 2002).  

It is hypothesised that IGFBPs, in addition to stabilizing and regulating levels of diffusible 

IGF-1, might regulate IGF-1 cellular response by facilitating IGF-1 receptor targeting or 

modulating IGF-1 bioavailability in the pericellular space (Jones and Clemmons; 1995; Firth and 

Baxter; 2002). In the extracellular cell matrix or at the cell surface, IGFBPs can either inhibit or 

enhance the presentation of IGF-1 to its receptor. The neuroanatomical distribution of IGF-1 and 

IGFBPs overlap partially. Colocalization of IGFBPs and IGF-1 has been reported to occur during 

brain development and has been suggested to be a mechanism for modulating IGF-1 actions 

(Leventhal et al., 1999; Walter et al., 1999). For instance the effects of IGF-1 in development are 

most modulated by the IGFBPs. Three IGFBPs, 2, 4 and 5, which appear to be the predominant 

binding proteins, are expressed very early in embryonic genesis and show developmental 

regulation in rodents CNS (de Pablo et al., 1995). Expression of IGFBP-2 simultaneously with 

IGF-1 has been reported in neuronal structures (Lee et al., 1993) and IGFBP-5 has been shown to 

be more selectively coexpressed with IGF-1 or in the vicinity of IGF-1 producing neurons 

(Bondy and Lee; 1993). IGFBPs selective and regulated expression suggest that they participate 

in the autocrine-paracrine network of IGF-1 signalling within CNS. 

 

 IGF-1 expression in the central nervous system 

 

Increasing evidences strongly supports a role for IGF-1 in central nervous system (CNS) 

development by promoting neural cell proliferation, survival, and differentiation (for a review see 

D’Ercole at al., 1996; Folli et al., 1996; Anlar et al., 1999; D’Erole et al., 2002). For example, in 

situ hybridization studies, have detected IGF-1 messenger RNA (mRNA) in the subventricular 

zone, hippocampus, retina and cerebellum at developmental times when glial and neuronal 

precursor undergo cell division (Bondy, 1991; Lee et al., 1992; Bartlett et al., 1991; Bartlett at al., 

1992; Bondy and Lee, 1993). Transient IGF-1 mRNA expression occurs in developing retina, 
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hippocampus, cerebellum, cerebral cortex, and several sensory thalamic and brain stem nuclei 

during periods of neuronal growth and synaptogenesis (Bondy, 1991; Lee et al., 1992; Bartlett et 

al., 1991; Bartlett at al., 1992) In the olfactory bulb and hypothalamus, structure that remain 

plastic into adulthood, IGF-1 mRNA expression persist throughout life (Lee et al., 1992; Bartlett 

at al., 1992).  

Although the principal source of circulating IGF-1 is the liver (Yakar et al., 1999); IGF-1 

is produced by many cell types trough the body, including the brain (D’Ercole et al., 1996).  

The expression pattern of IGF system proteins during brain growth suggests highly 

regulated and developmentally timed IGF actions on specific neural cell populations. IGF-I 

expression is predominantly in neurons and, in many brain regions, peaks in a fashion temporally 

coincident with periods in development when neuron progenitor proliferation and/or neuritic 

outgrowth occurs (D’Ercole et al., 1996). The first studies about IGF-1 pattern expression in CNS 

(Rotwein et al., 1988; Werther et al., 1990; Bondy et al., 1993) during different periods of 

embrional and postnatal development have been shown that IGF-1 is highly expressed in rat brain 

from late fetal E16-E20, but diminish rapidly with a plateau at P1. Both neurons and glia 

synthesize IGF-1 mRNA (Rotwein et al., 1988). IGF-1 pattern expression is regulated during 

development with the highest levels of gene expression coinciding with early phases of neuronal 

growth. 

 Following studies (Bartlett et al., 1991; Bondy, 1991; Bondy and Lee, 1993) analyzed 

IGF-1 expression during the maturation of different groups of functionally related sensory and 

cerebellar projections neurons, more precisely IGF-1 is found expressed in neuronal cells with 

large some and complex dendritic formation (Bondy and Lee, 1993; Cheng et al., 2003). IGF-1 

mRNA is abundant within the developing cerebellar Purkinje cells and in the major cerebellar 

relay centres. Similarly IGF-1 is localized in the synaptic stations the developing olfactory, 

auditory, visual and somatosensory system with a transient high level of IGF-1 expression during 

a relatively late phase in their development, at a time of maturation of dendrites and synapse 

formation. IGF-1 gene expression is found to be time–locked to periods of dendritic maturation 

and synaptogenesis suggesting that IGF-1 may have a role in the shaping of system-specific 

synaptic connections or myelinization. For instance, the development of rat cerebellar cortex 

takes place in the first postnatal week and during this period, there is an intense IGF-1 gene 

expression in the principal cerebellar cortical neurons, the Purkinje cells. Large Purkinje cells 

bodies are recognizable in the cerebellar anlage as early as E18, but Purkinje mRNA IGF-1 
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expression is not detected until the day of birth and is maximal between P4 and P10 (Table 1). By 

P28, when the development of cerebellar cortex is largely complete, Purkinje cell mRNA IGF-1 

detection is significantly diminished compared with P10 (Table 1).  

IGF-1 gene expression is also very marked during the maturation of the components of 

the cerebellar relay system (Bondy, 1991; Aguado et al., 1992, Torres-Alemann et al., 1994).  

In the hippocampus, IGF-1 expression is high during the two first postnatal weeks, 

whereas it remains for a long time in dentate gyrus, where is not restricted to developmental 

phases.  

IGF-1 gene expression is very intense in the maturing trigeminal somatosensory relay 

system. The highest level of somatosensory IGF-1 mRNA are found during the first three 

postnatal weeks in thalamic nuclei, but is also transiently localized in projection neurons of the 

principal trigeminal nucleus and trigeminal ganglion neurons (Bondy, 1991).  

The onset of IGF-1 gene expression in the olfactory cortex occurs between P4 and P7 and 

continues unabated throughout adult life, as in the olfactory bulb (Bondy, 1991). IGF-1 gene 

expression is detected in the olfactory bulb in the late phases of embrional life whereas it’s 

present in the piriform cortex just in the first postnatal days (Bondy, 1991). 
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Table 1: Timing of peak IGF-1 expression in specific neuroanatomical loci of the developing 

rat CNS (taken form Bondy, 1991). 
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Bondy, 1991 analyzed IGF-1 gene expression also throughout the stations of the visual 

system. The IGF-1 signal over the developing neural retina is confined to the postmitotic, 

postmigratory ganglion cells layer. IGF-1 mRNA is present in the major projection centres, the 

lateral geniculate nuclei and the superior colliculus. The lateral dorsal and anterior pretectal 

nuclei of the thalamus also contain IGF-1 mRNA.  

IGF-1 mRNA is abundant in the developing auditory and vestibular relays systems, 

including the cochlear (dorsal and ventral) and medial and superior vestibular nuclei from E20 

through D14 (Bondy, 1991).  

Other structures expressing IGF-1 during development are listed in the table 1 of 

following page. These in situ hibrydization studies have been demonstrated that IGF-1 gene 

expression shows a peak of expression just for a brief time-window, differing in the varies 

regions, during the CNS maturation. 

In most neurons IGF-1 transcription decreases significantly postnatally, a decrease that 

correlates with the degree of cell maturation and which reach very low level in the adult (Rotwein 

et al., 1988; Andersson et al., 1988). In rat adult brain it has been shown an high level of IGF-1 

gene expression in hippocampus, olfactory bulb and cerebellum (Rotwein et al., 1988; Werther et 

al., 1990; Bondy et al., 1993).  

 

IGF-1 receptor and IGFBPs expression in CNS 

 

Several studies have addressed the expression and distribution of IGF-1R in the brain. The 

first characterization was performed with ligand binding experiments and subsequently with 

mRNA and protein expression patterns. IGF-1R is expressed in neural stem cells (Aberg et al., 

2003), but also appear to be present mostly in neurons, in glial cells throughout the brain, with 

the highest density in the cerebral cortex and the striatum (Werther et al., 1990; Chung et al., 

2002). IGF-1R is highly abundant in the choroid plexus as shown in both ligand binding 

experiments (Araujo et al., 1989) and from IGF-1 R mRNA experiments (Aguado et al., 1993). 

IGF-1R is widely expressed in the CNS from early stages of embryogenesis, and its 

ligand also show similar “temporal-spatial” pattern of expression. It is evident that the 

components of IGF-1 system are crucial modulators of the processes activated during brain 

development.  
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By means of in situ hybridization (Bondy et al., 1990), it has been demonstrated that IGF-

1R mRNA gene expression, is highly expressed in rat brain from E14. Immunoblot studies 

showed that IGF-1R expression is highest at E15 to E20 (Baron-Van Evercooren et al., 1991). 

Two feature are remarkable for IGF-1R expression pattern: first, a stable pattern of IGF-1R 

expression in all neural cell types appears to be distributed largely according to cell density in 

each region (de Pablo and de la Rosa, 1995); and second, during differentiation, specific sites of 

neurons show higher levels of IGF-1R in conjunction with local expression of IGF-1 (Bondy et 

al., 1992). 

In the adult brain, the IGF-1R expression pattern overlaps with that of IGF-1. IGF-1R 

expression is associated to structures that remain plastic into adulthood, such as the dentate gyrus 

of the hippocampus, olfactory bulb, hypothalamic areas and choroid plexus (Sonntag et al., 1999; 

Stenvers et al., 1996; Walter et al., 1999; Eriksson et al., 1998). 

IGFBP-2 (Beilharz et al., 1998), IGFBP-4 (Stenvers et al., 1994) and IGFBP-5 (Stenvers 

et al., 1994) appear to be the predominant binding protein expressed in the brain, although low 

expression of IGFBP-1 (Walter et al., 1999), IGFBP-3 (Beilharz et al., 1998), and IGFBP-6 

(Walter et al., 1999). The neuroanatomical distribution of IGF-1 and IGFBPs overlap partially, 

with a clear association with neuronal elements (de Pablo and de la Rosa, 1995). IGFBP-2 

expression starts precociously during rat embryogenesis, at least at E7 (Wood et al., 1992); 

during postnatal life IGFPB-2 expression is confined to astroglia (Lee et al., 1993). During 

development, IGF-1 and IGFPB-2 expression sites are temporal and spatial correlated, in 

particular in the cerebellum, retina and sensory systems (Wood et al., 1990; Wood et al., 1992; 

Lee et al., 1992; Lee et al., 1993), suggesting that IGFBP-2 interacting with IGF-1 could affect 

IGF-1 physiology, incrementing its concentrations at the target cells or modulating its effects.  

IGFBP-4 expression is higher in late phases of development (Brar and Chernausek, 1993; 

Stenvers et al., 1994): at E20 IGFBP-4 expression is present in basal ganglia neurons, in the 

precocious postnatal period hippocampus starts to express IGFBP-4 and in the adult brain 

IGFBP-4 is expressed also in neurons of layers II and IV of cerebral cortex, in the olfactory bulb 

and in amigdala.  

Expression of IGFBP-5 has been shown to be more selectively coexpressed with IGF-1 or 

in the vicinity of IGF-1 binding neurons (Bondy and Lee, 1993). For instance, IGFBP-5 and IGF-

1 are coexpressed in sensory system neurons, such us that of olfactory bulb, geniculate and 

vestibular nuclei (Bondy and Lee; 1993).  
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IGF-1 actions on CNS 

 

IGF-1 is an anabolic peptides that promotes growth and development of CNS (D’Ercole et 

al., 1996; 2002; Folli et al., 1996). 

In this paragraph I will illustrate several works giving experimental evidences that IGF-1 

exert pleiotropic, fundamental actions in the developing and adult CNS. 

 

Transgenic mice models for the study of in vivo IGF-1 role on CNS  

 

Manipulation of the murine genome, either by insertion of transgenes or by disruption of 

native genes (so-called gene knockout, accomplished by homologous recombination), and study 

of the resultant mutant mice have proved invaluable to our understanding of insulin-like growth 

factor 1 physiology.  

Accumulating evidence indicates a major role for IGF-1 in CNS development (for reviews 

see D’Ercole et al., 1996; Folli et al., 1996; Anlar et al., 1999). IGF-1 stimulates increase in 

neurons and oligodendrocyte numbers by mechanism that involve both the stimulation of 

proliferation and the promotion of survival. IGF-1 also influences neuron and oligodendrocyte 

differentiation and function: it stimulates neuritic outgrowth, synaptogenesis and myelination 

(D’Ercole et al., 2002).  

To directly evaluate in vivo IGF-1 action, several  studies focussed on transgenic (Tg) 

mice models with genetic alterations of IGF-1, IGF-1 receptor and IGFBPs expression.  

Several studies on  Tg  mice show that IGF-1 regulates brain growth. Tg mice 

overexpressing IGF-1 have increased brain weight and size compared with their wild type (wt) 

littermates (Behringer et al., 1990; Mathews et al., 1988; Carson et al., 1993; Ye et al., 1995; Ye 

et al., 1996) because of an apparent increase in neuron number (Behringer et al., 1990) and 

increases in both total brain myelin (Carson et al., 1990) and regional density of myelinated 

axons (Ye et al., 1995) . Conversely, mice carrying IGF-1 genes disrupted by homologous 

recombination (Beck et al., 1995), and those with ectopic expression of IGF-1 (Ye et al., 1995a; 

Ye et al., 1995b; D’Ercole et al., 1994), an inhibitor of IGF-1 actions, have smaller brain than 
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their counterparts. Changes in brain size in theses Tg mouse line are due in part to the effects of 

IGF-1 on oligodendrocyte survival and function (Carson et al., 1993; Beck et al., 1995; Ye et al., 

1995a; Ye et al., 1995b), but there is also evidence of alterations in neurons number (Behringer et 

al., 1990, Mathews et al., 1988; Beck et al., 1995).The transient early postnatal expression of 

IGF-1 in sensory projection neurons suggest that IGF-1 may be especially important to neuronal 

growth and synaptogenesis in developing sensory system (Bondy et al; 1991).       

The following table illustrates transgenic mice with different mutations of IGF-1 proteic 

system with correlate alterations of development and/or cerebral phenotype.  

 

 
Table 2: IGF-1 system Protein Mutant Mouse Lines with known alterations in brain 

phenotype. (taken from D’Ercole et al., 2002) 

 

IGF-1 overexpressing mice were among the first transgenic Tg mice generated (Behinger 

et al., 1990; Mathews at al., 1998). The initial line of transgenic mice was created using a 

transgene driven by the mouse metallothionein (mMT-1) promoter and encoding a human IGF-1 

cDNA. The mice in this and subsequent lines generated express IGF-1 in multiple tissue 

beginning at birth (Mathews at al., 1998; Ye et al., 1995a). Depending upon the level of IGF-1 

transgene expression in the tissues among these lines of mice, postnatal somatic overgrowth 

begins at 3-4 weeks of age and produce a moderate increase in weight (30%) by early adulthood. 

The IGF-1 Tg mice shown a disproportionate growth of some organs, most markedly the brain 
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(Ye et al., 1995a). In different MT-I/IGF-1 Tg lines  brain weights are increased from 25% to 

85% and mice with overgrowth of brain often do not survive post weaning (D’Ercole et al., 

2002). Mice with largest brain weights usually do not exhibit somatic overgrowth; rather they 

have modestly reduced adult body weight (about 15%) and similarly reduced serum IGF-1 levels. 

D’Ercole et al., 2002 speculate that increased IGF-1 expression in the pituitary results in 

decreased  GH secretion and consequent  decreased expression of the native IGF-1 gene in 

somatic tissue, that is not fully compensated by transgene  IGF-1 expression. 

Many other transgenic mice with an organ specific IGF-1 overexpression have been 

created using different types of promoters (for a review see D’Ercole et al., 1996). For instance it 

has been produced a line of IGF-1 Tg mice overexpressing IGF-1 only in CNS (Ye et al., 1996). : 

even if the transgene is widely expressed in the brain, its expression is markedly increased in the 

cerebellum causing a near doubling of this structure weight by adulthood. The cerebral IGF-1 

overexpression increases neurons number (Behringer et al., 1990), size of neurons cellular body, 

extension of neuritic ramifications (Gutierrez-Ospina et al., 1996) and myelin content (Ye et al., 

1995a,b).  

Generation and study of transgenic mice with IGF-1 and IGF-1R null mutations have 

provided direct evidences on the central role of IGF-1 in somatic growth and of its receptor in 

mediating IGF-1 actions (Efstratiadis, et al., 1998). These studies gave the evidence that IGF-1 is 

necessary for normal in utero and postnatal growth and that IGF1R mediates all IGF-1 growth 

promoting actions.  

Mice that are homozygous for the disrupted IGF-1 gene, i.e., knockout mice (IGF-1-/- or 

IGF-1 KO mice) exhibit marked in utero and postnatal growth retardation, and depending upon 

the genetic background, have a reduced survival post birth (<5%). In particular, at birth there is a 

strong reduction in the mass of skeletal muscle, bone and organs and, in addition, delayed 

ossification and impaired development of lungs and epidermis (Liu et al., 1993; Baker et al., 

1993; Powell-Braxton et al., 1993). Disruption of a single IGF-1 gene has little impact. Mice 

without IGF-1 expression have birth weights that are  ~60% of normal, and continued poor 

postnatal growth such that they weight about ~25% of normal as adults (Baker et al., 1993).  

Homozygous IGF1R null mutants (IGF1R KO mice) exhibit more profound in utero 

growth retardation than IGF1 KO mice. They reach only ~45% of normal size by the end of 

gestation, and do not survive the perinatal period.  
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The brains of IGF-1 KO and IGF1R KO mice are small relative to controls, although they 

are not as growth retarded as body weight, and the brain phenotype in each appears to be 

identical (Liu et al., 1993, Baker et al., 1993). At birth the striking histological feature of these 

mice is their increase in neuronal density (Liu et al., 1993).  

Deficits in specific population of neurons such as granular cells in dentate gyrus of 

hippocampus and parvaibumin-conteining neurons in the striatum and hippocampus, have been 

identified in another line of adult IGF-1 KO mice (Beck et al., 1995). The present study 

established a reduction in brain weight (38%) distributed evenly over all major brain areas of 

these homozygous IGF-1-/- analyzed at 2 months of age. Most evident was the strong reduction in 

size of the two major white matter structures of the forebrain, the anterior commissure and the 

corpus callosum, which were reduced by approximately 70% compared with wild-type 

littermates. It has been observed also a reduction in the number of oligodendrocytes and in the 

CNS myelination because the density of myelinated axons within the anterior commissure and 

corpus callosum was decreased by about 35% in  IGF-1-/- mice, while the density of un 

myelinated and total axons were increased by 40%-61% and 28%-33% respectively. Decreases 

proportional to the 38% loss of brain weight were found for the numbers of calbindin-and 

calretinin-containg  neurons and for the volume occupied by the striatum and hippocampal CA1-

4 cell body. Numbers of cortical and hippocampal parvalbumin immunopositive neurons were 

also reduced approximately 30%, but in the dorsal striatum, they were decreased by 52%. (Beck 

et al., 1995). 

Lines of transgenic mice with altered in IGFBPs expression has been produced (for a 

review see Schneider et al., 2000). Using different types of promoter, several scientific group 

produced IGFBP-1 Tg mice which is an inhibitor of IGF-1 action when present in molar excess 

and each line exhibits a somatic and brain growth retardtaion (Murphy et al., 1993; D’Ercole et 

al., 1994; Ye et al., 1995; Gay et al., 1997). The time when somatic and brain growth retardation 

occurs appears to depend upon the developmental time when the transgene promoter is activated. 

For example,  brain growth retardation is apparent earlier and more severe when the transgene is 

expressed during fetal life, as in mPGK/rIGFFBP-1 Tg mice (Murphy et al., 1993). IGFB-1 does 

not appear to be normally expressed in the brain. Both of the above note transgenes drive IGFBP-

1 expression in the brain (as well as in other tissue), and therefore,  IGFBP-1 expression is 

ectopic and likely acts in brain to block IGF-1 stimulated growth. Circulating IGFBP-1, however, 
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also may affect the brain, because a line of  IGFBP-1 Tg with no brain transgene expression may 

also exhibit CNS abnormalities (Doublier et al., 2000). 

Tg mice overexpressing IGFBP-2, -3, -4 and -5 also have been generated.  IGFBP-2 Tg 

mice with brain transgene expression are characterized by a modest reduction in brain weight  at 

5 weeks of age (Hoeflic et al., 2001). No changes in brain growth or phenotype has been reported 

in IGFBP-3 Tg mice, made with a mMT-I-driven transgene (Murphy et al., 1995).  IGFBP-4 Tg 

mice have been generated, but they have been created with promoters that do not drive CNS 

expression, and as expected no alteration in brain size were reported (Wang et al., 1998). IGFBP-

5 overexpression from early gestation also appears to inhibit somatic growth including that of the 

brain (Salih et al., 2004). When it has been used the MT-I promoter to generate Tg mice with 

postnatal brain IGFBP-5 overexpression, it has been noted a possible minimal increase in brain 

weight, consistent with the known capacity of IGFBP-5 to augment IGF actions (unpublished 

form D’Ercole et al., 2002).   

Mice with null mutations in IGFBPs genes have not been found to show anomalous brain 

phenotypic traits (Pintar et al., 1995; Pintar et al., 1996): presumably, the absence of a single 

IGFBP protein is compensated by others IGFBPs.  

 

IGF-1 effects on cell differentiation 

 

Neurons  

 

IGF-1 enhances the differentiations of  specific sets of neural populations in several 

regions of CNS, among them, cerebellum, cerebral cortex, hippocampus, hypothalamus, retina 

and striatum (for a review see Varela-Nieto et al., 2003).  In vivo and in vitro studies 

demonstrated that IGF-1 play significant role in cholinergic and GABAergic differentiation of the 

neurons  in the rodent septum and hippocampus (Konishi et al., 1994; Kelsh et al., 2001).  

Konishi et al., 1994, demonstrated that IGF-1 stimulates choline acetyltransferase activity 

and is a potent trophic factor for central cholinergic neurons and could potentially play a 

significant role in the deifferentiation, maintenance  and regeneration of these neurons.  
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In the developing rat hippocampus, fast GABAergic transmission is depolarizing early in 

development and became hyperpolarizing and strictly inhibitory only by the end of the first 

postnatal  week (Cherubini et al., 1991). Hyperpolarizing inhibition requires Cl- outward transport 

that is accomplished by KCC2, a K+/ Cl- cotransporter. Kelsh et al., 2001 showed that cultured 

hippocampal neurons initially contain an active form of the KCC2 protein, which becomes 

activated during subsequent maturation of the neurons and they also demonstrated that this 

process is accelerated by transient stimulation of IGF-1 receptors. 

 

            Glia 

 

Fewer data are available on the in vivo capacity of IGF-1 to induce glial differentiation, 

but in vitro studies using primary antibody  suggest that it also promotes differentiation and 

maturation of glial precursors (for a review see Varela-Nieto et al., 2003).  

IGF-1 action on oligodendrocytes and myelination have been well studied in mice with 

mutations in IGF-1 protein system. There are few studies on the other type of glial cells such as 

astocytes or microglia which seems to be affected by IGF-1 expression just in the response to 

injury. In fact, even if astrocytes and microglia develop normally in mice with either reduced 

IGF-1 availability (IGF-1 KO and IGFBP-1 Tg mice) or with IGF-1 overexpression (Beck et al., 

1995; Ni et al., 1997) their response to injury is altered by IGF-1 expression. For instance, 

inhibition of IGF-1 action by means of ectopic expression of IGFBP-1 reduce astrocite response 

to injury (Ni et al., 1997). 

It has been shown that multiple growth  factors and hormones tightly controlled 

myelination (Legrand et al., 1980; Eccleston and Silberg, 1985; Van der Pal et al., 1988; Besnard 

et al., 1989). Increasing evidences suggest that IGF-1 could play an important role in myelination 

process, promoting proliferation and  maturation and stimulating directly myelination.  

Studies on IGF-1 Tg mice demonstrated that IGF-1 overexpression produces an increase 

in the number of oligodendrocytes and of their precursors (Ye et al., 1995a; Mason et al. 2000, 

Ye et al., 2000). Conversely, mutant mice with reduced IGF-1 availability, show a reduced 

oligodendrocytes and their precursors number (Beck et al., 1995; Ye et al., 1995; Ni et al., 1997).  

In vitro studies confirmed that IGF-1 promotes proliferation of oligodendrocytes 

precursors and survival of oligodendrocytes and of their precursors (McMorris et al., 1986; 

McMorris and Dubois-Dalcq, 1988; McMorris et al., 1993; Ye and D’Ercole, 1999). IGF-1 
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stimulates also oligodendrocytes maturation (Ye et al., 1995a; Ye et al., 2000) and promotes their 

survival after injury (Barres et al., 1993; Mason et al., 2000). Further confirmations comes from 

Mason et al., (2000) which showed that treatment with cuprizone, a copper chelator and 

neurotoxicant causing oligodendrocytes and myelin damage, produced massive apoptosis  of 

oligodendrocytes lineage cells in the cerebral cortex followed by demyelination.  If the same 

injury was induced in IGF-1 Tg mice, demyelination occurred but oligodendrocytes apoptosis 

was, and the surviving oligodendrocytes retained the ability to reinitiate axon myelination 

(Mason et al., 2000).  

Finally, studies on Tg mice have strongly demonstrated that IGF-1 stimulates myelin 

synthesis (Carson et al., 1993; Beck et al., 1995; Ye et al., 1995; Ni et al., 1997; Ye et al., 2000). 

In particular, Carson et al., 1993 demonstrated  that myelin content in Tg mice is increased four 

fold; while IGF-1 KO mice and/or availability (IGFBP-1 Tg mice) exhibit evidence of decreased 

myelination (Beck et al., 1995; Ye et al., 1995; Ni et al., 1997).  

IGF-1 promotes re-myelination process after injury. Mason et al., (2000) showed that in 

contrast to failure of re-myelination in cuprizone-treated WT mice, surviving oligodendtrcytes re-

myelinate axons rapidly in cuprizone–treated IGF-1 Tg mice. These results are confirmed also by 

amelioration induced by IGF-1 overexpression in brain, on under-nutrition induced 

hypomyelination (Ye et al., 2000). 

 

IGF-1 effects on neurogenesis, apoptosis and synaptogenesis  

 
Neuogenesis and apoptosis 

 

 Experimental data reported up to now about IGF-1 expression and studies in vitro and in 

vivo on Tg mice lines show that IGF-1 promotes CNS development, enhancing synaptic 

connections and neurons number and promoting  extension of single neurons neuritic 

arborisation. Moreover the increment in neurons number seems to be derived  either from an 

increase in neuronal proliferation either from an inhibition of apoptosis during the phase of 

development characterized by massive event of neuronal death.  

Morphometric and stereological analyses of the developing brain in IGF-1 Tg 

overexpressing mice have reported substantial increases in the total number of neurons in the 
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cerebral cortex (Gutierrez-Ospina et al., 1996), cerebellar cortex (Ye et al., 1996), dentate gyrus 

of hippocampus (O’Kusky et al., 2000) and selected brainstem nuclei (Dentremont., 1991). By 

contrast, in IGF-1 null mutants (Beck et al., 1995; Camarero et al., 2001) and in IGFBP-1 Tg 

mice, in whom IGF actions are inhibited (Gutierrez-Ospina et al., 1996; Ni et al., 1997) 

significant decrease in neurons number have been reported in the cerebral cortex, hippocampus, 

dentate gyrus, stratum and cochlear nucleus. 

IGF-1 has been shown to promote the proliferation and differentiations of neurons in vitro    

(DiCicco-Bloom and Black, 1998; McMorris and Dubois-Dalcq, 1998; Torres-Aleman et al., 

1990; Drago et al., 1991; Werther et al., 1993; Zackenfels et al., 1995; Arsenijevic and Weiss, 

1998; for a review see D’Ercole et al., 1996) and in vivo Ye et al., 1996; Aberg et al., 2000). In 

contrast, IGF-1 has well documented anti-apoptotic effects in cells for several tissues in vitro (Le 

Roith et al., 1997) and in vivo (Bozyczko-Coyne et al., 1993; Hughes et al., 1993; Mathews and 

Feldman, 1996; Dudek et al., 1997; Blair et al.,1999).  

Morphometric studies have been performed in Tg mice carrying transgenes that are 

expressed postnatally, only after neuron precursor proliferation has occurred in most CNS 

regions. Neurons in layer IV of the cerebral cortex in mouse are generated during prenatal 

development (Hicks and D’Amato, 1968), while apoptotic neurons death occurs predominantly  

from birth to P10 (Spreafico et al., 1995; Verney et al., 2000). Morphometric analysis of the 

somatosensory cortex in MT-I/IGF-1 mice revealed a 24% increase in the total numbers of 

neurons in somatosensory barrels in cortical layer IV by P90. Given that the transgene in MT-

I/IGF-1 mice is first expressed after birth (Ye et al., 1995), it would appear that increased neuron 

number in these Tg adults results from a decreased apoptosis during the regressive phase of 

neurogenesis. 

In a subsequently study (Chrysis et al., 2001) , morphometric analysis of apoptotic cells in 

the cerebellum, detected by terminal deoxynucleotidyl transferase-mediated UTP nick end 

labelling (TUNEL), revealed a 47% decrease in Tg mice when compared to controls. Activities 

of procaspase-3 and caspase-3 were also decreased in Tg mice, accompanied by an increased 

expression of the antiapoptotic Bcl genes, Bcl-xL and Bcl-2. In another study (Baker et al.,1999) 

Bcl-2 was found to be increased in immunihistochemical studies of the cerebellum in Tg mice. 

Theses results provide direct evidences that elevated IGF-1 acts to inhibit apoptosis during early 

postnatal development.  
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During normal development, the final number of neurons to reach the maturity in a given 

region of the brain is determined by the combine effects of neurons proliferation and naturally 

occurring neuron death. An unique opportunity to investigate the in vivo  role of IGF-1 in 

controlling the final number of neurons and the apoptotic process during postnatal development, 

was provided by the Tg mice used in O’Kusky et al., 2000. The line of Tg mice used in this study 

to investigated effects of IGF-1 on neurogenesis in the hippocampal dentate gyrus, overexpress 

IGF-1 exclusively  in the brain during postnatal development: expression of the transgene begin 

at approximately the time of birth, increases the peak levels at 20-30 days of age, and then, 

remains constant throughout the life (Ye et al., 1996; Dentremont et al., 1999). In this line of Tg 

mice O’Kusky et al., 2000 had been observed that increased expression of IGF-1 produces both 

an  increment  in cell proliferation both a reduction in apoptosis rate. Such study added to the 

opposite observations effected from Ni et al., 1997 in dentate gyrus of Tg mice overexpressing 

IGFBP-1, suggest that IGF-1 produces more neurons in the dentate gyrus by both increasing the 

rate of neuronal proliferation and decreasing the rate of cell death in this cerebral region, in which 

neurogenesis is prolonged until adult life.           

IGF-1 expression in rodent brain, begins from embrional life (from E14 or before; Bach et 

al., 1991); it has been expressed also in neural stem cells of adult brain (Brooker et al., 2000). 

Moreover several regions of rodent CNS show peak of IGF-1 expression from E16 to E21 

(Bondy et al., 1991). All these observations suggest an action of IGF-1 also during embrional 

development of CNS. 

In fact, a recently work (Popken et al., 2004) pointed out that IGF-1 plays an important 

roll in the development of nervous system also more precociously than massive neuronal death 

phase. Popken and colleagues  produced a Tg mice overexpressing IGF-1 prenatally under the 

control of regulatory sequences from the nestin gene, a cytoskeleton protein, expressed in neural 

progenitors (Hockfield and McKay, 1985) with expression levels rapidly decreasing as soon as 

cells differentiate versus a neuronal or glial fate (Zimmermann et al., 1994; Dahlstrand et al., 

1995; Matsuda et al., 1996). In this Tg mice embryos at E16, the volume of the cortical plate was 

significantly increased by 52% and total cell number was increased by 54%. At 12 days of age, 

Popken et al., 2004 observed significant increases in regional tissue volumes of cerebral cortex 

(29%), subcortical white matter (52%), caudate-putamen (37%), hippocampus (49%), dentate 

gyrus (71%) and habenular complex (48%). During embrional and postnatal age, the numerical 

density of cells did not differ significantly between Tg and control mice brain, meanwhile the 
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total number of cell is significantly greater in Tg mice brain. IGF-1 embrional expression in these 

mice starts during the developmental proliferative phase of neurogenesis and before the 

beginning of apoptosis process. S-phase labelling with 5-bromo-2’-deoxyuridine revealed a 13-

15% increase in the proportion  of labeled neuroepithelial cells in Tg embryos at E14 suggesting 

that  IGF-1 overexpression accelerates mitosis process. At the same time, the numerical density 

of apoptotic cells in the cerebral cortex, labeled by antibodies against active caspase-3, was 

reduced by 26% in Tg mice at P7, showing a significantly reduction of neurons death. 

 Such results demonstrated that IGF-1 promotes brain development both stimulating 

proliferation of neural cells in the embryonic CNS and inhibiting their apoptosis during early 

postnatal life: likely, stimulation of embryonic cells proliferations occur by a mechanism 

involving reduction of cell cycle length (Popken et al., 2004). 

Given that the transgene in nestin/IGF-1 Tg embryos is expressed as early E13 (Popken et 

al., 2004), these mice provide an unique opportunity to study in vivo the role of IGF-1 in 

controlling cell cycle kinetics in the embryonic brain. Hodge et al., 2004 observed that increased 

IGF-1 expression in nestin/IGF-1 Tg mice, reduces cell cycle length and augments neural 

progenitor cells reentry in to the cell cycle during an otherwise normal duration of cortical 

neurogenesis. In nestin/IGF-1 Tg mice, the proportion of cells reentry in cell cycle is significantly 

increased and it has been demonstrated that IGF-1 acts specifically to reduce  G1 phase length 

during cortical neurogenesis, without affecting the length of the G2, M, and S phases of the cell 

cycle.  Together, these data suggest that cells are retained in the cell cycle during cortical 

neurogenesis in Tg embryos. As more cells reenter the cell cycle in Tg embryos, the progenitor 

population expands and the potential for the production of greater numbers of neurons is 

increased (Hodge et al., 2004). 

Morphometric analysis of MT-1/IGF-1cerebral cortex (in particular, somatosensory area), 

in spite of increment in the total neurons number, showed a significantly reduction in the density 

of cell bodies (cellule for unit volume): this observation suggest that the volume occupied by 

neuritic processes of neurons separating single cellular bodies, is greatly increased and it is 

perfectly concordant with in vitro studies demonstrating that IGF-1 promotes differentiation of 

some neurons populations (Aizeman and DeVellis, 1987; Nataf and Monier, 1992; Fernyhough et 

al., 1993; Zackenfels et al., 1995; Brooker et al., 2000). Further confirmation arise from similar 

morphometric analysis in somatosensory cortex of IGFBP-1 Tg mice which showed a decrement 

in the total number of neurons, respect to an increment of cellular body density (Gutierrz-Ospina 



 62

et al., 1996): the reduction in cortical volume of these Tg mice is caused by both a reduction in 

the neurons number and in neuropil volume. 

 

Synaptogenesis 

 

The effects of elevated IGF-1 expression on synaptogenesis have been investigated using 

stereological analysis  by the light and electron microscope in the hypoglossal nucleus in IGF-1 

Tg mice (O’Kusky et al., 2000 and 2003). The  hypoglossal nucleus is unlike most other CNS 

regions that it has been studied in IGF-1 Tg  mice because increased volume is not accompanied 

by an increase in neuron number; so that changes in neuron number would not confound the 

interpretation of changes in synapse number. The absence of an increase in the number of 

hypoglossal nucleus neurons is in these Tg mice most likely was due to the fact the proliferation 

and apoptotic cell death have already occurred before overexpression of IGF-1. Surprisingly, 

O’Kusky et al., (2003) observed a significant decreases of neuronal density in IGF-1 Tg mice 

indicating a greater separation of neuronal cell bodies and an increased volume of neuropil. This 

result is in accordance with Gutierrez-Ospina et al., (1996) which on other lines of Tg mice with 

increased expression or inhibited actions of IGF-1, found an increase or decrease, respectively, in 

the volume of neuropil in somatosensory barrels. These findings were further on consistent with 

multiple in vitro studies showing that IGF-1 promotes neuritic outhgrowth form cortical neurons 

(Aizeman and De Vellis; 1987), hypothalamic neurons (Torres-Alemann et al., 1990), sensory 

dorsal root neurons (Zackenfels et al., 1995), and motor neurons (Caroni and Grandes, 1990). In 

organotypic cultured slices of rat somatosensory cortex,  IGF-1 stimulates dendritic growth by 

increasing the number of branching points and the total extent of dendritic segments on cortical 

neurons (Niblock et al., 2000). These results are confirmed also by the findings that IGF-1 

increases the expression of proteins involved in the growth of axons and dendrites, such as α- and 

β-tubulin, neurofilament proteins, and growth-associated protein 43 in developing neurons 

(Fernyhough et al., 1989; Wang et al., 1992).  

Although O’Kusky et al., 2003 observed that the density of synapses did not change in 

IGF-1 Tg mice, there were an increases in total synapse number (52%), the synapse to neuron-

ratio (51%), and the total cumulative length of myelinated axons within the hypoglossal nucleus 

(81%). They found that IGF-1 overesxpression promoted the progressive phase of synaptogenesis 
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by 46% at P21, but it did not alter synapse elimination during the regressive phase after P21. In 

studies of neuromuscular synapses, the transient peak in muscle IGF-1 gene expression during 

normal postnatal development has been reported to parallel the progressive and regressive phase 

of neuromuscular synaptogenesis (reviewed in Ishii et al., 1993). These results indicate that the 

increased in vivo expression of IGF-1 during postnatal development, augments the progressive 

phase of synaptogenesis, although it does not prevent synapse elimination during the regressive 

phase, but likely decreased IGF-1 facilitates synapse elimination.  

Immunihistochemical studies using IGF-1-/- null mutants have reported abnormal 

synaptophysin expression in the organ of Corti of the null mutants at P20 (Camarero et al., 2001). 

The pattern of immunoreactivity  in the cell bodies of cochlear ganglion neurons and sensory hair 

cells in IGF-1-/- mice at P20 more closely resembled controls at P5, indicating the persistence of 

an immature pattern of synapses distribution in the absence of IGF-1 (D’Ercole et al., 2000). 

 

IGF-1 actions on adult CNS 

 
While IGF-1 role as molecular mediator  of CNS development is well established, its 

involvement in functions of adult brain is less clear. However several data suggest that IGF-1 

could be involved in the neuronal plasticity also in the adult life.  

In particular IGF-1 affect synaptic efficacy and plasticity, modifying the number and 

structure of synapses (Cardona-Gomez et al., 2000; Fernandez-Galaz et al., 1999), affecting 

neurotrophins release and post-synaptic receptors expression or regulating neuron firing and 

evoked field potentials (for a review see Torres-Alemann, 1999).   

In fact IGF-1 administration produces wide neuronal c-fos expression (Carro et al., 2000), 

increment of BDNF expression in cortex and hippocampus (Carro et al., 2000), stimulation of 

hippocampal neurogenesis  (Aberg et al., 2000; Trejo et al., 2001; Anderson et al., 2002), 

modulation of NMDA and GABA receptors expression (Ramsey et al., 2004) and an increment in 

neuronal activity in neurons accumulating IGF-1 (Aberg et al., 2000).  

Modulation of neuronal excitability by IGF-1 it has been described, but it has  no well 

understood yet. IGF-1 modulates ionic currents trough L-and N-type calcium channels (Chik et 

al., 1997; Blair et al., 1997) and modulates the activity of neurotransmitters receptors (Wan et al., 

1997; Man et al., 2000; Gonzales del la Vega et al., 2001, Ramsey et al., 2004). Analysis of 



 64

cellular mechanisms, mediating the stimulatory effects of IGF-1 on neurons of sensory ganglia in 

spinal cord, demonstrated that IGF-1 modulates their intrinsic electrophysiological properties and 

facilitates their synaptic answers (Nunez et al., 2003). In the hippocampus, des-IGF-1 has been 

shown to increase the field excitatory postsynaptic potentials (fEPSP) slope, appearing to be 

mediated through a postsynaptic mechanism involving alpha-amino-3-hydroxyl-5-methyl-4-

isoxazolepropionate (AMPA), but not NMDA receptors (Ramsey et al., 2005).  

Furthermore, IGF-1 can regulate synapse activity by modulating neurotransmitter release 

and uptake, receptor endocytosis, and signal transduction of several neurotransmitters including 

glutamate, γ-aminobutyric acid (GABA), noradrenaline, and taurine (for a review see Varela-

Nieto et al., 2003). There is a plenty of evidence that IGF-1 affect several of the major 

neurotransmitters differently in several brain regions, including the monoamine (serotonin, 

noradrenalin=norepinephrine) system, the gluatamatergic system, the dopaminergic system and 

the cholinergic system. Many of these effects act directly via neurons and can be observed after 

only a short exposure.  

Interestingly, it has been shown (Bitar et al., 2000) that IGF-1 enhances release of 

norepinephrine in lumbar motoneurons augmenting the lumbospinal noradrenergic system, while  

a recent report (Khawaja et al., 2004) has shown that chronic administration of antidepressants 

venlafaxine and fluoxetine (inhibitors of monoamine reuptake) increased the protein levels of 

IGF-1 in the hippocampus. In addition, Hoshaw et al., (2005) found that acute administration of 

IGF-1 has the potential to produce antidepressant behaviour effects in a well-established model of 

antidepressant activity: the rat forced swim test (FST). In particular the specific increase in 

swimming behaviour seen after IGF-1 administration, might suggest that antidepressant effects of 

IGF-1 in FST are mediated by serotonin-dependent mechanisms. In fact, an increase in 

swimming behaviour in the FST test has been shown to be associated with activation of the 

serotonergic system since serotonergic compounds, such as the selective serotonin reuptake 

inhibitors and serotonin receptor antagonist (Detke et al., 1995).   

IGF-1 also contributes to synaptic plasticity and the neural mechanism necessary for 

learning and memory affecting both the glutamatergic and dopaminergic system (for a review see 

Sonntag et al., 2000). The glutamatergic NMDA receptors are associated with learning and 

memory (Michaelis, 1998). Analysis of NMDA receptor subtypes indicated that NMDAR1 did 

not change with age; however subtypes NMDAR2A, 2B and 2C decrease with age in the 

hippocampus. In particular,  NMDAR2A and 2B levels were reversed by administration of IGF-1 
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for 28 days (Sonntag et al., 2000). Similarly, dopamine D2  receptors GTPase protein induced 

activity declines with age and IGF-1 administration increased it (Thornton et al., 1998). 

Finally it appears that also cholinergic system has functional link with IGF-1. IGF-1 

affects potassium evoked acetylcholine (Ach) release in tissue slices of adult hippocampus and 

cerebral cortex. In slices from the adult hippocampus, IGF-1 decreases the release of  Ach 

(Araujo et al., 1989). In slices of the adult cerebral cortex, however, IGF-1 appears to increase the 

release of Ach at a defined concentration window (Nilsson-Håkansson et al., 1993).  

IGF-1 supplies also a trophic support to CNS neurons, maintaining in this way their 

functionality (for a review see Torres-Alemann, 2000). A decrement of this trophic support, may 

produce the onset of serious neurological diseases. In fact, in several neurodegenerative diseases, 

both in human and animals, are been observed alterations in serum and cerebral levels of IGF-1 

(Busiguina et al., 2000; Trejo et al., 2004). The alteration of IGF-1 levels may be the cause of 

neuronal damage or it can develop secondarily: both of these two possibilities can occur in 

relation to the specific pathology. For instance, alterations in IGF-1 synthesis , caused by liver 

damages,  diabetes or conditions, produce decreases in IGF-1 levels causing neurological 

damage. On the other and, the reduced IGF-1 neuronal sensibility, caused by inflammation 

(Ventres et al., 1999), excitotoxicity (Garcia-Galloway et al., 2003) or extracellular amiloyd 

accumulation (Jain et al., 1998; Gasparini et al., 2002; Carro and Torres-Alemann, 2004) could 

contribute to neuronal death processes. 

Thus we can conclude that the alterations in IGF-1 signalling is a common feature of 

many neurodegenerative diseases. Determining the precise alteration site, it could be possible to 

discover new useful therapeutic targets.  At this aim, it has been recently proposed IGF-1 like the 

possible therapeutic agents for cerebellar ataxies (Fernandez et al., 2005): IGF-1 treatment seem 

effective in animal models an clinical trials suggest to further test IGF-1, because it could be the 

treatment ameliorating the progression of pathology.    

 

IGF-1 mediates the effects of physical exercise on the brain 

 
The Latin aphorism “mens sana in corpore sano” and the evidence accumulating over many 

decades, well illustrates the beneficial action of physical activity in maintaining and improving 

neural functions in humans (Kramer et al.,  1999) and animals (Fordyce and Farrar, 1991). 
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Exercise is associated with a sensation of well being and this subjective state has been objective 

quantified with psychometric, cardiovascular, and neurophysiological data. Exercise has been 

shown to reduce the cognitive decline during ageing (Laurin et al., 2001), to help recover 

functional loss after CNS damage (Mattson, 2000) and to promote neurogenesis in the adult 

hippocampus (van Praag et al., 1999). Recent studies links physical activity to diverse indicators 

of  neural function showing the capacity of exercise to induce the increment of specific trophic 

factors in select brain regions, early response genes, or hippocampal neurogenesis (Neeper et al., 

1995; Iwamoto et al., 1996; Gomez-Pinilla et al., 1997). However the mechanism underlying 

these changes are not yet known (Molteni et al., 2002). 

 Several works, both in human and in rodents, suggest that IGF-I could be the key 

molecule modulating brain response to physical exercise. Physical exercise leads to increased 

serum levels of GH and subsequent, stimulating the growth hormone-IGF-I axis, increased IGF-I 

levels in serum and also in the brain (Eliakim et al., 2000; Schwarz et al., 1996; Wallace et al., 

1999, Carro et al., 2000).  Carro et al., 2000 has been shown that in rats, 1 hr of treadmill running 

induce profuse labelling of different brain areas with IGF-I (cortex, hippocampus, striatum, 

septum, thalamus, hypothalamus, cerebellum and several brain stem nuclei), whereas non 

exercised control animals show no brain IGF-1 labeling. The most interesting finding is that IGF-

1 administration is able to mimic the effects of physical exercise: both exercise and IGF-1 

administration elicits the same pattern of increased c-Fos staining throughout central nervous 

system and a similar increase in hippocampal expression of BDNF mRNA (Carro et al., 2000). 

Moreover Carro et al, 2000, give the first evidence that IGF-1 (by means of intracaroid injection) 

directly modulates neuronal activity in vivo. In particular, it has been demonstrated that IGF-1 

accumulating neurons such as those of cerebellar cortex and dorsal column nuclei (DCN), had 

increased sensitivity to afferent stimulation, together with an increased spontaneous firing rate. 

To determine whether entrance of IGF-1 in the brain is a critical intermediary of exercise actions 

on the brain, Carro et al., 2000 blocked the uptake of IGF-1 by brain cells before animals were 

subjected to 1 hr of treadmill running. Chronic administration in to the CSF of anti-IGF-1 

antibody plus an IGF-1 receptor antagonist (JB-1) resulted  in the blockage of IGF-1 entrance 

into the brain after exercise and also in blockage of exercise-induced c-Fos staining of brain cells. 

This paper suggests a new physiological role for IGF-1 through a novel mechanism that includes 

passage of circulating IGF-1 into the brain, its accumulation by specific group of neurons, 

stimulation of neuronal expression of c-Fos and BDNF, and long lasting changes in neuronal 
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activity. The presence of IGF-I receptors in choroid plexus epithelialium (Marks et al., 1991) as 

well as in endothelial cells of brain capillaries (Frank et al., 1986) supports the possibility that 

IGF-I of serum enters in to the brain by either crossing the blood-brain barrier interfaces or the 

blood CSF. Experimental evidences obtained by Carro et al., 2000; suggest that the blood-CSF 

pathway is the major route used by serum IGF-1 to access the brain. A recent work (Carro et al., 

2005) indicates that megalin/low-density lipoprotein receptor-related protrein-2 (LRP2), a 

multicargo transporter expressed in choroid plexus epithelium at the brain barrier, is involved in 

transport of serum IGF-1 from the bloodstream in to the CSF and mediated in regulation of Aβ 

clearance by serum IGF-1. Successive studies from the same research group, reinforce the 

evidence that circulating IGF-1 mediates the effects of exercise on the brain. Results obtained by 

Trejo et al. (2001) suggest that circulating IGF-1 is necessary for the observed increase in the 

number of BrdU+ hippocampal neurons produced by exercise. They found that subcutaneous 

IGF-1 administration mimics in sedentary rats the increment  in the number of BrdU+ 

hippocampal granule cells , instead infusion of a blocking anti-IGF-1 completely prevents the 

effects of exercise on neurogenesi.  

IGF-1 has been shown to be neuroprotective against the effects of lesions in the adult 

CNS and to mediate both the neuroprotective effects of physical exercise and possibly of EE on 

neuronal death (Carro et al., 2001; Koopmans et al., 2006), the enhancement caused by exercise 

in hippocampal plasticity and in learning and memory (Markowska et al., 1998; Cotman and 

Berchtold, 2002; Aberg et al., 2006) and the increased brain vessel growth (Lopez-Lopez et al., 

2004).  

Altogether, exercise affects the CNS via multiple mechanism: both serum IGF-I and 

possibly locally IGF-I appears to be involved in these processes. Molecular mechanisms by 

means of IGF-I is able to mediate the effects of exercise on the brain, are not completely known 

yet, but they should involve a variety of processes supporting an appropriate neural function, 

ranging from those aimed to fulfill basic metabolic demands to those direct to maintain neuronal 

plasticity (Torres-Alemann, 2000). Several of the neuroprotective mechanism elicited by IGF-I 

include modulation of cell-death and enhancement of survival plasticity-promoting molecules in 

degenerating neurons, such as PSA-NCAM and GAP-43 (Fernandez et al., 1999).  

A very interesting point is the complex interplay between IGF-I and BDNF. Physical 

activity (Cotman and Berchold, 2002) and cognitive stimulation (Young et al., 1999) increases 

BDNF expression in several brain regions of rodents suggesting a role for BDNF signaling in the 
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brain multiple benefits of exercise stimulation. It has been suggested that the increase in IGF-1 

caused by EE and exercise determines an increase in BDNF (Cotman and Berchtold, 2002). 

Recently it has been demonstrated (Ding et al., 2006) that IGF-1 affects BDNF system to mediate 

exercise effects on cognitive processes and synaptic plasticity and that IGF-I enhances the 

biological activity of BDNF in cerebrocortical neurons ( McCusker et al., 2006). These evidences 

suggest that IGF-I and BDNF may act synergistically in regulating responses of CNS to physical 

exercise stimulation. 

IGF-I play a fundamental role in controlling glucose metabolism and an additional 

mechanism involved in IGF-I mediated exercise neuroprotection is likely related to enhanced 

neuronal glucose metabolism (Carro et al., 2001). IGF-I enhances glucose use by neurons 

through upregulation of glucose transporters and modulation of glycolytic enzymes (Cheng et al., 

2000) and stimulated brain glucose metabolism in brain injured animals in a way 

indistinguishable of exercise (Carro et al., 2001).  

Other homeostatic processes involved in IGF-I-mediated exercise effects may include 

increased angiogenesis and improved handling of oxygen by neurons (Carro et al., 2001). 

Although the normal adult brain do not show angiogenesis except in response to specific types of 

insults, exercise stimulates angiogenesis in the adult brain (Black et al., 1990) and IGF-I is 

involved in angiogenesis in the brain and other tissues (Sonntag et al., 1997; Dunn, 2000). 

Oxygen availability is also compromised in neurodegenerative conditions involving vascular 

derangements, and IGF-I is known to induce expression of HIF-1 (Zelzer et al., 1998), a 

transcription factor central in the cell response to hypoxia. Additional mechanisms by which IGF-

I mediates effects of exercise on CNS, could be modulation by IGF-I  of neuronal excitability 

through modulation of membrane ion channels, glutamate receptors or synapse size  (Torres-

Alemann, 2001). 

 

Therapeutic potential of IGF-1 in neurodegenerative disorders 
 

IGF-1 is considered a good candidate as a neuroprotective treatment in different 

neurodegenerative diseases, ranging from those of high prevalence, such as Alzheimer disease 

(AD) or amyotropic lateral sclerosis (ASL) (Lang et al., 2001; Torres-Aleman and Fernandez, 

1998) to the less frequent illness such as cerebellar ataxia (Chen et al., 2003; de Pablo et al., 

1995; Moll et al., 1993; Peretz et al., 2001). 
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Alzheimer disease (AD) 

 

AD is the most common type of senile dementia in the elderly. AD is characterized by the 

presence of amyloid plaques, neurofibrillary tangles and the loss of neurons in defined region of 

the brain (Hardy, 1997; Wisniewski et al., 1997; Selkoe et al., 1999; Selkoe et al., 2001; Clark 

and Karlawish, 2003). Preliminary studies in Alzheimer patients reported either high (late-onset 

AD) or low (familial AD) serum IGF-1 levels (Mustafa et al., 1999; Tham et al., 1993).  

Carro and Torres-Aleman, 2004, consider the disrupted IGF-1 signaling the primary event 

in the late –onset AD and a necessary effector of mutations in familial forms of the disease. IGF-

1 increases Aβ clearance from the brain by enhancing transport of Aβ carriers proteins into the 

brain through the choroid plexus (Carro et al., 2002) and inhibits glycogen synthetase kinase 

(GSK)-3β, a kinase involved in hyperphosphorylation of tau, the major component of 

neurofibrillary tangles (Quevedo et al., 2000; Clark and Karlawish, 2003). 

Carro and Torres-Aleman hypothesized a dual role for IGF-1 in the development of AD. 

First, IGF-1 levels decreased in serum during aging, will impair IGF-1 input to choroid plexus 

and brain vessels. Consequently, Aβ clearance facilitated by IGF-1, which increases transport of 

β amyloid carriers proteins into the brain trough the choroid plexus (Carro et al., 2002) will be 

reduced and the brain will accumulate Aβ. Since Aβ compete with IGF-1 receptors, an 

accumulation of amyloid could reduce IGF-1 signaling to the brain.  

Disrupted brain IGF-1 input will originate disturbance at cellular level including lower 

neuronal resistance to Aβ toxicity, increased susceptibility to other cell death-triggering signals, 

hyperphosphorylation of tau, insulin resistance and at the tissue level brain accumulation of Aβ 

(Carro and Torres-Aleman, 2004). Liver-specific deletion  of igf-1 gene prematurely increases 

cerebral levels of Aβ (Carro et al., 2002). IGF-1 administration to aged rats or to mice over-

expressing mutant amyloid decreases the level of Aβ burden in the brain parenchyma (Carro et 

al., 2002; Carro and Torres-Aleman, 2004). 

The primary objective to reach in translating use of IGF-1 from laboratory animals to 

clinic is the effective delivery of IGF-1 to the brain in sufficient concentrations to influence 

neuronal functions (Dore et al., 2000; Carrascosa et al., 2004; Gasparini and Xu, 2003).   
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ASL and cerebellar ataxia 

 

Moto neuron (MN) diseases is a group of neurodegenerative disorders that selectively 

affect upper and/or lower moto neurons leading to a muscle atrophy and weakness. 

Amyotropiclateral sclerosis accounts for approximately 80% of all cases of MN diseases 

(Feldman, 2004). 

Accumulating data support the therapeutic use of IGF-1 in the treatment of ASL. IGF-1 

prevents apoptosis in MN (Kaspar et al., 2003; Vincent et al., 2004), glial cells (Leinninger et al., 

2002), and muscle cells (Singleton et al., 2001) all cell types affected by ASL (Cleveland et al., 

2001). IGF-1 serum levels are decreased in ASL patients (Torres-Aleman et al., 1998) and could 

contribute to the development if the disease (Torres-Aleman et al., 1998; Wilczak et al., 2003). 

Two placebo-controlled trials of IGF-1 in ASL have produced mixed results. The North 

American ASL /IGF-1 Study Group found that patients receiving IGF-1 daily for 9 months had 

slower disease progression and reported a better quality of life than placebo-treated controls (Lai 

et al., 1997). However, the European ASL /IGF-1 Study Group showed no benfit to IGF-1 

therapy (Borasio et al., 1998). Although the sc adminstration of IGF-1 to ALS patients was of 

uncertain clinical benefits (Lai et al., 1997; Ackerman et al., 1999) the data obtained were 

sufficiently promising to support other clinical trials.  

Another group of neurodegenerative diseases characterized by motor discoordination for 

which no effective therapeutic treatment exist are cerebellar ataxias (Harding et al., 1993).  With 

the exception of the rare ataxia telangiectasia (AT) (Shimoata et al., 2000), ataxia is associated 

with low IGF-1 serum both in humans and animals (Backeljauw et al., 2001; Chen et al., 2003; de 

Pablo and de la Rosa, 1995; Marks et al., 1991; Torres-Aleman et al., 1996). Since the etiology of 

ataxias is remarkably varied, it appears unlikely that low serum IGF-1 has an etiopathogenic 

significance. It is more probable that low IGF-1 serum participates in the subsequent pathological 

cascade, favouring progression of ataxia (Fernadez et al., 2005).  

Systemic efficacy of IGF-1 treatment in animal models of cerebellar ataxia (Chen et al., 

2003; de Pablo and de la Rosa, 1995; Moll et al., 1993), together with the observation that ataxic 

animals and different types of human ataxic patients showed altered IGF-1 levels  encourage the 

use of IGF-1 as a possible therapeutic application in this neurodegenerative disease.  



 71

It has to be underlined that, both for AD and other neurodegenerative disorders, the major 

obstacle in developing an IGF-1 therapy is still the purported relationship between serum IGF-1 

and increased cancer risk (Beck et al., 1995). 

 

Aim of the thesis 
 

In this PhD thesis I have investigated the molecular mediators of the effects of EE on 

visual system development. In particular we focussed our attention on insulin-like growth factor 

1 (IGF-1), a trophic factor the levels of which are increased by physical exercise (Carro et al., 

2001) which is a fundamental component of enriched living condition. IGF-1 is produced mainly 

by the liver but it is also able to cross blood brain barrier with the possibility to modulate the 

expression of molecules important for cortical and retinal plasticity such as Nerve Growth Factor 

(NGF) and Brain Derived Neurotrophic Factor (BDNF), through the binding to IGF-1 receptors 

present in the occipital cortex (Frolich et al., 1998) and in the retina (Rodrigues et al., 1988; 

Waldbilling et al., 1998). Moreover IGF-1, a modulator of foetal and neonatal growth (Philips et 

al., 1988; Popken et al., 2004), has a central role in building the architecture of the retina 

(Hernandez-Sanchez et al., 1995) and also in normal development of the cortex (for a review see 

Aberg et al., 2006).  

We here show that IGF-1 levels are affected by EE which increases the number of IGF-1 

positive neurons in the visual cortex at P18 an accelerates the developmental time course of IGF-

1 labelling . This action on IGF-1 levels seems to be the key event mediating EE effects on visual 

cortical development. Infact increasing IGF-1 in the visual cortex of non-EE rats by means of 

osmotic minipumps implanted at P18 mimics the effect of EE on the acceleration of visual acuity 

development, while blocking IGF-1 action in the visual cortex of EE rats by the infusion of IGF-1 

receptor antagonist JB1 from P18 completely blocks EE action on visual acuity development.   

EE increases IGF-1 expression in the retina at embryonic day 15 (E15), E18 and P1. 

Intraocular IGF-1 injections in non-EE rats at P1, P4 and P7, accelerates retinal acuity 

development reproducing the same effects observed in EE animals by Landi and colleagues 

(2007).   

These results show that IGF-1 is a key factor mediating EE effects on visual cortical and 

retinal development.  
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We than show that IGF-1 affects GAD65 immunoreactivity in perisomatic innervation 

and the condensation of Chondroitin Sulphate Proteoglycans (CSPGs) in perineuronal nets 

(PNNs) in the visual cortex. This suggests that IGF-1 action in mediating EE effects on visual 

cortical development could be exerted through the modulation of intracortical inhibitory circuitry 

and PNN development.  

At retinal levels IGF-1 administration in non-EE rats elicits the same increase of BDNF 

expression in RGCs cell layer observed in EE animals, suggesting that IGF-1 is able to trigger  

the molecular events responsible for EE effects on retinal development.  
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MATERIALS AND METHODS 
 

Animal treatment 

All experiments were performed on rats in accordance with the Italian Ministry of Public Health 

guidelines for care and use of laboratory animals. 

Long Evans hooded rats lived in an animal house with a temperature of 21 °C, 12h/12h light/dark 

cycle, and food and water available ad libitum. For both housing conditions, matings were made 

inside the cage. After birth all the litters were housed with their mother until the date of 

experiment.  

Rearing environments. Enriched environment (EE) consisted of large wire netting cages 

(60X50X80 cm) with three floors containing several foodhoppers, two running wheels (one 

bigger for adults, the other for post-weaning pups) to improve physical activity, and differently 

shaped objects (tunnels, shelters, stairs) that were completely substituted with others once a 

week. Every cage housed at least 4-5 females and their pups. Cages for standard environment 

(non-EE) were standard laboratory cages (30X40X20 cm) housing one dam with her pups as 

established by the Italian law for the care of laboratory animals.  
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Figure 1: Living conditions in different experimental groups.  
 
A. Enriched environmental condition. Enriched environment consist of social interaction (6-12 animals in 
big cages), stimulation of explorative behaviour with different objects and running wheels. Enriched 
environment rearing promotes neuronal activation, signaling and plasticity throughout various brain 
regions. Increased sensory stimulation, including increased somatosensory and visual input, activates the 
somatosensory (red) and visual (orange) cortices. Increased cognitive stimulation (encoding of 
information relating to spatial maps, objects recognition, novelty and modulation of attention) is likely to 
activate the hippocampus (blue) and other cortical areas.  Enhanced motor activity stimulates areas such as 
the motor cortex and cerebellum (green) (Nithianantharajah et al., 2006). B. Standard environmental 
condition: The animals are housed in small groups of 2-4 animals in regular size cage without any 
stimulus objects. C. Impoverished environmental  condition: The animals are housed individually in 
regular  size cages without any stimulus objects.  
 

IGF-1 and JB1 intracortical administration  

Drugs (IGF-1 or JB1) were infused with osmotic minipumps (model 1007D; 0,5µl/h; Alzet, Palo 

Alto, CA) starting at P18. Minipumps were connected via PVC tubing to a stainless steel 30-

gauge cannula implanted 1 mm lateral to lambda of the left visual cortex [44, 45]. IGF-1 (IBT; 

1µg/µl) was infused in the visual cortex of non-EE rats (N= 12), while JB1 (Bachem AG; 10 
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µg/ml) was infused in the visual cortex of EE rats (N= 11), and non-EE rats (N=5). As control, 

PBS was infused in the visual cortex of non-EE rats (N= 6) and EE rats (N=4). All treatments 

were made for one week between P18 and P25. We also recorded non-EE animals implanted with 

JB1 filled minipumps from P18 to P25 (N=4, recordings at P25) and from P21 to P28 (N=4, 

recordings at P28).  

 

Intraocular injections of IGF-1 or JB1 

For the analysis of the role of IGF-1 on retinal acuity development standard rats (N=5) received 

intraocular injections of IGF-1 (IBT) while EE rats (N=5) received  intraocular injections of JB1 

(Bachem AG). As control contralateral eye was injected (0.9% NaCl). Injections were performed 

under ether anesthesia at P1, P4 and P7. IGF-1 concentration was according the increasing size of 

the eye camera to maintain a final intraocular concentration of the factor equal to 100 ng/µl (Sale 

et al., 2004). JB1 concentration was according the increasing size of the eye camera to maintain a 

final intraocular concentration of the factor equal to 1µg/ ml, demonstrated to  be effective for at 

least three days in vitro (Etgen et al., 2003; Emlinger et al., 1998; Kahlert et al., 2000; Duan et 

al., 2001). Both for IGF-1 and JB1 the volume   injected was 250, 500 and 750 nl at P1, P4 and 

P7, respectively.  

Intraocular injections were performed by using a glass micropipette inserted at the ora serrata 

connected to an Hamilton syringe every 72 hours from P1.  

At P25-P26, P-ERG recordings were made and retinal acuity was determined for each animal as 

previously described.  

 

Chronic infusions of anti-IGF-I antiserum or IGF to pregnant rats 

Timed pregnant rats were reared in either non-EE or EE since the start of gestation. At 

E10, anti-IGF-1 antiserum or IGF-1 protein were infused to EE and non-EE pregnant rats, 

respectively. It has been reported that the anti-IGF-1 antibody has <1% cross-reactivity with 

either insulin or IGF-II, as determined by competition with 125I-IGF-1 (Trejo et al., 2001). 

Infusions were done through implantation of a subcutaneous osmotic minipump (Alzet; anti-IGF-

1 infusion: 20% in saline; IGF-1 protein infusion:1 µg/µl; infusion rate: 0.25 µl/h in both cases) 

placed in the back of the animal in the scapula (Carro et al., 2000). Qualitative observations 
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performed during both daytime and during the dark phase of the daily cycle revealed an 

apparently normal behavior of implanted pregnant rats. In particular, EE pregnant rats were 

frequently observed to use the running wheel. At E18, pregnant rats were perfused transcardially 

and their embryos were removed through surgical hysterotomy. The eyes of the embryos were 

removed, fixed and processed for RGC apoptosis analysis (N=13 animals for EE, N=20 animals 

for non-EE) and IGF-1 expression levels  (N=7 animals for EE, N=5 animals for non-EE), as 

previously described. Examination of histological brain sections revealed no signs of 

malformations or gross morphological abnormalities in both anti-IGF-1 and IGF-1 embryos. 

 

Electrophysiological assessment of cortical and retinal acuity  

A total of 46 rats were VEPs recorded [non-EE: N=7; EE: N=4; non-EE treated with IGF-1 (IGF-

1): N=5; non-EE treated with vehicle (PBS): N=6; EE treated with JB1(EE-JB1): N=5; EE 

treated with vehicle (EE-PBS): N=4; non-EE treated with JB1: N=8, non-EE intraocular injected 

with IGF-1: N=4; non-EE intraocular injected with saline, N=3] was used for electrophysiology. 

A total of 20 rats were PERG recorded [EE: N=5; non-EE: N=5; non-EE intraocular injected with 

IGF-1(IGF-1) in one eye and with saline (saline) in the contralateral eye: N=5;  EE intraocular 

injected with JB1 (EE-JB1) in one eye and with saline in the other eye (non-EE saline)]. 

Rats were anesthetized with an intraperitoneal injection of 20% urethane (0,7 ml/hg; Sigma, St. 

Louis, MO) and mounted on a stereotaxic apparatus allowing full viewing of the visual stimulus. 

Additional doses of urethane (0,03-0,05 ml/hg) were used to keep anesthesia level stable 

throughout the experiment. During electrophysiology, the body temperature of rats was 

monitored with a rectal probe and maintained at 37.0°C with a heating pad. Visual stimuli were 

horizontal sinusoidal gratings of different spatial frequency and contrast generated by a VSG2/2 

card (Cambridge Research System, Cheshire, UK) and presented on a computer display (mean 

luminance=25 candles/m2; area, 24X26 cm) placed 20 cm in front of the animal. Recordings were 

always made in blind in relation to the animal’s rearing condition to avoid subjective judgements 

of the experimenter. 

Visual Evoked Potentials (VEPs). VEPs were recorded as in (Di Cristo et al., 2001). Briefly, a 

large portion of the skull overlying the binocular visual cortex was drilled and removed taking 

away the dura. A glass micropipette (2-2,5 ΜΩ) was inserted into the binocular primary visual 

cortex (Oc1B; Paxinos and Watson, 1986) in correspondence of the vertical meridian 
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representation and advanced 100 or 450 µm within the cortex. At these depths, VEPs had their 

maximal amplitude. Electrical signals were amplified, bandpass filtered (0,1–120 Hz), and 

averaged (at least sixty events in blocks of ten events each) in synchrony with the stimulus 

contrast reversal. Transient VEPs in response to abrupt contrast reversal (0,5-1 Hz) were 

evaluated in the time domain by measuring the peak-to-baseline amplitude and peak latency of 

the major component. VEPs in response to a blank field were also frequently recorded to have an 

estimate of the noise. For each animal, VEP amplitude was plotted as a function of log spatial 

frequency and visual acuity was determined by linearly extrapolating VEP amplitude to 0 V. 

Pattern electroretinogram (P-ERG). P-ERG was recorded as in Berardi et al., 1990 and 

Domenici et al., 1991. The stereotaxic apparatus was oriented with an angle of about 40° as 

respect to the position of the screen; P-ERG electrodes were small silver rings positioned on the 

corneal surface by means of a microelectrode drive, so as to avoid occlusion of the pupil. Visual 

stimuli were sinusoidal gratings alternated in phase with a fixed temporal frequency of 4 Hz. 

Steady-state recorded signals were filtered (0.1-100 Hz) and amplified in a conventional manner, 

computer averaged and analysed; 15 packets of 20 sums each (300 events) were averaged for 

each stimulus spatial frequency, changing randomly the spatial frequency from one record to 

another. For each spatial frequency, the amplitude of the P-ERG signal was taken as the 

amplitude of the second harmonic in the averaged signal, calculated by a Fast Fourier Transform; 

the P-ERG amplitude decreases with increasing spatial frequency (Berardi et al., 1990, Rossi et 

al., 2001). The noise level was estimated by measuring the amplitude of the second harmonic in 

records were the stimulus was a blank field. Retinal acuity was taken as the highest spatial 

frequency still evoking a response above noise level.  
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Figure 2: Schematic representation of P-ERG and VEP recording  

Schematic representation of the recording electrode position (corneal surface for P-ERG and 

binocular visual cortex for VEPs) and the examples of the characteristic waveform of the 

recorded signal for P-ERG and VEP. Note the different amplitude of the signal as evidenced by 

the scale bar. Steady-state P-ERG responses in response to sinusoidal temporal modulation were 

evaluated in the frequency domain by measuring the second harmonic amplitude (frequency 8 

Hz) of each record. Visual stimuli to valuate retinal and cortical acuity were horizontal sinusoidal 

gratings of different spatial frequency and contrast.  

 

Immunohistochemistry on visual cortical sections 
 
A total of 80 (EE: N= 35; non-EE: N= 45) Long Evans hooded rats aged between P15 and P25 

were employed (P15, EE: N= 6, non-EE: N= 5; P18, EE: N= 10, non-EE: N= 12; P21, EE: N= 6, 

non-EE: N= 6; P25, EE: N= 13; non-EE: N= 22). Animals were deeply anesthetized with chloral 

hydrate and perfused transcardially with PBS 1X followed by fixative (4% paraformaldehyde, 0.1 

M sodium phosphate, pH 7.4; PB). Brains were removed, post-fixed in the same fixative at 4°C, 
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cryoprotected by immersion in 30% sucrose with 0,01% sodium azide solution in PB at 4°C and 

frozen by isopentane. 35 µm coronal sections were cut on a microtome and processed for 

immunohistochemistry. Free floating sections were incubated for 1-2 hours in a blocking solution 

(containing 10% BSA, 0,3% Triton X-100 in PBS or 3% BSA in PBS for WFA staining) 

followed by incubation with the appropriate antibodies. 

For IGF-1 we used rabbit polyclonal anti-IGF-1 antibody (1:500 in 1% BSA, 0,2% Triton; 

antibody kindly provided by I. Torres-Aleman) revealed with biotinylated secondary antibody 

goat anti-rabbit IgG (1:200, Vector Laboratories, Burlingame, CA) followed by fluorescein-

conjugated extravidin (1:300, Sigma). For NeuN we used Chemicon, MAB377, (1:500, in 1% 

BSA, 0,2% Triton) revealed with Alexa 568 (Molecular Probes, 1:400). For GAD67 we used 

mouse anti GAD67 (Chemicon, MAB5406, 1:1000 in 1% BSA, 0,3% Triton) revealed with 

Alexa 568 (Molecular Probes, 1:400). For WFA staining sections were incubated overnight at 

4°C in a solution of biotinylated Wisteria floribunda lectin (WFA) (1:100, Vector). WFA was 

stained with 1h incubation in fluorescein-conjugated extravidin (1:300, Sigma). For GAD65 we 

used monoclonal antibody anti GAD65 (Chemicon, MAB351, 1:500, in 1% BSA, 0,2% Triton) 

revealed with biotinylated secondary antibody goat anti-mouse IgG (1:200, Vector Laboratories, 

Burlingame, CA) followed by incubation in fluorescein-conjugated extravidin (1:300, Sigma). 

For IGF1-R we used polyclonal anti-IGF-1R antibody (C-20, sc-713, Santa Cruz, 1:50 in 1% 

BSA, 0,2% Triton) revealed with Alexa 488 (Molecular Probes, 1:400) for IGF-1R/GAD67 

double staining or with Alexa 568 (Molecular Probes, 1:400) for IGF-1R/WFA double staining. 

Sections were then mounted on slides with Vectashield. 

 

IGF-I immunoreactivity analysis 

At all ages, images were acquired with a confocal Olympus microscope at 40 X magnification, 

(N.A.=0,85 field 353 x 353 µm acquired at 1024x1024 pixels) to analyze the colocalization of 

antigens and at 20 X (N.A.=0,7 field 707 x 707 µm acquired at 1024x1024 pixels) to analyze the 

number of IGF-1 and NeuN positive cells in sections double labelled for IGF-1 and NeuN. To 

compare different specimens, the parameters of acquisition were optimized at the start and then 

held constant throughout image acquisition. The collected images from Oc1B cortical fields were 

imported to the image analysis system MetaMorph. For each animal, at least three Oc1B sections 

were analyzed. At each age, counts were done on the entire thickness of Oc1B. The number of 
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IGF-1 positive cells was normalized to the number of NeuN positive cells both in EE and non-EE 

animals. The number of NeuN positive cells was also compared between EE and non-EE rats for 

each age. To identify whether the IGF-1 positive cells were neurons, the number of double 

labelled IGF-1 and NeuN positive cells was counted and, for each age and housing condition, was 

normalized to the total number of IGF-1 positive cells. To identify the proportion of IGF-1 

positive cells which are neurons the number of double labelled IGF-1 and NeuN positive cells 

was counted and normalized to the total number of NeuN positive cells at P18. To identify 

whether IGF-1 positive cells were excitatory neurons or inhibitory interneurons and to assess 

whether EE affected the number of IGF-1 positive inhibitory interneurons, double labelling for 

IGF-1 and GAD 67 was performed at P18 in EE (N=4) and non-EE animals (N=3). For each 

animal at least 3 Oc1B sections were analyzed; acquisition were done at 40 X magnification, 

zoom 1 X (N.A.=0,85 field 353 x 353 µm acquired at 1024x1024 pixels). The number of double 

labelled cells was counted on the entire Oc1B thickness. All image acquisition and analysis were 

carried out in blind. 

WFA quantification 
 
Images were acquired at 20 X (N.A.=0,7, field 707 x 707 µm acquired at 1024x1024 pixels). To 

compare different specimens, the parameters of acquisition were optimized at the start and then 

held constant throughout image acquisition. For each animal at least 6 Oc1B sections were 

analyzed (three for IGF-1 or JB1 treated cortex and three for PBS contralateral cortex). The 

collected images from Oc1B cortical fields were imported to the image analysis system 

MetaMorph. Counts were done on the entire thickness of Oc1B (mosaic of three 20X images) 

and the ratio WFA-positive cells/ NeuN positive cells was calculated. All images acquisition and 

analysis were carried out in blind. 

 

GAD65 puncta rings quantification 

Images were acquired at 60X (N.A.=1,40 field 105 x 105 µm acquired at 512 x 512 

pixels). Settings for laser intensity, gain, offset and pinhole were optimized initially and held 

constant through the study. During image collection, confocal settings were regulated so that the 

full range of pixel intensities (0-255) was used, with very little saturation at either end of intensity 

range. For each animal at least six sections (three from IGF-1 or JB1 treated cortex and three 
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from PBS contralateral cortex) were analyzed. For each section, we imaged six field taken from 

layer 2/3 of the primary visual cortex. In each field, a stack of ten GAD65 optical sections 

separated by 1um was collected at the top face of the tissue section. The image within each stack 

with the highest average pixel intensity was selected for the quantitative analysis of GAD65 

immunoreactivity (Silver et al., 2000, Tropea et al., 2001). Perisomatic GAD65 signals (“puncta-

ring”) from at least three target neurons were outlined for each image and GAD65 signal intensity 

was calculated (Methamorph). For each neuron, signal intensity were divided by the background 

labelling in the cell soma. A total sample of 40-50 neurons were analyzed for each cortex. All 

images acquisition and analysis were carried out in blind. 

Double labelling IGF-1 receptor and  GAG67 or IGF-1 receptor and  WFA 
 
To assess the presence of IGF-1 receptor on inhibitory interneurons and on PNN surrounded 

neurons in the time window of our treatment, double labelling for IGF-1 receptor and either GAD 

67 or WFA was performed in non-EE animals at P18 in (N=4) and at P25 (N=4). For each animal 

at least 3 Oc1B sections were analyzed; acquisition were done at 40 X magnification, zoom 1 X 

(N.A.=0,85 field 353 x 353 µm acquired at 1024x1024 pixels). The collected images from Oc1B 

cortical fields were imported to the image analysis system MetaMorph. For each animal, at least 

three Oc1B sections were analyzed. At each age, counts were done on the entire thickness of 

Oc1B. The number of double labelled cells was counted on the entire Oc1B thickness. All image 

acquisition and analysis were carried out in blind. 

IGF-1 immunohistochemistry on retinal  sections 
 

For IGF-1 immunostaining, vertical retinal sections (25 µm thick) and cerebellar sections 

(40 µm thick) were cut using a cryostat and then processed as follows. Sections were 

permeabilized in 0,3% triton X-100 and incubated in 1:500 rabbit polyclonal anti-IGF-I antibody 

(kindly provided by Prof. Ignacio Torres-Aleman). Bound antibody was detected by incubating 

sections with biotinylated goat anti-rabbit IgG (1:200, Vector) followed by fluorescein-

conjugated extravidin (1:300, Sigma). The number of animals used for IGF-I analysis in the 

retinas was: 10 (E15), 7 (E18), 7 (P1), 4 (P10), for EC; 6 (E15), 5 (E18), 7 (P1), 4 (P10), for SC. 

Immunostaining of enriched and control retinal sections was performed in parallel within the 

same experimental set. Images of RGC portions were acquired at 20x magnification using a Zeiss 
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HR Axiocam videocamera connected to a Zeiss Axiophot microscope and digitalized by 

Axiovision software. To compare different specimens, the time of exposure was optimized at the 

start and then held constant throughout image acquisition. Collected images were imported to the 

image analysis system MetaMorph and used to evaluate pixel intensity of cellular 

immunofluorescence. All image analyses were done blind. IGF-1 pixel intensity was measured 

within the area contoured by the edges of the RGC layer. Pixel intensity values were divided by 

background level, measured in the outer nuclear layer. Values obtained from at least 8-10 retinal 

fields were used to calculate the average pixel intensity value per animal. 

 

Analysis of pyknotic cells 

To take the eyes from E15 and E18 embryos, pregnant dams were anesthetized with 

chloral hydrate, perfused through the hearth with 4% paraformaldehyde in 0,1 phosphate buffer 

(pH 7,4) and the embryos were removed after surgical hysterotomy. To take the eyes from P1 

pups, rats were perfused through the hearth with 4% paraformaldehyde in 0,1 phosphate buffer 

(pH 7,4). The eyes of E18 and P1 rats were fixed in 4% paraformaldehyde for 24 h. Retinas (E18: 

N=19 for EE and 10 for non-EE; P1: N=25 for EE and 12 for non-EE; retinas derived from at 

least two littermates per experimental group) were then dissected from the eyes, flattened on 

gelatinized slides and fixed with 2,5% glutaraldehyde and then with formalin-ethanol solution 

(1:9). Whole-mounted retinas were stained with cresyl violet  (0,1%). The number of pyknotic 

profiles was counted following a “blind procedure“ in the RGC layer of 60 fields (80x80 mm) per 

retina on average, uniformly distributed across the retinas. The proportion of retina sampled in 

this way ranged from 2.1 to 13.8%. Pyknotic cells were counted at 100x magnification using a 

Zeiss computerized microscope (software, Stereo Investigator, Microbrighfield). Pyknotic cells 

were identified by the presence of darkly and uniformly stained nuclei, sometimes fragmented. 

When two or more fragments were seen within a cell diameter distance from each other, they 

were counted as a single pyknotic cell. Total number of pyknotic cells per retina was estimated 

by multiplying the average number of cells per field times the ratio of the total area of each retina 

to field area. For microglial cell number analysis, the Griffonia simplicifolia lectin labeling was 

performed on whole-mount retinas of P1 rats (EC, n = 6; SC, n = 6). Retinas were incubated 

overnight in B4 isolectin biotinylated (0,025 mg/ml, Sigma). Bound lectin was revealed by ABC 

kit (Vector) and nickel-enhanced diaminobenzidine (DAB) reaction. Microglial cells were 
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counted at 100x magnification. The total number of microglial cells per retina was estimated 

using the same counting procedure described before. 

 

Analysis of natural cell death with the Tunel method 

Since the newborn rat ganglion cells are stacked in a pseudostratified fashion and it is 

difficult to detect the border between the RGC layer and the inner plexiform layer (Perry et al., 

1983), we cannot exclude the possibility to have counted pyknotic profiles in both of these layers 

with the cresyl violet staining procedure. Therefore, we repeated the analysis on natural cell death 

using the Tunel method, analyzing also levels of apoptosis at E20. In this analysis, 

counterstaining of retinal vertical sections with the nuclear marker TOTO (see below) allowed us 

to clearly visualize the position of fragmented nuclei in different retinal layers. 

To detect DNA fragmentation in RGC layer dying cells, terminal deoxynucleotidyl 

transferase mediated dUTPNick.End Labeling (TUNEL) technique was employed, using a 

commercially available kit (DeadEndTMFluorometric Tunel System, Promega). Eyes were 

immersion-fixed in 4% paraformaldehyde, cryoprotected in 30% sucrose and embedded in 

Tissue-Tek. Retinal sections of 18 µm were cut using a cryostat and collected in serial order 

through the entire retina. After treatment with proteinase K (20 µg/µl) to dissociate proteins from 

DNA, sections were incubated (1h at 37 °C) with “the Tunel reaction mixture”, containing the 

TdT enzyme and Nucleotide mix with fluorescein-12-dUTP. Retinal sections (n = 4 SC and EC 

rats for each age) were then counterstained with TOTO-3 iodide (Molecular Probes) to visualize 

the different cell layers, and rinsed in PBS. In the negative controls, which never gave any 

significant staining, the Tunel reaction mixture was omitted. Tunel-positive cells were counted 

with “a blind procedure” by the use of a 40x objective, in the RGC layer of 10 equally spaced 

sections per retina. Each retinal section was completely sampled. The total number of cells per 

retina displaying fragmented nuclei in the RGC layer was calculated by multiplying the average 

number of labeled cells per section times the total number of retinal sections. The morphological 

appearance of retinal layers was indistinguishable between EE and non-EE rats. 
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BDNF immunohistochemistry 

 

A total of 14 (non-EE treated with IGF-1 (IGF-1): N=7; EE treated with JB1 (EE-JB1): N=7) 

Long Evans hooded rats, aged P10, were employed. Animals were deeply anesthetized with 

chloral hydrate and perfused transcardially with PBS 1X followed by fixative (4% 

paraformaldehyde, 0.1 M sodium phosphate, pH 7.4; PB).  Eyes were kindly removed, postfixed 

in 4% paraformaldehyde in 0.1 phosphate buffer (pH=7.4) and cryoprotected in 30% sucrose.  

Vertical retinal sections (25 µm thick) were cut using a cryostat and then processed as follows. 

After a blocking step, sections were permeabilized in 0,01% triton X-100 and incubated in 1:400 

anti-human BDNF antibody (Promega). Bound antibody was detected by incubating sections 

with byotinilated rabbit anti-chicken IgG (1:200, Promega) followed by fluorescein-conjugated 

extravidin (1:300, Sigma). Images of RGC portions were acquired with a confocal Olympus 

microscope at 20 X magnification (N.A.=0,7 field 707 x 707 µm acquired at 1024x1024 pixels). 

Settings for laser intensity, gain, offset and pinhole were optimized initially and held constant 

through the experiment. Then, the collected images of the retina were imported to the image 

analysis system MetaMorph and used to evaluate pixel intensity of cellular immunofluorescence. 

For each animal, at least 24 retinal sections (12 of the IGF-1 or JB1 treated eye and  12 for saline 

treated eye) were analyzed. All image analyses were done blind. The profile of cells into RGC 

layer was outlined and pixel intensity was measured within this area. BDNF immunoreactivity 

levels were calculated as the ratio between the pixel intensity of RGC profiles and the 

background level, measured in the outer nuclear layer (ONL). To compare different experimental 

sets of himmuhistochemistry the BDNF immunofluorescence value obtained, was further 

normalized to the value of BDNF intensity estimated in the RGC layer of retinas taken from non-

EE rats intraocularly injected with saline.  

 

Determination of IGF-1 concentration in maternal milk 

Milk samples were collected from P1 and P10 suckling pups. Pups (P1: N=15 for both EE and 

non-EE; P10: N=6 for both non-EE and EE groups) were killed between 9 and 10 a.m. through 

decapitation and the gastric content was quickly removed, weighed and frozen at –80°C until 

assayed. Milk samples were homogenized with distillate water and centrifuged at 14000 rpm at 

4°C for 30 min to separate the whey (infranatant) from the fat (supernatant) and casein (pellet). 
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The whey milk was acid-ethanol extracted to remove IGF-I binding proteins. The concentration 

of IGF-I was determined by radio immunoassay (RIA) using a commercial kit specific for 

rodents (DSL-2900, Diagnostic Systems Laboratories, Webster, TX), with a sensitivity of 21 

ng/ml.  
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RESULTS  

 

PART I: IGF-1 mediates the effects of enriched environment on 
visual cortical development 
 
 

EE affects the developmental time course of IGF-1 labelling in the visual 

cortex 

 

Several works analysed IGF-1 mRNA expression and protein levels in the central nervous 

system during development (Rotwein et al., 1988; Bondy et al., 1991); however, no data are 

available on IGF-1 presence in the developing visual cortex. We have therefore assessed IGF-1 

levels in the visual cortex between P15 and P25 and then evaluated EE effects on this 

developmental time course. The period P15-P25, which follows eye opening, marks the 

beginning of the experience dependency of rat visual cortical development and the opening of the 

critical period for ocular dominance plasticity (Fagiolini et al., 1994; Berardi et al., 2000). 

IGF-1 protein was revealed by means of an immunohistochemical protocol repeatedly 

used to analyse IGF-1 presence in the central nervous system (Carro et al., 2000; Trejo et al., 

2001; Carro et al., 2001). Typical appearance of IGF-1 positive cells is shown in Fig. 3A.  

At all ages, the great majority of IGF-1 positive cells are neurons (Fig. 3B) both in non-

EE and EE rats (Two Way ANOVA, housing x age, factor housing p = 0,16, factor age p < 0,001, 

no significant interaction age x housing). The fraction of IGF-1 and NeuN double labeled cells is: 

at P15, EE: 0,74 ± 0,02 N = 5; non-EE: 0,8 ± 0,04 N = 4; at P18, EE: 0,89 ± 0,03 N = 4; non-EE: 

0,88 ± 0,02 N = 5; at P21, EE: 0,78 ± 0,03 N = 3; non-EE: 0,79 ± 0,02 N = 4; at P25, EE: 0,79 ± 

0,04 N = 3; non-EE: 0,83 ± 0,02 N = 4. We quantified the presence of IGF-1 in the visual cortex 

at different developmental ages in terms of the number of IGF-1 positive cells normalized to the 

number of neurons (NeuN positive cells; Fig. 4A).  



 87

The normalized number of IGF-1 positive cells increases between P15 and P21 in non-EE rats 

(Two Way ANOVA, housing (two levels) x age (four levels), factor age significant, p < 0,001, 

normalized number of IGF-1 positive cells at P21 in non-EE rats 0,44 ± 0,02 (N = 6) differs from 

the value at P15, 0,3 ± 0,02 (N = 5) and P18, 0,37 ± 0,02 (N = 8); post-hoc Tukey’s test, p < 

0,05). In EE rats the normalized number of IGF-1 positive cells at P18 (0,44 ± 0,01, N = 10) is 

higher than at P15 (0,32 ± 0,01 (N = 6)) and is increased with respect to P18 non-EE rats (Fig. 

4A and B) (Two Way ANOVA, interaction housing age significant, p = 0,011, housing within 

P18, normalized number of IGF-1 positive cells in P18 EE rats differs from P18 non-EE rats, age 

within EE, EE P18 differs from EE P15; post-hoc Tukey’s test, p < 0,05). An example of the 

effect of EE on the number of IGF-1 positive cells at P18 is reported in Fig. 4B. The increase in 

IGF-1 positive cells caused by EE at P18 is due to the increase in IGF-1 positive neurons: indeed, 

the number of neurons positive for IGF-1 (cells double labelled for NeuN and IGF-1) normalized 

to NeuN positive cells is significantly different between EE and non-EE rats at P18  (t-test,     p = 

0,015). 

At no age the number of NeuN positive cells is increased by EE with respect to non-EE 

animals (Two Way ANOVA, age x housing, factor age not significant, p =  0,345, factor housing 

not significant, p =  0,457); therefore, the increase in the density of IGF-1 positive neurons 

caused by EE is due to an increased presence of IGF-1 labeled neuronal cells, not to an increase 

in the density of neurons. 

Thus, EE accelerates the developmental time course of IGF-1 protein levels in the visual 

cortex.  

At P18, a double labelling was also performed for IGF-1 and GAD67 to identify whether 

the IGF-1 positive cells were inhibitory or excitatory neurons. The density of IGF-1 positive 

inhibitory interneurons is significantly increased by EE (23% ± 3,8% in non-EE rats and 37% ± 

2,6% in EE rats, t-test, p = 0,03). Thus, EE affects IGF-1 labelling both for excitatory and 

inhibitory neurons in the developing visual cortex. 

EE is known to affect different brain areas in the adult (van Praag et al., 2000). To 

determine whether the effects of our enrichment protocol on IGF-1 levels documented for the 

visual cortex were due to a generalized increase of IGF-1 levels in the brain, we assessed the 

density of IGF-1 positive cells in S1 of P18 EE and non-EE rats. We found that the increment in 

IGF-1 positive cells observed in the visual cortex of P18 EE animals is absent in S1 [number of 
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IGF-1 positive cells/field in EE rats 697 ± 32 (N = 3) and in non-EE rats 654 ± 49 (N =  4),  t-

test, p= 0,522]. 
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Figure 3: Immunoreactivity for IGF-1 in the developing visual cortex.  
(A) Typical appearance of IGF-1 positive cells in the developing rat binocular visual cortex 
Oc1B. Age of the animal, P25, calibration bar 25 µm. (B) Example showing the preponderance 
of the neuronal phenotype in IGF-1 positive cells in the developing rat binocular visual cortex 
Oc1B. Age of the animal P18. Staining for IGF-1 green, staining for NeuN (neuronal marker) 
red, merged image. Calibration bar: 50 µm.  
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Figure 4: Immunoreactivity for IGF-1 in the developing visual cortex: effects of enriched 

environment.   

(A) Mean number of IGF-1 positive cells in the visual cortex, normalized to the number of 

neurons (Neu N positive cells) for each developmental age analysed. Black dots are data from EE 

rats and light grey dots data from non-EE rats. Vertical bars represent SEM. The number of 

animals analyzed is: for non-EE rats, N = 5 at P15, N = 8 at P18, N = 6 at P21, N = 6 at P25; for 

EE rats, N = 6 at P15, N = 10 at P18, N = 6 at P21, N = 7 at P25. The normalized number of IGF-

1 positive cells increases between P15 and P21 in non-EE rats (Two Way ANOVA, housing (two 

levels) x age (four levels), factor age significant, p < 0,001; post-hoc Tukey’s test, p < 0,05). In 

EE rats the normalized number of IGF-1 positive cells increases significantly between P15 and 

P18; at P18 the normalized number in EE rats is significantly increased with respect to non-EE 

rats (Two Way ANOVA, housing (two levels) x age (four levels), factor age significant, p < 

0,001, interaction housing x age significant, p = 0,011; post-hoc Tukey’s test, p < 0,05). Vertical 

bars are SEM. (B) Example of IGF-1 labelling from fields taken in the layers II/III of the rat 

visual cortex of one P18 EE and one P18 non-EE rat. It is evident the increase in IGF-1 positive 

cells caused by EE. Calibration bar: 50 µm.   
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IGF-1 administration in the visual cortex accelerates visual acuity 

development 

 

We assessed whether an increase in IGF-1 levels in the visual cortex of non-EE rats from 

P18 to P25, achieved by infusing exogenous IGF-1 in the visual cortex, mimics EE effects on 

visual acuity development. IGF-1 (1µg/µl) was infused by a minipump connected to a cannula 

implanted 1 mm lateral to lambda (Pizzorusso et al., 1999; Lodovichi et al., 2000; Di Cristo et al., 

2001). Visual acuity was assessed by VEP recordings at P25, after a week of IGF-1 treatment 

(Fig. 5, 6). As control, animals implanted at P18 with PBS filled minipumps and recorded at P25 

were used. Two other groups of animals were recorded at P25, animals reared in standard cages 

(non-EE rats) and animals reared from birth in enriched cages (EE rats), to compare the effects of 

IGF-1 infusion with those of EE.  

The diffusion of IGF-1 to the binocular portion of the primary visual cortex (Oc1B), 

where VEPs were recorded from, was assessed immunohistochemically at P25 in 4 animals 

infused with IGF-1 from P18 evaluating the number of IGF-1 positive cells in Oc1B; for 

comparison, the contralateral cortex, infused with PBS, was used. We found that the density of 

IGF-1 positive cells (number of IGF-1 positive cells divided by number of neurons (NeuN 

positive cells) is significantly increased in the IGF-1 treated Oc1B with respect to the 

contralateral Oc1B (paired t-test, p < 0,05) and the number of NeuN positive cells is not 

increased (paired t-test, p= 0,884). A higher IGF-1 labeling was still visually detectable in visual 

areas more lateral than Oc1B.  

We found that IGF-1 accelerates visual acuity development (Fig. 5, 6); indeed visual 

acuity of P25 IGF-1 treated animals (0,9 ± 0,08 c/deg, N = 5) is significantly higher than non-EE 

vehicle treated (0,67 ± 0,03 c/deg, N = 6) or untreated animals (0,63 ± 0,01 c/deg, N = 7) (One 

Way ANOVA, p < 0,001; post-hoc Tukey’s test, p < 0,01 for IGF-1 vs vehicle treated rats and 

vehicle treated vs EE rats; p < 0,001 for IGF-1 treated vs non-EE rats and non-EE vs EE rats); the 

latter two do not differ (One Way ANOVA p < 0,001, post-hoc Tukey’s test p > 0,05; Fig. 6B); 

the effects of IGF-1 treatment are comparable with those produced by EE: visual acuity of P25 

IGF-1 treated rats does not differ from that of P25 EE rats (0,93 ± 0,03 c/deg, N = 4, One Way 

ANOVA p < 0,001, post-hoc Tukey’s test p > 0,05; Fig. 6B).  
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Figure 5: IGF-1 administration in the visual cortex accelerates visual acuity development. 

(A) Experimental protocol. (B) Left, schematic representation of minipump implant and 

recording site for Visual Evoked Potentials (VEPs). Right, representative waveforms of VEP 

recorded from Oc1B in response to visual stimulation with gratings sinuosoidally modulated in 

contrats at 1 Hz. (C) Example of visual acuity estimated in one IGF-1 (red) and one vehicle (light 

blue) treated animal. Experimental points are VEP amplitudes normalized to the mean amplitude 

of VEP at 0,2 c/deg; thick lines are linear fits to the data. Estimated visual acuities (arrows) are 

taken as the extrapolation to 0 level of the fitting line. Waveforms above the graph are the VEP 

recordings obtained at 0,2 and 0,5 c/deg for the IGF-1 (red) and the vehicle (PBS) treated animal 

(light blue). It is evident that at the higher spatial frequency response is obtained only in the IGF-

1 treated rat.  
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Figure 6: IGF-1 administration in the visual cortex accelerates visual acuity development.  
(A) Experimental protocol. (B) Left, schematic representation of minipump implant and 

recording site for Visual Evoked Potentials (VEPs). Right, representative waveforms of VEP 

recorded from Oc1B in response to visual stimulation with gratings sinuosoidally modulated in 

contrats at 1 Hz.(C) Summary of visual acuity in all groups. Data are mean visual acuity and 

vertical bars represent SEM. Visual acuity of non-EE IGF-1 treated animals (IGF-1, 0,9 ± 0,08 

c/deg, N = 5) is significantly higher than in non-EE vehicle treated animals (PBS, 0,67 ± 0,03 

c/deg, N = 6) or in non-EE untreated animals (non-EE 0,63 ± 0,01 c/deg, N = 7); the latter two do 

not differ (One Way ANOVA, p < 0,001; post-hoc Tukey’s test, significance level 0,05). The 

visual acuity in non-EE IGF-1 treated rats do not differ from that in P25 EE rats (EE, 0,93 ± 0,03, 

N = 4) (One Way ANOVA, post-hoc Tukey’s test p > 0,05). Asterisks denote significant 

difference (two asterisks, p < 0,01, three asterisks p < 0,001). 
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Block of IGF-1 in the visual cortex prevents the acceleration of visual acuity 

development in enriched animals 
 

To assess if IGF-1 is a crucial factor mediating EE effect on visual acuity development, 

we performed also the experiment of antagonizing IGF-1 action in EE rats. IGF-1 action was 

antagonized in the visual cortex from P18 to P25 infusing the IGF-1 receptor antagonist JB1 (Fig. 

7, 8) (concentration in the minipump 10 µg/ml, as in Fernandez et al., 1997). JB1 has been 

repeatedly used to block IGF-1 (Pietrzkowski et al., 1992; Pietrzkowski et al., 1993; Camarero et 

al., 2003) and in particular in the CNS (Fernandez et al., 1997; Carro et al., 2000). In JB1 treated 

EE animals we have measured visual acuity at P25 to assess whether antagonizing IGF-1 blocked 

EE action on visual acuity development. As control, EE animals implanted with PBS containing 

minipumps were recorded at P25.  

To control for possible adverse effects of antagonizing IGF-1 action with JB1 on visual 

cortical neurons, we have assessed the density of NeuN positive cells at P25 in 5 animals 

implanted at P18 with a JB1 filled minipump in one cortex and with a PBS filled minipump in the 

contralateral cortex. We found that neuronal density in the JB1 treated Oc1B (2661 ± 44 

NeuN+cells/mm2) does not differ from that in the contralateral Oc1B (2602 ± 63 

NeuN+cells/mm2, paired t-test p = 0,532); neither the density in the JB1 treated nor that in the 

PBS treated Oc1B differ from that in Oc1B of untreated of P25 rats (2440 ± 91 NeuN+/mm2, One 

Way ANOVA, p =  0,107). The cortical thickness in Oc1B is not affected by JB1 treatment (JB1 

treated cortex: 0,915 ± 0,02 mm; PBS treated cortex: 0,87 ± 0,01 mm, paired t-test, p = 0,052). 

We also recorded non-EE animals implanted with JB1 filled minipumps from P18 to P25 (N = 4, 

recordings at P25) and from P21 to P28 (N = 4, recordings at P28). We found no difference 

between visual acuity assessed in these two groups of animals and the visual acuity assessed in 

non-EE rats of the same age (JB1 treated P25 non-EE, 0,57 ± 0,04 c/deg, untreated P25 non-EE 

(same data as for Fig. 2) 0,63 ± 0,01 c/deg, p = 0,12, t-test; JB1 treated P28 non-EE rats, 0,75 ± 

0,03 c/deg, untreated P28 non-EE-rats (N = 3), 0,79 ± 0,01 c/deg, p = 0,263, t-test). Thus, JB1 

treatment, at the concentration employed by us, does not seem to have negative effects on the 

visual cortex. 

JB1 treatment blocks EE effects on visual acuity maturation. As shown in Fig. 8, visual 

acuity of P25 JB1 treated EE animals (0,55 ± 0,05 c/deg, N = 5) is significantly lower than in P25 
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EE animals either treated with vehicle (0,81 ± 0,07 c/deg, N = 4) or untreated (0,93 ± 0,03 c/deg, 

N = 4, same data as for Fig. 6B) and does not differ from the visual acuity of P25 non-EE rats 

(0,63 ± 0,01c/deg, N = 7, same data as for Fig. 6B) (One Way ANOVA, p < 0,001, post-hoc 

Tukey’s test, EE untreated vs EE JB1 treated rats, p < 0,001, EE vehicle treated vs EE JB1 treated 

rats, p < 0,01, EE JB1 treated vs non-EE rats, p > 0,05, EE vs EE vehicle treated rats, p > 0,05).  

Thus, antagonizing IGF-1 action completely prevents EE effects on visual acuity 

development.  
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Figure 7: IGF-1 blockade prevents the acceleration of visual acuity development in enriched 

animals.  

(A) Experimental protocol and schematic representation of minipump implant and recording site 

for VEPs. (B) Example of visual acuity estimated in one JB1 treated EE rat (EE-JB1, blue) and 

one vehicle treated EE animal (EE-PBS, green). Experimental points are normalized VEP 

amplitudes; thick lines are linear fits to the data. Estimated visual acuities are indicated by 

arrows. Waveforms above the graph are VEPs recorded in response to visual stimulation with 

gratings of spatial frequencies 0,2 and 0,5 c/deg for the JB1 treated (blue) and the vehicle treated 

EE animal (green). It is evident that at the higher spatial frequency a response is obtained only in 

the vehicle treated EE rat.  
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Figure 8: IGF-1 blockade prevents the acceleration of visual acuity development in enriched 

animals. 

 (A) Experimental protocol performed and schematic representation of minipump implant and 

recording site for VEPs. (B) Summary of mean visual acuity in all JB1 (0,55 ± 0,05 c/deg, N = 5) 

and PBS treated (0,81 ± 0,07 c/deg, N = 4) P25 EE animals; data for P25 EE and non-EE rats are 

replotted from Fig. 6B for comparison. Vertical bars represent SEM. Visual acuity of JB1 treated 

EE animals is significantly lower than in EE animals either treated with vehicle or untreated and 

does not differ from the visual acuity of P25 non-EE rats (One Way ANOVA, p < 0,001; post-

hoc Tukey’s test, significance level 0,05). Asterisks denote significant difference (one asterisk, p 

< 0,05; two asterisks, p < 0,01; three asterisks, p < 0,001).  
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IGF-1 affects the density of inhibitory synapses and of perineuronal nets in the 

visual cortex  

 
How could IGF-1 increase mediate EE effects on visual acuity development? One factor 

which is likely to be relevant for visual acuity development is the intracortical inhibitory tone. 

The increase of visual acuity is well correlated with a decrease of mean receptive field size of 

neurons in the primary visual cortex (Fagiolini et al., 1994) and with the postnatal development 

of intracortical inhibition (Wolff et al., 1984; Huang et al., 1999; Morales et al., 2002) which 

plays a crucial role in shaping visual cortical receptive fields (Sillito et al., 1975; Hensch et al., 

1998). Visual deprivation, which prevents visual acuity development (Fagiolini et al., 1994), also 

affects the developmental increase of GABAergic inhibition (Benevento et al., 1995; Morales et 

al., 2002; Gianfranceschi et al., 2003). BDNF overexpressing mice, which exhibit a precocious 

development of intracortical inhibition, also show an accelerated development of visual acuity 

(Huang et al., 1999). EE, which accelerates visual acuity development (Cancedda et al., 2004; 

Landi et al., 2007) and prevents dark rearing effects on visual acuity (Bartoletti et al., 2004), also 

affects the developmental expression of GAD65/67 (Cancedda et al., 2004) and prevents DR 

effects on intracortical inhibition development (Bartoletti et al., 2004). 

We have therefore investigated whether the development of GABAergic intracortical 

inhibition was affected by IGF-1 infusion in the visual cortex assessing the presence of 

perisomatic inhibitory innervation (Huang et al., 1999). Perisomatic innervation mediated by 

basket interneurons, which constitutes up to 50% of GABAergic interneurons in the visual cortex, 

is likely a component of the overall developmental maturation of GABAergic innervation in the 

primary visual cortex and has been previously used to characterize intracortical inhibition 

development (Huang et al., 1999, Bartoletti et al., 2004, Chattopadhyaya et al., 2004). Huang et 

al. (1999) found that the development of GABAergic perisomatic inhibition is not completed 

before the fifth postnatal week. We have quantified the expression of GAD65 in the presynaptic 

boutons of GABAgergic interneurons around the soma of target neurons (perisomatic puncta 

rings, (Huang et al., 1999, Bartoletti et al., 2004) at P25, the age of visual acuity assessment, in 

non-EE animals (N = 7) implanted at P18 with an IGF-1 filled minipump in one cortex and a PBS 

filled minipump in the contralateral cortex and in EE animals (N = 5) implanted at P18 with JB1 

filled minipump in one cortex and a PBS filled minipump in the contralateral cortex. We have 
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found that GAD65 immunoreactivity in puncta rings was significantly higher in the visual cortex 

treated with IGF-1 than in the PBS treated cortex (paired t-test, p < 0,05, one asterisk) (Fig. 9A, 

right, light bar), while it was significantly lower in the visual cortex treated with JB1 than in the 

PBS treated cortex (paired t-test, p < 0,05, one asterisk) (Fig. 9A, right, dark bar). 

 Thus, IGF-1 increase could be a mediator of EE effects on visual acuity development via 

an effect on inhibitory system development. To assess whether this IGF-1 action on inhibitory 

interneurons could be direct or indirect, we determined the presence of IGF-1 receptor on 

GABAergic interneurons both at P18 and at P25, the beginning and the end of our IGF-1 

treatment. IGF-1 receptor is abundantly expressed in the visual cortex at both ages (Fig. 11). To 

quantify its presence on GABAergic interneurons we performed a double stain for IGF-1 receptor 

and GAD67, one of the GABA biosynthetic enzymes (Fig. 12A). We found that both at P18 and 

at P25 the great majority of GAD67 positive interneurons (96% at P18, 76% at P25, no 

significant difference, Mann-Whitney Rank sum test, p > 0,05 ) were also positive for IGF-1 

receptor labelling. Thus, a direct effect of IGF-1 on GABAergic interneurons is possible. The 

maturation of visual acuity is correlated with the developmental decline of plasticity in the visual 

cortex (Berardi et al., 2000). We have recently shown (Bartoletti et al., 2004) that EE is able to 

prevent dark rearing effects on the developmental organization into perineuronal nets (PNNs) of 

Chondroitin Sulphate Proteoglycans (CSPGs), components of the extracellular matrix recently 

shown to be non permissive factors for visual cortical plasticity (Pizzorusso et al., 2002, 2006). 

Moreover, EE affects the developmental time course of synaptic plasticity in the visual cortex 

(Cancedda et al., 2004) and counteracts dark rearing effects on the critical period for ocular 

dominance plasticity. Tropea et al. 2006 have shown that IGF-1 is involved in ocular dominance 

plasticity.  

We have therefore investigated whether IGF-1 increase in standard animals or IGF-1 

blockade in EE animals, around P18 affects PNN development.  

The density of PNN surrounded neurons increases from P22 to P70 (Pizzorusso et al., 

2002). We examined PNN formation using Wisteria floribunda lectin (WFA) as in (Pizzorusso et 

al., 2002); the density of PNN surrounded cells has been determined at P25 in non-EE animals (N 

= 5) implanted at P18 with an IGF-1 filled minipump in one cortex and a PBS filled minipump in 

the contralateral cortex and in EE animals (N = 6) implanted at P18 with an IGF-1 filled 

minipump in one cortex and a PBS filled minipump in the contralateral cortex. We have found 

that the density of PNN surrounded cells (number of normalized to NeuN positive cells was 
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significantly higher in the IGF-1 treated cortex than in the contralateral cortex (paired t-test; 

p<0,005 two asterisks) (Fig. 10B, right, leftmost), while it was significantly lower in the visual 

cortex treated with JB1 than in the PBS treated cortex (paired t-test, p < 0,05, one asterisk) (Fig. 

10B, right, rightmost). Thus, IGF-1 is able to affect PNN development and, through this effect, 

could contribute to EE action on visual cortex experience dependent plasticity. 

To assess whether this IGF-1 action on PNN surrounded interneurons was direct or 

indirect, we determined the presence of IGF-1 receptor on PNN surrounded interneurons both at 

P18 and at P25. We performed a double stain for IGF-1 receptor and WFA, to label PNNs (Fig. 

12B). We found that both at P18 and at P25 a large proportion of WFA positive interneurons 

(64% at P18, 50% at P25, p = 0,03, Mann-Whitney Rank sum test) were also positive for IGF-1 

receptor labelling. Thus, a direct effect of IGF-1 on PNN surrounded interneurons is possible. 
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Figure 9: IGF-1 affects intracortical inhibition in the developing visual cortex. 

 (A) Left, representative example of GAD65 immunoreactivity in the rat visual cortex at P25. It is 

evident the punctate nature of the staining around cell bodies (puncta-ring). To quantify GAD65 

immunoreactivity in puncta rings, immunofluorescence in puncta ring was normalized to 

background signal. Calibration bar 20 µm. Right: light bar: percentage variation of GAD65 

puncta ring immunoreactivity between the cortex implanted at P18 with a IGF-1 filled minipump 

and the cortex implanted with a PBS filled minipump in P25 non-EE animals (N = 7). Percentage 

variation computed as [GAD65 immunoreactivity in IGF-1 treated/ (GAD65 immunoreactivity in 

PBS treated cortex –1)]x 100. GAD65 immunoreactivity is significantly higher in the IGF-1 

treated than in the PBS treated cortex (paired t-test, p < 0,05, one asterisk). Right, dark bar: 

percentage variation of GAD65 puncta ring immunoreactivity between the cortex implanted at 

P18 with a JB1 filled minipump and the cortex implanted with a PBS filled minipump in P25 EE 

animals (N = 5). Percentage variation computed as [GAD65 immunoreactivity in JB1 treated/ 

(GAD65 immunoreactivity in PBS treated cortex –1)]x 100. GAD65 immunoreactivity is 

significantly lower in the JB1 treated than in the PBS treated cortex (paired t-test, p < 0,05, one 

asterisk). Vertical bars indicate SEM.  
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Figure 10: IGF-1 mediates the increase in the density of perineuronal nets (PNNs) produced 

by EE in the visual cortex.  

(A) Representative example of WFA staining (green) and NeuN staining (red) merged image in 

the rat visual cortex at P25. WFA stained PNN completely surround cortical neurons. Calibration 

bar 50 µm. (B) Left: PNN surrounded cells (WFA positive cells/NeuN positive cells) are more 

numerous in the visual cortex treated from P18 to P25 with IGF-1 than in the contralateral, PBS 

treated cortex of non-EE animals (N = 5 animals, paired t-test, p < 0,01, two asterisks). Right: 

PNN surrounded cells (WFA positive cells/NeuN positive cells) are less numerous in the visual 

cortex treated from P18 to P25 with JB1 than in the contralateral, PBS treated cortex of EE 

animals (N = 6 animals, paired t-test, p < 0,05, one asterisks). Vertical bars represent SEM. 
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Figure 11: Immunoreactivity for IGF-1R in the developing visual cortex. 

Representative example of staining for IGF-1 receptor in the visual cortex of a P18 and a P25 rat. 

Microphotographs from layers II-III. Images were acquired at 20 X (N.A.= 0,7, field 707 x 707 

µm acquired at 1024 x 1024 pixels). Calibration bar 50 µm. It is evident that IGF-1 receptor is 

abundantly expressed in the visual cortex during this developmental period.  
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Figure 12: IGF-1R colocalization with PNNs and GAD67 immunopositive neurons. 

 (A) Left, representative example of GAD67 staining red, IGF-1R staining gree, merged image in 

the rat visual cortex at P18. Right, representative example of GAD67 staining red, IGF-1R 

staining green, merged image in the rat visual  cortex at P25. At P18 96% of inhibitory 

interneurons  GAD67 immunopositive express also IGF-1R while at P25 the value is 76%. Scale 

bar: 50 µm. (B) Left, representative example of WFA staining green, IGF-1R staining red, 

merged image in the rat visual cortex at P18. Right, representative example of WFA staining 

green, IGF-1R staining red, merged image in the rat visual cortex at P25. At P18 64% of neurons 

surrounded by PNN express also IGF-1R, while at P25 the value is 47% . Calibration bar 25 µm.  
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Enrichment up to P12: effects on visual cortex IGF-1 levels and visual acuity 

development 

 
 

Cancedda et al., (2004) demonstrated that EE, which causes a precocious increase of 

visual acuity at P25, has a very precocious effect on BDNF expression in the visual cortex; 

indeed, EE pups show a significant increase in BDNF protein at P7 and of GAD65/67 at P7 and 

P15.  

However it is not known if these precocious effects of EE can trigger the increase in IGF-

1 levels observed in the visual cortex of EE animals at P18 and documented in the previous 

section. To answer this question we reared rats in EE up to P12, and then moved litter and mother 

in a standard cage. At P18 we analyzed by immunohistochemistry IGF-1 cortical levels in EE and 

non-EE animals. We found that in P18 rats exposed to EE up to P12 (N = 4) the density of IGF-1 

positive cells (0,397 ± 0,018 IGF-1 positive cells/Neu N positive cells) shows a small increase 

with respect to non-EE P18 rats (N = 8, mean number of IGF-1 positive cells/Neu N positive 

cells 0,368 ± 0,017) which, however, is not significant (One Way ANOVA, post-hoc Tukey’s 

test, p > 0,05) (Fig. 13).  

To understand whether in absence of a significant increase of IGF-1 at P18 exposure to 

EE up to P12 was sufficient to trigger the increase in visual acuity at P25 caused by continuous 

exposure to EE we reared rats in EE up to P12 and at P25 we assessed their visual acuity by VEP 

recordings (Fig. 14). We found that visual acuity in P25 rats exposed to EE up to P12 is 

significantly higher (Fig. 14, 0,73 c/deg ± 0,02, N = 4) with respect to P25 non-EE rats (0,63 

c/deg ± 0,01, N = 7, same date as for Fig. 6B); however, it is significantly lower with respect to 

P25 EE rats (0,93 c/deg ± 0,03, N = 4, same data as for figure 6B) (One Way ANOVA, p < 

0,001, post-hoc Tukey’s test, EE up to P12 vs non-EE, p < 0,05, EE vs EE up to P12, p < 0,05).  

An interesting finding to point out is that the visual acuity of P25 rats enriched up to P12 

correspond to the visual acuity of non-EE rats exposed to artificial stimulation mimicking 

increased maternal cares observed in EE from P1 to P12 (Baldini S., Baroncelli L., Ciucci F., 

Putignano E., Sale A., Berardi N., Maffei L. unpublished results).   

The observation that visual acuity at P25 in animals exposed to EE up to P12 is lower 

than that of animals exposed to EE up to P25 suggest that effects of early EE exposure on 
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molecular events in the visual cortex are not enough to induce the increase in visual acuity at P25 

found in animals exposed to a continuous EE. Some later occurring events, necessary for the 

completion of visual acuity development acceleration, are missing in animals EE up to P12.  

We think that lack of significant IGF-1 increase at P18 is one of the events missing, 

although we cannot say it is the only one.  

 

P18

0,2

0,25

0,3

0,35

0,4

0,45

0,5

EE EE P12 non-EE

*

IG
F-

1+
ce

lls
/N

eu
N

+
ce

lls

P18

0,2

0,25

0,3

0,35

0,4

0,45

0,5

EE EE P12 non-EE

*

IG
F-

1+
ce

lls
/N

eu
N

+
ce

lls

0,2

0,25

0,3

0,35

0,4

0,45

0,5

EE EE P12 non-EE

*

IG
F-

1+
ce

lls
/N

eu
N

+
ce

lls

 
 

Figure 13: Enrichment up to P12: effects on visual cortex IGF-1 levels.  

Mean number of IGF-1 immunopositive cells normalized to the number of neurons (NeuN 

positive cells) in the visual cortex of P18 rats (rats enriched up to P12, EE rats, 0,44 ± 0,01 IGF-

1/ Neu N cells, N = 10; rats enriched up to P12 (EE P12), 0,397 ± 0,018 IGF-1/ Neu N cells, N = 

4; non-EE rats, 0,368 ± 0,017 IGF-1/ Neu N cells, N = 8). Data for EE rats and non-EE rats are 

replotted from Fig. 4A. Vertical bars represent SEM. In P18 rats exposed to EE up to P12 the 

density of IGF-1 positive cells shows a small increase with respect to non-EE P18 rats which, 

however, is not significant (One Way ANOVA, post-hoc Tukey’s test, p > 0,05). 
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Figure 14: Enrichment up to P12: Effects on visual acuity development.  

Mean visual acuity at P25 for EE rats (0,93 ± 0,03 c/deg, N =  4), EE P12 rats (0,73 ± 0,02 c/deg, 

N = 4) and non-EE rats (0,63 ± 0,01 c/deg, N = 7). Vertical bars represent SEM. Visual acuity in 

P25 rats exposed to EE up to P12 is significantly higher with respect to that of P25 non-EE rats, 

but is significantly lower with respect to that of P25 EE rats (One Way ANOVA, p < 0,001; post-

hoc Tukey’s test, significant level p < 0,05). Asterisk denote significant difference (p < 0,001). 
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PART II: IGF-1 mediates the effects of enriched environment on 
retinal development 

 

 

Previous works (Cancedda et al., 2004; Bartoletti at al., 2004) demonstrated that EE 

affects development and plasticity of the visual cortex. Results obtained in this thesis suggest that 

IGF-1 is a key factor mediating these EE effects on visual cortex development.  

Landi et al. (2007) have shown that also retina, considered less plastic than cortex, is 

sensitive to enriched environment which accelerates its development at a functional and 

anatomical level. However the visual cortex and the retina show two different responses  to 

enriched living condition. In particular, exposure of rats to EE just for the first 10 postnatal days 

produces in the retina an accelerated maturation equal to that observed after a period of 

enrichment until P45 (Landi et al., 2007). On the other hand, a similar early enrichment produces 

in the visual  cortex only a partial effect on visual acuity and on IGF-1 labelling development. 

These results suggest that the effects elicited by EE on the retina are principally mediated 

by molecular factors the expression of which is influenced precociously,  likely dependent on the 

enrichment of the mother; the molecular events triggered by EE to promote visual acuity 

development are dependent also from the interaction of pups with the richness of the 

environment. 

To clarify if the same molecules which mediate EE effects on visual cortical development 

are  at work also in the retina, we investigated the role of IGF-1 in retinal development. 

 

 

Prenatal enrichment affects IGF-1 levels in the milk and in the pup retina 
 

The final number of RGCs in the adult is the result of a period of RGCs overproduction, 

followed by a process of programmed cell death (called “apoptosis”).  We demonstrated that at 

embryonic day 18 (E18) and E20 the number of apoptotic cells was 70% higher in EE with 

respect to non-EE fetuses, and lower in EE compared to non-EE pups at postnatal day 1 (P1), 

when the peak of natural cell death is typically seen (Perry et al., 1983; Horsburgh and Sefton, 

1987) (Fig. 15). These results demonstrated that maternal enrichment accelerates the temporal 

dynamics of RGC death in EC animals. 
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 All these effects seems to be mediate by IGF-1; in fact while the blockade of its action in 

the EE pregnant females prevents the effects of maternal enrichment on RGC programmed cell 

death, chronic IGF-1 administration to standard-reared females mimics them (Sale A., Cenni 

MC., Ciucci F., Putignano E., Chierzi S., Maffei L., unpublished data).  

These precocious effects of EE on fetal development could be imputed to a different 

supply of nutrients, including hormones, provided by EE mothers to the fetus during pregnancy, 

throughout placental exchanges: the enriched living condition of the mothers during pregnancy, 

with increase physical activity and sensorial social stimulation, could affect the production of  

factors potentially important for visual system development, such as growth factors crossing the 

placental barrier or present in maternal milk, that are involved in the regulation of the 

development.  

Since it is known that differences in blood-borne IGF-1 are difficult to detect because of  

its uptake by the tissues (Carro et al., 2000), we measured IGF-1 levels in the brain and in the 

milk of EE and non-EE pregnant rats. We found higher levels of IGF-1 in the brain of EE 

compared to SC pregnant rats. Milk is the sole source of nutrition for the neonatal rat for at least 

the first 2 weeks postpartum and IGF-1 is known to be present in the rat maternal milk (Donovan 

et al., 1991; Olanrewaju et al., 1996). We studied whether different levels of IGF-1 were 

provided to EE and non-EE pups through maternal milk investigating IGF-1 concentration in the 

gastric content of EE and non-EE suckling pups during the first ten postnatal days, using RIA. 

We found enhanced levels of IGF-1 in the milk of EE pups at P1, but not at P10 (Fig. 16).  This 

result indicates increased concentration of IGF-1 in EE maternal milk as a possible postnatal 

source mediating the effects of early EE on the offspring nervous system development.  

The increment if IGF-1 detected in the mother was found also in the offspring. In 

particular, we have shown that IGF-1 protein levels are increased in RGC layer of  E15, E18 and 

P1 of enriched animals (Two-ways ANOVA showed an effect of age (p < 0,001) and housing 

condition (p < 0001). T -test with Bonferroni correction revealed a statistical difference between 

EE and non-EE groups at E15 (p=0,009), E18 (p < 0,01) but not at P1 (p=0,025) and at P10 

(p=0,319) (Fig. 17). We found that IGF-1 expression is developmentally regulated in the  RGC 

layer progressively increasing during late embryonic life and decreasing in the postnatal period. 
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Fig 15: Accelerated natural cell death in the RGC layer of EE rats.  
RGC layer apoptotic cell number in EE and non-EE rats, analyzed at the indicated ages with the 

Tunel method (A) and with cresyl violet staining of whole-mount retinas (B). With both methods, 

two-ways ANOVA showed an effect of age (p < 0,001) and housing condition (p < 0,05) and a 

significant age x housing condition interaction (p < 0,001). Mann-Whitney rank sum test with 

Bonferroni correction revealed a difference between EE and non-EE at E18, E20 and P1 (p < 

0,001) for the Tunel method, and at E18 and P1 (p = 0,002) for cresyl violet staining.  
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Figure 16: Increased IGF-1 concentration in maternal milk. 

RIA determination of IGF-1 concentration in the milk of non-EE and EE suckling pups: two-

ways ANOVA showed a significant age x housing condition interaction (p < 0,05). post-hoc 

Tukey’s test revealed a difference at P1 (p < 0,05), but not at P10 (p = 0,258) between EE and 

non-EE groups. Bars indicate SEM.  
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Fig 17:  Enhanced IGF-1 expression in the RGC layer of EE rats.  

(A) Micrographs of EE and non-EE retinal sections immunostained for IGF-1 at different ages. 

IGF-1 was increased in EE rats at E15, E18 and P1. Scale bar: 50 µm. (B) Quantitative analysis 

of IGF-1 immunofluorescence intensity in the RGC layer of non-EE and EE rats. Two-ways 

ANOVA showed an effect of age (p < 0,001) and housing condition (p < 0,001). T-test with 

Bonferroni corrections revealed a statistical difference between EE and non-EE groups at E15 (p 

= 0,009), E18 (p < 0,01) but not at P1 (p = 0,025) and at P10 (p = 0,319).  
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IGF-1 mediates the effects of EE on  retinal acuity maturation  
 

IGF-1 levels of expression, higher in EE pregnant rats, are also enhanced in the offspring 

retina at very early ages.  IGF-1 receptors are present in the retina (Rodrigues et al, 1988; 

Waldbillig et al., 1988) and their expression is regulated in a developmental manner (Frade et 

al.,1996; Lee et al., 1992).  

Here, we were interested to assess whether IGF-1 could be a factor capable of controlling 

also retinal functional development during precocious postnatal (P1-P7) period and to instruct 

eventually the development of the entire visual system. According this line of research, we 

injected rats at P1, P4 and P7 with IGF-1 in one eye and with saline in the other eye. In IGF-1 

injected eyes we have measured acuity at P25 with PERG and as control we recorded the saline 

treated eyes. 

Our results show that IGF-1 strongly affects P-ERG acuity development at P25, the age at which 

we saw an increase in retinal acuity produced by EE (Landi et al., 2007). Indeed retinal acuity of 

P25 IGF-1 treated eyes (0,68 c/deg ± 0,02, N = 5) is significantly higher than acuity of non-EE 

saline treated eyes (0,5 c/deg ± 0,02 in saline-treated eye, N = 3) or untreated eyes (0,51 ± 0,008, 

N = 5) (One Way ANOVA, p < 0,001, post-hoc Tukey’s test, p < 0,001). The latter two do not 

differ  (One Way ANOVA, p < 0,001, post-hoc Tukey’s test, p > 0,05). The effects of IGF-1 

treatment are comparable with  those produced by EE: acuity of IGF-1 treated eyes does not 

differ from acuity of P25 EE eyes (0,68 ± 0,008, N = 5) (One Way ANOVA, p < 0,001, post-hoc 

Tukey’s test,  p > 0,05).  (Fig 18B, left).  

To assess whether IGF-1 is a crucial factor mediating EE effect on retinal acuity 

development, we antagonized IGF-1 action in EE rats. IGF-1 action was inhibited in the retina 

injecting intraocularly EE rats at P1, P4 and P7 with JB1, IGF-1 receptor antagonist, in one eye 

and with saline in the other eye. In JB1 injected animals we have measured retinal acuity at P25 

with PERG and as control we recorded from the saline treated eyes. We found that JB1 treatment 

blocks EE effects on retinal acuity maturation. As shown in 19B, PERG acuity assessed for the 

JB1 treated eyes of EE rats at P25 (0,5 ± 0,02, N = 5) is significantly lower than the acuity 

assessed for the eyes either treated with saline (0,61 ± 0,008, N = 5) or untreated (0,68 ± 0,008, 

N=5, same data as Fig. 18B) of P25 EE rats and does not differ from the PERG acuity for the 

eyes of  P25 non-EE rats (0,51 ± 0,008, N = 5, same data as Fig.18B) (One Way ANOVA, p< 



 113

0,001, post-hoc Tukey’s test, EE untreated eyes vs EE JB1 treated eyes, p<0,001; EE saline 

treated eyes vs EE JB1 treated eyes, p < 0,001; EE JB1  vs non-EE eyes, p > 0,05; EE vs EE 

saline treated eyes, p > 0,05). 

Thus, all these experiments support the hypothesis of IGF-1 role in mediating EE effects 

on retinal maturation.  

To investigate whether the accelerated maturation of the retina induced by IGF-1 

treatment causes an increase in visual acuity assessed at cortical level we recorded  P25 non-EE 

animals intraocularly injected with IGF-1 or saline at P1, P4 and P7. We found that acceleration 

of retinal development does not cause an acceleration of cortical circuit development. Indeed, 

VEP recordings show that the cortex of animals injected with IGF-1 in both eyes is not affected 

by the treatment (Fig. 20): cortical acuity of intraocularly IGF-1 treated rats (0,7 c/deg ± 0.02; N 

= 5) does not differ from that of saline treated animals (0,67 c/deg ± 0.005; N = 3) and from that 

of non-EE untreated animals (0,63 c/deg ± 0.01; N = 7), but is significantly lower than that of EE 

animals (0,93 ± 0,03, N = 4)  (One way ANOVA P<0.001; post-hoc Tukey test, P < 0,05). We 

suggest that retinal functional changes produced by IGF-I effects on RGC circuitry are not 

sufficient to produce the cortical maturation seen in the enriched condition or in the animals 

infused with IGF-1 intracortically.  
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Figure 18: IGF-1 intraocular injections affect retinal acuity development in standard reared 

rats. (A) Schematic protocol of the experiment performed to evaluate the effects of IGF-1 

intraocular injections on retinal acuity development. (B) Effect of IGF-1 treatment  on retinal 

acuity development. Retinal acuity was assessed at P25. Left, mean retinal acuity in all 

experimental groups. The effect of  IGF- 1 is evident:  P-ERG acuity in IGF-1 treated eyes (0,68 

c/deg ± 0.02, N = 5) is higher than in saline treated eyes (0,5 c/deg  ± 0,02, N = 3) or in untreated 

eyes (non-EE) and does not differ from that in EE animals (One Way ANOVA P = 0,002; post-

hoc Tukey’s test, significance level 0,05). Vertical bars represent SEM. Right: results for the 

single animals treated with IGF-1 the mean acuity of which has been reported on the left. Retinal 

acuity of the IGF-1 treated eye (red dots) and of the saline treated eye (blue dots) is reported. The 

acuity of the IGF-1 tretated eye is joined to that of the fellow eye by a dotted line when it was 

possible to record both eyes in the same animal. Black, larger symbols represent the mean of each 

group; vertical bars represent SEM. The acuity of IGF-1 treated eyes is significantly higher than 

that of saline treated eyes (t-test, P = 0,002).  
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Figure  19: IGF-1 blockade prevents the acceleration of retinal acuity development in 

enriched animals. (A) Schematic protocol of the experiment performed to evaluate the effects of 

IGF-1 blockade by JB1 intraocularly injections on retinal acuity development. (B) Effect of JB1 

treatment on retinal acuity development. Retinal acuity was assessed at P25. Left, mean retinal 

acuity in all experimental groups. The effect of JB1 is evident: PERG acuity in JB1 treated eyes 

(0,5 ± 0,02, N = 5) is lower than in saline treated eyes (0,61 ± 0,008, N = 5) or in eyes of EE 

animals and does not differ from that in untreated eyes (non-EE). (One Way ANOVA p < 0,001; 

post hoc-hoc Tukey, significance level 0,05). Vertical bars represent SEM. Right: results for the 

single animals treated with JB1 the mean acuity of which has been reported on ther left. Retinal 

acuity of the JB1 treated eye (dark blue dots) and of the saline treated eye (red dots) is reported. 

The acuity of the JB1 tretaed eye is joined to that of the fellow eye by a dotted line when it was 

possible to record both eyes in the same animals. Black, larger symbols represent the mean of 

each group; verticals bars represent SEM. The acuity of JB1 treated eyes is significantly lower 

than that of saline treataed eye (paired t-test, P = 0,01).  
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Figure 20: IGF-1 intraocular injections do not influence visual cortical acuity development. 

(A) Schematic protocol of the experiment performed to evaluate the role of intraocularly injected 

IGF-1 on visual cortical  acuity development. (B) VEP recordings show that IGF-1 treatment 

does not affect the development of visual cortical acuity assessed at P25, the age at which we see 

a jump in acuity produced by  EE. The acuity of IGF-1 treated animals (0,7 c/deg ± 0,02, N = 5) 

does not differ  from that of saline treated animals (0,67 ± 0,005, N = 3) and from that of non-EE 

untreated animals (0,63 ± 0,01 c/deg, N = 7), but it is significantly lower than that of EE animals 

recoreded for comparison (One Way ANOVA P < 0,001; post-hoc Tukeytest: P < 0,05). 
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Intraocular IGF-1 administration mimics EE effects on BDNF protein levels at 

P10. 
 

Landi et al., 2007 demonstrated that BDNF protein levels are affected by EE in RGC 

layer of developing retina. While in standard rats BDNF protein levels are very low at P14, EE 

rats  show a precocious  BDNF expression: indeed BDNF immunoreactivity is detectable in RGC 

layer already at P7, and it is significantly higher than in non-EE rats at P10.  Moreover, Landi and 

colleagues (2007) found that reduction of BDNF expression during this time of enhanced 

expression by intraocular injections of  BDNF antisense oligonucleotides, prevents EE effects on 

the acceleration of retinal acuity development. Since BDNF is known to be required for EE effect 

on the maturation of RGC functional properties, and IGF-1 mimics this effect, we investigated if 

IGF-1 affected BDNF expression levels in RGC layer.  

EE effects on IGF-1 expression levels are observed between P1 and P10  in RGC layers of 

EE rats and the expression of BDNF is affected by EE in P10 rat retina (Landi et al., 2007), we 

therefore intraocularly injected with IGF-1 non-EE animals at P1, P4 and P7.  

Non-EE pups were injected with IGF-1 in one eye, and with vehicle (saline) in the other 

eye for comparison. BDNF protein levels in RGC layer were then analysed at P10 by 

immunohistochemistry. Our results show that IGF-1 treatment strongly affects BDNF protein 

expression.  In particular, we have found that BDNF immunoreactivity is significant higher in 

RGC layer of IGF-1 treated eyes (1,103 ± 0,003, N = 7) than of saline treated ones (1 ± 0,0033, N 

= 7) (t-test, p < 0,001) (Fig 21B and C left). Conversely, EE pups were  injected with JB1 in one 

eye, and with vehicle (saline) in the other eye for comparison. BDNF protein levels analysed at 

P10 in RGC layer were significantly lower in RGC layer of  JB1 treated eyes (1,002 ± 0,034, N = 

7) respect to saline treated ones (1,104 ± 0,034, N = 5) (t-test, p < 0,001) (Fig 21B and C right). 

Thus, these data show that IGF-1 triggers the enhancement of BDNF expression in RGC 

layer,  mimicking EE effects on retinal development.  
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Figure  21: IGF-1 intraocular injections   increase BDNF protein levels in RGC layer at P10. 

(A) Experimental protocol. (B) Left: P10 Retinal sections microghaphs of non-EE rats 

intraocularly injected with saline or IGF-1. Right: Retinal section micrographs of EE rats 

intraocularly injected with saline or JB1. In both cases, BDNF immunolabeled cells are 

detectable at the level of RGC layer. Scale bar: 50 µm. (C) Left: Quantitative analysis of mean 

BDNF immunofluorescence intensity normalized to background level in RGC layer of non-EE 

rats intraocularly injected with IGF-1 (red) or vehicle (black) and immunostained for BDNF at 

P10. BDNF immunoreactivity is significantly higher in the eyes of IGF-1 non-EE treated rats 

(1,103 ± 0,033, N = 7) respect to those of non-EE saline treated rats (1 ± 0,033, N = 7) (Mann-

Whitney Rank Sum Test; p < 0,001). Vertical bars represent SEM. Right: Quantitative analysis of 

mean BDNF immunofluorescence intensity normalized to background level in RGC layer of EE 

rats intraocularly injected with JB1 (blue) or vehiche (pink) and immunostained for BDNF at 
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P10. BDNF immunoreactivity is significantly lower in the eyes of EE JB1 treated rats (1,002 ± 

0,034, N = 7) respect to those of EE saline treated rats (1,104 ± 0,039, N = 5) (Mann-Whitney 

Rank Sum Test; p < 0,001). Vertical bars represent SEM. 
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DISCUSSION 

Enriched environment is a powerful experimental paradigm which deeply affects brain 

plasticity processes, in development and adult life. Important results about the consequences of 

exposing animals to enriched living conditions during development come recently from our 

laboratory. It has been demonstrated that EE accelerates visual system development both at 

cortical and retinal level (Cancedda et al., 2004; Sale et al., 2004; Landi et al., 2007) and 

prevents dark rearing effects on visual cortex maturation (Bartoletti et al., 2004).  At molecular 

and cellular level,  EE enhances levels of intracortical inhibition, affecting GAD67 and 65 

expression and prevents dark rearing effects on the developmental organization into perineuronal 

nets (PNNs) of chondroitin sulphate proteoglycans (CSPGs); promotes an earlier developmental 

time course of BDNF and of CRE-mediated gene expression (Cancedda et al., 2004; Bartoletti et 

al., 2004; Landi et al., 2007). However, is still poorly understood how environmental experience  

exerts its strong effects on visual system development. The topic of this thesis is  to gain insight 

into the molecular mediators triggering the faster  maturation of visual cortex and retina under 

enriched conditions and to investigate if the changes detected in these two different centres of 

the visual system in response to enriched environment stimulation are dependent on the same 

molecular mediators. We focused our attention on IGF-1, a molecule increased by physical 

exercise and EE (Carro et al., 2000) and able to increase the expression of factors, such as BDNF 

(Cotman and Berchtold, 2002) important for visual cortical and retinal plasticity such as BDNF 

(Landi et al., 2007).  

Our most relevant finding is that IGF-1 mediates the effects of EE on retinal and on visual 

cortical development.  

At retinal level, IGF-1 is the mediator of the acceleration of the pattern of retinal ganglion 

cell migration and death in the fetus and of the accelerated development of retinal acuity in 

postnatal rats. Its action may be exerted through retinal BDNF: indeed, IGF-1 induces in non EE 

rats an increase of BDNF expression at P10, as observed in EE rats (Landi et al., 2007) and block 

of IGF-1 in EE rats prevents both EE induced retinal BDNF increase and accelerated retinal 

acuity development.  

At cortical level, IGF-1 mediates EE effects on visual acuity development in postnatal 

rats. IGF-1 action may be exerted through the control on inhibitory circuitry maturation and the 

development of PNNs. 
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A totally new finding is the identification of the specific developmental time windows in 

which EE elicits the molecular changes responsible for its effects on visual cortex and retina 

maturation.  

Early (up to P10) exposure to enrichment, which causes an increase of retinal IGF-1 

around P0 and of BDNF around P10, is sufficient to trigger the acceleration of retinal acuity 

maturation similar to that observed at P25 in EE animals continuously exposed to EE (Landi et 

al., 2007). On the contrary, early enrichment is sufficient to increase BDNF and GAD65/67 at P7 

in the visual cortex, but it produces a small increment in IGF-1 cortical levels at P18 and only 

partially reproduces the effects of continuous exposure to EE on visual cortical acuity recorded at 

P25. 

 

 

  

IGF-1 mediates the effects of EE on  visual cortical development 
 

 

EE affects the developmental time course of IGF-1 levels in the developing visual cortex  

 
Pioneering work of Carro and colleagues. 2000, demonstrated for the first time that wheel 

running produces an increment of circulating IGF-1 and of its brain uptake affecting different 

cerebral areas. This, and following works (Trejo et al., 2001 and Carro et al., 2001) pointed out to 

IGF-1 as one of the major mediator of the neuroprotective effects produced by physical exercise 

in the adult brain. Running induces uptake of IGF-1 by specific groups of neurons (Carro et al., 

2000) and increases IGF-1 expression in the hippocampus (Ding et al., 2006). Recently, IGF-1 

has been shown to mediate in the adult the protective effects of EE on neuronal death (Koopmans 

et al., 2006). Interestingly, it has been demonstrated that also environmental enrichment affects 

IGF-1 pathway: EE has been shown to up-regulate IGF-1 receptor gene in the adult rat 

hippocampus and sensorimotor cortex (Keyvani et al., 2004).  

To analyze whether EE was able to affect IGF-1 levels in the brain during development 

we analyzed IGF-1 protein levels in the visual cortex of EE and non-EE animals at different ages. 

The presence and development of IGF-1 levels protein in the visual cortex and the 

possible functional involvement of IGF-1 in experience – dependent plasticity evoked by EE has 



 122

not been examined to date. Previous studies analyzed IGF-1 expression pattern at the level of 

visual system, but only in peripheral and sub cortical structures  (Bondy et al., 1991). IGF-1 

expression in the developing brain is generally transient and different regions show different time 

courses of IGF-1 developmental expression; in each system, IGF-1 expression appears during 

relatively late stages of their development, at a time of maturation of dendrites and synapse 

formation (Bondy, 1991). We found that IGF-1 protein expression in the visual cortex increases 

between P15 and P21, a period of active synaptogenesis in all cortical layers (Miller et al., 1986) 

and which corresponds to the beginning of the critical period for experience-dependent 

remodelling of visual connections in the rat (Fagiolini et al., 1994). This is consistent also with 

the role for IGF-1 in experience-dependent visual cortical plasticity suggested by (Tropea et al., 

2006) which show an up-regulation of insulin-like growth factor 1 binding protein 5 (IGFBP-5) 

and a downregulation of IGF-1R after monocular deprivation.  

The first indication that IGF-1 might be involved in the effects produced by EE on the 

developing visual cortex is that IGF-1 expression in the visual cortex is affected by EE. In 

particular, IGF-1 immunoreactivity at P18 is higher in rats exposed to EE (EE rats) than in non-

EE rats.  

At all ages, the great majority of IGF-1 positive cells are neurons. The number of NeuN 

positive cells is not increased by EE; therefore the increase in the density of IGF-1 positive 

neurons in EE animals is due to an increased presence of IGF-1 labelled neuronal cells, not to an 

increase in the density of neurons. Also the density of IGF-1 positive inhibitory interneurons in 

the visual cortex is significantly increased by EE at P18. Thus, we show for the first time that 

IGF-1 presence in the developing visual cortex is sensitive to the experience provided by EE and 

that both excitatory neurons and inhibitory interneurons could be potentially affected by IGF-1 

increase. 

During development, IGF-1 expression in neurons is well documented (Bondy, 1991; 

Bondy et al., 1992). The effects of EE on IGF-1 protein levels in the visual cortex could therefore 

be attributed to an increased IGF-1 mRNA expression in the visual cortex. However, we cannot 

exclude a contribution to the increased IGF-1 immunoreactivity found in P18 EE rats from an 

increase in circulating IGF-1, a decrease in IGF-1 binding protein (Tropea et al., 2006) or an 

increase in IGF-1 receptors on visual cortical neurons. 
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IGF-1 mediates the effects of EE on visual cortical development 

 

To assess if the enhanced IGF-1 levels we observed in the visual cortex of enriched rats 

are responsible for the acceleration of visual acuity development evoked by EE we performed 

two mirror experiment.  On one hand, we mimicked IGF-1 increase infusing exogenous IGF-1 

from P18 to P25 in the visual cortex of non-EE rats; on the other hand, we blocked IGF-1 action, 

infusing JB-1, IGF-1 receptor antagonist (Pietrzkwoski et al., 1992) during the same time 

window in the visual cortex of EE rats.  

The choice of the age to start IGF-1 treatment in non-EE rats or IGF-1 blockage in EE rats 

was performed evaluating the pattern of IGF-1 expression in the visual cortex of EE rats which 

present the higher levels of expression around P18.  

During this time window the visual cortex is capable of responding to IGF-1 because IGF-

1 receptor is present on visual cortical neurons of standard rats both at P18 and at P25. In 

particular, we observed an high number of IGF-1 receptor positive cells, comparable to the 

number of IGF-1 positive cells. This does not differ between P18 and P25. Similar to that of IGF-

1, IGF-1R immunostaining appears periplasmatic, but it is present also in the long dendritic 

processes of pyramidal neurons which cross different visual cortical layers.  

Our results show that it is sufficient to increase IGF-1 availability in the visual cortex, in 

this specific time window, to mimic the strong effect of EE on visual cortical development and 

that the increment of IGF-1 levels observed in the visual cortex or EE rats at P18 is necessary for 

the effects of enriched living condition on cortical development to take place. 

Possible adverse effects of antagonizing IGF-1 action with JB1 on visual cortical neurons 

can be excluded because the density of NeuN positive cells is not altered by JB1 infusion. Also 

the cortical thickness in Oc1B is not affected by JB1 treatment. A further confirmation that JB1 

treatment, at the concentration employed by us, does not have negative effects on the visual 

cortex is our VEPs recordings in non-EE animals implanted with JB1 filled minipumps from P18 

to P25 (recordings at P25) and from P21 to P28 (recordings at P28). We found no difference 

between visual acuity assessed in these two groups of animals and the visual acuity assessed in 

non-EE rats of the same age.  

Visual acuity is a sensitive index of visual cortical development (Huang et al., 1999; 

Porciatti et al., 1999); thus, our observations suggest that IGF-1 is an important factor in 
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mediating EE effects on the development of the visual cortex. At the same time, our results show 

for the first time that IGF-1 is able to accelerate visual acuity development. 

Another indication that IGF-1 increase at P18 is necessary for EE to determine its 

maximal effect on visual acuity maturation comes from the observation that exposure to EE up to 

P12, which is not sufficient to trigger a significant increase in IGF-1 labeling in the visual cortex 

at P18, produces only a partial effect on visual acuity development. This results also suggests that 

the early molecular effects of EE in the visual cortex (Cancedda et al., 2004) are not sufficient to 

trigger the full increase in the visual acuity of P25 animals caused by continuous exposure to EE 

up to P25.  

A very interesting result confirming our hypothesis that early EE is effective in affecting 

visual acuity development but is not sufficient to trigger the maximal effects of continuous 

exposure to EE on visual acuity maturation has been recently obtained in our laboratory. 

Assuming that the more precocious EE effects are imputed to increased levels of maternal care 

under EE conditions (Sale et al., 2004), an experiment was performed in our laboratory that 

reproduced in non EE pups the enhanced levels of maternal care experienced by EE pups and in 

particular the enhanced levels of tactile stimulation provided by licking.  Non-EE pups were 

subjected to artificial stimulation mimicking maternal licking from P1 to P12 and visual acuity 

was assessed at P25. The results (Baldini S., Baroncelli L., Ciucci F., Putignano E., Sale A., 

Berardi N., Maffei L. unpublished results) show that animals artificial stimulated have a visual 

acuity of 0,74 ± 0,02 c/deg, almost identical to that of animals exposed to EE up to P12 (0,73 ± 

0,02). 

Increment of IGF-1 at P18 likely derives from the direct interaction of animals with the 

richness of the environment, but our results show that a trend towards increased IGF-1 levels at 

P18 are found also in animals exposed to EE up to P12, suggesting that some of the early 

molecular events caused by EE may “prime” IGF-1 cortical levels. Thus, both the higher levels of 

maternal care, which can be considered an indirect interaction of the developing pups with the 

environment, and the direct interaction of the pups with the environment would be necessary to 

cause a significant increase of IGF-1 and to obtain the maximal acceleration of visual 

development  at cortical level. 
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IGF-1 affects the density of inhibitory synapses in the visual cortex 

 

What could be the specific targets affecting by IGF-1 to accelerate visual acuity 

development? One hypothesis stems from the known effects of IGF-1 in increasing neuronal 

activity (Carro et al., 2000). The enhanced presence of IGF-1 in EE rat visual cortex might act on 

neurons bearing IGF-1 receptors, determining an increase in spontaneous or evoked neural 

activity, and in the production of activity-dependent factors, such as neurotrophins (Ickes et al., 

2000), or in the activation of activity-dependent pathways, such as ERK/CREB, important for 

visual cortical development and plasticity (Di Cristo et al., 2001; Berardi et al., 2003). Expression 

of genes under CREB promoter control  has been involved in several paradigm of visual cortex 

plasticity both in vivo and in vitro, like in several other cerebral region (Impey et al., 1996; 

Impey et al., 1998a, b; Pham et al., 1999; Barth et al., 2000; Watt and Storm, 2001; Athos et al., 

2002; Barrot et al., 2002). Recently it has been suggested that CRE mediated gene expression 

could be involved in the precocious phases of visual system development (Pham et al., 2001): this 

study  shows that a temporal window exist during thalamus development in which CRE mediated 

gene expression is particularly intense, corresponding to the period of thalamic connections 

refinement. Cancedda et al. (2004) found that in non-EE mice the peak of CRE mediated gene 

expression in the visual cortex is at P25, while in EE mice it is anticipated at P20, which is in 

good agreement with the increase of IGF-1 immunoreactivity we found at P18 in EE rats. These 

data, show, that similarly to developmental profile of IGF-1 protein levels, there is a window of 

CRE-mediated gene expression in the developing visual cortex and this event occurs earlier in EE 

animals. Cancedda and colleagues (2004) demonstrates also that pharmacological induction of 

cAMP/CREB by means of rolipram treatments from P7 to P28, reproduces EE on the 

development of visual acuity. Because it is known that the binding of IGF-1 to its receptor is able 

to affect also cAMP/CREB pathway (for a review see D’Ercole et al., 1996), our results suggest 

that IGF-1 action on visual acuity development could be mediated by IGF-1 induction on 

cAMP/CREB pathway. It would be important to assess whether IGF-1 administration activates 

the ERK/CREB pathway and in which neuronal types in the visual cortex. 

We have shown for the first time that IGF-1 labelling is present in inhibitory interneurons 

(GAD67  positive neurons) in the developing visual cortex and that the density of IGF-1 positive 

interneurons is increased by EE. This suggests that another, non alternative, explanation for IGF-

1 effects on visual acuity development could be an action of IGF-1 on inhibitory interneurons. 
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Glutamic acid decarboxylase is the rate-limiting enzyme that converts the excitatory 

neurotransmitter glutamate into the inhibitory neurotransmitter GABA. At least two isoform of 

GAD are present in the central nervous system coded by separate genes (Erlander et al., 1991). 

One gene codes for a protein approximately 65 kDa and the other gene codes for a protein 

approximately 67 kDa in size and both enzyme possesses decarboxylase activity. The observation 

that IGF-1 affects GAD65 immunoreactivity in puncta-rings demonstrates that inhibitory 

interneurons respond to IGF-1 with a GAD65 increase in their synaptic terminals, an effect 

possibly mediated by an increase in BDNF expression, which is known to be caused by IGF-1 in 

the adult (Carro et al., 2000; Cotman and Berchtold, 2002) and which affects intracortical 

inhibitory system development in the visual cortex (Huang et al., 1999). The result that 

GABAergic interneurons in the visual cortex express IGF-1 receptor during development suggest 

that IGF-1 can also act directly on inhibitory interneuron development. The nature of this action, 

whether it is directed on neuronal activity or/and the expression of synaptic proteins and GABA 

biosynthetic enzymes remains to be determined. Since inhibitory interneuron development has 

been suggested to contribute to visual acuity development (Huang et al., 1999; Bartoletti et al., 

2004) we suggest that IGF-1 action on inhibitory interneuron development is a possible mediator 

of EE effects on visual acuity development, although a contribution from an IGF-1 action on 

excitatory neuron development cannot be excluded.  

IGF-1 action on inhibitory circuitry development is also suggested by the fact that release 

of GABA neurotransmitter is regulated by IGF-1 (Castro-Alamancos and Torres-Alemann, 1993; 

Castro-Alamancos et al., 1996; Seto et al., 2002).  

A link between IGF-1 pathways and the maturation of inhibitory circuitry is confirmed 

also by the detailed anatomical analysis of the brain of Igf1-/- mice at two months of age reported 

by Beck et al., 1995. They observed that these mice carrying inactive IGF-1 genes showed a 

reduction in a parvalbumin-containing neurons which were counted in the striatum and in the 

hippocampus. In the cerebral cortex and in the hippocampus, parvalbumin is expressed by a 

subset of GABAergic neurons that display, at least in the hippocampus, a rapid firing rate and 

high metabolic activity (Celio, 1984 and 1990; Bergmann et al., 1991; Solbach and Celio, 1991). 

The exact transmitter type of striatal parvalbumin immunoreactive neurons is not known, but they 

are most likely not GABAergic (Celio, 1990). In the hippocampus of Igf1-/- mice the numbers of 

parvalbumin-containing neurons were reduced by 32% and 35% in CA1-4  area and the dentate 
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gyrus, respectively. In the dorsal striatum, the decrease strongly than in the hippocampus, was 

52%.  

 

 

IGF-1 affects the density of perineuronal nets in the visual cortex  

 

We have shown for the first time that IGF-1 increases the density of neurons ensheated by 

PNNs in the visual cortex of P25 non-EE rats treated with intracortical infusion of IGF-1 from 

P18 respect to contralateral cortex treated with the vehicle. We also analyzed the density of PNNs 

in the visual cortex of P25 EE animals treated from P18 with JB1, IGF-1 receptor antagonist, in 

one cortex and with the vehicle in the contralateral cortex. We observed that EE significantly 

increase the density of PNNs respect to the standard condition, and this effect of EE on the 

increase in PPNs number was prevented by IGF-1 action blockade. On the other and, we further 

confirmate  that JB1 treatment in the concentration used by us is not detrimental for the normal 

development of PNNs, the number of which does not differ from the visual standard animals 

treated with vehicle or enriched animals treated with JB1.  

PNNs are multimolecular assemblies mainly formed by CSPGs, hyaluronan and 

glycoprotein such as Tenascin-R (for a review see Dityatev and Schachner, 2003). Proteoglycans 

are formed by a core protein with attached lateral chains of glycosminoglycans (GAGs), 

negatively charged polysaccharide chains composed of repeating disaccharide units. Results 

obtained by Thiébot et al., 1997 in rat testis suggest that IGF-1 could stimulate 

glycosaminoglycan biosynthesis by inducing glycosyltransgerase(s)  or it could increase core 

protein pool glycosylation, or further IGF-1 could also stimulate the expression of core proteins 

concomitant with those of glycosiltransferase. Silberg et al., 1981 postulated that IGF-1 could 

stimulate proteoglycan syntheis not only by elongating existing chondroitin sulphate chains but 

also by increased synthesis of other sugar chains.  

Recent studies have demonstrated association of some IGFBPs with the ECM or cell 

surface via glycoproteins, collagens, integrins (Jones et al., 1993 a and b), and 

glycosaminoglycans (Arai et al., 1994; Smith et al., 1994). Some growth factors, such as basic 

fibroblast factor, bind to cell membrane and ECM proteoglycans and this interaction is important 

for binding to specific high affcinity receptors (Berrou et al, 1995). In contrast IGF-1 do not 
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substantially bind to proteoglycans or other ECM components. Cell-associated IGFBPs may 

therefore act as a linker molecules allowing pericellular sequestration of IGF-1. Russo et al., 1997 

demonstrated that IGFBP-2 binds to the glycosaminoglycan component of membrane 

proteoglycans in vivo, in the rat brain olfactory bulb. They shown that in vitro, IGFBP-2 bound to 

chondroithin-4-sulphate, chondroithin-6-sulphate, keratan sulfate, heparin and the proteoglycans 

aggrecan. Both IGFBP-3 and IGFBP-5 bind to membranes and/ or ECM from different cells, and 

salt and heparin displacement suggest that binding to glycosaminoglycan may be involved (Jones 

et al., 1993; Arai et al., 1994; Smith et al., 1994; Martin et al., 1992; Hodgkinson et al., 1995). 

The mechanism of potentiation of IGF-1 activity by IGFBPs is not completely understood; in 

many situations IGFBPs inhibit IGF-1 activity, but they may also enhance IGF-1 activity. It 

could postulated that the decrease in binding affinity of IGFBPs bound to proteoglycans for IGF-

1, facilitate release of IGF-1 from IGFBPs for binding by receptors enhancing IGF-1 activity. A 

very interesting question to answer could therefore be whether EE affects also IGFBPs levels and 

if EE animals show an higher percentage of IGFBPs colocalizing with PNNs. 

Performing a double staining IGF-1 receptor and WFA, to label PNN we found that both 

at P18 and at P25 a large proportion of WFA positive interneurons (64% at P18, 50% at P25) 

were also positive for IGF-1 receptor labelling; thus, a direct effect of IGF-1 on PNN surrounded 

interneurons is possible. A mechanism by means of which IGF-1 could affect PNNs density 

could be also the enhancement of neural activity. Evidences demonstrated that synthesis of 

CSPGs is activity-dependent.  

The action of IGF-1 on PNN and inhibitory interneurons suggests that IGF-1 could be  

also the mediator of EE effects on visual cortical plasticity shown by Bartoletti et al. (2004). This 

would be in agreement with the involvement of IGF-1 in ocular dominance plasticity in response 

to monocular deprivation (Tropea et al., 2006). 

              

            It has been described that IGF-1 could mediate the neuroprotective effects of exercise 

enhancing neuronal glucose metabolism and improving oxygen consumption by neurons (Carro 

et al., 2001).  Indeed, IGF-1 enhances glucose uptake (Bondy and Cheng, 2002) and glucose use 

by neurons through up regulation of glucose transporters and modulation of glycolitic enzymes 

(Cheng et al., 2000). On the other hand, IGF-1 could increase neurons oxygen availability 

inducing the expression of HIF-1 (Zelzer et al., 1998). Enriched living conditions, with enhanced 

physical movement and multisensory stimulation, is likely accompanied by changes in 
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respiratory and cardiovascular activity proportional to the increased metabolic demendas of 

organs, incluing brain. In which way IGF-1 effects on glucose neuronal metabolism could  

contribute to EE effects on visual cortical development, if they do,  is not yet understood. Tropea 

et al., 2006 hypothesized that IGF-1 enhancement glucose uptake could be involved in preventing 

the effects of MD reducing deprivation-induced competition between afferents from the two eyes. 

However, Tropea et al also propose, as we do, that the action of IGF-1 is on cortical plasticity and 

is mediated by cortical neurotrphins. Whether an increased glucose metabolism could contribute 

to the eccelerated visual cortical development observed in EE rats or in IGF-1 treated rats 

remains to be ascertained. 

 

Early EE, IGF-1 and retinal development 
 

Landi et al. (2007) demonstrated that EE from birth exerts a strong influence on the 

postnatal development of the retina, causing a marked acceleration in retinal acuity maturation, 

an effect dependent upon the increase in BDNF levels in the RGC layer of EE pups at P10. We 

show here that exposure of the mother to EE during pregnancy accelerates the development of 

the retina in the offspring. The acceleration is evident already at prenatal ages. In particular, our 

results show that enrichment of the mother during pregnancy accelerates the physiological time 

course of apoptotic process, anticipating at E18 the peak of natural cell death observed at P1 in 

the offspring of non-EE mothers. The changes we observe in the rate of RGC apoptosis were 

paralleled by an increased IGF-1 immunostaining in the retinas of EE pups at E15 and E18. 

These experiments suggested that the EE effects we found on retinal apoptotic process could be 

dependent on IGF-1. Recent results (Sale A., Cenni MC., Ciucci F., Putignano E., Chierzi S., 

Maffei L., unpublished data), report that neutralization of IGF-1 abolished the action of maternal 

enrichment on RGC death. Furthermore, chronic IGF-1 infusions during late pregnancy were 

sufficient to induce in non-EE animals an IGF-1 increase in their RGC layer and increased levels 

of pyknosis, thus mimicking the changes elicited by EE on RGC layer development. This result 

demonstrated that IGF-1 is involved in mediating EE effects on the acceleration of fetus retinal 

maturation. IGF-1 receptors are present in the retina (Rodrigues et al., 1998; Waldbillig et al., 

1998), particularly in RGC layer (Burren et al., 1996) and their expression is developmentally 

regulated (Hernandez-Sanches et al., 1995; Lee et al., 1992). The influence of IGF-1 on cell 

cycle kinetics has been recently demonstrated by Hodge et al. (2004), who showed that it 
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accelerates cell cycle during embryonic development. If this effect, which has been documented 

for cortical neurogenesis, is present also in the retina, it would contribute to accelerate the time 

course of RGC death in the enriched condition, where we found increased levels of IGF-1. 

Therefore, it is possible that alterations in the expression of IGF-I may affect naturally-occurring 

developmental cell death in the RGC layer.  

The increased level of IGF-1 we found in the retina of EE embryos could be elicited by 

enhanced transfer of maternal substrates to the foetus occurring in the enriched condition. This 

could derive from maternal exercise during pregnancy, which is known to increase the foetal 

brain/body weight ratio (Houghton et al., 2000). Enhancement in glucose and placental lactogens 

received by the foetus results in a direct stimulation of IGF production (Owens, 1991; Anthony 

et al., 1995; Fowden et al., 1998; Javaid et al., 2004). We found that increased levels of IGF-1 at 

P1 was present in RGC layer of EE pups. At this age, we found higher levels of IGF-1 in the 

gastric content of suckling EE pups. Even if we did not assess IGF-1 levels in the milk directly 

taken from the mother, it is known that the concentration of IGF-1 in maternal milk is reflected 

in the concentration of the peptide gastric content of the pups (Olanrewaju et al., 1996). Luminal 

IGF-1 supplied in the milk may act by modulating gastrointestinal proliferation and 

differentiation (Donovan et al., 1991; Philipps et al., 2000). On the other hand, it has been shown 

that IGF-1 administration in the fetal gut increases gastrointestinal development in fetal sheep 

(Kimble et al., 1999), thus enhanced level of IGF-1 observed in the milk of EE pups could 

accelerate gastrointestinal tract development.  

We suggest that an indirect source for the difference we found in IGF-1 expression 

between EE and non-EE rats in the retina at P1 could be the increased intestine growth which 

allow in EE pups an enhanced nutrition, that it is known to enhance IGF-1 production 

(Clemmons and Underwood, 1991; Thissen et al., 1994). 

 
 

IGF-1 mediates the effects of EE on  retinal acuity development 

 

The acceleration of retinal acuity development produced by EE is not dependent on 

vision since EE is effective in causing it before P10, when pup eyes are still closed (Landi et al., 

2007). Molecular changes triggering the acceleration of retinal maturation are likely influenced 

by EE precociously, when pups are still immobile and dependent on the mother.  
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Our results show that IGF-1 is one of these factors. Enrichment during pregnancy affect 

IGF-1 levels in pups retina, cerebellum and in maternal milk. Many studies demonstrate that 

tactile interactions between rats pups and mothers modulated pup physiology an neuroendocrine 

function at various stages of development. Short-term periods of separation of preweanling rat 

pups (<20 days old) from their mother, triggers a coordinates pattern of neuroendrocrine response 

that includes (1) a decrease in ornithine decarboxylase  (ODC) basal levels in major organs, (2) a 

suppression of tissue ODC responsiveness to administered prolactin (PRL) and growth hormone 

(GH), (3) an inhibition of GH secretion (Butler et al., 1978; Kuhn et al., 1979; Evoniuk et al., 

1979; Schanberg et al., 1984; Pauk et al., 1986; Wang et al., 1996) and (4) decrease in DNA 

synthesis (Greer et al., 1991).  Because GH which is affected by different levels of maternal care, 

regulates IGF-1 synthesis we hypothesized that IGF-1 could be a mechanism by means of EE 

elicits also its earlier effects on visual system development.  

Our results showing that early IGF-1 injections in eyes of non-EE pups mimic EE effects 

either increasing BDNF levels in RGCs layer and accelerating retinal acuity development, 

suggest that IGF-1 could be a key factor that EE acts upon to prime P-ERG acuity development.  

This hypothesis is further confirmed by the observation that the reverse experiment (IGF-

1 action blockade by intraocular injections of JB1, IGF-1 receptor antagonist) prevents EE effects 

on retinal development. Thus, we have provided for the first time a direct demonstration of IGF-1 

involvement in the functional development of retinal circuitry in vivo. 

Another early molecular change induced by EE at retinal level is the BDNF increment 

observed at P10 in EE animals; this BDNF increase has been demonstrated to be necessary for 

the effects of EE on retinal acuity maturation (Landi et al., 2007). Also for the effects of prenatal 

exposure to EE on RGC developmental pattern of cell death could involve BDNF. Exercise 

during pregnancy increases hippocampal expression of BDNF in the neonatal rat (Parnpiansil et 

al., 2003) and it has been proposed that placenta and amniotic fluid are a source of neurotrophic 

factors for the developing foetus (Uchida et al., 2000). BDNF exerts a strong influence on retinal 

development by directly regulating natural cell death of RGCs, and it is thought to be the target-

derived trophic factor for which the ganglion cells compete during development (reviewed in von 

Bartheld, 1998 and Cellerino et al., 2000). Results showing that an effect on RGC-death rate 

similar to that we found in EE animals have been reported in mice with null mutation of BDNF 
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(Pollock et al., 2003) suggest that different levels of BDNF in the retina of EE rats are implicated 

in the developmental changes in RGC death dynamics displayed by enriched rats.  

 

Because pheripherical administration of IGF-1 induces BDNF mRNA in the brain (Carro 

et al., 2000), BDNF is potentially a down-stream target that could mediate some of the effects of 

IGF-1. Our results suggest indeed that IGF-1, in its role of mediator of EE effects on retinal 

acuity maturation acts by increasing BDNF levels at P10 in RGC layer of EE pups. 

In the adult, BDNF expression is known to be increased both by environmental 

enrichment and physical exercise (Carro et al., 2000; Cotman and Berchtold, 2002; Adlard et al., 

2004; Klintsova et al., 2004) and that this increase is mediated by IGF-1. Recently it has been 

also demonstrated (Ding et al., 2006) that IGF-1 affects BDNF system to mediate exercise effects 

on cognitive processes and synaptic plasticity. However a direct relationship between IGF-1 and 

BDNF during development, such as we have now demonstrated, had never been demonstrated 

before.  

As a possible target of IGF-1/BDNF control on visual acuity development, we propose the 

action of IGF-1, by means of BDNF, on dopaminergic amacrine cells. Dopaminergic amacrine 

cells are interesting from our point of view because they have been shown to contribute to the 

spatial organization of the receptive fields of RGCs (Jensen, 1986; Witkovskj, 2004). Moreover, 

it has been suggested that retinal dopamine level affects visual acuity development: children with 

phenylketonuria who experienced very high phenylalanine levels in the first postnatal days, and 

who should therefore have particularly low levels of dopamine in the retina, have lower than 

normal visual acuity (Munakata et al., 2004). Finally, a reduction in retinal dopamine, as occurs 

in Parkinsonian patients, results in reduced visual contrast sensitivity (Peppe et al., 1998). 

Dopaminergic amacrine cells express TrkB (Cellerino et al., 1997) and their development is 

accelerated by BDNF intraocular injections from P8 to P14 (Cellerino et al., 1998). It would be 

extremely interesting to study if also intraocular IGF-1 injections from P1 to P7 affect the 

development of dopaminergic amacrine cells. 

 

Retina and visual cortex developmental interactions in EE 

 

Landi et al., 2007 demonstrated that enriched environment effect on retinal maturation 

starts very early: exposing pups to EE only for the first 10 days of life is sufficient to reproduce 
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the acceleration of retinal acuity development observed in animals enriched up to the day of P-

ERG recordings.  

The effect of early EE is extremely different between retina and cortex. Exposure to EE 

up to P12 is not sufficient to trigger a significant increase in IGF-1 labelling in the visual cortex 

and produces only a partial effect on visual acuity development. This suggests that the early 

molecular effects produced by EE in the visual cortex (Cancedda et al., 2004, Sale et al., 2004) 

are not sufficient to trigger the full increase in the visual acuity of P25 animals caused by 

continuous exposure to EE up to P25. In addition, our results show that the visual cortex of 

animals intraocularly injected with IGF-1 and showing an accelerated maturation of retinal 

acuity, does not show an increased visual acuity. This results suggest that the faster maturation of 

retinal development, triggered by early EE or early IGF-1 intraocular injections, is not sufficient 

to drive the acceleration of the visual cortex maturation observed in continuous enriched 

condition or in animals intracortically infused with IGF-1 from P18. To obtain the maximal 

effects of EE exposure on cortical visual acuity and, ultimately, on visual behaviour, both the 

early component of EE, likely mediated by enhanced maternal care, and the later components, 

likely mediated by direct pup interaction with the environment, are necessary.  

We demonstrated that IGF-1 is the key molecule in mediating both the effects of early EE 

at retinal level and of postweaning EE at cortical level. In the retina, a temporal cascade of 

molecular events has been delineated, IGF-1 triggering BDNF increase and the later 

developmental events. At cortical level, it remains to be ascertained whether the early BDNF 

increase documented at P7 (Cancedda et al., 2004) is subsequent to the early IGF-1 increase in 

maternal milk or whether IGF-1 acts only at later developmental ages on visual cortical neurons.  
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