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INTRODUCTION 

 
Epilepsy is one of the most common neurological diseases, affecting 0.8% of the 

human population.   

 The term epilepsy derives from the Greek word “epilambàno” that means “to 

take hold of or to seize”. Indeed seizures have fascinated humanity since antiquity, 

being associated sometimes with evil spirits, sometimes with specials creative 

powers. The neurophysiologic origin of seizures was recognized only in 1860s by Sir 

John Hughlings Jackson.  He defined  an epileptic seizure as “a sudden and 

excessive discharge of certain nervous arrangements, the cells of which are 

abnormally highly unstable”. Afterwards the development of electroencephalography 

by Hans Berger in 1929 permitted the analysis of the epileptic phenomena and 

Jackson’s hypothesis was confirmed.  

Epilepsy is usually diagnosed after a person had at least two seizures not caused 

by some known medical condition such as alcohol withdrawal or extremely low 

blood sugar. However seizures are not the disease in themselves but they are only a 

symptom of a disorder that affects the functioning of the brain. Therefore each 

epileptic syndrome has to be considered as a different disease with a set of definable 

causes and etiologies and characterized by unique electro-clinical manifestations and 

neurophatological substrates. 

Clinical epilepsy can be divided into two main groups according to the 

International Classification of Epilepsies and Epileptic Syndromes: the idiopathic 

(primary) disorders and symptomatic (secondary) disorders (Engel, 1996). The 

idiopathic epilepsies are never associated with neurological disturbances or 

structural pathology and they are genetically transmitted, age-related and usually 

benign. Indeed the symptomatic epilepsies are disorders in which the epileptic 

seizures result from a specific cerebral pathological substrate which can be genetic, 

such as the tuberous sclerosis, or acquired, such as a traumatic scar.  

Idiopathic and symptomatic epilepsies can be both further divided into 

generalized disorders, if the brain is diffusely and bilaterally involved, and partial, 

localization-related disorders, if the abnormality is restricted to a part of one 

hemisphere that represents the seizure focus and that determines the 
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symptomatology. However partial seizures can progress further and give rise to a 

secondarily generalized seizures. 

The majority of idiopathic epilepsies begin during childhood. The most common 

types are the juvenile myoclonic epilepsy, an idiopathic generalized syndromes 

characterized by myoclonic jerks, generalized tonic-clonic seizures (GTCSs), and 

sometimes absence seizures, and the benign childhood epilepsy with centrotemporal 

spikes, a familiar disorder characterized by partial motor and sensory seizures as well as 

generalized nocturnal convulsions. 

Otherwise the majority of symptomatic epilepsies are localization-related and have 

an adult-onset. They can be etiologically divided into three broad categories:  

1) the mesial temporal lobe epilepsies (MTLE), associated with hippocampal 

sclerosis that is the most common structural abnormalities in human epilepsies; 

2) the lesional partial epilepsies, associated with specific lesions such as tumors, 

scars, vascular malformations, congenital cysts and a wide variety of neocortical 

dysplasias; 

3)  the cryptogenic partial epilepsies whose etiology is unknown but that can not 

be considered idiopathic, 

 

In this thesis I test the efficacy of the bacterial enzyme Botulinum Toxin E 

(BoNT/E), which is known to block neurotransmitter release and neuronal activity, as a 

selective drug against intractable MTLE.  
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                 1.1 Temporal lobe epilepsy 

 

Symptomatic temporal lobe epilepsy (TLE) is the most common form of human 

epilepsy (Engel, 1996). This form of epilepsy is also the most medically intractable one, 

as many TLE patients that initially respond to available anti-epileptic drugs can, despite 

treatment, experience recurrent seizures and develop an intractable form of the disease.  

Animal models that reproduce the unique aspects of TLE disorder as faithfully as 

possible are important in order to study the pathophysiology of this epileptic disease 

(Loscher, 1997). Moreover only if the model emulates the features of human syndrome 

the investigator can be reasonably confident that data obtained from animal experiments 

have a clinical relevance. 

In this chapter I will summarize the clinical and pathophysiological characteristics of 

human TLE and how these are replicated in animal models.  

              

                   1.1.1 Human temporal lobe epilepsy 

 

TLE syndrome is characterized by recurrent unprovoked seizures originating from 

the medial or lateral temporal lobe. The seizures associated with TLE consist of simple 

partial seizures without loss of awareness and complex partial seizures (i.e., with loss of 

awareness). The individual loses awareness during a complex partial seizure because the 

seizure spreads to involve both temporal lobes. The features of temporal lobe seizures 

can be extremely varied, but certain patterns are common. Dostoevskij, the 19th-century 

Russian novelist, who himself had epilepsy, gave vivid accounts of apparent temporal 

lobe seizures in his novel The Idiot:   

 

He remembered that during his epileptic fits, or rather immediately preceding 

them, he had always experienced a moment or two when his whole heart, and mind, 

and body seemed to wake up with vigor and light; when he became filled with joy 

and hope, and all his anxieties seemed to be swept away for ever; these moments 

were but presentiments, as it were, of the one final second…in which the fit came 

upon him. That second, of course, was inexpressible. 

Next moment something appeared to burst open before him: a wonderful inner 

light illuminated his soul. This lasted perhaps half a second, yet he distinctly 

remembered hearing the beginning of a wail, the strange, dreadful wail, which burst 

 7



from his lips of its own accord, and which no effort of will on his part could 

suppress. Next moment he was absolutely unconscious; black darkness blotted out 

everything. He had fallen in an epileptic fit. 

 

The features of TLE seizures (Kotagal, 1991) depend on the fact that the temporal 

lobe is a part of the limbic system which controls emotions and memory. A mixture of 

different feelings, emotions, thoughts, and experiences are distinctive of temporal lobe 

seizures. In some cases, a series of old memories resurfaces. In others, the person may 

feel as if everything—including home and family—appears strange. Hallucinations of 

voices, music, people, smells, or tastes may occur. These features are called “auras” or 

“warnings.” They may last for just a few seconds, or they may continue as long as a 

minute or two.  

Most forms of human TLE are symptomatic, even if some cases of idiopathic TLE 

has been recently described (Berkovic et al., 1996; Cendes et al., 1998; Gambardella et 

al., 2000). Symptomatic temporal lobe epilepsies can be further divided into three broad 

categories according to their etiology:  

- mesial TLE, associated with hippocampal sclerosis (HS); 

- lesional TLE, associated with specific lesions such as tumors, scars, vascular 

malformations and a variety of neocortical dysplasias; 

- cryptogenic TLE, when the etiology is unknown; 

Mesial temporal lobe epilepsy is the most common form of symptomatic TLE. The 

presence of hippocampal sclerosis (HS) in the brains of patients with TLE was first 

described by Bratz in 1899. Hippocampal sclerosis involves hippocampal cell loss in the 

CA1 and CA3 regions and in the dentate hilus. The CA2 region is relatively spared 

(Mathern et al., 1996). Besides hippocampal sclerosis was associated with TLE more 

than one century ago, there are still some unresolved issues about it. 

 

                   1.1.1a Hippocampal sclerosis: cause or consequence? 

 

Whether hippocampal neuron loss is the “cause” or the “consequence” of temporal 

seizures has been a fundamental question in human epilepsy studies for over a century. 

This issue is important not only to understand the pathogenic mechanisms of epilepsy 

but also to determine the best therapeutic goals for patients (Mathern et al., 2002). 

Indeed, if hippocampal sclerosis generates MTLE and is a result of a pre-epilepsy brain 
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injury, then preventing the initial pathological process may avert chronic epilepsy. 

Alternately, if hippocampal neuron loss is the result of repeated seizures, then stopping 

all seizures at any age becomes an important treatment goal. Unfortunately, the medical 

literature is inconclusive and rife with controversy regarding this questions since the 

earliest descriptions of the relationship of hippocampal pathology with epilepsy. Indeed 

early post-mortem studies established that severe hippocampal damage in a pattern 

termed “Ammon’s horn” was strongly associated with complex partial MTLE, while 

minor hippocampal neuronal loss in regions such as the end folium were associated with 

other seizure types (Meynert, 1867; Sommer, 1880; Margerison and Corsellis, 1966). 

However these studies did not enable to define if the severe hippocampal damage is the 

cause or the consequence of MTLE. 

The advent of pre-mortem surgical resection for MTLE made possible to carry out 

more detailed pathological studies and compare the surgical findings with the pre-

operative clinical data  in order to unveil whether hippocampal sclerosis was the cause 

or the consequence of MTLE. In 1954 Meyer proposed that severe hippocampal 

sclerosis is the result of early childhood brain injuries, such as febrile convulsions, and 

that HS is the cause of MTLE (Meyer, 1954). This concept was challenged by 

epidemiological studies showing that the risk of MTLE after febrile convulsions is very 

low (Nelson and Ellenberg, 1976). However recent studies (Mathern et al, 2002) 

revisited Meyer’s hypothesis. Mathern and co-workers examined hippocampal 

specimens from patients with temporal lobe epilepsy or with extra-temporal seizures 

analyzing both qualitative signs of hippocampal sclerosis and quantitative neuron loss 

using cell counting techniques. The results obtained are: 

- HS is strongly associated with an initial precipitating injury (IPI) both in MTLE 

and extra-temporal patients; 

- IPIs generally occur at young age and involve seizure but hippocampal damage 

from IPIs is not age or seizure dependent; 

- in MTLE patients, chronically repeated seizures add neuronal loss in all 

hippocampal subfields that require a long time course (i.e. more than 30 years) to be 

detected; 

This clinical-pathological study support the hypothesis that the severe neuronal loss 

in the hippocampal sclerosis pattern is most likely an acquired pathology consequent to 

an IPI that affect the brain than a consequence of long-term seizures. Moreover these 

data  validate the original model proposed by Meyer to explain hippocampal sclerosis 
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and the occurrence of MTLE syndrome. In this model an IPI causes the strong neuronal 

damage in the hippocampus. Thereafter there is a latent phase, during which progressive 

anatomical changes occurring in the hippocampus and other limbic circuits produce the 

necessary conditions to promote or generate spontaneous seizures. These pathological 

changes may include aberrant excitatory and inhibitory axon sprouting and changes in 

post-synaptic receptor subunit composition (Mathern et al., 1997; Babb, 1999). Once 

limbic seizures established, they can induce  additional long-term anatomical changes 

over many years, including cell death that is however only a secondary injury that adds 

to the substrate of HS (Salmenpera et al., 2001; Kalviainen and Salmenpera, 2002). 

Therefore, MTLE has to be consider as a pathology that evolves with time, as supported 

also by neuroimaging and neurocognitive studies (Theodore et al, 2001). 

 

                    1.1.1b Hippocampal sclerosis: etiology 

 

Another fundamental question about hippocampal sclerosis is its etiology. Indeed, 

despite intensive effort by many researcher for more than a century, the injury factors 

that cause hippocampal sclerosis are still on much-discussed. The correlation 

established by Falconer and collaborators in 1964 between MTLE, hippocampal 

sclerosis and prolonged febrile seizures in early childhood lead to the concept that 

prolonged seizures in a age specific time-window can damage the hippocampus. This 

view was supported by studies showing that experimental focal status epilepticus results 

in histological changes resembling human ones. However epidemiological studies 

demonstrated that about half of the patients with MTLE and hippocampal sclerosis lack 

a history of prolonged febrile seizures. Moreover hippocampal damage is often 

unilateral or at least very asymmetrically bilateral. These evidences are difficult to 

conciliate with the hypothesis that prolonged febrile seizure are the only cause of HS. 

Another theory propose that hippocampal sclerosis is a developmental lesion present 

prenatally (Raymond et al., 1994; Hardiman et al., 1988). Prolonged febrile seizures are 

therefore the consequence of this lesion rather than the cause of hippocampal damage. 

This hypothesis is supported by the observation of focal dysplasia in the temporal lobe 

of a proportion of cases with hippocampal sclerosis that can be interpreted as dysplastic 

abnormalities. However MR imaging observations documenting the evolution of 

hippocampal sclerosis after prolonged febrile seizures have not found preexisting brain 

lesions in all the patients (VanLandingham et al., 1998). Recently it has been proposed 
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that there may also be a genetic susceptibility to hippocampal injury. Traditionally 

hippocampal sclerosis has not been regarded as having a major genetic contribution. 

Indeed HS has been rarely observed in more than one individual in a family and  the 

twins studies have given negative correlation (Abou-Khalil et al., 1993; Jackson et al., 

1998). However a recent study (Kanemoto et al, 2000) has documented a strong 

association of a polymorphism in the interleukin-1β gene in patients with HS and TLE 

compared with non epileptic controls and with patients with TLE and no HS. This 

polymorphism is in the promoter region of the gene and result in increased production 

of  interleukin-1β, a proinflammatory cytokine. Such overproduction might increase the 

likehood of neuronal damage following hippocampal insult. So this polymorphism may 

represent a genetic predisposing factor to the development of hippocampal sclerosis. It 

must be remembered however, that association studies are prone to a variety of subtle 

and inobvious biases. This important observation requires therefore confirmation in 

other populations.  

Hippocampal sclerosis appears therefore to be determined by multiple and complex 

causes both within and between the patients. However  the unification of the disparate 

views and apparently inconsistent findings is possible. The proximate cause of 

hippocampal sclerosis is, in most cases, a brain insult, such as a prolonged febrile 

seizure or other toxic injury. However hippocampal sclerosis occur after such an insult 

only if there are also preexisting factors that make the hippocampus vulnerable to 

injury. Such substrates can be a developmental lesion or a tumor, but also a specific 

genetic predisposition such as the interleukin-1β polymorphism described previously. 

This model is able to explain most, but not all, current data about hippocampal sclerosis. 

Indeed there are cases of HS with no known insult or identified preexisting substrate. 

Thererefore unveiling the nature and the severity of all potential proximate causes and 

pre-existing factors that contribute to hippocampal sclerosis will be one of the next goal 

of epilepsy research. 

 

Neurological examination of MTLE patients reveals memory deficits (Engel 1996) 

that can be explained by the hippocampal damage. Recent studies (Hermann et al, 2002) 

established a strong correlation between childhood-onset MTLE, brain damage and 

reduced memory functions. In particular childhood onset MTLE seems to be associated 

with an adverse generalized neurodevelopmental impact  on the immature brain, 

characterized by reduced brain tissue volume compared to patients with  late onset 
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epilepsy. This adverse impact on brain structure is associated with a generalized pattern 

of cognitive impairment, such as neurological difficulties that involve memory as well 

as more generalized intellectual function. Moreover the increasing duration of epilepsy 

in childhood onset patients is associated with declining intellectual status as well as 

memory function, suggesting a progressive cognitive deterioration.  

 

                   1.1.2  Animal models  

 

Studies of patients with the TLE syndrome  have shown a number of clinical-

pathological associations that may be important to duplicate in animal model as a way 

to experimentally test pathophysiologic mechanisms and hypotheses (Loscher, 2002a; 

Stables et al., 2002; Leite et al., 2002). Among the known features of human disease 

that must be replicated in animal models we can remember: 

- the clinical time course that usually consists of some initial injury to the brain 

followed by a latent period  prior to the onset of recurrent unprovoked seizures; 

- the hippocampal sclerosis that consists of severe neuron loss in Sommer’s sector 

(CA1 and prosbiculum), the end folium (hilus and CA4) and CA3; 

- hippocampal sclerosis mostly on the epileptic side while less damage must be found 

in the opposite hippocampus; 

- additional hippocampal neuronal loss during recurrent seizures that adds to 

hippocampal sclerosis but not generate it per se ; 

- axon and synaptic reorganization of surviving neurons; 

Most of these phenomenological features of human temporal lobe epilepsy are 

replicated in animal models and I will summarize the characteristics of the most used 

animal preparations. 

 

                 1.1.2a  Kainic acid  model 

 

Limbic status epilepticus in rats can be induced by kainic acid with either local 

administration (intracerebroventricular or intrahippocampal, at doses of 0.1-0.3 µg per 

hemisphere) or injected systemically (usually at doses 8-12 mg/Kg). Kainic acid is an 

agonist of glutamate receptors localized mainly in the CA1 and CA3 hippocampal 

pyramidal neurons (Monaghan and Cotman, 1982). As such treatment protocols have 

often been associated with a relatively high mortality rate and a low percentage of rats 
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becoming epileptics, Hellier and collaborators (1998) proposed a modified treatment 

protocol using multiple low doses (5 mg/kg, i.p.) of kainate This protocol had a 

relatively low mortality rate (around 15%) and nearly all kainate-treated rats (97%) had 

two or more spontaneous motor seizures months after treatment. 

Systemic administration of kainate has a strong pro-convulsant effect in rodents. 

Indeed the animals show initial immobility and staring followed by wet dog shakes and 

culminating in limbic motor seizures with rearing and falling and forelimb clonus. The 

pattern of repetitive seizures and status epilepticus induced by parental KA can last for 

several hours (Ben-Ari et al, 1985). The brain damage induced by status epilepticus in 

such preparation may be considered an equivalent to the initial precipitating injury 

events which is commonly found in patients with TLE. A somewhat variable latent 

period follows status epilepticus and precedes the chronic phase, which is characterized 

by the occurrence of spontaneous limbic seizures (Stafstrom et al., 1992). Some weeks 

after kainate administration, massive neuronal loss can be detected in CA1 and CA3 

regions. In addition, several interneuron populations in the hilus, such as those 

expressing parvalbumin, somatostatin and NPY, are vulnerable to KA-induced damage. 

An extensive reorganization of mossy fibers into the molecular layer of the fascia 

dentate is also observed (Tauck et al, 1985). This abnormal synaptic reorganization has 

been suggested to be an anatomical substrate for epileptogenesis (Buckmaster et al., 

1997). 

With respect to susceptibility of acute kainate-induced seizures to systemic 

administration of standard anti-epileptic drugs, benzodiazepines and trimethadione are 

most effective, whereas phenytoin, carbamazepine and valproate have no overt 

anticonvulsant action in this model (Sperk, 1994). As carbamazepine and phenytoin are 

the drugs of choice for the treatment of complex partial seizures in humans while 

benzodiazpines and trimethadione are normally not effective in these patients, there are 

some doubts on the predictive value of kainate seizures for the development of 

therapeutic strategies against intractable epilepsy. However the fact that administration 

of kainate may lead to spontaneous recurrent seizures can be exploited to study the 

mechanism of chronic epilepsy. Even if the pharmacology of spontaneous recurrent 

seizures in this model has been poorly investigated, the available data suggest that acute 

and spontaneous seizures respond differently to AEDs and that the response of 

spontaneous seizures to AEDs is similar to that of patients with complex partial seizures 

(Loscher, 1999). Thus the chronic model of spontaneous recurrent seizures is more 
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predictive of clinical efficacy of AEDs than the acute one and it should be used early in 

drug development. 

 

                   1.1.2b Pilocarpine model 

 

In addition to the kainic acid model, status epilepticus can be induced also by 

intraperitoneally injections of high doses, usually over 300 mg/Kg, of the cholinergic 

(muscarinic) agonist pilocarpine (Turski et al, 1983; Cavalheiro et al., 1991). Pre-

treatment with lithium chloride 24 hr prior to pilocarpine injection, at a dose of 3 

mEq/Kg intraperitoneally, potentiates the epileptogenic action of pilocarpine and the 

amount of drug can be reduced by ten times (Honchar et al, 1983). Acute behavioural 

manifestation after high doses of pilocarpine and in the lithium-pilocarpine model are 

very similar. However there are some evidence that antiepileptic compounds respond 

differentially to status epilepticus, suggesting that distinct biochemical mechanisms 

control seizures in these two different preparations  (Ormandy et al., 1989).  

The pattern of neuronal death induced by i.p. administration of pilocarpine is very 

similar to that induced by KA. Indeed extensive neuronal death can be detected in CA1 

and CA3 regions of hippocampus, associated with reorganization of mossy fibers into 

the molecular layer of the fascia dentate. Moreover spontaneous recurrent seizures 

develop after a variable latent period that follows status epilepticus.  

Local administration of pilocarpine delivered either intracerebroventricularly or 

directly into the hippocampus has been used in studies assessing the seizure-induced  

changes in amino acid levels and the effectiveness of some anti-epileptic agents. 

Intrahippocampal pilocarpine injections (2,4 mg/µl injected in a volume of 1.0 µl) 

induce status epilepticus with near zero mortality. Spontaneous recurrent seizures and 

mossy fibers sprouting are also observed in intrahippocampal-pilocarpine injected rats 

with similar seizure frequency than that observed in systemically injected animals 

(Furtado et al., 2002). 

In the pilocarpine model, AEDs that are efficient to suppress status epilepticus are 

not necessarily the same that are effective on controlling spontaneous recurrent seizures. 

Indeed benzodiazepines, phenobarbital, valproate and trimethadione protect against 

pilocarpine-induced status epilepticus while carbamazepine and phenytoin are 

ineffective. Otherwise, in the chronic phase, carbamazepine and phenytoin are effective 

against spontaneous seizures, while valproate is effective only at high doses (600 
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mg/kg) and ethosuximide is ineffective (Turski et al., 1989; Leite and Cavalheiro, 

1995). This difference can be easily explained by the fact that the mechanisms of 

pilocarpine-induced acute seizures certainly differ from those of spontaneous seizures. 

Moreover responses to different AEDs in pilocarpine chronic model are very similar to 

clinical outcome and this validates the use of this model for screening drugs against 

partial seizures. 

 

Both in the kainate model and in the pilocarpine model, the duration of the status 

epilepticus is critical for the subsequent development of epilepsy. When status 

epilepticus is interrupted by diazepam and pentobarbital after 30 min, no spontaneous 

seizures develop (Lemos and Cavalheiro, 1995) and at least 90-120 min of status 

epilepticus are necessary to chronic epilepsy to develop. 

 

                   1.1.2c  Kindling model 

 

Kindling is a widely used model of TLE, because the clinical phenomenology of the 

complex-partial seizures that progress further to secondary generalize and the 

pharmacology of these seizures are very similar to the clinical conditiond (Sato et al., 

1990; Loscher, 1999) 

As the name kindling suggests, a small spark applied to tinder will ignite a flame that 

eventually can grow into a roaring bonfire. Similarly, a small electrical stimulus, just 

large enough to trigger a brief "afterdischarge" or burst of epileptiform activity, if 

repeatedly applied can generate seizures that lead to fully generalized behavioural 

convulsions. Indeed animals chronically implanted with stimulation and recording 

electrodes in one structure of the limbic system or in other brain areas (the amygdala 

being among the most responsive structure) develop seizures upon a period of electrical 

stimulation with an initially subconvulsive current.  

The first electrographic and behavioural characterization of kindling as a model of 

epilepsy was made by Racine in the amygdala. Indeed the initial stimulus applied to the 

amygdala is able to elicit focal paroxysmal activity (the so-called after-discharges 

recorded in the EEG) without overt clinical seizure activity. Subsequent stimulations 

induce the progressive development of seizures, generally progressing into 5 distinct 

behavioural stages from motor arrest accompanied by facial automatisms (Stage 1) to 

fully kindled seizures accompanied by forelimb clonus and hindlimb tonus identified by 
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rearing and bipedal instability (Stage 5) (Racine, 1972 II). All of these stages are 

associated with reduced responsiveness to sensory stimulation in comparison to the 

normal waking state. Moreover the behaviour observed in stage 1 and 2 mimics that 

found in human complex partial limbic seizures, while the behaviour in the latter three 

stages is consistent with secondary generalized motor seizures, the most devastating and 

difficult to treat form of epilepsy in adults (Loiseau, 1986). In addition to seizures 

becoming more severe during kindling acquisition, the paroxysmal EEG alterations, i.e. 

the afterdischarges, increase in duration and amplitude, while the electrical threshold for 

induction of after-discharge decreases (Racine, 1972 I). The increased convulsive 

sensitivity after kindling established, evidenced by stage 5 seizures, persists for months, 

thus suggesting that kindling involves permanent changes in brain function (Sato et al., 

1990). 

Kindling is often considered a model of elicited (stimulation-induced) seizures. 

However kindling has to be considered also as a model of chronic epilepsy, as it 

replicates some characteristics of chronic epilepsy such as increase in seizures severity 

and duration and decrease in focal seizure threshold. Indeed, since its introduction in 

1969, kindling was widely used to investigate every possible facet of epilepsy research, 

ranging from membrane physiology involving brain slices to electroclinical 

phenomenology of seizures (Sato et al., 1990). The kindling model has thus provided a 

clearer insight into the nature of chronic epilepsy. Indeed the study of hippocamapal 

kindling demonstrated that seizures induce structural and electrophysiologic alterations 

in hippocampal pathways that may lead to increased excitability and could play a role in 

the development and progression of temporal lobe epilepsy. These alterations include 

mossy fiber synaptic reorganization, induction of NMDA-mediated synaptic 

transmission, but very little neuronal degeneration. As some of these structural 

alterations have also been observed in the human epileptic temporal lobe, the study of 

the mechanisms operative in kindling may help to elucidate the pathogenesis of human 

temporal lobe epilepsy (Sutula, 1993). 

Moreover kindling stimulations can be continued until the animals develop 

spontaneous seizures (Pinel and Rovner, 1978; Racine and Burnham, 1984; Corcoran, 

1988), demonstrating that kindling can be used also as a model of epileptogenesis. In 

this contest kindling is useful in order to model the latent period in a very controlled 

way, because the experimenter knows exactly where the epileptogenesis is beginning (at 
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the electode tip) and can track by numerous methods the progressive changes 

(electrographic, anatomical, biochemical, genetic) that occur during the latent period.   

The pharmacology of elicited kindled seizures in fully kindled rats is very 

interesting, as it is very similar to that of spontaneous recurrent seizures in post-status 

pilocapine model. Indeed, in both model, carbamazepine, phenobarbital, phenytoin are 

effective, while ethosuxymide is not (Leite and Cavalheiro, 1995; Loscher, 1999). This 

is important, as determining anticonvulsant effects is much easier in the kindling model 

compared with chronic seizure and EEG recording needed in post-status epilepsy 

models. Thus, for determination whether a drug acts against partial seizures or not, 

testing against elicited partial seizures in fully kindled rats is certainly a more 

convenient method than drug testing in TLE models with recurrent spontaneous 

seizures. 
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                  1.2.1  Pharmacotherapy of epilepsy 

 

The study of the pathogenesis of epilepsy has made much progress during the past 

decades. However the cellular basis of human epilepsy remains a mystery. In the 

absence of a specific etiological understanding, approaches for drug therapy of epilepsy 

must necessarily be  directed at the control of symptom, i.e. the suppression of seizures 

by chronic administration of anti-epileptic drugs or AEDs. However, seizures remain 

uncontrolled in at least 30% of all epilepsies despite adequate AED therapies (Regesta 

and Tanganelli, 1999). Furthermore none of the current AEDs represents a ‘cure’ for 

epilepsy or an efficacious means for preventing epilepsy or its progression. Therefore 

new concepts and original ideas for developing AEDs are urgently needed. 

              

                   1.2.1  Neurobiology of antiepileptic drugs 

 

Antiepileptic drugs (AEDs) are intended to prevent epileptic seizures while 

permitting normal functioning of the nervous system (Rogawski and Loscher, 2004). 

AEDs act on diverse molecular target in order to selectively modify the excitability of 

neurons so that seizure-related firing is blocked without disturbing non-epileptic 

activity. The target molecules of AEDs in the brain are therefore ion channel, 

neurotransmitter transporters and neurotransmitter metabolic enzymes in order to 

modify the bursting properties of neurons and reduce synchronization in localized 

neuronal ensembles. Moreover AEDs inhibit the spread of abnormal firing to distant 

sites, which is required for the expression of behavioural seizure activity.    

Each AED acts through a unique combination of the following three mechanisms :  

 - modulation of voltage-gated channel; 

 - enhancement of synaptic inhibition; 

 - inhibition of synaptic excitation;                                                                    

The modulation of voltage-gated sodium channels is believed to account, at least in 

part,  for the ability of several AEDs to protect against seizures. These AEDs include 

phentoin, lamotragine, carbamazepine, oxcarbazepine (Schmutz et al., 1994; Ambrosio, 

2001) and possibly felbamate (Taglialatela et al., 1996), topiramate (Taverna et al., 

1999)  and valproate (Van der Berg, 1993). Normally, the brain sodium channel are able 

to rapidly cycle through resting, open and inactivate states, in order to allow neurons to 

fire high-frequency trains of actions potentials, as it is require for normal brain 

 18



functioning and for the expression of epileptic activity. The sodium channel-blocking 

AEDs preferentially bind to inactivated conformations of the channel (Remy et al., 

2003b; Ragsdale et al., 1991). They therefore act mainly on action potential firing, 

blocking high-frequency repetitive spike firing, which is believed to occur during the 

spread of seizure activity, without affecting ordinary ongoing neuronal activity. 

The regulation of calcium-gated sodium channels is another potential mechanism 

through which AEDs can exert their anti-epileptic activity. Calcium channels can be 

broadly grouped into two groups the high-voltage activated and the low-voltage 

activated. The high-voltage activated calcium channels require strong membrane 

depolarization for gating and they are largely responsible for the regulation of calcium 

entry and subsequent neurotransmitter release from presynaptic nerve terminals. These 

channels are the target of the action of many AEDs, as the blockade of these channels 

inhibits neurotransmitter release (Turner, 1998). Gabapentin and their analogues, such 

as pregabalin, act by blocking one subunit of the multimeric protein channel (Marais et 

al., 2001). Other AEDs, such as Phenobarbital (Ffrench-Mullen, 1993), lamatrogine 

(Stefani et al., 1996) and levetiracetam (Lukyanetz et al., 2002) can inhibit calcium 

channels even if  their anti-epileptic effect is probably due to other mechanisms. 

The enhancement of synaptic inhibition is a key mechanism of AEDs action. The 

inhibitory neurons represent only a small fraction of cells in regions key to epileptic 

activity, such as the neocortex and the hippocampus, but they are very important in 

restraining the natural tendency of recurrently connected excitatory neurons to undergo 

the transition into synchronized epileptiform discharges (Miles et al., 1987). The main 

inhibitory neurotransmitter of the central nervous system is the γ-aminobutyric acid, or 

GABA, that acts through fast chloride-permeable IONOTROPIC GABAA receptors and 

also through slower METABOTROPIC G-protein-coupled GABAB  receptors. Many 

AEDs influence GABAA receptor-mediated inhibition, either by interacting with 

GABAA receptors or by modifying the activity of enzymes and transporters important 

for GABA homeostasis and altering it. The antiepileptic activity of benzodiazepine-like 

agents, such as diazepam, occurs though positive allosteric modulation of GABAA 

receptors. Indeed benzodiazepines bind to GABAA receptor and increase the frequency 

of its GABA-mediated openings (Rudolph et al., 1999). Also barbiturates, such as 

phenobarbital, act as positive allosteric modulators of GABAA receptors, but with a 

different mode of action from benzodiazepines. Indeed they act by shifting the relative 

proportion of openings in favour of the longest-lived open state (MacDonald and Olsen, 
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1994). Other AEDs act by increasing the extracellular level of GABA, and consequently 

the tonic GABA-mediated inhibition, through the modification of the activity of 

enzymes involved in GABA metabolism. For example vigabatrin irreversibly blocks the 

GABA transaminase enzyme, resulting in increased intracellular levels of GABA that 

shift its equilibrium in favour of extracellular GABA (De Biase  et al., 1991). Instead 

tiagabin is a potent and selective competitive inhibitor of GABA transporter  that binds 

with high affinity to the transporter, thus preventing GABA uptake and favouring its 

extracellular accumulation (Suzdak and Jansen, 1995). 

The inhibition of synaptic excitation represent a very attractive strategy to use in 

order to suppress seizures. Unfortunately it revealed unsuccessful by itself, even if 

many AEDs act partly through inhibition of excitatory activity (Kuo et al., 2004). 

Glutamate is the main excitatory neurotransmitter of the CNS and its ionotropic 

receptors can be subdivided in three groups based on their pharmacology: the AMPA 

subtype (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid), the NMDA subtype 

(N-methyl-D-aspartate) and the kainate subtype. Blockade of the NMDA and AMPA 

subtypes has revealed effective in protecting against seizures both in in vitro and in vivo 

animals models. Despite this, clinical trials with selective NMDA antagonists have 

failed in the chronic treatment of epilepsy. A more interesting target for AEDs is 

represented by kainate receptors. Indeed these receptors are present in pre-synaptic axon 

terminals where they are able not only to modulate glutamate release from excitatory 

afferents but also to suppress GABA release from inhibitory interneurons. The blockade 

of these receptors would therefore enhance synaptic inhibition and reduce synaptic 

excitation. Indeed selective kainate receptors antagonist have proved effective in 

protecting against seizure in brain slice and animal models. and have now to be tested in 

humans (Smolders et al., 2002). 

The development of AEDs have provided immeasurable benefits for those afflicted 

with seizures disorders of all kind. However several AEDs suffer from substantial 

problems with toxicity, particularly neurotoxic side effects and idiosyncratic reactions 

such as skin rush (Brodie, 2001). Thus new AEDs with better safety, less toxicity and 

higher anticonvulsant efficacy are needed (Loscher, 1998; Loscher and Schmidt, 2002). 

Most clinically effective AEDs have been found by screening in animal models or by 

structural variation of known drugs. However some AEDs were developed according to 

a rational strategy based on knowledge of pathophysiologic processes involved in 

seizures or epilepsy. Among these, the GABA-mimetic drugs vigabatrin and tigabine, 
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developed according to the ‘GABA hypothesis’ of epilepsy, that is the idea that 

impaired GABAergic inhibitory neurotransmission is critically involved in the 

pathogenesis of several types of epilepsy. Several other rational strategies failed to 

produce efficacious AEDs. For example drugs developed to counteract exaggerated 

excitatory activity by blocking the NMDA subtype of glutamate receptors showed no 

antiepileptic activity, even if there are many evidence that excessive activity of 

glutamatergic neurotransmission can contribute to various types of epilepsy. Therefore 

the lesson to be learned from the failure of rationale strategies in developing new AEDs 

is that absolute selectivity of one target is not desirable in a multifactorial disease such 

as epilepsy. Moreover the preclinical AEDs development should involve chronic 

models of epilepsy that mimic more closely the structural and functional brain 

alterations associated with epilepsy  than the simple seizure models, such as the 

maximal electroshock seizure. 

 

                   1.2.2  Strategies for developing drugs for pharmacoresistant epilepsy 

 

As I told before, almost 30% of patients with epilepsy are drug-resistant. Drug 

resistance can be defined as the continuing occurrence of seizures despite trial of at least 

three appropriate AEDs at maximum tolerated doses. Resistance may be classified as 

either primary (an intrinsic component of the disease process) or secondary (an 

undesirable component of the disease process).  

The major problem in developing new therapies for drug-resistant epilepsies is that 

the mechanisms of pharmacoresistance are poorly understood (Kwan and Brodie, 2000). 

Moreover refractory epilepsy is likely to be a multifactorial and complex process 

(Loscher and Potschka, 2002) to which many factors, both primary and secondary, 

contribute. Ontogenetic abnormalities in brain maturation that cause aberrant 

morphology and distribution of local-circuit neurons have been associated with 

intractable focal epilepsy (Awad et al, 1991). Genetic factors may also be important and 

explain why two patients with the same type of epilepsy or seizures can differ in their 

response to AEDs. Finally, as epilepsy is a progressive disorder, disease-related factors, 

such as seizure induced synaptic reorganization, alteration in drugs targets or in drug-

uptake into the brain, have to play a pivotal role in the development of intractable 

epilepsy.  

 

 21



                   1.2.2.a Pharmacoresistance: the role of seizure-induced modifications. 

 

Some recent studies have investigated the role of seizure-related factors in the 

genesis of pharmacoresistance and have uncovered their importance. Among these, the 

work of Remy and co-workers (Remy et al, 2003a) demonstrated that the resistance to 

carbamazepine treatment in epilepsy due to hippocampal sclerosis is associated with the 

insensitivity of dentate granules neurons to the effects of this drugs. Cabamazepine, like 

many other antiepileptic drugs, acts partly by inhibiting sodium influx via voltage-

sensitive brain-expressed sodium channels in a use-dependent fashion. Carbamazepine 

blocks sodium channels by binding to them in their inactivated state and slowing 

reactivation. Blocking of sodium channels with carbamazepine is more effective when 

the neuronal membrane is depolarized repetitively at high frequency, a property that is 

thought to underlie the anti-seizure effect of the drug. In their study Remy and co-

workers isolate dentate granule neurons from hippocampi of patients with epilepsy who 

had been treated with cabamazepine and were refractory to its effects. They report that 

dentate granule cells from these patients were completely insensitive to the effects of 

carbamazepine. In vitro studies of repetitive stimulation of hippocampal slices from 

these patients support the hypothesis that the insensitivity of dentate granule cells is 

likely to cause carbamazepine resistance.  

This study is the first demonstration of the hypothesis that changes in the target of 

AEDs are responsible of pharmacoresistance. Moreover this research raises many 

interesting questions, mainly the acquired or inherited nature of the disfunction. Indeed 

an inherited dysfunction could predispose patients to refractory disease and may enable 

the prediction of such resistance while an acquired patholoy would suggest that early 

treatment of seizures is necessary.   

 

                   1.2.2.b Pharmacoresistance: the role of multi-drug transporter proteins. 

 

An important characteristic of pharmacoresistant epilepsy is that most patients with 

refractory epilepsy are resistant to most, and often all, AEDs (Regesta and Tanganelli, 

1999). As a consequence, patients not controlled on monotherapy with the first AD have 

a chance of only 10 % or less to be controlled by other AEDs, even when using AEDs 

acting by different mechanisms. This argues against epilepsy-induced alterations in 

specific drug targets as a major cause of pharmacoresistant epilepsy but rather points to 
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non-specific and possibly adaptive mechanism. One of these mechanisms could be the 

decreased drug uptake into the brain caused by seizure-induced overexpression of 

multidrug transporters in the blood-brain barrier. Indeed, unlike endothelial cells in 

most tissues, brain capillary endothelial cells are joined by tight junctions and lack 

intercellular pores and pinocytotic vesicles. Process from pericapillary astrocytes (the 

glial endfeet) terminate on the capillary and contribute to the barrier function. The 

blood-brain barrier (BBB) passively excludes strongly ionized (polar), hydrophilic 

drugs, but non polar, highly lipid-soluble drugs (like most AEDs) penetrate easily into 

the brain by simple diffusion. As an active defence mechanism, ATP-dependent multi-

drug transporters, located in the apical cell membrane of capillary endothelial cells of 

the BBB, act as outwardly directive active efflux pumps and transfer drugs back into the 

blood after they have entered endothelial cells from the blood. These transporters are 

therefore important to limit the penetration of many lipophilic drugs into the brain 

parenchyma. The main ATP-dependent multi-drug transporters are the P-glycoprotein, 

PGP, and the family of  multi-drug-resistance associated proteins, MRPs, first identified 

in pharmacoresistant cancer cells and subsequently found in various normal tissue. 

Overexpression of these transporters might play a significant role in pharmacoresistant 

epilepsy by limiting access of AEDs to their targets in the brain. Tishler and co-workers 

were the first to report that brain expression of multi-drug resistance gene MDR1, which 

encodes for PGP, is markedly increased in patients with medically intractable epilepsy 

(Tishler et al, 1995). Immunohistochemstry for PGP showed increased staining both in 

capillary endothelium and in astrocytes. Subsequently it was shown that also MPR2 is 

overexpressed in brain tissue from pharmacoresistant patients (Sisodiya et al., 2002) and 

that it is localized mainly in the BBB endothelial cells. However it is still nor clear if 

multi-drug transporters overexpression in epileptic brain tissue is a consequence of 

seizure or if this defect is present before the onset of epilepsy. Because 

pharmacoresistant patients have the same extent of neurotoxic side effects under AEDs 

treatment as patients who are controlled by AEDs, it has been supposed that the 

overexpression of drug transporters in refractory patients is most likely restricted to the 

epileptic focus or circuit. Indeed patients in whom the epileptic focus has been resected 

during epilepsy surgery may re-experience seizures after cessation of AEDs treatment 

and become pharmacoresistant again, thus suggesting that a ‘secondary focus’ has 

become activated and drug-resistant. Moreover experimental studies have demonstrated 

that in rats there is a transient overexpression of PGP in capillary endothelial cells and 
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in astrocytes after kainate-induced seizures (Zhang et al., 1999), supporting the 

hypothesis that seizures are responsible for the overepression of drug transporters. 

These data would explain also the finding that the severity of pharmacoresistance is 

correlated with a high number of seizure prior to initiation of treatment.  

In conclusion there are increasing evidence that genes encoding multi-drug 

transporters such as PGP and MRPs are involved in the generation of 

pharmacoresistance in epileptic patients. In this case either systemic or local 

administration of inhibitors of these drug transporters or novel AEDs that are not 

substrates for these transporters could prove useful in pharmacoresistant epilepsy. 

Inhibitors of PGP and, more recently, MPRs are being evaluated clinically for either the 

reversal or prevention of intrinsic and acquired multi-drug resistance in human cancer 

(Litman et al., 2002) and might soon be available for clinical trials in epilepsy.  

 

In addition to studies from drug-resistant patient, experimental animal models should 

be used to study the mechanisms of drug-resistant epilepsy and eventually to discover 

new drugs effective in patients not controlled on current antiepileptic medication. The 

main characteristics of models suitable for studying the mechanisms of 

pharmacoresistance are: 

- the type of seizures should be similar in its clinical phenomenology to seizures 

occurring in human; 

- the seizures in the model should be associated with paroxysmal activity in the 

electroencephalogram (EEG) in order to allow evaluation of drug effects on both 

behavioural and electrographic seizures manifestations; 

- standard antiepileptic drugs should be inactive or weakly active to block seizures. 

Ideally the same model should comprise subgroup of animals differing in their response 

to standard drugs (responders vs non-responders) thus simulating the clinical, where 

patients with the same type of seizure or epilepsy may differ in their response to 

antiepileptic drug treatment. Models with seizures that are easily suppressed by standard 

antiepileptics (e.g. all of the commonly used models of primarily generalized seizures) 

are not likely to detect new drugs with higher efficacy than standard drugs in intractable 

epilepsy; 

- the model should allow long-term studies on anticonvulsant drug efficacy, i.e. the 

animals should survive the seizures and the maintenance of effective drug concentration 

should be possible during chronic treatment; 
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The progressing in studies on brain tissue from pharmacoresistant patients and the 

improvement of models of intractable epilepsy should therefore enhance the 

understanding of the mechanisms of pharmacoresistance in epilepsy and allow the 

development of new effective AEDs. 

 

                    1.2.3 Strategies for developing drugs that prevent epileptogenesis 

 

The future goal of pharmacotherapy of epilepsy is to develop anti-epileptogenic and 

disease-modifying drugs, that is drugs that prevent the development of epilepsy after an 

initial precipitating injury and drugs that block the progression of epilepsy to chronic, 

often difficult to treat, epilepsy (Loscher amd Schmidt, 2002; Schmidt and Rogawski, 

2002).  

A number of AEDs, including phenytoin, carbamazepine, valproate and 

phenobarbital, have been evaluated in clinical trials to test whether they prevent post-

traumatic epilepsy after brain injury. Unfortunately results have been disappointing, as 

none of the drugs have exerted any significant anti-epileptogenic effect (Schachter, 

2002; Hernandez, 1997; Temkin et al., 2001). Interestingly, in apparent contrast to 

clinical trials, valproate has been successful in inhibiting epileptogenesis in two animals 

models, the kindling and the kainate models of temporal lobe epilepsy (Silver et al., 

1991; Bolanos et al., 1998). This may indicate that the mechanisms responsible for 

epileptogenesis differ after different initiating events such as status epilepticus or brain 

injury.    

The understanding of the mechanisms that promote the development of epilepsy and 

its evolution to a chronic state is extremely important in order to discover anti-

epileptogenic drugs. A wide variety of approaches is used to discover the basic  

mechanisms  of epilepsy, including both clinical (e.g. brain imaging, studies of human 

brain tissue, studies on gene mutations in familial epilepsies) and experimental 

approaches, in which new or improved animal models have an important role (Loscher, 

2002). These studies indicated a large number of factors are involved in the 

epileptogenic process, including an imbalance between excitatory and inhibitory 

neurotransmission, alterations in neurotransmitter receptor expression and function, 

development of epileptic ion channel (channelopathies), functional changes of neurons, 

development of epileptic networks within and between brain regions, morphological 

changes such as hippocampal sclerosis and  axonal sprouting (leading to aberrant 
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neuronal synchronization) and also genetic causes (McNamara, 1999; Pitkanen and 

Sutula, 2002). The targeting of one or more of these mechanisms should be a good 

strategy to develop anti-epileptogenic drugs. Currently there are very few studies 

addressing the effectiveness of  interfering with epileptogenic mechanisms in preventing 

the development of permanent epileptic state. As neuronal loss is one of the major 

abnormalities in the epileptogenic and epileptic brain, a recent work of Ebert and co-

workers (Ebert et al., 2002)  investigated if the sparing of neurons is able to counteract 

the occurrence of epilepsy. To address this question, different neuroprotective drugs, 

including the NMDA antagonist MK-801 (dizocilpine), have been administrated to rats 

after kainate-induced status epilepticus during the latent period and before the 

development of spontaneous recurrent seizures. The massive sclerosis in the 

hippocampus and piriform cortex induced by status epilepticus was prevented by the 

administration of MK-801. Despite this, all rats developed spontaneous recurrent 

seizures, indicating that damage in the limbic brain regions is not critically involved in 

the epileptogenesis. 

The future challenge of pharmacotherapy of epilepsy will therefore be the 

development of drugs preventing the process of epileptogenesis and their testing both in 

animal models and in clinical trials. The further elucidating of the molecular and 

cellular mechanisms of epileptogenesis will be helpful to discover  these new drugs. 

 

                    1.2.4  Treatment options to conventional pharmacotherapy of epilepsy. 

 

A number of treatment procedures are being used or under development for clinical 

use in order to get therapies for epilepsy alternatives to systemic (usually oral) 

administration of AEDs.  

One of the most interesting approach in this direction is the delivery of the anti-

epileptic medication directly into the focus through a biosensor device that anticipates 

seizures and subsequently applies the treatment via a minipump into the site of seizure 

origin in order to block it. Recent clinical studies have indeed demonstrated the 

possibility to predict seizures occurrence from standard EEG recordings. Pre-seizures 

changes in brain dynamics can be detected from recordings of scalp-EEG activity 1 

hour before the onset of the clinical seizure (Le Van Quyen et al., 2000; see also Le Van 

Quyen et al., 2001 for review). Moreover intracranial EEG recordings permit the 

identification of quantitative EEG changes corresponding to prolonged bursts of 
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complex epileptiform discharges 7 hours before seizures (Litt et al., 2001). The 

predictability of seizure occurrence permit to design implantable anti-seizure devices 

that, while continuously monitoring EEG in the area of a epileptic focus, can infuse 

drugs in this area when the probability of an incoming seizure exceeds a predetermined 

threshold value. Such a device has been tested in an animal model of focal epilepsy 

(Stein et al., 2000). In this study a computerized system for the detection for seizures 

was linked to a programmable infusion pump to deliver diazepam directly into the 

seizure focus. Focal seizures were created in rats using bicuculline, a strong GABA 

antagonist. After the detection of the first seizure, the computerized system sent a signal 

to the infusion pump triggering the delivery of vehicle or diazepam though the cannula. 

The animals receiving diazepam showed cessation of seizures, whereas the animals 

receiving vehicle generated additional ictal events. Therefore intra-focus delivery of 

diazepam is effective in suppressing electroencephalographic seizures.  This experiment 

provides therefore proof-in-principle of a closed loop, automated drug delivery system 

for the treatment of focal epilepsy. Development of clinically useful systems will 

require attention to a number of issues, such as the efficacy of seizure detection, the 

choice of appropriate medication and other engineering problems, but it could represent 

an effective strategy for epilepsy intractable with standard medications. 
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                  1.3 THE BOTULINUM TOXINS  

 
Many thousand of living species produce toxins that are used to modify the 

physiology of other species with the general aim of increasing their chance of survival. 

Given the essential role of nervous system in animal physiology, it is not surprising that 

most known toxins are selective for molecules of the nervous system. In general, 

neurotoxins act by blocking the transmission of the nerve impulse. As a neurotoxin is 

the product of a long-term coevolution of the toxin-producing species with the target 

species, every neurotoxin is very specific for it target and the study of its mechanism of 

action can reveal important features of nerve physiology (Rappuoli and Montecucco, 

1997). 

Protein neurotoxins produced by bacteria of the genus Clostridium act by inhibiting 

neurotransmitter release through the specific cleavage of a group of proteins integral to 

the exocytotic process. Indeed the seven botulinum neurotoxin (BoNT) serotypes (A-G) 

produced by Clostridium botulinum bind to and enter the cholinergic terminals from 

which they inhibit the release of acetylcholine with ensuing flaccid paralysis (Kerner, 

1817). 

The remarkable specificity of BoNTs is exploited in the treatment of human disease 

characterized by a hyperfunction of cholinergic terminals. However the further 

elucidation of BoNTs structure and function can be useful to discover new therapeutic 

exploitations of botulinum toxin. 

 

                   1.3.1  The structure 

 

To understand the components of BoNTs responsible for its mechanism of action, it 

is necessary to describe the main characteristics of their structure. BoNTs are 

synthesized in the bacterial cytosol without a leader sequence and they are released to 

the culture medium after bacterial lysis as a single polypeptide chain of 150 kDa. The 

inactive form of the protein can be cleaved by different bacterial and tissue proteinases 

within a surface-exposed loop (Krieglstein et al, 1994; Turton et al., 2002) to form the 

active di-chain neurotoxin (Fig. 1A). The heavy chain (H, 100 kDa) and the light chain 

(L, 50 kDa) remain associated via both non-covalent protein-protein interactions and the 

conserved interchain S-S, the integrity of which is essential for neurotoxicity (Schiavo 

et al., 1990).  

 28



 29



The 3D crystal structure of BoNT/A has been recently determined (Lacy et al., 

1998). The toxin is subdivided into three 50 kDa domains:  

                    - the zinc-dependent endopeptidase domain of the LC; 

                   - the translocation domain in the N-terminal half of the HC; 

                   - the binding domain in the C-terminal half of the HC; 

These three functional domains are structurally distinct and arranged in a linear 

fashion, such that there is no contact between them.  

 

                  1.3.2  The function 

 

The structural organization of BoNTs meets nicely their ability to intoxicate neurons 

via a four-step mechanism (summarized in Fig. 1B) consisting of: 

- binding; 

- internalization; 

- membrane translocation; 

- enzymatic target cleavage; 

 

                   1.3.1a Binding to target cell 

 

BoNTs diffuse in the body fluids from the site of adsorption to the pre-synaptic 

membrane of cholinergic terminals where they bind. Available evidence indicates that 

the C-terminal half of the HC plays a major role in neurospecific binding (Shone et al, 

1985). However, it appears that additional regions of BoNTs are involved in binding, as 

immunization with the C-terminal fragment of HC shows only a partial protection from 

intoxication with the intact BoNT molecule (Poulain et al.,1991). 

Identification of pre-synaptic receptors of BoNTs has been attempted by several 

investigators. Beginning with the seminal work of van Heyningen on TeNT (Van 

Heyningen, 1974), a large number of studies have established that polysialogangliosides 

are involved in binding BoNTs (Kitamura and Sone, 1980; Montecucco et al., 1988). 

Binding to polysialogangliosides well accounts for an unsaturable low-affinity binding 

of BoNTs to nerve cells and to nerve tissue membranes. However it is unlikely that 

polysialogangliosides are the sole receptors of these neurotoxins and there are many 

evidence that proteins of the nerve cell surface have a part in the process. It has 

therefore been proposed a double-receptor model (Montecucco, 1986) where BoNTs 

 30



bind strongly and specifically to the presynaptic membrane because they display 

multiple interaction with sugar and protein binding sites. Indeed recent experiments 

demonstrated that both BoNT/B and BoNT/E binds strongly to the synaptic vesicle 

protein synaptotagmin II in the presence of polysialogangliosides (Nishiki et al., 1994; 

Li et al., 1998). 

The further study of BoNTs receptors will lead not only to important progresses in 

neurosciences but also contribute to improving present therapeutic protocols based on 

BoNTs. 

 

                  1.3.1b  Internalization 

 

All available evidence indicate that BoNTs do not enter the cell directly from the 

plasma membrane but they are endocytosed inside acid cellular compartments. Indeed 

electron microscopic studies have shown that, after binding, BoNTs enter the lumen of 

vesicular structures through a temperature and energy-dependent process (Black and 

Dolly, 1986 I, II). However the nature of the vesicular structures in which BoNTs are 

internalized is not known. BoNTs activity is influenced by nerve stimulation (Simpson 

et al., 1980) with paralysis occurring more rapidly when nerve are stimulated at high 

frequency. The simplest way to account for this is that the neurotoxins enter the 

synaptic terminals inside the lumen of SSV following the process of vesicle recycling. 

As I will discuss later, experiments on hippocampal neurons indicate that this is not the 

case, as BoNTs are internalized via endocytic vesicular structures in these CNS neurons 

(Verderio et al., 1999). However the mechanism of BoNTs entrance at the motor nerve 

terminals may be different. Therefore experiments on peripheral motorneurons are 

needed to evaluate such possibility. 

  

                   1.3.1c  Translocation 

 

Once the neurotoxins have reached the vesicle lumen, their L chain needs to cross the 

hydrophobic barrier of the vesicle membrane to reach the cytosol where it can display 

its proteolytic activity. Indirect, but compelling evidence indicates that BoNTs have to 

be exposed to a low pH step for nerve intoxication to occur (Simpson 1982; Adler et al., 

1994). Acid pH does not induce a direct activation of the toxin via a structural change. 

Rather, it is required in the process of transmembrane translocation of the L chain. 
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Studies with model membrane systems have shown that BoNTs undergo a low pH 

driven conformational change from a water soluble neutral structure to an acid structure 

characterized by the surface exposure of hydrophobic patches. This hydrophobicity 

enables the penetration of both the H and L chains in the hydrocarbon core of the lipid 

bilayer. Following this low pH-induced membrane insertion, BoNTs form ion channels 

in the planar lipid bilayer that regulate the transmembrane translocation of the L domain 

from the vesicle membrane to the nerve terminal cytosol. 

 

                   1.3.1d Zinc-endopeptidase activity 

 

The catalytic activity of BoNTs was discovered following the sequencing of the 

corresponding genes (Minton, 1995). Indeed sequence comparison revealed the 

presence of a highly conserved 20-residues-long segment, located in the middle of the L 

chain, containing a zinc-binding motif typical of zinc-endopeptidases. Subsequently, the 

substrates of BoNTs enzymatic activity were identified through assays of proteolysis 

performed on synaptic proteins (Söllner et al., 1993).  

The BoNTs act through specific cleavage of a group of proteins integral to the 

exocytotic  process, the SNARE proteins (i.e. soluble NSF-attachment protein 

receptors). Indeed the docking and fusion of synaptic vesicles involve the interaction 

between specific integral proteins of the synaptic vesicles membrane (the v-SNARE) 

and receptor proteins of the target membrane (the t-SNARE). In the brain two t-SNARE 

have been identified: synthaxin, a nerve terminal integral membrane protein, and 

SNAP-25, a peripheral membrane protein of 25 kDa mass. In the synaptic vesicle the 

integral membrane protein VAMP (or synaptobrevin) has been identified as the v-

SNARE. The ternary complex of VAMP, syntaxin, and SNAP-25 is extremely stable. 

For efficient recycling to occur, this complex must be disassembled by the binding of 

two soluble cytoplasmatic proteins: the N-ethylmaleimide-sensitive fusion (NSF) 

protein and the soluble NSF attachment protein (SNAP). The v-SNAREs and the t-

SNAREs serve as receptors for SNAP (hence their name SNAP receptors) which then 

binds NSF, that unravels the SNARE assembly utilizing energy released upon 

hydrolysis of ATP. 

The seven BoNTs are very specific proteases. Indeed BoNT/B, /D, /F and /G cleave 

VAMP, each at a single site (Schiavo et al., 1992; Schiavo et al., 1993; Schiavo et al., 

1994); BoNT/A and /E cleave SNAP25, each at a single site (Schiavo et al., 1993) while 
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BoNT/C cleaves both syntaxin and SNAP-25 (Schiavo et al., 1993). Recombinant 

VAMP, SNAP-25 and syntaxin are cleaved at the same peptide bonds and at the same 

rate as the corresponding cellular proteins, indicating that there is no additional 

endogenous factors involved in the proteolytic activity of BoNTs. Analysis of the 

primary and secondary structure of the neurotoxins reveal that they are very similar. 

Moreover the variable cleavage sites and flanking regions do not account for the 

specificity of the three SNARE proteins. These considerations suggest that the SNARE 

targets could have a common structural element that would serve as a recognition motifs 

for the neurotoxins. Comparison of the sequence of the neuroexocytosis-specific 

SNARE proteins of different species has revealed the presence of a nine-long residue 

motif, characterized by three carboxylate residues alternated with hydrophobic and 

hydrophilic residues, termed thereafter the SNARE motif (Rossetto et al., 1994). 

Several experimental evidence support the hypothesis that the SNARE motif is the 

major determinant of the of BoNTs specificity for the three SNARE proteins (Foran et 

al.,1994; Shone et al.,1993). The further interaction with regions specific of each 

SNARE contribute to the selectivity and the strength of neurotoxin binding.  

The regions of BoNTs involved in substrate binding are still unknown. It is tempting 

to suggest that the strongly conserved 100-residue-long NH2-terminal region is 

involved, as the removal of more than eight residues from the NH2 terminus leads to 

complete loss of activity. However further investigations on the role of this domain are 

needed. 

 

                   1.3.2  The neuromuscular junction 

 

The target of BoNTs action is the neuromuscular junction (NMJ), where they cause a 

selective blockade of regulated exocytosis of acetylcholine (Ach), thereby triggering a 

profound, albeit transitory, muscular paralysis. 

The first electrophysiological investigation of the effect of BoNTs on NMJ was 

conducted by Burgen (Burgen et al., 1949) on the rat hemidiaphragm preparation. The 

results of this seminal study can be summarized as follows: 

- large and persistent blockade of the end-plate potential (EPP), responsible for the 

impaired synaptic transmission at intoxicated synaptic terminals; 

- reduction of the frequency, but not of the amplitude, of miniature end-plate 

potential (mEPP); 
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- no impairment of the processes of neurotransmitter synthesis, uptake, and storage 

or of the propagation of nerve impulse and Ca2+ homeostasis; 

- increasing of the frequency of spontaneous quantal events characterised by a 

prolonged time-to-peak and called “Giant-mEPP (G-mEPP)”; 

These data can be well explained by the activity of BoNTs. Indeed each BoNT 

cleaves a specific SNARE protein that is essential for the neuro-exocytosis process. The 

neurotoxin-impaired exocytosis apparatus is therefore able to mediate some 

spontaneous residual synaptic activity, but with reduced efficacy with respect to the 

amount of neurotransmitter released and to the rate of the overall process. Moreover 

nerve-evoked Ach release is strongly impaired, thereby the EPP can not reach the 

appropriate membrane potential level to trigger an action potential in the muscle fiber.  

The long-term blockade of regulated Ach exocytosis by BoNTs is able to induce 

sprouting of nerve terminals, as suggested by the increased frequency of G-mEPPs. 

Indeed G-mEPPs are considered indicators of immature or pathological states of the 

synapses and they result from “constitutive” Ach secretion of endosomal compartments 

precursors of the synaptic vesicles. Their increased frequency at intoxicated NMJ 

suggests that motorneurons terminals are able to sprout new processes and form new, 

immature synapses in response to the paralysis induced by BoNTs. Further 

investigations have confirmed this hypothesis. Immunohistochemical analysis of 

neuromuscular junction after one month from the treatment with BoNT/A reveal an 

extensive sprouting network from the paralysed nerve terminal. Sprouts display many 

key proteins required for exocytosis, as SNAP-25, VAMP/synatobrevin, syntaxin, 

synaptogamin II, synaptopysin, voltage-activated Na+, Ca2+ and Ca2+-activated K+ 

channels (Angaut-Petit et al., 1990). Electrophysiological recordings of original motor 

nerve endings and newly formed sprouts reveal an extensive propagation of action 

potentials over most of the nerve terminal arborisation, the presence of Ca2+ influx upon 

active membrane depolarization, and Ca2+-dependent K+ currents in the terminal sprout 

membrane. Interestingly, during the first month after BoNT/A injection, a switch in the 

nature of voltage-gated Ca2+ channels coupled to neurotransmitter release occur. In 

untreated adult mouse motor nerve terminals, only P/Q-type Ca2+ channels are normally 

present. However, after BoNT/A injection, L, N and P/Q-type channels are found to be 

functional associated with neurotransmitter release. Thus all these findings indicate that 

nerve terminal sprouts possess the molecular machinery for Ach release and they 
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support previous suggestion that terminal sprouts could play a role in replacing parental 

terminals during the recovery of neuromuscular transmission.  

The recent development of fluorescent dyes that allows quantification of synaptic 

activity in living nerve terminals has been very important in unravelling the unique role 

of sprouting in implementing functional recovery from paralysis (de Paiva et al., 1999). 

Upon stimulation, living motor nerve terminals bathed with the fluorescent dye FM1-43 

accumulate this marker in synaptic vesicle membrane, while in BoNT/A injected 

preparation this uptake is clearly inhibited. This technique permitted to demonstrate 

that, during BoNT/A-induced  paralysis and subsequent recovery of neuromuscular 

transmission, sprouts could establish functional synaptic contacts mediating appropriate 

exo-endocytosis in vivo. Indeed 28 days after BoNT/A injection, when twitch of 

intoxicate muscle can be elicited by direct electrical stimulation of the nerve, only the 

newly formed sprouts and not the original terminals exhibit activity-dependent uptake 

of FM1-43-labeled vesicles. At this time a clear reorganization of the postsynaptic 

nAChRs has taken place,  mostly at the extremities of the sprouts. The sprouts go on 

growing for the next 2 weeks and only by 42 days there is a gradual, but marked, 

diminution in their activity-dependent staining by FM1-43. This recession of vesicle 

turnover in the outgrowths is concomitant with an enhanced FM1-43 staining in the 

original terminals that increases further over the next 4 weeks, while the previously 

extensive sprouts receded. Three months after BoNT/A injection the original endplate 

has regained morphology and pattern of depolarization-stimulated FM1-43 staining that 

are indistinguishable from those visualized before poisoning 

The muscle atrophy induced by BoNTs in animal models and in humans is therefore 

largely reversible, even after repeated BoNTs injections, and this is important for 

therapeutic application as I will discuss later. 

 

                   1.3.3  The central nervous system 

 

  Though BoNTs do not reach the CNS in significant amounts during botulism, there 

are evidence that they are able to intoxicate CNS neurons in vitro (Habermann and 

Dreyer, 1986).  

To investigate the mechanism of action of BoNTs in the CNS, Verderio and 

coworkers intoxicated cultured embryonic hippocampal neurons and astrocytes with 

BoNT/B and BoNT/F and examined the route of entry and the proteolytic activity of 
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these neurotoxins (Verderio et al., 1999). Both BoNT/B and BoNT/F are able to enter 

hippocampal neurons and perform extensive cleavage of their targets, i.e. 

synaptobrevin/VAMP, in the large majority of nerve terminals. No difference in the 

cleavage of synatobrevin/VAMP could be detected when neurons are incubated with 

BoNT/B or /F upon depolarization, which suggests that BoNTs internalization is not 

mediated by a depolarization-dependent mechanism. In line with this, it has been shown 

that BoNTs enter hippocampal neurons via endocytic processes not mediated by SSVs 

recycling. Indeed incubation of fluorescent labelled BoNT/B or BoNT/F with 

fluorescent dextran, a widely used marker for fluid-phase endocytosis, indicate that the 

two dyes co-localize inside endocytic vesicular structures. Further experiments 

demonstrated that BoNT/B and BoNT/F are internalized also in astrocytes though the 

endocytotic route where they cleave the nonneuronal homologue of 

synaptobrevin/VAMP, i.e. cellubrevin.  

Studies performed on rat cerebrocortical synaptosomes demonstrated that BoNT/A 

and BoNT/E are able to inhibit Ca2+-dependent K+-evoked release of several 

transmitters, including glutamate, acetylcholine, noradrenaline and dopamine (Ashton 

and Dolly, 1988; Foran et al., 1996). Interestingly intoxication of cerebral synaptosomes 

with BoNT/E is found to inhibit GABA release much less than glutamate release (40% 

decrease of GABA versus 90% decrease of glutamate). These data can be explained by 

the presence of BoNT/E and BoNT/A target, i.e. SNAP-25, only in the terminals of 

hippocampal glutamatergic terminals (Verderio et al., 2004). Indeed 

immunocytochemical studies performed on slices from adult rat hippocampus 

demonstrated that SNAP-25 is present in the glutamatergic terminals in stratum oriens 

and radiatum, while it is largely excluded from inhibitory terminals of type III neurons 

impinging on pyramidal cells in CA1 region.  

At a electrophysiological level, treatment with BoNT/A or BoNT/E prevents the 

occurrence of spontaneous/miniature excitatory postsynaptic currents (mEPSCs) and 

greatly reduces the amplitude of evoked EPSCs in hippocampal slices (Capogna et al., 

1997). The neurotoxins have no effect on post-synaptic glutamate sensitivity, as 

indicated by their lack of effect on the amplitude of inward currents elicited by 

application of the glutamate receptors agonist AMPA. Actually the main action of 

BoNT/A is pre-synaptic and consists of a strongly reduction of neurotransmitter release 

probability, as indicated by the small amplitude of unitary EPSCs between pairs of CA3 

pyramidal cells and by decreased paired-pulse facilitation. Indeed, when two action 
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potentials are elicited in close succession in a single cell, the second action potential 

triggers the release of more vesicles than the first, as the release probability is 

transiently elevated because of the residual Ca2+ that remains in the nerve terminal after 

the first action potential (Katz and Miledi, 1968). The paired-pulse ratio (PPR) can be 

defined as the amplitude of the second EPSCs divided by the amplitude of the first 

EPSCs and it is therefore inversely dependent on release probability. In control 

hippocampal culture, the PPR is very low, consistent with an increase in release 

probability after the second action potential. In BoNT/A or BoNT/C treated cultures, the 

PPR is greater than in control cultures, indicating that the release probability is strongly 

affected by the treatment with BoNTs. 

These bulk of data indicate therefore that BoNTs activity in the CNS is very similar 

to their activity at the neuromuscular junction. However further studies are needed to 

better characterize the specificity of BoNTs activity and their time-course. 

 

                   1.3.4  Therapeutic uses  

 

    The demonstration that the inhibition of the nerve-impulse is followed by a functional 

recovery of NMJ provides a scientific basis for the rapidly growing use of BoNTs in the 

therapy of a variety of human diseases caused by hyperfunction of cholinergic 

terminals. Injection of BoNTs is currently recognized as the best available treatment for 

focal and segmental dystonias and for certain types of strabismus, and it is now being 

extended to several other human pathologies (Jankovic et al., 1994). Indeed injections 

of minute amounts of BoNTs into the muscle to be paralyzed led to a depression of the 

symptoms lasting few months. So far, BoNT/A is the most used serotype. However, to 

overcome the problem of immunization against BoNT/A, other BoNTs serotypes have 

been tested. BoNT/B, BoNT/F and BoNT/E demonstrated very effective in causing a 

strong paralysing effect (Eleopra et al., 1998). However their effect is short lasting and 

hence they are not a valid alternative to BoNT/A, while encouraging results have been 

obtained with BoNT/C (Eleopra et al., 1997). The short lasting effect of BoNT/E came 

as a surprise because that toxin cleaves the same substrates as BoNT/A. It is possible 

that the removal of a long segment from the carboxyl-terminal of SNAP-25 (25 residues 

by BoNT/E as compared to 9 residues removed by BoNT/A) leads to a different 

impairment of tSNARE functions, leading to a more rapid removal of the fragment and 

a consequent more rapid remodelling of the end plate. 
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The use of BoNTs have now extended also to disorders that have not a neuromuscular 

basis such as the axillary hyperhidrosis (Heckmann et al., 2001), the myofascial pain 

(Porta et al., 2000) and tension and migraine headache (Silberstein et al., 2000).  
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                1.4 AIM OF THE THESIS 
 

Substantial evidence indicates that the excessive release of glutamate during seizures is 

the primary cause of seizure-induced brain damage (Meldrum, 1995; Holmes, 2002). 

Thus drugs that are specifically targeted to block glutamate release in temporal lobe 

structures might arrest seizures and the neuronal death in TLE. As the most effective 

blockers of glutamate release known are botulinum toxins (BoNTs), I decided to 

investigate whether one of them, i.e. BoNT/E, can block limbic seizures and the ensuing 

anatomical rearrangements and memory deficits in rodent models of TLE. 

In this PhD thesis, I will therefore pursue four major aims: 

 

1) characterizing BoNT/E activity in the CNS in vivo. Indeed BoNTs are able to block 

glutamate release through the cleavage of proteins that are essential components of the 

neurotransmitter release machinery (Schiavo et al., 2000). However their action is well-

characterized only in (PNS) and there are few data reporting their activity in the CNS. 

As the prolonged blockade of neuronal activity in the CNS can have detrimental effects, 

I decided to use first BoNT/E, that shows a shorter neuroparalytic duration with respect 

to other serotypes (Foran et al, 2003).  In the first part of my PhD thesis I therefore 

present the data reporting BoNT/E activity after its injection into rat hippocampus. In 

particular, I analyzed the effectiveness of BoNT/E proteolytic activity in the 

hippocampus, the time-course of its action and BoNT/E effects on glutamate release and 

hippocampal spiking activity.  

 

2) investigating the anti-epileptic effect of BoNT/E in animal models of TLE. In this set 

of experiments, I used two well-characterized models of TLE in order to prove the anti-

epileptic activity of BoNT/E. The first model is represented by the intrahippocampal 

administration of the glutamate analog kainic acid (KA). Indeed focal application of KA 

to rat hippocampus induces acute seizures that can be detected through 

electroencephalographic (EEG) recordings (Vezzani et al., 1999, 2002). The second 

model utilized is the intraperitoneal (i.p.) injection of KA. Actually, rats receiving 

parental KA undergo status epilepticus of limbic origin and the severity of seizures can 

be scored according to a defined rating scale (Lothman and Collins, 1981; Ben-Ari, 

1985). In both models I analyze the prophylactic effect of BoNT/E injection into 

hippocampus on epileptic seizures induced by the subsequent administration of KA. 
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3) investigating the long-term effects of BoNT/E administration on cognitive functions 

and on neuronal survival in the i.p. KA model of TLE. Indeed animals treated with KA 

i.p. develop, some weeks after status epilepticus, cognitive deficits and massive 

neuronal loss in many limbic structures such as the hippocampus, the lateral septum and 

the piriform cortex (Ben-Ari and Cossart, 2000). To examine whether BoNT/E  

injection into hippocampus is able to prevent cognitive deficits and neuronal loss  

induced by seizures, I test the performance of rats, previously injected with BoNT/E, in 

the Morris water maze (MWM), a classical hippocampal-dependent memory task, five 

weeks after KA i.p. administration. Moreover I analyze the anatomy of limbic 

structures, particularly the hippocampus, in order to evaluate the neuroprotective effects 

of BoNT/E.  

 

4) investigating the anti-epileptogenic effect of BoNT/E in the kindling model. TLE 

is a progressive disease that often results from an early insult able to induce 

rearrangements in hippocampal circuitry that lead, after a latent period, to chronic 

epilepsy (Pitkanen and Sutula, 2002). This process, called epileptogenesis, is strongly 

activity-dependent. I therefore assess whether the long-term blockade of neuronal 

activity through BoNT/E injection is able to prevent or slow down the epileptogenic 

process in the model of rapid electrical kindling of the ventral hippocampus. I used this 

model of rapid kindling in order to avoid repeated injection of BoNT/E in the 

hippocampus. Indeed, in classical kindling, animals need to be electrically stimulated 

for a period that may exceed the time-window of BoNT/E effect (Rogawski et al., 

2001). 
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MATHERIALS AND METHODS 
 

                    2.1 ANIMAL TREATMENT 
 

    Long-Evans hooded rats were used in this study. Animals were housed in a 12 hr 

light/dark cycle with food and water available ad libitum. All experimental procedures 

were in conformity to the European Communities Council Directive n° 86/609/EEC. 

                  

                   2.1.1 BoNT/E INJECTIONS 

                              

BoNT/E was obtained by WAKO (Japan), trypsin activated, purified and tested as 

previously described (Schiavo and Montecucco, 1995). Its potency was evaluated with 

the mice phrenic nerve-hemidiaphragm test. Two unilateral stereotaxic infusions of 1.5 

µl of BoNT/E (50 nM) or vehicle (2% rat serum albumin in PBS) were made into the 

dorsal hippocampus under avertin anaesthesia (tri-bromo-ethanol) at postnatal day (P) 

35. P35 rats were chosen since they display a maximal sensitivity to KA-induced 

seizures (Ben-Ari, 1985; Stafstrom et al., 1993). Coordinates in mm from bregma were 

(nose bar –2.5): for CA1, AP -2.4, L -1.8, H 2.1 below dura; for CA3, AP -2.4, L -3.3, 

H 3 below dura. 

                   

                    2.2 HISTOLOGY 

 

         2.2.1 DETECTION OF CLEAVED SNAP-25 

 

Rats received hippocampal injections of BoNT/E (n = 10) or vehicle (n = 5) and their 

brains were dissected 1-4 days later, after transcardial perfusion with 4% 

paraformaldehyde (Caleo et al., 2003). Coronal sections (40 µm thick, cut on a freezing 

microtome) were blocked with 10% normal goat serum in PBS and then incubated 

overnight with the antibody recognizing the BoNT/E-cleaved form of SNAP-25 diluted 

1.300 in a PBS solution containing 1% serum and 0.3% Triton X-100. On the following 

day, sections were reacted with a biotinylated secondary antibody (Vector Laboratories, 

Burlingame, CA) followed by avidin-biotin-peroxidase complex (ABC kit, Vector 

Laboratories) and diaminobenzidine (DAB) reaction. The antibody recognizing 

BoNT/E-cleaved form of SNAP-25 is a peptide-affinity purified polyclonal antibody 
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specifically raised against the BoNT/E truncated C-terminal peptide of SNAP-25 

(CDMGNEIDTQNRQIDR). This antibody recognizes specifically cleaved SNAP-25 

but not the whole protein. 

 
2.2.2 In situ HYBRIDIZATION 

 

Coronal cryostat sections (20 µm thick) were collected on slides in serial order 

through the entire hippocampus and fixed in 4% paraformaldehyde. Non-radioactive in 

situ hybridization was performed according to standard protocols (http://www.roche-

applied-science.com) using a digoxigenin labeled c-fos riboprobe (Bozzi et al., 2000). 

Signal was detected by alkaline phosphatase-conjugated anti-digoxigenin antibody 

followed by alkaline phosphatase staining. To quantify the level of c-fos mRNA, digital 

images of three matching sections per animal (n = 5 rats per group) were analysed using 

the MCID-M4 software (Imaging Research, St. Catharines, Ontario, Canada). For the 

hippocampus, the profile of CA1, CA3 and DG was outlined in each section, and signal 

intensity within each sector was measured. Background level was calculated in the 

corpus callosum of each section and subtracted from signal intensity values. The 

obtained values were averaged and used to calculate the average value per animal. 

These values (n = 5 per group) were used to calculate the mean (± S.E.) for each group. 

Statistical analysis was performed by Student’s t-test. 

 

                    2.2.3 EVALUATION OF NEURONAL LOSS 

 

Hippocampal neuronal loss was evaluated in control and BoNT/E-infused rats treated 

with KA, at the end of Morris water maze experiments (P77). Rats were perfused with 

4% paraformaldehyde and coronal sections through the dorsal hippocampus were 

processed in serial order for immunohistochemistry with mouse anti-NeuN monoclonal 

antibody (1:500 dilution; Chemicon, Temecula, CA). Neuronal damage was scored in 

areas CA1 and CA3 of the hippocampus according to the following scale (Bozzi et al., 

2000; Cilio et al., 2001): 0, no damage; 1, minimal damage (small spots of 

degeneration); 2, evident loss of pyramidal neurons; 3, complete disruption of 

hippocampal architecture. An average number of 10 sections per animal were analysed 

by an investigator unaware of the treatment. A separate score was initially assigned to 

CA1 and CA3 regions of both sides of each section, and these values were used to 
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calculate the mean damage score for each section. These values were averaged and the 

obtained damage scores for each animal were plotted 

 

                2.3 IMMUNOBLOTTING 

 
Rats (n = 13) received hippocampal injections of BoNT/E at P35 and dorsal and 

ventral hippocampi (ipsilateral and contralateral to the injected side) were dissected 

after 1, 14, 21 and 35 days. Proteins were extracted (Viegi et al., 2002) with lysis buffer 

(1% Triton X-100, 10% glycerol, 20 mM Tris-HCl, pH7.5, 150 mM NaCl, 10 mM 

EDTA, 0.1 mM Na3V04, 1 µg/ml leupeptin, 1 µg/ml aprotinin, and 1mM PMSF). 

Protein extracts (10 mg) were separated by electrophoresis and blotted, and filters were 

incubated with the antibody recognizing the BoNT/E-cleaved form of SNAP-25 (1:50 

diluition) or with anti-SNAP-25 (1:1,000 dilution; Synaptic Systems, Germany) 

polyclonal antibody, reacted with HRP-conjugated goat anti-rabbit secondary antibody 

(Bio-Rad) and developed by ECL (Amersham, UK). Filters were stripped and re-probed 

with anti-β-tubulin monoclonal antibody (1:500 dilution; Sigma, St Louis, MO), which 

served as an internal standard for protein quantification. 

 

                  2.4 SUPERFUSED SYNAPTOSOMES 

 

Glutamate release measurements were performed on superfused hippocampal 

synaptosomes from normal rats (n = 4) and from vehicle- and BoNT/E-treated rats (n = 

7 per group), one day after intrahippocampal KA. Preparation of synaptosomes was as 

described by Gobbi et al. (2002). Rats were killed by decapitation and their hippocampi 

were rapidly dissected out and homogenized in 40 volumes of ice-chilled 0.32 M 

sucrose, pH7.4, in a glass homogenizer with a Teflon pestle. The homogenates were 

centrifuged at 1000 g for 5 min and the supernatants centrifuged again at 12000 g for 

20min to yield the crude synaptosomal pellets (P2). The P2 pellets were resuspended in 

about 20 volumes of Krebs-Henseleit buffer with the following composition (mM): 

NaCl (125); KCl (3); CaCl2 (1.2); MgSO4 (1.2); NaH2PO4 (1); NaHCO3 (22); glucose 

(10), gassed with 95% O2 and 5% CO2, pH7.2 - 7.4. 5-mL samples (5 mg of initial 

tissue) were distributed onto cellulose mixed ester filters (0.65 µm pore size, Millipore 

Corporation, Millipore, Milano, Italy) in a 16-chamber superfuion apparatus held 

thermostatically at 37°C (Raiteri et al., 1974). The synaptosomes were layered onto 
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filters by aspiration from the bottom under moderate vacuum. Superfusion was started 

(t=0 min) at a rate of 0.5 mL/min with standard medium and, after a 44-min 

equilibration period, 4-min fractions were collected from each chamber. The first one, 

collected from t=44 to t=48 min), was used to determine the basal release. The 

depolarising impulse (5 mM KCl) was added at t=46.5 and its effect was measured in 

the second fraction (from t=48 to t=52 min; the fluid takes about 1.5 min to flow from 

the filters to the collecting vials). The third fraction (from t=52 to t=56) corresponds to 

the basal release after stimulation. The same synaptosomes were after perfused  without 

Ca2+ in order to evaluate the Ca2+-dependent fraction of K+-evoked release. Glutamate 

overflow was measured by a Waters Alliance HPLC analysis system. The analytical 

method involved automatic precolumn derivatization with o-phthalaldehyde followed 

by separation on C18 reverse phase chromatography column and fluorimetric detection 

(Di Stasi et al., 2002). 

 

2.5 ELECTROPHYSIOLOGY 

       

                   2.5.1 RECORDINGS OF SPIKE ACTIVITY    

                

Rats received unilateral injections of BoNT/E (n = 6) or vehicle (n = 3). Extracellular 

multi-unit recordings of spike activity were performed in the injected hippocampus 1-2 

days after BoNT/E or vehicle injection as described in Caleo et al. (2003). Animals 

were anesthetized with urethane (Sigma; 20% solution in saline; 0.7 ml/100 g body 

weight, i.p.) and placed in a stereotaxic frame. Body temperature was continuously 

monitored and maintained at 37°C by a thermostat-controlled electric blanket. After 

exposure of the cerebral surface, a micropipette (tip resistance = 2 MΩ) filled with 3M 

NaCl was inserted into the brain to reach the dorsal hippocampus. Two to five 

penetrations per hemisphere were made to map spike activity in CA1 and CA3 sectors. 

Location of the recording sites was determined using histological controls (Caleo et al., 

2003). Signals were amplified 25,000 fold, band-pass filtered (500 – 5,000 Hz) and 

conveyed to a computer for storage and analysis. 
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                   2.5.2 EEG ANALYSIS  

 

P35 rats were unilaterally infused into the right dorsal hippocampus with BoNT/E (n 

= 8) or vehicle (n = 8) as described above under avertin anaesthesia. At the end of the 

infusion procedure, one screw electrode was placed over the parietal cortex ipsilateral to 

the injected hippocampus together with a ground lead over the nasal sinus. Two depth 

bipolar electrodes made of insulated nichrome wire (60 µm) were implanted bilaterally 

into the dorsal hippocampus (nose bar -2.5; mm from bregma, AP, -2.4; L±1.8; H 3.0 

below dura) and a guide cannula was glued to the right side depth electrode and 

positioned on top of dura for the intrahippocampal injection of KA. Surface and depth 

electrodes were connected to a multipin socket and secured to the skull together with the 

injection cannula by acrylic dental cement. Two days after surgery, freely-moving rats 

injected with BoNT/E or its vehicle received a unilateral injection of 40 ng KA into the 

right hippocampus using a needle protruding of 3 mm below the guide cannula (Vezzani 

et al., 1999). To compare the effect of BoNT/E with that of conventional antiepileptic 

drugs, three additional groups of rats (not previously treated with BoNT/E) received 

carbamazepine (CBZ; 10 mg/kg, i.p.; n = 6 rats) or phenytoin (PHT; 50 mg/kg, i.p.; n = 

7 rats) dissolved in propylene glycole, or vehicle (n=13), 60 min before focal delivery 

of 40 ng KA to the hippocampus. EEG recordings on freely-moving animals were 

performed using a four-channel EEG polygraph, by an investigator who was unaware of 

the treatment of the animals. An initial 15-30 min recording was made to establish basal 

activity, then EEG recordings were made continuously up to 4 hours after KA 

administration. The KA dose (40 ng) was previously shown to induce EEG seizures 

recurring for about 180 min in 100% of the rats without mortality (Vezzani et al., 1999). 

Our EEG analysis was based on visual inspection of tracings to detect and quantify ictal 

activity. This analysis does not allow to detect differences in basal EEG patterns. EEG 

seizures (ictal episodes) were defined by the occurrence of discrete episodes consisting 

of the simultaneous occurrence of at least two of the following alterations in cortical and 

hippocampal leads of recording: high frequency and/or multispike complexes and/or 

high-voltage synchronized spike or wave activity. The quantitative parameters chosen to 

quantify seizure activity were the latency to the first EEG seizure (onset), the total 

number of seizures occurring during the whole period of recording, and the total time 

spent in seizures which was reckoned by adding together the duration of all ictal 

episodes (Vezzani et al., 1999). Behavioral correlates of EEG seizures were the 
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following: during EEG seizures the rats had the typical “frozen” appearance and 

apparently lost their reaction to external stimuli. “Wet dog shakes” were often observed 

at the end of seizure episodes. These behavioural sequelae were not quantified or 

considered in this study. Statistical analysis was performed by two-way ANOVA 

followed by post-hoc Tukey test. 

 

                   2.6 BEHAVIOURAL TESTS 

 
                2.6.1  SEIZURES RATING SCALE 

 
Behavioral, but not EEG analysis of seizures, was carried out in rats systemically 

injected with KA. We used P36 rats that are fully responsive to KA (Tremblay et al., 

1984; Berger et al., 1984; Nitecka et al., 1984). 

Thirty rats received hippocampal injections of BoNT/E at P35. Control animals of 

the same age (n = 39) were injected with vehicle. One day after injections, animals 

received a convulsive dose (8 mg/kg, i.p) of KA (Ocean Produce International, 

Shelburne, NS, Canada). Naïve animals which only received KA at P36 (n = 20) were 

also used to control for possible effects of hippocampal injections. Rats were observed 

by an investigator unaware of the treatment. For each animal, behaviour was scored 

every five minutes for a period of 4 hours, according to a previously defined seizure 

rating scale (Schauwecker and Steward, 1997, Bozzi et al., 2000): stage 0: normal 

behaviour; stage 1: immobility; stage 2: stereotypies; stage 3: wet dog shakes, head 

bobbing; stage 4: rearing and falling; stage 5: continuous rearing and falling (status 

epilepticus); stage 6: death. Animals that reached stage 6 were excluded from the 

computation of the mean seizure score in each experimental group. Statistical analysis 

was performed by two-way ANOVA followed by post-hoc Tukey test.  

 

                   2.6.2 MORRIS WATER MAZE 

 

To evaluate the cognitive performance of rats we tested the animals in the hidden 

paltform version of the Morris Water Maze. Rats were given five trials a day for a 

period of four consecutive days. The time to reach the platform (i.e. the escape latency) 

was measured for each trial. First of all, we analyzed spatial learning during the time 

window of action of BoNT/E. Eight animals that received BoNT/E at P35 were tested in 
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the Morris water maze beginning from 3 to 7 days after treatment. These animals were 

compared to vehicle-injected animals of the same age (n = 8). A second group of rats (n 

= 5) injected with BoNT/E at P35 were allowed to recover for five weeks before the 

spatial learning test and their performance was compared to that of age-matched normal 

rats (n = 10) which did not receive any treatment.  

We also evaluated the cognitive performance of BoNT/E-injected and control rats 

treated with KA. Behavioural tests were begun on P70 (five weeks after treatment) in 

both BoNT/E treated (n = 13) and control (n = 26; n = 19 vehicle-injected and n = 7 

naïve) rats that received KA at P36.  

Experiments were performed according to Mikati et al. (2001) and Cilio et al. (2001). 

Briefly, a circular tank (200 cm diameter) was filled with opaque water (22±1°C), and a 

wooden platform (10×10 cm) was positioned in the centre of one quadrant of the pool 

2.5 cm below the water surface. On day 1 of testing, rats were placed in the pool for 60 

s without the platform present, to become habituated to the training environment. Rats 

were trained for four days (five trials a day) to locate and escape onto the submerged 

platform. The latency from immersion into the pool to escape onto the platform was 

recorded for each trial. On mounting the platform, rats were given a 30 s rest period. 

Rats which did not find the platform in 120 s were placed on the platform for 30 s. Rats 

experiencing a spontaneous seizure during testing were allowed to recover for 60 min 

before resumption of test. All experiments were conducted in a blinded fashion. 

Statistical analysis was performed by two-way ANOVA followed by post-hoc Tukey 

test. 

 

                   2.7 RAPID KINDLING 

 

A total number of 11 rats at P35 were unilaterally infused in the right ventral 

hippocampus with BoNT/E (n = 5) or vehicle (n = 6) as described above, under avertin 

anaesthesia (nose bar, -2.5; mm from bregma: CA1, AP -4.7; L -5.5; H 6.0 below dura;  

CA3, AP -4.7; L -5.0; H 5.0 below dura). After the end of the infusion procedure, 

twisted bipolar stimulating-recording electrodes were stereotaxically implanted 

bilaterally into the rat ventral hippocampal CA3 region (nose bar: -2.5; mm from 

bregma: AP -4.7; L ± 5.0, H 5.0 below dura), and bilateral screw electrodes were placed 

over the parietal cortex. The electrodes were connected to a multipin socket and secured 

to the skull with acrylic dental cement. Kindling was started after a postoperative period 
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of 2 days. Experiments were performed by an investigator unaware of the treatment. 

The rats were allowed to acclimatize in a plexiglas cage and an EEG recording was 

made for at least 15 min to assess basal activity. Rapid kindling was induced by 

delivering constant current stimuli (50 Hz, 10 sec trains of 400 µA, 1 msec bipolar 

square waves) unilaterally to the right ventral hippocampus through a bipolar electrode 

with a 5-min interval for 200 min (Kopp et al., 1999; Richichi et al., 2004), thus 

summing up to a total of 40 stimuli. Behavior was observed and scored according to a 

modified Racine's classification (Racine, 1972 a, b, c). Stage 2 was defined by unilateral 

forelimb retraction and mouth stereotypies, stage 3 by head nodding and dorsal muscle 

twiching and stage 4-5 consisted of generalized clonic seizures without (stage 4) or with 

(stage 5) postural loss. The duration of the primary and secondary afterdischarge was 

measured in the stimulated hippocampus after each stimulation in every animal. Twenty 

four hours after the end of the stimulation period, fully kindled rats received 5 further 

electrical stimulations (re-test day) as above, to confirm kindling acquisition and 

maintenance. At the end of the stimulation protocol, kindled rats were sacrificed and the 

location of the stimulating electrode and the injection cannula was histological verified 

in each animal. 
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                                              RESULTS 

 

                   3.1 Characterization of BoNT/E action in the hippocampus 

 

The activity of all BoNTs in the CNS have been poorly investigated. In order to use 

BoNT/E as an anti-epileptic agents, it is first of all necessary to characterize the effects 

of BoNT/E injections in the hippocampus. In particular it is necessary to establish:  

-  the effectiveness of BoNT/E proteolytic activity in the hippocampus and its  

   duration; 

-  the effects of BoNT/E on neurotransmitter release; 

                       -  the effects of BoNT/E on hippocampal spiking activity; 

                 

3.1.1  Cleavage of SNAP-25 by BoNT/E in the hippocampus: efficacy and  

                             time-course. 

 

All the animals were injected with a solution of 50 nM BoNT/E in a volume of 1.5 

µl. This BoNT/E dose was chosen on the basis of a preliminary survey that indicated 

that this was the highest dose of BoNT/E not causing mortality or systemic intoxication. 

At this dose, BoNT/E cleaves specifically SNAP-25 and not SNAP-23 (Sadoul et al, 

1997).   

In order to investigate the effective cleavage of SNAP-25 by BoNT/E in the 

hippocampus, I performed Western blot analysis on protein extracts from rat 

hippocampi of P35 rats that received a unilateral injection of BoNT/E or vehicle into the 

hippocampus. Western blot for cleaved SNAP-25, performed 1 day after BoNT/E 

injection, demonstrated that SNAP-25 is efficiently proteolysed in vivo by BoNT/E 

(Fig. 3A). This effect was mainly restricted to the injected side and cleaved SNAP-25 

was almost undetectable in the contralateral hippocampus (Fig. 2A). Immunostaining 

for cleaved SNAP-25 confirmed the regional specificity of the BoNT/E effect, with very 

limited spread to the contralateral hippocampus (Fig. 2B) or to other cortical areas. The 

anteroposterior spread of staining around the injection site was of about 3 mm, which 

means that a single injection of  BoNT/E in one hippocampus is enough to get the 

cleavage of SNAP-25 in the whole hippocampus. 

Another important point to determine is the duration of the BoNT/E effects. In the 

PNS, the recovery of function at the neuromuscular junction after BoNT/E intoxication 
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takes three weeks. To establish the duration of BoNT/E effect, I decided to analyze the 

time course of SNAP-25 cleavage after a single BoNT/E injection into the 

hippocampus. Cleaved SNAP-25 was detected in both the dorsal and ventral 

hippocampus 1 day after BoNT/E injection. The band was slightly reduced at 14 days, 

persisted up to 21 days and was no longer detectable at 35 days (Fig. 2C). In keeping 

with the expression profile of cleaved SNAP-25, intact SNAP-25 was completely absent 

1 day after BoNT/E, began to reappear at 14 days and was completely replenished by 35 

days (Fig. 2D). Therefore BoNT/E activity persists in the hippocampus for at least three 

weeks before being reversed. 

These data are the first demonstration that BoNT/E effectively cleaves SNAP-25 in 

the hippocampus in vivo and that its effect can persist for at least 3 weeks. 

                     

                    

 50



 51



                   3.1.2  Effect of BoNT/E on neurotransmitter release in the hippocampus: the    

    superfused synaptosomes. 

 

The superfused synaptosomes are the choice technique to study the mechanisms of 

neurotransmitter release and how these can be impacted by different drugs (Raiteri, 

2000).  

The simplest apparatus for studying the release of neurotransmitter from superfused 

synaptosomes consists of four identical superfusion chambers having at the bottom filter 

holders of porous glass. The synaposomes fraction is plated as a very thin layer on 

microporous filters and up-down superfused. Thereafter four collecting tubes gather the 

fluid from each chamber. The apparatus for superfusion of synaptosomes was originally 

devised to distinguish between drugs able to enhance release directly and drugs that can 

do it indirectly, i.e. preventing transmitter re-uptake. Indeed both types of drugs 

augment the synaptic concentration of the transmitter, but their pharmacological and 

therapeutic effects are not the same. For instance pure inhibitors of serotonin re-uptake 

are excellent antidepressants, whereas direct serotonin releasers, such as fenfluramine or 

ecstasy, display completely different biological activities. To solve this problem, true 

releasers can be distinguished from re-uptake inhibitors by superfusing up-down a very 

thin layer of synaptosomes and monitoring transmitter release in the presence of the 

drug under study. The transmitter released is indeed removed by superfusion medium 

quickly enough to escape re-uptake and therefore only  true releasers, and not pure re-

uptake inhibitors, can increase neurotransmitter release. 

To assess the effects of BoNT/E on neurotransmitter release, I performed 

experiments on superfused hippocampal synaptosomes and I established that BoNT/E 

effectively inhibits the Ca2+-dependent fraction of potassium-induced glutamate release 

(Fig 3).  

Glutamate released from synatosomes can be determined in basal condition or after a 

depolarizing impulse, such as KCl 5mM, both in the presence and in the absence of 

Ca2+ (Fig 3A). The release of glutamate from hippocampal synaptosomes is not 

influenced by Ca2+ in basal condition but it is strongly dependent by Ca2+ in the 

presence of a depolarising impulse such as an high concentration of K+ (Fig 3A). Indeed 

the release of glutamate evoked by high potassium concentration is increased by almost 

two-fold in the presence of Ca2+ and this difference represent the fraction of potassium-

induced glutamate release that is Ca2+-dependent (Fig 3A).  
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The effects of BoNT/E on glutamate overflow were assessed on superfused 

synaptosomes obtained from rats that were injected with BoNT/E (or vehicle) in the 

hippocampus and that received a single dose of intrahippocampal kainic acid (40 ng) 

two days later. Therefore the hippocampal synaptosomes were prepared on the third day 

after BoNT/E. The administration of BoNT/E does not influence the glutamate release 

in basal condition (data not shown) but it strongly reduces the Ca2+-dependent fraction 

of potassium-induced glutamate release (n = 7 animals per group; t-test, p< 0.01; Fig. 

3B). This result can be well explained by the mechanism of action of BoNT/E. Indeed 

BoNT/E cleaves SNAP-25 that is essential for the release of neurotransmitter from 

synaptic vesicles. The vesicular release of neurotransmitter is regulated by Ca2+ and 

therefore the cleavage of SNAP-25 by BoNT/E strongly affect the calcium-dependent 

neurotransmitter release.  

Preliminary data suggest that BoNT/E does not affect GABA release from 

hippocampal synaptosomes. Indeed the Ca2+-dependent fraction of potassium-induced 

GABA release is not significantly different in  vehicle and BoNT/E-injected animals (n 

= 4 animals per group; t-test p> 0.05; Fig 3C). This is in line with evidence that suggest 

that the target of BoNT/E proteolytic activity, i.e. SNAP-5, is absent in GABAegic 

neurons where it is replaced by its isoform SNAP-23 (Verderio et al., 2004). However 

these data require further validation. 
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                  3.1.3   Effect of BoNT/E on hippocampal spiking activity. 

 

To characterize the effects of BoNT/E in the CNS at the electrophysiological level, I 

decided to perform in vivo multi-unit recordings of spike activity from hippocampal 

pyramidal neurons in normal rats and in rats that had received a single hippocampal 

injection of BoNT/E or vehicle 1-2 days before. 

In naïve rats the recording of spontaneous hippocampal activity reveals the presence 

of action potentials of high amplitude both in the CA1 and in the CA3 sectors of 

hippocampal formation (Fig 4A). This spike activity is not affected by infusion of 

vehicle solution (Fig 4B) which indicates that, at the electrophysiological level, the 

functioning of the hippocampus is not impaired by the injection. Instead BoNT/E 

treatment is able to completely silence spontaneous hippocampal activity, potently 

inhibiting the high amplitude spikes (Fig. 4C). This strong inhibition of hippocampal 

spontaneous action potentials by BoNT/E can be easily explained by its capacity to 

reduce the release of glutamate, as demonstrated in the superfused synatosomes. 

Moreover the inhibition of spontaneous action potentials is specific to the BoNT/E-

treated hippocampus and no effects can be found in the contralateral, uninjected side 

(Fig 4D). This confirms, from a electrophysiological point of view, the Western blots 

and immunohistochemical data that show that there is very few diffusion of BoNT/E to 

the contralateral hippocampus. 

These data strongly indicate that BoNT/E is able to impair the excitatory 

transmission in the hippocampus and that the net electrophysiological effect of BoNT/E 

treatment is the silencing of spike activity of pyramidal neurons. 

I did not perform electrophysiology at the neuromuscular junction in BoNT/E-

injected animals to check the diffusion of the toxin through the blood-brain barrier into 

the body. However none of the animals ever showed any sign of systemic intoxication 

(i.e., muscular paralysis) after BoNT/E treatment. 
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3.2 Anti-ictal properties of BoNT/E on EEG seizures induced by    

intrahippocampal KA 

  

The reduction of glutamate release and the strong inhibition of hippocampal spike 

activity mediated by BoNT/E prompted me to investigate whether the toxin can display 

anti-ictal properties. 

I started examining the effects of BoNT/E injection on acute electroencephalographic 

(EEG) seizures triggered by focal unilateral application of 40 ng KA to the 

hippocampus (Vezzani et al., 1999, 2002). Previous experiments demonstrated that this 

is the lowest convulsant dose able to cause reproducible EEG seizures in 100% of rats. 

The EEG seizures induced by intrahippocampal KA are characterized by discrete 

episodes of epileptic activity lasting 2.5 min on average and consisting of the 

simultaneous occurrence of at least two of the following alterations in cortical and 

hippocampal leads of recording: high frequency and/or multispike complexes and/or 

high-voltage synchronized spike or wave activity. Such events are typically associated 

with behavioural manifestations such as “wet dog shakes” and occasional retraction of a 

forelimb. These discrete episodes of epileptic activity last about 180 min from their 

onset and occur simultaneously in all leads of recordings.  

Rats were injected with BoNT/E (n = 8) or vehicle (n = 8) into the hippocampus and 

the same day they were implanted with two intrahippocampal electrodes one of which 

was glued to an infusion guide cannula (Fig 5 A,B). Two days later, seizures were 

induced by delivery of 40 ng KA and the EEG were recorded through all the electrodes 

for a period of four hours. The EEG pattern of epileptic activity induced by 

intrahippocampal KA was not altered by vehicle injection, as shown in a representative 

EEG recording in Fig 5C. Instead in BoNT/E-treated rats the epileptic activity was 

strongly inhibited, as shown in Fig 5D. Indeed in BoNT/E-treated rats discrete episodes 

of epileptic activity could be recorded mainly in the left, KA-injected hippocampus but 

not in the right hippocampus and, importantly, never in the cortex, which means that 

there is no generalization of epileptic activity. 

Quantification of seizure activity demonstrated that the onset time to seizures was 

delayed by four-fold in BoNT/E-treated animals (t-test, p < 0.001; Fig. 6C). BoNT/E-

injected rats showed a highly significant reduction of the number of EEG seizures (t-

test, p = 0.005; Fig. 6D), as well as a 80% decrease in total time spent in seizure activity 
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(t-test, p < 0.001; Fig. 6E). The duration of individual ictal episodes was also reduced 

by the toxin (min ± S.E., vehicle, 2. 4 ± 0.5; BoNT/E, 1.06 ± 0.1, t-test,  p<0.01) . 

In order to validate BoNT/E as an anti-epileptic treatment, I compared the 

anticonvulsant effect of BoNT/E with that of standard anticonvulsant drugs. 

Carbamazepine (CBZ; 10 mg/kg, i.p.; n = 6 rats) or phenytoin (PHT; 50 mg/kg, i.p.; n = 

7 rats) administered 60 min before intrahippocampal KA induced an average two-fold 

delay in the onset of EEG seizures (t-test, p < 0.01) and a 2.5-fold reduction in the time 

spent in seizure activity (p < 0.01). The number of  EEG seizures was also reduced by 

almost two-fold with respect to controls (Fig. 7A-C). Hence BoNT/E is significantly 

more effective in reducing KA-induced EEG seizures than these classical anticonvulsant 

drugs (Fig. 7A-C; one way ANOVA, p < 0.01, post hoc Tukey test,  p < 0.01 for onset 

and time spent in seizures; one way ANOVA, p < 0.05, post hoc Tukey test,  p < 0.05 

for number of seizures).  

These data suggest that BoNT/E can be a valuable treatment for blocking the spread 

of epileptic activity that occur during seizures. 
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                 3.3 Unilateral BoNT/E blocks behavioural seizures induced by systemic KA 

 

The strong anti-ictal effect of BoNT/E on EEG seizures induced by intrahippocampal 

KA encouraged me to assess the behavioural response of BoNT/E-injected rats to 

systemic administration of KA, which is known to induce tonic-clonic seizures of 

limbic origin (Lothman and Collins, 1981; Ben-Ari, 1985). Indeed kainate is able to 

activate the hippocampus by means of specific receptors present in this structure. This 

activation is associated with the appearance of limbic motor signs such as wet-dog 

shakes, facial myoclonia and paw tremor. Afterwards there is a spread of activity from 

hippocampus to other structures of the limbic system, such as the amygdaloid complex, 

the medio-dorsal thalamic nuclei, the piriform, entorhinal and rostral limbic cortices and  

the areas of projection of the fornix. This widespread activation of limbic system 

produces the tonic-clonic limbic motor seizures.  

P35 rats received unilateral stereotaxic injections of BoNT/E (n = 30) or vehicle (n = 

39) into the hippocampus. One day later, the animals received a single systemic 

injection of a convulsive dose of KA (8 mg/kg, i.p.). As a control, 20 uninjected rats 

were treated with the same dose of KA. KA treatment had a similar pro-convulsant 

effect in both naïve and vehicle-injected animals (two-way ANOVA, p > 0.05; Fig. 8A). 

These rats showed initial immobility and staring followed by wet dog shakes and 

culminating, after about 90 minutes from KA injection, in limbic motor seizures with 

rearing and falling and forelimb clonus. This progression of clinical signs was 

dramatically different in BoNT/E-injected animals (Fig. 8A). Indeed, these animals 

displayed pre-convulsive behaviour that only in few cases evolved toward limbic motor 

seizures. As I described in the Methods section, the behaviour of animals after systemic 

KA can be described according to a seizure rating scale. This analysis clearly pointed 

out  that the trajectory in behaviour score of BoNT/E-treated rats was dramatically 

different from that of control rats starting from 80 min following KA administration 

(two-way ANOVA, p < 0.001; post hoc Tukey test, BoNT/E vs. vehicle and uninjected 

rats, p < 0.01).  

In Figure 8B, the results of the behavioural analysis are summarized as the maximum 

seizure rating scale value assigned to each animal during the 4 hours of observation 

following KA administration. KA triggered typical limbic motor convulsions in 17 out 

of 20 (85%) naïve rats and 31 out of 39 (79%) vehicle-injected rats. In contrast, the vast 

majority of the BoNT/E-injected rats showed only pre-convulsive behaviours, and only 
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5 out of 30 (16%) experienced limbic seizures upon KA administration. Analysis of 

variance demonstrates that the anticonvulsant effect of BoNT/E is highly significant 

(one way ANOVA, p < 0.001; post hoc Dunn’s test, p < 0.01), while naïve and vehicle-

injected rats do not show significant differences (p > 0.05). Lethal toxicity induced by 

KA (8-20% in control groups) was also abolished by BoNT/E injection (Fig. 8B). 

To further support these behavioural data, I performed activity mapping studies with 

c-fos mRNA in situ hybridization. A strong bilateral activation was observed in the 

hippocampus, thalamus and cerebral cortex of control animals treated with KA (n = 5), 

whereas a dramatic decrease of c-fos induction was detected throughout the entire brain 

in BoNT/E-treated rats (n = 5; Fig. 9A). Quantification of signal intensity revealed a 

strong reduction of c-fos mRNA within the injected hippocampus of BoNT/E-treated 

rats as compared to the injected hippocampus of vehicle-treated animals. c-fos mRNA 

labelling in the uninjected contralateral hippocampus was also slightly, but not 

significantly, reduced in BoNT/E-treated rats (Fig. 9B). In keeping with the inhibition 

of generalization of seizure activity, c-fos mRNA labelling was completely absent in the 

cerebral cortex of both hemispheres in BoNT/E-treated rats, except for a small area 

corresponding to the injection track (Fig. 9A). 

It is well known that the susceptibility to KA-induced seizures markedly depends on 

the genetic background (Golden et al., 1995), and KA doses of 8 mg/kg were used to 

avoid unacceptably high (> 25%) mortality rates in Long-Evans hooded rats. To exclude 

that suppression of seizure development by BoNT/E could be ascribed to the dose of 

KA employed, behavioural observations were repeated in Sprague-Dawley rats treated 

i.p. with KA at 12 mg/kg. We found that status epilepticus occurred in six out of seven 

rats preinjected with vehicle solution. By contrast, none of the ten rats treated with 

BoNT/E showed status epilepticus following parenteral KA, confirming the powerful 

anti-ictal effect of BoNT/E. 

Experimental modulation of the inflammatory response is known to affect seizure 

development following KA administration (Vezzani et al., 2000; De Simoni et al., 

2000). We therefore controlled the inflammatory response in a subset of BoNT/E- and 

vehicle-injected animals 1-2 days following the injection, i.e. the time of seizure 

induction via KA. Staining for OX-42, an antibody that reveals microglia and 

neutrophils, revealed no differences between the two experimental groups in both CA1 

(Fig 10 A,B) and CA3 (Fig 10 C,D) region. These data suggest that modulation of 

inflammation is not involved in the anticonvulsant effects of BoNT/E. 
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  3.4 BoNT/E prevents spatial learning deficits induced by KA 

 

To determine whether BoNT/E prevents the cognitive deficits induced by KA, I 

tested the animals in the Morris water maze, a well-established hippocampus-dependent 

behavioural task.  

In the Morris water maze the animal is released in a circular tank filled with opaque 

fluid that contains a submerged escape platform in one quadrant. The animal has to find 

this platform and climb into it in order to avoid to remain in the water. As the animal is 

released at random locations around the pool, he has to use contextual (i.e. spatial) cues, 

usually represented by markings on the walls of the room in which the pool is located, 

to find the platform. During a number of trials, the animal learns to find the platform 

and escape from the pool. The learning ability of the animal is therefore measured by 

the time employed to find the submerged platform. This task is considered a test of 

hippocampal integrity (Morris et al., 1982) since hippocampal lesions, but not lesions of 

nearby structures, impair this spatial learning. In a non-contextual (i.e. non-spatial) 

version of the task the platform is raised above the surface or marked with a flag so that 

it is visible, permitting the animal to navigate to the platform directly. This task does not 

require the hippocampus and it is used to measure the general behavioural performance 

abilities of the animal. 

Many studies (Stafstrom et al., 1993; Mikati et al., 2001) demonstrated that animals 

that underwent KA-induced status epilepticus had a severe deficit in the Morris water 

maze, that is they displayed significantly longer escape latencies with respect to normal 

animals. Moreover these adverse effects were long-lasting, since they were observed 

both 20 and 60 days after status epilepticus. 

In order to determine if BoNT/E is able to prevent the deficits in the Morris water 

maze induced by KA, I first examined whether intrahippocampal injection of BoNT/E 

per se has an effect on cognitive performance. According to the requirement of both 

hippocampi in order to perform the Morris water maze, clear deficits in acquisition of 

this task were evident in rats tested 3-7 days after BoNT/E, i.e. during the time window 

of action of the toxin (Fig. 11A). Indeed if these animals are allowed to recover for five 

weeks, a time at which the effect of BoNT/E is extinguished (see Fig. 3C,D), their 

learning ability is indistinguishable from that of age-matched normal rats (two-way 

ANOVA, p = 0.38; Fig. 11B). These animals also showed normal exploratory behaviour 
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in the open field and no evidence of neuronal loss in the brain as assessed by Nissl and 

NeuN staining (data not shown).  

I next analyzed the learning ability of vehicle and BoNT/E-injected animals treated 

with KA. Control rats treated systemically with KA at P36 and tested five weeks later 

performed poorly in the Morris water maze. Indeed, they had significantly longer mean 

escape latencies than normal rats on each of the four test days (two-way ANOVA, p < 

0.01), consistent with previous studies (e.g. Stafstrom et al., 1993; Mikati et al., 2001). 

Conversely, rats pre-injected with BoNT/E and treated with KA at P36 showed 

absolutely normal spatial learning abilities when tested five weeks later. In fact their 

mean escape latencies was indistinguishable from that of normal rats (two-way 

ANOVA, p = 0.4, BoNT/E + KA vs. normal rats) and their performance was 

significantly superior to that of control KA rats (Fig 12, two-way ANOVA, p < 0.001). 

Differences in performance could not be attributed to differences in swim speed, which 

resulted similar across the various experimental groups (one-way ANOVA, p > 0.05; 

data not shown).  
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                  3.5 BoNT/E prevents neuronal death induced by KA 

  

The parental administration of kainic acid induces a severe damage in many 

structures of the limbic system, such as the hippocampal formation, the lateral septum, 

the amygdaloid complex and the piriform cortex (Ben-Ari, 1985; Zhang et al., 2002) 

The massive neuronal death is usually accompaigned by other abnormalities such as 

hypertrophy and swelling of satellite oligodendroglia, proliferation of hypertrophic 

microglia and of astrocites and hypertrophy of endothelial cells in the capillary wall. In 

the hippocampal formation the most vulnerable regions are the CA1 and the CA3, 

where a severe destruction of the pyramidal layer can be detected. Notably the severe 

brain damage induced by i.p. administration of kainic acid is always associated with the 

occurrence of limbic motor seizures. 

Since BoNT/E injection prevents the occurrence of status epilepticus after KA i.p. 

administration, I decided to examine if this treatment is also effective in sparing 

hippocampal neurons from death. Stereological counts in CA1 and CA3 regions of the 

hippocampus are very difficult, because their pyramidal neurons are too heavily packed. 

Therefore, as described in the Methods section, I expressly developed a scale to quantify 

neuronal damage. This scale is illustrated in Fig 12, where the whole hippocampus is 

represented together with details of CA1 and CA3 regions. According to this scale, the 

degree of neuronal damage can be classified as 0, that is absence of damage (Fig 13A), 

1, corresponding to the presence of minimal damage, mainly small spots of 

degeneration (Fig 13B), 2, corresponding to evident loss of pyramidal neurons (Fig 

13C) and 3, represented by the complete disruption of hippocampal architecture (Fig 

13D).  

BoNT/E injection resulted effective in preventing hippocampal neuronal loss of CA1 

and CA3 regions after KA i.p. administration. Indeed five weeks after KA treatment, an 

abundant neuronal loss can be detected in CA1 and CA3 regions of vehicle-injected 

rats, while in BoNT/E-injected rats there is a complete rescue of vulnerable 

hippocampal cells (Fig 14A). The plotting of the mean damage score for each animal 

reveals a spread of values for vehicle-injected animals, according to the variability of 

neuronal death induced by KA i.p. treatment, while most of BoNT/E-injected animals 

have score number 0, which means that they do not display neuronal loss (Fig 14B). 

These data therefore demonstrate that prevention of the initial status epilepticus by 

BoNT/E is able to spare vulnerable hippocampal neurons from death. 
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                   3.6 Effects of BoNT/E on kindling epileptogenesis 

 

    Finally, I tested if BoNT/E, in addition to its anti-ictal effects, also displays 

antiepileptogenic-like actions in the model of rapid electrical kindling of the ventral 

hippocampus.  

Kindling is a model of complex partial seizures in which repeated electrical 

stimulation of limbic structures triggers progressive intensification of epileptiform 

responses. When the animal has exhibited several generalized convulsions, it is said to 

be kindled and it will retain abnormal excitability thereafter (Dennison et al., 1995). In 

the rapid kindling of ventral hippocampus (Richichi et al., 2004) two bipolar stainless 

steel electrodes are implanted bilaterally in the ventral hippocampus. On the first day of 

stimulation the threshold for eliciting focal epileptiform activity (after discharge, AD) is 

determined and this current is used for the next kindling stimulations. The intensity of 

seizures was scored behaviourally, as described in the Methods section. The animals are 

considered fully kindled after they experienced five seizures of 5° grade. This type of 

kindling is particularly rapid as 40 stimulations with 5 minutes interval are sufficient to 

get fully kindled animals. 

The anti-epileptogenic effects of BoNT/E was therefore tested in adult rats that 

received intrahippocampal injections of either vehicle (n = 5) or BoNT/E (n = 6). In this 

same surgical session, the animals were implanted unilaterally in the ventral 

hippocampus with bipolar stainless steel electrodes to deliver constant-current stimuli. 

First of all, the threshold current for eliciting focal epileptiform activity in the 

stimulated hippocampus was determined. This current was higher, but not significantly 

different, in BoNT/E-injected rats with respect to the vehicle-injected group (BoNT/E: 

185 ± 29 [S.E.] µA; vehicle: 132 ± 7 µA; t-test, p > 0.05). However the behavioural 

progression of kindling in BoNT/E-injected animals showed a marked retardation. 

Indeed BoNT/E-injected animals required always more stimulations to get the same 

behavioral stages of vehicle-injected animals. In particular they required significantly 

more stimulations to exhibit the first generalized motor seizure (Fig 15A, stage 4-5 

seizure; two-way ANOVA, p < 0.05; post hoc Tukey’s test, p < 0.01). BoNT/E-injected 

animals also experienced a significant minor number of stage 4-5 seizures than vehicle-

injected ones (vehicle, 5.6 ± 0.5; BoNT/E, 1.7 ± 0.2, t-test, p < 0.01). However all rats 

showed stage 4-5 seizures 24 hr after kindling acquisition and during the re-test day. 

BoNT/E treatment affect also the duration of the primary afterdischarge (AD). Indeed 
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primary AD is significantly shorter in BoNT/E-injected animals (cumulative AD, min, 

mean ± S.E.: vehicle, 18.9 ± 1.1; BoNT/E, 11.9 ± 1.9; t-test, p < 0.01; Fig. 15B). The 

duration of secondary AD was also significantly reduced in BoNT/E-injected animals 

(vehicle, 10.2 ± 1.8; BoNT/E: 6.6 ± 1.2; t-test, p < 0.05; Fig. 15C).  
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DISCUSSION 
 

In the present study I characterized the effects of intrahippocampal injections of 

BoNT/E and I evaluated the anticonvulsant and antiepileptogenic properties of this 

treatment using both two models of acute seizures and the model of kindling 

epileptogenesis in rats.  

I provide the first description of the effects of BoNT/E on CNS neurons in vivo. In 

addition, I present electrographic and behavioural evidence of a pow 

erful anticonvulsant action of BoNT/E on both focal and generalized seizures 

induced by KA. Finally, I show that BoNT/E displays antiepileptogenic-like effects 

since it delays the development of hippocampal kindling. 

                   4.1 Effects of BoNT/E in the hippocampus 

 
BoNT/E interferes with neurotransmitter release in a very specific manner through its 

interaction with the SNARE protein SNAP-25. Consistent with previous studies in vitro 

(Bigalke et al., 1981 a,b; Ashton and Dolly, 1988; Verderio et al., 2004), I demonstrated 

in vivo that BoNT/E dramatically impairs hippocampal glutamatergic transmission but 

has little effect on GABAergic one. Indeed I showed that BoNT/E is able to strongly 

reduce the Ca2+-dependent K+-evoked release of glutamate from hippocampal 

synaptosomes but it does not significantly affect GABA-ergic release. The low 

sensitivity of inhibitory transmission to BoNT/E is due to absence of SNAP-25 at 

GABAergic synapses, where it is replaced by its functional homologue SNAP-23 

(Verderio et al., 2004). BoNT/E, at the concentration we used in our experiment 

(50nM), retains a high degree of specificity and indeed it is unable to cleave SNAP-23 

(Sadoul et al., 1997). BoNT/E at higher doses, i.e. 300 nM; can however proteolize 

SNAP-23 (Matteoli personal communication). 

 At the electrophysiological level, treatment with BoNT/E prevents the occurrence of 

spontaneous excitatory postsynaptic potentials (EPSPs) and greatly reduces the 

amplitude of evoked EPSPs in hippocampal slices (Capogna et al., 1997; Sutton et al., 

2004). Consistent with this reduction of excitatory synaptic responses in vitro, our in 

vivo data indicate that BoNT/E potently inhibits the firing of pyramidal neurons in the 

hippocampus.  

The effects of BoNT/E persist for about three weeks after one single 

intrahippocampal injection, as determined by immunodetection of cleaved SNAP-25 
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and loss of intact SNAP-25.  Blockade of neural activity in one hippocampus by 

BoNT/E produced, in the first week after treatment, a marked deficit in the acquisition 

of spatial learning in the Morris water maze, a classic hippocampus-dependent task. 

This finding is in keeping with previous evidence showing that unilateral lesion of the 

hippocampus impairs performance in this task (van Praag et al., 1998). However, the 

deficits displayed by BoNT/E-treated rats were transient since, when the animals were 

allowed to recover for five weeks after BoNT/E injection, they showed normal spatial 

learning abilities in the Morris water maze. Thus, intrahippocampal BoNT/E treatment 

in adult rats does not result in neuronal dysfunction in the long term. Accordingly, 

reversible inhibition of neural activity via TTX infusion in the adult rat hippocampus 

has no subsequent deleterious effects on animal behaviour (Lipska et al., 2002). Future 

studies will determine whether BoNT/E treatment can cause more subtle permanent 

functional changes, such as  alterations in basal EEG patterns. 

 In addition to normal performance in the Morris water maze after recovery from 

BoNT/E effect, the animals also displayed normal gait, posture and exploratory 

behaviour in the open field. Moreover staining for neuronal (NeuN) and glial markers 

(OX-42, GFAP) revealed no differences between hippocampi of rats injected with 

BoNT/E or vehicle.  

These data allows us to conclude that intrahippocampal BoNT/E treatment in the 

adult rat is safe and does not result in neuronal dysfunction in the long term. This 

validates the use of BoNT/E in cases in which reversible silencing of neuronal activity 

in selected brain areas may be of therapeutic value.  

It will be of interest in the future to characterize the effects of other BoNTs serotypes 

at the level of CNS neurons. In particular it would be intriguing to investigate the action 

in the CNS of BoNTs acting on SNAREs other than SNAP-25. Indeed different  BoNTs 

may show distinct or overlapping actions with respect to BoNT/E, depending on the 

pattern of expression of their target SNAREs.  
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                   4.2 Anti-ictal effects of BoNT/E 

 
I clearly demonstrated on both EEG and behavioural analysis of kainic acid-induced 

seizures that a single intrahippocampal BoNT/E injection is able to perform a powerful 

anticonvulsant action.  

Indeed I showed a highly significant effect of BoNT/E on onset, number and 

duration of EEG ictal episodes in the model of acute seizures triggered by focal delivery 

of KA. The anticonvulsant efficacy of BoNT/E is underlined by the comparison with 

conventional, systemically administered antiepileptic compounds. I actually found that 

BoNT/E is more effective than CBZ or PHT in suppressing electrographic seizure 

activity. However CBZ and PHT are not the drugs of choice for KA-induced seizures. 

Indeed benzodiazepines are the most effective ones. Future studies will therefore be 

necessary in order to compare the anti-epileptic effect of BoNT/E with that of 

benzodiazepines. Finally, the behavioural analysis demonstrated that unilateral 

hippocampal injection of BoNT/E is able to prevent limbic status epilepticus normally 

triggered by parenteral KA in two rat strains, demonstrating that its anti-epileptic 

actions are not dependent on a specific genetic background.  

According to previous data (Pitkanen, 2002; Leite et al., 2002), the prevention of 

status epilepticus was associated with preservation of hippocampal neurons in BoNT/E-

injected rats and sparing of cognitive performances. 

The finding that unilateral BoNT/E blocks seizures induced by systemic KA may 

appear surprising. This phenomenon can be explained by mapping studies of neuronal 

network activity obtained using in situ hybridization analysis of c-fos mRNA. These 

mapping studies demonstrated limited c-fos induction within the BoNT/E-injected 

hippocampus but a nearly normal activation of the contralateral one. Remarkably, c-fos 

mRNA labelling was absent from both cortices and thalamic nuclei of BoNT/E-treated 

rats, whereas a widespread bilateral activation was evident in these areas in vehicle-

treated animals. I can conclude therefore that the propagation of epileptiform activity 

away from the hippocampus and the emergence of generalized limbic convulsions 

require the recruitment of hippocampi on both hemispheres. The reverberating 

paroxysmal activity between hippocampi is hence a critical factor for the generalization 

of seizure activity and the commissural fibers that connect the hippocampi play an 

important role in this process. Indeed these fibers represent a preferential way for the 

transmission of epileptic activity and can also promote the formation of a epileptogenic 

focus, as demonstrated recently in an in vitro preparation (Khalilov et al., 2003). The 
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authors of this elegant experiment used an in vitro system composed of three 

independent chambers able to accommodate two intact hippocampi and their connecting 

commissural fibers. This particular preparation permit therefore to apply a convulsive 

agent, i.e. the kainic acid, to one hippocampus, allow the propagation of a given number 

of seizures to the other side and then blocking the connections reversibly by applying 

tetradotoxin (TTX) to the commissural chamber. It was therefore demonstrated that the 

propagation of seizures from the kainate-treated side to the naïve side transformed the 

latter into an independent epileptogenic focus that was capable of generating 

spontaneous and evoked seizures. This is the first in vitro demonstration that 

paroxysmal activity propagating through the commissural fibers is able to generate an 

epileptogenic focus. It would be very interesting to test whether the blockade of seizures 

activity generalization by BoNT/E could prevent the formation of this epileptogenic 

focus.  

It might be argued that the effects of BoNT/E are too short-lasting (three weeks) to 

envisage any possible application as antiepileptic therapy. Other BoNTs are available, 

however, that produce a more prolonged inhibition of exocytosis at peripheral and 

central synapses (Eleopra et al., 1998; Foran et al., 2003). For example, BoNT/A 

cleaves the same molecular target (SNAP-25) as BoNT/E but its effects persist for 

several months (Eleopra et al., 1998; Foran et al., 2003; Meunier et al., 2003). One 

possible caveat of this approach is that long-term suppression of glutamatergic activity 

can induce spontaneous withdrawal seizures (Tandon et al., 1996). Although this aspect 

awaits further investigation, I never observed spontaneous behavioural seizures in 

BoNT/E-treated rats during daily cleaning and handling or during our behavioural 

testing  

On the other end, there are evidence that a long-term suppression of activity could have 

a beneficial effect and provide long-lasting anticonvulsant effects. It is well-known that 

seizures in intractable epilepsy can remit after a period of months or years following 

surgery. Indeed seizures can propagate from the original primary focus to distant sites 

and can transform the latters into permanent secondary epileptogenic foci, that are 

responsible of the enduring seizures after surgery. These secondary epileptogenic areas 

are however not completely autonomous in generating seizures and therefore, after 

some time from the resection of the primary area, they stop. The remission of epileptic 

activity in the secondary areas is called running-down phenomenon and it is due to the 

long-term blockade of epileptic input activity from the primary zone after its resection. 
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This suggest therefore that also the long-term suppression of epileptiform activity by 

BoNT/E or BoNT/A could provide an anti-convulsant effect that can outlast the 

temporary inhibition of neuronal activity in the epileptic focus. 
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                   4.3 Retardation of kindling epileptogenesis 

 

Kindling is a widely used model of epileptogenesis. Indeed this model displays some 

characteristics typical of the epileptogenic process, such as the progressive increase in 

seizure severity and duration, the decrease in focal seizure threshold and the neuronal 

degeneration in limbic brain regions (Corcoran et al., 1988). Therefore kindling is the 

model of choice for the first screening of potential anti-epileptogenic treatments, as it is 

relatively simple and rapid. 

In this work, I used a modified protocol of kindling, that is the rapid kindling of 

ventral hippocampus. The rapid kindling differs from normal one in that repeated 

suprathresold stimulations are delivered with short (usually 5 min) interstimulus 

intervals, which give rise to generalized seizures within 1-2 h. Elmer and collaborators 

(Elmer et al., 1996) have recently shown that following 40 seizures episodes, triggered 

by rapid hippocampal kindling stimulations during about 3 h, hyperexcitability develops 

in two phases: enhanced responsiveness is already present after 6-24 h, but it increases 

gradually from one week up to four weeks post-seizures. The acquisition of the kindled 

state requires structural rearrengements, while the enhanced responsiveness during the 

first day post-seizures are due likely to be due to functional short-term changes. Thus 

the rapid kindling model is very useful for studies both on mechanisms regulating the 

severity of rapidly recurring seizures, and on chains of events triggeres by the initial 

epileptic insult, which leads to the development of the permanent epileptic syndrome. 

Even if the evolution of rapid kindling is different from that of traditional kindling, the 

two models probably share common mechanisms, such as the induction of mossy fiber 

sprouting in the supragranular zone of the dentate gyrus.  

 The effectiveness of BoNT/E in retarding rapid kindling suggests therefore that 

BoNT/E may be an anti-epileptogenic drug. In particular it is interesting that BoNT/E 

treatment delays kindling progression from stage 3 onwards, and particularly the 

acquisition of stages 4 and 5. Indeed these behavioural stages correspond to a 

generalization of epileptic activity and their retardation by BoNT/E injection indicates 

that the toxin selectively inhibit seizures generalization from their site of onset. The 

shortening of the secondary AD in the stimulated hippocampus, which reflects a 

decreased reverberating activity within the limbic circuit, can also be explained by the 

inhibition of the generalization of epileptic activity.  
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Electrophysiology recordings in vivo demonstrated that BoNT/E affect glutamatergic 

transmission. This has been confirmed also in the kindling preparation, as the decrease 

of primary AD can be accounted for by the reduction of local hippocampal excitability. 

Thus, intrahippocampal BoNT/E not only suppresses seizures, but also delays 

kindling, suggesting that this treatment may have anti-epileptogenic properties in 

models of status epilepticus evolving to recurrent spontaneous seizures. 
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                  4.4 Concluding remarks 

 

In conclusion, I shown that local delivery of BoNT/E to the hippocampus is both 

anti-ictal and anti-epileptogenic in experimental models of epilepsy. The ability of 

BoNTs to disrupt neurotransmission at the neuromuscular junction for prolonged 

periods of time has been exploited in several medical applications and these agents are 

the therapeutics of choice for the treatment of selected disorders, such as the dystonias, 

that benefit from a functional inhibition of peripheral nerve terminals (Rossetto et al., 

2001; Turton et al., 2002). The present work indicates a possible therapeutic 

exploitation of BoNTs in the central nervous system. The inhibitory effects of BoNT/E 

on seizures and epileptogenesis in experimental models, as well as the evidence for 

neuroprotection from seizure-mediated cell death and sparing of hippocampal 

physiological functions, opens the possibility of developing novel therapeutic strategies 

for the treatment and management of seizures with focal onset. 

The reversible long-term blockade of hippocampal activity by BoNT/E could also be 

exploited as a tool for testing the opportunity of the surgical treatment of TLE. Indeed 

some TLE patients may develop secondary epileptogenesis at  sites distant from the 

original focus, as a consequence of the propagation of paroxysmal activity outside the 

focus region that transform a naïve structure into one that is capable of generating 

spontaneous and evoked seizures. The presence of such secondary epileptogenic sites 

reduce the likelihood of successful surgical treatment of epilepsy. The prolonged 

blockade of hippocampal activity by BoNT/E could be useful in order to establish the 

origin of seizures. This will allow to avoid the surgical treatment of epilepsy in not 

successful cases, such as those where a secondary epileptogenic focus has developed. 

 84



                   4.5 Future perspective 

 
The kindling experiment suggests that BoNT/E, in addiction to be anti-ictal, can 

display also anti-epileptogenic activity. Since a battery of models has to be used to 

validate the anti-epileptogenic properties of new drugs (Loscher , 2002), I plan to study 

the effects of BoNT/E on epilepsy development in post-status epilepticus models of 

MTLE. 

 

                  Pilocarpine model 

 

   As I told in the Intoduction, the parental administration of the cholinergic 

muscarinic agonist pilocarpine resuls in chronic behavioural state similar to human 

MTLE (Turski et al., 1989). Indeed rats receiving pilocarpine undergo status epilepticus 

of limbic origin and spontaneous recurrent seizures arise following a latent period of 

several weeks after status epilepticus. Histopathologically, massive neuronal loss can be 

observed wihin 3-5 days in the granule layer of dentate gyrus and in CA1 and CA3 

pyramdal cell layers (Turski et al., 1989).  

First of all, I have to confirm, in the pilocarpine model, the anti-ictal and 

neuroprotective effects of BoNT/E that I have already demonstrated in the KA model. I 

will therefore investigate whether BoNT/E injection in the hippocampus one day before 

pilocarpine administration is able to prevent status epilepticus and the consequent 

neuronal loss. If this is confimed, I will test whether intrahippocampal injection of 

BoNT/E can affect epileptogenesis following pilocarpine-induced status epilepticus. 

Adult rats will therefore receive BoNT/E (or vehicle) injections into the hippocampus 1 

day after pilocarpine and will be implanted with depth electrodes for the chronic 

recordings of hippocampal activity. Spontaneous seizures frequency in BoNT/E and 

vehicle-treated rats will be followed at both the electrophysiological and behavioural 

level for several eeks after status epilepticus, well after the end of BoNT/E effects. 

These analyses will explore whether  BoNT/E treatment after pilocarpine-induced status 

epilepticus can prevent the occuenc of recurrent limbuc seizures.  

As the rat pilocarpine model is also widely for studying the molecular actors that 

contribute to the process of epileptogenesis (Elliott et al., 2003), I will also investigate 

whether BoNT/E administration after status epilepticus can interfere with the molecular 

rearrengements occurring during the latent phase of epileptogenesis. I plan to study the 
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expression of a battery of genes whose up-regulation has been correlated to different 

stages of post-status epileptogenesis. In detail I will peform an in situ hybridization 

study to evaluate whether the hippocampal up-reulation of several such genes is blocked 

by BoNT/E treatment. The expression of immediate arly genes (Arc), NMDA receptor 

subunits, neuropeptides (NPY), neurotrophins (BDNF), axon guidance molecules 

(GAP-43) will be studied at different times after status epilepticus and following 

BoNT/E or vehicle admnistration. 

  

                   Unilateral intrahippocampal injection of KA in adult mice  

 

Unilateral intrahippocampal injection of KA in adult mice reproduces most of 

histopathological changes of human  MTLE, including neuronal loss, gliosis, mossy 

fiber sprouting and granule cell dispersion (Suzuki et al., 1995; Bouilleret et al., 1999). 

Remarkably in this model, focal spontaneous recurrent seizures begin after a latent 

period of only two weeks and persist for several months, at an average frequency of 

about twenty seizures per hours (Riban et al., 2002; Gouder et al., 2003). This rapid 

development of chronic epilepsy will allow to assess the occurrence of spontaneous 

seizures both during anf after the time window of BoNT/E action (about 3 weeks). In 

addition, due to the high frequency of spontaneous ictal events, this model will facilitate 

the assessment of anti-epileptogenic properties of BoNT/E. 

Adult mice will be implanted with intrahippocampal electrodes glued to an infusion 

cannula and KA will be delivered to freely-moving animals through the cannula one 

week after surgery (Vezzani et al., 2000). The occurrence of status epilepticus will be 

assessed by EEG recordings (Riban et al., 2002). On the following day, the animals that 

reached status epilepticus will be injected with BoNT/E or vehicle into the 

hippocampus. EEG analysis of the frequency of spontaneous seizures will be started 

two weeks post-status and continued for an additional four weeks period. At the end, the 

animals will be perfused and brain sections processed for Timm and Nissl stains in 

order to assess mossy fiber sprouting and hippocampal cytoarchitecture. 

 

The evaluation of BoNT/E effects in these post-status models of MTLE is important 

because there are currently no means to interfere with epileptognic mechanisms 

occurring during the latent period and new therapeutic approaches must necessarily be 

tested in animal models of progression of epilepsy (Loscher et al., 2002). 
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     INTRODUCTION 

 
Neuronal activity plays a very important role in the formation and in the 

refinement of anatomical and physiological features of the mammalian visual system. 

One paradigm of choice for studying the involvement of afferent neuronal activity 

in visual cortical development is the segregation of geniculocortical afferents into 

ocular dominance (OD) bands in layer 4 of the primary visual cortex. Initial studies 

supported an instructive role for visually evoked activity in the segregation process 

(LeVay et al., 1978). Indeed geniculocortical terminals representing the two eyes are 

intermingled at the time of eye-opening and only subsequently achieve the adult-like 

OD pattern. However recent studies (Crair et al., 1998; Crair et al., 2001) 

demonstrated that OD bands are already present at time of eye-opening, suggesting 

that visual experience is not necessary for OD segregation. Since spontaneous 

activity in the retina is spatially and temporally patterned with neighbouring neurons 

showing high degree of correlation (Galli and Maffei, 1988), this spontaneous 

activity can instruct segregation of geniculocortical terminals. Nevertheless total 

removal of retinal input early in visual system development does not affect the 

segregation process (Crowley and Katz, 1999), as OD bands develop normally in 

binocularly enucleated ferrets. Therefore patterns of neuronal activity, evoked or 

spontaneous, are not necessary for the segregation of geniculocortical afferents in 

layer 4 of primary visual cortex. Instead, correlated neuronal activity might play an 

important role in the generation of cortical orientation selectivity. Orientation 

columns are present in the primary visual cortex at the time of eye-opening 

(Chapman et al., 1996), but the majority of neurons are still weakly orientation 

selective. The introduction of artificially correlated activity into the visual pathway 

through synchronous activation of retinal ganglion cell axons in the optic nerve 

weakens the orientation selectivity of neurons in the visual cortex without altering 

the layout of orientation domains (Weliky and Katz, 1997). This demonstrates that 

afferent activity has an instructive role in shaping orientation tuning properties of 

visual cortical neurons.  

The importance of intrinsic cortical activity in visual system development has 

been investigated in the process of orientation selectivity maturation. Infusion of 

TTX into visual cortex during the period of orientation selectivity maturation 

significantly reduces orientation tuning of cortical neurons (Chapman et al., 1996). 
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As the emergence of orientation tuning properties of visual cortical neurons depends 

strongly from local intracortical connections (Somers et al., 1995), the clustering of 

horizontal connections is also reduced by TTX infusion (Ruthazer and Stryker, 

1996). Therefore spontaneous activity in the cortex is important for the establishment 

of local and long-range intracortical connections that lead to maturation of 

orientation selectivity. 

An important input to visual cortex comes from the controlateral hemisphere 

throught callosal fibers. Visual callosal connections originate from and terminate on 

similar classes of cells in supragranular and infragranular layers of primary visual 

cortex, are reciprocal and exhibit topological specificity (Innocenti et al., 1986). The 

development of visual callosal connections is strongly activity-dependent. Indeed 

callosal axons are initially imprecise and exuberant and attain their adult specificity 

by elimination of ectopic axon terminals (Innocenti and Caminiti, 1980). The 

removal of retinal input, dark rearing from birth or monocular deprivation lead to 

preservation of ectopic connections (Berman, 1991; Frost and Moy, 1989; Frost et 

al., 1990), suggesting that neuronal activity has at least a permissive role for the 

proper development of callosal connectivity.  

The role of callosal connections in the development of visual system have never 

been addressed. In this study I investigated the role of extrinsic cortical activity 

coming through callosal fibers on the development of visual system. I induced a 

long-term blockade of neuronal activity in the visual cortex of one hemisphere 

through BoNT/E injections and I analyzed visual acuity development in the opposite 

hemisphere. Visual acuity is strongly reduced both in the injected and in the 

controlateral visual cortex, suggesting that extrinsic cortical activity is an important 

factor for visual system development. 
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MATHERIALS AND METHODS 
 

            Animal treatment and experimental protocol 

 

The procedures used in this study were approved by the Italian Ministry of Health. 

Long-Evans adult (320-450 g body weight) and young rats have been used.  

For adult experiment four animals were left untreated and used as normal controls. 

Twenty-one animals were injected with BoNT/E in the visual cortex. Of these six were 

recorded the day after the BoNT/E injection and their cortex were dissected for 

immunoblotting assay. Three were perfused the day after the injection and used for 

immunohistochemistry analysis of SNAP-25 cleaved. Three were kept in the dark for 

three days after the injection, re-exposed to light for two hours and then perfuse to 

perform Fos immunohistochemistry. Three were decapitated fourteen days after 

BoNT/E injection and their cortices dissected for immunoblotting.  Six were recorded 

twenty-one days following BoNT/E injection and their cortices dissected for 

immunoblotting.  

Twenty young rats were used in the other experiments. Four pups were left untreated 

and recorded at P45. Fifteen P14 were injected with vehicle (n = 5) or BoNT/E (n = 10). 

Vehicle-injected animals were all recorded at P45. Five BoNT/E-injected rats were 

recorded the day after injection and their cortices were dissected for immunoblotting. 

Other five BoNT/E-injected animals were recorded at P45 and their cortices dissected 

for immunoblotting.  

BoNT/E injection in the visual cortex: BoNT/E was obtained by WAKO (Japan), 

trypsin activated, purified and tested as previously described (Schiavo and Montecucco, 

1995).. For injection animals were placed in a stereotaxic apparatus under deep avertin 

anesthesia (1 ml/100 g body weight, i.p.). In adult animals a U-shape hole was made in 

the skull overlying visual cortex and three injection of 0.5 µl of BoNT/E (50 nM) were 

made at the following coordinates from lamba AP -1, L 5, H 1 below dura; AP 0, L 4.7, 

H 1 below dura; AP 0, L 5.3, H 1 below dura. In young animals three holes were 

performed with a subtle needle at the sites of injection with the following coordinates 

AP -1, L 2.5; AP 0, L 2.5; AP 1, L 2.5. An amount of 0.5 µl of BoNT/E (50 nM) or 

vehicle (2% rat serum albumin in PBS) were then injected.  
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             Electrophysiological analysis 

 

Animals were anesthetized with urethane (Sigma; 20% solution in saline; 0.7 ml/100 

g body weight, i.p.) and placed in a stereotaxic frame. Additional doses of urethane 

(0.07 ml/hg) were given to keep the level of anesthesia stable. Body temperature was 

monitored and maintained at 37°C by a thermostat-controlled electric blanket. Oxygen 

was also continuously administered. Both eyes were fixed by means of adjustable metal 

rings surrounding the external portion of the eye bulb. After exposure of the cerebral 

surface, a micropipette (tip resistance = 2 MΩ) filled with 3M NaCl was inserted into 

the visual cortex. In most adult experiments, microelectrodes were inserted 4.7-5.3 mm 

lateral to lamba, while for most young experiments microelectrodes were inserted 4.5-

4.8 mm lateral to lamba. For VEPs recordings the signal was amplified (10,000 fold), 

band-pass filtered (0.1 - 120 Hz), digitized and averaged (60-200 events in packs of 10-

20 events each). Partial averages from single packs were used to establish response 

reliability (Pizzorusso et al., 1997; Porciatti et al., 1999). Visual stimuli were gratings of 

various spatial frequencies and contrast generated by a VSG2/5 card (Cambridge 

Research Systems, Rochester, England) on a display (Sony Multiscan G500) that was 

positioned 20-30 cm in front of the rat’s eyes to include the central visual field. The 

mean luminance was 15 cd/m2. Contrast was defined as C = Lmax-Lmin / Lmax+Lmin, 

where Lmax and Lmin are the maximum and minimum luminance, respectively. 

Steady-state VEPs: VEP recordings in steady-state mode were used to measure 

spatial resolution. Steady-state VEPs were recorded in response to gratings with 

sinusoidal modulation of contrast at different temporal frequencies. Visual response was 

measured as the amplitude (µV) of the second harmonic of the stimulation frequency, 

calculated after Fourier analysis of the signal (Fagiolini et al., 1997; Pizzorusso et al., 

1997). Noise was the average of amplitudes of at least three VEP responses with both 

eyes closed. Visual acuity was assessed by presenting gratings of variable spatial 

frequencies alternating at 4-6 Hz (90% contrast). Acuity was taken as the highest spatial 

frequency that evoked a VEP response greater than the mean value of the noise.  

Transient VEPs: We recorded transient VEPs to estimate latency of visual drive in 

the visual cortex. Transient VEPs were recorded in response to the abrupt contrast 

reversal of a square-wave grating (spatial frequency 0.1 c/deg, contrast 90%) at the 

frequency that evokes maximal VEP amplitude in the rat (0.5 Hz; Pizzorusso et al., 

1997). At least 60 responses were averaged. 
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                 Immunohistochemistry 

 
For immunohistochemical analysis, each animal was perfused through the heart with 

PBS followed by fixative containing 4% paraformaldehyde in 0.1 M phosphate buffer, 

pH 7.4 (Caleo et al., 2003). Brains were dissected, post-fixed for 2 hr in the same 

fixative, rinsed in buffer and cryoprotected in 30% sucrose. Coronal brain sections (50 

µm thick) were cut on freezing microtome and collected. For cleaved SNAP-25 

detection, coronal sections were blocked with 10% normal goat serum in PBS, 

incubated overnight in a solution with anti-BoNT/E-cleaved SNAP-25 antibody 1:300, 

1% serum and 0.3% Triton X-100. and then reacted with a biotinylated secondary 

antibody (Vector Laboratories, Burlingame, CA) revealed by avidin-biotin-peroxidase 

complex (ABC kit, Vector Laboratories) and diaminobenzidine (DAB) reaction. For 

SNAP-25 immunostaining, sections were blocked with 10% normal donkey serum, 

incubated overnight in a solution with anti SNAP-25 antibody 1:200, 1% serum and 

0,1% Triton X-100 and then reacted with biotinylated secondary antibody revealed with 

Avidin FITC 1:200. For Fos immunostaining sections were blocked with 10% normal 

goat serum, incubated overnight with a solution with anti-Fos antibody (rabbit 

polyclonal Oncogene Science Ab-5) 1:3000, 1% serum and 0,1% Triton X-100, reacted 

with a biotinylated secondary antibody and processed for DAB reaction. 

 

                   Immunoblotting 

 

For immunoblotting, proteins (Viegi et al., 2001) were extracted from dissected 

cortices with lysis buffer (1% Triton X-100, 10% glycerol, 20 mM Tris-HCl, pH7.5, 

150 mM NaCl, 10 mM EDTA, 0.1 mM Na3V04, 1 µg/ml leupeptin, 1 µg/ml aprotinin, 

and 1mM PMSF). Protein extracts (10 mg) were separated by electrophoresis and 

blotted, and filters were incubated with the antibody recognizing the BoNT/E-cleaved 

form of SNAP-25 (1:50 diluition) reacted with HRP-conjugated goat anti-rabbit 

secondary antibody (Bio-Rad) and developed by ECL (Amersham, UK). 

                    

                   Statistical analysis 

 

Differences between two groups have been assessed with t-test. Level of significance 

p < 0.001.  
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RESULTS 
 

              
            Effects of BoNT/E on adult visual cortex 

 
Botulinum neurotoxin E (BoNT/E) inhibits glutamate release and blocks neuronal 

activity in the periferal nervous system (PNS) through the cleavage of  the synaptic 

protein SNAP-25 (Schiavo and van der Goot, 2001; Turton et al., 2002). One day after 

BoNT/E injection in the visual cortex of adult rats, cleaved SNAP-25 is clearly 

detectable by immunostaining in the infused region (Fig 1A). Accordingly, the intact 

form of SNAP-25 is absent in the synaptic terminals of visual cortical neurons in the 

injected region (Fig 1B). In visual cortical slices of normal adult rats, the pattern of 

SNAP-25 labelling is typical of a pre-synaptic vesicle marker, with an high density of 

labelled neuropil punctate structures likely corresponding to presynaptic terminals and 

absence of label in cell bodies. This pattern of labelling is completely absent in visual 

cortical slices of BoNT/E-injected rats, indicating that BoNT/E effectively cleaves 

SNAP-25.  

To evaluate the responsiveness of visual cortical neurons after BoNT/E injection, we 

performed electrophysiological recordings in vivo. BoNT/E injection completely 

suppresses visual evoked potentials (VEPs) recorded intracortically in response to a 

sinusoidal grating of optimal spatial resolution (0.1 c/deg) that reverse abruptly at 0.5 

Hz (Fig 1C). Indeed the waveform of intracortical transient VEPs in normal adult rats 

consists of an early negative wave, peaking between 100 and 200ms, and a late positive 

wave, peaking between 600 and 800 ms (Fagiolini et al., 1994). This classical waveform 

can not be recorded in BoNT/E-injected animals, demonstrating that BoNT/E is able to 

block visually-evoked neuronal activity.  

The extent of neuronal activity blockade in BoNT/E-injected animals has been 

determined through Fos immunohistochemistry (Kaczmarek and Chaudhuri, 1997; 

Chaudhuri, 1997). Indeed, when animals kept in the dark for three days are re-exposed 

to light, a strong expression of Fos protein can be detected in their visual cortex. This 

activity-induced expression of Fos protein is not detected in BoNT/E-injected visual 

cortex, as shown by interruption of the typical Fos nuclear labelling (Fig 1D). This is 

consistent with the blockade of visually evoked activity by BoNT/E injection. 
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The duration of BoNT/E effects in adult visual cortex has been established by 

analysing the time course of SNAP-25 cleavage after a single BoNT/E injection. 

Cleaved SNAP-25 is clearly detected one day after BoNT/E-injection, the band is 

slightly reduced at 14 days and it is no longer detectable at 21 days (Fig 2A). We can 

therefore conclude that BoNT/E effects in the adult visual cortex are over three weeks 

after the injection.  

To determine if long-term blockade of visual cortical activity by BoNT/E can have 

detrimental effects on visual system function, we measured its spatial and contrasr 

response once BoNT/E effects are extinguished. The spatial resolution of visual system, 

i.e. visual acuity, can be determined by measuring VEPs amplitude in response to 

sinusoidal gratings of various spatial frequencies alternated in phase at 4 Hz. In adult 

pigmented rats, the curve relating VEP amplitude to stimulus spatial frequency is 

approximately low-pass-shaped for spatial frequencies >0.1 c/deg (Fagiolini et al., 

1994). Visual acuity is determined as the spatial frequency that gives VEPs response 

amplitude above the noise (Fig 2B). The prolonged blockade of visual cortical activity 

by BoNT/E does not modify the curve relating VEPs amplitude to stimulus spatial 

frequency (Fig 2B). Moreover visual acuity determined after recovery from BoNT/E 

effects is not significantly different from normal one (1.025 ± 0.047 cycle/deg in normal 

rats; 1.083 ± 0.047 cycle/deg in BoNT/E-injected rats after recovery; t-test, P>0.1; Fig 

2C). We also recorded transient VEPs in response to abrupt reversal (0.5 Hz) of the 

same stimulus gratings in BoNT/E-injected animals after recovery. Indeed latency of the 

early negative peak of response in these animals is not affected by prolonged blockade 

of activity thought BoNT/E (107.5 ± 5.6 ms in normal rats; 112 ± 6.5 ms in BoNT/E-

injected rats after recovery; t-test. P>0.1; Fig. 2D). We can therefore conclude that the 

prolonged blockade of cortical activity through BoNT/E during adulthood has no 

detrimental effect on visual system  function. 
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Effects of BoNT/E on young visual cortex 

 
As sensory stimulation strongly influences the maturation of neuronal system by 

altering the firing pattern in the developing brain (Grubb and Thompson, 2004), we 

decided to inject BoNT/E in the visual cortex of P14 rats, i.e. just before eye opening. 

To rule out the diffusion of BoNT/E in the controlateral, not-injected cortex, we 

recorded flash VEPs one day after BoNT/E injection in both cortices. VEP response to 

flash is completely absent in the BoNT/E-injected visual cortex, while a clear VEP 

response can be recorded in the controlateral, not-injected cortex with a latency of    

(Fig 3A). Moreover cleaved SNAP-25 is present in BoNT/E-injected visual cortex but 

not in the controlateral, not-injected cortex (Fig 3B). This demonstrates that BoNT/E 

does not diffuse in the controlateral, not-injected visual cortex that therefore receives a 

normal, visually-driven activity. 

To determine the duration of BoNT/E effects in young visual cortex, we analyzed the 

time-course of SNAP-25 cleavage after BoNT/E injection (Fig 3C). Indeed cleaved 

SNAP-25 is clearly detected one day after BoNT/E infusion in young visual cortex and 

the band persists well after one week. At 14 days cleaved SNAP-25 is absent in half of 

the animals and it is surely no longer present at 21 days. This allowed us to estimate that 

BoNT/E effects on young visual cortex last for about 2 weeks and they are fully 

extinguished at 3 weeks when we performed electrophysiological analysis of visual 

system functional properties. 

The functional properties of visual system develop gradually during postnatal 

development and dark rearing (DR) from birth prevents this normal maturation 

(Fagiolini et al., 1994). To establish if the prolonged blockade of visual cortical activity 

in young animals has the same effect of dark-rearing on visual system development, we 

assessed visual acuity by VEP recordings in rats injected with BoNT/E at P14. 

Recordings were made from BoNT/E-injected cortex at P36, a time when the effects of 

BoNT/E are extinguished and visual acuity has reached its normal value. Vehicle 

injection at P14 did not influence the postnatal development of visual acuity. Indeed 

vehicle-injected rats has the same visual acuity of age-matched rats at P36 (1.05 ± 0.05 

cycle/deg in vehicle-injected rats versus 1.025 ± 0.047 cycle/deg in normal age-matched 

rats; t-test, P>0.1; Fig 3D). Instead prolonged blockade of visual cortical activity 

through BoNT/E from P14 to P36 significantly impairs visual acuity development (0.65 

± 0.1 cycle/deg in BoNT/E-injected rats versus 1.05 ± 0.05 cycle/deg in vehicle-injected 

rats; t-test, P<0.01; Fig 3D).  The latency of response to transient VEP is also affected 
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by BoNT/E administration. Indeed latency is significantly higher in rats treated with 

BoNT/E at P14 with respect to rats injected with vehicle solution (147 ± 9.8 ms in 

BoNT/E-injected rats versus 115.4 ± 8.2 ms in vehicle-injected rats; t-test. P<0.01; Fig 

3E).  We can therefore conclude that silencing of visual cortical neuronal activity from 

P14 to P45 by BoNT/E is able to prevent the normal maturation of visual system. 

To establish the role of extrinsic cortical activity coming through the callosal fibers 

on visual system development, we assessed visual acuity through VEP recordings in the 

visual cortex controlateral to the one injected with BoNT/E. Visual acuity measured in 

the controlateral cortex resulted significantly lower than normal one (0.591 ± 0.08 

cycle/deg in controlateral cortex versus 1.025 ± 0.047 cycle/deg in normal cortex; t-test, 

P>0.01; Fig 3D) and it is not significantly different from that measured in the BoNT/E-

injected cortex (t-test, P>0.01). Moreover latency of response to transient VEP is 

abnormally high in controlateral BoNT/E-injected cortex (145.2 ± 11.1 ms in 

controlateral cortex versus 115.4 ± 11.2 ms in normal cortex; t-test, P>0.01; Fig 3E). 

We can therefore conclude that extrinsic cortical activity coming through callosal fibers 

is essential for the proper maturation of visual system functional properties. 
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DISCUSSION 

 

In this study we demonstrated that long-term blockade of cortical activity through 

BoNT/E injection does not affect visual system function in the adult while it strongly 

impairs visual system development in young animals. Indeed long-term blockade of 

visual cortical activity before eye-opening prevents the physiological maturation of 

visual cortex, maintaining it in a state similar to a young cortex. Moreover also the 

development of controlateral, not-injected cortex is strongly impaired, suggesting 

that extrinsic cortical activity carried by callosal fibers is essential for visual system 

development. 

 

                    BoNT/E in adult visual cortex 

 

In the PNS BoNT/E is able to block neurotransmitter release and subsequently 

neuronal activity through its specific interaction with the SNARE protein SNAP-25. 

In our study we demonstrated that BoNT/E effectively cleaves SNAP-25 once 

injected in adult visual cortex. The SNAP-25 cleavage is associated with inhibition 

of visually-evoked neuronal activity in the infused region, as essayed both with 

electrophysiological and with immunohistochemical techniques. We can therefore 

conclude that BoNT/E, injected in adult visual cortex, is able to silence neuronal 

activity through the cleavage of SNAP-25.  

BoNT/E effects persist for at least two weeks after one single injection in adult 

visual cortex. The duration of BoNT/E activity has been estimated through the 

immunodetection of cleaved SNAP-25, as previous studies (Ashton and Dolly, 1988) 

demonstrated that inhibition of neurotransmitter release has the same temporal 

pattern of SNAP-25 cleavage.  

The long-term blockade of cortical activity through BoNT/E injection has no 

permanent deleterious effects on visual system function. Indeed, after recovery from 

BoNT/E effects, i.e. three weeks after injection, BoNT/E-injected animals display 

normal visual acuity and latency of response. Of course we did not examine more 

subtle parameters, such as dendritic spines, that could be influenced by prolonged 

blockade of activity. However no gross neuronal dysfunctions were detected after 
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recovery from intracortical BoNT/E treatment in the adult. This validates the use of 

BoNT/E in cases in which reversible silencing of neuronal activity in selected brain 

areas may be useful for therapeutic or research purposes. 

 

                   BoNT/E in young visual cortex. 

 

The long-term blockade of visual cortical activity through BoNT/E before eye-

opening affects the development of visual system in a manner similar to dark-rearing. 

Indeed dark-rearing from birth prevent the normal postnatal maturation of visual 

system and visual cortical functions determined in adult rats dark-reared from birth 

are similar to those of young animals (Fagiolini et al., 1994). Likewise functional 

properties of BoNT/E-injected cortex after recovery are very immature. Visual acuity 

and response latency are strongly impaired and resemble those of P19-P21 rats. 

Dark-rearing affects visual system development by strongly reducing the afferent 

activity to the cortex. In this study we clearly demonstrated that intrinsic cortical 

activity is essential for the proper postnatal maturation of visual system. 

The long-term blockade of activity in BoNT/E-injected cortex in young rats 

strongly affects also the development of visual cortical properties in the controlateral, 

not-injected cortex. Indeed visual acuity and response latency in the controlateral, 

not-injected  cortex are typical of an immature cortex and are similar to those of 

BoNT/E-injected cortex. This is in line with a previous study that demonstrated that 

callosal sectioning in cats at 1, 2, and 3 but not at 4 postnatal weeks permanently 

reduced visual acuity threshold (Elberger, 1988). In our study we found that 

prolonged activity blockade of one cortex during postnatal period affects the 

development of visual functions in the controlateral cortex. We therefore clearly 

demonstrated that the correct anatomical and physiological development of visual 

system depends on extrinsic cortical activity coming from the controlateral 

hemisphere through the callosal connections. This is in line with another study of our 

laboratory  that demonstrated that visual experience per se is not critical for the 

correct development of visual system. Indeed Bartoletti and co-workers showed that 

environmental enrichment is able to prevent the deleterious effects of dark rearing on 

visual system development, as enriched animals dark-reared from birth show a 

normal maturation of visual acuity (Bartoletti et al., 2004). This clearly points out 

that factors not under the control of visual experience may contribute to visual 
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cortical development and the authors suggest that over-expression of factors 

important for visual cortical plasticity induced by enriched environment can play an 

important role in this processes. However also afferent activity coming from areas 

other than visual ones can influence visual system development. Our results showing 

that visual acuity maturation in one hemisphere depends also on the presence of a 

proper pattern of activity in the controlateral cortex support this hypothesis. 

Our study also suggests that the different cortical “modules” do not mature on 

their own in a parallel way but they strongly interact during development probably 

through inter-cortical connections (Shimojo and Shams, 2001; Pallas, 2001). Indeed 

many recent animal and human studies of cross-modal plasticity reveal that sensory 

modalities in early stages of development are not as inherently distinct and 

independent as was previously once thought. Actually in humans that have had 

sensory deprivation in one modality starting from an early period of life the cortical 

area normally devoted to that modality is used by some other modality. For examples 

in early deaf individuals, non-auditory stimuli, including American sign language, 

can activate language cortex (Neville et al., 1998) and visual stimuli can activate 

putative auditory areas (Neville, 1990). In the early blind, improved auditory 

performance (Roder et al., 1999) and auditory and somatosensory activation of 

occipital cortex have been reported (Weeks et al., 2000; Cohen et al., 1997). Indeed 

in congenitally blind subjects the right occipital cortex participates in a functional 

network for auditory localization and the occipital activity seems to arise from 

connections with posterior parietal cortex (Weeks et al., 2000). These studies 

therefore demonstrate that the brain has a significant degree of neuronal plasticity in 

early stages of life so that to compensate the loss of one sensory modalities with 

changes in the remaining modalities. This argues against the most stringent version 

of brain segregation and modularity of sensory modalities and our results further 

support this as we demonstrated that development of visual functions in one 

hemisphere strictly depends on extrinsic activity coming from the controlateral 

hemisphere through callosal fibers. 
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