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Introduction

The Steinitz class of a number field extension K/k is an ideal class in the ring
of integers Oy, of k, which, together with the degree [K : k| of the extension,
determines the Op-module structure of Og. More precisely, if I is an ideal
in the Steinitz class of K/k, then

as Og-modules. The Steinitz class of an extension of number fields can easily
be calculated and it is related to the discriminant and hence to the ramifying
primes. An interesting question about Steinitz classes is the following:

Given a number field k and a finite group G, which ideal classes of Oy
are Steinitz classes of a (tamely ramified) G-extension of k?

We will restrict our attention to tamely ramified extensions and call
Ri(k, G) the classes which are Steinitz classes of a tamely ramified G-extension
of k. We will say that those classes are realizable for the group G. It is not
difficult to find examples in which R;(k,G) is neither the whole ideal class
group, nor only the class of principal ideals, so the answer to the above
question is not trivial.

Calculating realizable classes in some easy concrete examples, we always
obtain subgroups of the ideal class group. So we can conjecture that this is
always true:

Conjecture. Ry(k,G) is always a subgroup of the ideal class group of k.

It is not known if the conjecture is true, but there are a lot of cases in
which it has been proved. We summarize some of the most important results
in this direction.

In 1966 Leon McCulloh [17] studied the case in which G = C(n) is cyclic
of order n and k contains a primitive n-th root of unity. Under the above
hypotheses he proved that R(k,G) = R,(k,G) = Cl(k)*™ (in R(k,G) we

consider also wild extensions), where d(n) is the greatest common divisor of
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Introduction

the d(l) for all the prime divisors [ of n and d(l) = (I — 1)/2 if [ is an odd
prime and d(2) = 1.

In 1971 Robert L. Long [15] was able to remove the hypothesis that some
roots of unity are contained in the number field £, in the case of cyclic groups
of odd prime order. In this case R(k,G) is no more equal to R;(k, G), but
they continue both to be subgroups of the ideal class group of k. Later,
n [I4], he describes explicitly Ry(k,G) for any cyclic group of odd prime
power order, proving in particular that it is a group. Further he refers to
an example in his PhD thesis of a number field and an abelian group G for
which R(k,G) is not a group.

In 1974 Lawrence P. Endo, in his unpublished PhD thesis [9], extended
Long’s results about Ry(k, G) to any abelian group of odd order and he also
studied the case of a cyclic G of 2-power order. In this case he obtained only a
partial solution, since he assumed that the extension of the base field k given
by the adjunction of an appropriate 2-power root of unity is cyclic. Further
he considered semidirect products of a cyclic group of odd prime power order
with another cyclic group, which acts faithfully on the first one. In all these
cases he proved that R,(k, G) is a group, giving an explicit description of it.

In 1987 Leon McCulloh [I8] studied the Galois module structure of the
rings of integers in number fields. It follows from his results that R.(k, G) is
a subgroup of Cl(k) for any finite abelian group G. However, this result does
not yield an explicit description of Ry(k, G).

In 1996 James E. Carter [5] considered the nonabelian group G of order
p® and exponent p. He assumed that the base field k includes the p-th roots
of unity, he fixed a cyclic extension E/k of order p and he determined the
realizable classes for tame extensions of k£ with Galois group G and containing
E. He proved that those classes are (¢W (E/k))P*®~1/2 where ¢?~1/2 is the
Steinitz class of F/k and W (k, E) will be defined in In 1997 in [6] he
proved that if G is a nonabelian group of order p* = uv and exponent v then
R(k,G) = Cl(k)“P=1)/2 whenever k contains a v-th root of unity ¢,.

In 1997 Richard Massy and Bouchaib Sodaigui [16] constructed for each
class ¢ of the ideal class group of k a quadratic extension K of k that can be
embedded in a quaternion extension of degree 8 such that the Steinitz class
of K/k is c.

In 1999 Bouchaib Sodaigui [22] proved that R:(k,G) = Cl(k) if G =
C'(2) x C'(2) and that the same is true if G = C'(4) or G = Hy, the quaternion
group, provided the class number of k is odd. He also proved that every ideal
class is the Steinitz class of a quadratic (respectively biquadratic with (4 € k
or k(¢4)/k ramifying) tame extension K of k, which can be embedded in
a tame extension N/k with Galois group C(4) (respectively Hg). In [23]
he extends this results to the dihedral group D,, proving that if the class
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number of k is odd then Ry (k, Dy) = CI(k).

In 2001 Elena Soverchia [24] considered the case of metacyclic groups G
of order pq, where p and ¢ are odd primes such that p = 1 (mod ¢). She
proved that R;(k, G) is a group and found an explicit characterization for it.

In 2002 Marjory Godin and Bouchaib Sodaigui [10] proved that R;(k, A4) =
Cl(k). In 2003 ([11]) they also proved that, if the class number of k is odd,
then R;(k, Sy) = Cl(k).

In 2006 Nigel P. Byott, Cornelius Greither and Bouchaib Sodaigui [4] con-
sidered groups of the form G' = V' x,C, where V' is a [Fo-vector space of dimen-
sion r > 2, C'is a cyclic group of order 2"—1 and p : C' — Autg, (V) is a faith-
ful representation. They obtained that Ry(k, G) = Ry(k, C)? Cl(k)? "1,

In 2007 James E. Carter and Bouchaib Sodaigui [7] studied the case of the
groups of generalized quaternions: Hy,r = (0,7: 0% =1,07 = 7% 7077 =
o~1), where p is an odd prime and r is a positive integer. They proved that
Ri(k, Hyyr) = Cl(k)?" W (k, Eo)P~!, where W (k, Ey) will be defined in [L.2.9]
Ejy is the subextension of k((,)/k such that [k((y) @ Eo] = mo and mg = 1
if [k(Cpr) @ k] is odd, my = 2 else.

In 2008 Clement Bruche and Bouchaib Sodaigui [3] carried on the work of
[4]. They considered groups of the form G =V x,C, where V is a F,-vector
space of dimension » > 1, p is an odd prime, C' is a cyclic group of order
p"—1land p: C — Autg, (V) is a faithful representation. The result they
proved is that if ¢, € k then Ry(k, G) = Ry(k, O)?" Cl(k)?" @ ~D@=1)/2,

In 2009 Clement Bruche [2] proved that if G is a nonabelian group of
order p> = wv and exponent v then Ry(k,G) = W (k,p)"»~Y/2 under the
hypothesis that the extension k((,)/k((,) is unramified, thereby giving an
unconditional result when G has exponent p.

Most of the results have been obtained with techniques from Kummer
theory. In this thesis, we obtain some already known results and some gener-
alizations of them, with a different kind of proof, based on class field theory.
This method simplifies the proofs, if compared with Kummer theory, since
it permits to construct the desired number fields extensions directly, without
first adjoining roots of unity and then eliminating them again by passing to
suitable subextensions.

In the first chapter we collect some preliminary results about class field
theory and Steinitz classes and we prove some simple propositions.

The second chapter is dedicated to abelian extensions. We describe the
realizable classes of tame abelian extensions of odd degree (obtaining in a
different way the same results as in [9]) and we obtain some information also
in the even case. In particular we show that it is enough to study the case
of cyclic groups of 2-power degree. Further we also prove the conjecture for
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abelian groups whose 2-Sylow subgroup is of the form C(2™1) x - - - x C(2™"),
where my; = mg > mg3 > -+ > m, and C(n) is cyclic of order n.

The most interesting results are contained in chapter 3, in which we
study nonabelian extensions. We define A’-groups inductively, starting by
abelian groups and then considering semidirect products of A’-groups with
abelian groups of relatively prime order and direct products of two A’-groups.
The main result of chapter 3 is that the conjecture about realizable Steinitz
classes for tame extensions is true for A’-groups of odd order. We conclude
the chapter considering some more groups which can be studied using the
same techniques.
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Chapter 1

Preliminary results

In this chapter we recall some general results related to class field theory and
to Steinitz classes.

Let k£ be a number field, i.e. a finite extension of Q, let Oy be its ring
of integers and Uy be its group of units. A prime (or a place) p of k is a
class of equivalent valuations of k. We distinguish between the finite and the
infinite primes, writing p f co or p|oo, respectively. The finite primes belong
to the prime ideals of k, for which we use the same notation p. The infinite
primes correspond to the real embeddings or to a pair of conjugate complex
embeddings. For the finite primes we consider the valuation v,, normalized
by vy(k*) = Z.

We also define the absolute value |- |, in the following way.

1. If p { oo and ¢, is the cardinality of the residue class field k, = O/p,
then |al, = q,;v"(a) for a € k*.

2. If p is real infinite and ¢ : £ — R is the corresponding embedding then
lal, = |ea| for a € k.

3. If p is complex infinite and if + : & — C is one of the associated
embeddings then |a|, = |tal? for a € k.

For each prime we consider the completion k, of k with respect to | - |,.
A local field is a field which is complete with respect to a discrete valuation
with finite residue class field; in particular if p is a finite prime, k£, is a local
field.
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Chapter 1. Preliminary results

1.1 Class field theory

We recall some of the most important results of class field theory, referring
mainly to [20].

Theorem 1.1.1. For every finite Galois extension Ko/k, of local fields we
have a canonical isomorphism

TKfn/]fp . Gal(Kgp/k’p)ab — k;/NK‘JI?/kP K:i?f
The inverse of Ty k, yields the local norm residue symbol
(1 Kap/kp) : by — Gal(Kyp/ky)™
with kernel N /ky K‘*B'
Proof. This is Theorem II1.2.1 in [20]. O

Theorem 1.1.2. If Ky/k, is a finite abelian extension of local fields, then
the norm residue symbol

(\Kap/ky) : Ky — Gal(Kp/ky)

maps the group U, on the the inertia group of Kuq/ky.
If Ky /ky is tame, then ( , Kg/ky) is trivial on 1+ p C U,.

Proof. This is a particular case of Theorem II1.8.10 in [20]. For the triviality
of (, Kg/ky) on 14 p in the tame case we use Proposition II1.8.2 of [20]. O

We set
[ — ) 8roup of units of k, if ptoo
Pk if p[oo.
Let S be a finite set of primes of the field k. The group
1 Tl < T e I
pes pegs p

is called the group of S-ideles of k. The union
L.=Ji <],
S p

where S runs through all the finite sets of primes of k, is called the idele
group of k. If x € k*, then (x) € I} is the idele whose p-th component is
x € k, and we may regard k* as embedded in this way in I} and thus consider
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1.1. Class field theory

k* to be a subgroup of I. The ideles from k* are known as principal ideles
of k. The factor group
Cr = I /K"

is called the idele class group of k.
We define a cycle of k as a formal product

m= Hp”"
p

of prime powers, such that n, > 0 and n, = 0 for almost all p; for the real
infinite primes we admit only the exponents n, = 0 and 1, for the complex
ones only 0. We set

U =q1+pw CU, ifpfooandn,>0
Ry C &y if p is real and n, =1

and we consider the groups
r=1Juv".
p
The quotient

Cr=I"k* k" C G,

is called the congruence subgroup mod m of Cj.
The following theorem proves the existence of some abelian extensions of
a number field, corresponding to particular subgroups of Cj.

Theorem 1.1.3 (existence theorem). The map
K- NK/k = Nk/kCk

is a 1-1 correspondence between the finite abelian extensions K/k and the
subgroups of C}, containing a congruence subgroup C}'. Moreover

K1 - K2 < NKl/k QNKg/ku

NKl-Kg/k = NKl/k ﬂNKg/k, NKlﬂKg/k = NKl/k 'NK2/1<,

i.e. the correspondence is an anti-isomorphism of lattices. If K/k is associ-
ated to the subgroup N of Cy., then K is called the class field of N'. The class
field k™ /k of the congruence subgroup C} is called the ray class field mod m.
The ray class field mod 1 is also called the Hilbert class field of k.
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Chapter 1. Preliminary results

Proof. All this follows immediately by Theorem IV.7.1 and IV.7.3 of [20]. O

Let K/k be an abelian extension of number fields. The conductor f of
K/k is the g.c.d. of all cycles m such that K C k™, where k™ is the ray class
field mod m. By Theorem [1.1.3] kT is the smallest ray class field containing
K.

Proposition 1.1.4. Let K/k be an abelian extension of number fields. A
prime p of k is ramified in K if and only if p|f.

In particular the Hilbert class field k' /k is the maximal unramified abelian
extension of k.

Proof. See Corollary IV.7.6 in [20]. O

Theorem 1.1.5. Let m be a natural number, p, the infinite prime of Q and
let m be the cycle m = m - po. Then the ray class field mod m of Q is the
field

Q™= @(Cm)>

where (,, is a primitive m-th root of unity.
Proof. This is Theorem IV.7.7 in [20]. O
Now we state a global version of Theorem [1.1.1}

Theorem 1.1.6. For every finite Galois extension K/k of number fields we
have a canonical isomorphism

risk : Gal(K/k)* — Ci/NgxCr.
The wnverse of i, yields the surjective homomorphism
(,K/k):C, — Gal(K/k)™

with kernel N ,Ck, the global norm residue symbol.
Proof. This is Theorem IV.6.5 in [20]. H

For every prime p we have the canonical injection

[]:ky — Cy,
which associates to ay, € k; the class of the idele
lap) = (...,1,1,1,ap1,1,1,...).

The following proposition shows the compatibility of local and global class
field theory.
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1.1. Class field theory

Proposition 1.1.7. If K/k is an abelian extension and p a prime of k, then
the diagram

K CE ) Gal (Ko /)
f |
Cy CER L Gal(K k)
18 commutative.
Proof. This is Proposition IV.6.6 in [20]. O

Theorem 1.1.8. Let G be an abelian group. Every surjective homomorphism
¢ : Cp — G whose kernel contains a congruence subgroup C}* is the norm
residue symbol of a unique extension K/k with Galois group isomorphic to
G and o([Uy)) is its inertia group for the prime p. In particular

ep(K/k) = #p([Uy])

and if the primes dividing the order of G do not divide m, then the extension
18 tame.

Proof. By Theorem there exists a unique abelian extension K /k with
Ng/xCk = ker . By Theorem the global residue symbol of K/k gives
an isomorphism Cy/kerp = Cj/Ng,,Cx — Gal(K/k)* = Gal(K/k) and
thus clearly Gal(K/k) = G. Now let K; and K5 be two fields corresponding
to the same residue symbol, then Ng, ,Ck, = N, /x,Ck, and so, by Theorem

[LL13 K= K».

The group ¢([U,)) is the inertia group for the prime p because of Theorem
and Proposition [1.1.7] O

Proposition 1.1.9. Let K/k and K'/K' be finite Galois extensions such that
kCk and K C K' and let § € Gal(Q/Q). We then have the commutative

diagrams

(KK (K/k)

Ck/ Gal(K//k'/)ab Ck Gal(K//{i)ab

lNk’/k l lé l(h
S /1.0
C IO Gal(K/k)™  Ch CERD . Gal(KD /RSy

where the right arrow in the second diagram is induced by the conjugation
o dod L.

Proof. These are particular cases of Proposition 11.3.3 in [20]. O
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Chapter 1. Preliminary results

Let L/K and K/k be an abelian and a Galois extension of number fields
respectively, such that L/k is normal, Y = Gal(L/K) and A = Gal(K/k).
Let 6 € A and let 8,0 € Gal(L/k) be two extensions of § to Gal(L/k). Then
§'~16 € U and, by the commutativity of I, we have that

5,0 =000 L =88"106 158 =50d T = 5;0,
so that we can define d, : U4 — U by 0, = S*

Corollary 1.1.10. The residue symbol ( ,L/K) : Cx — U associated to the
extension L/K is A-invariant, i.e. for each 6 € A the following diagram is

commutative.
(,L/K)

Ck U
| la*
L/K
Cr (,L/K) n
Proof. This follows immediately by Proposition [1.1.9, [

Proposition 1.1.11. Let K/k be a finite tame extension with Galois group
A, let U be a finite abelian group and let ¢ : A — Aut(U) be an action of A
onU. Then for a A-invariant surjective homomorphism ¢ : Cx — U, whose
kernel contains a congruence subgroup CR, the extension L/K constructed
as in Theorem[I.1.§ is Galois over k. The following sequence is exact

1—-U—-Gal(L/k) - A—1
and the induced action of A on U is the given one.

Proof. Let K be the maximal abelian extension of K; by standard arguments
K /k is Galois. Since K D L, there is a normal closure Ly of L/k in K and
the extension L;/K is finite and abelian. Let 7 : Gal(L,/K) — Gal(L/K)
be the projection, then L is the fixed field of ker 7. By Proposition [1.1.9

T=(,L/K)ory xk =vory /i
and for § € Gal(L;/k) we have, using also the hypothesis of A-invariance,
0, 0T =0,0p0T )k =POdOTL /Kk=POTL /KOO0 =T 0 0.

Thus

S, kerm = ker(m o6 1) =ker(6, ' o) = ker.
So ker 7 is normal in Gal(L,/k). It follows that L/k is Galois. The exactness
of the sequence is obvious and the statement about the action of A on U
follows from Proposition [1.1.9, since the given action is the only one for
which the diagram on the right commutes. O]

16



1.2. Ideal-theoretic formulation of class field theory

1.2 Ideal-theoretic formulation of class field
theory
Class field theory has also an ideal-theoretic formulation.
Let k£ be a number field and let m = Hp p™ be a cycle of k. We denote
by Ji* the group of all ideals prime to m and by P the group of all principal
ideals generated by an element a = 1 (mod p™) for all pjm. The group

J/ P is called the ray class group mod m. The ray class group mod 1 is
the usual ideal class group Cl(k) = Ji/ Py, where Jj, = J} and P, = P/

Proposition 1.2.1. The homomorphism

Iy — Jy, aHHp”"(O“’)
pfoo

mduces an isomorphism
Tm : CpJOF — I/ PP
Proof. This is Proposition IV.8.1 in [20]. O

Let K be an abelian extension of k, contained in the ray class field mod
m; the cycle m is called a cycle of declaration for K/k. We define

(“25) =Tt s

p

where a = Hp p” € J; and m, is a prime element in k,. By Proposition
[1.1.4] every prime ideal p f m is unramified in K and hence by Theorem [I.1.2]
and Proposition the above expression does not depend on the choice of
the m,. It is called the Artin symbol.

Proposition 1.2.2. Let K/k and K'/K' be finite Galois extensions, with
cycles of declaration m and W', such that k C k" and K C K' Then we have
the commutative diagram

()

J Gal(K'/K')? .
lNk’/k i
Jm ) Gal(K k)2

17



Chapter 1. Preliminary results

Proof. Let a = Hp pr € J,?," and let 7, be a prime element in k;, then

()

=TTl 577Ky e = TT(Nulms)), K/ )

Koy p
H( K/k )Vp B < K/k )
Nk//k Nk//k(a) ’
where we used Proposition [1.1.9 O

Theorem 1.2.3. Let K/k be an abelian extension and let m be a cycle of
declaration of K/k. Then the Artin symbol induces a surjective homomor-
phism

(K_/k) DR PR — Gal(K/k)

with kernel H [Py, where HE = Ny Jg¢ - P
Moreover we have an exact commutative diagram

1 — Nk Ck Ck LD Gal(K/k) —=1
\Lﬂm Tm id
11— Hg )/ Pf —— Jr /PR : Gal(K/k) —=1
Proof. This is Theorem IV.8.2 in [20]. O

Corollary 1.2.4. Let K, Ky, K5 be finite abelian extensions of a number field
k and let m be a cycle of declaration for them. Then

T - NK/k/C}Q‘ - Hg/k/PI:n
18 an isomorphism, and

K, C Ky <— H}}‘l/k 2 H}“;Q/k,

HE o = Hig e VHE, e HE nroe = HE - HE, 1

Proof. By Proposition , Tm : Cr — J*/ P is surjective and thus by the
exact commutative diagram in the above theorem, we obtain that my,(Nx k) =
HE,,./ P By Theorem NK/k O CF (mis a cycle of declaration of K/k)
and then by Proposition 1 2 1]it is the kernel of T : Ny — HK o/ P
Now the result follows by Theorem and by the fact that HI"; 1, is the
counterimage of ]—]I“;/k/f’l;11 by the pl"OJGCthIl S5 — PR [

18



1.2. Ideal-theoretic formulation of class field theory

Corollary 1.2.5. Let k™ be the ray class field modulo a cycle m of a number
field k. Then

(km/ k > L /PR Gal(k™ /)

18 an isomorphism.

Proof. By definition of the ray class field mod m, Nym /. = C* and thus by
Corollary we obtain that H}% /P is the trivial group. We conclude
using Theorem [I.2.3] O

Theorem 1.2.6. Let K/k be an abelian extension of degree n and let p be an
unramified prime ideal. Let m be a cycle of declaration of K/k not divisible
by p and let H}}‘/k be the corresponding ideal group.

If f s the order of p mod H}}"/k in the ideal class group J,;“/HE/,C, i.€.
the smallest positive number such that

pf € HE/k?
then p splits in K into a product

p= q31 R s:BT
of r = ? different prime ideals Py, ..., P, of degree f over p.

Proof. This is Theorem IV.8.4 in [20]. O

Theorem 1.2.7 (Chebotarev). Let K/k be a finite abelian extension and
let o € Gal(K/k). Then there exist infinitely many prime ideals p in k,

unramified in K, of absolute degree 1 and with o = <KT/k)

Proof. This follows by Theorem V.6.4 in [20] and the observation that the
Dirichlet density of a subset of the primes of k depends only on the prime
ideals of the first degree (page 130 of [20]). Further we use also the fact that
the Dirichlet density can be positive only if the cardinality of the considered
set is infinite (again, see page 130 of [20]). O

Proposition 1.2.8. Let m be a cycle for a number field k. Then each class
in the ray class group modulo m contains infinitely many prime ideals of
absolute degree 1.

Proof. By Corollary

(km'/ k ) L J®/PM s Gal(k™/k)

19



Chapter 1. Preliminary results

is an isomorphism, where £™ is the ray class field modulo m. Thus for each ray
class we can consider the corresponding automorphisms o € Gal(k™/k) and,
by Theorem [1.2.7] there exist infinitely many prime ideals p in k, unramified

in £™, of absolute degree 1 and with o = (%) By construction they must

be in the given ray class.

Definition 1.2.9. Let K/k be a finite abelian extension of number fields and
let m be a cycle of declaration of K/k. We define

W (k, K) = N2 - Pe/ P = Hy - P/ P
If (o is an m-~th root of unity we use the notation W(k,m) = W (k, k((n)).

Proposition 1.2.10. By class field theory W (k, K) corresponds to the maz-
imal unramified subextension of K/k, i.e.

W(k, K) = Hypa i/ P,

where k' is the Hilbert class field of k. In particular W (k, K) does not depend
on the choice of the cycle of declaration m of K/k.

Proof. By Theorem and by Corollary the kernel of

1
(k /k> LI/ P Gal(E k)
is Hpy /B = (Pe NI/ P so we have Hpt = Py 0 J)7 and, by Corollary

Hln(lﬁkl/k = an;/k ) ng/k = H}?/k ) (Pk N JJ?)

Let x € Hflmkl/k/Pk7 then by Proposition [1.2.8| there exists a prime p{ m
in the class of x, and, recalling also the definition of H2 -, Ik

pe Hflmkl/km S = Hgrpa - (Pe NI = Hg - (B0,
ie. x € Hﬁ/k - Py/Py.. Thus
Hyeopayn/ P C Hyy, - Po/ P = Hippa g, - P/ Py

and the opposite inclusion is trivial.
Thus we have proved that

W(k,K) = Hg .- Pr/Pe = Hicrp i/ Pe.
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1.2. Ideal-theoretic formulation of class field theory

Corollary 1.2.11. Let Ky, Ks/k be abelian extensions of number fields, then
K, C Ky < W(k,K;) 2 W(k, Ky),
Wik, K)W(k, Ks) = W(k, KiNKy), Wik, K1) NW(k, K3) D W(k, K;1K3).
Proof. By Proposition and Corollary [T.2.4}
Ky C Ky <= W(k, K1) = Hy, o i/ Pe 2 Higyopo i/ P = W (k, K),

W(kﬂ Kl)W<k7 KQ) = H}(lﬂkl/kHIl(Qle/k/Pk
= H}ﬁﬂKgﬂkl/k/Pk = W(ka Kl N K2)>
W(k, Kl) N W(k:, Kz) = (Hll(lﬁkl/k N Hll(gmkl/k)/Pk = H(lekl)(Kmkl)/k/Pk
2 HllﬁKgmkl/k/Pk = W(k’, KIKQ)-
]

The following result is similar to the characterizations of W (k, K) given
in [9].

Proposition 1.2.12. Let K/k be a finite abelian extension of number fields.
Then the following subsets of the class group of k are equal to W (k, K):

Wy = {x € Jy/ Py : © contains infinitely many primes of absolute degree 1
splitting completely in K},

Wy = {x € Jy/ Py : © contains a prime splitting completely in K},

W3 = Ng/i(Jk) - P/ P

Proof. Let x € W(k, K) and let m be a cycle of declaration of K/k. By defi-
nition x = a- P, where a € H} Ik By Proposition m there exist infinitely
many primes of absolute degree 1 in the ray class modulo m containing a;
let p be one of them, which does not ramify in K/k. Then p = a - (b),
where (b) € P, and thus p € Hg, and by Theorem we can con-
clude that p splits completely in K. Thus x € W; and we have proved that
Wk, K) C Wh.

Obviously Wy C W,

Let x € W5 and p be a prime in x which splits completely in K. Then
for any prime divisor P of p in K, Ng/,(P) = p. Thus x = Ng/(*B) - P, and
hence Wy C Wi,

Recalling Proposition [1.2.10] we obtain that

Niji(Jk) - Pe/Pe © Ngowje(Jowr) - Pr/ P = Higrpa i/ P = W (k, K).
]
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Chapter 1. Preliminary results

In the case of cyclotomic extensions we obtain some further important
results.

Lemma 1.2.13. Let p be a prime in k of absolute degree 1, splitting com-
pletely in k((n). Then Nyjq(p) € Py, where m =m - puo.

Proof. By hypothesis Oy /p is the finite field with p elements, where Ny q(p) =
(p), and (O /p)* contains a primitive m-th root of unity, i.e. an element of
order m. Hence m must divide |Oy/p| —1 =p—1, i.e. p =1 (mod m),
which is equivalent to the assertion. O

Lemma 1.2.14. Let k be a number field, let m = m - ps, with m € N, and
let a € J* be such that Nyjg(a) € P, then a € HJ. ., i.e. the class of a
is in W(k,m).

Proof. By Proposition [1.2.2]

(e

- (Y

Qém) Niso(a)

Of course also the restriction of (W) to k is trivial; thus we have proved
that
(Henl)
a
Le. that a € Hif, - ]

Lemma 1.2.15. Let K/k be a tamely ramified abelian extension of number
fields and let p be a prime ideal in k whose ramification index in K/k is

e, then Nyjq(p) € Py, where m = e - ps. In particular, by Lemma |1.2.14
p € Hije)p and so its class is in W(k, e).

Proof. This is Lemma 1.2.1 of [9]. O

Proposition 1.2.16. Let k be a number field and let m = m-pso, withm € N.
Then the following subsets of the class group of k are equal to W (k, m):

Wy ={x € Jy/ Py : © contains infinitely many primes p of degree 1 with
Niso(p) € P},
Ws = {x € Ji/ Py : x contains an ideal a prime to m with Ny g(a) € Fg'}.

Proof. Let x € W(k,m). By Proposition there exist infinitely many
prime ideals of absolute degree 1 splitting completely in k((,). By Lemma
we conclude that W (k, m) C Wj.

By Lemma we know that Wy C W5 C W (k,m). O
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1.3. Steinitz classes

In the following we will also consider rational powers of some W (k, K).
They are defined as follows

Wk, K)Y/* = {z € Cl(k) : 2* € W(k,K)}
and, if @ and b are coprime,
W (k, K)** = (W (k, K)"/*)" .

Lemma 1.2.17. Let m,n,x be integers. If x =1 (mod m) and any prime
q dividing n divides also m then

2" =1 (mod mn).

Proof. Let n = ¢ ... g, be the prime decomposition of n (¢; and ¢; with ¢ # j
are allowed to be equal). We prove by induction on 7 that 2" = 1 (mod mn).
If r =1, then mn = mq; must divide m? and there exists b € N such that

q—1

" =(1+bm)" =1+ Z (qzl) (bm)" + (bm)® =1 (mod mn).

Let us assume that the lemma is true for r — 1 and prove it for r. Since ¢,|m,
as above, for some ¢ € N we have

ar
" =14+cmq...q—1)" =1+ Z (q;) (emqy...qe—1)" =1 (mod mn).
i=1

[
Lemma 1.2.18. If g|n = g|m then W (k,m)" C W (k,mn).

Proof. Let z € W(k,m). According to Proposition[1.2.16] z contains a prime
ideal p, prime to mn and such that Ny q(p) € Fg', where m = m - po,. Then
by Lemma [1.2.17, Ny/q(p") € Pg, with n = mn - p, and it follows from
Proposition that 2™ € W(k, mn). O

1.3 Steinitz classes

In this section we recall the definition and some properties of Steinitz classes.

Theorem 1.3.1. Let R be a Dedekind domain, let M be a finitely generated
R-module and let A be the submodule of M consisting of all torsion elements
of M, i.e. of the elements x € M which, for some nonzero r € R, satisfy
re = 0. Then M can be written as a direct sum

M=R"®l®A,

where n 1s a natural number and I is some ideal of R.
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Chapter 1. Preliminary results

Proof. This is Theorem 1.13 in [19]. O
Theorem 1.3.2. Let R be a Dedekind domain and let
Mi=L® - ®I,, My=J @D J,,

be finitely generated torsion-free R-modules, where I;, J; are nonzero frac-
tional ideals of R. Then My and My are isomorphic if and only if m = n
and, with a suitable a € K, the field of quotients of R, the equality

I I,=alJ - J,
holds. Equivalently I --- 1, = Jy---J, as R-modules.
Proof. This is Theorem 1.14 in [19]. O

Definition 1.3.3. Let K/k be an extension of number fields and let Ok and
Oy be their rings of integers. By Theorem|1.5.1 we know that

Ok 20 '@,
where n = (K : k] and I is an ideal of Oy. By Theorem[1.3.9 the Op-module

structure of Ok is determined by n and the ideal class of I. This class is
called the Steinitz class of K/k.

We are going to study the realizable classes for a number field £ and a
finite group G.

Definition 1.3.4. Let k be a number field and G a finite group, then we
define

Ri(k,G) = {x € Cl(k) : IK/k tame, Gal(K/k) = G,st(K/k) = x}.

In general it is not known if Ry(k,G) is a subgroup of the ideal class
group.

Let K/k be a finite extension of number fields and let wy, ... , WKk be
[K : k] elements of K. We define the discriminant

dK/k<UJ1, . ,w[K:k]) = det(aiwj)Q

to be the square of the determinant taken with o; ranging over the [K : k]
distinct embeddings of K in a given algebraic closure of k.

If I is an ideal of Ok, we denote by dg/i(I) the ideal of Oy generated
by all the dg/k(w1, ..., Wiky), as {wi, ..., Wiy} ranges over the bases of K
over k such that w; € I and we call this the discriminant of the ideal. In
particular we can associate to an extension of number fields the discriminant
of the trivial ideal in Ok and call it the discriminant of the extension:

d(K/k) = dg/i(1).
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1.3. Steinitz classes

Theorem 1.3.5. If K/k is a finite tame Galois extension then

_ 1y LKk
d(K/k) =[] =,

p

where e, s the ramification index of p.
Proof. This follows by Propositions 8 and 14 of chapter III of [12]. O
Theorem 1.3.6. Assume K is a finite Galois extension of a number field k.

(a) If its Galois group either has odd order or has a noncyclic 2-Sylow
subgroup then d(K/k) is the square of an ideal and this ideal represents
the Steinitz class of the extension.

(b) If its Galois group is of even order with a cyclic 2-Sylow subgroup and
a is any element of k whose square root generates the quadratic subex-

tension of K/k then d(K/k)/« is the square of a fractional ideal and
this ideal represents the Steinitz class of the extension.

Proof. This is a corollary of Theorem 1.1.1 in [9]. In particular it is shown in
[9] that in case (b) K/k does have exactly one quadratic subextension. [

Proposition 1.3.7. Suppose K/E and E/k are number fields extensions.
Then
st(K/k) = st(E/k)EEINg (st (K/E)).

Proof. This is Proposition 1.1.2 in [9]. O

Lemma 1.3.8. Let K, Ky be two arithmetically disjoint] abelian extensions
of a number field k, whose Galois groups are isomorphic to a given group G.
Then there ezists an extension K of k, contained in KKy, with Gal(K/k) =
G and st(K/k) = st(K;/k)st(Ky/k). Furthermore the discriminant of K1Ko
over K 1s equal to 1.

If we fiz isomorphisms G = Gal(Ky/k) and G = Gal(Ky/k), then a
field K with the above properties is constructed by considering the fized field
of the image of the diagonal embedding of G in Gal(K;/k) x Gal(Ky/k) =
Gal(K 1 Ky /k).

Proof. This is the Multiplication Lemma on page 22 in [9]. O

We conclude this section with a general result about tame Galois exten-
sions.

!This means that K; N Ky = k and (d(Ky/k),d(Kz/k)) = 1.
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Chapter 1. Preliminary results

Proposition 1.3.9. The inertia group Iy of a prime P in a tame Galois
extension L of a number field K is cyclic.

Proof. We can assume that B is totally ramified in L/K, by substituting K
with the fixed field of Iy. Localizing at ‘B we obtain a totally ramified tame

Galois extension of local fields Ly /K,. By Proposition 1 in chapter 1.8 of [I]
Ly = K,(c¥/¢) with ¢, (. € K,. Hence I = Gal(Ly/K,) is cyclic. O
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Chapter 2

Abelian extensions

In this chapter we study the realizable classes in the case of abelian ex-
tensions. We start proving some general results, which easily lead to the
description of realizable classes in the odd case (this result was first obtained
by Endo in his PhD thesis [9]). In the second section we study cyclic ex-
tensions of 2-power degree, but we do not obtain a general characterization
of Steinitz classes. The most interesting results of this chapter are those
contained in the last section, in which we prove that a description of the re-
alizable classes in the cyclic case of 2-power degree would lead to a solution
of our problem for any abelian extension of even degree.

2.1 General results

In this section we prove some general results about Steinitz classes of abelian
extensions of number fields and we obtain a characterization of the realizable
Steinitz classes in the case of abelian groups of odd order. This result has
already been proved in a different way in [9]. More precisely, let k& be a
number field and G an abelian group of order m; we are going to study
Ri(k, G). We start introducing some notations about k£ and G.

We denote the class group of k by Cl(k) = C(hy) x --- x C(hy), which
is a product of cyclic groups of orders hq,...,h;, generated by ..., x;.
Choosing prime ideals pi,...,p; of degree 1 contained in the ideal classes
x1,...,%; (they exist because of Proposition , we know that p;” = ()
are principal ideals. Let 7, be prime elements in ky,, and let y; = [m,,] =
(...,1,1,m,,1,1,...) € I, then we define

1,
a; = —Y," € U,.
Oéiyl ];[ p
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Chapter 2. Abelian extensions

Let {uy,...,us} be the union of a system of generators of the abelian group
Uk with {aq,...,a;}.
For any p let g, be a fixed generator of ry = U, / Upl; then for each a €

[1, Uy and for any prime p we choose ﬁpﬁa € Z such that g{,f“’“ = a, (mod p).

Let G = C(my) x --- x C(m,) be the decomposition of G into cyclic
groups with generators 71, ..., 7. and orders m; 1|m; (sometimes it will be
useful to consider m; = 1 for ¢ > r). If n is an integer and S is a set of
primes, we will use the notation n(.S) to indicate the product for [ € S of the
[-components of n and, for simplicity, we will also write n(l) = n({(}). The
letter [ will always indicate a prime, even if not explicitly mentioned.

Then we also define

)1 if2fmor my(2) #1
"7 N2 i 2pm and ms(2) = 1.

Lemma 2.1.1. A group homomorphism ¢y : (I[,Uy)/Ux — G can be ex-
1,.

tended to ¢ : Cy — G if and only if for j =
g; € G. We can request also that p(y;) = g;.

ot polay) = g;-lj with

Proof. (=) We have

pola;) = p(yl’) = oy € Gh.

(<) Let us define

Bk: <<HUP) /Uk X <€1,...,6t>> /{e?j/aj|j: 1,...,15},
p

where the second component in the direct product is a free abelian group.
We may extend the inclusion i : ([, Up)/Uy — Cy to By by e; — y; and
thus also the map 7o : ([[,Uy)/Ux — Cl(k) by e; — x;. We obtain the

following commutative diagram

| (Hp Up) U, By CT) 1
| (Hp Up) UL C, Cl(k) 1

where the horizontal sequences are exact. It follows that B, = C). Now we
define ¢ : By — G by ¢(a) = po(a) for a € (I[,U,)/Uy and ¢(e;) = g;. This
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2.1. General results

is a good definition since

- i o gjj 1
0 = =1.
a; wola)

By the isomorphism between By and C}, we obtain the requested ¢ : C)y, — G.
Since the restriction of the isomorphism B, = Cj to (Hp Up> /Uy is the

identity map, it is clear that ¢ is an extension of (.

Lemma 2.1.2. Let x be any class in W (k,my). Then there exist G-Galois
extensions of k, whose Steinitz classes are na-th powers of x, where

T
mi—1lm m;—1m
a_z 2 mz—i_ 2 ml'

i=1

In particular 1 € Ry(k, G), since 1 € W(k,my).

We can choose these extensions so that they are unramified at all infinite
primes, that the discriminants are prime to a given ideal I of Oy and that
all their proper subextensions are ramified.

Proof. By Proposition [1.2.16| there are infinitely many prime ideals q, for
which Ny/q(q) € Pg", where my = my - ps, and whose ideal class is . For
those primes the order of 7 is a multiple of m; and so for any a € Hp U, the

class hg,, of l~1q7a modulo m is well defined. The set of all the possible s-tuples
(hquys-- - hqu,) is finite and so it follows from the pigeonhole principle that
there are infinitely many q corresponding to the same s-tuple.

Let q1,...,9,+1 be 7+ 1 such prime ideals. We can assume that they are
prime to a fixed ideal I and to m.

Let us define ¢ : [], x; — G, posing

©0o(9q.) =T fori=1,...,r

©0(9a,42) = (T1...7) 7"

wolgp) =1 forp & {qi,...,dr1}
This is well defined since the order of gy, is a multiple of m; and hence
of the order of 7;. By construction ¢g(u;) = 1 for j = 1,...,s and so in
particular ¢y is trivial on Uy and on the a4, ..., a;. This means that yq is well

defined on ([],Up)/Uy and that ¢o(a;) = 1. Then it follows from Lemma

that g can be extended to ¢ : Cy — G the kernel of ¢, contains
I*, where m = [[/X q;, and so C* C kerp. By Theorem there is a
G-Galois extension of k, ramifying only in qq,...,q,+1, with indices m; for
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Chapter 2. Abelian extensions

i€ {l,...,r} and my for i = r + 1. By Theorem the corresponding

discriminant is
d= (llqz l>qr+1 .

i=1
If 24 m or mo(2) # 1 then by Theorem the Steinitz class is 2, where
“m;—1m  mi—1m

i=1

It is immediate to verify that the additional conditions are verified.

If 2|m and my(2) = 1 we obtain extensions whose Steinitz classes have
22 as their square. We may construct infinitely many such extensions which
are arithmetically disjoint and whose discriminants are relatively prime and
so, by the pigeonhole principle, there are two of them with the same Steinitz
class. Then the conclusion follows by Lemma [1.3.8 [

Lemma 2.1.3. Let [ be a prime dividing the order m of G and let x be any
class in W(k,mq(l)). There exist G-Galois extensions of k, whose Steinitz
classes are noy ;-th powers of x, where:

(a) o = (1= 1)?,
(b) g = (ma(l) — 1)m,
(c) oz = 3(l2_ 1)% (only if | # 2).

Further there exist G-Galois extensions of k whose Steinitz classes have x*%i
as their square. We can choose these extensions so that they satisfy the

additional conditions of Lemma[2.1.3

Proof. By Lemma there exists a tame G-Galois extension K/k with
trivial Steinitz class and such that it is unramified at all infinite primes, that
its discriminant is prime to a given ideal I of Oy and that all its subextensions
are ramified.

As in Lemma there are infinitely many prime ideals q in the class
of z such that the order of x; is a multiple of m;(l). Then the class hq,
of hqe modulo m; (1) is again well defined and there are infinitely many g
corresponding to the same s-tuple (hqq,, - -, Rgu,)-

Let q1, 92,93 be 3 such prime ideals and let us assume that they are all
distinct and that they are prime to a fixed ideal I, to m and to d(K/k).
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(a) Let us define ¢ : [], x; — G, posing

90 (qu) - 7_{711/1
—m l
¥0 (qu) =T v
vo(gp) =1 for p & {q1,92}.

As in the previous lemma we can extend ¢y to a homomorphism
p:Cy— G

whose kernel contains C}', where m = q;q2qsf and f is the conductor of
K/k. Of course

is surjective and its kernel contains C}*. Thus we obtain a G-Galois
extension of k, ramifying only in q; and qs with both indices [ and in
the primes ramifying in K /k with the same ramification indices as in
K /k. Hence the extension is tame and the discriminant is

d(K/@(ChCIQ)(l_l)%

As in Lemma R.1.2] we can conclude that the class 271 is realizable.
Further there exist G-Galois extensions of £ whose Steinitz classes have
x2%1 as their square.

(b) Now let us define ¢y : [, x; — G, posing

0o(gq,) = 7"/ ™0
00(gay) = 7 /™0
volgp) =1 for p & {q1, 92}

In this case we obtain a tame G-Galois extension of k with discriminant

d(K/k)(anqo)™ 7m0

and as usually we can conclude that the class 272 is realizable and
that z2*2 € Ry(k, G)2.

¢) We define ¢ : ks — G, posin
wo - [T, 57 g

900(9111) = ml/l

QOO(qu) = ml/l

©0(gqs) = _2””/ :

wo(gp) = for p & {q1, 92,93}
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Chapter 2. Abelian extensions

Then we have a tame G-Galois extension of k, whose discriminant is

m

d(K/k)(q19295) "
and again we obtain the desired results.

The additional conditions of Lemma 2.1.2] are also verified. O

Lemma 2.1.4. Let k be a number field, let G be an abelian group of order
m, Go be its 2-Sylow subgroup and G such that G = G5 x G. Then

Ri(k, G)™? C Ry(k, G).

Proof. Let z € Ry(k,G) and let K/k be a G-extension of k with Steinitz
class x, which is the class of
~ 1
d(K/k)z.
Let K/k be a Gy-extension of k with trivial Steinitz class and arithmetically
disjoint from K /k (it exists because of Lemma [2.1.2). The Steinitz class of

K /k is the class of
A(K/k)\ *
a

for a certain a € k. Then the extension K K /k has Galois group G = Gy x G
and its Steinitz class is the class of

(d(K[E/l@))é _ (i)™ (d(K/k))zrﬁ"m

(%

which is ™3, O

Proposition 2.1.5. Let | # 2 be a prime dividing m, then

-1

If 2|m then
W (k,m1(2))"™® C Ry(k,G)

and

W (k,m1(2))*™® C Ry(k, G)

We can choose the corresponding extensions so that they satisfy the additional

conditions of Lemma[2.1.3
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Proof. Let G5 be the 2-Sylow subgroup of G and G be such that G = Gy x G.
Let [ # 2 be a prime dividing m and let x € W(k,my(l)). It follows from
Lemma and Lemma that 2% is in Ry(k, G), where

6, = ged ((z ~ Dy ) = Do 2 m<2>l>

mo o 1-1 m
— ged (“’“”) U n@m 2 m<2>l) |

Clearly G,(1) = O and, if S is the set of all primes different from I, BGi(S)
1

mi(l)

divides & i)) Thus 3, divides Z_Tl and we conclude that

m(2)m (1)

l—

1
€T 2

@ € Ry(k, Q).

Hence by Lemma [2.1.4

=1 _m

z 2 ml e Rt(k,G)

Now let us assume that 2|m and let + € W(k,my(2)). It follows from
Lemmal(l.3.8 and Lemma that 2772 is in Ry(k, G) and 222 is in R,(k, G)?,

where
By = ged <% (m(2) - 1)#(2)) '

As above we obtain
Ae) S Rt(k‘,Gl)

and
2™ e Ry(k,Gy)2

To conclude we observe that Lemma|l.3.8 preserves the additional conditions
of Lemma 2.1.21 O

Lemma 2.1.6. For any e|m the greatest common divisor, for lle, of the
integers (I — 1)% divides (e — 1)™.

Proof. First of all it is clear that we can assume that m = e.
Let I be the Z-ideal generated by the [ — 1, for any prime [|e. Then e = 1
(mod 1), since it is the product of prime factors, each one congruent to 1

modulo /. It follows that for any prime [ { e, there exists an [y |e, such that
the l-component of [; — 1, which coincides with that of (I; — 1)%, divides

that of e — 1. Finally, for any I|e, [ does not divide (I — 1)?61) O
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Chapter 2. Abelian extensions

Proposition 2.1.7. Let k be a number field and let G be an abelian group,
then
=1 _m

Ri(k, G) C []W(k,ma(1)) = m®.

llm

Proof. Let K/k be a tamely ramified extension of number fields with Galois
group G. By Theorem and by Lemma there exist b,,; € Z such

that
K/k) Hpep 1EP—HHP HHpepl(l 1)

epF#l ep71 llep Um ep (D#1

Since K /k is tame, the ramification index e, of a prime p in K/k divides m;.
Thus, defining

mq (1)

H p bey 1 eF(z)

ep(1)#1
we obtain 1)
d(r /) = ™0
llm
and by Lemma [1.2.15] and Lemma [1.2.18| the class of the ideal J; belongs to
W (k,my(l)). We easily conclude by Theorem [1.3.6] O

The characterization of the realizable Steinitz classes of abelian extensions
of odd order follows easily from the results proved in this section.

Theorem 2.1.8. Let k be a number field and let G = C(my) X -+ x C(m,)
with m;y1|m; be an abelian group of odd order. Then

-1
HW k ml 2 ml(l)

llm

Proof. This follows from Lemma [1.3.8, Proposition and Proposition
217 O

2.2 Cyclic extensions of 2-power degree

In this section we recall some results concerning cyclic extensions of 2-power
degree, obtained by Lawrence P. Endo in his PhD thesis [9]. Unfortunately
Endo could not determine the corresponding realizable classes in the most
general case and it does not seem possible to obtain any interesting result
with the techniques from class field theory developed in the preceding section.

The following proposition is the only result we can prove by class field
theory.
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Proposition 2.2.1. Let k be a number field with an odd class number and
let G =C(2") = (o). Then

Ri(k,G) = W (k,2").
Proof. By Proposition [2.1.5 and Proposition
W(k,2")% C Ry(k,C(2") € W (k,2™)"2
Since the class number is odd,
W(k,2") = W(k,2")* = W(k,2")"2,
and this concludes the proof. n

We recall the following well-known lemma.

Lemma 2.2.2. Let k be a number field and let o € Oy, be such that o = 1
(mod 40y,). Then the extension k(y/«)/k is tame.

Proof. By an easy calculation, */a;rl is an integer, so it is in Oy, /7). Now

Ay /n (<1 ﬁ; 1>> = (@)

d(k(va)/k)|(a).
In particular it follows that 2 { d(k(y/«)/k), i.e. 2 does not ramify in k(y/a)/k

and so the extension is tame. O

and so

Proposition 2.2.3. Let k be any number field, then
Ri(k,C(2)) = Cl(k).

We can choose C(2)-extensions with a given Steinitz class so that they satisfy
the additional conditions of Lemma[2.1.9

Proof. Let x € Cl(k) be any ideal class and let q; and g2 be prime ideals in
it, which are in the same ray class modulo 4. Thanks to Proposition [1.2.8]
we can choose a prime ideal qq in the ray class modulo 4, which is inverse to
that of q1 and qda.

By construction, g3q;qs is principal generated by an o = 1 (mod 4). It
follows from Theorem [1.3.6] that

d(k(va)/k)

(07

D=
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is the square of a fractional ideal and by Lemma[2.2.2) the extension k(y/a)/k
is tame. In particular all the primes dividing d(k(\/a)/k) appear with expo-
nent 1 in its factorization. Then, since () = g2q14z, the only possibility for
D to be a square, is that it equals q;2. Then, again by Theorem m, the
Steinitz class of k(y/«a)/k is z. O

In the next section we will use the following proposition proved by Endo.
Proposition 2.2.4. For any number field k
W(k,2") C Ry(k,C(27)).

Proof. This is Proposition 11.2.4 in [9]. O

Further Endo proved the following result, which determines the realizable
classes if the extension k((on)/k is cyclic.

Proposition 2.2.5. Suppose Gal(k((an)/k) is cyclic. Then
Ri(k,C(2")) = W (k,2")

unless k(Con) [k is unramified and Gal(k(Con)/k) = (=5%), 0 <t <n —2, in
which case

Ri(k,C(2")) = W (k,2")z.
Proof. This is Proposition 11.2.6 in [9]. O

From the above result James E. Carter and Bouchaib Sodaigui in [7] de-
duced the following proposition, which they used to study generalized quater-
nions extensions.

Proposition 2.2.6. Let k be a number field and C(4) the cyclic group of
order 4. Then Ry(k,C(4)) = Cl(k). Further, for any x € Cl(k) and any
ideal I in Oy, there exists a tame cyclic extension K/k of degree 4 such that
st(K/k) = x, whose discriminant is prime to I and such that any nontrivial
subextension of K/k is ramified.

Proof. 1t is Proposition 2.6 of [7]. O
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2.3. Abelian extensions of even degree

2.3 Abelian extensions of even degree

In this section we relate the realizable Steinitz classes of abelian extensions
of even degree to those of cyclic extensions of order a power of 2. In this way
we also obtain some definitive results in a few particular situations.

Lemma 2.3.1. If 2|m and my(2) # 1 then
W (k. ms(2)) 75 C R(k, G).

We can choose the corresponding extensions so that they satisfy the additional

conditions of Lemma[2.1.5

Proof. By Lemma there exists a tame G-Galois extension K/k with
trivial Steinitz class and such that it is unramified at all infinite primes, that
its discriminant is prime to a given ideal I of Oy and that all its subextensions
are ramified. We can choose three prime ideals q1, g2, q3 whose ideal class is
a fixed © € W(k, mo(2)) and which satisfy analogous conditions as in Lemma

213
Now let us define ¢y : Hp Kk, — G, posing

©0(9a) = T{m/m(g)

#olg,) = 75"

Polgay) = i T el me?)

®o(gp) = for p & {q1,92, 93}

As in Lemma 2.1.3] we obtain a tame G-Galois extension of k with dis-

criminant

d = d(K/k)(qiq295) ™ P Vmem

and the Steinitz class is x>, where

Qg4 = 3(7’17,2(2) — 1) 2m2<2) .

By Proposition [2.1.5]
m m1(2) m
rm2®@ = pm2@ m1@@) ¢ Rt<k, G),
since 2™ 2)/m2(2) ¢ W (k, m,(2)) by Lemma |1.2.18, Thus

2I® — ngd(”"*’W%) € Ry(k, G).
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Chapter 2. Abelian extensions

Using this lemma we can easily prove a first interesting proposition, which
gives a characterization of realizable classes in a particular situation.

Proposition 2.3.2. Let k be a number field, let G = C(my) x --- x C(m,),
with m;1|m;, be an abelian group of order m. If 2lm and m4(2) = my(2),
then o
Ri(k, G) = [[ W (k,ma(1)) = M0,
llm
The result is the same as in the odd order case (see Theorem[2.1.8).

Further we can choose G-extensions with a given Steinitz class so that

they satisfy the additional conditions of Lemma[2.1.3,

Proof. One inclusion is Proposition [2.1.
The other inclusion follows by Proposition [2.1.5| and Lemma [2.3.1] using
Lemma [[.3.8 [

Lemma 2.3.3. If 2|m then
Ry (k, C(ma(2)))™® C Ry(k, G).

Proof. By hypothesis G = C(m1(2)) x G, where G is an abelian group. Let
z € Ri(k,C(m4(2))) and let L be a tame C(m4(2))-extension whose Steinitz
class is x. Because of Lemma there exists a tame G-extension K of k
whose discriminant is prime to that of L over k, with trivial Steinitz class and
with no unramified subextensions. The composition of the two extensions is
a G-extension and its discriminant is

Ad(L/ k)@ d(K k)™,

If the 2-Sylow subgroup of G is not cyclic then the Steinitz class is the class
of
A(KL/k): = d(L/k) @ d(K k)™ /2,
that is - i
(22)7m®@ = gm @

Now we have to consider the case in which the 2-Sylow subgroup of G is cyclic.
The subextension k(y/a) of L of degree 2 over k is also a subextension of

KL. We have k(y/a) =k (\/ a%) (the exponent —"— is odd) and so the

m1(2)
Steinitz class of K'L/k is the class of the square root of

m

d(KL/k) _ (d(l;/k)) m1(2) A/,

O{mI'EQ)
that is exactly x™ @, O
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2.3. Abelian extensions of even degree

Lemma 2.3.4. If 2|m and my(2) # 1 then

-1

Ry(k, G) € Ry(k, C(m(2)) 7 - W (k,ms(2) 72 - [ W (k,ma(1)) = ™0

llm

1£2

Proof. Let K/k be a G-Galois extension whose Steinitz class is z € Ry(k, G)
and let L be a subextension of K/k whose Galois group over k is the first
component of the 2-Sylow subgroup C(m;(2)) x -+ x C(m,(2)) of G. By
Theorem [1.1.8/ and Proposition |1.1.9

Cp,K = ep,K(Q)e;,K = #([Uy), K/k);
e, = ep,(2) = #([Up], L/k) = #([Us], K/K)| 1,

where e, 1, and ey, i are the ramification indices of p in L and K respectively
and e}, i is odd. By Theorem and Theorem [1.3.6] x is the class of

ep’Kfl m
p 2 Ep,K.

The class x; of the ideal

is the m/m4(2)-th power of the Steinitz class of L/k and thus
21 € Ry(k, C(my(2))) ™ @

Since e, 1 |ep x(2) and 2ep, x(2)|m we can define z, as the class of

ep,K(2) 1 ep,K(2>_l> mo(2) m

Hp< w1 )25,@;;(2) _ Hp< ep.L ep K (2 2m2(2).
p p

The only primes for which we obtain a nontrivial contribution are those for
which e, 1, < e, (2) and for those we must have ey, x(2)|m2(2) (since e, x(2)
must then be the order of a cyclic subgroup of C'(m2(2)) x --- x C(m,(2)))
and thus, recalling Lemma [1.2.15] and Lemma [1.2.1§]

To € W(k’, m2(2)) Ty @) .
Let x5 be the class of

el —1 el K71 el —1
p, K m P p, K m

ap =5 7 by
| | 2 e | | € | | 2 e 2
p p, K — p p, K p p,K( )’
p p

p
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Chapter 2. Abelian extensions

where a, and b, are integers such that
m m b m
= Q .
€p,K ’ 6;3,K ’ epx(2)

By Lemma there exist b,; € Z such that

’
e 1 my(l) 1—

e KL
FCRNRTE 1) CR
p

llm p
1£2

and thus by Lemma [1.2.15| and Lemma [1.2.18[ the class of this ideal is in

By the same lemmas the class of

e

-1
bP 2 2
Hp K()

s in N
W (k,mi(2)) ™,

which is contained in

Re(k, C(m1(2)) 7@
by Proposition [2.2.4] Hence

- m m
23 € [[W(k,ma(1)) 7 mOR,(k, C(m,(2))) ™.
llm
1;2
By an easy calculation
epxk —1 m epr —1 m ep.x(2) m ep — 1 m
) — ’ _I_ ) _ + ?
and we conclude that x = xyxox3, obtaining the desired inclusion. O

Theorem 2.3.5. Let k be a number field, let G = C(my) x --- x C(m,), with
mit1|mi, be an abelian group of order m. If 2|m and ms(2) # 1 then

Re(k, G) = Re(k, C(ma(2)) 5 - W (k,my (2)) 750 - [[ W (k,mi(1) 7 70
llm
1#2
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2.3. Abelian extensions of even degree

Proof. C This is Lemma [2.3.4]

O This follows by Proposition|2.1.5] by Lemma/2.3.1]and by Lemma|2.3.3]

using Lemma [I.3.§]
O

Remark.  The only unknown term in the expression for R:(k, G) in
the above theorem is R¢(k, C'(m;(2))). But we really need to determine only
its square, because it appears with an even exponent. This simplifies the
problem, because this allows us to consider directly the discriminants of the
extensions.

In the second part of the section we consider the case in which the 2-Sylow
subgroup of G is cyclic, i.e. 2|m and m»(2) = 1.

Lemma 2.3.6. If the 2-Sylow subgroup of G is cyclic, i.e. 2|m and my(2) =
1, then

_m__ -1 _m
Ri(k, G) C Re(k, C(my(2))) ™™ -HW(k,ml(l)) 2 m@,

llm

1£2

Proof. Let K/k be a G-Galois extension whose Steinitz class is z € Ry(k, G)
and let L be the subextension of K/k whose Galois group over k is the
2-Sylow subgroup C'(m;(2)) of G. By Theorem and Proposition [1.1.9]

Cp, K = ep,K(Q)(f;,K = #([Uy], K/k);

ep.r. = ep.(2) = #([Up], L/k) = #([Uy], K/E)|1,
where e, 1, and e, i are the ramification indices of p in L and K respectively,
epx 15 odd and ey x(2) = e, 1(2). Let a € k be such that &k C k(y/a) C L.

Since k(y/a) =k (\/am/m1(2)>, by Theorem |1.3.5/ and Theorem [1.3.6, =
is the class of

[1,p Vo

m
a™1(2)

As in the proof of Lemma we can define

21 € Ry(k, C(my(2))7 - [[ Wk, m (1)) 7 =0
1
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Chapter 2. Abelian extensions

as the class of the ideal

p
By Theorem and Theorem [1.3.6|
[T, % e
Q@

is an ideal, whose class x5 is the m/m;(2)-th power of the Steinitz class of
L/k. Thus

25 € Ry(k, C(my(2)))m®

By an easy calculation

SIS

m
—-1)= 1™\ 2my(2)
[T,p " Vo bt (L e
P — Hp 2 ep K P
p

«

am(2)
and we conclude that x = x5, from which we obtain the desired inclusion.
O

Theorem 2.3.7. Let k be a number field, let G = C(my) x - -- x C(m,), with
mii1|mi, be an abelian group of order m. If 2|m and ms(2) =1 then

Ri(k, G) = Re(k, C(my(2))) 5 [[ Wk, ma(1)) = 70,
llm
142

Proof. C This is Lemma [2.3.6]

D This follows by Lemma [2.3.3] Proposition [2.1.5| and Lemma [1.3.8]
m

We conclude this section with an interesting corollary.
Corollary 2.3.8. Let k be a number field, let G be an abelian group of order
m and let G| be its [-Sylow subgroup for any prime l|m. Then

Ri(k,G) = [ [ Re(k, Gy) 7.
llm
Proof. This is immediate by Theorem [2.1.8, Theorem [2.3.5| and Theorem
2317 O

In the next chapter we will prove a similar result concerning a relation
between the realizable classes for two groups and for their direct product, in
a quite general situation, which however does not include abelian groups of
even order. Thus the above corollary will not follow from Theorem [3.2.15]
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Chapter 3

Nonabelian extensions

In this chapter we will study some nonabelian extensions, with an abelian
normal subgroup. In the first section we obtain some very general results,
which are used in the second section to describe the realizable classes for a
particular class of nonabelian groups of odd order. In the last two sections
we obtain results for the Steinitz classes in some more cases, which have not
been considered in the second section. The theorems proved in this chapter
are the main results of this PhD thesis.

3.1 General results

Let G be a finite group of order m, let H = C'(ny) x - - - x C(n,) be an abelian
group of order n, with generators 71, ..., 7. and with n;,{|n;. Let

w:G — Aut(H)
be an action of G on H and let
OHHLGLQ—N)

be an exact sequence of groups such that the induced action of G on H is
. We assume that the group G is determined, up to isomorphism, by the
above exact sequence and by the action p. We are going to study Ry (k, G).
The following well-known proposition shows a class of situations in which
our assumption is true.

Proposition 3.1.1 (Schur-Zassenhaus, 1937). If the order of H is prime to
the order of G then G 1is a semidirect product:

G=Hx,G.
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Chapter 3. Nonabelian extensions

Proof. This is Theorem 7.41 in [21]. O
As in the abelian case we also define

_ )1 if 24 n or the 2-Sylow subgroups of G are not cyclic
e 2 if 2|n and the 2-Sylow subgroups of G are cyclic

and in a similar way we define ny and 7g. We continue to use the letter [
only for prime numbers, even if not explicitly indicated.

We say that (K, ki, k) is of type p if ki/k, K/ki and K/k are Galois
extensions with Galois groups isomorphic to G, H and G respectively and
such that the action of Gal(k,/k) = G on Gal(K/k;) = H is given by u. For
any G-extension ky of k we define Ry(k1, k, 1) as the set of those ideal classes
of k; which are Steinitz classes of a tamely ramified extension K /k; for which
(K, kq,k) is of type p.

It will be useful to have a generalization of Lemma [1.3.8]

Lemma 3.1.2. Let (Ky, ki, k) and (Ks, k1, k) be extensions of type p, such
that (d(Ky/k1),d(Ky/k1)) = 1 and Ki/k1 and Ky/k, have no nontrivial
unramified subextensions. Then there exists an extension (K, ki, k) of type
i, such that K C K1Ky and for which

St(K/k‘l) = St(Kl/k’l)St(Kg/k’l)

Proof. The hypotheses of the lemma imply that K; and K5 are linearly dis-
joint over k;. Let us fix isomorphisms such that the action of G = Gal(ky/k)
on H = Gal(K;/ky) given by conjugation coincides with p. Let us embed H
into Gal(K1K>/k1) by means of the corresponding diagonal map

diag : H — Gal(K;/ky) x Gal(Ky/ky) = Gal(K1 Ky /ky).

Let K be the fixed field of diag(H). Then, by Lemma [1.3.8, we know that
Gal(K/ky) = H and that

St(K/kl) = St(Kl/kl)St(Kz/k?1).
The action of G = Gal(k;/k) on
Gal(KlKg/kl) = Gal(Kl/kzl) X Gal(Kg/k'l)

is given by
fi(g)((ha, ha)) = (u(g)(h1), n(g)(ha))-
It follows that the action of G = Gal(k;/k) on

Gal(K/ki) = Gal(K Ky /k)/diag(H) = H

(where the last isomorphism is given by the projection on the first compo-
nent) coincides with the action . Hence (K, ky, k) is of type p. O
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3.1. General results

For any 7 € H and for any prime [ dividing the order o(7) of 7 we define
the element

in the I-Sylow subgroup H(l) of H.
We now recall some definitions and a classical result.

Definition 3.1.3. Let R be a commutative ring, G a finite group and H a
subgroup of G. The operation of restriction of scalars from R[G] to R[H|
assigns to each left R[G]-module M a left R[H|-module res$; (M), whose un-
derlying abelian group is still M and such that for h € H and m € M, hm
is obtained considering h as an element of G.

Definition 3.1.4. Let R be a commutative ring, G a finite group and H
a subgroup of G. The operation of induction from R[H]-modules to R|G]-
modules assigns to each left R[H]-module L a left R[G]-module ind% (L)

given by

ind$ (L) = R[G] ®@gm L.

Theorem 3.1.5 (Frobenius reciprocity). Let H be a subgroup of a group G
and let L be a left R[H]-module and M a left R[G]-module. Then there exists

an isomorphism of R-modules
7 : Hompa (L, res$(M)) — Hompgq (ind% (L), M).
This isomorphism s such that

(rHlg@l) =g-f(l).

Proof. This is Theorem 10.8 in [§]. The explicit description of 7 may be
deduced from the proof. n

We will only use the above result with R = Z.

Let ki/k be an extension of number fields with Galois group G. Let
PBi, ..., P be prime ideals in O, , unramified over py,...,p; € N, so that the
classes z; of the B; are generators of Cl(k) (they exist because of Proposition

1.2.8) and let B = (o), where h; is the order of ;.

Let mq, be a prime element in the completion (k1)q, of k1 with respect
to | - |yp, and let y; = [myp,] € Iy,. Then 7(y;) =P, and

1,
a; = —Y."' € U,
e TIos

is congruent to ylhz mod kj.
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Chapter 3. Nonabelian extensions

For any 0 € G let bs; € Hq3 Ugp and As;; € Z (they exist thanks to the
exactness of the sequence 1 — [[nUp/Uy, — Cy, — Cl(k1) — 1) be such
that

t

Ns.ii

S(yi) = bss [ [ ;™
j=1

Let {uy,...,us} be the union of a system of generators of the abelian
group Uy, with {ai,...,a;} and (Jsegibs,1, - - -, st}

Let ¢ be the map from the class group of k to the class group of k; which
is induced by the map which pushes up ideals of k to ideals of k.

Now we can easily generalize some results obtained for abelian extensions.

Lemma [2.1.2] for example, becomes the following.

Lemma 3.1.6. Let ky be a tame G-extension of k and let x € W (k, k1(Gyy))-
Then there exist tame extensions of k1 of type p, whose Steinitz classes (over
ki) are 1(x)™*, where

T

n—1n mny—1n
= — + —.
“ ZZI 2 n; 2 s

In particular there exist tame extensions of ki of type p with trivial Steinitz
class. We can choose these extensions so that they satisfy the additional

conditions of Lemma[2.1.5

Proof. By Proposition [1.2.12] x contains infinitely many primes q of absolute
degree 1 splitting completely in ki(¢,,). Let q be any such prime and let
4Ok, = [I5c¢9(Q) be its decomposition in ki, let gg be a generator of k5 =
Uq/Ug. Now § gives an isomorphism from £} to mg(g) and so we may define
a generator

9gs(22) = 6(9a)
of Iﬁz(g) for any 0 € G. We also define generators gy of kg for all the other

prime ideals and for any a € H‘E Uy we define iuna € Z, through g;?”“ = ag
(mod ).

For any prime 6(9Q), dividing a prime q of absolute degree 1 splitting
completely in k;(Cy, ), let hsa.q be the class of sy, modulo n; (since §(Q)
is of absolute degree 1, it follows by Lemma that the order of gs(q) is
a multiple of ny, i.e. that hsg), is well defined). The set of all the possible
ms-tuples

(hs()u;)5€6; j=1,...8
is finite. Then it follows from the pigeonhole principle that there are infinitely
many ¢ corresponding to the same ms-tuple.
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Let q1,...,q,41 be r + 1 such prime ideals and Qq,...,Q,,; primes of
ky dividing them. We can assume that they are distinct and that they are
prime to a fixed ideal I and to Py, ..., L.

Now let us define ¢; : kK — H, posing

wilga;) = 7,
fori=1,...,r, and pr41 : kG ,, — H, posing

Pri1(99,0,) = (r...7) 7"

Then we extend ; to
@i . ind%yﬁEi = H K;;(Dz) —H
deg

using Theorem [3.1.5
Now let us define ¢ : [[4 k5 — H, posing

900'“3(01-):951' fori=1,....,r+1landd €@
@05%21 fOI"B)fql,...,qT_H.

By construction ¢ is G-invariant and hence, for any 6 € G,

r+1 r+1 r+1
o (H ga(an) = 0 (5 (H gn,-)> = .0 (H ggi) =4.,(1) =1.
=1 =1 i=1

It follows that ¢o(u;) = 1 for j = 1,...,s and thus, as in Lemma , we
can extend ¢y to a surjective homomorphism ¢ : Cy, — H, whose kernel
contains a congruence subgroup of Cy,. We can also assume that ¢(y;) = 1,
for all j. It follows from Theorem that there is an H-Galois extension
of ki, ramifying only in the primes above qq,...,q,+1, with indices n; for
ie{l,...,r}and ny for j =r+ 1.

Further the action of an element of G on one of the y; gives a combination
of some bs; and y;, on which ¢ is trivial. Recalling that ¢ is G-invariant, it
follows that also the homomorphism ¢ is G-invariant and so, by Proposition
1.1.11} and the assumption that G is identified by the exact sequence

1-H—-G—-G—1
and by the action p, we obtain an extension of type u. Its discriminant is
T
(ni—1)5- (ni—1):%
d= <H q; ) qdr41 ' Olﬁ
i=1
and so its Steinitz class has ¢(z)?* as its square. We conclude as in Lemma

2.1.2 0
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For any 7 € H we define
fik o = G % Gal(k(Cor) /R) — Aut(H)
bY firr((91,92)) = p(gr) for any (g1, 92) € G x Gal(k(Co(r))/k) and
k2 G % Gal(k(Cor)) /) — (Z/o(T)Z)"

by Zhpr((91.92)) = Vir(g2), where go(Coiry) = €3 for any (g1,90) €
g X Gal(k:((o(T))/k). Let

ék,,u,T = {g € G x Gal(k(Cor)/k) + firepr(9)(T) = Tﬂk,,u,-r(g)}
= {(g1,92) € G x Gal(k(Cor)) /) = pilgn) () = 757} |
We define

Gk,u,‘r = {g € Gal(k(Co(T))/k) : E|gl € g7 (gla.g> € ék,,u,‘r}

and Ej - as the fixed field of Gy, - in k((or)-
Lemma 3.1.7. For any 7 € H, Gy, is a subgroup of Gal(k(Cor))/k).

Proof. 1f (g1, 92). (1, §2) € Gypyr, then
7 ((9191,9292)) — k7 (92)vk,7(92) — H(gl) (Tl/k,r(?h))
= (1) (1(G1) (7)) = ik ((91915 9292))(T)

and

o ((91021)) = (o)™ = (gt (N(Ql) (7’”’“492)71))
= firur (971, 027)) (7).

Hence (glgl,gggg),(gfl,ggl) € éi@uﬁ and the set Gy, is a subgroup of
Gal(k(Co(T))/k) O

Given a G-extension k; of k, there is an injection of Gal(ki((o(r))/k) into
G x Gal(k(Co(r))/k) (defined in the obvious way). We will always identify
Gal(k1(Co(r))/k) with its image in G x Gal(k(Co(r))/k). So we may consider
the subgroup . .
le/kvﬂﬂ' = Gk,#ﬂ' N Gal(’ﬁ (Co('r))/k>

of Gy pur Let Zy, i ur be its fixed field in ky(Corr)-
If k1 NE(Co(ry) = k then Gal(ki(Cor))/k) = G x Gal(k((o(r))/k) and hence

Gk1/k7u,f = Gk,uf'
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Lemma 3.1.8. For any 7 € H, k1 Zy, /i pr = k1(Co(r))-

PTOOf. Le~t g € Gal(kl(Co(T))/kl) N ékl/k,/,l,,T? then g‘kl = 17 Le. ,&k,u,f(g)(T) =
7, and 7@ = [ (g)(7) = 7. Thus g(Cyr)) = (o) and we conclude
that ¢ = 1. We have proved that

Gal(kl(QO(T))/kl) N é/ﬁ/k,uﬁ =1

i.e. that
klzkl/k,/.l,ﬂ' = kl (CO(T))'

Lemma 3.1.9. Let 7 € H, then
Ek,,u,‘r - Zkl/k,p,,T N k(CO(T)>
and we have an equality if k1 N k(Cory) = k.

Proof. We observe that

Grpr 2 {92 € Gallk(Co) /K) : 391 € G (91,92) € Gy i |

k1(Co(r)) ( A
= reskzco(i); (G fror)

k1(Co(ry) 1 & k1(Co(ry)

= resktco(:))) (le/k#ﬁ)reskz@(i); (Gal(kl (Co(r))/k?(Co(T))))
k1(Co(r))

= resktco(i)i (Gal(k1(Cotr))/ Zer fepr NVE(Co(r))))

= Gal(k(Co(‘r))/Zkl/k‘#J N k(CO(T)))

i.e. that
Ek,uﬂ' - Zkl/k7u77 N k(CO(T))

If k1 N k(Co(ry) = Kk then @kl/k#ﬁ = ék,#ﬁ and we have equalities. O
Lemma 3.1.10. Let 7 € H, then

Wk, Zi, jkur) © Wk, Bipr)-
If kv N E(Cory)) = K and every subextension of ki /k is ramified then

W(k; Zh/k,u,‘r) = W(k7 Ek,uﬂ')'
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Proof. By Lemma [3.1.9]it is obvious that
W(kv Zk1/lwm) C W<k7Ek,#,T>‘

Now we assume that ki/k has no unramified subextensions and we prove
that

k' 0 k1 (Cony) € k(Cogry)-
If that is not true, then

k(<o(7’)> g (kl N kl(CO(T))) ’ k(CO(T)) - kl(éO(T))

and the extension

(kl N kl (CO(T))) ' k(Co(T))/k(Co(T))

is ramified at a prime ramified in k;/k. This prime must ramify also in
k' N k1(Co(ry)/k, which is impossible. Therefore if ki N k(Cy(r)) = k and ky /k
has no unramified subextensions then, recalling also Lemma [3.1.9]

kl N Ek,u,T = kl N Zk1/k,p,7' N k(CO(T)) - kl N Zk1/k,u,r N kl (CO(T)) = kl N Zk:l/k,u,r

and by Proposition (1.2.10] we conclude that W (k, Ey,-) = W(k, Zi, jkpur)-
[

Lemma 3.1.11. Let k; be a G-extension of k, let | be a prime dividing n,
T € H(l) \ {1} and let x be any class in W(k, Zg, k). Then there ewist
extensions of ki of type u, whose Steinitz classes (over ky) are t(x)™*i,
where:

(a) ay = (I 1)

Y

~| 3

(b) ap = (o(1) = 1) ——

31—1)n

57 (only if | # 2).

(c) a3 =

Further there exist extensions whose Steinitz classes have 1(z)**i as their
square. We can choose these extensions so that they satisfy the additional

conditions of Lemma[2.1.3
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Proof. By Lemmal3.1.6]there exists an extension K of k; of type p with trivial
Steinitz class and such that K/k; is unramified at all infinite primes, that its
discriminant is prime to a given ideal I of Oy and that all its subextensions
are ramified.

By Proposition [1.2.12] x contains infinitely many primes g of absolute
degree 1 splitting completely in Zy, /i ,.-. Those primes obviously split com-
pletely also in the extension ki((or)) = k1Zk, k- (the equality holds by
Lemma of k1. We can assume that they do not ramify in k;/k, that
they are prime to [ and, by the pigeonhole principle, that there are prime
ideals Q in k, dividing the g, and with a fixed decomposition group D, of
order f, in ky/k; let p = m/f. We choose a set A of representatives of the
cosets 6D, with 0 € G. Then qOy, = [[5c1 0(Q) are the decompositions of
the primes q in k;.

Let gq be a generator of ki = Ug/UL. Now § € A gives an isomorphism
from kg to Kv;(g) and so we may define a generator

g5y = 6(g9a)

of K5 for any 0 € A. We know that any § € D defines an automorphism
of kg, of the form
A
d(ga) = 97",
where \q s is an integer. We can extend § € D to a § € Gal(ky(Co(ry)/k) in a
way such that 0(Q) = Q, where Q is a prime in k;((,(-)) above Q (it is enough
to extend 0 in some way and then to multiply it by an appropriate element

of Gal(k1(Co(r))/k1)). This element acts as a Ag¢-th power on k) =k (the
equality holds because Q splits completely in ki ((y(r))). Thus, for § € D,

Tk, pu,r (9) N — ~Aa, e
C.0(197') =0 (CO(T)) = Co(?r)é (Il’lOd D)

and, recalling that the powers of (y() are distinct modulo Q (since 9 is prime
to [ and thus to o(7)),

Aas = ﬁk,u,f(g) (mod o(T)).
Since the prime g splits completely in Zj, /i, - and 5 (55) — 0, we obtain that
d € Gal(k1(Cor))/Zky iep,r) and hence

1(0)(7) = fippur (8)(7) = 77w ®) = Pras.

Defining the hs(g)..; as in the proof of Lemma the set of all the
possible ps-tuples
(hs()u;)sen; j=1,...s
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is finite. Then it follows from the pigeonhole principle that there are infinitely
many ¢ corresponding to the same ps-tuple.

Let q1, 92,93 be 3 such prime ideals and let Qi, 5, Q3 be primes of k;
dividing them. We can assume that they are distinct, that they are prime to
a fixed ideal I and to d(K/k;) and that they satisfy all the above requests.

(a) Now let us define o; : k5, — H, for i = 1,2, posing

o(7)
¥1 (9)31) =7

and

For § € D, we have

HO)(p1(ga,) = u(0) (77 ) = P20 = 1 (g5) = ¢1(0(9a,)).

Thus ¢, is a D-invariant homomorphism and the same is true for s.

Then, for 7 = 1,2, we extend ¢; to

i : ind%figi = H Ky — H
seA

using Theorem and we define @ : [ [z k3 — H, posing

%o
%o
As in Lemma [3.1.6) we can extend ¢y to a G-invariant surjective homo-

morphism ¢ : Cy, — H, whose kernel contains a congruence subgroup
of Ck, and hence this is true also for

wr =@, fori=1,2andd e A
5(9Q;)
”i*p =1 for;’p"/ql:q}

SO(aK/kl)Cku_)H

We can conclude that there exists an extension of type p, with discrim-
inant

d(K/k1) ((9192) D7 Oy,)

Its Steinitz class has ¢(z)?*1 as its square and we conclude as in Lemma

2.1.20
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(b) Now let us define @; : K — H, for i = 1,2, posing

01(g0,) =T

and
@2(g0,) =7

Exactly as in the first case we obtain an extension of type p with
discriminant

AK /) ((ma) 5 0,,)

Its Steinitz class has ¢(x)?*2 as its square and it is easy to conclude as
in (a).

(c) If I # 2 we define ¢, : k5, — H, for i = 1,2,3, posing

o(r)

(101(991) =T t,
o(7)
902(992) =T,
and
720(7’)
P3(90;) =7

Now we obtain an extension of type pu with discriminant

d(K/ky) ((CI1Q2CI3)(171)%01€1) :

Its Steinitz class has ¢(2)?*3 as its square and we conclude in the usual
way.

Lemma [3.1.11] is now completely proved. [

Now we generalize Lemma [2.1.4]

Lemma 3.1.12. Let k/k be_a G-extension of number fields, let H(2) be the
2-Sylow subgroup of H and H such that H = H(2) x H. Let g and pip )

the actions of G induced by p on H and H(2) respectively. Then
Re(kr, b, )" C Ry(ka, b, ).

Proof. Let x € Ry(ky, k, ) and let (K, k1, k) be a pz-extension of ky with
Steinitz class x, which is the class of

A(K Jky)e.
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Let (K, Ky, k) be a pp2)-extension of ky with trivial Steinitz class and such

that K/k; and K /k; are arithmetically disjoint (it exists because of Lemma
3.1.6). The Steinitz class of K/k is the class of

()

(0%

for a certain a € ky. Then the extension (KK, ky, k) is a j-extension and its
Steinitz class is the class of

(d(K{(/k))é _ Al (d(K/k))mﬁz)

an®) o

which is 23, ]
At this point we can prove a more general version of Proposition [2.1.5]

Proposition 3.1.13. Let | # 2 be a prime dividing n and let T € H(l)\ {1},
then

-1

L (W (k, Zkl/k,p,q—)) 2 o(7) g Rt(kl, k’lu/)
If 2|n then, for any T € H(2)\ {1},

2 (W (ka Zlfl/k,,LL,T))nHm - Rt(kla k? M)
and )
L (W (ku Zk1/k,u,7)) ot - Rt(kb ku /’L>2
We can choose the corresponding extensions so that they satisfy the additional

conditions of Lemma[2.1.3

Proof. Let H(2) be the 2-Sylow subgroup of H and H be such that H =
H(2) x H. Let | # 2 be a prime dividing n, let 7 € H(I) \ {1} € H and
let € W(k, Zi, jkur)- It follows from Lemma [3.1.2)and Lemma that
(z)% is in Ry(ky, k, ), where

— e — i o(T) — - - _»
G = ged <<l 1)n(2)l’( (7) 1)n(2)0(7)’ 2 n(2)l>

n I-1mn
= ged <(O(T) - 1)n(2)0(7)7 2 n(2)l> |

Clearly (; divides l%m and we conclude that

l—

Wx) 7 7@ € Ry(ky, k, i)
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Hence by Lemma [3.1.12

-1 n

t(x) 2 o € Ry(ky, k, p).

Now let us assume that 2|n, let 7 € H(2)\{1} and let v € W(k, Zy, jk pu,r)-
It follows from Lemma and Lemma |3.1.11|that «(2)™ 72 is in Ry (ky, k, 1)
and ¢(x)%2 is in Re(ky, k, p)?, where

By = ged (g (o(7) - 1)%) |

So we obtain .
t(z)™o@ € Ry(ky, k, p)

and .
W(z)?5 € Ry(ky, k, )2

To conclude we observe that Lemma preserves the additional conditions
of Lemma 2.1.2] O

The next proposition is the main result we want to prove in this section.

Proposition 3.1.14. Let k be a number field and let G be a finite group
such that for any class x € Ry(k,G) there ezists a tame G-extension ky with
Steinitz class x and such that every subeztension of ki /k is ramified at some
primes which are unramified in k((,)/k, where a is a multiple of n;.

Let H=C(ny) x ---x C(n,) be an abelian group of order n and let p be
an action of G on H. We assume that the exact sequence

O—>HL>GL>Q—>O,

in which the induced action of G on H is u, determines the group G, up to
isomorphism. Further we assume that H s of odd order or with noncyclic
2-Sylow subgroup, or that G is of odd order. Then

Ri(k,G) 2Rk, G)" [T ] W Ejopr) ® o0 I1 w Brpr) o0
n, rHO1) reH(2)\(1}

where Ey,, - is the fized field of Gy .- in k(Cor),
Gk’/‘fr = {g € Gal(k(go(T))/k) . 391 - Q, M(gl)('r) = T”k,f(g)}

and g(Co(r)) = CZ(’“T’S(Q) for any g € Gal(k(Cory)/ k).

Further we can choose tame G-extensions K /k with a given Steinitz class
(of the ones considered above), such that every nontrivial subextension of
K /k is ramified at some primes which are unramified in k((,)/k.
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Proof. Let x € Ry(k,G) and let ky be a tame G-extension of k, with Steinitz
class z, and such that every subextension of k;/k is ramified at some primes
which are unramified in k((,)/k. Thus, since a is a multiple of ny, it follows
also that k1 N k((,,) = k.

By Lemma [3.1.2] Lemma[3.1.10] Proposition [3.1.13|and Proposition [1.3.7]
we obtain

Rk, G) 22" [ T WkErr) o [ Wk B o
ll;lng reH()\{1} reH(2)\{1}

from which we obtain the result we wanted to prove, if ng = ng.

With our hypotheses ny # ng implies that the order of H is odd, i.e. that
there does not exist any nontrivial 7 € H(2). Hence we obtain the desired
result also in this case. O

We will now generalize Lemma to the above setting.

Proposition 3.1.15. Let 7,7 € H(2)\ {1} be elements such that T,7,7T are
all of the same order. Let ki be a G-extension of k. Then

L(W (K, Zlq/k,u;erl/k,,u,f—Zkl/k,u,r%))#(7) C Re(kr, K, ).
In particular, if Zi, jkpr = Ziy e Lk Jleyp7 Lk Jourss the fact07E|
W (k, Ey,,\.r) 200

can be added in the expression of Proposition giving more realizable
classes. The additional condition of Proposition 18 also satisfied.

Proof. Let
x € Wk, Ziy Jyuir Zis g7 Db Jheur) -
We will use all the notations of the proof of Lemma [3.1.11] and we also

consider prime ideals qq, g2, g3 with analogous conditions.
We define p; : k5, — H, for i = 1,2, 3, posing

¥1 (921) =T,

©2 (gﬂz) = 7~—7

and

e3(ga,) = (77) 7"

Tf the order of 7 is 2 or 4 this condition is obviously verified.
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In the usual way we obtain an extension of type p with discriminant

d(K/k1) ((%%%)wh%l)ﬁ(’)kl)

and so its Steinitz class is ¢(x)*>* (with the above hypotheses the 2-Sylow
subgroup of H can not be cyclic), where

20(1)’

Thus by Lemma and Lemma [3.1.11] we obtain that

L(W (E, Zkl/k,u,erl/k,u,%Zkzl/k,u,r%))#(LT) C Ry(k1, k, p).

asy =3(o(1) — 1)

To prove that .
W(k, Ey 7))@

can be added in the expression of Proposition [3.1.14} it is now enough to use
Lemma (3.1.10, assuming that k3 N k:((o(f)) = k and that every subextension
of k1 /k is ramified. O

Example. As an example we construct a group of order 168 and we
calculate the Steinitz classes for that group and any number field. We con-
sider the action py : C(3) — Aut(C(7)), sending a generator of C(3) to
the automorphism of C'(7) defined as raising everything to the square. We
call G = C(7) x,, C(3). Now we define a representation p, of G on the
3-dimensional vector space over Fy, by sending a generator of C(7) to

111
Mi=1110
1 00
and a generator of C'(3) to
011
My=1110
001
It is easy to verify that this is well defined and we consider the corresponding

semidirect product:
G = (C(2)xC(2) xC(2)) ¥, G = (C(2) x C(2) X C(2)) Xy, (C(T) 31, C(3)).
We want to prove that, for any number field &,

Ri(k, G) = Cl(k)>.
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By Proposition |3.1.14] and Theorem [2.1.8

Ri(k,G) DW(k,3)" [ (W (k Eppr)® 2 W(k,3)W(k,7)°
TeC(T)\{1}
D CI(k)"Cl(k)** = CI(k)2.

If 7 is an element of order 2 in the subgroup C'(2) x C'(2) x C(2) of G, then
Ey o, = k. Thus, by Proposition [3.1.15

Ri(k, G) D Ry(k, G)3Cl(k) 222 D Cl(k)'SCl(k)* = Cl(k)2.

Conversely, the index of ramification of a prime in a tame G-extension clearly
divides 42, because in a C'(2) x C'(2) x C'(2)-extension the ramification index
is at most 2 (the inertia group must be cyclic by Proposition . Thus
the discriminant of a G-extension must be the 4-th power of an ideal and we
conclude that

R;(k,G) C Cl(k)?

and hence we have obtained an equality.

In this section we have only proved one inclusion concerning R:(k, G).
To prove the opposite one we will need some more restrictive hypotheses.
However the following lemma is true in the most general setting.

Lemma 3.1.16. Let (K, ky,k) be a tame p-extension, let P be a prime in
ki ramifying in K/ky and let p be the corresponding prime in k. Then

x € W(k, Zk1/k,u,7) C W(k, Eypr) © ﬂ W(k7Ek7H,T(l)>7

lleg
where x is the class of p and T generates ([Usgl, K/ky).

Proof. Let eq be the ramification index of B in K/k; and let f, be the

inertia degree of p in ky/k. By Lemma [1.2.15 B € HET(Z:)/M and, since

the extension is tame, ‘P { eq, i.e. P is unramified in &y (Cey,)/k1. Hence, by
Theorem , B splits completely in ki (e, )/k1- It follows that the inertia
degree of p in k(Cey)/k is exactly the same as in ki /k, i.e. fp.

Let ugy € Ugp be such that its class modulo P is a generator gg of

tig = Up/Usg. By Theorem and Proposition 1.1.7, 7 = (g, K/k1) is an
element of order e in H. An element § € Gal(ki(Ce,)/k) in the decomposi-

tion group of a prime P in k1 (Ceq) dividing B, induces an automorphism of
Ky = KJ% (the equality holds since 9B splits completely in k;(Cey)/k1), given
by
A
(gp) = 94"
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where Agps is an integer. Thus CV'”” 0 (Cey) = e;’f‘s (mod P) and,

recalling that the powers of (., are distinct modulo P (since P 1 eq), we
deduce that Ags = k- (0) (mod eg). Recalling Proposition [1.1.9]

ﬁk,uﬁ(é)(T) = (5’k1)( ) - (5(9‘.]3) K/k’l)
= < Ap.s K/k’ ) =T Ap,s _TV}gHT((S)

Thus 6 € Gy, jkpr = Gal(k1(Ceq )/ Zk1 jku,r). Hence we conclude that p has
inertia degree 1 in Zy, k. .+ /k and thus it is the norm of a prime ideal in

Zy Jkurs 1-€., by Proposition [1.2.12] its class is in W (k, Z, /i pu,r)-
The proof of the inclusions

W(ka Zkl/k,,u,f) g W(k7 Ek,un’) g W(ka Ek,,u,‘r(l))

is trivial, using Lemma [3.1.10| and Corollary [1.2.11] O

3.2 A-groups
We introduce a new kind of groups, which we call A’-groups.
Definition 3.2.1. We define A’-groups inductively:

1. Finite abelian groups are A'-groups.

2. If G is an A'-group and H is finite abelian of order prime to that of G,
then H %1, G is an A’-group, for any action v of G on H.

3. If G1 and Gy are A'-groups, then Gy X Gy is an A’-group.

Before going forward, we recall the classical definition of an A-group and
we relate it to the above concept of A’-group.

Definition 3.2.2. An A-group is a finite group with the property that all of
its Sylow subgroups are abelian.

Proposition 3.2.3. Every A'-group is a solvable A-group.

Proof. Since abelian groups are obviously solvable A-groups, we have only
to prove that the property of being a solvable A-group is preserved by con-
structions 2 and 3 in Definition B.2.1]

If G, Gi and G, are solvable and H is abelian, then H x, G and G; X G

are clearly solvable.

59



Chapter 3. Nonabelian extensions

If G is an A-group and H is abelian of order prime to that of G, then for
any prime [ dividing the order of H an [-Sylow subgroup of H x, G must
be a subgroup of H and thus must be abelian. If [ divides the order of G
then an [-Sylow subgroup of H %, G is isomorphic to one of G and thus it is
abelian, by hypothesis. So H %, G is an A-group.

If G; and G, are A-groups, then for any prime [, an [-Sylow subgroup of
g1 X Gy is a direct product of [-Sylow subgroups of G; and G, and hence it is
abelian, and G; x Gy is an A-group. O]

Remark. It is an open question if the converse of the proposition is true
or not.

Example. Thanks to the above proposition we can find finite groups
which are not A’-groups. It is enough to consider any nonabelian [-group.

The next definition is technical; it will be used to make an induction
argument over the order of GG possible.

Definition 3.2.4. We will call a finite group G good if the following prop-
erties are verified:

1. For any number field k, Ry(k, G) is a group.

2. For any tame G-extension K/k of number fields there exists an element
ok € k such that:

(a) If G is of even order with a cyclic 2-Sylow subgroup, then a square
root of oy, generates the quadratic subestension of K/k; if G
either has odd order or has a noncyclic 2-Sylow subgroup, then

O-/K/k =1.
(b) For any prime p, with ramification index e, in K/k, the ideal class

of
1
(p(ep—ng—vp(a)) 2

is in Re(k, G).

3. For any tame G-extension K/k of number fields, for any prime ideal
p of k and any rational prime | dividing its ramification index e,, the
class of the ideal

p(zq)e;@)
is in Re(k, G) and, if 2 divides (I — 1)6:&), the class of
pl_Tl epn(Ll)
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is in Re(k, G).

4. G is such that for any number field k, for any class x € Ry(k,G) and
any integer n, there exists a tame G-extension K with Steinitz class x
and such that every nontrivial subextension of K/k is ramified at some
primes which are unramified in k((,)/k.

We start with a negative result, showing that the cyclic group of order 8
is not good.

Proposition 3.2.5. The cyclic group C(8) of order 8 is not good.

Proof. Let k = Q(i,+/10). The field k((s) is obtained extending k with a
root of the polynomial 2% — 4, whose roots are (g and (Z. Hence

Gal(k(Gs) k) = (5)

is cyclic of order 2 and it is different from (—5) and (—25). We obtain by

Proposition that

With some calculations we can prove that the ring of integers of k((g) is a
principal ideal domain, i.e. that the ideal class group is trivial, while the
ideal class group of k is cyclic of order 2. It follows that W (k, 8) is the trivial
group and, in particular, that the realizable classes form a proper subgroup
of Cl(k).

By Lemma there exists a tame C(8)-Galois extension K/k with
trivial Steinitz class. Since k((y) = k(i) = k, we have that W(k,4) =
Cl(k). Hence we can choose two prime ideals qi,q2 whose ideal class is
the nontrivial one of k and which satisfy analogous conditions as in Lemma
2.1.3] substituting m(l) with 4.

We call 7 a generator of the group C(8) and we define ¢y : [, rpy — G,
posing

©o(9gq,)
©0(gg) =T
©olgp) =1 for p & {q1, 92}

As in Lemma we use this to obtain a tame C'(8)-Galois extension of
k with ramification index equal to 4 in the prime ideals q; and q2. Since we
have shown above that the class of

7_2
—2

2-18
4

g9, " =m

is not in Ry(k, C(8)), the third property of good groups is not verified in this
case. [
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Now our aim is to show that some groups, such as A’-groups of odd order
are good.

Lemma 3.2.6. Let G be a good group, let H be an abelian group of order
prime to that of G, with trivial or noncyclic 2-Sylow subgroup, and let u be
an action of G on H. Suppose (K, kq, k) is tamely ramified and of type . Let
ey be the ramification index of a prime p in ki /k and ey be the ramification
indez of a prime B of ki dividing p in K/ky. Then the class of

1
(p(epem—l)ﬁ—vp (a};‘l/k)> 2

18 1N

" II TI Wk Bupr) ™ 40

lln TeH()\{1}
Proof. Clearly
mn mn
-1 = (e, —1)— -1
(epem = D) = (e~ 1) o (e = 1) 0

is divisible by

e (e = D)™ (o= 1))

€p CpCep
and, since (m,n) =1, i.e. also (e,, eq) = 1, this coincides with
mn
wed (e = )™ g = 1)),
€p Ep
Thus, recalling Lemma [2.1.6,

ap(ep—1) 7% +‘1‘D(€‘D 1)z

epepy  — p ;13 pap (ep_l)% H pbp,l(l_l) em(l) .

lleg

(epep—1)

If G either has odd order or has a noncyclic 2-Sylow subgroup, i.e. oy, /1 =
1, then we conclude by the hypothesis that G is good, by Lemma [3.1.16] and
by the fact that, for any prime ! dividing ey, (I — 1)% is even (in the case
[ = 2 this is due to the fact that the inertia group at ‘8 must be cyclic by
Proposition , while the 2-Sylow subgroup of H is not).

We now assume that G is of even order with a cyclic 2-Sylow subgroup
and thus that the order of H is odd. Again using Lemma [2.1.6] we can find
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some ¢, such that

p(epe‘n—l)ﬁ—vp(a&/k) _ pap(ep—l kl/k) H pbp A= 1)8 0)
lleg
- <p(6p*1)%(%*1))n (p(erl)ﬁfvp(akl/k))” Hpbp 2= 1)eqs(z
lleg
_ l—Ipcp 1(1=1) 225 (ap—1) (p(epfl)%f%(akl/k))n H pbp 2= 1)%(1)
llep legp
We know that p(epem_l)ﬁ_% i) and pl@ Ve @) gre squares of ide-

als and that any [ dividing eq is odd. It follows that cp,Q%(ap — 1) is even,

since all the other exponents are. Recalling the hypothesis that G is good,
we conclude that the class of

<p<epemfl>ﬁ7vp (o, /k)>

ol

s in

"I TI Wk Brpr) ™ 9

Iln TeH\{1}

]

Lemma 3.2.7. Under the same hypotheses as in the preceding lemma, if
llepess, the class of

p(l_l)ep(g)rg;g(l)
15 1n

n =1
Ri(k, G) H W (k, By pr) ® 200 .
reHO\{1}

and, if 2 divides (I — 1)T the class of

-1
p 2 ep(l)em(l)

15 1N

Ri(k,G)" [ Wk Eppr )7 o
TeH()\{1}

Proof. 1f 1 is an odd prime dividing ey, then 2 divides (I — 1)% and the
class of
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is in Ry(k, G), by the hypothesis that G is good. We conclude that the class
of

=1 mn I—1 mn
p 2 ep(l)em(l) — pT ep (1)
is in Ry(k, G)". Analogously, if 2 divides ey, the class of
o T _
is in Ry(k,G)™. Further if 2 divides S @ = then also &5 must be

even (n is prime to m and so it must be odd). As above we conclude that
the class of .
p§ ep (2)6;13 (2)

is in Rt(k?, g)"
If | divides eg, then (I — 1)% is even (by hypothesis the 2-Sylow

ep(Dep
subgroup of H is not cyclic and thus ﬁ is even). We conclude by Lemma
[3.1.16 that the class of
-1 mn =1 _mn
p 2 ep(l)ecn(l) — p 2 em(l)
l—1 mn
is in W (k, Ek,u,T)Tldﬂ for some 7 € H(I) \ {1}. O

Now we can prove the following theorem.

Theorem 3.2.8. Let k be a number field and let G be a good group of order
m. Let H=C(ny) x --- x C(n,) be an abelian group of odd order prime to
m and let p be an action of G on H. Then

-1 mn
Ri(k, H %, G) =R(k, G)"[[ [ Wk Erpr)® 00,

lln TeH()\{1}

N

where Ey, , - is the fived field of Gy .- in k(Cor),
Gk»#ﬂ' = {g (- Gal(k(CO(T))/k) . Hgl € Q, ,U(g1)(7') = TV’“’T(g)}

and g(Co(ry) = C:(]“T’;(g) for any g € Gal(k(Co(r))/k). Furthermore G = H %, G
18 good.

Proof. Let x € Ry(k, H x,,G); then z is the Steinitz class of a tame extension
(K, k1, k) of type p and it is the class of a product of elements of the form

1
(p(epemfl)ﬁ*vp (a’,zl/k)> 2
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Hence it is contained in

H H W(kEkuT)Tl:T

lln TeH()\{1}

by Lemma [3.2.6| and the fact that the last expression is a group. Hence

Ri(k, H %, G) CR(k.G)"- T ] W (k, Eyur) 7 o0 .

lln TeH()\{1}

The opposite inclusion is given by Proposition [3.1.14. We now show that
H %, G is a good group.

1. The first point of the definition of good groups is clear by what we have
just proved about R.(k, H x, G).

2. This follows from Lemma m, choosing axy, = o, for any extension
(K7 klv k) of type 22

3. This follows from Lemma
4. This comes from Proposition 3.1.14]
m

Corollary 3.2.9. Under the hypotheses of the above theorem, if G = C'(my) X
- x C(m,) is abelian of odd order m, then

Ro(k, H %, G) = [[W(k,mi (1) > %0 -] [I W (k Brpr) = 700
Ilm ln TeHO\{1}

Proof. This follows by Theorem and Theorem [3.2.8]| O

Example. We consider G = C(3) and H = C(5) x C'(5) and we define
an action p : G — Aut(H) by its image on a generator of C'(3), which can
be written in form of a matrix with coefficients in Z/5Z. We choose the

following matrix
2 3
M = ( 23 ) |

By Corollary we obtain

Ri(k, (C(5) x C(5)) x, C(3)) = W(k,3)® - [[ W (k, Eppr)®
reH\{1}
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Since any nonidentity power of the matrix M induces linear endomorphisms
of C(5) x C(5) without eigenvectors, we deduce that, for any 7, Gy, is
trivial. Thus Ej ., = k((5) and so W (k, Ey ,») = W(k,5). Hence

R,(k, (C(5) x C(5)) x,, C(3)) = W (k, 3)W (k, 5)®.

By Theorem this coincides with R (k, (C'(5) x C'(5)) x C(3)).

By Proposition [1.2.12, W (k, 3) = Ni,)/e(Jk(cs)) - Pr/ Pr and since [k((3)
k] divides 2 we obtain that Cl(k)* C W (k,3). Analogously Cl(k)* C W (k,5);
hence we have

CI(K)' = CL(k)22CI (k)"0
C W(k,3)*W(k,5)* = Ru(k, (C(5) x C(5)) x,, C(3))

and in particular W(k,3)!% C Ry(k, (C(5) x C(5)) x, C(3)). Since also
W (k,3)* C Ry(k, (C(5) x C(5)) x, C(3)) we can conclude that

W (k,3)° C Ry(k, (C(5) x C(5)) x, C(3)).
Conversely
W (k,3)® 2 W(k,3)*Cl(k)" 2 W(k,3)*W (k,5)* = Ry(k, (C(5)xC(5))x,C(3))

and so we have proved that there is a simpler way to write the realizable
classes of the group (C'(5) x C(5)) x, C(3), namely

Ry(k, (C(5) x C(5)) x, C'(3)) = W(k,3)°.

We also observe that there are no other semidirect products of C'(5) x C'(5)
and C'(3), up to isomorphism. This follows from the fact that any other 2 x 2
matrix of order 3 with coefficients in Z/5Z has 2>+ x + 1, which is irreducible,
as its characteristic polynomial and as its minimal polynomial, and hence it
is conjugate to M.

Example. As a second example we calculate the realizable classes for
the group C(3)® x,,, C(13), where the action p; sends a generator of C/(13)
to the automorphism of C(3)® = C(3) x C(3) x C(3) defined by the matrix

O = O
_ O O

1
1
0
By Corollary we obtain that

Ri(k,C(3)® x,, C(13)) = W(k,13)°*" [ = W(k, Bryr)™®”.
T€C(3)®\{1}
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It is immediate to verify that Gy, , = {1} for any 7 € C(3)®) \ {1}. Hence
Ri(k, C(3)® x,, C(13)) = W (k, 13)52"W (K, 3)37.
As in the preceding example we obtain that
Cl(k)'™® = Cl(k)**027C1(k)* 39 C Ry(k, C(3)®) x1,, C(13))
and, recalling that W (k, 3)'3% C R,(k, C(3)®) x,, C(13)), we obtain that
W (k,3)? C Ry(k,C(3)® x,, C(13)).
Of course we also have that
W (k,3)? D W(k, 13)52"W (k, 3)"*.
Hence
R(k, C(3)® x,, C(13)) = W(k,3)°.
If H=C(n)= C(n) is cyclic, then Theorem may be written in a
simpler form. For this aim we first need the following lemmas.

Lemma 3.2.10. Let 1 be a prime dividing n. If H(l) is cyclic, 7 € H(l) and
clo(t), ¢ # o(T), then
zﬂu’q—c g Gk,/L,T'
Proof. We define
fir 2 G — (Z]o(T)Z)"

by 7#791) = u(g,)(7) for any g € G. By definition if g € Gy <, then there
exists g1 € G such that

TCVk:,TC(g) — M(gl)(Tc) — TCﬂTc(gl)

and thus
Vpre(9)fire(g1) P =1 (mod o(7)/c).
We observe that

Vi or Vg - c Vi, re( Vg, e
Co(kr)f‘z) = Co(fj ) =9 (CO(T)) =9 (CO(T)/C) =49 (CO(TC)) = COZCTC) ¥ = Co(k'r)/ig)

and that
TCﬂT(gl) = /L(gl)(Tc) = 7—0127—5(91)’

i.e. that
Vi,r(9) = vkre(g)  (mod o(7)/c)
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and that
fir(91) = fire(g1)  (mod o(7)/c).
Thus
Ver(9)fir-(91) " =1 (mod o(T)/c)
and by Lemma |1.2.17] we obtain that
Ve (90 (95) ™ = (e (@) (91)™') =1 (mod o(7))

i.e. that
7rl9) = i) = (gf)(r)

and hence that ¢¢ € Gy, - O

Lemma 3.2.11. Let 1 be a prime dividing n. If H(l) is cyclic, 7 € H(l) and
clo(t), ¢ # o(T), then

Wk, Egpre)” S Wk, Eypr).

Proof. Let = be a class in W (k, Ej,, --). By Proposition [1.2.12] there exists

a prime p in the class of = splitting completely in Ej , ;/k. By Theorem

, p € Hp . where mis a cycle of declaration of E} re/k. Then by
TOp

osition
_ (E,w /k) .
Ek,,u,,rc p

) S Gal(k((O(T))/Ek’uch) = Gk,,u,‘rc
and it follows by Lemma |3.2.10| that

(FelE) - (HlBY € € Gupr = Gal(h(Gon) B

(’f(@(;))//f)

Thus
(k‘(éom)/ k
p

pe kop,e
Then
(Bt _ (Modt)|
pe pe Epopur
and so the class ¢ of p® is in W (k, Ej . ;). O

Proposition 3.2.12. Let k be a number field and let G be a good group of
order m, let n be an odd integer coprime to m, let p be an action of G on
C(n), let T be a generator of C(n) and let G = C(n) %, G, then G is good
and

-1 mn
2 n(l)

Ri(k, G) = Ri(k, G)" [ [ W (k. Bxpr)

ln
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Proof. Any element of H(l) \ {1} is a c-th power of 7(I), for some c|n(l),
¢ # n(l). Thus, by Theorem [3.2.8]

Ri(k, C(n) 1, G) = Ro(k, 6" [T TT W (s Brpore) * 700
-
Hence, by Lemma [3.2.11]

Rt<k, C(n) Nu g) g Rt(k, g)n H W (k’ Ek,u,‘r(l))

lln

For the opposite inclusion it is enough to consider the factors corresponding
to ¢ = 1 in the above expression for R,(k,C(n) %, G). The fact that G is
good has been proved in Theorem (3.2.8| O]

In particular, if n is a power of a prime [ and G = C(m) is cyclic of order
prime to n we obtain exactly the same result as in [9].

Example. As an example of the above result we consider the group
C(13)x,,C(3), where the action ps sends a generator of C'(3) to the elevation
to the cube in C'(13). We explicitly calculate its realizable classes. By the
above proposition and by Theorem [2.1.8 we obtain that

Ri(k, C(13) 1, C(3)) = W (k,3)"*W(k, Ex up.-)"®,

where 7 is a generator of C(13). Further since Cl(k)> C W (k,3) and
Cl(k)'? C W(k,13) C W(k, Exp, ) it follows that

Cl(k)? = Cl(k)*3CL(K) 218 C R, (k, C(13) x,, C(3))
and, recalling that W (k, 3)"® C R,(k, C(13) x,, C(3)), we obtain that
W (k,3) C Ry(k, C(13) x,, C(3)).
Recalling that Cl(k)* C W(k, 3) we also have that
W(k,3) 2 W(k,3)*W(k, Bk p+)"® = Re(k, C(13) x,, C(3)).

Hence
Ry(k, C(13) x1,,, C'(3)) = W(k,3).

Now we prove a result concerning direct products of good groups. We
again need two lemmas.
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Lemma 3.2.13. Let Gy and G5 be good groups of orders m and n respectively.
Let us assume that m and n are not both even or that G; and Gy both have
noncyclic 2-Sylow subgroups. Let K/k be a tame Gy X Gy-extension of number
fields, where K = kiky and k;/k are G;-extensions, let e, be the ramification
index of a prime p in K/k, and let

%k if G1 has even order and cyclic 2-Sylow subgroups
Uk /k = \ Ve U G2 has even order and cyclic 2-Sylow subgroups

1 else.

Then the class of the ideal

[

<p(€p —1)%—% (O‘K/k)> 2

18 1N

Rt(k, gl)nRt(ka gQ)m‘

Proof. Let p be a prime ramifying in K/k. Let (g1, g2) be a generator of its
inertia group (it is cyclic since the ramification is tame); then g; generates
the inertia group of p in k;/k and g¢o in ko/k. Let e,; be the ramification
index of p in k;/k; then e, = lem(epy, ep2). In particular for any prime [
dividing ey, ey(l) = max{e, (), ep2(0)}.

Let us first consider the case in which the order of G; x Gy is odd or
its 2-Sylow subgroups are not cyclic. In this case ag/, = 1 and, recalling
Lemma [2.1.6, we have

P VE Ty

lep

= H (pal(l_l) ep,nll(l) )TL H (pal(l_l) Ep;(l)>m ,

llep llep
ep()=ep,1(1) ep(D#ep,1()

where all the exponents a;(I—1) o and a(l —1)% are clearly even. Thus,

since G; and G, are good, the class of p%(e”_l)% is in Re(k, G1)"Re(k, G2)™.

Let us now assume that G; x G, is of even order with cyclic 2-Sylow
subgroups. Thus we may suppose that the order of G; is even, that G; has
cyclic 2-Sylow subgroups and that the order of G is odd. Then

(ep=1) 22 —vp (aren) _ pn<(ep,rl)%*vp(akl/k)> p(ep_n%—(ep,l—ngﬁ

p
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and, recalling Theorem [1.3.6] we deduce that

(ep—1) 7t —(ep 1)

p ep Cp’l

is the square of an ideal and we have

(ep—l) —(ep1—1) 2"

p o
— Hp‘”l D@ H p " U 10]
llep llep,1
_ H p a;(I— 1)5‘, N0 H p(al by)(l— 1)5 1(1) H p*bl(l 1) ™% P10
lle lle llep1
en(D=p 20 e () 7ep,2(0) en(D=p 200

For odd primes [ all the exponents in the above expression are even; we
deduce that this must be true also for the component corresponding tol =2
(if 2|ey), i.e. for (as — @)%, and hence also for (ag — bg) since n is
odd.

Thus by the hypothesis that G; and G, are good, we easily obtain that
the class of the ideal )

<p(ep—1) —(epa—1)2 ) 2

isin Rt(k,’, gl)"Rt(k‘, gg)m
Now we can conclude that the class of

(p(ep 1)mn vp(CYK/k)>é :p%<(61’7171)e:1 (O‘kl/k)> <p(ep 1)"m (ep,ll);:j;)é

is in R¢(k, G1)"Re(k, G2)™, since also

P%<(ep’l_l)e?1

is in R¢(k,G1)™ and both Ry(k,G;) and Ry(k, G,) are groups. O

(akl/k)>

Lemma 3.2.14. Under the same hypotheses as in the preceding lemma, if

lley, the class of the ideal
(1-1) 2

p
is in Ri(k, G1)"Re(k, G2)™ and, if 2 divides (I — 1)%, the class of the ideal,

-1 _mn

pT ep (1)

is in Ry(k, G1)"Re(k, G2)™
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Proof. Let lle, and let us assume that e,(l) = e, 1(l). Then

e

and its class is in Ry(k, G1)", by the hypothesis that G is good. If (I — l)eT(Tl‘)
is even then 2 divides (I — 1)% (if I = 2 then this is true because 2|e,(2) =
ep1(2)|m and thus by hypothesis n is odd or the 2-Sylow subgroup of G; is

not cyclic, i.e. 2 divides m/e,1(2) = m/ey(2)). Then
=1 _mn -1 _m n
pT ep(l) — (pTep,l(Z))

is in R¢(k, G1)" by the assumption that G; is good. The case ey(l) = ep2(1)
is identical. O

Theorem 3.2.15. Let G and Gy be good groups of orders m and n respec-
tively and let us assume that m and n are not both even or that G; and G
both have noncyclic 2-Sylow subgroups. Then

Rt(k7gl X gQ) = Rt(k; gl)nRt(k,g2)m-
Furthermore the group Gy x Gy is good.

Proof. One inclusion is quite straightforward considering the composition
of Gi- and Gs-extensions of k with appropriate Steinitz classes and using

Proposition [I.3.7]

The opposite inclusion follows by Lemma |3.2.13| and Theorem [1.3.6

Now again by Lemma |3.2.13|and by Lemma [3.2.14] it follows that G; x G
is good. O]

Example. As an example we calculate the realizable classes for the group
G = (CB3)Y x,, C(13)) x (C(13) x,,, C(3)),

where the actions p; and po are defined in the examples of the preceding
pages. By the above results we obtain

Ri(k, G) = Ry(k, C(3)® x,,, C(13))*13 - Ry(k, C(13) %1, C(3))*"13
= W (k,3)*¥BW (k, 3)**1% = W (k, 3)*.

At this point we obtain our most important result.
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Theorem 3.2.16. Every A'-group G of odd order is good. In particular for
any such group and any number field k, Ry(k, G) is a subgroup of the ideal
class group of k.

Proof. Inductively, by Theorem [3.2.8 and Theorem [3.2.15] since the trivial
group is obviously good. O

Of course the above arguments can be used to calculate explicitly R;(k, G)
for a given number field and a given A’-group of odd order.
We can also obtain some results for groups of even order.

Proposition 3.2.17. The cyclic groups C(2) and C(4) of order 2 and 4,
respectively, are good and all the ideal classes are realizable for them.

Proof. By Propositions [2.2.3| and [2.2.6| properties 1. and 4. of good groups
are satisfied for C'(2) and C'(4) and

Ri(k, C(2)) = Re(k, C(4)) = Cl(k).

From this equality it is immediate to deduce also the second and the third
requested property. ]

Proposition 3.2.18. If n is odd then D, is a good group and

l—l)#
Y

Ri(k, D) = Cl(k)" - [T W (%, B )|

lln
where we write D,, as C(n) x,, C(2) and 7 is a generator of C(n).

Proof. Immediate by Proposition [3.2.12] and Proposition [3.2.17] O

Example. As an example of the above result we consider the group S3 =
D3. We explicitly calculate its realizable classes. By the above proposition

Ry(k, Ss) = W (k, By .-)*Cl(k)?.

It is clear by definition that Gy, . = Gal(k((s)/k) and hence that Ey,, , = k.
It follows that

Re(k, S3) = Cl(k)2Cl(k)® = Cl(k).
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Proposition 3.2.19. Ifn is an odd integer, then the generalized quaternion
group of order 4n, which is defined by

2

Hy, = (0,7: 0™ =1,0" = 1°

7o P =0"1)
18 1somorphic to a semidirect product

C(n) x, C(4).
This group is good and

Re(k, Han) = CUR)" [T W (k. Bppuo) V70

ln

Proof. The subgroup H of Hy,, generated by o2 is normal of order n and
the quotient Hy,/H is cyclic of order 4. Thus we have the following exact
sequence:

1—C(n) — Hyy — C(4) — 1

and by Proposition [3.1.1| we conclude that
Hy, = C(n) x, C(4).

Clearly 02(1) = o(I) for any prime [ dividing n, since this is odd by hypothesis.
Therefore by Proposition [3.2.12| we conclude that Hy, is a good group and
that

Ry(k, Hyn) = CU(k)" [ [ W (k, Br o)™ 70.

ln

Finally, since n is odd and Cl(k)™ C Ry(k, Hyy), the 2 component of all the
other exponents in the above expression can be omitted. So we obtain the
desired equality. O

If in the above proposition n is a power of an odd prime number [, we
obtain the result proved by James E. Carter and Bouchaib Sodaigui in [7].

In Proposition [2.3.2| we explicitly described the realizable classes for some
particular abelian groups of even order. In the next proposition we show that
these groups are good, so that we can use Theorem |3.2.8| and Theorem [3.2.15
to study some more groups.

Proposition 3.2.20. Let G = C(my) X --- x C(m,), with m;y1|m;, be an
abelian group of order m. If 2|m and mq(2) = my(2), then G is good.
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Proof. By Proposition [2.3.2] the first and the fourth property of good groups

are verified and B
-1 _m
=[[w . m T o,

llm

Let K/k be a tamely ramified extension of number fields with Galois
group GG. By Lemma there exist b, ; € Z such that

mq (1) m
(ep - Hp ep Hp e bep a ((FU)

lep lep

mq (1)

By Lemma|l.2.15 and Lemma|l1.2.18| the class of the ideal p *® is contained
in W(k,my(l)). Since (I—1);" is even for any prime [ dividing e, we easily
conclude that also the second and the third property of good groups hold for
G. O

Proposition 3.2.21. If n is odd then Ds, is a good group, it is isomorphic
to a semidirect product of the form

C(n) %, (C(2) x C(2))

and

Rt<k7 DQn) = Cl(k;)n . H w (k’ E'k,uﬂ—(l))(l 1)7) 7

lln

where T is a generator of C'(n).
Proof. 1t is easy to see that
D,, = D, x C(2) =2 C(n) x, (C(2) x C(2)),
for a certain action p : C'(2) x C(2) — Aut(C(n)). By the above proposition
C(2) x C(2) is good and
Ri(k,C(2) x C(2)) = Cl(k).

Thus we conclude by Proposition [3.2.12 that D, is good and we obtain the
desired expression for Ry(k, Da,,). O

Proposition 3.2.22. Let k be a number field and let G be a good group of
odd order.
Let H= C(2)™ = C(2) x --- x C(2) and let p be an action of G on H.
Then
Ry(k, H %, G) = Re(k, G)?" Cl(k)™>" ",

Further G = H %, G is good.
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Proof. Clearly Ey, . =k, i.e. W(k, Ey ,.) = Cl(k) for any 7 € H(2) = H.
Thus, by Propositions [3.1.14] and [3.1.15|

Re(k, H %, G) D Ry(k, G)*" Cl(k)™>" ",

The opposite inclusion comes from Theorems|1.3.5/and|1.3.6|and from Lemma
3.2.6| So we obtain an equality and, in particular, this gives the first property
of good groups. The other properties follow now respectively from Lemma

3.2.6] from Lemma [3.2.7 and from Propositions [3.1.14] and [3.1.15] ]

If G is cyclic of order 2" — 1 and the representation p is faithful, then the
above proposition is one of the results proved by Nigel P. Byott, Cornelius
Greither and Bouchaib Sodaigui in [4].

Example. The group A4, which is isomorphic to a semidirect product of
the form (C'(2) x C'(2)) %, C(3), is good by Proposition [3.2.22] We calculate
its realizable classes:

Re(k, Ag) = W (k, 3)*Cl(k)? 2 Cl(k)®Cl(k)® = Cl(k)

and hence
Ri(k, Ay) = Cl(k).

This result has been obtained by Marjory Godin and Bouchaib Sodaigui in
[10].

3.3 Some [-groups

In this section we will consider some groups whose order is the power of an
odd prime [. We start recalling some classical results concerning [-groups.

Proposition 3.3.1. Every group G of order I™ has nontrivial center.
Proof. This is Theorem 1.6.5 of [13]. O

Lemma 3.3.2. Let G be a finite group and let H be its center. If G/H is
cyclic then it is trivial. In particular G/H does not have order [.

Proof. Let H be the center of G and let us assume that G/H is not trivial.
Then there exists 7 € G\ H such that its class modulo H generates G/H.
Thus any element in G is of the form o7 for ¢ € H and a € N. Since 7
commutes both with o € H (by the definition of H) and with 7%, it commutes
with any element o7%. Hence 7 is in the center; contradiction. O]
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Proposition 3.3.3. Every group G of order 1% is abelian.

Proof. Let H be the center of G. By Proposition the order of H is not
1, by Lemma it is not {, hence it must be [2. O

Up to isomorphism there are two nonabelian groups of order [3. We will
describe them and then try to obtain information about the corresponding
realizable Steinitz classes.

Proposition 3.3.4. Up to isomorphism, there are two nonabelian groups of
order I3, where | is a prime:

1. (C(l) x C(1)) x,, C(1), where py sends a generator of C(l) to the map
defined by the matrix
1 1)
(01);

2. C(I?) x5 C(1), where py sends a generator of C(1) to the elevation to
the [ + 1-th power.

Proof. Let G be a nonabelian group of order [* and let H be its center.
By Proposition and Lemma [3.3.2] the order of H must be [ and G/H
must be isomorphic to C(l) x C(I). Let x,y € G be such that «H,yH
generate G/H, i.e. such that any element of G is of the form z%’c, where
a,b € {0,1,...,1 — 1} and ¢ € H. Since G/H is abelian, we know that
(ry)'yzH = y 'Ho'HyHxH = H, i.e. that (zy)~'yr = v € H and
yr = zyy. If z and y commute then, as in the proof of Lemma [3.3.2] they
must be in the center of GG, which is a contradiction. Hence they do not
commute and, in particular, v is nontrivial and therefore it is a generator of
H. We also know that z!,y' € H.
If 2! = ' = 1, then G must be a quotient of the group

l

(w,y,7: 2l =y =9 = Lyw=2y,9y = yv,yz = 2y7).

This group is isomorphic to
(C(1) x C(1)) 3, C(1)

and thus it is of order [3 and it must coincide with G.

It remains to consider the case in which z! # 1 or ¢! # 1; we assume
the first of these possibilities (the other case is analogous). Then clearly z!
generates H and we can find an integer a such that % = y~!. We easily
prove by induction on n that

(Iay)n — xanyn,yan(n—l)/Q
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and in particular we obtain that (z%)! = 1. Further, rH and z*yH continue

to generate G/H Thus we can assume that y' = 1. Let b € {1,...,1 — 1}

be such that 2! = 4% then 9’z = xy°* = 2y’2!. Setting 7 = z, 0 = ¢/°

2 . .
we obtain the relations 7" = ¢! = 1 and, since 7' is in the center of G,

ot = 1ot = o e oro = 7L

Hence G must be a quotient of the group
G={(o,7: o' =1" =1,0107" = 7).
This group is isomorphic to
C(I%) 1, C(1)
and thus it is of order [* and it must coincide with G. O
We start studying R (k, (C(l) x C(l)) x,, C(l)) for any number field k.
Proposition 3.3.5. We have

Ry(k, (C(1) x C(1)) %, C(1) € Cl(k) 2"

Proof. Let (K, ky, k) be a tame p;-extension of number fields. By Proposition
the inertia group corresponding to a ramifying prime is cyclic, generated
by an element of the form z%°c° of

G=(z,y,0: 2l =y =o' =1,00 = z0,0y = yo,yz = zyo).

By induction we obtain

(l,aybo_cyz _ Ianybno_anrabn(nfl)/Z

and thus any nontrivial element in G is of order [. Hence the ramification
index of a ramifying prime must be equal to [, i.e.

d(K/k)= ] »“
poep#l

and we can conclude. O

Unfortunately the exact sequence
1-CxCl)-G—=C(l)—1

does not imply that the group G is isomorphic to (C(1) x C(1)) %, C(l), even
if we assume to know the action of C'(I) on C(I) x C'(I). This means that we
can not use Proposition to construct extensions with a given Steinitz
class and we can not prove that the inclusion in the above proposition is in
fact an equality, as has been indeed proved by Clement Bruce in [2] in 2009.

As far as the group C(I*) x1,, C(1) is concerned, we are going to consider
a more general situation.
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Lemma 3.3.6. Let | be an odd prime. The group G = C(I") x,, C(l), with
n > 2, where p sends a generator of C(l) to the elevation to the "' + 1-th
power, s identified by the exact sequence

11— Ccl")—-G—-C((l)—1
if the action of C(l) on C(I™) is given by p.

Proof. Let G be the group written in the above exact sequence, let H be a
subgroup of G isomorphic to C'(I") and generated by 7; let * € G be such
that its class modulo H generates G/H, which is cyclic of order [, and such
that z7z~ = 7"+ ie. a7 = 7" '*lz. Then 2! = 7° for some a € N.
Since G is of order "™ and it is not cyclic, the order of x must divide [ and
SO

n—1 n
T =2 =1,

i.e. [ divides a and there exists b € N such that a = bl. By induction we
prove that, for m > 1,

- —bm—>bl""Y(m—
(7_ bx)m =T bm—bl"~1(m 1)m/2xm'

This is obvious for m = 1; we have to prove the inductive step:

(T—bl_)m _ T—b(m—l)—bl”_l(m—2)(m—1)/2xm—17_—bx

= T_b(m_l)_bln_l(m_2)(m_l)/me—lT—bx—(m—l)xm
— b(m=1) =0 (m=2)(m=1)/2 _=b(1+" =™ m

_ T—b(m—l)—bl”_l(m—2)(m—l)/2—b—b(m—1)l”_1xm

—bm—>bl""1 (m—
=T bm—bl""1(m 1)m/2xm‘

b

Then calling ¢ = 77z, we obtain that

ol = (770) = 77l = et =

Further

— — _ _ n—1 n—1
agaTo 1 =T b.Z'T[L' 17'b =T le +17'b == Tl +1

and o, 7 are generators of G. Thus G must be a quotient of the group

(o,7: o =7"=1,0707  =7" 1),
But this group has the same order of G and thus they must be equal. [

It follows that we can use Proposition [3.1.14]to study R¢(k, C(I") x,C(1)),

for any number field k.
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Lemma 3.3.7. Let 7 be a generator of C(I") in C(I")x,C(l). Then Ey ., =
k(Cln—l>.

Proof. By definition ., is the fixed field in k((n) of
Grpr = {9 € Gal JE) = 3gr e C(1) plgr)(r) = Ty,w(g)}
= {9 € Gal /k): Jae N7 = Tvk,T(g)}

= {g € Gal(k(¢n)/k) : vk (9) =1 (mod 1" 1)}
= {g € Gal(k(¢n)/k) : Q(Cln 1) = (-1} = Gal(k(Gn) /B (Gr-1)).

Hence Ej ,,r = k((n-1). O

k
k

G

(F(Gm)
(F(Gm)

Lemma 3.3.8. We have
Ry(k, C(I") %, C(1)) D W (k, 1",

Further we can choose G-extensions with a given Steinitz class so that
they satisfy the additional condition of Proposition|5.1.14).

Proof. By Proposition and Lemma |3.3.6
Ra(k, C(1") 2, C(1)) 2 Ralk, CU)" - W (k. Epur) = '

™). We easily conclude since 1 € Ry(k,C(1))
k((ln—l), 1 (§

W(k, Ey,,.r) = W(k,I"1).

where 7 is a generator of C/(I
and, by Lemma m, Eipr =

Now we consider the opposite inclusion.

Lemma 3.3.9. Let K/k be a tame C(I™) 1, C(l)-extension of number fields
and let p be a ramifying prime, with ramification index e,. Then the class of

ep—1 n+1
p oz @
and the class of
-1 i+l
p 2 ep
are both in
W(k, lnfl)FTll
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Proof. The Galois group of K/k is C(I") x, C(1), i.e.

G={(o,7: o' =7"=1,010 " =7""*+),
By Proposition the inertia group at p is cyclic, generated by an
element 7%¢?; by induction we obtain

n—1 _
(Tao_b>m _ 7_am+abl (m l)m/QO_bm.

b b

The order e, of 7*¢” must be a multiple of [, since the element 7% is
nontrivial and G is an I-group. Hence, recalling that 7!" = 1, we obtain that
ep is the smallest positive integer such that

T b = 1.

First of all we assume that [* divides e,. If 7 is the exact power of [ dividing
a, we obtain that e, = "8 and in particular that 8 < n — 2. So we have

0, (T%07) = oot = 7T DGt — (pagh)n i

and

_pn—1 _zpn—1—-0
b 1 a—>bl O'b:( a b) abl +1

7. (%" = 1r% T =1 0

Y

where aa = [° (mod ["). Hence, in particular, the inertia group is a normal
subgroup of G. Thus we can decompose our extension in K/k; and ki/k
which are both Galois and such that p is totally ramified in K/k; and un-
ramified in k; /k. By Lemma the class of p is in W(k, Ej, , ;e0b), Where
the action p is induced by the conjugation in GG and, in particular, it sends
7 to the elevation to the —abl"'=# 4 1-th power, as seen above, and o to
the elevation to the ["~! 4 1-th power. The group G, pragv consists of those
elements g of Gal(k({n—s)/k) such that vy 1e,0(g) is congruent to a product
of powers of ["! 4+ 1 and —abl"'=# + 1 modulo ["#. But all these are
congruent to 1 modulo {"~'=# and thus Ghprootlk(¢n_1_s) = {1} Hence

By progh 2 k(Gn-1-8) D k (C:p)

l
ie. .
Wk, By progs) C W (k Tp) .
Hence, by the assumption that [?|e,, the class of

1—1 7 +1

pQ ep
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1S in
1—1nt+1

w(k2)" " Cw (k)

-1
51

and the same is true for
ep—1 i+l

p 2z e
It remains to consider the case e, = [. We now define k; as the fixed
field of 7 and we first assume that p ramifies in K/k;. Then its iner-
tia group in Gal(K/k;) = C(I") is of order [ and thus must be generated
by 7""'. Hence by Lemma [3.1.16| the class of p is in W(k7Ek7H7Tln—l) and
il

p(l_l)T is the square of an ideal in W (k, Ek7M7Tln71)FTll”, which is contained

in Wik, Ek,M’T)l_Tll by Lemma |3.2.11] Hence, by Lemma , the class of

1—1nt+1 ep—1 n+l

pT ° =P 2 ep

Is In -
Wk, " ="
Finally let us consider the case of p ramified in k;/k. By Lemma [1.2.15
the class of p is in W (k,[). Hence the class of

1—1 7t ep—1 ntl

p2 ep :p2 ep

s in

Wk, 1) ="
By Lemma [1.2.1§]
W(kD)Z" CWk ™5 CW(k "7

Theorem 3.3.10. We have

Rik, C(1") 2, C(1)) = Wk, ") =,
Further the group C(I™) »,, C(l) is good.

Proof. By Theorems [1.3.5| and [1.3.6] by Lemma |3.3.8) and Lemma [3.3.9| it is
immediate that

Ry(k, C(I") x, C(1)) = W(k, "=,

The prove that C(I") x,, C(l) is good is now straightforward using the same
results. O
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3.4 Some more groups

In this section we study the realizable classes for some groups, which are not
included in the families considered in the previous sections.

We start with a proposition concerning the realizable classes for Dy-
extensions of a number field.

Proposition 3.4.1. Let k be a number field, then Ry(k, Dy) 2 Cl(k)%. As a
particular case we obtain a result proved by Bouchaib Sodaigui in [23]: if the
class number of k is odd then Ry(k, Dy) = Cl(k).

Proof. By definition

Dy=(r,0: " =0*=1,010 =7°).

The subgroup generated by 72 and o is normal in Dy, it is isomorphic to
C'(2) x C(2) and it has trivial intersection with the subgroup generated by
70, which is cyclic of order 2. Further 72, 0 and 7o generate the whole group
D,. It follows that

Dy = (C(2) x C(2) 0, C(2),

where the action p is defined by the matrix

10
1 1)
by an easy calculation. In particular, we have the following exact sequence:
1-C2)xC(2) — Dy — C(2) — 1.

This exact sequence identifies the group Dy, since the only other nonabelian
group of order 8, i.e. Qg, does not have subgroups isomorphic to C'(2) x C(2).
Hence, recalling that W (k,2) = Cl(k), by Proposition [3.1.15| we obtain that

24

Cl(k)? = Cl(k)%2 C Ry(k, D).

N

The second group we are going to consider is Sjy.

Proposition 3.4.2. Let k be a number field, then Ry(k,S;) 2 Cl(k)%. As
a particular case we obtain a result proved by Marjory Godin and Bouchaib
Sodaigui in [T1]: if the class number of k is odd then Ry(k,Sy) = CI(k).
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Proof. The subgroup H of S, generated by (12)(34) and (13)(24) is normal
in S, and the quotient G/H is generated by (124)H and by (14)H and so it
is isomorphic to S3. Hence we have the following exact sequence:

1-C2)xC((2) — S4— S3— 1.

The 2-Sylow subgroup D, of S, is identified by the above sequence, by the
same arguments seen in the proof of Proposition The only groups of
order 24 with 2-Sylow subgroups isomorphic to Dy are: Sy, D13, C(3) X Dy
and (C'(6) xC(2))xC(2). So let G be a group such that we have the following
exact sequence

1-C2)xC(2)—-G—S3—1

and that the action of S3 on C'(2) x C'(2) is the same as in S;. The group G
cannot be Dj9, since this has no normal subgroups isomorphic to C'(2) x C(2),
and it is also different from C(3) x Dy, since in this group the elements of
order 3 commute with everything else (while (124)(12)(34) # (12)(34)(124),
for example). To conclude we see that any element of order 3 in (C'(6) x
C(2))x(C(2) commutes with the elements of any normal subgroup isomorphic
to C'(2) x C(2). Hence G must be isomorphic to Sy.

Therefore, recalling that W(k,2) = Cl(k), by Proposition [3.1.14] by
Proposition and by the example following Proposition [3.2.18| we obtain
that

6-4

Cl(k)2 = Cl(k)*CL(k)® = Re(k, S3) W (k,2)22 C Ry(k, Sy).

¥

]

Now we are going to consider the group G = A4 x S3. This is an A’-group
of even order and it is a direct products of two good groups, but we cannot
conclude that G is good using Theorem [3.2.15] since A, and S3 both have
even order and S3 has cyclic 2-Sylow subgroups.

Proposition 3.4.3. Let k be a number field, then Ry(k, Ay x S3) = CI1(k)°.
Further G = Ay X S3 is a good group.

Proof. First of all we calculate Ry(k,G), proving both the requested inclu-
sions.

D As we have seen in the example after Proposition [3.2.22] A, is good
and
Ri(k, Ay) = CI(k).

By Proposition 3.2.18 we know that S3 = Dj is good and thus in partic-
ular that 1 € Ry(k, S3), since this must be a group. Hence considering
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compositions of disjoint A,— and S3—extensions of k£ and using Propo-
sition [L3.7 we obtain that

Ry(k, Ay x S3) D Ry(k, ARy (k, S3)'* D Cl(k)°.

C Let K/k be a tame number fields extension with Galois group Ay X Ss.

By Proposition the ramification index at a prime p, ramifying in
the extension K /k must divide 6. Hence the class of

%(ep—l)ﬂ

p ¢

is in CI(k)® and so, by Theorems [1.3.5 and [1.3.6] the same is true also
for the Steinitz class of K /k.

So we have proved that Ry(k, Ay x S3) = Cl(k)®. It is now straightforward to
verify that the conditions of the definition of good groups are all satisfied. [

We are now going to study the group G = (C'(4) x C(4)) %, C(3), where
p sends a generator of C'(3) to the map defined by the matrix

(1)

1

In other words,

G={(r,y,0: 2*=9y*=0"=1,000"" = 2y,0y0™ " = 29°, yx = 2Y).
Proposition 3.4.4. Let k be a number field, then

Ri(k, (C(4) x C(4)) x, C(3)) = W(k,4)*.
Further G = (C(4) x C(4)) x, C(3) is a good group.

Proof. First of all we prove the equality concerning the realizable classes

Ry(, (C(4) x C(4)) 1, C(3)).
2 By Proposition [.2.12) and by Theorem [2.1.8]
W (k,4)* C Cl(k)*> C W(k,3) = Ry(k, C(3)).

Hence by Propositions |3.1.14] and [3.1.15| we obtain that

Ri(k, (C(4) x C(4)) %1, C(3)) D Ry(k, C(3)) W (k,4)°
D W(k,4)2W (k,4)° = W (k, 4)*.
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C We observe that Ej, , = k((4), for any 7 € C(4) x C(4) of order 4.
Thus, with the notation of Lemma [3.2.6] if ey = 4 then, by Lemma

m7 the class of

48
epep — p

3(epep—1) (dep—1) &
is in

W (k, B pr)® = W(k,4).
If eqs|2, then the class of

2 (ep ep— 1) ep e(n
is in

Cl(k)* € W (k,4)>.

This proves the equality. At this point it is straightforward to prove that G
is a good group. O

Proposition 3.4.5. Let k be a number field, then
Ri(k, (C(4) x C(4)) %, C(3) x C(2)) = W (k,4)*

and

R;(k, (C(4) x C(4)) x, C(3) x C(4)) = W(k,4)®.

Further G; = (C(4) x C(4)) x, C(3) x C(2) and Gy = (C(4) x C(4)) %,
C(3) x C(4) are good groups.

Proof. To prove one inclusion we compose extensions with Galois group G =
(C(4)xC(4))x,C(3) with arithmetically disjoint C'(2)- and C'(4)-extensions
with trivial Steinitz classes.

Now let us prove the opposite inclusion for the group G;. Let p be a prime
ramifying in a tame number fields extension K/k with Galois group G7. As
in Lemma we call ky and ko subextensions of K /k with Galois groups
G and C(2) respectively and such that K = kiky. Further let e,; be the
ramification index of p in k;/k and e, = lem(ep 1, €p2) the ramification index
in K/k. In particular for any prime [ dividing ey, e,() = max{e,1(l), ep2({)}.

Recalling Lemma [2.1.6, we have

(ep—l )26 Hp

lep

_ H <p 11— 1)%1@))2 H <pal(ll)ep,22<z>>487

llep llep

ep()=ep,1()) ep(D)#ep,1(1)

()
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where all the exponents a;(l — 1)% are even (by Proposition |1.3.9)). Thus,
recalling that G is good, the class of
p%(@p—l)%

is in
R, (k, G)?Cl(k)** = W (k,4)*Cl(k)** = W (k,4)*.
In the case of the group G we can follow the same ideas, obtaining

48

p(ep—l)%: H <pal(ll)epis<z>>4 H (p“l(l*”%;l)) ,

llep llep

ep()=ep,1(1) ep(D#ep,1(0)

and so, recalling also Lemma [1.2.15| and Lemma [1.2.18] that the class of

p%(epfl)%
is in
Ry (k, GY*W (k,4)* = W (k, 4)*W (k,4)** = W (k, 4)%.
At this point there is no difficulty in proving that G; and G, are good.
This proposition could also have been proved directly, without using the

result for Ry(k, G), exactly with the same arguments of Proposition (3.4.4] i.e.
writing GG; and G5 as follows:

Gr = (C(4) x C(4) x C(2)) %, C3)
G1=(C(4) x C(4) x C(4)) x,, C(3),

where the actions p; and sy are defined in the obvious way.

On the contrary we remark that we could not simply use Theorem [3.2.15]
since G is of even order and C'(2) (respectively C(4)) have cyclic 2-Sylow
subgroups. O

Of course we have proved that the above groups are good and thus we can
use Theorem [3.2.8 and Theorem to prove that a lot of other groups
obtained by the above ones with direct and semidirect products are good, and
hence in particular satisfy the conjecture about realizable Steinitz classes.

We will now generalize the result of Lemma|3.3.8|to a slightly more general
situation. We consider groups of the form C(I") x,, C(ld), where d divides
I — 1 and p sends a generator of C'(ld) to an automorphism of order Id of
cm).

First of all we need a generalization of Lemma [3.3.6|
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Lemma 3.4.6. The group C(I") x, C(ld) is identified by the exact sequence
1— C(")—-G—C(ld) — 1
if the action of C(ld) on C(I") is given by p.

Proof. Let G be the group written in the above exact sequence. Let  and
g be elements of order [ and d in C(ld); let  and y be elements of G in the
counterimages of Z and ¢ by the projection G — C(ld). Let o be a generator
of C(I") C G and let H; be the subgroup of G generated by ¢ and x. We
have the following exact sequence

1—-C(")— H — C(l) — 1,

where the induced action is the same as in C'(I") %, C(l). Thus by Lemma
2.9.0
H, = C1") »C(l)

and it is clear that H; is normal in G. Further we can assume that the order
of y is exactly d (if this is not true, we can simply redefine y as y'"), i.e.
that y generates a cyclic subgroup Hs of G of order d. By construction any
element of G may be uniquely written as a product of an element of H; and
one of H,. It follows that

G = Hy x Hy = (C(I") x C(l)) x C(d).
At this point we easily conclude that
G=C(") «, C(d).

Proposition 3.4.7. We have

ln+1

Ra(k, C(1") 1, C(1d)) 2 Rak, C(d)" W (K, Biep0) 2,
where o is a generator of the C(I™)-normal subgroup of C(I™) %, C(ld).
Proof. By Corollary Proposition and Lemma [3.4.6],
R, (k, C(I") », C(1d)) D Ry(k, C(1d)" W (k, Egps) =
D Ri(k, C(d)"" Re(k, CO)" W (k. Ep ) 7
D Rk, C(d)""' W (k, Brppo) 7 1.
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As a particular case of the above situation we consider the group G =

C(9) %, C(6).

Proposition 3.4.8. Let k be a number field, then
R(k,C(9) x, C(6)) = Cl(k)*.

Further G = C(9) x,, C(6) is a good group.

Proof. Since there are no cyclic subgroups of G of order 27, a prime ramifying
in a tame G-extension of k£, must have ramification index dividing 18. Thus
every prime ideal dividing the discriminant appears with a power which is
multiple of 3 and hence the square of the Steinitz class is in Cl(k)® and the
same must be true for the Steinitz class itself.

For the opposite inclusion we use Lemma and Proposition [3.2.17]
observing that Ej ,, =k, i.e. that W(k, By, ») = Cl(k).

The proof of the properties of good groups is now straightforward. n
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