
SCUOLA NORMALE SUPERIORE

Tesi di Perfezionamento in Matematica per la Finanza

Stochastic Optimal Control Problems
for Pension Funds Management

CANDIDATO: Salvatore Federico
RELATORE: Prof. Fausto Gozzi

ANNO ACCADEMICO: 2008-09



Ai miei nonni
A Gino

A Filomena



i

Acknowledgements

My special thanks are to my advisor, Prof. Fausto Gozzi: he introduced me
to the mathematical field of Control Theory and it is due to him the most I
know in this topic. But, mainly, I thank him for his kindness and patience
during these years: we started as student and professor and we ended up as
friends.

Special thanks go to Prof. Maurizio Pratelli, who introduced me to the Math-
ematics of Finance and gave his support in these years.

I thank also Prof. Giuseppe Da Prato for his teaching in Stochastic Analysis
and for some useful suggestions on the infinite-dimensional problem treated
in this thesis.

My thanks go also to Prof. Ben Goldys and to the Department of Statistics
of the University of New South Wales for their invitation in Sydney in the pe-
riod April-June 2008, where I wrote the contents of the first part of the third
chapter. I thank Prof. Goldys for his kindness and for his guide and the Aus-
tralian Research Council for the financial support.

I thank Prof. Bernt Øksendal and Prof. Giulia Di Nunno: I finished to write
the thesis in Oslo in the months May-June 2009, when I was invited by Prof.
Øksendal to visit the Centre of Mathematics for Applications of the University
of Oslo. They were very warm with me and I worked really quietly there. I also
thank the European Science Fundation - Advanced Mathematical Methods for
Finance for the grant and the financial support for this visit.

I thank Prof. Andrzej Swiech for valuable comments on a suitable defini-
tion of visosity solution in infinite dimension for the problem of Chapter 2.

I thank Prof. Mogens Steffensen for his kind reading of the Introduction
and for his valuable suggestions on the paragraph regarding the literature on
Pension Funds that led to a real improvement of this part.

I thank Prof. Martino Grasselli for his nice care of me and for his very useful
suggestions on the modeling features of the surplus appearing in the second
chapter.

Finally I thank Dr. Elena Vigna and Dr. Marina Di Giacinto: the last chapter
of the thesis is based on a joint work and it was really nice to work with them.
In particular I thank Elena Vigna for having supplied to me a list of papers on
the subject of Pension Funds.



ii



Contents

Introduction 1
0.1 A mathematical tool for portfolio management problems: Opti-

mal Control Theory and Dynamic Programming . . . . . . . . . 4
0.2 Literature on stochastic optimization for pension funds . . . . . 20

0.2.1 The collective perspective . . . . . . . . . . . . . . . . . . 20
0.2.2 The individual perspective . . . . . . . . . . . . . . . . . 22

0.3 Plan of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1 A pension fund model with constraints 35
1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.1.1 The wealth dynamics . . . . . . . . . . . . . . . . . . . . . 38
1.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.1.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.1.4 Solvency level . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.1.5 Optimization in pension funds . . . . . . . . . . . . . . . 42

1.2 The transitory phase . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.2.1 The optimization problem . . . . . . . . . . . . . . . . . . 44
1.2.2 The set of admissible strategies . . . . . . . . . . . . . . . 45
1.2.3 The value function . . . . . . . . . . . . . . . . . . . . . . 46
1.2.4 Continuity of the value function . . . . . . . . . . . . . . 50
1.2.5 Dynamic programming . . . . . . . . . . . . . . . . . . . 57
1.2.6 The HJB equation: viscosity solutions . . . . . . . . . . . 60
1.2.7 The HJB equation: comparison and uniqueness . . . . . 64
1.2.8 An example with explicit solution . . . . . . . . . . . . . 72

1.3 The stationary phase . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.3.1 The optimization problem . . . . . . . . . . . . . . . . . . 78
1.3.2 The set of admissible strategies . . . . . . . . . . . . . . . 79
1.3.3 The value function . . . . . . . . . . . . . . . . . . . . . . 82
1.3.4 Dynamic programming . . . . . . . . . . . . . . . . . . . 92
1.3.5 The HJB equation: viscosity solutions and regularity . . 93

iii



iv

1.3.6 The verification theorem and the optimal policy when
rl > q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

1.3.7 An example when rl = q with explicit solution . . . . . . 113

1.3.8 Analysis of the optimal policies . . . . . . . . . . . . . . . 117

2 Adding the surplus: an infinite-dimensional approach 121
2.1 The model with surplus . . . . . . . . . . . . . . . . . . . . . . . 122

2.2 The stochastic control problem with delay . . . . . . . . . . . . . 124

2.2.1 The set of admissible strategies . . . . . . . . . . . . . . . 125

2.2.2 The value function and its properties . . . . . . . . . . . 128

2.3 The delay problem rephrased in infinite dimension . . . . . . . 134

2.3.1 The state equation: existence and uniqueness of mild so-
lutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2.3.2 Equivalence between the stochastic delay problem and
the infinite dimensional problem . . . . . . . . . . . . . . 147

2.3.3 Continuous dependence on initial data . . . . . . . . . . 149

2.4 Continuity of the value function . . . . . . . . . . . . . . . . . . 154

2.4.1 Continuity in the interior of the domain . . . . . . . . . . 154

2.4.2 Continuity at the boundary . . . . . . . . . . . . . . . . . 156

2.5 The Hamilton-Jacobi-Bellman equation . . . . . . . . . . . . . . 162

2.5.1 Rewriting the problem with a maximal monotone operator166

2.5.2 Test functions and Dynkin type formulae . . . . . . . . . 167

2.5.3 The Dynamic Programming Principle and the value func-
tion as viscosity solution to the HJB equation . . . . . . . 172

2.6 Comments, future developements and an example . . . . . . . . 182

2.6.1 An example of a solvable stochastic optimal control prob-
lem with delay by means of the infinite-dimensional ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

3 Optimal Control of DDEs with State Constraints 191
3.1 Setup of the control problem and preliminary results . . . . . . 193

3.1.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . 198

3.2 The delay problem rephrased in infinite dimension . . . . . . . 203

3.2.1 The state equation: existence and uniqueness of mild so-
lutions and equivalence with the delay problem . . . . . 204

3.2.2 Continuity of the value function . . . . . . . . . . . . . . 205

3.2.3 Properties of superdifferential . . . . . . . . . . . . . . . 208

3.3 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . 211

3.3.1 Viscosity solutions . . . . . . . . . . . . . . . . . . . . . . 211



CONTENTS v

3.3.2 Smoothness of viscosity solutions . . . . . . . . . . . . . 214
3.3.3 Verification theorem and optimal feedback strategies . . 216

3.4 Approximation results . . . . . . . . . . . . . . . . . . . . . . . . 227
3.4.1 The case without utility on the state . . . . . . . . . . . . 227
3.4.2 The case with pointwise delay in the state equation . . . 229
3.4.3 The case with pointwise delay in the state equation and

without utility on the state . . . . . . . . . . . . . . . . . 237

4 Constrained choices in the decumulation phase of a pension plan 241
4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
4.2 Constraint on the strategies . . . . . . . . . . . . . . . . . . . . . 244

4.2.1 Properties of the value function . . . . . . . . . . . . . . . 244
4.2.2 The HJB equation . . . . . . . . . . . . . . . . . . . . . . . 247
4.2.3 The Verification Theorem and the optimal feedback stra-

tegy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4.3 Constraints on the state and on the control . . . . . . . . . . . . 254

4.3.1 The set of admissible strategies . . . . . . . . . . . . . . . 255
4.3.2 Properties of the value function . . . . . . . . . . . . . . . 257
4.3.3 The HJB equation . . . . . . . . . . . . . . . . . . . . . . . 258
4.3.4 An example with explicit solution . . . . . . . . . . . . . 261
4.3.5 The feedback map . . . . . . . . . . . . . . . . . . . . . . 265
4.3.6 The closed loop equation and the optimal feedback stra-

tegy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
4.3.7 Numerical application . . . . . . . . . . . . . . . . . . . . 273

A 281
A.1 Some results in Probability and Measure Theory . . . . . . . . . 281
A.2 Some results in Functional Analysis . . . . . . . . . . . . . . . . 282

References 284



Introduction

The present thesis is mainly devoted to present, study and develop the math-
ematical theory for a model of asset-liability management for pension funds.

Pension funds have become a very important subject of investigation for
researchers in the last years. The reasons are quite clear: when life expectancy
was relatively low, providing for old age was still not a major economic issue;
now, since the average age of people and the expected lifetime have strongly
increased in the last decades (and this trend is expected to continue), the way
to organize a pension system providing for old age and mantaining economic
efficiency and growth is a fundamental challenge for advances countries in the
future.

Roughly speaking pension funds can be viewed as a form of forced sav-
ings, where external cashflows (contributions and benefits) enter into the dy-
namics of the fund wealth. The book [Davis; 1995] provides an overview of
the economic issues related to the development of pension funds schemes to
complement social security.

Basically we can distinguish two kinds of plans for pension funds:

• Defined-benefit plans, where the benefits are defined in advance and the
contributions are adjusted in order to ensure that the fund remains in
balance; in this case the financial risks are charged to the sponsor of the
pension fund.

• Defined-contribution plans, where the contributions are defined in advance
and the benefits depend on the return of the fund; in this case the finan-
cial risks are charged to the workers.

Although from a historical perspective defined-benefit plans have been more
popular, in the last years most of the plans have been based on defined con-
tributions. Since in the latter case the benefits are not fixed and the worker is
directly exposed to the financial risk of the plan, a key issue in this context is
the presence in the plan of the so called minimum guarantee. This is a lower
bound for the benefits to pay to the workers in retirement, so it represents
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a downside protection against the investment-risk for the worker adhering
to the the fund. Another important feature to consider dealing with pension
funds is that they are usually constrained, by law, to keep their wealth above
a certain level, which is the so called solvency level. Both these features (the
minimum guarantee and the solvency level) lead to a restriction on the invest-
ment choices of the manager: basically a substantial part of the wealth will
have to be invested in the riskless asset in order to guarantee that these two
requirements are satisfied.

Finally, besides of the rules and of their structure, pension funds are char-
acterized by their aims: within these rules they have the freedom to choose
some variables and they should operate this choice in order to optimize some
criterion. Such a criterion should take into account the point of view of the
management of the fund and/or the point of view of the members of the fund.

We can summarize the description above, considering the management of
a pension fund as a portfolio allocation problem with some specific features:

• the presence of external cashflows represented by the inflow of contribu-
tions c(t), paid by the members who are adhering to the fund, and by the
outflow of benefits b(t), paid to the members in retirement;

• the presence of a minumum guarantee flow g(t) for the benefits;

• the presence of a solvency level l(t) for the wealth;

• the criterion (objective functional) to be optimized.

In this thesis we take the context of a standard Black-Scholes model for the
market. Hence, denoting by θ(t) the proportion of wealth invested in the risky
asset and by X(t) the wealth of the fund, we are led to consider a dynamics of
this kind for the wealth

dX(t) =
[(
r + σλθ(t)

)
X(t)

]
dt+ σθ(t)X(t)dB(t) + [ c(t) − b(t) ] dt,y y

contributions benefits

with the constraints X(t) ≥ l(t) and b(t) ≥ g(t) and where r, σ, λ are the clas-
sical parameters of the Black-Scholes model, i.e. respectively the interest rate,
the volatility of the risky asset and the risk premium. As usual in portfolio op-
timization problems, θ(·) is the control variable to choose in order to optimize
some objective.

Of course this is still a general description and the key issue is to model
the terms c(t), b(t), g(t), l(t). In general they should be considered as stochastic
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processes modelled on the financial and demographic features of the “world”
and on the structure (and the aims) of the pension plan. The same considera-
tion holds for choice of the criterion to optimize.

In Chapters 1 & 2 we deal with a pension fund operating over an infinite
horizon and continuously open to entrance and exit of people. The model
keeps a global perspective, in the sense that it considers the management of
contributions and benefits of the whole community of members. The dynam-
ics of the demographical processes in the model is still naive, as it considers
the demographical variables as stationary (on the other hand we stress that a
model keeping into account all these features in a nontrivial way is far from
any analitical treatment, which is our aim). Indeed we consider the processes
c(·) and g(·) as deterministic functions, while we set for the cumulative bene-
fits process b(·) the structure

b(t) = g(t) + s
(
t,X(t+ ξ)ξ∈[−T,0]

)
,

where T > 0 is a constant representing the time of adherence to the fund of
the generic worker. The difference

b(t)− g(t) = s
(
t,X(t+ ξ)ξ∈[−T,0]

)
represents a surplus contract defined in advance between the fund and the
worker. It naturally depends on the past wealth of the fund during the period
in which the worker in retirement has been adhering to the fund. When s ≡ 0
no surplus is paid to the members in retirement, who receive just the mini-
mum guaranteee (this is the case treated in Chapter 1). On the other hand, in
order to make the fund more appealing for the workers, it is natural (and this
really happens) that the fund provides a surplus contract over the minimum
guarantee. It is natural for pension funds to choose a kind of surplus contract
which increasing on the growth of the fund in the past period [t, t − T ] and
this is done in Chapter 2. The objective functional takes the point of view of
the manager, but, when the surplus is nonzero (Chapter 2), to some extent the
optimization of the manager’s profit has as a direct consequence an improve-
ment of the workers’ benefits. Hence, the presence of the surplus term in the
model seems to proceed towards the direction of a “well-planned” pension
plan, in the sense that the pension plan is set in such a way that the interest of
the manager meets the interest of the workers.

Chapter 4 is involved with a pension plan for a single pensioner in the so
called decumulation phase. This means that the pension fund deals with the
management of the pension of a single pensioner over a finite time horizon, i.e.
for a certain number of years after the date of retirement of the worker. In this
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case no demographical feature is involved in the model, since it deals with an
individual perspective (this is quite usual in some literature: see Subsection
0.2.2). Referring to the model described above, in Chapter 4 we will have
c(·) ≡ 0 and b(·) ≡ b0 > 0, while the objective functional, as usual in the
individual perpective, keeps the point of view of the pensioner.

The optimal control problems arising in the thesis can be satisfactory treated
in the case of Chapter 1 & 4, while this cannot be done in the case of Chapter
2, when the surplus term appears in the model. This is due to the presence
of a delay term in the state equation, which makes the problem much more
difficult to treat and very far from any known result in literature. In this case
the analytical treatment of the problem is stopped at an unsatisfactory stage.
For this reason we study the problem of Chapter 3, that can be considered
as an easier reduction of the problem faced in Chapter 2. Although also this
problem is far from the existing literature, in this case we are able to provide a
satisfactory treatment of the problem and to give deeper answers to it.

0.1 A mathematical tool for portfolio management prob-
lems: Optimal Control Theory and Dynamic Program-
ming

Since the celebrated papers [Merton; 1969] and [Merton; 1971], problems of
optimal portfolio allocation have been naturally formulated (also) as stochas-
tic control problems. As we said above, the problem of managing a pension
fund can be viewed as an optimal portfolio allocation problem with external
cashflows, which, due to the special rules of the fund, is subject to particu-
lar constraints. So, from the mathematical point of view, the problem of the
optimal management of a pension fund can be quite naturally formulated as
a stochastic control problem with constraints on the state (the wealth of the
fund) and on the control (the investment strategy).

From a historical point of view, the mathematical theory of optimal control
problems goes back to the 50s and has been developed basically along two
lines:

1. Dynamic Programming approach (Bellman and the American school; we
refer to the monograph [Bellman; 1957]);

2. Maximum Principle approach (Pontryagin and the Russian school; we refer
to the monograph [Pontryagin, Boltyanski, Gamkerildze, Mishenko; 1962]).
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In this thesis we follow the Dynamic Programming approach. We use the
remainder of this subsection to give a brief informal description of it, dis-
cussing its main features and the possible difficulties. About the Maximum
Principle approach we refer to [Yong, Zhou; 1999], Chapter 3. Here we only
observe that, while the Dynamic Programming approach can be naturally ex-
tended from the deterministic case to the stochastic case, the same consider-
ation does not hold for the Maximum Principle approach. Indeed the Maxi-
mum Principle requires the concept of backward solution to be stated, but, as
we know, in the stochstic systems the time has a priviliged direction. This
makes the extension to stochastic systems not trivial.

We give the description of the Dynamic Programming approach for both
the deterministic and the stochastic case, but, for sake of simplicity, we restrict
the description to the finite-horizon and unconstrained case. However, the
same ideas can be adapted working case by case with the specific features of
the problem. For a detailed description of this theory in both the deterministic
and the stochastic case, we refer to two classic books dealing with this subject,
i.e. [Fleming, Soner; 1993] and [Yong, Zhou; 1999]; the latter one contains in
Chapter 5 also an analysis of the relationship existing between Dynamic Pro-
gramming and Maximum Principle.

To start with, consider a one-dimensional controlled systemx′(t) = b(t, x(t), u(t)), t ∈ [0, T ],

x(0) = x0 ∈ R,
(1)

where x(·) represents the state variable of the system taking values in R and
u(·) the control variable of the system taking values in some compact control
set U ⊂ R. We consider the set of the admissible control functions

Udetad [0, T ] = {u : [0, T ]→ U | u(·) is measurable}, (2)

and suppose that b is sufficiently regualr to guarantee existence and unique-
ness of solutions for the state equation (1) (e.g., we may suppose that b is Lip-
schitz continuous with respect to its arguments). The optimization problem
consists in maximizing the functional

Udetad [0, T ] 3 u(·) 7−→
∫ T

0
f(t, x(t), u(t))dt+ h(x(T )), (3)

where x(·) := x(·;u(·)) is the unique solution to (1) and where f, h are given
functions (we suppose by sake of simplicity also that f, g have sublinear growth
in order to guarantee that the functional above is well-defined).
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The stochastic counterpart of the deterministic system above would be a
one-dimensional stochastic controlled diffusiondX(t) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t), t ∈ [0, T ],

X(0) = x0 ∈ R,
(4)

where B(·) is a standard brownian motion defined on some probability space
(Ω,F ,P), X(·) represents the state variable of the system taking values in R
and u(·) the control variable of the system taking values in some compact con-
trol set U ⊂ R. In this case the set of admissible controls is a space of processes,
e.g.

Ustad[0, T ] = {u : Ω× [0, T ]→ U |

(u(t))t∈[0,T ] is progressively measurable with respect to (FBt )t∈[0,T ]}. (5)

As well as in the deterministic case, we suppose that b, σ are sufficiently regualr
to guarantee existence and uniqueness of solutions for the state equation (4)
(e.g., we may suppose that b, σ are Lipschitz continuous with respect to their
arguments). In this case the optimization problem consists in maximizing over
the set of admissible controls the functional

Ustad[0, T ] 3 u(·) 7−→ E
[∫ T

0
f(t,X(t), u(t))dt+ h(X(T ))

]
. (6)

whereX(·) := X(·;u(·)) is the unique solution to (4) and where again, in order
to guarantee that the functional above is well-defined, we suppose that f, h are
given functions having sublinear growth.

***

The first step in Dynamic Programming consists in defining the latter prob-
lems for generic initial data (s, x) ∈ [0, T ] × R, i.e. replacing the state equa-
tions (1)-(4), the set of the admissible control functions-processes (2)-(5) and
the functional (3)-(6) respectively with

• in the deterministic case

x′(t) = b(t, x(t), u(t)), t ∈ [s, T ],

x(s) = y ∈ R,
(7)

Udetad [s, T ] = {u(·) : [s, T ]→ U measurable}, (8)

Udetad [s, T ] 3 u(·) 7−→ Jdet(s, y;u(·)) =
∫ T

s
f(t, x(t), u(t))dt+h(x(T )), (9)

where x(·) := x(·; s, y, u(·)) is the solution to (7).
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• in the stochastic casedX(t) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t), t ∈ [s, T ],

X(s) = y ∈ R,
(10)

Ustad[s, T ] =
{
u(·) : Ω× [s, T ]→ U

progressively measurable with respect to FB
}
, (11)

Ustad[s, T ] 3 u(·) 7−→ Jst(s, y;u(·))

= E
[∫ T

s
f(t,X(t), u(t))dt+ h(X(T ))

]
, (12)

where X(·) := X(·; s, y, u(·)) is the solution to (10).

***

The second step simply consists in defining the optimum function for this
class of problems, i.e. the so-called value function:

• in the deterministic case

V (s, y) = sup
u(·)∈Udetad [s,T ]

Jdet(s, y;u(·));

• in the stochastic case

V (s, y) = sup
u(·)∈Ustad[s,T ]

Jst(s, y;u(·)).

***

The problem now is to study the above function. Indeed, the main goal is to
characterize the value function in order to use it to find optimal strategies for
the problem as we will see below. Therefore, the third step consists in stating
an equation solved by this function. The crucial point for stating this equa-
tion is the so-called Dynamic Programming Principle; in words this principle, as
stated in [Bellman; 1957], is the following:

“An optimal policy has the property that whatever the initial state
and the initial decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first decision.”
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Elaborated in mathematical language for deterministic systems, this prin-
ciple means that, if 0 ≤ s ≤ ŝ ≤ T , ū(·) ∈ Udetad [s, T ] and x̄(·) is the solution to
(7) under the control ū(·),

ū(·)|[s,T ] optimal on [s, T ] with the initial (s, y)

⇒ ū(·)|[ŝ,T ] optimal on [ŝ, T ] with the initial (ŝ, x̄(ŝ)).

This holds also for stochastic systems, i.e. if ū(·) ∈ Ustad[s, T ] and X̄(·) is the
solution to (7) under the control ū(·), then

ū(·)|[s,T ] optimal on [s, T ] with the initial (s, y)

⇒ ū(·)|[ŝ,T ] optimal on [ŝ, T ] with the initial (ŝ, X̄(ŝ)).

In terms of value function this statement can be seen as a consequence of
the fact that the value function solves a functional equation.

• In the deterministic case

V (s, y) = sup
u(·)∈Udet[s,T ]

[∫ ŝ

s
f(t, x(t), u(t))dt+ V (ŝ, x(ŝ))

]
, 0 ≤ s ≤ ŝ ≤ T.

(13)

• In the stochastic case

V (s, y) = sup
u(·)∈Ust[s,T ]

E
[∫ ŝ

s
f(t,X(t), u(t))dt+ V (ŝ, X(ŝ))

]
, 0 ≤ s ≤ ŝ ≤ T.

(14)

Of course (13)-(14) need to be proved. While in the deterministic frame-
work the proof of (13) does not give trouble, in the stochastic framework the
proof of (14) could present some problems. Indeed, when the value function
is known to be continuous, the proof is quite standard (see, e.g., the classi-
cal references [Fleming, Soner; 1993] or [Yong, Zhou; 1999]). But if we do not
know whether the value function is continuous or not, then a more subtle ar-
gument, requiring a measurable selection result, is needed to prove (14) (see
e.g. [Soner; 2004] or [Soner, Touzi; 2002]).

***

Once we have proved (13)-(14), we wish to use them to study the value
function. Unfortunately (13)-(14) result very difficult to treat. Therefore the
idea of the fourth step is to write them in a differential form, getting the
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so called Hamilton-Jacobi-Bellman (HJB) equation. This equation is obtained
passing formally to the limit, for ŝ ↓ s, (13) or (14) and imposing the natural
boundary condition given by the control problem. At this stage a quite sub-
stantial difference between the deterministc case and the stochastic case arises.
Indeed, while the HJB equation for deterministic optimal control problems is
a first order PDE, the HJB equation for stochastic optimal control problems is
a second order PDE.

• In the detreministic case, passing to the limit (13) leads to the equation−vs(s, y) = H(s, y, vy(s, y)), (s, y) ∈ [0, T )× R,

v(T, y) = h(y), x ∈ R,
(15)

where
H(s, y, p) = sup

u∈U
{b(s, y, u)p+ f(s, y, u)} . (16)

• In the stochstic case, passing to the limit (14) leads to the equation−vs(s, y) = H(s, y, vy(s, y), vyy(s, y)), (s, y) ∈ [0, T )× R,

v(T, y) = h(y), y ∈ R,
(17)

where

H(s, y, p, P ) = sup
u∈U

{
1
2
σ(s, x, u)2P + b(s, y, u)p+ f(s, y, u)

}
. (18)

The functionH in (15) and (17) is called Hamiltonian. We notice that in both
cases the Hamiltonian is a concave function of its arguments, as it is the supre-
mum of linear functions. (In the case of minimization problems the Hamilto-
nian would be convex.) This is a characteristic feature of HJB equation: the
nonlinear part of the equation is concave (or convex).

We stress that the passage from (13)-(14) to (15)-(17) is a delicate point,
because the argument to get the HJB equation from (13) and (14) is only formal
(this is why we have replaced V with the formal function v). Indeed, what is
true is the following.

• In the deterministic case, if the value function is C1,1([0, T ] × R), then it
solves the HJB equation (15) (under further reasonable assumptions; see
[Yong, Zhou; 1999], Chapter 4, Proposition 2.2).

• In the stochastic case, if the value function is C1,2([0, T ] × R), then it
solves the HJB equation (17) (under further reasonable assumptions; see
[Yong, Zhou; 1999], Chapter 4, Proposition 3.5).
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Nevertheless it is not true in general that the value function has this kind of
regularity and there are many nonpathological examples of nonsmooth value
functions (see Subsection 0.1, or also [Bardi, Capuzzo-Dolcetta; 1997], Chapter
1, Example 3.1, and [Yong, Zhou; 1999], Chapter 4, Example 2.3). Moreover,
even if the value function is actually smooth, usually it is not possible, work-
ing just with its definition, to prove regularity results for it going beyond the
continuity.

***

The fifth step consists in studying the HJB equation in order to characterize
the value function as its unique solution (in some sense). Now the question is
how to approach this equation. Basically there are three main approaches to
this problem (that may overlap each other):

(1) finding explicit solutions;

(2) using the classical theory of PDEs;

(3) using the theory of viscosity solutions of PDEs.

Before to proceed in this description, we want to stress that, roughly speak-
ing, a good theory for PDEs is a theory which provides uniqueness of solutions
and good possibilities to prove regularity results for these solutions.

(1) Finding an explicit solution to the HJB equation would be of course the
best thing we can obtain. On the other hand the possibility of finding an ex-
plicit solution relies intrinsecally in the definition of the problem, because it is
strongly related to the functional parameters of the problem (i.e. the functions
b, σ, f, h). It is clear that we may expect to find an explicit solution only in very
few cases and this is very uncomfortable.

(2) We distingush the first order case and the second order case, which are
quite different. Moreover in the description, for sake of simplicity, we refer to
PDEs of HJB type, i.e. to PDEs arising from control problems.

(i) First order case. For this case, in particular with regard to HJB euations,
we refer to the classic book [Evans; 1998], Chapters 3 and 10. Here we
observe that the usual concept of weak solutions (Lipschitz continuous
function solving in classical sense the equation almost everywhere) does
not guarantee in this case the desired uniqueness (see [Evans; 1998], Ex-
ample at page 129); some extra-conditions on the data are needed. On
the other hand, we cannot expect the existence of solutions in classical
sense in general (see [Evans; 1998], Chapter 3, Section 2).
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(ii) Second order case. In this case we have to distingush two subcases:
nondegenerate case and degenerate case.

– Nondegenerate case. In the context of stochastic control problems an
HJB equation is called nondegenerate if the the diffusion coefficient
in the state equation is far from 0 uniformly with respect to its argu-
ments (in more dimensions, the eigenvalues of the positive semidef-
inite diffusion matrix σσ∗ are far from 0 uniformly with respect to
the arguments).

The classical theory of second order elliptic and parabolic nonde-
generate PDEs has been well developed in the linear and semilin-
ear case - in the context of stochastic control problems this corre-
sponds to have respectively no control and control only in the drift
in the state equation. For this theory we refer to the classic books
[Gilbarg, Trudinger; 1983] for the elliptic case, [Ladyzenskaja, 1968]
for the parabolic case and [Evans; 1998] for both them.

A classical theory for fully nonlinear PDEs - in the context of stochas-
tic control problems this corresponds to have the control in the dif-
fusion coefficient - such that the nonlinear term is concave with
respect to the second derivative (but, as we said, this is a natural
property of HJB-type equations), has been developed later indipen-
dently by Krylov and Evans (see [Evans; 1982], [Krylov; 1983] and
the book [Krylov; 1987]).

– Degenerate case. If the equation is degenerate the classical theory ba-
sically presents the same problems of the first-order case, i.e. it does
not guarantee uniqueness of weak solutions and we cannot expect
in general the existence of classical solutions (see, e.g., Section 6.6 of
[Gilbarg, Trudinger; 1983] for an example even in the linear case).
This constitutes a limit for studying some HJB arising in the appli-
cations. Indeed, in particular control problems arising in finance
unavoidably lead to have both the problematic features in the HJB
equation: the presence of the control in the diffusion term of the
state equation leads to a fully nonlinearity in the equation, while
the fact that the diffusion term can vanish leads to a degeneracy in
the equation.

(3) On the basis of the considerations done above, it is clear that the
classical theory of PDEs cannot be considered completely satisfactory to
treat in a wide generality HJB equations. This fact has represented for
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a long while an uncomfortable obstacle in the dynamic programming
theory. Indeed, we would like to see the value function, even when
it is not smooth, as unique solution, in some other weaker sense, of
the associated HJB equation; but in which sense? The solution to this
problem came in the early 80s, when Crandall and Lions introduced the
concept of viscosity solutions for PDEs. We refer, for a description as-
sociated to control problems, to [Bardi, Capuzzo-Dolcetta; 1997] in the
deterministic case and to the already cited books [Fleming, Soner; 1993]
and [Yong, Zhou; 1999] in both the deterministic and the stochastic case.
The concept of viscosity solution requires only continuity to be defined
(actually even less) and seems to be the right one to approach in a wide
generality this kind of equations. Indeed the theory of viscosity solutions
fits very well the case of fully nonlinear as well as degenerate equations
and provides in many cases a characterization of the value function as
unique solution to the HJB equation in this sense. However, we have
also to say that from a theoretical point of view the characterization of
the value function as unique viscosity solution to the HJB equation is
not easy to use (especially in the stochastic case) to give a solution to the
problem in the sense of finding optimal controls in a form that can be
used in the applications. Then, in order to overcome this obstacle and
proceed towards the next steps to get computable optimal controls for
the problem, the challenge is to prove regularity results for viscosity so-
lutions. For this kind of results we give the following references.

– In the first order case we have such kind of results for both the finite-
dimensional and the infinite-dimensional case.

∗ For the finite dimensional framework, we refer to the books
[Bardi, Capuzzo-Dolcetta; 1997] and [Cannarsa, Sinestrari; 2005]
and the references therein.

∗ For the infinite-dimensional framework, we refer to the paper
[Federico, Goldys, Gozzi; 2009a] and to Chapter 3 of this thesis.

– In the second order case for degenerate HJB equations, there is not a
general theory for this topic, but there are some papers which prove
such results working, case by case, with the specific structure of the
HJB equation. We mention

∗ [Choulli, Taksar, Zhou; 2003], [Di Giacinto, Federico, Gozzi; 2009],
[Morimoto, 2008]: in these papers basically arguments of con-
vex analysis are used;
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∗ [Zariphopoulou; 1994]: here the author uses a different tech-
nique, consisting in an approximation procedure of the equa-
tion.

Finally we should mention (although this does not involve the case of HJB
equations) that the theory of viscosity solutions provides a new and very pow-
erful perspective for proving regularity results in the context of fully nonlin-
ear nondegenerate PDEs that are not covered by the concavity (convexity)
assumptions of Krylov and Evans on the nonlinear term. The fundamental
work [Caffarelli; 1989], where some interior a priori estimates for solutions
of some classes of PDEs are proved, opened a way in this sense. The book
[Cabré, Caffarelli; 1995a] provides a survey on this theory up to 1995. For this
theory we refer also to the following list of papers:

• [Cabré, Caffarelli; 1995b],
• [Cabré, Caffarelli; 2003],
• [Caffarelli, Crandall, Kocan, Swiech; 1996],
• [Caffarelli, Yuan; 2000],
• [Escauriaza; 1993],
• [Swiech; 1997],
• [Wang I; 1992], [Wang II; 1992], [Wang III; 1992].

***

The sixth step uses the solution to the HJB equation to provide necessary
and sufficient conditions to be a control ūs,y(·) optimal for the problem starting
from (s, y), which means
- in the deterministic case that ūs,y(·) ∈ Udetad [s, T ] is such that

V (s, y) = Jdet(s, y; ūs,y(·));

- in the stochastic case that ūs,y(·) ∈ Ustad[s, T ] is such that

V (s, y) = Jst(s, y; ūs,y(·)).

These conditions are stated in a so called classical verification theorem.

• Deterministic case.

Theorem 0.1.1. Let v ∈ C1,1([0, T ]× R) be a solution to (15).

– (Sufficient condition for optimality).
Let (s, y) ∈ [0, T ] × R and let ū(·) ∈ Udet[s, T ] and x̄(·) the associated
state trajectory. If for almost every t ∈ [s, T ]

H(t, x̄(t), vy(t, x̄(t))) = b(t, x̄(t), ū(t))vy(t, x̄(t)) + f(t, x̄(t), ū(t)),
(19)

then v(s, y) = V (s, y) and ū(·) is optimal starting from (s, y).
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– (Necessary condition for optimality).
Let (s, y) ∈ [0, T ]×R and let ū(·) ∈ Udet[s, T ] an optimal startegy for the
initial (s, y) and x̄(·) the associated state trajectory. If we know from the
beginning that v(s, y) = V (s, y), then ū(·) must maximize H, i.e. must
satify (19).

• Stochastic case.

Theorem 0.1.2. Let v ∈ C1,2([0, T ]× R) be a solution to (17).

– (Sufficinent condition for optimality).
Let (s, y) ∈ [0, T ] × R and let ū(·) ∈ Ust[s, T ] and X̄(·) the associated
state trajectory. If for almost every (t, ω) ∈ [s, T ]× Ω

H(t, X̄(t), vy(t, X̄(t)), vyy(t, X̄(t)))

=
1
2
σ2(t, X̄(t), ū(t))vyy(t, X̄(t), ū(t))

+ b(t, X̄(t), ū(t))vy(t, X̄(t)) + f(t, X̄(t), ū(t)), (20)

then v(s, y) = V (s, y) and ū(·) is optimal starting from (s, y).

– (Necessary condition for optimality).
Let (s, y) ∈ [0, T ]×R and let ū(·) ∈ Ust[s, T ] an optimal startegy for the
initial (s, y) and X̄(·) the associated state trajectory. If we know from the
beginning that v(s, y) = V (s, y), then ū(·) must maximize H, i.e. must
satify (20).

***

The seventh step concludes the program giving optimal control strategies.
Indeed, the sixth step provides a way to construct optimal strategies starting
from the solution to the HJB equation. The key issue is the study of the so
called closed loop equation.

• Deterministic case. Suppose that

– For every (t, z, p) ∈ [0, T ]× R2, the map

U 3 u 7−→ (t, z, u)p+ f(t, z, u)

admits a unique maximizer Gdetmax(t, z, p).

– We know that the HJB equation has a solution v ∈ C1,1([0, T ] × R).
Then we are able to define the so called feedback map

Gdet : [0, T ]× R −→ U,

(t, z) 7−→ Gdetmax(t, z, vy(t, z)).
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Then we have to study the state equation replicing the control u(·) with
Gdet(t, x(t)), i.e.x′(t) = b

(
t, x(t), Gdet(t, x(t))

)
, t ∈ [s, T ],

x(s) = y ∈ R.
(21)

Then the last obstacle is to prove existence and uniqueness of a solution
to (21). Indeed, straightly by Theorem 0.1.1, such a solution x∗(·) would
provide an optimal strategy starting from (s, y), i.e.

u∗s,y(t) = Gdet(t, x∗(t)), t ∈ [s, T ]. (22)

• Stochastic case.

Suppose that

– For every (t, z, p, P ) ∈ [0, T ]× R3,

U 3 u 7−→ 1
2
σ(t, z, u)2P + b(t, z, u)p+ f(t, z, u)

admits a unique maximizer Gstmax(t, z, p, P ).

– We know that the HJB equation has a solution v ∈ C1,2([0, T ] × R).
Then we are able to define the so called feedback map

Gst : [0, T ]× R −→ U,

(t, z) 7−→ Gstmax(t, z, vy(t, z), vyy(t, z)).

Also in this case we have to study the state equation replicing the control
u(·) with Gst(t,X(t)), i.e.dX(t) = b(t,X(t), Gst(t,X(t)))dt+ σ(t,X(t), Gst(t,X(t)))dB(t), t ∈ [s, T ],

X(s) = y,

(23)

Again it remains only to prove existence and uniqueness of a solution
to (21). Then, straightly by Theorem 0.1.2, such a solution X∗(·) would
provide an optimal strategy starting from (s, y), i.e.

u∗s,y(t) = Gst(t,X∗(t)), t ∈ [s, T ]. (24)

***

We summarize the steps of the program described above.

1. Defining the problem for varying initial data.
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2. Defining the value function, i.e. the function representing the optimal
values of the problem with respect to the initial data.

3. Stating and proving the Dynamic Programming Principle, i.e. a func-
tional equation solved by the value function.

4. Passing to the limit the Dynamic Proggramming Principle in order to
get the HJB equation, i.e. a PDE which is formally solved by the value
function.

5. Studying (in some suitable sense) the HJB equation and its relationship
with the value function.

6. Stating and proving Verification Theorems, yielding necessary and suffi-
cient conditions of optimality.

7. Studying the closed loop equation arising from the feedack map in order
to construct optimal feedback strategies for the problem according with
the Verification Theorem proved.

The final situation of this program can be represented by the following
picture (done for stochastic systems)

u(·) −→ state equation X(·) −→

input output
dX(t)=b(t,X(t), u(t))dt+σ(t,X(t), u(t))dB(t)

output apply the feedback map to the current state input

u(·)←− ←− X(·)
u(t) = Gst(t,X(t))

If everything works, the map Gst gives a “feedback” answer to our optimiza-
tion problem: it gives the optimal current decision as function of the current
state of the system. This is a very nice solution for the problem, as it is easily
computable.
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Viscosity solutions in a simple example

In order to exemplify the concept of viscosity solution and its use in optimal
control problems, we give a simple example of a deterministic control problem
whose HJB equation can be successfully approached with this concept. So,
consider the following simple control problem. The state equation isy′(t) = u(t),

y(0) = x ∈ [−1, 1],

where the measurable control function u(·) takes values in the control set [−1, 1].
Denote by y(·;x, u(·)) the solution to this equation under the control u(·). The
goal is to minimize the time at which the state variable y(t) reaches the set
{−1, 1}, i.e. the functional

J(x;u(·)) := inf{t ∈ [0,+∞) | y(t;x, u(·)) ∈ {−1, 1}}.

It is clear that the solution to this problem consists in keeping the strategy
u(·) ≡ 1, if x ∈ (0, 1],

u(·) ≡ −1, if x ∈ [−1, 0),

indifferently u(·) ≡ 1 or u(·) ≡ −1, if x = 0.

The value function of this problem is clearly independent of time and explicitly
computable at t = 0; as function of the only initial state x, it is the function

V (x) =

x+ 1, for x ∈ [−1, 0],

−x+ 1, for x ∈ (0, 1],
(25)

represented in Figure 1.1.
It is possible to state a dynamic programming principle also for this kind of

control problems (the so called minimum time problems, which are different
from the “standard” control problems described above) and to associate a HJB
equation to V . In this case the HJB equation is|v′(x)| = 1,

v(−1) = v(1) = 0.
(26)

Clearly this equation does not admit any classical solution. We observe
that the value function V solves this equation in classical sense at any point x ∈
[−1, 0)∪(0, 1]. Therefore, the question is: in which sense does V solve the equa-
tion at x = 0? The “viscosity” answer to this question relies in this observation:
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x−1 1

V(x)

1

Figure 1: the value function V given in (25).

if we replace the function V with any smooth function g ∈ C1([−1, 1]; R) such
that g(0) = V (0) and g(x) ≥ V (x) in a neighborhood of 0 (see Figure 1.2), we
have that g is a subolution of the equation at 0, i.e. |g′(0)| ≤ 1. This leads to the
concept of viscosity solution.

g

x

V(x)

1

−1 1

Figure 2: the subsolution viscosity property of V .

Roughly speaking a viscosity solution of a PDE is a continuous function
such that

• it solves the equation in classical sense at the points where it is smooth;

• if at a point it is not smooth,

– all the smooth functions touching it at that point and staying above
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it in a neighborhood of that point must be subsolutions of the equa-
tion (subsolution viscosity property);

– all the smooth functions touching it at that point and staying under
it in a neighborhood of that point must be supersolutions of the
equation (supersolution viscosity property).

The value function of this simple toy problem solves the HJB equation (26)
in this sense. Moreover it is the unique solution of the HJB equation in this
sense, while the usual concept of generalized solution (i.e., a Lipschitz con-
tinuous function satisfying the equation almost everywhere) fails to provide
uniqueness. Indeed, all the functions represented in Figure 1.3 are generalized
solutions of the HJB equation (26). Instead, it is easy to see that at the local
minimum points these functions would not satisfy the supersolution viscos-
ity property. Therefore, in this case (and in many other ones), the concept of
viscosity solution provides a characterization of the value function. This fact
shows that the theory of generalized solutions is not satisfactory to treat con-
trol problems for getting a characterization of the value function by the HJB
equation, whereas the theory of viscosity solutions provides that.

(d)

x1

−1

−1

W(x) W(x)

x−1 1 1 x−1

W(x)

x

W(x)

x

W(x)

−1 1 1−1

(a) (b) (c)

(e)

Figure 3: generalized solutions of HJB.

Finally we stress that the concept of viscosity solution is sign sensitive: if
we replace the HJB equation above with the equation−|v′(x)| = −1,

v(−1) = v(1) = 0,

then the function V would be not a viscosity solution anymore, because the
viscosity subsolution property would give−|g′(0)| ≤ −1, i.e. |g′(0)| ≥ 1, which
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is false. In its place the unique viscosity solution would become the function
W of Figure 1.3-(a).

0.2 Literature on stochastic optimization for pension funds

The literature on stochastic optimization for pension funds is now quite rich.
We try to give a quite compete list of the mathematical works on this subject,
focusing the description on the ones which we consider closest to the issues of
the present thesis. Basically we can divide them in two big classes:

• works keeping a collective perspective;

• works keeping an individual perpective.

From this point of view our model falls in the first class.

0.2.1 The collective perspective

The literature on this subject goes back to the 80s and 90s and, to a large extent,
it culminated with the paper [Cairns; 2000]. As in our model, in this kind of
literature the fund is open to entrance and exit of workers, so that at each time
the fund collects contributions and pays benefits. In other words the inflow of
contributions and the outflow of benefits happens at every time. However, we
should say that, differently from our model, this literature was focused mainly
on the analysis of defined benefits pension schemes. In such a framework, the
control variables are the contribution rate and, sometimes, the investment on
the risky market. Basically the fund choose the contribution rate (within some
constraints) in order to manage its assets and liabilities during the time. We
refer to the papers

• [Boulier, Michel, Wisnia; 1996],

• [Boulier, Trussant, Florens; 1995],

• [Cairns; 1996],

• [Cairns, Parker; 1997],

• [Cairns; 2000],

• [Haberman, Sung; 1994],

• [O’Brien; 1986],

• [Preisel, Jarner, Eliasen; 2008].

We give a quick description of the papers above, following the chronolog-
ical order.
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[O’Brien; 1986] is involved with the analysis of the stability of a continuous-
time stochastic control system desribing a defined-benefit pension fund. Al-
though the control formulation is very naive, the worth of this paper is that
it is the first one introducing a continuous-time stochastic control formulation
for pension funds. The approach of the paper is the following. Assuming an
exponential growth for salary and population, a deterministic equation for the
evolution of the fund is wrote down. The control variable is not just the con-
tribution rate, but a variable controlling the contribution rate. Actually the
admissible controls are restricted to constant functions, so that the problem
is not properly a dynamic control problem. The control variable (a constant
function, i.e. a constant) is chosen in order to make stable the value of the fund
around a prescribed level.

The second step consists in adding some randomness to the model and to
analyze the behaviour of the corresponding stochastic system under the con-
trol found in the deterministic model. Precisely, the variable corresponding
to the market spot rate of the riskless asset and the variable corresponding to
the sum of the growth rates of salary and population are now assumed gaus-
sian random variables. A Lyapunov analysis of the corresponding stochastic
system is performed.

[Haberman, Sung; 1994] is involved with a discrete-time stochastic model
for a defined-benefit pension fund. The aim is to find the optimal streaming
of contributions in order to minimize a quadratic functional measuring over
the time the distance of contributions and wealth from prescribed targets. The
problem is solved finding a backward recursive solution of the HJB equation.

[Boulier, Trussant, Florens; 1995] is involved with the study of a continuous-
time stochastic model for a defined-benefit pension fund. The problem con-
sists in minimizing the flow of contributions over the time. The control vari-
ables are the flow of contribution and the investment strategy on a standard
Black-Scholes market. Moreover, the fund is subject to two constraints: it must
be able to pay the (fixed) benefits at every time and it must keep its wealth
positive. The problem is solved guessing and finding an explicit solution to
the HJB equation. The paper [Boulier, Michel, Wisnia; 1996] follows the same
line: the difference is on the objective functional.

Also [Cairns; 1996] is involved with a continuous-time stochastic model
for a defined-benefit and defined-contribution pension fund. The paper an-
alyzes the long-term bahaviour of the model under different possible invest-
ment startegies on a standard Black-Scholes market. A mean-variance analysis
of the fund corresponding to these startegies is performed.
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[Cairns, Parker; 1997] is involved with a discrete-time stochastic model for
a defined-benefit pension fund. Under demographic stationarity assumptions,
and assuming that the returns at each year constitute a i.d.d. sequence of ran-
dom variables, a mean-variance analysis of the fund wealth is performed.

As we said, [Cairns; 2000] can be considered as a culminating paper on
this kind of literature up to 2000. A quite general model for a defined-benefit
pension fund is set and studied. Here the goal is to minimize an intertem-
poral functional depending on the current value of the fund and on the flow
of contributions. The control variables are the contribution flow the invest-
ment strategy on a standard Black-Scholes market. A general analysis of the
HJB equation is done and particulirized when the investment strategy is sup-
posed to be fixed. This is done also for different kind of investment strategies
and their effects are compared each other. Then the HJB equation is solved
explicitely for different loss functions and the analysis of the corresponding
optimal strategies is performed. Also conditions for the stationarity of the cor-
responding optimal fund are discussed.

The study is completed with a numerical analysis showing some empirical
results and with some comments on the constrained cases.

In [Preisel, Jarner, Eliasen; 2008] is described and studied a model for a
fund dealing with pension-life insurance products. Some dates are fixed and
the rule of the fund consists in paying to its members, at these dates, a bonus
related to the funding ratio (i.e. the ratio between the assets and the reserve)
in the last period. This makes the model very similar to our model (see our
definition of surplus in Chapter 2). The management is constrained to keep
the funding ratio above 1 and can invest in a standard Black-Scholes market
at every time. The investment strategy is chosen within any period in order
to maximize an expected utility functional measuring the funding ratio at the
end of the period. So, the optimal dynamics of the funding ratio is the result of
the optimization done during every single period. It evolves as a discrete-time
Markov’s chain. The authors investigate the existence of a stationary distri-
bution for such a process and then complete the study with some analytical
approximations.

0.2.2 The individual perspective

The literature on this subject is more recent. In opposition to the collective per-
spective, it takes into account the management of contributions and benefits
of a single representative partecipant. In this perspective, we can say that the
pension fund considers the management of contributions and benefits of each
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member as a separate section that cannot communicate with the other ones
corresponding to other members. The main consequence of this perpective is
that, in these models, contributions and benefits are not paid at the same time.

We divide the works keeping this perspective in two classes:

• works on pension funds in the accumulation phase;

• works on pension funds in the decumulation phase.

We point out that in these works the words “accumulation phase” and “de-
cumulation phase” are referred to the point of view of the member, i.e. the
acumulation phase corresponds to his working lifetime during which he pays
the contributions, while the decumulation phase corresponds to his pension
lifetime during which he collects the benefits. In our model, which keeps the
point of view of the management of the fund, it should be better to use the ex-
pression “accumulation phase” for the model studied in Section 2.2. However,
in order to avoid confusion, we choose to call that “transitory phase”.

Moreover, we treat separately also couple of papers on life and pension in-
surance contracts that, even if can be considered within this individual persepc-
tive, due to their nature, cannot be considered at all as papers on pension funds
in the accumulation or in the decumulation phase.

Papers on pension funds in the accumulation phase

We will focus on defined-contribution pension schemes. The literature on this
subject is based on models where the pension fund collects the contributions
of the partecipant during his working life and pays to him some benefits at
retirement. The aim consists basically in reducing, by means of an appropri-
ate investment strategy, the risk charged to the worker in this kind of pension
schemes. This is done by defining and solving a finite-horizon (the time hori-
zon of the worker) optimization problem with respect to some relevant quan-
tities for the pensioner, tipically depending on the benefits collected by him at
retirement or on the so-called replacement ratio, i.e. the ratio between the final
wealth and the last salary. Here a list of papers dealing with this subject.

• [Battocchio, Menoncin; 2004],
• [Blake, Cairns, Dowd; 2001],
• [Booth; 1995],
• [Booth, Yakoubov; 2000],
• [Boulier, Huang, Taillard; 2001],
• [Cairns, Blake, Dowd; 2000],
• [Deelstra, Grasselli, Koehl; 2003],
• [Deelstra, Grasselli, Koehl; 2004],
• [Devolder, Bosch Princep, Dominguez Fabian; 2003],
• [Gao; 2008],



24

• [Haberman, Vigna; 2001],
• [Haberman, Vigna; 2002],
• [Khorasanee; 1995],
• [Khorasanee; 1998],
• [Knox; 1993],
• [Ludvik; 1994],
• [Xiao, Zhai, Qin; 2007].

We are going to describe

• [Battocchio, Menoncin; 2004],
• [Boulier, Huang, Taillard; 2001],
• [Cairns, Blake, Dowd; 2000],
• [Deelstra, Grasselli, Koehl; 2003],
• [Deelstra, Grasselli, Koehl; 2004],
• [Haberman, Vigna; 2001],
• [Haberman, Vigna; 2002],

dividing them in two subclasses: papers providing or not a minimum guar-
antee in the benefits.

• Papers without minimum guarantee
Some papers on defined-contribution pension funds not providing a min-
imum guarantee at retirement are

– [Battocchio, Menoncin; 2004],

– [Cairns, Blake, Dowd; 2000],

– [Haberman, Vigna; 2001],

– [Haberman, Vigna; 2002].

– Discrete-time models

The papers [Haberman, Vigna; 2001] and [Haberman, Vigna; 2002]
work in a discrete-time setting.

In [Haberman, Vigna; 2001] the financial market is composed by
two independent risky assets: a high-risky asset and a low-risky
asset. Short selling of these assets are not allowed. The salary is
supposed constant on time, i.e. salary risk is not considered. A final
wealth target as well as intertemporal wealth targets depending on
the financial parameters of the market are fixed and the optimiza-
tion problem consists in approaching these targets (in the sense of
a quadratic loss functional, i.e. values of the wealth far from the
targets are penalized by a quadratic loss function). This kind of cost
penalizes in the same way differences form the targets regardless of



25

their sign. The problem is solved, by dynamic programming princi-
ple and by backward induction, guessing a quadratic structure for
the solution.

The paper [Haberman, Vigna; 2002] represents an extension of
[Haberman, Vigna; 2001]. It considers n assets instead of two assets
and moreover it considers that these assets can be correlated with
each other. Moreover in this case the cost functional is structured
to penalize the differences from the targets in different way with re-
spect to their sign, which is a more suitable assumption. The prob-
lem is solved with the same techniques of [Haberman, Vigna; 2001].

– Continuous-time models
[Battocchio, Menoncin; 2004], [Cairns, Blake, Dowd; 2000] work in
a continuous-time setting.

In [Cairns, Blake, Dowd; 2000] the Vasicek model is considered
for the interest rate process and the market is composed by the risk-
less asset, by a finite number of stock risky assets and by a continu-
ous stream of zero-coupon bonds. The salary is risky, driven by the
same sources of risk of the market and by an extra source of risk.
The optimization is done maximizing the expected utilty from the
replacement ratio. A qualitative study of the solution is done and,
when the extra source of risk vanishes in the dynamics of the salary
and the utility is a power function, the problem is solved finding
explicit solutions.

In [Battocchio, Menoncin; 2004] the setting is very similar to the
one of [Cairns, Blake, Dowd; 2000]: the Vasicek model is considered
for the interest rate process and the market is composed by the risk-
less asset, by a stock risky asset and by a continuous stream of zero-
coupon bonds. Here the salary risk is considered too, assuming that
it depends on the same sources of risk of the market and on another
source of risk. The difference here is that the authors consider also
the inflation risk and suppose that the inflaction index is driven by
the same sources of risk of the salary and that this index is tradeable:
this makes this extra source of randomness hedgeable, so that the
market results still complete. Finally the optimization is done max-
imizing the expected exponential utility from the terminal wealth
and the problem is solved in closed form finding explicit solutions.

• Papers with minimum guarantee

Plans providing a minimum guarantee at retirement are introduced in
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the following papers:

– [Boulier, Huang, Taillard; 2001],

– [Deelstra, Grasselli, Koehl; 2003],

– [Deelstra, Grasselli, Koehl; 2004],

– [Sbaraglia, Papi, Briani, Bernaschi, Gozzi; 2003].

– Discrete-time models

The paper [Sbaraglia, Papi, Briani, Bernaschi, Gozzi; 2003] provides
a quite complex discrete-time model for an insurance contract. Some
ideas and features of our model are taken from the model described
therein. We stress that this model was set in collaboration with an
italian insurance company (INA), so that it met the special require-
ments of this company. In this model the interest rate follows a
stochastic dynamics and the financial market is composed by the
riskless asset and by n risky assets; moreover transaction costs are
considered. The policy-holder makes a single-sum deposit at the
initial time. The management of the fund withdraws yearly from
the fund a fraction of the positive part of the difference between
the current value of the fund and the value of the fund at the pre-
vious year. The fund has to satisfy certain investment rules: if the
fund’s wealth is under a solvency level, the difference between this
solvency level and the fund’s wealth has to be invested in the risk-
less asset; this avoids improper behaviour of the manager. The
fund pays to the policy-holder the maximum between its terminal
value and a deterministic minimum guarantee promised at the ini-
tial time. The optimization problem consists in maximizing a per-
formance index meseauring the net profit of the company, the av-
erage yield, the annual yield and the position with respect to the
minimum guarantee pay-out. Such a criterion takes into account
both the point of view of the management and of the policy-holder.
The problem is approached by numerical simulations.

– Continuous time models
The papers

∗ [Boulier, Huang, Taillard; 2001],
∗ [Deelstra, Grasselli, Koehl; 2003],
∗ [Deelstra, Grasselli, Koehl; 2004]

work with the minimum guarantee in a continuoustime setting.

The paper [Boulier, Huang, Taillard; 2001] considers the Vasicek
model for the interest rate and a market composed by the riskless
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asset, a risky asset and a continuous stream of zero-coupon bonds.
The contributions flow is a deterministic process, so that salary risk
is not considered. The fund guarantees a minimal annuity to the re-
tired worker, i.e. pays to him a certain minimal flow of benefits from
his retirement to his date of death. The date of death as well as the
minimal flow of benefits are assumed deterministic. Using the bond
market the minimal annuity simply becomes a minimum guarantee
at the retirement date represented by a stochastic variable, which is
a function of the prices of the bonds at the retirement date. There-
fore the investment has to be done in order to ensure that at the
retirement date the fund’s wealth stays above this stochastic mini-
mum guarantee. The optimization problem consists in maximizing
the expected power utility from the terminal wealth. The problem is
solved by martingale method and by means of backward stochastc
differential equations.

The paper [Deelstra, Grasselli, Koehl; 2003] considers a stochas-
tic dynamics for the interest rate covering as special case the Vasicek
model and the Cox-Ingersoll-Ross model. The market is composed
by the riskless asset, a risky asset and a zero-coupon bond with ma-
turity T , where T is the terminal horizon for the investment. The
fund starts with an initial endowement and collects during the time
interval [0, T ] a contribution flow that it is a stochastic process. At
the end of the period the fund has to pay a stochastic minimum
guaratee to the worker in retirement plus a fraction of the surplus,
i.e. the difference between the final wealth and the minimum guar-
antee. The remaining fraction of the surplus is taken by the man-
ager, who optimizes the expected power utility of this fraction of
surplus. Thus in this case the optimization takes the point of view
of the manager (the utility function is chosen by the manager); nev-
ertheless it is clear that such an optimization meets also the point
of view of the worker: the manager will be induced to reach a high
value of surplus, making also the interest of the worker. The prob-
lem is explicitely solved by martingale methods.

The paper [Deelstra, Grasselli, Koehl; 2004] considers a more gen-
eral market model composed by a riskless asset and n risky assets;
the interest rate, the drift vector of the risky assets and the volatility
matrix of the risky assets are generic stochastic processes making
the markete complete and arbitrage free. The worker pays a lump
sum at the initial date and a stochastic contributions flow during his
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working life. The fund again ensures to the worker in retirement a
stochastic minimum guarantee and pays to him also a fraction of the
surplus, while the manager keeps the other part. The worker has to
choose the minimum guaranteee contract among a set of possible
contracts in order to maximize his expected power utility from the
terminal benefits. The manager will manage the portfolio in order
to maximize his own expected power utility from his own part of
surplus. The problem is solved by martingale methods.

Papers on pension funds in the decumulation phase

In the previous subsection we have provided a list of the papers dealing with
the management of pension funds in the so-called accumulation phase. How-
ever, another issue in the management of pension funds (arising as well in real-
ity) is the analysis of the so-called decumulation phase. Indeed many pension
schemes allow the member who retires not to convert the accumulated capi-
tal into an annuity immediately at retirement, but to defer the purchase of the
annuity until a certain point of time after retirement. During this period, the
member can withdraw periodically a certain amount of money from the fund
within prescribed limits and the fund continues to invest in the risky market
the pensioner’s capital. The period of time can also be limited depending on
the specific country’s rules: usually freedom is given for a fixed number of
years after retirement and at a certain age the annuity must be bought. Papers
dealing with this subject are

• [Albrecht, Maurer; 2002],
• [Blake, Cairns, Dowd; 2003],
• [Charupat, Milevsky; 2002],
• [Gerrard, Hojgaard, Vigna; 2004],
• [Gerrard, Haberman, Vigna; 2004],
• [Gerrard, Haberman, Vigna; 2006],
• [Gerrard, Hojgaard, Vigna; 2008],
• [Kapur, Orszag; 1999],
• [Kohorasanee; 1996],
• [Milevsky, 2001],
• [Milevsky, Moore, Young; 2006],
• [Milevsky, Young; 2007],
• [Stabile; 2006],
• [Yaari; 1965].

We are going to describe

• [Gerrard, Hojgaard, Vigna; 2004],
• [Gerrard, Haberman, Vigna; 2004],
• [Gerrard, Haberman, Vigna; 2006],
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In [Gerrard, Haberman, Vigna; 2004] the model considered for the market
is the standard Black-Scholes model. The pensioner withdraws from the fund
a constant amount of money for a fixed number of years after his retirement.
The fund has to manage the investment between the riskless and the risky
asset in order to reach a wealth target. Indeed, as in [Haberman, Vigna; 2001],
a target function is fixed and the optimization problem consists in approaching
this target (again in the sense of a quadratic loss functional, i.e. values of the
wealth far from the targets are penalized by a quadratic loss function). The
problem is solved finding explicit solutions.

The paper [Gerrard, Hojgaard, Vigna; 2004] represents in some sense an ex-
tension of [Gerrard, Haberman, Vigna; 2004]. In the first part the difference
with respect to [Gerrard, Haberman, Vigna; 2004] is represented by the fact
that here the pensioner is not constrained to a constant consumption, but he
is allowed to choose a consumption strategy. In this case an intertemporal
consumption target and a terminal wealth target are fixed and the optimiza-
tion again consists in approaching these targets in the sense of a quadratic loss
functional. The problem is solved finding explicit solutions. The second part
of the paper extends further the model introducing a random time of death for
the pensioner: in the case of death before the annuitization time, the optimiza-
tion program must stop at such date. Also in this case the problem is solved
finding explicit solutions.

[Gerrard, Haberman, Vigna; 2006] extends [Gerrard, Hojgaard, Vigna; 2004]
from the point of view of the optimization adding an intertemporal target for
the wealth and a bequest function in the case that death occurs before the an-
nuitization time. The problem is solved finding explicit solutions.

Life and pension insurance contracts

The papers [Steffensen; 2004] and [Steffensen; 2006] deal with life-pension in-
surance contracts.

In [Steffensen; 2004], the income and outcome of external cashflows are
modeled as a unique stream of (positive or negative) payments. The policy
state of the life-pension insurance contract is modeled by a Markov chain. The
control variables are the investment strategy in a Black-Scholes market and
other variables affecting the stream of payments (roughly speaking, the com-
pany has to choose a portfolio-dividends strategy). The aim is to maximize a
functional representing, to some extent, the stream of payments, keeping the
point of view of the policy holder. The setting is quite general, in particular
with regard to the choice of the objective functional. In this way the problem
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is suitable to fall into different classes of problems, on the basis of the choice
of the weighting functions appearing in the objective functional. In particular
different choices of these functions may lead either to a defined-contribution or
to a defined-benefit framework. The problem is approached by the dynamic
programming technique: the HJB equation is written (for special choices of
weighting functions) and solved finding explicit solutions.

In [Steffensen; 2006] the “contribution” and the “benefit” stream are sepa-
rated and the risky market is not present. The control variable is represented
by the dividends. A utility process, whose dynamics is affected by the dy-
namics of dividends, is defined and the insurance company has to choose the
strategy in order to maximize the expected total utility coming from this pro-
cess. Also in this case, the problem is solved explicitly. Moreover, examples
with constraints are discussed.

0.3 Plan of the thesis

The core of the thesis is represented by Chapters 1 & 2, where a model of
pension fund, set up on the considerations done at the beginning of this in-
troduction, is investigated. Chapter 3 treats a deterministic control problem;
although such problem is not related to the financial topic of the thesis, we
insert it because from a mathematical point of view it is related to the problem
described in Chapter 2. Finally in Chapter 4 it is presented the study of a pen-
sion fund model in the decumulation phase, which is already studied in the
literature; the novelty here consists in the fact that some financial constraints
are added to the model.

***

In Chapter 1 we present a model of defined contribution pension fund
providing a minimum guarantee. The main references for this chapter are
the papers [Federico; 2008], published by the Banach Center Publications, and
[Di Giacinto, Federico, Gozzi; 2009], accepted for publication by the journal Fi-
nance and Stochastics.

In the spirit of the description done at the beginning of this introduction,
our aim is to propose and study a continuous-time stochastic model for a
pension fund keeping a collective perspective. So, we imagine a defined-
contributions pension fund with minimum guarantee, which is continuously
open to the entrance of new workers and to the exit of workers who have accrued the
right to retirement. In this persepective it keeps a collective perpective, because
it does not consider the management of contributions and benefits of single
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workers, instead it works with the management of the cumulative flows of
contributions and benefits of the community of people adhering to the fund.

We have to say that actually we do a strong assumption from the demo-
graphic point of view, i.e. we assume that the flow of people entering into the
fund is constant on time and that each worker remains within the fund for a
fixed time T . However, we stress that, even with our assumption of demo-
graphic stationarity, our setting cannot be considered simply as the sum of a
series of individual problems. Indeed, due to the lag between the contribu-
tion time, i.e. the time during which the worker pays his contributions, and
the retirement time, i.e. the date in which the worker collects his benefits, our
fund can use part of the contributions paid by the workers adhering to the
fund to pay the benefits to the workers who are retiring. From this point of
view our model can be considered as a pay-as-you-go scheme. On the other
hand our model provides for the workers retiring a minimum guarantee as
benefits, which is given by the capitalization at a minimum guaranteed rate of
the contributions paid by them. In this sense our model can be considered also
as a funded pension scheme (see [Davis; 1995], Chapter 2, Section 4, for a gen-
eral description of these different features for pension schemes). The model
provides also a capital requirement, i.e. imposes to the manager to keep the
wealth above a certain solvency level; this requirement is usual in pratice: it
prevents an improper behaviour in the management in order to decrease the
probability od defaults.

The optimization is viewed from the point of view of the manager, who
is supposed to take benefits from a high current value of the fund (indeed
usually the fee of the manager is related by dividends to the the absolute level
of the fund’s wealth). He is allowed to invest in a risky asset and in a riskless
one, but borrowing and short selling are not allowed.

We separate the problem in two different phases: a first phase, over a finite
horizon, in which the fund collects the contributions of people adhering to it
and does not pay benefits because there are no retirements (transitory phase;
based on [Federico; 2008])); a second phase, over an infinite horizon, in which
the inflow of contributions and the outflow of benefits (stationary phase; based
on [Di Giacinto, Federico, Gozzi; 2009]) are present.

From a mathematical point of view we are involved in two stochastic con-
trol problems: in the transitory phase the optimization is done over a finite
horizon, in the stationary phase the optimization is done over in infinite hori-
zon. However, they are both stochastic control problems with state and control
constraints. We treat them by the Dynamic Programming approach, studying
the associated HJB equations. In the transitory phase we prove that the value
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function of the problem is the unique viscosity solution of the associated HJB
equation. In the stationary phase we go beyond: after having proved that the
value functionis a viscosity solution of the associated HJB equation, we get a
regularity result for it in the spirit of the fifth step of the program described
above; then we study the closed loop equation and prove a verification theo-
rem giving the optimal strategy in feedback form. However, in both cases we
provide examples with explicit solution.

***

The main references for Chapter 2 are the paper [Federico; 2008], accepted
for publication in Finance and Stochastics, and the working paper [Federico; WP].
This chapter is concerned with the study of the same problem of Chapter 1
when in the model a surplus term is added to the benefits, i.e. when it is sup-
posed that the fund pays to its members in retirement something more over
the minimum guarantee. The introduction of such a term is relevant from a fi-
nancial point of view, because it makes the adherence to the fund more appeal-
ing to the workers. We suppose that this surplus is stated by a contract sub-
scribed in advance between the fund and the workers. Roughly speaking such
a contract provides that the retiring workers profit by part of the fund’s return
(referred to their contribution period), if it was sufficiently high. Since this con-
tract depends on a return, it has to compare the fund’s wealth at the current
time with the fund’s wealth at a past date. This leads to a delay term in the
state equation, which makes the problem much more difficult to treat. We ap-
proach this delay problem by means of a representation in infinite-dimension,
which seems to be the only one treatable in this case. Hence, the problem be-
comes an infinite-dimensional stochastic control problem with some specific
features which makes it new with respect to the mathematical literature on
this topic. In this case we close the study only at a viscosity stage, indicating
future possible developements that our work leaves open for the problem.

***

Chapter 3 is out of the financial topic of this thesis; the main references for
this chapter are the paper [Federico, Goldys, Gozzi; 2009a], submitted to the
journal SIAM - Journal on Control and Optimization, and the subsequent paper
[Federico, Goldys, Gozzi; 2009b], which is going to be submitted to the same
journal. The problem described and studied therein arises basically from an
attempt of finding a simplified version of the mathematical problem of Chap-
ter 2, allowing a satisfactory answer to the problem. So, the problem faced in
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this chapter preserves the main mathematical feature of the problem studied
in Chapter 2, i.e. the delay, and simplifies other features (in particular it is a
deterministic problem), in order to allow us to go ahead with the analysis. In
the perspective of this thesis, it should be viewed mainly as a toy model for a
possible future approach to the problem of Chapter 2. Nevertheless we stress
that it turns out to be interesting in itself from a theoretical point of view and
also that it has intersting applications in Economics (in particular in growth
models with “time-to-build”) and in some financial problems.

As in Chapter 2 the delay problem is approached passing to the infinite-
dimensional representation. In this case we prove not only that the value func-
tion is a viscosity solution to the associated HJB equation, but also that it has a
regularity property that allows to define the feedback map. Then we study the
closed loop equation and prove a nonstandard verification theorem showing
that the feedback map defines optimal feedback strategies for the problem. In
particular the part regarding the verification theorem contains the correction
of a wrong result sometimes used in the literature in this kind of mathematical
subject (see Subsection 3.3.3).

***

Chapter 4 deals with a different problem in the field of pension funds; the
main reference is the working paper [Di Giacinto, Federico, Gozzi, Vigna; WP].
Here it is investigated is a problem already studied in literature, i.e. in the pa-
per [Gerrard, Haberman, Vigna; 2004], described in the previous section. The
model takes the point of view of a pensioner who delegates a manager to in-
vest in the financial market, until a certain point of time after his retirement,
the capital accumulated by contributions during his working life. The pen-
sioner withdraws from this fund a fixed consumption rate and the optimiza-
tion problem consists in reaching a fixed target at the end of this period. Here
the novelty with respect to [Gerrard, Haberman, Vigna; 2004] is represented
by the fact that we add constraints on the wealth and on the investment strate-
gies, which is a crucial feature to make the model more realistic..

From a mathematical point of view the problem is very similar to the one
arising in the transitory phase of the model of Chapter 1, since it is a stochastic
control problem with finite horizon and with state and control constraints. In
this case we work with explicit solution. In the first part we impose a con-
straint only on the strategies and the argument are quite standard. In the
second part we impose the constraint also on the state. In this last case the
explicit solution to the HJB equation we find is nontrivial and has a quite sur-
prising and interesting similarity with the price of a European put option. In
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both cases we prove verification theorems for checking the optimality of the
feedback strategies.

Remark 0.3.1. We want to clarify that this thesis has to be viewed in the spirit
of Applied Mathematics, i.e. as a mathematical work on a mathematical sub-
ject inspired by motivations coming from the real world. Although the de-
mographic assumptions (demographic stationarity) and the financial assump-
tions (constant interest rate) in the model described and studied in Chapters
1 & 2 make the problem far from reality, due to other features it is already
very hard to approach it analitically. So, we are aware that generalizations are
needed for the model described and studied in these chapters; nevertheless,
also at this stage, it presents some special features making it very appealing
and interesting from the mathematical point of view. Indeed the presence of
the solvency level in the model leads to a stochastic control problem with state
constraints, while the introduction in Chapter 2 of a surplus over the mini-
mum guarantee leads to a stochastic delay problem approached by an infinite-
dimensional representation. Both these mathematical features make nontrivial
the study of the problem along the lines of the dynamic programming steps de-
scribed above, opening interesting and difficult issues in the field of Optimal
Control Theory. �



Chapter 1

A pension fund model with
constraints

In this chapter we study a stochastic control problem for the optimal man-
agement of a defined contribution pension fund model with minimum guar-
antee and solvency constraint. The main references for this chapter are the
papers [Federico; 2008] for Section 1.2 and [Di Giacinto, Federico, Gozzi; 2009]
for Section 1.3.

We adopt the point of view of a fund manager who can invest in two assets
(a risky one and a riskless one, in a standard Black and Scholes market) and
maximizes an intertemporal utility function depending on the current level of
fund wealth.

Our emphasis is posed on the constraints faced by the fund manager: the
requirement of having a solvency level on the fund wealth, and the borrowing
and short selling constraints on the allocation strategies.

The problem is similar to optimal portfolio selection problems but it has
some special features due to the nature and the social target of the pension
funds: the presence of contributions and benefits, the presence of constraints
on the investment strategies, the presence of solvency constraints. This means
that we require that the wealth of the running pension fund remains above a
prescribed level, i.e. the so-called solvency level.

We focus the analysis on the role of the solvency constraint. We analyze
the effect of such constraint on the admissible and on the optimal strategies: in
particular we show that, for sufficiently high solvency level, the optimal port-
folio strategies do not become trivial (i.e. the fund manager can still reinvest
in the risky asset), even after that the solvency level has been reached.

We clarify that a model taking into account all the relevant features related
to the optimal management of a real pension fund would be very difficult

35
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to treat and an analytical treatment would be substantially impossible at the
present stage. So, to focus on the role of the solvency constraint keeping the
problem treatable, we introduce some simplifying hypotheses on other fea-
tures. We consider all demographic variables and the interest rate as constants
and moreover, in the present chapter, we assume that no surplus is paid by
the fund (see Section 1.1.3 for further details). The introduction of the surplus
term is the object of Chapter 2.

From the mathematical point of view our problem is a stochastic optimal
control problem with constraints on the control and on the state (deriving for
the presence of investment and solvency constraints). Differently from some
papers on optimal portfolio problems (see, e.g.,

- [Cadenillas, Sethi; 1997],
- [Choulli, Taksar, Zhou; 2003],
- [El Karoui, Jeanblanc, Lacoste; 2005],
- [Karatzas, Lehoczky, Sethi, Shreve; 1986],
- [Sethi, Taksar; 1992],
- [Sethi, Taksar, Presman; 1992],
- [Zariphopoulou; 1994]),

within our model the state boundary is not always an absorbing barrier: the
optimal strategies can touch the boundary and come back in the interior keep-
ing the same state dynamics. In [Duffie, Fleming, Soner, Zariphopoulou; 1997]
and in [Sethi, Taksar; 1992] the state process can come back in the interior after
touching the boundary too. In the first paper this happens thanks to the pres-
ence of a stochastic income in the special case of HARA utility functions (see
also [Tebaldi, Schwartz; 2006] for a similar setting) while in the second one this
is obtained taking different state dynamics when the boundary is reached, so
using a completely different setting. This important modelling issue involves
some nontrivial technical problems in the study of optimal strategies (see Sub-
sectio 1.3.6).

We split the study of the problem in two different phases: a transitory
phase and the stationary phase. In the trensitory phase no benefits are paid
and the contributions collected give rise to a time-dependent entering cash-
flow. In this case the dynamics of the wealth depends explicitally on the time
variable. Moreover also the solvency level is a function of the time. There-
fore the problem is strongly time-dependent and not easy to treat: we we
will restrict our analysis just to some mathematical features of the problem
and then we give an example with explicit solution. Instead in the stationary
phase the external payment flows (contributions and benefits) are constant, so
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that the dynamics of the wealth is stationary with respect to the time variable.
Moreover also the solvency level is assumed to be constant. This is an easier
problem from the mathematical point of view, since we can get rid of the time
variable. Therefore, in this case we are also able to find explicitally the opti-
mal strategy and to give some qualitative comments about its behaviour with
respect to the choice of the parameters of the model.

1.1 The model

In this section we give a detailed description of the model. Over an infinite
continuous-time model we consider a financial market which is:

• competitive, i.e. we assume that the investor’s behavior is optimizing:
he optimizes his utility function on the whole time horizon;

• frictionless, i.e. all assets are perfectly divisible and there are no transac-
tion costs or taxes;

• arbitrage free, i.e. there is no opportunity to gain without assuming risk
with not null probability;

• default free, i.e. financial institutions issuing assets cannot default;

• continuously open, i.e. the investor can continuously trade in the market.

Moreover, we assume that:

• the investor is price taker, i.e. he cannot affect the probability distribution
of the available assets: this hypothesis is usual in literature regarding
financial management models of pension funds and it is realistic if the
single agent does not invest a big amount of money; as a matter of fact,
the volume of assets exchanged by pension funds is such that they could
affect the price of assets (i.e. the investor may be price maker) but we do
not deal with this fact here.

• the investor faces the following trading constraints: borrowing and short
positions are not allowed;

• the investor maximizes the expected utility from the current fund wealth
over an infinite horizon.

We impose that the pension fund wealth must be above a suitable positive
function which we call solvency level.
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It is supposed a demographic stationarity hypothesis, i.e. that the flow of
people who enter into the fund starts at time t = 0 and is constant over time
and that there is an exogenous constant T > 0 which is the time during which
the members adhere to the pension fund. Therefore the exit flow of people
is null in the interval [0, T ] and is constant after time T , balancing exactly the
entrance flow.

1.1.1 The wealth dynamics

To set up the mathematical model we consider a complete probability space
(Ω,F ,P) with a filtration {Ft}t≥0, where t ≥ 0 is the time variable. The filtra-
tion {Ft}t≥0, describing the information structure, is generated by the trajec-
tories of a one-dimensional standard Brownian motion B(t), t ≥ 0, defined on
the same probability space and completed with the addition of the null mea-
sure sets of F . Moreover we assume that F∞ := σ

(⋃
t≥0Ft

)
= F . Sometimes

we will use a starting point s ≥ 0. In this case {Fst }t≥s will be the completion
of the filtration generated by Bs (t) = B (t)−B (s).

The financial market is composed of two kinds of assets: a riskless asset
and a risky asset. The price of the riskless asset S0(t), t ≥ 0, evolves according
to the equation dS0(t) = rS0(t)dt,

S0(0) = 1,

where r ≥ 0 is the instantaneous spot rate of return. The price of the risky
asset S1(t), t ≥ 0, follows an Itô process and satisfies the stochastic differential
equation dS1(t) = µS1(t)dt+ σS1(t)dB(t),

S1(0) = s1
0,

where µ is the instantaneous rate of expected return and σ > 0 is the instan-
taneous rate of volatility. We assume that the market assigns a premium for
the risky investmet, i.e. µ > r. The drift µ can be expressed by the relation
µ = r + σλ, where λ > 0 is the instantaneous risk premium of the market, i.e.
the price that the market assigns to the randomness expressed by the standard
Brownian motion B(·). The case λ = 0, i.e. µ = r, is trivial in a (natural)
context of risk aversion (as ours), since in this case the optimal investment is
simply composed by the only riskless asset.

In our framework the interest rate is assumed to be constant. This assump-
tion represents a restriction with respect to other works on the same subject,
as

• [Battocchio, Menoncin; 2004],
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• [Boulier, Huang, Taillard; 2001],

• [Cairns, Blake, Dowd; 2000],

• [Deelstra, Grasselli, Koehl; 2003],

• [Haberman, Vigna; 2001],

• [Haberman, Vigna; 2002],

where, on the other hand, the solvency constraint is not considered.

The state variable, represented by X(t), t ≥ 0, is the {Ft}t≥0-adapted pro-
cess which gives the amount of the pension fund wealth at any time. We sup-
pose that the pension fund starts its activity at the date t = 0 and that at this
time it owns a starting amount of wealth x ≥ 0.

The control variable, denoted by θ(t), t ≥ 0, is the {Ft}t≥0-progressively
measurable process which represents the proportion of fund wealth to invest
in the risky asset. Therefore, the positivity of the wealth (due to the solvency
constraints) and the borrowing and short selling constraints impose θ (t) ∈
[0, 1] for every t. So the dynamics of wealth is expressed, formally, by the
following state equationdX(t) =

θ(t)x(t)
S1(t)

dS1(t) +
[1− θ(t)]X(t)

S0(t)
dS0(t) + c(t)dt− b(t)dt, t ≥ 0,

X(0) = x0 ≥ 0,
(1.1)

where
θ(t)X(t)
S1(t)

and
[1− θ(t)]X(t)

S0(t)
are respectively the quantities in the port-

folio of the risky asset and the riskless asset; the non-negative process c(t),
t ≥ 0, indicates the flow of contributions and the non-negative process b(t),
t ≥ 0, represents the flow of benefits.

The state equation (1.1) can be rewritten in the following waydX(t) =
[

(r + σλθ(t))X(t) + c(t)− b(t)
]
dt+ σθ(t)X(t)dB(t), t ≥ 0,

X(0) = x.

(1.2)
As we said before, we assume that a solvency constraint must be respected (see
Subsection 1.1.4 for further explanations). More precisely the process x(·) de-
scribing the fund wealth is subject to the following constraint

X(t) ≥ l(t), P-a.s., ∀t ≥ 0, (1.3)

where the non-negative deterministic function l(t), t ≥ 0 represents the sol-
vency level.
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1.1.2 Contributions

In the population stationarity hypothesis, the flow of contributions c (·) can be
considered exogenous. We assume that the workers who enter into the pen-
sion fund are a homogeneous class, i.e. a class of people having the same char-
acteristics (same age at the entry date, same professional qualification, same
level of skill, and so on). Moreover, as said, we suppose that their entrance
flow is constant on time and that each participant adheres for a length of time
represented by an exogenous constant T > 0. Due to these demographic as-
sumptions, we assume that the aggragate contribution flow increases linearly
on time in the interval [0, T ] and is equal to a constant c > 0 after time T . For
instance we can imagine that each member who is adhering to the fund pays
to the fund a contribution rate equal to αw, where α ∈ (0, 1) and where w > 0
is the (constant) wage rate (which has the dimension euros/time) earned by
each member. Then, denoting by c̄ the entrance flow of people into the fund,
we can write the flow of aggregate contributions as

c(t) :=

αw · c̄t, 0 ≤ t ≤ T,

αw · c̄T, t > T ;
(1.4)

therefore, in this case, the aggregate contributions flow after time T is the con-
stant c = αw · c̄T .
The above hypothesis is a bit restrictive because the stochastic wage is an im-
portant and additional source of uncertainty for the fund manager. We observe
that the introduction of an extra source of risk renders the market incomplete,
as discussed and studied in [Cairns, Blake, Dowd; 2000] in absence of guaran-
tee and in a continuous and finite time horizon. Nevertheless we stress again
that we make this assumption in order to sempliy and focus on the effect of
the solvency constraint.

1.1.3 Benefits

Due again to the demographic stationarity we assume that the flow of benefits
starts at time T , when the first retirements occur, and that, after that date, it is
given by a constant g representing the minimum guarantee flow. We assume
that g ≥ c, because g has to be, in some way, the capitalization of the contri-
butions paid by the members who are retiring. For instance, we can imagine
that the fund pays to the generic member in retirement as (lump sum) mini-
mum guarantee the capitalization at a minimum guaranteed rate δ ∈ [0, r] of
the contributions paid by him in the time interval during which he was adher-
ing to the fund. In this case, coherently with (1.4), we can write the aggregate
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minimum guarantee flow, for t ≥ T , as:

g = c̄

∫ t

t−T
(αw) eδ(t−u)du, (1.5)

i.e.

g =

c, if δ = 0,

c̄ · (αw) e
δT−1
δ if δ > 0;

(1.6)

in particular we have g ≥ c. The previous inequality means in particular that,
despite of the case δ = 0, the current contributions do not permit to pay the
current minimum guarantee. Nevertheless we will show that, in our setup
for the benefits, under suitable assumptions on the solvency level, the fund
manager can always pay the current benefits, mantaining the wealth level of
the fund above the solvency level.

The inequality δ ≤ r could be justified thinking to the fact that often the
participants to the pension fund do not have time to enter to the financial mar-
ket as the fund manager. Moreover we recall that in the actual market, but
it is not the case of our framework which has neither transactional or infor-
mational costs, the fund manager can usually get higher interest rate than the
fund members.

1.1.4 Solvency level

A solvency level may be imposed by law or by a supervisory authority to
avoid improper behavior of the manager and to guarantee that the fund is able
to pay at least part of the due benefits at each time t ≥ 0. Without imposing
this constraint the manager is allowed to use strategies that may bring him to
mismatches with the social target of the pension fund. We assume that the
solvency level l(·) imposed in (1.3) is a nondecreasing continuous function,
which is constant after time T . More precisely we assume that the solvency
level has the following structure:

• at the beginning the company should hold a given minimum startup
level l0 := l(0) ≥ 0;

• for t ∈ [0, T ], the solvency level is the capitalization at a rate β ≤ r of the
initial minimum wealth l0 and of the aggregate contributions paid up to
time t; therefore

l(t) = l0 e
βt +

∫ t

0
αw · c̄s eβ(t−s)ds. (1.7)

• after time T the solvency level is constant, i.e. l(t) ≡ l := l(T ) for t ≥ T ;
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The rate β could be chosen, for example, by an authority with regard to the
market’s parameters.

1.1.5 Optimization in pension funds

To a large extent, the primary focus of a pension fund investment is the guaran-
tee for the subscribers to obtain the promised benefits and the effective man-
agement of pension funds is severely restricted by regulatory authorities in
order to enforce such a guarantee. For this reason despite the formal similar-
ities, it is important to remark that the optimal allocation problem faced by a
pension fund is radically different in its objectives from the problem faced by
an investor having direct access to the market. While the investor is willing
to optimize his welfare taking direct advantage from stock market opportuni-
ties, a pension fund subscription is usually a process of investment delegation
forced by the social security laws.

It is well known that the process of investment delegation involves costs
for the members and a potential divergence between the interests of the prin-
cipal (the collectivity of subscribers) and the agent (the manager of the fund).
Within our model forced delegation is costly. Indeed the members accept a
guaranteed rate of return δ lower than the risk free rate r.

In order to incentive the manager to undertake risky investments and re-
duce this fixed cost, it is a common practice to introduce a variable component
in the management fee proportional to the absolute level of fund’s wealth (see,
for example, [Starks; 1987] and [Goetzmann, Ingersoll, Ross; 2003]).

Hence we can say that basically the optimization criterion for the manage-
ment of a pension fund can take into account two different points of view:

• The point of view of the members: the fund’s manager is directly dele-
gated by the members to invest in the risky market in order to perform
their benefits.

• The point of view of the manager: the manager is led to invest in the
risky asset in order to incentive his fee, which is proportional to the ab-
solute level of fund’s wealth. Observe that within this framework the
participant to the pension fund has no direct benefit from risky invest-
ment, but only an indirect benefit. In fact, assuming the existence of a
competitive market of pension funds’ management (e.g., by insurance
companies), if the manager is allowed to invest in the risky market the
fixed delegation cost, i.e. the difference r − δ, is expected to be reduced.

In our optimization problems we will use the second point of view. Neverthe-
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less in Chapter 2 we will see how the introduction of the surplus term in the
model will have some consequences also on the point of view of the members.

1.2 The transitory phase

The object of this section is the analysis of the transitory phase, corresponding
to the time interval [0, T ]. The main results are the proof of the continuity of
the value function (that is not trivial here), the proof that the value function is
a constrained viscosity solution of the HJB equation and its characterization by
a uniqueness result in a special case. Moreover we close the section providing
an example with explicit solution.

First of all we observe that the initial time t = 0 has been chosen as the
first time of operation of the fund. However it also makes sense, in order to
apply the dynamic programming techniques, to look to a pension fund that is
already running after a given amount of time s ∈ [0, T ], in order to establish a
decision policy from s on.

On the probability space of the Section 1.1 let (Fst )t∈[s,T ] be the completion
of the filtration generated by the process (Bs(t))t∈[s,T ] := (B(t) − B(s))t∈[s,T ];
the control process (θ(t))t∈[s,T ] is a (Fst )-progressively measurable process with
values in [0, 1].

Let us set an initial time s ∈ [0, T ] and a given amount of wealth x at time
s. In the interval [0, T ] the state equation becomes, according to (1.2) and with
the hypotheses just stated on the contribution term,dX(t) = [r + σλθ(t)]X(t) dt+ kt dt+ σθ(t)X(t)dBs(t), t ∈ [s, T ],

X (s) = x.
(1.8)

Theorem 1.2.1. For any (Fst )t≥s-progressively measurable [0, 1]-valued process θ(·)

• equation (1.8) admits on the filtered probability space (Ω,F , (Fst )t∈[s,T ],P), a
unique strong solution;

• this solution belongs to the space CP([s, T ];Lp(Ω,P)) of the p-continuous pro-
gressively measurable processes for any p ∈ [1,+∞).

Proof. See Theorem 6.16, Chapter 1, of [Yong, Zhou; 1999] or Section 5.6.C
of [Karatzas, Shreve; 1991]. �

We denote the unique strong solution to (1.8) by X (t; s, x, θ(·)).
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1.2.1 The optimization problem

In this transitory phase we study a finite horizon optimization problem in the
interval [0, T ] related to an objective functional with this form:

E
[∫ T

0
e−ρtU (t,X (t)) dt+ f(X(T ))

]
. (1.9)

Here ρ > 0 is the individual discount factor of the manager and U is his utility
function. So, according with the considerations of Subsection 1.1.5, the first
term in the optimization criterion (1.9) takes into account the manager’s point
of view. Instead the main role of the exit/bequest function f in this context
consists in allowing to link the problem in this transitory phase with the prob-
lem in the stationary phase-Thus we assume that in the transitory phase the
fund’s manager takes care about the future of the fund after time T only by
means of the exit/bequest function f (see Remark 1.3.9).

The problem lives in the set

C := {(s, x) ∈ R2 | s ∈ [0, T ], x ≥ l(s)}.

We assume that the current utility function U and the exit/bequest utility
function f satisfy the following assumptions:

Hypothesis 1.2.2. The current utility function U is such that

(i) U : C → R has the structure U(s, x) = u(x− l(s)), where u : [0,+∞)→ R;

(ii) u ∈ C([0,+∞); R);

(iii) u is increasing and concave. �

Hypothesis 1.2.3. The exit/bequest utility function f is such that

(i) f ∈ C([ l(T ),+∞); R);

(ii) f is increasing and concave. �

Remark 1.2.4. We note that

• the utility functions U and f are defined where the wealth process X(·)
must live;

• all the functions of the form u(x) = (x−x0)γ

γ , for x0 ≤ 0, γ ∈ (0, 1), always
give rise to functions U satisfying Hypothesis 1.2.2.

• all the functions of the form f(x) = (x−x0)γ

γ , for x0 ≤ 0, γ ∈ (0, 1), satisfy
Hypothesis 1.2.3.
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�

For (s, x) ∈ C, the problem consists in maximizing, over the set of the ad-
missible strategies, i.e. the strategies keeping the state variable above l(·) (see
(1.10) for a formal definition), the functional (1.9).

1.2.2 The set of admissible strategies

In this transitory phase the set of the admissible strategies, for (s, x) ∈ C, is
given by

Θad(s, x) :=
{
θ : [s, T ]×Ω−→ [0, 1] prog. meas. with respect to {Fst }t∈[s,T ] |

X (t; s, x, θ(·)) ≥ l (t) , t ∈ [s, T ]
}
. (1.10)

We show that the set Θad(s, x), for (s, x) ∈ C, is not empty:

Proposition 1.2.5. Let (s, x) ∈ C and let X(t) := X(t; s, x, 0); then

X(t)− l(t) ≥ (x− l(s)) er(t−s), t ∈ [s, T ]; (1.11)

In particular, for each (s, x) ∈ C, the null strategy belongs to Θad(s, x), so that
Θad(s, x) is not empty.

Proof. Let (s, x) ∈ C and let X(t) := X(t; s, x, 0) be the state trajectory
associated with the null startegy; the dynamics of X(·) is given bydX(t) = rX(t) dt+ kt dt,

X(s) = x;

the “dynamics” of the solvency level l(·) is given bydl(t) = βl(t) dt+ kt dt,

l(s) = l(s).

The claim follows taking in account that β ≤ r. �

We define the lateral boundary as the set

∂∗C := {(s, x) ∈ C | s ∈ [0, T ], x = l(s)}. (1.12)

We have the following behaviour of the lateral boundary with respect to the
parameter β:
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Proposition 1.2.6. Let (s, x) ∈ ∂∗C.
(i) If β < r, s > T , then X(t; s, x, 0) > l(t) for all t ∈ (s, T ]. We stress this property
saying that ∂∗C is reflecting.
(ii) If β = r, then Θad(s, x) = {0} and X(t; s, x, 0) = l(t) for all t ∈ [s, T ]. We
stress this property saying that ∂∗C is absorbing.

Proof. (i) This straightly follows looking at the proof of Proposition 1.2.5.

(ii) Let β = r, s ∈ [0, T ), θ(·) ∈ Θad(s, l(s)) and set X(t) := X(t; s, l(s), θ(·));
the dynamics of X(t) is given bydX(t) = rX(t) dt+ kt dt+ σθ(t)X(t)dB̃s(t),

X(s) = l(s),
(1.13)

where, thanks to Girsanov’s Theorem A.1.1, the process B̃s(·) := Bs(·)+λ(·−s)
is a Brownian motion under the probability P̃ = exp

(
−λBs(T )− λ2

2 (T − s)
)
·P

in the interval [s, T ]. Since X ∈ C([s, T ];Lp(Ω,P)) for any p ≥ 1, by Hölder’s
inequality it holds also

Ẽ
[∫ T

s
|X(t)|2dt

]
< +∞,

so that

Ẽ
[∫ t

s
X(r)dB̃s(r)

]
= 0, ∀t ∈ [s, T ].

Thus we can pass (1.13) to the expectations gettingdẼ[X(t)] = rẼ[X(t)] dt+ kt dt,

Ẽ[X(s)] = l(s).
(1.14)

By (1.14) we have Ẽ[X(t; s, x, θ(·))] = l(t) for t ∈ [s, T ]; moreover by assump-
tion X(t) ≥ l(t) for t ∈ [s, T ], so that we get that X(t) = l(t) almost surely
for any t ∈ [s, T ]. This implies that θ(·) ≡ 0, so that we can conclude that
the only admissible strategy starting from (s, l(s)) is the null one and that the
corresponding state trajectory remains on the boundary. �

1.2.3 The value function

For (s, x) ∈ C, θ(·) ∈ Θad(s, x), we define

J(s, x; θ(·)) := E
[∫ T

0
e−ρtU (t,X (t; s, x, θ)·))) dt+ f(X(T ; s, x, , θ(·)))

]
.

The stochastic control problem consists in studying, for (s, x) ∈ C, the value
function

V (s, x) := sup
θ(·)∈Θad(s,x)

J(s, x; θ(·)), (1.15)



A pension fund model with constraints 47

and, when possible, in finding an optimal control strategy for the problem in
the sense of the following definition.

Definition 1.2.7. Let (s, x) ∈ C.

(i) A control θ∗(·) ∈ Θad(s, x) is called optimal for the couple (s, x) if

J(s, x; θ∗(·)) = V (s, x).

(ii) Let ε > 0; a control θε(·) ∈ Θad(s, x) is called ε-optimal for the couple
(s, x) if

J(s, x; θε(·)) ≥ V (s, x)− ε.

�

Proposition 1.2.8. Let us suppose that Hypotheses 1.2.2 and 1.2.3 hold true. Then
there exists a constant C > 0 such that V (s, x) ≤ C(1 + x) for all (s, x) ∈ C.

Proof. Let (s, x) ∈ C. By Hypotheses 1.2.2-(iii) and 1.2.3 there exists C > 0
such that U(t, y) ≤ C(1 + y) for any t ∈ [s, T ], y ≥ l(t), and f(y) ≤ C(1 + y)
for any y ≥ l(T ) . Let θ(·) ∈ Θad(s, x); then, setting X(t) := X(t; s, x, θ(·)), we
have

E
[∫ T

s
e−ρt[U(t,X(t))]dt+ f(X(T ))

]
≤ C E

[∫ T

s
e−ρt(1 +X(t))dt+ (1 +X(T ))

]
.

(1.16)
Taking into account that X ∈ C([s, T ];L2(Ω)), we have

E
[∫ t

s
θ(r)X(r)dBs(r)

]
= 0, ∀t ∈ [s, T ].

Therefore we can pass to the expectations in the state equation gettingdE[X(t)] = rE[X(t)]dt+ kt dt+ σλE[θ(t)X(t)]dt ≤ (r + σλ)E[X(t)]dt+ kT dt,

E[X(s)] = x;

thus, for some C > 0,

E[X(t)] ≤
(
x+

kT

r + σλ

)
e(r+σλ)(t−s) − kT

r + σλ
≤ C(1 + x). (1.17)

The estimate (1.17) does not depend on the control. Thus the claim follows
putting (1.17) into (1.16) and taking the supremum over θ(·) ∈ Θad(s, x). �

Proposition 1.2.9. Let (s, x) ∈ C; then

V (s, x) ≥ u(x− l(s))
ρ

(e−ρs − e−ρT ) + f
(
l(T ) + x− l(s)

)
.



48

Proof. By (1.11) and by monotonicity of u, f , we can deduce that

J(s, x; 0) ≥
∫ T

s
e−ρtu(x− l(s))dt+ f

(
l(T ) + x− l(s)

)
=

u(x− l(s))
ρ

(e−ρs − e−ρT ) + f
(
l(T ) + x− l(s)

)
;

so the claim follows. �

Proposition 1.2.10. Let s ∈ [0, T ]; the function x 7→ V (s, x) is concave on [l(s),+∞).

Proof. Fix x, x′ ≥ l(s); for γ ∈ [0, 1], set xγ := γx + (1 − γ)x′; of course
xγ ≥ l(s). We have to prove that

V (s, xγ) ≥ γV (s, x) + (1− γ)V (s, x′). (1.18)

Take θ(·) ∈ Θad(s, x) and θ′(·) ∈ Θad(s, x′) ε-optimal for x, x′ respectively and
X(·), X ′(·) the corresponding trajectories; then

γV (s, x) + (1− γ)V (s, x′) ≤ γ
[
J(s, x; θ(·)) + ε

]
+ (1− γ)

[
J(s, x′; θ′(·)) + ε

]
= ε+ γJ(s, x; θ(·)) + (1− γ)J(s, x′; θ′(·))

= ε+ γE
[∫ T

s
e−ρtU

(
t,X(t)

)
dt+ f(X(T ))

]
+(1− γ)E

[∫ T

s
e−ρtU

(
t,X ′(t)

)
dt+ f(X ′(T ))

]
= E

[∫ T

s
e−ρt

[
γU
(
t,X(t)

)
+ (1− γ)U

(
t,X ′(t)

)]
dt

]
+E

[
γf(X(T )) + (1− γ)f(X ′(T ))

]
+ ε.

The concavity of u, f implies that

γU
(
t,X(t)

)
+ (1− γ)U

(
t,X ′(t)

)
≤ U

(
t, γX(t) + (1− γ)X ′(t)

)
, ∀t ∈ [s, T ],

γf
(
X(t)

)
+ (1− γ)f

(
X ′(t)

)
≤ f

(
γX(t) + (1− γ)X ′(t)

)
, ∀t ∈ [s, T ].

Consequently, if we set Xγ(·) := γX(·) + (1− γ)X ′(·), we get

γV (s, x) + (1− γ)V (s, x′) ≤ ε+ E
[∫ T

s
e−ρtU

(
Xγ(t)

)
dt+ f(Xγ(T ))

]
.

If there exists θγ (·) ∈ Θ (s, xγ) such that Xγ(·) ≤ X (·; s, xγ , θγ(·)), then we
would have

ε+ E
[∫ T

s
e−ρtU

(
Xγ(t)

)
dt+ f(Xγ(T ))

]
≤ ε+ J(s, xγ ; θγ(·)) ≤ ε+ V (s, xγ),
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i.e.
γV (s, x) + (1− γ)V (s, x′) ≤ ε+ V (s, xγ)

and therefore, by the arbitrariness of ε, the claim (1.18) would be proved. We
will show that

θγ(t) := a(t)θ(t) + d(t)θ′(t),

where
a(·) = γ

X(·)
Xγ(·)

, d(·) = (1− γ)
X ′(·)
Xγ(·)

,

is good. The admissibility of θγ(·) is clear since:

(i) for any t ∈ [s, T ] we have θ (t) , θ′ (t) ∈ [0, 1], and a (t) + d (t) = 1, so that
by convexity of [0, 1] we get θγ (t) ∈ [0, 1];

(ii) by construction Xγ(t) ≥ l(t) for any t ∈ [s, T ].

Note that actually we will prove that Xγ(·) = X(· ; s, xγ , θγ(·)). The equation
satisfied by Xγ(·) in the interval [s, T ] is

dXγ(t) = γ dX(t) + (1− γ) dX ′(t)

= γ
[[

(r + σλθ(t))X(t) + kt
]
dt+ σθ(t)X(t)dBs(t)

]
+(1− γ)

[[
(r + σλθ′(t))X ′(t) + kt

]
dt+ σθ′(t)X ′(t)dBs(t)

]
=

[
rXγ(t) + σλ

(
γθ(t)X(t) + (1− γ)θ′(t)X ′(t)

)
+ kt

]
dt

+σ
[
γθ(t)X(t) + (1− γ)θ′(t)X ′(t)

]
dBs(t)

= [rXγ(t) + kt] dt+ σλ

[
γθ(t)

X(t)
Xγ(t)

+ (1− γ)θ′(t)
X ′(t)
Xγ(t)

]
Xγ(t) dt

+σ
[
γθ(t)

X(t)
Xγ(t)

+ (1− γ)θ′(t)
X ′(t)
Xγ(t)

]
Xγ(t)dBs(t)

=
[(
r + σλθγ(t)

)
Xγ(t) + kt

]
dt+ σθγ(t)Xγ(t)dBs(t)

and the claim follows. �

Proposition 1.2.11. Let u or f be strictly increasing and let s ∈ [0, T ]. Then x 7→
V (s, x) is strictly increasing on [l(s),+∞).

Proof. Let l(s) ≤ x ≤ x′; Writing the equation for Y (·) := X(·; s, x′, θ(·)) −
X(·; s, x, θ(·)), we can see that Y (·) solves a linear SDE with nonnegative initial
datum. Therefore Y (·) ≥ 0, P-a.s., i.e. X(t; s, x, θ(·)) ≤ X(t; s, x′, θ(·)) for all
θ(·) ∈ Θad(s, x) and in particular Θad(s, x) ⊂ Θad(s, x′). Moreover by mono-
tonicity of u, f we get J(s, x; θ(·)) ≤ J(s, x′, θ(·)) for all θ(·) ∈ Θad(s, x), so that
V (s, ·) is increasing. Now we prove that this function is strictly increasing. We
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can note that, if a concave and increasing function is not strictly inceasing, then
such a function must be definetively constant on a right half line [x̄,+∞); we
show that this is not our case.

If we have limx→∞ u(x) = +∞ or limx→∞ f(x) = +∞, then, by Propo-
sition 2.2.12, we must have also limx→+∞ V (s, x) = +∞ and the claim fol-
lows. Instead let us suppose that we have both limx→+∞ u(x) = ū < +∞ and
limx→∞ f(x) = f̄ < +∞ and suppose by contradiction that V (s, ·) is constant
on [x̄,+∞) for some x̄ ≥ l(s). Again by Proposition 2.2.12 we must have

V (s, x̄) = lim
x→+∞

V (s, x) ≥ ū

ρ
e−ρs(1− e−ρ(T−s)) + f̄ ;

on the other hand, taking into account (1.17), the concavity and the monotonic-
ity of u, f , we can write, for any θ(·) ∈ Θad(s, x̄), setting X(t) := X(t; s, x̄, θ(·)),

J(s, x̄; θ(·)) =
∫ T

s
e−ρtE[u(X(t)− l(t))]dt+ E

[
f
(
X(T )

)]
≤

∫ T

s
e−ρtu(E[X(t)]− l(t))dt+ f

(
E [X(T )]

)
≤

∫ T

s
e−ρtu(C(1 + x̄))dt+ f

(
C(1 + x̄)

)
=

u(C(1 + x̄))
ρ

e−ρs(1− e−ρ(T−s)) + f
(
C(1 + x̄)

)
,

i.e., since u or f is strictly increasing,

V (s, x) ≤ u(C(1 + x̄))
ρ

e−ρs(1− e−ρ(T−s)) + f
(
C(1 + x̄)

)
<

ū

ρ
e−ρs(1− e−ρ(T−s)) + f̄ ;

thus a contradiction arises and the claim is proved. �

1.2.4 Continuity of the value function

In this section we will prove that the value function is continuous on

C = {(s, x) ∈ R2 | x ≥ l(s)}.

We will prove this result by some lemmata.

Lemma 1.2.12. Let s ∈ [0, T ], ε > 0; the function [l(s) + ε,+∞)→ [0,+∞), x 7→
V (s, x) is Lipschitz continuous.
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Proof. The claim follows by the fact that the function [l(s),+∞) → R,
x 7→ V (s, x) is concave and increasing. This implies that this function is con-
tinuous in the interior part of its domain (l(s),+∞) and Lipschitz continuous
on [l(s) + ε,+∞) for any ε > 0. �

Let us define, for a ≥ 0, the curves

La := {(s, l(s) + a) | s ∈ [0, T ]};

we analyze the behaviour of the value function along these curves.

Lemma 1.2.13. Let u(0) ≥ 0, a ≥ 0; then the value function is nonincreasing along
the curve La, i.e. the function [0, T ]→ R, s 7→ V (s, l(s) + a) is nonincreasing.

Proof. Let s ∈ [0, T ], s′ ∈ (s, T ] and let x, x′ be such that (s, x), (s′, x′) ∈ La,
for some a ≥ 0; let us consider X(t) := X(t; s, x, 0); we get

V (s, x) ≥
∫ s′

s
e−ρtU(t,X(t))dt+ V (s′, X(s′)) ≥ V (s′, x′)

where the first inequality follows by the dynamic programming principle (see
Theorem 1.2.20 and Remark 1.2.21), while the second one follows taking into
account (1.11), which gives that X(s′) ≥ x′, the fact that the utility function u
is positive and Proposition 1.2.11. �

Remark 1.2.14. Let 0 ≤ s ≤ s′ ≤ T ; from [Yong, Zhou; 1999], Chapter 1, Theo-
rem 2.10, we see that we can map in a natural way a strategy starting at time
s into a strategy starting at time s′. Indeed, consider the measurable space
(C[s, T ],B(C[s, T ])), endowed with the filtration (Bt(C[s, T ]))t∈[s,T ] defined in
the following way: (Bt(C[s, T ])) is the σ-algebra on C[s, T ] induced by the
projection

π : C[s, T ] −→ (C[s, t],B(C[s, t]))
ζ(·) 7−→ ζ(·)|[s,t],

i.e. the smallest σ-algebra which makes π measurable; intuitively a measurable
application with respect to Bt(C[s, T ]) is an application which does not distin-
guish between two functions of C[s, T ] which coincide on [s, t]. If (θs(t))t∈[s,T ]

is a strategy starting from s, there exists a process ψ on (C[s, T ],B(C[s, T ])),
adapted with respect to (B(C[s, T ]))t∈[s,T ], such that

θs(t) = ψ(t, Bs(·)), t ∈ [s, T ];

then we can consider the strategy

θs′(t) = ψ(t− s′ + s,Bs′(·)), t ∈ [s′, T ],
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starting from s′; we denote by Γs,s′ the map θs 7→ θs′ . �

The following lemma is the crucial key to prove the continuity of the value
function:

Lemma 1.2.15. Let u(0) ≥ 0; then the value function is continuous along the curves
La for any a ≥ 0, i.e. the function [0, T ]→ R, s 7→ V (s, l(s) + a) is continuous.

Proof. Fix a ≥ 0 and s ∈ [0, T ), let s′ ∈ (s, T ] and let x, x′ be such that
(s, x), (s′, x′) ∈ La, i.e x′ − x = l(s′) − l(s). Take a control θs(·) ∈ Θad(s, x), set
ε := s′ − s and consider, for t ∈ [s, T ], the process Xs(t) := X(t; s, x, θs(·)) and,
for t ∈ [s′, T ], the process Ys′(t) given bydYs′(t) = (r + σλθs′(t))Ys′(t)dt+ k · (t− ε)dt+ σθs′(t)Ys′(t)dBs′(t),

Ys′(s′) = x,

where θs′(·) = Γs,s′(θs(·)). Denote by the symbol L= the equality in law of two
random variables. We strightly have Xs(t − ε)

L= Ys′(t) and therefore, by the
assumption θ(·) ∈ Θad(s, x), we get Ys′(t) ≥ l(t − ε) almost surely for every
t ∈ [s′, T ]. Define the “semi-feedback” strategy θ̃s′(·) starting from s′ by

θ̃s′(t) = θs′(t)
Ys′(t)
Xs′(t)

,

where Xs′(·) denotes the solution to the state equation starting from x′ at time
s′ under the strategy θ̃s′(·); we want to show that θ̃s′(·) takes values in [0, 1]
and that θ̃s′(·) ∈ Θad(s′, x′). The dynamics of Xs′(·)− Ys′(·) is given byd(Xs′(t)− Ys′(t)) = r(Xs′(t)− Ys′(t)) dt+ εk dt

Xs′(s′)− Ys′(s′) = l(s′)− l(s);
(1.19)

the dynamics of l(t)− l(t− ε) is given byd(l(t)− l(t− ε)) = β(l(t)− l(t− ε)) dt+ εk dt

l(s′)− l(s′ − ε) = l(s′)− l(s) ≥ 0;
(1.20)

comparing (1.19), (1.20) and taking into account that β ≤ r, we get

Xs′(t)− Ys′(t) ≥ l(t)− l(t− ε). (1.21)

As a byproduct of (1.21) we get that θ̃s′(·) takes values in the set [0, 1] and, since
Ys′(t) ≥ l(t− ε), that θs′(·) ∈ Θ(s′, x′).



A pension fund model with constraints 53

Let δ be the modulus of uniform continuity of u and let δ′ be the modulus
of uniform continuity of l. We have proved that Xs′(t) ≥ Ys′(t)

L= Xs(t − ε),
for t ∈ [s′, T ]; thus, taking also into account that U is increasing with respect to
the second argument, we have

E
[∫ T

s′
e−ρtU(t,Xs′(t))dt

]
≥ E

[∫ T

s′
e−ρtU(t,Xs(t− ε))dt

]
(1.22)

= E
[∫ T−ε

s
e−ρ(t+ε)U(t+ ε,Xs(t))dt

]
= e−ρεE

[∫ T−ε

s
e−ρtu(Xs(t)− l(t+ ε))dt

]
≥ e−ρεE

[∫ T−ε

s
e−ρtu(Xs(t)− l(t)− δ′(ε))dt

]
≥ e−ρεE

[∫ T−ε

s
e−ρtu(Xs(t)− l(t))dt

]
− Cδ(δ′(ε))

= e−ρεE
[∫ T

s
e−ρtu(Xs(t)− l(t))dt

]
− Cδ(δ′(ε))

−e−ρεE
[∫ T

T−ε
e−ρtU(t,Xs(t))dt

]
,

for a suitable constant C > 0. Note that

δ(δ′(ε))→ when ε→ 0. (1.23)

By mean-square continuity of Xs and by uniform continuity of u

E
[∫ T

T−ε
e−ρtU(t,Xs(t))dt

]
−→ 0, as ε→ 0. (1.24)

Since Xs′(t) ≥ Ys′(t)
L= Xs(t− ε), for t ∈ [s′, T ], we get

E [f(Xs′(T ))] ≥ E [f(Xs(T − ε))] ; (1.25)

moreover, since Xs is mean-square continuous and f is uniformly continuous,
by Lemma A.1.2 we get

E
[
|f(Xs(T − ε))− f(Xs(T ))|2

]
−→ 0, (1.26)

when ε→ 0, so that, combining (1.25) and (1.26),

E [f(Xs′(T ))] ≥ E [f(Xs(T ))]− η(ε), with η(ε)→ 0 when ε→ 0. (1.27)

Fix s ∈ [0, T ]; combining (1.22), (1.23), (1.24) and (1.27), we get that, for any
ε > 0 and any control θs(·) ∈ Θad(s, x), there exists a control θ̃s′(·) ∈ Θad(s′, x′)
such that

J(s′, x′; θ̃s′(·)) ≥ e−ρεJ(s, x; θs(·))− ω(ε), (1.28)
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and ω(ε) → 0 when ε → 0. Therefore passing to the supremum over θs(·) ∈
Θad(s, x) the right hand-side of (1.28) we get

V (s′, x′) ≥ e−ρεV (s, x)− ω(ε), with ω(ε)→ 0 when ε→ 0. (1.29)

This shows that the value function is lower semicontinuous from the right
along La and upper semicontinuous from the left along La. Since it is nonin-
creasing by Lemma 1.2.13, it must be continuous along La. �

Let us define, for ε > 0, the sets

Sε := {(s, x) ∈ R2 | x ≥ l(s) + ε}.

We show that the value function is continuous on these sets.

Lemma 1.2.16. Let u(0) ≥ 0; then the value function is continuous on the sets Sε,
for any ε > 0.

Proof. Let s ∈ [0, T ], ε > 0 and consider the function [l(s) + ε) → R,
x 7→ V (s, x); by Lemma 1.2.12 this function is Lipschitz continuous: we want
to estimate its Lipschitz constant. The function [l(s),+∞)→ R, x 7→ V (s, x) is
concave (so that the incremental ratios are nonincreasing) and increasing (so
that the incremental ratios are positive); thus, if we set

Ms,ε :=
V (s, l(s) + ε)− V (s, l(s))

ε
,

we get that Ms,ε is good as Lipshitz constant for the function [l(s) + ε,+∞)→
R, x 7→ V (s, x). By Lemma 1.2.15 there exists

Mε := max
s∈[0,T ]

Ms,ε = max
s∈[0,T ]

V (s, l(s) + ε)− V (s, l(s))
ε

;

thus the functions [l(s) + ε,+∞) → [0,+∞), x 7→ V (s, x), s ∈ [0, T ], are Lips-
chitz continuous with respect the same Lipschitz constant Mε.

This uniform Lipschitz continuity of V (s, ·) together with Lemma 1.2.15
yield the claim.

�

Lemma 1.2.17. Let u(0) ≥ 0, s ∈ [0, T ]; the function [l(s),+∞) → [0 + ∞),
x 7→ V (s, x) is continuous at l(s).

Proof. Of course the function is lower semicontinuous at l(s), since it is
increasing; we will prove that it is also upper semicontinuous at l(s). We have
to distinguish the two cases when the boundary is absorbing or not, i.e. when
β < r or β = r (see Proposition 1.2.6).
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Case 1: β < r. Fix s ∈ (0, T ] and take s′ ∈ [0, s); consider Xs′(t) :=
X(t; s′, l(s′), 0); then the function t 7→ V (t,Xs′(t)) is nonincreasing by dynamic
programming principle (see Theorem 1.2.20), because u is positive. Moreover,
looking at the proof of Proposition 1.2.5, we see that Xs′(s) > l(s), due to the
assumption β < r, and that Xs′(s) ↓ l(s), when s′ ↑ s, due to the continu-
ous dependence on the initial datum s′ of the state equation. Consider also
the value function along L0 in the time interval [s′, s]; by Lemma 1.2.15 it is
continuous, so that

lim sup
x↓l(s)

V (s, x) = lim sup
s′↑s

V (s,Xs′(s)) ≤ lim sup
s′↑s

V (s′, l(s′)) = V (s, l(s)),

where the inequality holds since t 7→ V (t,Xs′(t)) is nonincreasing and the last
equality holds since the value function is continuous along L0; therefore the
claim is proved for s ∈ (0, T ].
In the case s = 0, we can argue as well as before by extending also for s < 0
the problem with k = 0, setting the solvency level l(s) ≡ l0 and defining the
value function in obvious way.

Case 2: β = r. In this case we proceed directly with estimates on the
state equation. Let x > l(s), ε > 0 and let D be the density of P with re-
spect to the probability measure P̃ given by the Girsanov transformation (see
Theorem A.1.1), which belongs to Lp(Ω, P̃), for any p ∈ [1,+∞). For any
θ(·) ∈ Θad(s, x), t ∈ [s, T ], we have, by Hölder and Markov inequalities

P{X(t; s, x, θ(·))− l(t) > ε} = E
[
I{X(t;s,x,θ(·))−l(t)>ε}

]
= Ẽ

[
I{X(t;s,x,θ(·))−l(t)>ε}D

]
≤

(
Ẽ[D2]

)1/2 (
Ẽ
[
I{X(t;s,x,θ(·))−l(t)>ε}

])1/2

=
(
Ẽ[D2]

)1/2 (
P̃{X(t; s, x, θ(·))− l(t) > ε}

)1/2

≤

(
Ẽ[D2]

)1/2

ε1/2

(
Ẽ [X(t; s, x, θ(·))− l(t)]

)1/2
.

Let us estimate Ẽ [X(t; s, x, θ(·))− l(t)]; we have, arguing as in the proof of
Proposition 1.2.5, dẼ[X(t)] = rX(t)dt+ ktdt,

Ẽ[X(s)] = x,

and dl(t) = rl(t)dt+ ktdt,

l(s) = l(s),
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so that
Ẽ [X(t; s, x, θ(·))− l(t)] = (x− l(s)) er(t−s).

Take a sequence (εn, δn) such that εn > 0, δn > 0. We have shown that, for any
n ∈ N, we can find xn such that, for every n ∈ N,

• l(s) < xn < l(s) + 1/n;

• P{X(t; s, xn, θ(·))− l(t) > εn} < δn, for every θ(·) ∈ Θad(s, xn), t ∈ [s, T ].

Moreover we can estimate E
[
(X(t; s, x, θ(·))− l(t))2

]
uniformly with respect

to t, x, θ(·) varying in the sets [s, T ], [l(s), l(s) + 1], Θad(s, x); indeed, by the
Dynkin’s formula applied to the function ψ(t, x) = (x− l(t))2, we have

E
[
(X(t; s, x, θ(·))− l(t))2

]
= (x− l(s))2 + E

[∫ t

s

(
− 2(X(r)− l(r))l′(r)

+ 2(X(r)− l(r)) ((r + σλθ(r))X(r) + kr) + σ2θ(r)2X(r)2
)
dr

]

and the right-handside is dominated by a constant C (not dependent on t ∈
[s, T ], x ∈ [l(s), l(s) + 1], θ(·) ∈ Θad(s, x)) by mean-square continuity of X(·)
and since θ(·) takes values in [0, 1]. Thus we can split the expectation and write,
again by Hölder’s inequality,

E[X(t; s, xn, θ(·))− l(t)]

≤ εn + E
[
I{X(t;s,xn,θ(·))−l(t)>εn}(X(t; s, xn, θ(·))− l(t))

]
≤ εn + Cδ1/2

n ,

for some constant C not dependent on n. Hence, for such a point xn > l(s), we
have, by concavity and monotonicity of u, f and by Jensen’s inequality,

V (s, xn) ≤
∫ T

s
u(εn + Cδ1/2

n )dt+ f(εn + Cδ1/2
n + l(T )).

If we take (εn, δn) such that (εn, δn) → 0 when n → ∞, the right hand-side in
the previous inequality tends to V (s, l(s)) and so the claim is proved. �

Lemma 1.2.18. Let u(0) ≥ 0; then the value function is continuous on C.

Proof. It remains only to prove the continuity at the boundary, as in the
interior part it was proved in Lemma 1.2.16. By Lemma 1.2.17 we know that

V (s, l(s) + ε) ↓ V (s, l(s)), for any s ∈ [0, T ],
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(when ε ↓ 0) and moreover, by Lemma 1.2.15, we know that s 7→ V (s, l(s)) is
continuous. Therefore by Dini’s lemma, V (·, l(·) + ε) → V (·, l(·)) uniformly
when ε ↓ 0. This convergence, togheter with the continuity of s 7→ V (s, l(s)),
is enough to prove the claim. �

In order to conclude we have to remove the assumption u(0) ≥ 0:

Proposition 1.2.19. The value function is continuous on C.

Proof. Let u(0) = −c < 0; consider the function uc(·) := u(·) + c and let V c

be the value function associated with this utility function; by Lemma 1.2.18 V c

is continuous on C. Moreover V (s, x) = V c(s, x) − c
ρ(e−ρs − e−ρT ) and so the

claim follows. �

1.2.5 Dynamic programming

We study the optimization problem following a dynamic programming ap-
proach. The core of the dynamic programming is the so-called dynamic pro-
gramming principle, which in our context can be stated as follows.

Theorem 1.2.20. The value function V satisfies the dynamic programming equa-
tion, i.e. for every s ∈ [0, T ], x ∈ [l(s),+∞) and for any family of stopping times(
τ θ(·)

)
θ(·)∈Θad(s,x)

taking values in [s, T ], the following functional equation holds
true:

V (s, x) = sup
θ(·)∈Θad(s,x)

E

[∫ τθ(·)

s
e−ρtU (t,X (t; s, x, θ(·))) dt+

V
(
τ θ(·), X

(
τ θ(·); s, x, θ(·)

))]
. (1.30)

Proof. Actually we give here only a heuristic proof.1 For simplicity of
notation we suppress the possible dependence of τ on θ(·), i.e. we will write

1The proof is only heuristic because of the definition of the strategy θ̄; this is a pointwise
definition and it gives trouble about measurability, because of the uncountability of the space
Ω.
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simply τ to intend τ θ(·). Of course we have

V (s, x) = sup
θ(·)∈Θad(s,x)

E
[∫ T

s
e−ρtU(t,X(t; s, x, θ(·)))dt

]

= sup
θ(·)∈Θad(s,x)

E

[∫ τ

s
e−ρtU(t,X(t; s, x, θ(·)))dt

+
∫ T

τ
e−ρtU(t,X(t; s, x, θ(·)))dt

]

= sup
θ(·)∈Θad(s,x)

E

[∫ τ

s
e−ρtU(t,X(t; s, x, θ(·)))dt

+ E
[∫ T

τ
e−ρtU(t,X(t; s, x, θ(·)))dt

∣∣∣Fsτ ]
]

= sup
θ(·)∈Θad(s,x)

E
[∫ τ

s
e−ρtU(X(t; s, x, θ(·)))dt+ J (τ,X (τ ; s, x, θ(·)))

]
≤ sup

θ(·)∈Θad(x)
E
[∫ τ

s
e−ρtU(X(t; s, x, θ(·)))dt+ V (τ,X (τ ; s, x, θ(·)))

]
.

Conversely, for fixed ε > 0, for any (s′, y) such that s′ ∈ [s, T ], y ≥ l(s′), let
θεs′,y(·) a control ε-optimal for the pair (s′, y), i.e. J(s′, y; θεs′,y(·)) ≥ V (s′, y)− ε.
Let θ(·) ∈ Θad(s, x) and define the control

θ̄(t) =

θ(t), if t ∈ [s, τ ] ,

θετ,X(τ ;s,x,θ(·))(t), if t ∈ [τ, T ] .

Of course we have θ̄(·) ∈ Θad(s, x), so that

V (s, x) ≥ J(s, x; θ̄(·)) = E

[∫ τ

s
e−ρtU(t,X(t; s, x, θ(·)))dt

+
∫ T

τ
e−ρtU

(
t,X

(
t; τ,X(τ ; s, x, θ(·)), θετ,X(τ ;s,x,θ(·))

))
dt

]

= E

[∫ τ

s
e−ρtU(t,X(t; s, x, θ(·))dt

+ E
[∫ T

τ
e−ρtU

(
t,X

(
t; τ,X(τ ; s, x, θ(·)), θετ,X(τ ;s,x,θ(·))

))
dt
∣∣∣Fsτ ]

]

= E
[∫ τ

s
e−ρtU(t,X(t;T, x, θ(·)))dt+ J

(
τ,X(τ ; s, x, θ(·)); θετ,X(τ ;s,x;θ(·))(·)

)]
≥ E

[∫ τ

s
e−ρtU(t,X(t; s, x, θ(·)))dt+ V (τ,X(τ ; s, x, θ(·)))

]
− ε.

By taking the supremum over all θ(·) ∈ Θad(s, x) and by arbitrariness of ε, we
get the desired inequality and so the claim. �
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Remark 1.2.21. We did not give a satisfactory proof of Theorem 1.2.20, but we
want to comment about it: in [Yong, Zhou; 1999], Chapter 4, Theorem 3.3, it
is contained a proof of this statement when the value function is continuous:
therein the state is unconstrained, but the argument can be easily adapted to
our case. A general proof of this statement, where the continuity of the value
function is not required, is contained in [Soner; 2004]: it requires a measurable
selection result.

However, we want to point out that we have proved the continuity of our
value function using in Lemma 1.2.13 and in Lemma 1.2.17 only the inequality

V (s, x) ≥
∫ s′

s
e−ρtU(t,X(t; s, x, 0))dt+ V (s′, X(s′; s, x, 0)),

0 ≤ s ≤ s′ ≤ T, x ≥ l(s),

which can be proved without any measurable selection argument, because in
this case we are on a deterministic trajectory. Therefore we can use the ar-
gument of [Yong, Zhou; 1999] in order to prove the dynamic programming
principle without loss of generality. �

We want to write the HJB equation associated to our problem. To this aim
we introduce the following Hamiltonian function

H (s, x, p,Q) := sup
θ∈[0,1]

Hcv (s, x, p,Q; θ) , s ∈ [0, T ], x ∈ [l (s) ,+∞), p,Q ∈ R,

where

Hcv (s, x, p,Q; θ) := e−ρsU (s, x) + [(r + σλθ)x+ ks] p+
1
2
σ2θ2x2Q. (1.31)

Formally the HJB equation on the domain C associated with our problem is−vs (s, x)−H (s, x, vx(s, x), vxx(s, x)) = 0, (s, x) ∈
◦
C,

v(T, x) = f(x), x ∈ [l(T ),+∞);
(1.32)

setting

H0
cv (x, p,Q; θ) := σλθxp+

1
2
σ2θ2x2Q,

we can write

H(s, x, p,Q) = e−ρs U (s, x) + (rx+ ks) p+ sup
θ∈[0,1]

H0
cv (x, p,Q; θ) .

To calculate the Hamiltonian we can observe that the function

H0
cv (x, p,Q; θ) = σλθxp+

1
2
σ2θ2x2Q,
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when p ≥ 0, Q ≤ 0, p2 + Q2 > 0, has a unique maximum point over θ ∈ [0, 1]
given by

θ∗ =
(
− λp

σxQ

)
∧ 1

(where we mean that, for Q = 0, it is θ∗ = 1) and

H0 (x, p,Q) := sup
θ∈[0,1]

H0
cv (x, p,Q; θ) =

−
λ2p2

2Q , if θ∗ < 1,

σλxp+ 1
2σ

2x2Q, if θ∗ = 1.

When p = Q = 0 each θ ∈ [0, 1] is a maximum point ofH0
cv andH0 (x, 0, 0) = 0.

1.2.6 The HJB equation: viscosity solutions

We cannot hope to have explicit solutons for (1.32) in general. Moreover, since
the diffusion coefficient can vanish, the equation is degenerate and therefore
the theory by Krylov & Evans on parabolic PDEs cannot be applied to get ex-
istence of regular solutions (see Section 0.1). So we use the viscosity approach
to the equation.

Let us consider (1.32) on C. In (1.12) we have introduced the lateral bound-
ary

∂∗C := {(s, x) ∈ C | s ∈ [0, T ), x = l(s)};

let us introduce also the set

Int∗(C) := Int(C) ∪ {{0} × (l0,+∞)}.

Next we give the definition of viscosity solution to (1.32) (for a survey on vis-
cosity solutions of second order PDEs, see [Crandall, Ishii, Lions; 1992]).

Definition 1.2.22. (i) A continuous function v : C → R is called a viscosity
subsolution of the HJB equation (1.32) on Int∗(C) ∪ ∂∗C if

v(T, x) ≤ f(x), x ∈ [l(T ),+∞),

and if, for any couple ψ ∈ C2(C; R) and (sM , xM ) ∈ Int∗(C) ∪ ∂∗C such that
(sM , xM ) is a local maximum for v − ψ on (C), we have

−ψs (sM , xM )−H (sM , xM , ψx(sM , xM ), ψxx(sM , xM )) ≤ 0.

(ii) A continuous function v : C → R is called a viscosity supersolution of the

HJB equation (1.32) on Int∗(C) if

v(T, x) ≥ f(x), x ∈ [l(T ),+∞),
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and if, for any couple ψ ∈ C2(C; R) and (sM , xM ) ∈ Int∗(C) such that (sM , xM )
is a local minimum for v − ψ on Int∗(C), we have

−ψs (sM , xM )−H (sM , xM , ψx(sM , xM ), ψxx(sM , xM )) ≤ 0.

(iii) A continuous function v : C → R is called a constrained viscosity solution

to the HJB equation (1.32) on C if it is a viscosity subsolution on Int∗(C) ∪ ∂∗C
and a viscosity supersolution on Int∗(C). �

Now we can state and prove the following result.

Theorem 1.2.23. The value function V is a constrained viscosity solution to the HJB
equation (1.32) on C.

Proof. (i) Here we prove that V is a viscosity supersolution on Int∗(C). First
of all notice that V (T, x) = f(x), for x ≥ l(T ), so that the terminal boundary
condition is satisfied. Now let ψ ∈ C2

(
C; R

)
and let (sm, xm) ∈ Int∗(C) be such

that (sm, xm) is a local minimum point for V −ψ. For proving the supersolution
property on Int ∗ (C) we can assume without loss of generality that

V (sm, xm) = ψ(sm, xm), V (s, x) ≥ ψ(s, x), ∀(s, x) ∈ C. (1.33)

Let θ ∈ [0, 1] and set X (t) := X (t; sm, xm, θ). Let us define

τ θ = inf {t ∈ [sm, T ] | (t,X (t)) /∈ Int∗(C)} ,

with the convention inf ∅ = T ; of course τ θ is a stopping time and, by conti-
nuity of trajectories, we have τ θ > sm almost surely. By (1.33) we get, for any
t ∈ [sm, τ θ],

V (t,X (t))− V (sm, xm) ≥ ψ (t,X (t))− ψ (sm, xm) .

Let h ∈ (sm, T ] and set τ θh := τ θ ∧ h; by the dynamic programming principle
(1.30) we get, for any θ ∈ [0, 1],

0 ≥ E

[∫ τθh

sm

e−ρtU (t,X (t)) dt+ V (τ θh , X(τ θh))− V (sm, xm)

]

≥ E

[∫ τθh

sm

e−ρtU (t,X (t)) dt+ ψ(τ θh , X(τ θh))− ψ (sm, xm)

]
.

(1.34)

Applying the Dynkin’s formula to the function ψ (t, x) with the process X (t),
we get

E
[
ψ(τ θh , X(τ θh))− ψ (sm, xm)

]
= E

[∫ τθh

sm

[
ψs(t,X(t))

+ [(r + σλθ)X(t) + kt]ψx(t,X(t)) +
1
2
σ2θ2X(t)2ψxx(t,X(t))

]
dt

]
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and thus by (1.34) we have

0 ≥ E

[∫ τθh

sm

[
e−ρtU (t,X (t)) dt+ ψs(t,X(t)) + [(r + σλθ)X(t) + kt]ψx(t,X(t))

+
1
2
σ2θ2X(t)2ψxx(t,X(t))

]
dt

]
;

Thus, for any θ ∈ [0, 1], we get

0 ≥ E

[∫ τθh

sm

[ψs(t,X(t)) +Hcv(t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ)] dt

]
;

thus we can write, for θ ∈ [0, 1],

0 ≥ E

[
1

h− sm

∫ h

sm

I[sm,τθ](t)
[
ψs(t,X(t))

+Hcv(t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ)
]
dt

]
;

now, by the continuity properties of ψ andHcv, passing to the limit for h→ sm,
we get by dominated convergence

−ψs(sm, xm)−Hcv
(
sm, xm, ψ

′ (sm, xm) , ψ′′ (sm, xm) ; θ
)
≥ 0.

By the arbitrariness of θ we have proved that V is a supersolution on Int∗(C).

(ii) Here we prove that V is a viscosity subrsolution on Int∗(C) ∪ ∂∗C. No-
tice again that V (T, x) = f(x), for x ≥ l(T ), so that the terminal boundary
condition is satisfied. Let ψ ∈ C2 (C; R) and (sM , xM ) ∈ Int∗(C) ∪ ∂∗C such
that (sM , xM ) is a local maximum point for V −ψ. For proving the subsolution
property we can assume, without loss of generality, that

V (sM , xM ) = ψ(sM , xM ), V (s, x) ≤ ψ(s, x), ∀(s, x) ∈ C. (1.35)

We must prove that

−ψs(sM , xM )−H (sM , xM , ψx(sM , xM ), ψxx(sM , xM )) ≤ 0.

Let us suppose by contradiction that this relation is false. Then there exists
ν > 0 such that

0 < ν < −ψs(sM , xM )−H (sM , xM , ψx(sM , xM ), ψxx(sM , xM ))

The functions U,ψ,H are continuous. Therefore there exists ε > 0 such that, if
(t, x) ∈ B := B((sM , xM ), ε) ∩ C, we have, for any θ ∈ [0, 1],

0 <
ν

2
< −ψs(s, x)−H (s, x, ψx(s, x), ψxx(s, x))

≤ −ψs(s, x)−Hcv (s, x, ψx(s, x), ψxx(s, x); θ) (1.36)
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Take any control strategy θ(·) ∈ Θad(sM , xM ) and letX(t) := X(t; sM , xM , θ(·)).
Define the stopping time

τ θ := inf {t ∈ [sM , T ] | (t,X (t)) /∈ B} ,

with the convention inf ∅ = T ; of course, by continuity of trajectories, we have
τ θ > sM almost surely. Now we can apply (1.36) to X (t), for t ∈ [sM , τ θ],
getting

0 <
ν

2
< −ψs(t,X(t))−Hcv (t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ(t)) ; (1.37)

integrating (1.37) on [sM , τ θ] and taking the expectations we get

0 <
ν

2
E
[
τ θ − sM

]
≤ −E

[∫ τθ

sM

ψs(t,X(t)) +Hcv (t,X(t), ψx(t,X(t)), ψxx(t,X(t)) ; θ(t)) dt

]
;

we claim that there exists a constant δ > 0, independent of the control θ(·) ∈
Θad(sM , xM ), such that ν

2 E[τ θ − sM ] ≥ δ; we will prove this fact in Lemma
1.2.24. Thus, assuming that, we can write for every θ(·) ∈ Θad(sM , xM )

δ ≤ −E

[∫ τθ

sM

(ψs(t,X(t)) +Hcv(t,X(t), ψx(t,X(t)), ψxx(t,X(t)); θ(t))) dt

]
.

Appliyng the Dynkin formula to X on [sM , τ θ] we get

ψ(sM , xM )− E
[
ψ(τ θ, X(τ θ))

]
≥ δ + E

[∫ τθ

sM

e−ρtU(t,X(t)) dt

]
;

from (1.35) we get

V (sM , xM )− E
[
V (τ θ, X(τ θ))

]
≥ δ + E

[∫ τθ

sM

e−ρtU(t,X(t)) dt

]
;

on the other hand, if we choose a δ/2 optimal control θ(·) ∈ Θad(sM , xM ), we
get

V (sM , xM )− δ/2 ≤ E

[∫ τθ

sM

e−ρtU(t,X(t)) dt+ V (τ θ, X(τ θ))

]
.

So a contradiction arises and we have the claim. �

Lemma 1.2.24. For any θ(·) ∈ Θad(sM , xM ) let τ θ be the stopping time defined in
the part (ii) of the proof of Theorem 1.2.23. There exists a constant δ > 0 independent
of θ(·) ∈ Θad(sM , xM ) such that

E
[
τ θ − sM

]
≥ δ.
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Proof. For θ(·) ∈ Θad(sM , xM ), let X(t) := X(t; sM , xM , θ(·)) and apply the
Dynkin formula to the process X(·) with ϕ(t, x) = (t − sM )2 + (x − xM )2 on
[sM , τ θ]; we get

E
[(
τ θ − sM

)2
+
(
X(τ θ)− xM

)2
]

= E

[∫ τθ

sM

[
2(t−sM )+2(X(t)−xM ) [(r + σλθ(t))X(t) + kt]+σ2θ(t)2X(t)2

]
dt

]
.

So, considering that θ(t) ∈ [0, 1] and that for every t ∈ [sM , τ θ] we have
|X(t)| ≤ xM + ε, we can find K > 0 such that

(T − sM )2 ∧ ε2 ≤ P{τ θ = T}(T − sM )2 + P{τ θ < T}ε2

≤ E

[∫ τθ

sM

K dt

]
= K E

[
τ θ − sM

]
;

this estimate does not depend on θ(·) and therefore the claim is proved. �

Remark 1.2.25. In the definition 1.2.22 of constrained viscosity solution we
could replace the request that V − ψ has a local maximum (resp. minimum)
at (sM , xM ) (resp. (sm, xm)) with the request that it has a right (with respect
to the time variable) local maximum (resp. local minimum) at (sM , xM ) (resp.
(sm, xm)), i.e., for some ε > 0,

V (sM , xM )− ψ(sM , xM ) ≥ V (s, x)− ψ(s, x),

for (s, x) ∈
{

[sM , sM + ε]× [xM − ε, xM + ε]
}
∩ C

(resp. the analogous for the minimum). Then we could prove exactly as in the
proof of Theorem 1.2.23 that V is a constrained viscosity solution also in this
stronger sense2.

1.2.7 The HJB equation: comparison and uniqueness

The definition 1.2.22 of constrained viscosity solution which we have given is
the natural version in the parabolic case of a quite standard definition of con-
strained viscosity solution for HJB elliptic equations arising in optimal control
problems with infinite time horizon and state constraints. In particular the
condition of viscosity subsolution on ∂∗C plays the role of a boundary con-
dition. This boundary condition was introduced by Soner in [Soner; 1986]

2The test functions ψ on which testing the HJB equation are in this case more than in the case
of the definitions 1.2.22.
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in the deterministic case. In the stochastic case it was used by Katsoulakis
in [Katsoulakis; 1994], Zariphopoulou in [Zariphopoulou; 1994] and Ishii &
Loreti in [Ishii, Loreti; 2002]. For the study of viscosity solutions of second or-
der fully nonlinear equations with boundary conditions see [Ishii, Lions; 1990].
In particular in [Soner; 1986] and [Ishii, Loreti; 2002] this boundary condition
turns out to be strong enough to guarantee, under a cone-like condition for the
state equation at the boundary (see assumption (A4) in [Ishii, Loreti; 2002]),
the uniqueness for the solution to the HJB equation. The natural version of
this cone-like condition in the parabolic context holds true in our case when
β < r. However, in the cited references the optimal control problem is time-
homogeneous and over an infinite time-horizon, so that the associated PDE
problem is elliptic. Our problem is instead strongly time-dependent, because
both the state equation and the state constraint depend on time, and this leads
to a parabolic PDE problem, so that we cannot use directly such results. Al-
though we believe that they can be adapted to our parabolic case, we do not
analyze the uniqueness topic in the case β < r, since we consider this sec-
ondary for our aim. Instead we treat the case β = r: in this case the fact that
the boundary is absorbing yields a Dirichlet-type boundary condition and we
can use the techniques and some results contained [Fleming, Soner; 1993].

So let β = r; as we have shown in Remark 1.2.6, in this case the bound-
ary is absorbing and the only admissible strategy for the initial point (t, l(t)),
t ∈ [0, T ), is the null one; thus in this case the value function is explicitely com-
putable on the lateral boundary ∂∗C, i.e. V (t, l(t)) = g(t), where g : [0, T ]→ R
is a known function.

Notice that, if u, f are bounded, then V is obviously bounded. Since this
assumption simplifies the study, we will assume it. Taking into account Propo-
sition 1.2.9, it is straightforward to show that in this case V is uniformly con-
tinuous.

Theorem 1.2.26. Let β = r, let u be Lipschitz continuous and let u, f be bounded.
Then the value function V is the unique bounded and uniformly continuous viscosity
solution to (1.32) on Int∗(C) which satisfies the boundary condition v(s, l(s)) = g(s),
s ∈ [0, T ].

Proof. We will give two proofs of the Theorem. We call main proof the
first one, because it is suitable to be generalized to the case of sublinear coeffi-
cients for the state equation for the control problem. We call alternative proof
the second one, which is strongly related to the linear structure of the state
equation of the control problem. We refer to Remark 1.2.27 for a more detailed
discussion.
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Main proof.
Step 1. First we transform the equation in order to eliminate the term

corresponding to the drift of the state equation and make nicer (not time-
dependent) the constraint. So let v be a bounded and uniformly continuous
viscosity solution to (1.32) on Int∗(C) and define

w : [0, T ]× [l0,+∞)→ R, w(s, x) := v (s, h(s, x)) ,

where

h(s, x) := xers +
∫ s

0
kt er(s−t)dt.

It is straightforward to prove, taking into account that l′(s) = rl(s) + ks, that v
is a bounded and uniformly continuous viscosity solution to (1.32) on Int∗(C)
with lateral boundary condition v(s, l(s)) = g(s), s ∈ [0, T ], and terminal
boundary condition v(T, x) = f(x), x ≥ l(T ), if and only if w is a bounded vis-
cosity solution on [0, T )× (l0,+∞), with lateral boundary condition w(s, l0) =
g(s), s ∈ [0, T ], and terminal boundary condition w(T, x) = f (h(T, x)), x ≥ l0,
of the equation

−us(s, x)− H̃(s, x, ux(s, x), uxx(s, x)) = 0, (1.38)

where

H̃(s, x, p,Q) := e−ρsU (s, h(s, x)) +H0(s, x, p,Q),

s ∈ [0, T ), x ∈ (l0,+∞), p, Q ∈ R.

Therefore uniqueness of bounded and uniformly continuous viscosity solu-
tions for (1.32) on Int∗(C) holds with lateral boundary condition v(s, l(s)) =
g(s), s ∈ [0, T ], and terminal boundary condition v(T, x) = f(x), x ≥ l(T ),
if and only if uniqueness of bounded and uniformly continuous viscosity so-
lutions for (1.38) on [0, T ) × (l0,+∞) holds with lateral boundary condition
w(s, l0) = g(s), s ∈ [0, T ], and terminal boundary conditionw(T, x) = f (h(T, x)),
x ≥ l0.

Step 2. Set

O := [0, T )× (l0,+∞), ∂∗O :=
{

(s, l0) | s ∈ [0, T )
}
∪
{

(T, x) | x ∈ [l0,+∞)
}
.

We want to prove that, if w, w̃ are respectively a viscosity subsolution and a
viscosity supersolution to (1.38) on O such that

sup
∂∗O

(w − w̃) ≤ 0, (1.39)
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then
sup
Ō

(w − w̃) ≤ 0,

that is enough for proving the claim. So we suppose on the countrary that

sup
Ō

(w − w̃) ≥ 6δ > 0 (1.40)

and prove that this leads to a contradiction. Thanks to (1.40) and to the conti-
nuity of w, w̃, we can find (t̄, x̄) ∈ (0, T )× (l0,+∞) such that

w(s̄, x̄)− w̃(s̄, x̄) ≥ 5δ. (1.41)

Step 3. Due to the assumption on u, we get that the function

(s, x) 7→ e−ρsU(s, h(s, x))

is Lipschitz continuous with respect to x uniformly in s ∈ [0, T ]. Therefore it is
straightforward to check that a result like Lemma V.7.1 in [Fleming, Soner; 1993]
holds true in our case (with the unbounded domain), due to the assumption
on u and to the linear structure of the drift coefficient and the diffusion coef-
ficient in our equation. Indeed we could show, following the proof of Lemma
V.7.1 in [Fleming, Soner; 1993], that there exists C > 0 such that∣∣∣ H̃(s, y, α(x− y)− ε0

x+ y + 1
, B
)
− H̃

(
s, x, α(x− y) +

ε0

x+ y + 1
, A
)∣∣∣

≤ C
[
α|x− y|2 + |x− y|+ ε0 + ε2

0/α
]
, (1.42)

for every (s, x, y) ∈ (0, T )× (l0,+∞)2, α > 0, ε0 > 0, and A,B ∈ R such that(
A 0
0 −B

)
≤ 3α

(
1 −1
−1 1

)
+

ε0 + ε2
0/α

(x+ y + 1)2

(
1 1
1 1

)
,

in the sense of the usual partial order in the space of simmetrix 2× 2 matrices
S(R2).

Step 4. Let us define, for ρ0 > 0,

wρ0(s, x) := w(s, x)− ρ0

s
, (s, x) ∈ (0, T ]× [l0,+∞).

Since
d

ds

(
−ρ0

s

)
= ρ0/s

2 > 0,

we get that wρ0 is a viscosity solution to (1.38) on (0, T )× (l0,+∞).
Step 5. For α, ε0, ρ0, β0 > 0, let us consider the function

Φ(s, x, y) := wρ0(s, x)− w̃(s, y)− α

2
|x− y|2 − ε log (x+ y + 1) + β0(s− T ),
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defined for (s, x, y) ∈ (0, T ]× [l0,+∞)2. Since w, w̃ are bounded, for any α > 0,
β0 > 0, ε0 > 0, ρ0 > 0 there exists a maximum point (ŝα, x̂α, ŷα) ∈ (0, T ] ×
[l0,+∞)2 for Φ on (0, T ]× [l0,+∞)2. We claim that there exist α∗, β0, ε

∗, ρ0 > 0
such that

(ŝα, x̂α, ŷα) ∈ (0, T )× (l0,+∞)× (l0,+∞), ∀α ≥ α∗, ∀ε0 ≤ ε∗. (1.43)

Take
β0 = δ/T, ε∗ = δ/2x̄, ρ0 = δ/s̄,

and let (s̄, x̄) ∈ (0, T ) × (l0,+∞) be the point verifying (1.41); then we have,
for any α > 0,

Φ(s̄, x̄, x̄) ≥ 2δ. (1.44)

By uniform continuity of w̃, w, there exists η > 0 such that, for every s ∈ [0, T ],
x, y ∈ [l0,+∞),

|x− y|2 < η =⇒ |w̃(s, x)− w̃(s, y)| < δ, |w(s, x)− w(s, y)| < δ.

Let K = ‖w̃‖∞ + ‖w‖∞, α0 = 2K
η . Let α ≥ α0; then, for any (s, x, y) ∈ (0, T ]×

[l0,+∞)2 such that |x− y|2 ≥ η, we have

Φ(s, x, y) = wρ0(s, x)− w̃(s, y)− α

2
|x− y|2 − (|x|+ |y|) + β(s− T ) ≤ 0;

therefore, due to (1.44), we must have |x̂α − ŷα| < η. Now, if ŝα = T , taking
into account (1.39) we have

Φ(ŝα, x̂α, ŷα) ≤ w(T, x̂α)− w̃(T, ŷα)

≤ w(T, x̂α)− w̃(T, x̂α) + δ ≤ δ,

which contradicts (1.44). Then suppose that ŝα ∈ (0, T ) and that x̂α = l0. In
the same way we have

Φ(ŝα, l0, ŷα) ≤ w(T, x̂α)− w̃(T, ŷα)

≤ w(ŝα, l0)− w̃(ŝα, l0) + δ ≤ δ,

which again contradicts (1.44). We get the same contradiction if we suppose
ŷα = l0, so that we can conclude that (1.43) holds for suitable α∗, β0, ε

∗, ρ0 > 0.
Step 6. Let α∗, β0, ε

∗, ρ0 > 0 as above and take

ε0 = min
{
ε∗,

β0

2C

}
,

where C is the constant appearing in (1.42). Let α ≥ α0, and consider the
function

ϕ(s, x, y) :=
α

2
|x− y|2 + ε0(x+ y)− β0(s− T ), (s, x, y) ∈ (0, T )× (l0,+∞)2.
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Since

wρ0(ŝα, x̂α)−w̃(ŝα, ŷα)−ϕ(ŝα, x̂α, ŷα) = max
[0,T ]×[l0,+∞)2

(
wρ0(s, x)−w̃(s, y)−ϕ(s, x, y)

)
,

with (ŝα, x̂α, ŷα) ∈ (0, T ) × (l0,+∞)2, by Crandall-Hishii maximum principle
(see Theorem V.6.1 in [Fleming, Soner; 1993]), there exist a, b ∈ R, A,B ∈ R
such that

b− a = β0,

(a, α(x̂α − ŷα) + ε0, A) ∈ cD+(1,2)wρ0(ŝα, x̂α),

(b, α(x̂α − ŷα)− ε0, B) ∈ cD−(1,2)w̃(ŝα, ŷα), A 0

0 −B

 ≤ 3α

 1 −1

−1 1

+
ε0 + ε2

0/α

(x+ y + 1)2

 1 1

1 1

 ,

where the sets cD+(1,2)wρ0(ŝα, x̂α), cD−(1,2)w̃(ŝα, x̂α) are defined as in Defini-
tion V.4.2 in [Fleming, Soner; 1993]. Viscosity properties of wρ0 and w̃ yield
(see Section V.4 in [Fleming, Soner; 1993])

−a− H̃
(
ŝα, x̂

α, α(x̂α − ŷα)− ε0

x̂α + ŷα + 1
, A

)
≤ 0

and

−b− H̃
(
ŝα, ŷ

α, α(x̂α − ŷα)− ε0

x̂α + ŷα + 1
, B

)
≥ 0.

Subtracting and taking into account (1.42) we get

β0 ≤ H̃
(
ŝα, ŷα, α(x̂α − ŷα)− ε0

x̂α + ŷα + 1
, B

)
− H̃

(
ŝα, x̂α, α(x̂α − ŷα)− ε0

x̂α + ŷα + 1
, A

)
≤ C

[
α|x̂α − ŷα|2 + |x̂α − ŷα|+ ε0 + ε2

0/α
]
. (1.45)

Step 7. In the same setting of the previous step, set

h(r) := sup{|w̃(s, x)− w̃(s, y)| | s ∈ [0, T ], x, y ∈ [l0,+∞), |x− y|2 ≤ r};

of course h is increasing and, by uniform continuity of w̃, limr↓0 h(r) = 0;
moreover, since w̃ is bounded, also h is bounded by a constant Ch. Then for
any x, y ∈ [l0,+∞) we have

|w̃(s, x)− w̃(s, y)| ≤ h(|x− y|2).
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Suppose x̂α ≤ ŷα; since (ŝα, x̂α, ŷα) maximizes Φ over (0, T ] × [l0,+∞)2, we
have

Φ(ŝα, x̂α, ŷα) = wρ0(ŝα, x̂α)− w̃(ŝα, ŷα)− α

2
|x̂α − ŷα|2

−ε0 log (x̂α + ŷα + 1) + β0(t̂α − T )

≥ wρ0(ŝα, x̂α)− w̃(ŝα, x̂α)− ε0 log (2x̂α + 1) + β0(ŝα − T ),

so that

α|x̂α − ŷα|2 ≤ 2|w̃(ŝα, x̂α)− w̃(ŝα, ŷα)| ≤ 2h(|x̂α − ŷα|2).

Similarly, if x̂α ≤ ŷα, we have

Φ(t̂α, x̂α, ŷα) = wρ0(ŝα, x̂α)− w̃(ŝα, ŷα)− α

2
|x̂α − ŷα|2

−ε0 log (x̂α + ŷα + 1) + β0(t̂α − T )

≥ wρ0(ŝα, ŷα)− w̃(ŝα, ŷα)

−ε0 log (2ŷα + 1) + β0(ŝα − T ),

getting again (and so for any x̂α, ŷα)

α|x̂α − ŷα|2 ≤ 2|w̃(ŝα, x̂α)− w̃(ŝα, ŷα)| ≤ 2h(|x̂α − ŷα|2). (1.46)

This implies
α|x̂α − ŷα|2 ≤ Ch,

which togheter with (1.46) yields

α|x̂α − ŷα|2 + |x̂α − ŷα| ≤ 2h(Ch/α) + (Ch/α)1/2. (1.47)

We can put (1.47) in (1.45) and pass to the limit for α→ +∞ getting

β0 ≤ Cε0 ≤ β0/2.

Since β0 > 0, this yields a contradiction and the proof is complete. �

Alternative proof.
Case 1. Let us suppose l0 > 0. After the transformation of step 1 of the

main proof, we operate a further transormation on the equation setting, for
s ∈ [0, T ], x ∈ [log l0,+∞),

z(s, x) := w (s, ex) .

Then it is straightforward to show that w is a viscosity solution to (1.38) on
[0, T ) × (l0,+∞), with lateral boundary condition w(s, l0) = g(s), s ∈ [0, T ],
and terminal boundary condition w(T, x) = f(h(T, x)), x ≥ l0, if and only if
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z is a viscosity solution on [0, T ) × (log l0,+∞), with lateral boundary condi-
tion z(s, log l0) = g(s), s ∈ [0, T ], and terminal boundary condition z(T, x) =
f (h(T, ex)), x ∈ [log l0,+∞), of

−us(s, x)−Hlog(s, x, ux(s, x), uxx(s, x)) = 0, (1.48)

where

Hlog(s, x, p,Q) := sup
θ∈[0,1]

[
e−ρtU (s, h(s, ex)) +

1
2
σ2θ2Q+

(
σλθ − 1

2
σ2θ2

)
p

]
.

Thus uniqueness of bounded and continuous viscosity solutions holds for
(1.38) on [0, T ) × (l0,+∞), with lateral boundary condition w(s, l0) = g(s)
and terminal boundary condition w(T, x) = f(h(T, x)), if and only unique-
ness of bounded and continuous viscosity solutions holds for (1.48) on [0, T )×
(log l0,+∞), with lateral boundary condition z(s, log l0) = g(s), s ∈ [0, T ], and
terminal boundary condition z(T, x) = f(h(T, ex)), x ≥ log l0. The uniqueness
for the latter problem can be proved with a slight modification of the proof of
Theorem V.9.1 in [Fleming, Soner; 1993].

Case 2. Let us suppose l0 = 0. In this case with the same transformation
we get that w is a viscosity solution to (1.38) on [0, T ) × (l0,+∞), with lateral
boundary condition w(s, l0) = g(s), s ∈ [0, T ], and terminal boundary con-
dition w(T, x) = f(h(t, x)), x ≥ l0, if and only if z is a viscosity solution on
[0, T )× R, with terminal boundary condition z(T, x) = f (h(T, ex)), x ∈ R, of

−us(s, x)−Hlog(s, x, ux(s, x), uxx(s, x)) = 0.

Uniqueness for the latter problem is a straight consequence of Theorem V.9.1
in [Fleming, Soner; 1993]. �

Remark 1.2.27. The main proof of the latter thorem basically follows the line
of the proof of Theorem V.8.1 of [Fleming, Soner; 1993], but we stress that it
was needed to adapt the argument to our case. This proof works also if the
drift and the diffusion coefficient are replaced by generic coefficients having
sublinear growth with respect to x.

About the alternative proof we stress that it is not possible to follow di-
rectly the line of the proof of Theorem V.9.1 of [Fleming, Soner; 1993]. Indeed
that proof requires boundedness for the drift and the diffusion coefficients in
the state equation and can be generalized at most to the case of strictly sub-
linear coefficient with respect to x, i.e. growing as xα, α ∈ [0, 1), which is not
our case. The transformation done in the alternative proof basically consists to
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take the logarithm of the state variable, so that basically relies in the fact that

dX(t) = aθ(t)X(t)dt+ bθ(t)X(t)dB(t) =⇒

d log(X(t)) =
dX(t)
X(t)

=
(
aθ(t)− b2

2
θ(t)2

)
dt+ bθ(t)dB(t).

Hence we can define and work with the new state variable Y (t) = log(X(t))
following the dynamics

dY (t) = d log(X(t)) =
(
aθ(t)− b2

2
θ(t)2

)
dt+ bθ(t)dB(t).

This simplification is strongly related to the linear structure of the state equa-
tion, so that the same technique cannot be replied if we consider generic coef-
ficients having sublinear growth with respect to x.

Finally we stress that the lateral boundary condition disappears in the al-
ternative proof when we transform the equation in the case l0 = 0, that is the
lateral boundary condition is redundant in this case. This is coherent with the
fact that the state constraint is automatically satisfied in this case. �

1.2.8 An example with explicit solution

In this subsection we show how the problem can be solved in closed form
when some constraints on the parameters and a special form of u and f are
considered. Let γ ∈ (0, 1); here we assume that

(i) u(y) =
yγ

γ
, y ≥ 0,

(ii) f(x) = κ
(x− l(T ))γ

γ
, x ≥ l(T ), κ ≥ 0,

(iii) β = r,

(iv) λ ≤ σ(1− γ).

(1.49)

Following [Merton; 1969] and [Merton; 1971], we look for a solution to equa-
tion (1.32) of the following form

v(s, x) = C(s)e−ρt
(x− l(s))γ

γ
, (s, x) ∈ C.

We have, for (t, x) ∈ C \ ∂∗C (by the symbols vs(0, x), vs(T, x) we respectively
mean vs(0+, x), vs(T−, x),

vs(s, x) = −C(s)ρe−ρs
[

(x− l(s))γ

γ
+ l′(s)(x− l(s))γ−1

]
+ C ′(s)e−ρs

(x− l(s))γ

γ
,

vx(s, x) = C(s)e−ρs(x− l(s))γ−1 ,

vxx(s, x) = C(s)e−ρs(γ − 1)(x− l(s))γ−2 .
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Note that, for (s, x) ∈ C \ ∂∗C,

− λvx(s, x)
σxvxx(s, x)

=
λ

σ(1− γ)
· (x− l(s))

x
≤ 1, (1.50)

so that, by (1.49)-(iv), for (s, x) ∈ C \ ∂∗C,

H0(x, vx(s, x), vxx(s, x)) = −λ
2vx(s, x)2

2 vxx(s, x)
= Ce−ρs

λ2

2(1− γ)
· (x− l(s))γ .

Putting the expressions for the derivatives of v into (1.32), we get, taking into
account that l′(s) = rl(s) + ks,[

1
γ
C ′(s) + C(s)

[
ρ

γ
− r − λ2

2(1− γ)

]
− 1
γ

]
(x− l(s))γ = 0.

Therefore, if C(s) is the unique solution to the ordinary differential equationC ′(s) +
[
ρ− γr − λ2γ

2(1−γ)

]
C(s) = 0,

C(T ) = κeρT ,
(1.51)

then
v(s, x) = C(s)e−ρs

(x− l(s))γ

γ
, (s, x) ∈ C, (1.52)

is a solution (in classical sense) to (1.32) on C \ ∂∗C. Moreover such v satisfies
the lateral boundary condition

v(s, l(s)) = 0, s ∈ [0, T ]

and the terminal boundary condition

v(T, x) = f(x), x ≥ l(T ).

Note that condition 1.49-(iv) guarantees that the maximum point in the Hamil-
tonian is smaller than 1, so the no borrowing constraint is never active: this
allows to keep H̃0 in the form which is suitable to find the explicit solution.
Indeed, when λ > σ(1 − γ) it is not difficult to see that Ṽ (x) < v(x) for any
x > l using the fact that v is the value function of a problem with larger control
set whose optimal trajectory is not admissible for our problem.

Lemma 1.2.28. Let v be defined by (1.52).

(i) Let (s, x) ∈ C \ ∂∗C, let θ(·) ∈ Θad(s, x) be such that X(t; s, x, θ(·)) > l(t)
almost surely for every t ∈ [s, T ] and set X(·) := X(·; s, x, θ(·)). Then the
following fundamental identity holds:

v(s, x) = J(s, x; θ(·))+E

[∫ T

s

(
Hcv

(
t,X(t), vx(t,X(t)), vxx(t,X(t)); θ(t)

)
−H

(
t,X(t), vx(t,X(t)), vxx(t,X(t))

))
dt

]
. (1.53)
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(ii) Let (s, x) ∈ C and θ(·) ∈ Θad(s, x). Then

v(s, x) ≥ J(s, x; θ(·)). (1.54)

Proof. (i) Let (s, x) ∈ C \ ∂∗C and let θ(·) ∈ Θad(s, x) have the property that
X(t) never touches the lateral boundary as stated by the hypothesis of the first
claim. Then we can apply the Dynkin formula to X(·) on the interval [s, T ]
with the function v and taking into account the expression ofHcv getting

E [v(T,X(T ))− v(s, x)] =

E

[∫ T

s

(
vs(t,X(t))+Hcv

(
t,X(t), vx(t,X(t)), vxx(t,X(t)); θ(t)

)
−e−ρtU(t,X(t))

)
dt

]
.

Since v solves in classical sense the HJB equation (1.32) on C \ ∂∗C, we can
write

E [v(T,X(T ))− v(s, x)] = E

[∫ T

s

(
Hcv

(
t,X(t), vx(t,X(t)), vxx(t,X(t)); θ(t)

)
− e−ρtU(t,X(t))−H

(
t,X(t), vx(t,X(t)), vxx(t,X(t))

))
dt

]
.

Taking into account that v(T, x) = f(x) for x ≥ l(T ) the equality above can be
rewritten to get

v(s, x) = E

[∫ T

s
e−ρtU(t,X(t))dt+ f(X(T ))

+
∫ T

s

(
H
(
t,X(t), vx(t,X(t)), vxx(t,X(t))

)
−Hcv

(
t,X(t), vx(t,X(t)), vxx(t,X(t)); θ(t)

))
dt

]
,

i.e. the desired identity (1.53).

(ii) First let (s, x) ∈ C \ ∂∗C and θ(·) ∈ Θad(s, x). Set againX(·) := X(·; s, x, θ(·))
and define the stopping time

τ := inf{t ≥ s | X(t) = l(t)},

with the convention inf ∅ = T . Since (s, x) ∈ C \ ∂∗C, by continuity of tra-
jectories of X(·) we have τ > s. Therefore for any fixed ε > 0 we have
X(t) ∈ C \ ∂∗C for every t ∈ [s, s∨ (τ − ε)]. Therefore we can argue as above in
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the interval [s, s ∨ (τ − ε)] getting

v(s, x) = E

[∫ s∨(τ−ε)

s
e−ρtU(t,X(t))dt+ e−ρ(s∨(τ−ε))v(X(s ∨ (τ − ε))

]

+ E

[∫ s∨(τ−ε)

s

(
H
(
t,X(t), vx(t,X(t)), vxx(t,X(t))

)
−Hcv

(
t,X(t), vx(t,X(t)), vxx(t,X(t)); θ(t)

))
dt

]
.

The first term of the right hand-side in the previous equality for ε → 0 tends
to

E

[∫ τ

s
e−ρtU(t,X(t))dt+ e−ρτv(τ,X(τ))

]
.

Therefore passing to the liminf (or limsup) the previous equality, since the
second term of the right hand-side is always positive, we get

v(s, x) ≥ E

[∫ τ

s
e−ρtU(t,X(t))dt+ e−ρτv (τ,X(τ))

]
. (1.55)

Due to Proposition 1.2.6-(ii), we have θ(t) = 0 and X(t) = l(t) for t ∈ [τ, T ].
Therefore, if τ > T ,

v(τ,X(τ)) = 0 =
∫ T

τ
e−ρtU(t,X(t))dt+ f(X(T )).

If τ = T we have as well

v(τ,X(τ)) = v(T,X(T )) = f(X(T )).

In definitive we can rewrite (1.55) as

v(s, x) ≥ E

[∫ T

s
e−ρtU(t,X(t))dt+ f(X(T ))

]
,

getting (1.54).
Now let (s, x) ∈ ∂∗C. By Proposition 1.2.6-(ii) we know that Θad(s, x) = {0}

and X(t; s, x, 0) = l(t) for t ∈ [s, T ], so that J(s, x; 0) = 0. In particular, since
v(s, x) = v(s, l(s)) = 0 we have (1.54) with the equality. �

We define the feedback map

G(t, x) :=

−
λvx(t, x)
σxvxx(t, x)

=
λ

σ(1− γ)
· x− l(t)

x
, if (t, x) ∈ C \ ∂∗C,

0, if (t, x) ∈ ∂∗C,
(1.56)
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and note that, thanks to (1.50), for every (t, x) ∈ C \ ∂∗C,

H(x, vx(t, x), vxx(t, x)) = Hcv(x, vx(t, x), vxx(t, x);G(t, x)). (1.57)

Given (s, x) ∈ C, the so-called closed-loop equation associated with this map
is the stochastic differential equationdX(t) =

[
[r + σλG(t,X(t))]X(t) + kt

]
dt+ σG(t,X(t))X(t)dBs(t),

X(s) = x,

i.e.dX(t) =
[
rX(t) +

λ2

1− γ
(X(t)− l(t)) + kt

]
dt+

λ

1− γ
(X(t)− l(t))dBs(t),

X(s) = x.

(1.58)

Lemma 1.2.29. For any (s, x) ∈ C there exists a unique process XG(·; s, x) solution
to the closed-loop equation (1.58). Moreover (t,XG(t; s, x)) ∈ C for every t ∈ [s, T ]
and

• if x > l(s), then XG(t; s, x) > l(t) almost surely for every t ∈ [s, T ];

• if x = l(s), then XG(t; s, x) = l(t) almost surely for every t ∈ [s, T ]; in
particular XG(·; s, x) is deterministic.

Proof. Existence and uniqueness of solutions follow by the standard the-
ory, since the coefficients are Lipschitz continuous.

Let x > l(s), setXG(·) := XG(·; s, x) and define the process Y (t) := XG(t)−
l(t), t ∈ [s, T ]. Then, taking into account that dl(t) = [rl(t) + kt]dt, we see that
Y (·) solves dY (t) =

[
r +

λ2

1− γ

]
Y (t) dt+

λ

1− γ
Y (t)dBs(t),

Y (s) = x− l(s) > 0,

i.e. Y (·) is a geometric Brownian motion with strictly positive initial point.
Therefore Y (t) > 0 almost surely for t ∈ [s, T ], i.e. X(t) > l(t) almost surely
for t ∈ [s, T ].

Let x = l(s). Arguing as above we see that in this case it has to be Y (t) = 0
almost surely for t ∈ [s, T ], i.e. X(t) = l(t) almost surely for t ∈ [s, T ]. �

Theorem 1.2.30 (Verification). Let (s, x) ∈ C. Then V (s, x) = v(s, x), where v is
the function defined in (1.52), and the feedback strategy

θs,xG (t) :=
λ

σ(1− γ)
· XG(t; s, x)− l(t)

XG(t; s, x)
, t ∈ [s, T ], (1.59)

is the unique optimal strategy optimal starting from (s, x).
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Proof. Let (s, x) ∈ C \ ∂∗C. By Lemma 1.2.28-(ii) we know that, for any
θ(·) ∈ Θad(s, x), we have

v(s, x) ≥ J(s, x; θ(·));

this shows that V (s, x) ≤ v(s, x). On the other hand, take feedback strategy
θs,xG (·) defined in (1.59); we know by Lemma 1.2.29 that X(t; s, x, θs,xG (·)) > l(t)
for every t ∈ [s, T ]; therefore we can write the fundamental identity (1.53) for
X(t; s, x, θs,xG (·)); by (1.57) we get

v(s, x) = J(s, x; θs,xG (·)) ≤ V (s, x).

Therefore we see that θs,xG (t) is optimal. On the other hand, due to the fact
that v = V , we see from (1.53) that any other optimal strategy θ(·) ∈ Θad(s, x)
must satisfy θ(·) = G(·;X(·; s, x, θ(·), i.e. must be in closed loop form. Due to
the uniqueness of solutions of the closed loop equation, we get uniqueness of
optimal strategies.

Now let (s, x) ∈ ∂∗C. By Proposition 1.2.6-(ii) in this case the only admissi-
ble strategy is θ(·) = 0 and moreover we have

V (s, x) = J(s, x; 0) = v(s, x).

By Lemma 1.2.29 and by (1.59) we have θs,xG (·) ≡ 0, which gives the claim also
in this case. �

1.3 The stationary phase

The object of this section is the analysis of the stationary phase, corresponding
to the time interval [T,+∞). We will solve completely the problem show-
ing that the value function is a classical solution of the HJB equation (passing
through the viscosity approach) and a verification theorem yielding an opti-
mal feedback strategy. Moreover we will provide an example with explicit
solution.

The initial time for the optimization problem is here t = T . Again it also
makes sense, in order to apply the dynamic programming techniques, to look
to a pension fund that is already running after a given amount of time s ≥ T ,
in order to establish a decision policy from s on.

On the probability space of Section 1.1 let (Fst )t≥s be the completion of the
filtration generated by the process (Bs(t))t≥s := (B(t) − B(s))t≥s; the con-
trol process (θ(t))t≥s is a (Fst )-progressively measurable process with values
in [0, 1].
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Let us set an initial time s ≥ T and a given amount of wealth x at time s.
In the interval [s,+∞) the state equation becomes, according to (1.2) and with
the hypotheses just stated on the contribution term,dX(t) = [r + σλθ(t)]X(t) dt− q dt+ σθ(t)X(t)dBs(t), t ≥ s,

X (s) = x,
(1.60)

where q := g − c.

Theorem 1.3.1. For any (Fst )t≥s-progressively measurable [0, 1]-valued process θ(·)

• equation (1.60) admits on the filtered probability space (Ω,F , (Fst )t≥s,P), a
unique strong solution;

• this solution belongs to the space CP([s,+∞);Lp(Ω,P)) of the p-mean contin-
uous progressively measurable processes for any p ∈ [1,+∞).

Proof. See Theorem 6.16, Chapter 1, of [Yong, Zhou; 1999] or Section 5.6.C
of [Karatzas, Shreve; 1991]. �

We denote the unique strong solution to (1.60) by X (t; s, x, θ(·)).

1.3.1 The optimization problem

In this stationary phase we study an infinite horizon optimization problem in
the interval [T,+∞) related to an objective functional with this form:

E
[∫ +∞

T
e−ρ(t−T )Ũ (X (t)) dt

]
. (1.61)

Here ρ > 0 is the manager’s individual discount factor and Ũ is the manager’s
utility function. So, according with the considerations of Subsection 1.1.5, this
criterion takes into account the manager’s point of view. For x ≥ l = l(T ),
the problem is to maximize, over the set of the admissible strategies, i.e. the
strategies keeping the state variable above l (see (1.63) for a formal definition),
the functional (1.61).

We assume that the utility function Ũ satisfies the following assumptions:

Hypothesis 1.3.2. .

(i) Ũ : [l,+∞)→ R∪{−∞} belongs to the classC2 ((l,+∞) ; R) is increasing
and Ũ ′ > 0, Ũ ′′ < 0.
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(ii) For given C > 0 and β ∈ [0, 1) we have Ũ (x) ≤ C
(
1 + xβ

)
, where

ρ > βr +
λ2

2
· β

1− β
. (1.62)

�

Note that

• The utility function is defined where the wealth process X(·) must live.

• We do not assume that Inada like conditions, i.e.

lim
x→l+

Ũ ′(x) = +∞, lim
x→+∞

Ũ ′(x) = 0,

hold for the utility function Ũ . We will do it only in the special case of
Subsection 1.3.7.

• All utility functions of the form Ũ (x) = (x−x0)γ

γ , for x0 ≤ l and γ ∈
(−∞, 0)∪(0, 1) always satisfy Hypothesis 1.3.2-(i). In the case when x0 =
l they also satisfy the Inada like conditions mentioned above. This fact
will be used later in Subsection 1.3.7 to give examples.

• Hypothesis 1.3.2-(ii) guarantees the finiteness of the value function, as is
proved in Proposition 1.3.11. A more general condition could be given
on the line of what is done in [Karatzas, Lehoczky, Sethi, Shreve; 1986],
Section 2. As we will see in Subsection 1.3.7 in the case of Ũ (x) = (x−l)γ

γ ,
condition (1.62) may be sharp and even cases with ρ ≤ 0 may be treated
(when γ < 0).

1.3.2 The set of admissible strategies

In this stationary phase the set of the admissible strategies, for s ≥ T , x ≥ l, is
given by

Θ̃ad(s, x) :=
{
θ : [s,+∞) × Ω→ [0, 1]

progressively measurable w.r.t. (Fst )t≥s | X (t; s, x, θ(·)) ≥ l, t ≥ s
}
. (1.63)

Remark 1.3.3. The set Θ̃ad(s, x) is independent of s ≥ T in the following sense.
By Theorem 2.10, Chapter 1, of [Yong, Zhou; 1999], there is a one-to-one cor-
respondence between the strategies starting from T and the strategies starting
from s > T ; to make more clear this point, consider the measurable space
(C([T,+∞); R),B(C([T,+∞); R))), with the filtration (Bt(C([T,+∞); R)))t≥T
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defined in the following way: Bt(C([T,+∞); R)) is the σ-algebra on the space
C([T,+∞); R) induced by the projection

π : C([T,+∞); R) −→ (C([T, t]; R),B(C([T, t]; R)))
ζ(·) 7−→ ζ(·)|[T,t],

i.e. the smallest σ-algebra which makes π measurable; intuitively a measurable
application with respect to Bt(C([T,+∞); R)) is an application which does not
distinguish between two functions of C[T,+∞) which coincide on [T, t]. If
(θT (t))t≥T is a strategy starting from T , then there exists an adapted process ψ
on [T,+∞)× C([T,+∞); R) such that

θT (t)(·) = ψ(t, BT (·)), t ≥ T ;

then the shifted strategy

θs(t)(·) = ψ(t− s+ T,Bs(·)), t ≥ s,

starts from s. Since the state equation is homogeneous on time, it is easy to
check that we have θT ∈ Θad(T, x) if and only if θs ∈ Θad(s, x). �

Now we give a lemma on the nonemptiness of the set of admissible strate-
gies.

Lemma 1.3.4. Given any s ≥ T , x ≥ l the set of admissible strategies Θ̃ad (s, x) is
nonempty if and only if the control θ(·) ≡ 0 is admissible. This happens if and only if

x ≥ q

r
. (1.64)

In particular the set of admissible strategies Θ̃ad (s, x) is nonempty for every s ≥ T ,
x ≥ l if and only if

l ≥ q

r
. (1.65)

Proof. Thanks to Remark 1.3.3 we can take without loss of generality s = T .
Let x ≥ l, it is clear that, if θ(·) ≡ 0 is admissible at (T, x), then Θ (T, x) is
nonempty. We prove the opposite. Assume that Θ̃ad (T, x) is nonempty; let
θ(·) be an admissible strategy and set X(t) := X(t;T, x, θ(·)). By Girsanov’s
Theorem A.1.1, under the probability P̃ = exp

(
−λBT (t)− 1

2λ
2 (t− T )

)
· P

(depending on t, defined on FTt and equivalent to P), the process B̃T (·) =
λ (· − T ) +BT (·) is a Brownian motion on [T, t] and we have

X (t) = x+
∫ t

T
rX (τ) dτ −

∫ t

T
qdτ +

∫ t

T
σθ (t)X (τ) dB̃T (τ) , t ≥ T. (1.66)
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Since X ∈ C([s, T ];Lp(Ω,P)) for any p ≥ 1, it holds also

Ẽ
[∫ t

T
|X(τ)|2dτ

]
< +∞, ∀t ∈ [T,+∞),

so that

Ẽ
[∫ t

T
X(τ)dτ

]
= 0, ∀t ∈ [T,+∞).

Thus we can pass (1.66) to the expectations getting

Ẽ [X (t)] = x+
∫ t

T
rẼ [X (τ)] dτ −

∫ t

T
qdτ. (1.67)

This implies that the deterministic function g (·) = Ẽ [X (·)] satisfies on [T, t]
the same ordinary differential equation as X (·;T, x, 0). Since by assumption
X (τ) ≥ l almost surely with respect to P for any τ ∈ [T, t], it has to be
also X (t) ≥ l almost surely with respect to P̃ for any τ ∈ [T, t]; thus taking
the expectations Ẽ under P̃ we get g(·) = Ẽ [X (·)] ≥ l on [T, t]. Therefore
X(· ;T, x, 0) = g(·) ≥ l on [T, t]. The first claim is proved by the arbitrariness
of t.

Let us prove the second claim. For θ(·) ≡ 0 the state equation (1.60) be-
comes the following deterministic equationdX(t) = (rX(t)− q) dt, t ≥ T,

X(T ) = x ≥ l.
(1.68)

From this equation it is then easy to see that X(t;T, x, 0) ≥ l, for any t ≥ T , if
and only if

rx− q ≥ 0⇐⇒ x ≥ q

r
.

This gives the second statement. �

Remark 1.3.5. Lemma 1.3.4 substantially states that the good solvency level
must be such that the return rl from it is greater than q, i.e. the balance be-
tween the contribution and the benefit rate. In other words the solvency level l
must be above the present value q

r of the perpetual annuity, which is obtained
discounting at the instantaneous risk free rate r the balance between benefit
and contribution rate q, i.e. the present value of the total outcomes, over the
whole time horizon. This may remind what happens, in a different setting,
in [Cadenillas, Sethi; 1997] and [Sethi, Taksar, Presman; 1992], where models
with subsistence consumption are considered. In the case of stochastic interest
rates and demographic risk this would be a stochastic constraint.

We observe that in the expression (1.7) for the solvency level all the quan-
tities are given by the market except for l0 and β which may be chosen by a
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supervisory authority. In other words the authority fix the liquidity l0 needed
to start a pension fund and the capitalization rate β ≤ r of the startup level
l0 and of the aggregate contribution flow that the fund must guarantee in the
accumulation period. This choice should be always such that l := l(T ) sat-
isfy (1.65) and may vary depending on the goals of the authority itself. For
example high l0 and β will force the fund manager to keep more prudential
behaviours in order to avoid default. �

From now on we will always assume that Θ̃ad (T, x) is nonempty over all
x ∈ [l,+∞), i.e. that (1.65) holds true. We will often divide the two cases rl = q

and rl > q, since, as shown in Proposition 1.3.6, they behave differently.

Proposition 1.3.6. Let s ≥ T .

• If rl−q > 0, thenX(t; s, x, 0) > l for all t > T . We stress this property saying
that the boundary {l} × [T,+∞) is reflecting.

• If rl − q = 0, then Θ̃ad(s, l) = {0} and X(t;T, l, 0) = l for all t ≥ T . We
stress this property saying that the boundary {l} × [T,+∞) is absorbing.

Proof. By 1.67, for any θ(·) ∈ Θ̃ad(s, l) it must be

Ẽ[X(t; s, x, θ(·))] = l, ∀t ≥ s,

so that we can conclude that Θ̃ad(s, l) is made only by the null strategy. The
other statements follow taking θ(·) ≡ 0 in the state equation. �

1.3.3 The value function

For s ≥ T , x ≥ l, θ(·) ∈ Θ̃ad(s, x), we define

J̃(s, x; θ(·)) := E
[∫ +∞

s
e−ρ(t−T )Ũ (X (t; s, x, θ(·))) dt

]
. (1.69)

We show that (1.69) is well-defined for every s ≥ T , x ≥ l, θ(·) ∈ Θ̃ad(s, x):

Proposition 1.3.7. Assume Hypothesis 1.3.2. The functional J̃ defined in (1.69) is
well-defined, i.e. for any s ≥ T , x ≥ l, θ(·) ∈ Θ̃ad(s, x) we have

E
[∫ +∞

s
e−ρ(t−T )Ũ+(X(t; s, x, θ(·)))dt

]
< +∞.

Proof. Let s ≥ T , x ≥ l, θ(·) ∈ Θ̃ (s, x) and set X (t) = X (t;T, x, θ(·)); by
Hypothesis 1.3.2-(ii) we have

E
[∫ +∞

s
e−ρ(t−T )Ũ+ (X (t)) dt

]
≤ C

∫ +∞

s
e−ρ(t−T )

(
1 + E

[
X (t)β

])
dt.

(1.70)
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Let t ≥ s; by Girsanov’s Theorem A.1.1 under the probability

P̃ = exp
(
−λBs (t)− 1

2
λ2 (t− s)

)
· P

(depending on t, defined on Fst and equivalent to P), the process

B̃s (·) = λ (· − s) +Bs (·)

is a Brownian motion on [s, t]. So, we have

X (t) = x+
∫ t

s
rX (τ) dτ −

∫ t

s
q dτ +

∫ t

s
σθ (t)X (τ) dB̃s (τ) .

As in the proof of Lemma 1.3.4 we can pass to the expectations and get

Ẽ[X (t)] = x+
∫ t

s
rẼ[X (τ)]dτ −

∫ t

s
q dτ.

This shows that Ẽ[X (t)] ≤ er(t−s)x for every t ≥ T . Now

E
[
X (t)β

]
= Ẽ

[
X (t)β exp

(
λB̃s (t)− 1

2
λ2 (t− s)

)]
,

and by Hölder’s inequality

Ẽ
[
X (t)β exp

(
λB̃s (t)− 1

2
λ2 (t− s)

)]
≤
(
Ẽ [X (t)]

)β
·
(

Ẽ
[
exp

(
λB̃s (t)− 1

2
λ2 (t− s)

)
1

1− β

])1−β

= xβe

“
βr+ β

1−β ·
λ2

2

”
(t−s) ≤ xβe

“
βr+ β

1−β ·
λ2

2

”
(t−T )

.

The above inequalities, together with (1.62), imply that, for some C ′ > 0 inde-
pendent of s, x, θ(·),

E
[∫ +∞

s
e−ρ(t−T )Ũ+ (X (t)) dt

]
≤ C

∫ +∞

s
e−ρ(t−T )

(
1 + xβe

“
βr+ β

1−β ·
λ2

2

”
(t−T )

)
dt

≤ C ′e−ρ(s−T )
(

1 + xβ
)
,

which gives the claim. �

Due to the previous result from now on we suppose that Hypothesis 1.3.2
holds true. We can associate to the problem the value function defined by

Ṽ (s, x) := sup
θ(·)∈Θ̃ad(s,x)

J̃(s, x; θ(·)), s ≥ T, x ≥ l. (1.71)
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The stochastic control problem consists in studying this function and, when
possible, in finding an optimal control strategy in the sense of the following
definition.

Definition 1.3.8. Let s ≥ T, x ≥ l.

(i) A control θ∗(·) ∈ Θad(s, x) is called optimal for the couple (s, x) if

J̃(s, x; θ∗(·)) = Ṽ (s, x).

(ii) For fixed ε > 0, a control θε(·) ∈ Θad(s, x) is called ε-optimal for the
couple (s, x) if

J̃(s, x; θε(·)) ≥ Ṽ (s, x)− ε.

�

Remark 1.3.9. The problem of Section 1.2 and the problem of the present sec-
tion can be linked to form a unique optimization problem in the whole interval
[0,+∞). Indeed we can imagine to want to optimize a functional of this form
over the whole interval [0,+∞)∫ +∞

0
e−ρtU(t,X(t))dt

Thanks to the dynamic programming principle this can be done by choosing
as exit function f in (1.61) the value function of the optimization problem in
the stationary phase. �

Since we are in the stationary case, using the properties of the set of admis-
sible strategies (see Remark 1.3.3), we can prove the following.

Proposition 1.3.10. We have the following dependence on time for the value function:

Ṽ (s, x) = e−ρ(s−T )Ṽ (T, x) , s ≥ T, x ≥ l. (1.72)

Proof. We only sketch the proof, as the argument are quite standard. Since
both the state equation and the set of the admissible strategies are autonomous
for s ≥ T (see Remark 1.3.3), performing the change of variable t′ = t− (s−T )
we get, by equality in law,

Ṽ (s, x) = sup
θ(·)∈Θ̃ad(s,x)

E
[∫ +∞

s
e−ρ(t−T )Ũ (X (t; s, x, θ(·))) dt

]
= e−ρ(s−T ) · sup

θ(·)∈Θ̃ad(T,x)

E
[∫ +∞

T
e−ρ(t′−T )Ũ

(
X
(
t′;T, x, θ(·)

))
dt′
]

= e−ρ(s−T )Ṽ (T, x) ,
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i.e. the claim. �

Thanks to Proposition (1.72) we are reduced to study the function

x 7→ Ṽ (T, x) , x ≥ l.

With a slight abuse of notation we set

Θ̃ad(x) := Θ̃ad(T, x), J̃(x; θ(·)) := J̃(T, x; θ(·)), Ṽ (x) := Ṽ (T, x) .

Similarly we will write B(·) for BT (·). We give now a result about the finite-
ness of the value function.

Proposition 1.3.11. We have Ṽ (·) > −∞ on (l,+∞). Moreover

(i) when rl = q, we have Ṽ (l) > −∞ if and only if Ũ (l) > −∞;

(ii) when rl > q, we have Ṽ (l) > −∞ if and only if Ũ is integrable in a right
neighborhood of l.

Finally there exists K > 0 such that Ṽ (x) ≤ K
(
1 + xβ

)
for every x ≥ l, where β is

given by Hypothesis 1.3.2-(ii).

Proof. Estimates from below for x > l. First of all we show that Ṽ (·) > −∞
on (l,+∞). Indeed, since the null strategy is always admissible we have, for
every x ≥ l,

Ṽ (x) ≥ J̃ (x; 0) =
∫ +∞

T
e−ρ(t−T )Ũ (X (t;T, x, 0)) dt.

But, recalling that X (t;T, x, 0) satisfies (1.68), we have

X (t;T, x, 0) = er(t−T )
[
x− q

r

]
+
q

r
.

Since (1.65) holds, then x− q
r > 0, so X (t;T, x, 0) ≥ x for every t ≥ T and

Ṽ (x) ≥ J̃ (x; 0) ≥
∫ +∞

T
e−ρ(t−T )Ũ (x) dt =

Ũ (x)
ρ

,

which gives the claim.

Estimates from below for x = l, case (i). The above argument also says that
Ṽ (l) > −∞ when Ũ (l) > −∞. Moreover, when rl = q the only admissible
strategy at x = l is the null one that keeps the state in l at every time (Proposi-
tion 1.3.6); so when Ũ (l) = −∞ also Ṽ (l) = −∞.

Estimates from below for x = l, case (ii). Assume now that rl > q, so

Ṽ (l) ≥ J̃ (l; 0) =
∫ +∞

T
e−ρ(t−T )Ũ

(
er(t−T )

[
l − q

r

]
+
q

r

)
dt. (1.73)
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Setting z = er(t−T )
[
l − q

r

]
+ q

r the above integral becomes equal to a given
constant multiplied by ∫ +∞

l

(
z − q

r

)− ρ
r
−1
Ũ (z) dz

which is not −∞. Indeed, taken any z0 > l, the integrability of Ũ in a neigh-
borhood of l says that

∫ z0
l

(
z − q

r

)− ρ
r
−1
Ũ (z) dz is finite, while for the term∫ +∞

z0

(
z − q

r

)− ρ
r
−1
Ũ (z) dz we have two cases. Either U remains negative over

all (l,+∞) and in this case the integral is not−∞ thanks to the term
(
z − q

r

)− ρ
r
−1,

or becomes positive after a certain point and in this case the integral is imme-
diately greater than −∞.

Take now Ũ which is not integrable in a right neighborhood of l. To prove
the claim it is enough to show that, for every θ(·) ∈ Θ̃ad(l), setting X(t) :=
X(t;T, l, θ(·)) we have

E
[∫ T+1

T
e−ρ(t−T )Ũ(X(t))dt

]
= −∞.

By the state equation we have

X (t) = l+
∫ t

T
rX (τ) dτ+

∫ t

T
σλθ(τ)X (τ) dτ−

∫ t

T
q dτ+

∫ t

T
σθ (t)X (τ) dB (τ) ;

passing to the expectations and taking into account that θ(·) ∈ [0, 1], X(·) ≥ 0,
and the comparison criterion for ODE, we get the estimate

E [X(t)] ≤ le(r+σλ)(t−T ).

So we finally get by Jensen’s inequality

E
[∫ T+1

T
e−ρ(t−T )Ũ(X(t))dt

]
≤
∫ T+1

T
e−ρ(t−T )Ũ

(
le(r+σλ)(t−T )

)
dt.

Applying a change of variable like the one done in formula (1.73) we get the
claim.

Estimates from above. First, if limz→+∞ Ũ (z) =: Ū < +∞ then, for every
x ≥ l,

Ṽ (x) ≤
∫ +∞

T
e−ρ(t−T )Ūdt =

Ū

ρ
,

so in this case Ṽ is finite and bounded. If Ū = +∞, then the claim follows as
in the proof of Proposition 2.2.8, since therein the estimate does not depend on
the control θ(·) ∈ Θ̃ad(x). �

Proposition 1.3.12. The value function Ṽ is concave.
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Proof. Take two initial values x1 and x2 such that x1, x2 ≥ l. Suppose,
without loss of generality, that x1 < x2, Ṽ (x1) > −∞, and set xγ := γx1 + (1−
γ)x2, γ ∈ [0, 1]. We have to prove that

Ṽ (xγ) ≥ γṼ (x1) + (1− γ)Ṽ (x2). (1.74)

Let θ1(·) ∈ Θ̃ad(x1), θ2(·) ∈ Θ̃ad(x2) be ε-optimal for x1 and x2 respectively. Set
X1(·) := X(· ;T, x1, θ(·)) and X2(·) := X(· ;T, x2, θ

′(·)). We have

γṼ (x1) + (1− γ)Ṽ (x2) < γ
[
J̃(x1; θ1(·)) + ε

]
+ (1− γ)

[
J̃(x2; θ2(·)) + ε

]
= ε+ γJ̃(x1; θ1(·)) + (1− γ)J̃(x2; θ2(·))

= ε+ γE
[∫ +∞

T
e−ρ(t−T )Ũ (X1(t)) dt

]
+ (1− γ)E

[∫ +∞

T
e−ρ(t−T )Ũ (X2(t)) dt

]
= ε+ E

[∫ +∞

T
e−ρ(t−T )

[
γŨ (X1(t)) + (1− γ)Ũ (X2(t))

]
dt

]
.

The concavity of Ũ implies that

γŨ (X1(t)) + (1− γ)Ũ (X2(t)) ≤ Ũ (γX1(t) + (1− γ)X2(t)) , ∀t ≥ T.

Consequently, if we set Xγ(·) := γX1(·) + (1− γ)X2(·), then we get

γṼ (x1) + (1− γ) Ṽ (x2) < ε+ E
[∫ +∞

T
e−ρ(t−T )Ũ (Xγ(t)) dt

]
.

If there exists θγ (·) ∈ Θ̃ad (xγ) such that Xγ(·) = X (·;T, xγ , θγ(·)), then we
would have

ε+ E
[∫ +∞

T
e−ρ(t−T )Ũ (Xγ(t)) dt

]
= ε+ J̃(xγ ; θγ(·)) ≤ ε+ Ṽ (xγ),

i.e.
γṼ (x1) + (1− γ)Ṽ (x2) < ε+ Ṽ (xγ)

and therefore, by the arbitrariness of ε, the claim (1.74) would be proved. To
find such a θγ (·), let us write the equation satisfied by Xγ(·). Recalling (1.60)
we get

dXγ(t) = γdX1(t) + (1− γ)dX2(t)

= γ
[(

(r + σλθ1(t))X1(t)− q
)
dt+ σθ1(t)X1(t)dB(t)

]
+ (1− γ)

[(
(r + σλθ2(t))X2(t)− q

)
dt+ σθ2(t)X2(t)dB(t)

]
=
[
rXγ(t) +

[
γ
X1(t)
Xγ(t)

θ1(t) + (1− γ)
X2(t)
Xγ(t)

θ2(t)
]
σλXγ(t)− q

]
dt

+ σ

[
γ
X1(t)
Xγ(t)

θ1(t) + (1− γ)
X2(t)
Xγ(t)

θ2(t)
]
Xγ(t)dB(t).
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Then defining the control

θγ(t) = a (t) θ1(t) + d (t) θ2(t),

where
a (·) = γ

X1(·)
Xγ(·)

, d (·) = (1− γ)
X2(·)
Xγ(·)

,

we havedXγ(t) = [[r + σλθγ(t)]Xγ(t)− q] dt+ σθγ(t)Xγ(t)dB(t), t ≥ T,

Xγ(T ) = γx1 + (1− γ)x2 = xγ ≥ l,

so we get Xγ(·) = X (·;T, xγ , θγ(·)). The admissibility of θγ(·) is clear since:

(i) for every t ≥ T , we have θ1 (t) , θ2 (t) ∈ [0, 1] and a (t) + d (t) = 1, so by
convexity of [0, 1] we get θγ (t) ∈ [0, 1];

(ii) by construction Xγ(t) ≥ l, almost surely with respect to P for any t ≥ T .

The claim follows. �

Proposition 1.3.13. The value function Ṽ is strictly increasing.

Proof. First we verify that the value function Ṽ is increasing showing that

l ≤ x ≤ x′ =⇒ Ṽ (x) ≤ Ṽ (x′).

Take any θ(·) ∈ Θ̃ad(x). Writing the equation for Y (·) := X(·;T, x′, θ(·)) −
X(·;T, x, θ(·)), we can see that Y (·) solves a linear SDE with nonnegative initial
datum. Therefore Y (·) ≥ 0, P-a.s., i.e.

X(· ;T, x, θ(·)) ≤ X(· ;T, x′, θ(·)), P-a.s..

So it is also θ(·) ∈ Θ̃ad(x′), i.e. Θ̃ad (x) ⊂ Θad (x′). Moreover, by monotonicity
of the utility function Ũ we have

x ≤ x′ =⇒ Ũ (X (·;T, x, θ(·))) ≤ Ũ (X (·;T, x2, θ(·))) , P-a.s.

=⇒ J̃ (x; θ(·)) ≤ J̃
(
x′; θ(·)

)
.

Since Θ̃ad (x) ⊂ Θ̃ad (x′) the above implies Ṽ (x) ≤ Ṽ (x′).
The strict monotonicity of the value function Ṽ is a direct consequence of

monotonicity and concavity (see, e.g., the proof in [Zariphopoulou; 1994], p.
63). Indeed, if Ṽ is not strictly monotone then it must be constant on a half line
[x̄,+∞). We show that this cannot be true.
By (1.3.3) we have, for every y ≥ l,

Ṽ (y) ≥ Ũ (y)
ρ

.
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So, if limz→+∞ Ũ (z) = +∞ then limz→+∞ Ṽ (z) = +∞ and the claim follows.

Take now limz→+∞ Ũ (z) =: Ũ∞ < +∞. In this case we must have

Ṽ (x̄) = lim
y→+∞

Ṽ (y) ≥ Ũ∞
ρ
.

On the other hand, for every θ(·) ∈ Θ̃ad (x̄), we get

J̃ (x̄; θ (·)) = E
[∫ +∞

T
e−ρ(t−T )Ũ (X (t;T, x̄, θ(·))) dt

]
≤
∫ +∞

T
e−ρ(t−T )Ũ

(
e(r+λσ)(t−T )x̄

)
dt.

Fix T1 > T . Calling ŨT1 = Ũ
(
e(r+λσ)(T1−T )x̄

)
, we have ŨT1 = Ũ∞− ε, for some

ε > 0. We can write

J̃ (x̄; θ (·)) ≤
∫ T1

T
e−ρ(t−T )ŨT1dt+

∫ +∞

T1

e−ρ(t−T )Ũ∞dt

=
ŨT1

ρ

[
1− e−ρ(T1−T )

]
+
Ũ∞
ρ
e−ρ(T1−T )

≤ Ũ∞
ρ
− 1− e−ρ(T1−T )

ρ
ε

≤ Ṽ (x̄)− 1− e−ρ(T1−T )

ρ
ε.

This is a contradiction and so the claim follows. �

Proposition 1.3.14. The value function Ṽ is continuous in (l,+∞) and Lipschitz
continuous in [a,+∞), for any a > l. Moreover:

• if rl > q and Ṽ (l) > −∞, then Ṽ is uniformly continuous in [l,+∞);

• if rl = q and Ũ(l) > −∞, then Ṽ is uniformly continuous in [l,+∞).

Proof. The Lipschitz continuity of Ṽ in the interval [a,+∞), for any a > l

(and so also the continuity of Ṽ in the interval (l,+∞)), is a straightforward
consequence of concavity and strict monotonicity.

(i) Let rl > q and Ṽ (l) > −∞, i.e. Ũ is integrable in a right neighborhood
of l (see Proposition 1.3.11 - (ii)). We have to show that

lim
x→l+

[Ṽ (x)− Ṽ (l)] = 0.

Since rl > q, the control strategy θ(·) ≡ 0 at the starting point l gives rise
to a trajectory which is strictly increasing. Let x > l. Applying the control
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θ(·) ≡ 0 to the state equation (1.60) with initial point X(T ) = l, the corre-
sponding trajectory is deterministic and it reaches the point x at time t̂ such
that X

(
t̂;T, l, 0

)
= x, i.e.

er(t̂−T)
[
l − q

r

]
+
q

r
= x ⇐⇒ t̂ = T +

1
r

log
rx− q
rl − q

.

Now, by the dynamic programming principle (Proposition 1.3.16), we have

Ṽ (l) ≥
∫ t̂

T
e−ρ(t−T )Ũ (X (t;T, l, 0)) dt+ e−ρ(t̂−T)Ṽ

(
X
(
t̂;T, l, 0

))
,

which gives

0 ≤ Ṽ (x)− Ṽ (l) ≤ −
∫ t̂

T
e−ρ(t−T )Ũ (X (t;T, l, 0)) dt+

(
1− e−ρ(t̂−T)

)
Ṽ (x)

(notice that the first inequality is a consequence of the monotonicity of the
value function given in Proposition 1.3.13). Observing that

x→ l =⇒ t̂→ T

and using the integrability of Ũ we get the claim.

(ii) Let rl = q and Ṽ (l) > −∞, i.e. by Proposition 1.3.11-(i) Ũ(l) > −∞. in
this case Ṽ (l) = Ũ(l)

ρ and of course, without loss of generality for our goal, we
can suppose Ũ(l) ≥ 0. Let t0 ≥ T , take ln ↓ l and define

Ṽ t0(ln) := sup
θ(·)∈Θ̃ad(ln)

E
[∫ t0

T
e−ρ(t−T )Ũ (X (t;T, ln, θ(·))) dt

]
.

Arguing as in the proof of Lemma 1.2.17-(2), one can prove that for any fixed
t0 the convergence

Ṽ t0(ln) −→ 1− e−ρ(t0−T )

ρ
Ũ(l), n→∞

holds true. We prove now that for any fixed ε > 0 there exists t∗0 ≥ T indepen-
dent of n such that, for any t0 ≥ t∗0, it holds∣∣∣Ṽ t0(ln)− Ṽ (ln)

∣∣∣ < ε/2. (1.75)

Indeed, let t0 ≥ T ; taking into account the inequality∣∣∣∣∣ sup
ξ
f(ξ)− sup

ξ
g(ξ)

∣∣∣∣∣ ≤ sup
ξ
|f(ξ)− g(ξ)|
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and arguing as in the proof of Proposition 1.3.7, we can find C ′ > 0 such that,
for any t0 ≥ T ,∣∣∣Ṽ t0(ln)− Ṽ (ln)

∣∣∣ ≤ sup
θ(·)∈Θ̃ad(ln)

E
[∫ +∞

t0

e−ρ(t−T )Ũ (X (t)) dt
]

≤ e−ρ(t0−T )C ′
(

1 + lβn

)
≤ e−ρ(t0−T )C ′

(
1 + lβ1

)
,

where β ∈ [0, 1) is given by Hypothesis 1.3.2-(ii). So we can find t∗0 such that
(1.75) holds true. Moreover we can find t̄0 ≥ t∗0 such that∣∣∣∣∣Ṽ (l)− 1− e−ρ(t̄0−T )

ρ
Ũ(l)

∣∣∣∣∣ < ε/2.

Therefore

lim sup
n→∞

∣∣∣Ṽ (ln)− Ṽ (l)
∣∣∣

≤ lim sup
n→∞

[ ∣∣∣ Ṽ (ln)− Ṽ t̄0(ln)
∣∣∣+

∣∣∣∣∣Ṽ t̄0(ln)− 1− e−ρ(t̄0−T )

ρ

∣∣∣∣∣
+

∣∣∣∣∣Ṽ (l)− 1− e−ρ(t̄0−T )

ρ
Ũ(l)

∣∣∣∣∣
]
< ε,

so that, by the arbitrariness of ε, the claim follows. �

Remark 1.3.15. From the proof of Proposition 1.3.14-(i) it follows that, when
Ũ (l) is finite (and so also Ṽ (l)) and rl > q, we have, for x > l,

Ṽ (x)− Ṽ (l)
x− l

≤ −(rl − q)ρ/r

x− l

∫ x

l
(rz − q)−1−ρ/r U(z)dz +

1−
(
rx−q
rl−q

)− ρ
r

x− l
Ṽ (x) ,

so, recalling that Ṽ ′ (l+) must exist by the concavity of Ṽ , it follows

Ṽ ′
(
l+
)
≤ ρ

rl − q

[
|̃U(l)|
ρ

+ Ṽ (l)

]
.

This means, in particular that Ṽ ′ (l+) is finite. On the other hand when rl = q,
Ũ ′ (l+) = +∞ and Ũ(l) > −∞ (hence Ṽ is finite and continuous at l), then
Ṽ ′ (l+) is infinite. Indeed in this case Ṽ (l) = Ũ(l)

ρ while

Ṽ (x) ≥ J̃ (x; 0) ≥ Ũ (x)
ρ

,

so Ṽ ′ (l+) ≥ Ũ ′(l+)
ρ = +∞. See Section 1.3.7 for an example. �
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1.3.4 Dynamic programming

Also in this case we follow a dynamic programming approach. The dynamic
programming principle, in this stationary context can be stated as follows.

Theorem 1.3.16. The value function Ṽ satisfies the dynamic programming equation,
i.e. for every x ≥ l and for any family of stopping times

(
τ θ(·)

)
θ(·)∈Θad(x)

taking
values in [T,+∞), the following functional equation holds

Ṽ (x) = sup
θ(·)∈Θ̃ad(x)

E

[∫ τθ(·)

T
e−ρ(t−T )Ũ (X (t;T, x, θ(·))) dt

+e−ρ(τθ(·)−T )Ṽ
(
X
(
τ θ(·);T, x, θ(·)

))]
. (1.76)

Remark 1.3.17. We do not give the proof and refer to [Yong, Zhou; 1999], Chap-
ter 4, Theorem 3.3, in the case of continuous value functions and to [Soner; 2004]
in the general case, where a measurable selection argument is used. As in the
transitory phase, we want to point out that we have proved the continuity of
our value function in Proposition 1.3.14 only using

Ṽ (x) ≥
∫ t̂

T
e−ρ(t−T )Ũ(X(t;T, x, 0))dt+ eρ(t̂−T )Ṽ (X(t̂;T, x, 0)), t̂ ≥ T,

which can be proved without any measurable selection argument, because in
this case we are on a deterministic trajectory. Therefore we can use the ar-
gument of [Yong, Zhou; 1999] in order to prove the dynamic programming
principle without loss of generality. �

The HJB equation formally associated with Ṽ is

ρv(x)− H̃
(
x, v′(x), v′′(x)

)
= 0, x ∈ [l,+∞), (1.77)

where, for x ≥ l and p,Q ∈ R,

H̃ (x, p,Q) = sup
θ∈[0,1]

H̃cv (x, p,Q; θ) ,

with
H̃cv (x, p,Q; θ) = Ũ (x) + ([r + σλθ]x− q) p+

1
2
σ2x2θ2Q.

Note that calling Lθ, θ ∈ [0, 1], the parabolic operator defined by

[Lθf ] (x) =
1
2
σ2θ2x2f ′′ (x)+([r + σλθ]x− q) f ′(x), x ≥ l, f ∈ C2 ([l,+∞); R) ,

(1.78)
we can write

H̃cv
(
x, v′(x), v′′(x); θ

)
= Ũ(x) + [Lθv] (x) , x ≥ l.
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To calculate the Hamiltonian we observe that the function to optimize over
θ ∈ [0, 1] is

H̃0
cv (x, p,Q; θ) := σλθxp+

1
2
σ2θ2x2Q,

which is exactly the functionH0
cv defined in Subsection 1.2.5. In the same way

H̃0(x, p,Q) := sup
θ∈[0,1]

H̃0
cv (x, p,Q; θ) = H0(x, p,Q).

1.3.5 The HJB equation: viscosity solutions and regularity

Let us consider the HJB equation (1.77). This is a second order PDE which
is degenerate elliptic. The concept of viscosity solution we use here is given
by the following definition. We refer to the literature cited in Subsection 1.2.7
for more details on the definition of constrained viscosity solutions of elliptic
equations.

Definition 1.3.18. (i) A continuous function v : (l,+∞)→ R is called a viscos-
ity subsolution (respectively supersolution) of the equation (1.77) in (l,+∞)
if, for any ψ ∈ C2 ((l,+∞); R) and for any maximum point xM ∈ (l,+∞)
(respectively minimum point xm ∈ (l,+∞)) of v − ψ, we have

ρv(xM )−H
(
xM , ψ

′(xM ), ψ′′(xM )
)
≤ 0

(respectively ρv(xm)−H
(
xm, ψ

′(xm), ψ′′(xm)
)
≥ 0).

(ii) A continuous function v : (l,+∞) → R is called a viscosity solution to
equation (1.77) in (l,+∞) if it is both a viscosity subsolution and a viscosity
supersolution in (l,+∞).
(iii) A continuous function v : [l,+∞)→ R is called a viscosity subsolution to
equation (1.77) on [l,+∞) if, for any ψ ∈ C2 ([l,+∞)) ; R) and for any maxi-
mum point xM ∈ [l,+∞) of v − ψ, it follows

ρψ(xM )−H
(
xM , ψ

′(xM ), ψ′′(xM )
)
≤ 0.

(iv) A continuous function v : [l,+∞)→ R is called a constrained viscosity so-
lution to equation (1.77) if it is viscosity subsolution on [l,+∞) and a viscosity
supersolution in (l,+∞). �

We can state and prove the following result.

Theorem 1.3.19. The value function Ṽ defined in (1.3.3) is a viscosity solution to the
HJB equation (1.77) in (l,+∞). If Ũ is finite in l then Ṽ is a constrained viscosity
solution to the HJB equation (1.77) on [l,+∞).
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Proof. We have to show that Ṽ is:

(i) a viscosity supersolution in (l +∞);

(ii) a viscosity subsolution in (l +∞);

(iii) a viscosity subsolution in l when Ũ is finite in l.

(i) Let xm ∈ (l,+∞), ψ ∈ C2 ((l,+∞) ; R) be such that xm is a local min-
imum point for the function Ṽ − ψ. Of course for our goal we can assume
without loss of generality that

Ṽ (xm) = ψ(xm); Ṽ (x) ≥ ψ(x), ∀x ∈ (l,+∞). (1.79)

Let ε > 0 be such that xm−ε > l. For θ ∈ [0, 1], let us setX (t) := X (t;T, xm, θ).
Consider the stopping time τ θ = inf {t ≥ T | |X (t)− xm| ≥ ε} and notice that
τ θ > T almost surely. By (1.79) we get, for any t ≥ T ,

e−ρ(t−T )Ṽ (X (t))− Ṽ (xm) ≥ e−ρ(t−T )ψ (X (t))− ψ (xm) .

Let h > T . Setting τ θh := τ θ ∧ h, by the dynamic programming principle (1.76)
we get, for any θ ∈ [0, 1],

0 ≥ E

[∫ τθh

T
e−ρ(t−T )Ũ (X (t)) dt+ e−ρ(τ

θ
h−T)Ṽ

(
X
(
τ θh

))
− Ṽ (xm)

]

≥ E

[∫ τθh

T
e−ρ(t−T )Ũ (X (t)) dt+ e−ρ(τ

θ
h−T)ψ

(
X
(
τ θh

))
− ψ (xm)

]
.

(1.80)

Applying the Dynkin formula to the function (t, x) 7→ e−ρ(t−T )ψ (x) with the
process X (t), we get (Lθ is defined in (1.78))

E
[
e−ρ(τ

θ
h−T)ψ

(
X
(
τ θh

))
− ψ (xm)

]
= E

[∫ τθh

T
e−ρ(t−T )

[
−ρψ (X (t)) +

(
Lθψ

)
(X (t))

]
dt

]

and thus by (1.80) we have, for any θ ∈ [0, 1],

0 ≥ E

[∫ τθh

T
e−ρ(t−T )

[
−ρψ (X (t)) + H̃cv

(
X (t) , ψ′ (X (t)) , ψ′′ (X (t)) ; θ

)]
dt

]
.

Divide now by τ θh − T and let h → T . By continuity of H̃cv we easily get by
dominated convergence

0 ≥ −ρψ (xm) + H̃cv
(
xm, ψ

′ (xm) , ψ′′ (xm) ; θ
)
, θ ∈ [0, 1].
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Taking the supremum over θ ∈ [0, 1] the claim follows.

(ii) Let xM ∈ (l,+∞) and ψ ∈ C2 ((l,+∞); R) be such that xM is a local
maximum point of Ṽ −ψ in (l,+∞). Again for our goal we can assume without
loss of generality that

Ṽ (xM ) = ψ(xM ); Ṽ (x) ≤ ψ(x), ∀x ∈ (l,+∞) . (1.81)

We must prove that

ρψ(xM )− H̃
(
xM , ψ

′(xM ), ψ′′(xM )
)
≤ 0.

Let us suppose by contradiction that this relation is false. Then there exists
ν > 0 such that

0 < ν < ρψ(xM )− H̃
(
xM , ψ

′(xM ), ψ′′(xM )
)
.

By continuity of Ũ , ψ, H̃, there exists ε ∈ (0, xM − l) such that, for any x ∈
(xM − ε, xM + ε), we have

ν

2
≤ ρψ(x)− H̃

(
x, ψ′(x), ψ′′(x)

)
. (1.82)

Let θ(·) ∈ Θ̃ad(xM ) and set X(t) := X(t;T, xM , θ(·)). Define the stopping time

τ θ := inf {t ≥ T | |X (t)− xM | ≥ ε} ∧ 2T.

Of course τ θ > T almost surely by continuity of trajectories of X(·). Now we
take (1.82) for x = X (t), multiply it by e−ρ(t−T ), integrate it on [T, τ θ] and
calculate its expected value obtaining

ν

2
E

[∫ τθ

T
e−ρ(t−T )dt

]

≤ E

[∫ τθ

T
e−ρ(t−T )

(
ρψ(X (t))− sup

θ∈[0,1]

[(
Lθψ

)
(X (t))

]
− Ũ (X (t))

)
dt

]
,

from which it follows

ν

2
E

[∫ τθ

T
e−ρ(t−T )dt

]

≤ E

[∫ τθ

T
e−ρ(t−T )

(
ρψ(X (t))−

[
Lθ(t)ψ

]
(X (t))− Ũ(X(t))

)
dt

]
. (1.83)

Similarly to what done in (i), we apply the Dynkin formula to the function
(t, x) 7→ e−ρ(t−T )ψ (x) with the process X (t). We get

E
[
e−ρ(τ

θ−T)ψ(X(τ θ))− ψ(xM )
]

= E

[∫ τθ

T
e−ρ(t−T )

([
Lθ(t)ψ

]
(X (t))− ρψ(X (t))

)
dt

]
. (1.84)



96

From (1.81), (1.83) and (1.84) it follows, rearranging the terms,

Ṽ (xM ) ≥ E

[∫ τθ

T
e−ρ(t−T )Ũ(X (t))dt+ e−ρ(τ

θ−T)Ṽ
(
X
(
τ θ
))]

+
ν

2
E

[∫ τθ

T
e−ρ(t−T )dt

]
. (1.85)

We claim that there exists a constant α > 0 independent of θ (·) such that

E

[∫ τθ

T
e−ρ(t−T )dt

]
≥ α.

We will prove this fact in Lemma 1.3.20 below. Therefore by (1.85) we get

Ṽ (xM ) ≥ E

[∫ τθ

T
e−ρ(t−T )Ũ(X (t))dt+ e−ρ(τ

θ−T)Ṽ
(
X
(
τ θ
))]

+
ν

2
α

contradicting the dynamic programming principle

Ṽ (xM ) = sup
θ(·)∈Θ̃ad(xM )

E

[∫ τθ

T
e−ρ(t−T )Ũ(X (t))dt+ e−ρ(τ

θ−T)Ṽ
(
X
(
τ θ
))]

.

(iii) Let Ũ be finite in l. If rl = q then Ṽ is continuous in l (see Proposition
1.3.14) and ρṼ (l) = Ũ (l); so the subsolution inequality is immediate from the
fact that H̃ (x, p,Q) is always nonnegative for x ≥ l, p ≥ 0.

So, consider now the case rl > q. Take ψ ∈ C2 ([l,+∞); R) such that l is a
maximum point of Ṽ−ψ in [l,+∞). Then we can argue exactly as in point (ii) to
get the claim taking right neighborhoods of l instead of whole neighborhoods.
�

Lemma 1.3.20. For any θ(·) ∈ Θ̃ad(xM ) let τ θ be the stopping time defined in the
part (ii) of the proof of Theorem 1.3.19. There exists a constant α > 0 independent of
θ(·) ∈ Θ̃ad(xM ) such that

E
[
τ θ − T

]
≥ α.

Proof. For the controls such that P{τ θ < 2T} < 1/2, we have the estimate

E

[∫ τθ

T
e−ρ(t−T )dt

]
≥ 1

2

[
1− e−ρT

ρ

]
.

Therefore we can suppose without loss of generality that P{τ θ < 2T} ≥ 1/2.
For θ(·) ∈ Θ̃ad(xM ), letX(t) := X(t;T, xM , θ(·)) and apply the Dynkin formula
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to the process X(·) with the function ϕ(t, x) = e−ρ(t−T )(x−xM )2 on [T, τ θ]; we
get

E
[
e−ρ(τθ−T )

(
X(τ θ)− xM

)2
]

= E

[∫ τθ

T
e−ρ(t−T )

[
− ρ(X(t)− xM )2

+ 2(X(t)− xM ) [(r + σλθ(t))X(t)− q] + σ2θ(t)2X(t)2
]
dt

]
.

So, considering that τ θ ≤ 2T , θ(t) ∈ [0, 1] and that, for t ∈ [T, τ θ], we have
|X(t)| ≤ xM + ε, we can find K > 0 such that

1
2
ε2e−ρT ≤ P{τ θ < T} ε2e−ρT ≤ E

[∫ τθ

T
Ke−ρ(t−T ) dt

]
;

this estimate does not depend on θ(·) and therefore the claim is proved. �

Remark 1.3.21. The above proof recall some argument used in Theorem 1 of
[Choulli, Taksar, Zhou; 2003]. However our problem does not fit exactly into
the results contained in [Choulli, Taksar, Zhou; 2003] or in other papers. In
Theorem 3.1 of [Zariphopoulou; 1994], pp. 65–69, a different proof of the ex-
istence results is given for an HJB equation similar to ours (featuring state
constraints and unboudedness of the data). �

Remark 1.3.22. We are not proving here a comparison theorem. This should be
possible, e.g., arguing as in [Zariphopoulou; 1994] Theorem 4.1, p. 69–74, even
if our HJB equation is different (see also [Ishii, Loreti; 2002] for uniqueness
results in presence of state constraints). We do not do it here for brevity since
the comparison result is not essential for our applications. �

Now we work to prove the smoothness of Ṽ . For this purpose the follow-
ing lemmata are needed.

Lemma 1.3.23. Let g be a concave function on R such that g (x) = g (x0)+a (x− x0)
for x ≤ x0 and g (x) = g (x0) + b (x− x0) for x ≥ x0, where a > b. Then for each
ε > 0, c ∈ [b, a], there exists a concave C2 (R; R) function f such that f ≥ g,
f (x0) = g (x0), f ′ (x0) = c and f ′′ (x0) ≤ −ε−1.

Proof. See Lemma 2, p. 1958, of [Choulli, Taksar, Zhou; 2003]. �

Lemma 1.3.24. Let I be a given interval in R, g ∈ C0 (I; R) and let x0 be an interior
point of I . Assume that there exists a sequence (xn)n∈N such that xn < x0, ∃g′ (xn)
for every n ∈ N, and g′ (xn) → −∞ as xn → x0. Then D+g (x0) = ∅, where
D+g (x0) is the superdifferential of g at x0.
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Proof. If p ∈ D+g (x0) then, for every x in a given neighborhood of x0, we
have

g (x)− g (x0) ≤ p (x− x0) + o (x− x0) ,

so
lim inf
x→x−0

g (x)− g (x0)
x− x0

≥ p. (1.86)

On the other hand, for every n ∈ N we have

g (xn)− g (x0) = −
[
g′ (xn) (x0 − xn) + o (x0 − xn)

]
,

so
lim

n→+∞

g (xn)− g (x0)
xn − x0

= lim
n→+∞

g′ (xn) = −∞

which contradicts (1.86). �

Theorem 1.3.25. The value function Ṽ belongs to the class C2 ((l,+∞) ; R).

Proof. We first prove that Ṽ is differentiable. Since Ṽ is concave, by Alexan-
drov’s Theorem we know that for almost every x ∈ (l,+∞) there exists Ṽ ′ (x)
and Ṽ ′′ (x) (in the sense of the Taylor expansion). Let us suppose, by contra-
diction, that there exists x0 ∈ (l,+∞) such that @Ṽ ′ (x0). Then by concavity
the right and left derivatives Ṽ ′

(
x+

0

)
and Ṽ ′

(
x−0
)

exist and Ṽ ′
(
x−0
)
> Ṽ ′

(
x+

0

)
.

Moreover the subdifferential D−Ṽ (x0) has to be empty and the superdiffer-
ential D+Ṽ (x0) has to be the interval

[
Ṽ ′
(
x+

0

)
, Ṽ ′

(
x−0
)]

. Now, using Lemma
1.3.23 with

g(x) =

{
Ṽ (x0) + Ṽ ′(x+

0 )(x− x0), when x ≥ x0,

Ṽ (x0) + Ṽ ′(x−0 )(x− x0), when x < x0,

we get that for every ε there exists fε ∈ C2 (R; R) such that

• fε (x0) = Ṽ (x0);

• fε (x) ≥ g(x) ≥ Ṽ (x) for x ∈ (l,+∞);

• f ′ε (x0) = Ṽ ′
(
x+

0

)
;

• f ′′ε (x0) ≤ ε−1.

Since Ṽ is a viscosity solution to the HJB equation (1.77)), then

ρṼ (x0) ≤ (rx0 − q) f ′ε (x0) + Ũ (x0) + H̃0
(
x0, f

′
ε (x0) , f ′′ε (x0)

)
.

For ε sufficiently small the above implies

ρṼ (x0) < (rx0 − q) Ṽ ′
(
x−0
)

+ Ũ (x0) . (1.87)
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On the other hand, let (xn)n∈N be a sequence such that, for every n ∈ N,
xn < x0, ∃Ṽ ′ (xn), Ṽ ′′ (xn) and Ṽ ′ (xn) → Ṽ ′

(
x−0
)
, Ṽ ′′ (xn) → Q for some

Q ∈ [−∞, 0] when xn → x0. Then we have

ρṼ (xn) = (rxn − q) Ṽ ′ (xn) + Ũ (xn) + H̃0
(
xn, Ṽ

′ (xn) , Ṽ ′′ (xn)
)
.

Passing to the limit for n→ +∞we get, if Q > −∞

ρṼ (x0) = (rx0 − q) Ṽ ′
(
x−0
)

+ Ũ (x0) + H̃0
(
x0, Ṽ

′ (x−0 ) , Q) , (1.88)

if Q = −∞
ρṼ (x0) = (rx0 − q) Ṽ ′

(
x−0
)

+ Ũ (x0) . (1.89)

Both equalities (1.88) and (1.89) are not compatible with (1.87), so a contradic-
tion arise and Ṽ must be differentiable at x0. Continuous differentiability of V
follows from its concavity.

We now prove the twice differentiability. Again by the Alexandrov Theo-
rem, there exists a set A ⊂ (l,+∞) such that the Lebesgue measure of Ac =
(l,+∞) − A is zero and Ṽ is twice differentiable at every point of A. Let
x0 ∈ (l,+∞). Take any sequence {xn}n∈N ⊂ A such that xn → x0. Then,
by the continuous differentiability of Ṽ , we get that Ṽ (xn) → Ṽ (x0) and
Ṽ ′ (xn) → Ṽ ′ (x0) > 0 (note that Ṽ ′(x0) > 0 since Ṽ is concave and strictly
increasing).
First of all we observe that each element of the sequence Ṽ ′′ (xn) belongs to
(−∞, 0], so there exists at least a subsequence converging either to −∞ or to a
finite nonpositive limit. Now we prove that the limit exists and does not de-
pend on the sequence. Let (yn)n∈N and (zn)n∈N two sequences in A such that
yn → x0, zn → x0 and Ṽ ′′ (yn) → Q1, Ṽ ′′ (zn) → Q2 with Q1, Q2 ∈ [−∞, 0],
Q1 6= Q2. Therefore, by the HJB equation (1.77)), we have

ρṼ (yn) = (ryn − q) Ṽ ′ (yn) + Ũ (yn) + H̃0
(
yn, Ṽ

′ (yn) , Ṽ ′′ (yn)
)
,

ρṼ (zn) = (rzn − q) Ṽ ′ (zn) + Ũ (zn) + H̃0
(
zn, Ṽ

′ (zn) , Ṽ ′′ (zn)
)
,

so passing to the limit we get for i = 1, 2

ρṼ (x0) = (rx0 − q) Ṽ ′ (x0) + Ũ (x0) + H̃0
(
x0, Ṽ

′ (x0) , Qi
)

with the formal agreement that H̃0
(
x0, Ṽ

′ (x0) ,−∞
)

= 0. Since Ṽ ′(x0) > 0,

in this way H̃0
(
x0, Ṽ

′ (x0) , Q
)

is injective as function of Q ∈ [−∞, 0], so that
we get what claimed.
Now we prove that such limit Q can never be −∞. Assume by contradiction
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that for a given x0 ∈ (l,+∞) we have Ṽ ′′ (xn) → −∞, for every sequence
{xn}n∈N ⊂ A such that xn → x0. Take the function defined in (l,+∞) by

g (x) :=
1
ρ

[
Ũ (x) + Ṽ ′ (x) (rx− q)

]
.

For every x ∈ (l,+∞) we have g (x) ≤ Ṽ (x). Indeed, arguing as above and
calling Q the limit of Ṽ ′′ (xn) for every xn → x, {xn} ⊂ A, we get

ρṼ (x) = (rx− q) Ṽ ′ (x) + Ũ (x) + H̃0
(
x, Ṽ ′ (x) , Q

)
≥ (rx− q) Ṽ ′ (x) + Ũ (x) ,

where the inequality is strict on all the points of A and for points x such that
Q > −∞. Moreover g (x0) = Ṽ (x0) because in the case of x0 we are supposing
Q = −∞. Since Ṽ is differentiable at x0 we have

g (x) ≤ Ṽ (x) , g (x0) = Ṽ (x0) =⇒ Ṽ ′ (x0) ∈ D+g (x0) .

In particular this means that D+g (x0) 6= ∅. However, for every sequence
{xn}n∈N ⊂ A such that xn → x−0 , we have that ∃g′ (xn) and

g′ (xn) =
1
ρ

[
Ũ ′ (xn) + Ṽ ′′ (xn) (rxn − q) + rṼ ′ (xn)

]
,

so that
lim

n→+∞
g′ (xn) = −∞.

This is a contradiction thanks to Lemma 1.3.24.
With this argument we have proved that Ṽ ′′, which exists almost every-

where on (l,+∞), can be extended to a continuous function h on the whole
interval (l,+∞). Note that, differently from [Choulli, Taksar, Zhou; 2003], we
cannot conclude that Ṽ ′′ exists on (l,+∞) and Ṽ ′′ = h. Indeed if Ṽ ′ was the
Cantor function, we would get a contradiction of such a conclusion at this
stage. However we can say that, for any compact set [a, b] ⊂ (l,+∞), there
exists δa,b > 0 such that

H̃0(x, V ′(x), h(x)) ≥ δa,b, x ∈ [a, b].

Let us define the function

k(x) := ρṼ (x)− (rx− q)Ṽ ′(x)− Ũ(x), x ∈ (l,+∞);

this function is equal to H̃0(x, Ṽ ′(x), Ṽ ′′(x)) on A and moreover it is continu-
ous on [a, b], so that we have also

k(x) ≥ δa,b, x ∈ [a, b]. (1.90)
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Note that{
x ∈ [a, b]

∣∣∣ 2k(x)
σλxṼ ′(x)

= 1
}

=

{
x ∈ [a, b]

∣∣∣ − σλxṼ ′(x)
2[k(x)− σλxṼ ′(x)]

= 1

}
,

{
x ∈ [a, b]

∣∣∣ 2k(x)
σλxṼ ′(x)

< 1
}⋂{

x ∈ [a, b]
∣∣∣ − σλxṼ ′(x)

2[k(x)− σλxṼ ′(x)]
> 1

}
= ∅,

{
x ∈ [a, b]

∣∣∣ 2k(x)
σλxṼ ′(x)

≤ 1
}⋃{

x ∈ [a, b]
∣∣∣ − σλxṼ ′(x)

2[k(x)− σλxṼ ′(x)]
≥ 1

}
= [a, b].

Moreover

−λ
2Ṽ ′(x)2

2 k(x)
=

2[k(x)− σλxṼ ′(x)]
σ2x2

(1.91)

on the set{
x ∈ [a, b]

∣∣∣ 2k(x)
σλxṼ ′(x)

= 1
}

=

{
x ∈ [a, b]

∣∣∣ − σλxṼ ′(x)
2[k(x)− σλxṼ ′(x)]

= 1

}
. (1.92)

Therefore the function f : [a, b]→ R

f(x) :=


−λ

2Ṽ ′(x)2

2 k(x)
, if

2k(x)
σλxṼ ′(x)

≤ 1,

2[k(x)− σλxṼ ′(x)]
σ2x2

, if − σλxṼ ′(x)
2[k(x)− σλxṼ ′(x)]

≥ 1,

is well-defined on [a, b]; moreover it is continuous (thanks to (1.91) and (1.92))
and negative (thanks to (1.90)). Let us consider the equation

v′′(x) = f(x), x ∈ (a, b),

with boundary conditions

v(a) = Ṽ (a), v(b) = Ṽ (b). (1.93)

This equation admits a unique C2([a, b]; R) solution W satisfying the bound-
ary conditions (1.93). One could check that W is a viscosity solution to (1.77)
satisfying the boundary conditions (1.93). Actually, by the standard theory
of viscosity solutions for elliptic equations, W is the unique viscosity solu-
tion to (1.77) satisfying the boundary conditions (1.93) (see, e.g., Theorem 3.3
in [Crandall, Ishii, Lions; 1992]; conditions (3.13), (3.14) therein can be eas-
ily proved for our equation: see also the proof of Lemma 7.1, Chapter 4, of
[Fleming, Soner; 1993]). Since also Ṽ is a viscosity solution to (1.77) with bound-
ary conditions (1.93), we have Ṽ = W , so that Ṽ ∈ C2([a, b]; R). By the arbi-
trariness of the compact set [a, b] the proof is complete. �
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Remark 1.3.26. The proof above uses some arguments taken from the proof
of Theorem 2, pp. 1958–1960, in [Choulli, Taksar, Zhou; 2003] even if it needs
new ideas since here we do not have uniform ellipticity of the second order term.
In Theorem 5.1 of [Zariphopoulou; 1994], pp. 78–82, a similar regularity result
is proved for a similar HJB equation with a different technique (restriction to
bounded intervals where the equation is proved to be uniformly elliptic). In
any case the result of [Zariphopoulou; 1994] cannot be applied as it is to this
case. We also note that the above proof indeed states the C2 interior regularity
for every concave viscosity solution to HJB equation (1.77) in (l,+∞). �

Remark 1.3.27. We can get more regularity of the value function. In particular
observe that from the HJB equation, for any x0 ∈ (l,+∞), if

− λṼ ′(x0)
σx0Ṽ ′′(x0)

< 1,

then in a suitable neighborhood I(x0) of x0

Ṽ ′′(x) = −
λ2

2

[
Ṽ ′ (x)

]2

ρṼ (x)− (rx− q) Ṽ ′ (x)− Ũ(x)
, (1.94)

so Ṽ ′′ is continuously differentiable in I(x0). Similarly if

− λṼ ′(x0)
σx0Ṽ ′′(x0)

> 1

(or even when Ṽ ′′ (x0) = 0), then in a suitable neighborhood I(x0)

Ṽ ′′(x) =
2

σ2x2

[
ρṼ (x)− (rx+ σλx− q) Ṽ ′ (x)− Ũ(x)

]
,

so Ṽ ′′ is differentiable in I(x0). �

Now we give a Corollary which will be very useful in proving the verifica-
tion theorem for the case rl > q stated in next subsection.

Corollary 1.3.28. The value function is strictly concave and satisfies

Ṽ ′ (x) > 0, Ṽ ′′ (x) < 0,

for x ∈ (l,+∞). Moreover, if rl > q and Ũ (l) > −∞, we have

Ṽ ′′ (x) −→ −∞, when x −→ l+, (1.95)

and, if U ′ (l+) is finite,

(x− l)
[
Ṽ ′′ (x)

]2
−→

λ2
[
Ṽ ′ (l+)

]2

4 (rl − q)
, when x −→ l+. (1.96)
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Proof. The fact that Ṽ ′ (x) > 0 for x > l comes from concavity and strict
monotonicity. Now let us suppose by contradiction that there exists x0 > l

such that Ṽ ′′ (x0) = 0. In this case the maximum of H̃0
cv

(
x0, Ṽ

′ (x0) , Ṽ ′′ (x0) ; θ
)

is reached for θ = 1, and so we have taking the HJB equation (1.77) for x in a
sufficiently small neighborhood I (x0) of x0

ρṼ (x)− (rx− q) Ṽ ′ (x)− Ũ (x) = σλxṼ ′ (x) +
1
2
σ2x2Ṽ ′′ (x) .

Call now, for x ∈ I (x0),

h (x) =
1
2
σ2x2Ṽ ′′ (x) = ρṼ (x)− (rx+ σλx− q) Ṽ ′ (x)− Ũ (x) .

Clearly h has a local maximum at x0 and is twice differentiable at x0 thanks to
Remark 1.3.27. So it must be h′ (x0) = 0 and h′′ (x0) ≤ 0. Now

h′ (x) = (ρ− r − σλ) Ṽ ′ (x)− Ũ ′ (x)− Ṽ ′′ (x) (rx+ σλx− q)

h′′ (x) = (ρ− 2r − 2σλ) Ṽ ′′ (x)− Ũ ′′ (x)− Ṽ ′′′ (x) (rx+ σλx− q)

and therefore, using that Ṽ ′′ (x0) = 0, we obtain

h′ (x0) = (ρ− r − σλ) Ṽ ′ (x0)− U ′ (x0)

h′′ (x0) = −U ′′ (x0)− Ṽ ′′′ (x0) (rx0 + σλx0 − q) .

Since x0 is also a maximum for Ṽ ′′, it is clearly Ṽ ′′′ (x0) = 0 and consequently,
by Hypothesis 1.3.2-(i), h′′ (x0) = −U ′′ (x0) > 0, a contradiction.

Suppose now that rl > q. We are going to prove (1.95) under the assump-
tion Ũ(l) > −∞. Observe that, for x > l,

ρṼ (x)− (rx− q) Ṽ ′ (x)− Ũ (x) = H̃0
(
x, Ṽ ′ (x) , Ṽ ′′ (x)

)
.

Recall that by Remark 1.3.15 we have that Ṽ ′(l+) is finite. Take any sequence
xn → l+ such that Ṽ ′′ (xn) → Q ∈ [−∞, 0]. Then, passing to the limit for
n→ +∞ in the HJB equation above, we get

ρṼ (l)− (rl − q) Ṽ ′
(
l+
)
− Ũ (l) = H̃0

(
l, Ṽ ′

(
l+
)
, Q
)
. (1.97)

On the other hand by concavity we know that, for x ≥ l,

Ṽ (x) ≤ Ṽ (l) + Ṽ ′
(
l+
)

(x− l) .

Let δ > 0; applying Lemma 1.3.23 with the function

g(x) =

{
Ṽ (l) + Ṽ ′ (l+) (x− l) when x ≥ l,
Ṽ (l) + (Ṽ ′(l+) + δ)(x− l) when x < l,

we find fε defined on R such that
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• fε (x) ≥ Ṽ (l) + Ṽ ′ (l+) (x− l) for x ≥ l;

• fε (l) = Ṽ (l);

• f ′ε (l) = Ṽ ′ (l+);

• f ′′ε (l) ≤ −ε−1.

Then we have, for x ≥ l,

0 = Ṽ (l)− fε (l) ≥ Ṽ (x)− fε (x) ,

so that, being Ṽ a subsolution to the HJB equation (1.77) at x = l,

ρṼ (l)− (rl − q) f ′ε (l)− Ũ (l) ≤ H̃0
(
l, f ′ε (l) , f ′′ε (l)

)
.

By the arbitrariness of ε this gives

ρṼ (l)− (rl − q) Ṽ ′
(
l+
)
− Ũ (l) = 0. (1.98)

Therefore, comparing (1.97) and (1.98), we get

H̃0
(
l, Ṽ ′

(
l+
)
, Q
)

= 0 =⇒ Q = −∞.

The claim follows by a standard argument on subsequences.
Finally we prove (1.96) under the assumption Ũ ′(l+) < +∞. First observe

that, for x in a suitable right neighborhood of l, we must have as a consequence
of (1.95)

λṼ ′(x)
σxṼ ′′(x)

< 1,

so that by (1.94) we obtain

(x− l)
[
Ṽ ′′(x)

]2
= λ4

[
Ṽ ′ (x)

]4
· (x− l)[
ρṼ (x)− (rx− q) Ṽ ′ (x)− Ũ(x)

]2

To calculate the limit of the second factor we use de l’Hôpital rule. The ratio of
the derivatives is (using (1.94) to rewrite it)

1

2
[
ρṼ (x)− (rx−A) Ṽ ′ (x)− U(x)

] [
(ρ− r) Ṽ ′ (x)− (rx−A) Ṽ ′′ (x)− U ′ (x)

]
=

1

4λ2
[
Ṽ ′ (x)

]2 ·
−Ṽ ′′ (x)

(ρ− r) Ṽ ′ (x)− (rx−A) Ṽ ′′ (x)− U ′ (x)
.

Since U ′ (l+) is finite the limit of the second factor is clearly 1
rl−q , so the claim

is proved. �
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Remark 1.3.29. Both the convergences (1.95) and (1.96) come from the bound-
ary condition for the HJB equation, i.e. the subsolution inequality at the bound-
ary (which depends on the structure of the second order superdifferential at
the boundary). In particular we can say that if rl > q and Ũ (l) > −∞ the value
function Ṽ solves the HJB equation (1.77) on [l,+∞) with the usual agreement
that H̃0

(
l, Ṽ ′ (l+) ,−∞

)
= 0.

Similar results can be proved in the case when rl = q, but we will not
need them since in that case we will only study a special case where explicit
solutions are available (Subsection 1.3.7).

Finally we note that Corollary 1.3.28 holds for every concave constrained
viscosity solution to the equation (1.77) on [l,+∞). �

1.3.6 The verification theorem and the optimal policy when rl > q

In this subsection we prove a verification theorem and the existence of optimal
feedbacks when rl > q and Ũ(l), Ũ ′(l+) are finite. We start by a lemma.

Lemma 1.3.30. Let rl > q and let Ũ (l) , Ũ ′ (l) be finite. Set

G̃ (x) =


(
− λṼ ′ (x)
σxṼ ′′ (x)

)
∧ 1, when x > l,

0, when x ≤ l.
(1.99)

1. For every x ≥ l the closed loop equationdX(t) =
[(
r + σλG̃ (X (t))

)
X(t)− q

]
dt+ σG̃ (X (t))X(t)dB(t), t ≥ T,

X(T ) = x,

(1.100)
has a unique strong solution XG̃ (· ;T, x).

2. For every t ≥ T we have XG̃ (t;T, x) ≥ l almost surely.

3. XG̃(·;x, T ) ∈ CP([T,+∞);Lp(Ω; P)) for every p ≥ 1.

Proof.

1. For every t ≥ T , consider the probability P̃t = exp
(
−λB (t)− 1

2λ
2 (t− T )

)
·

P and let B̃(s) = B(s) + λ(s − T ), s ∈ [T, t], the Brownian motion with
respect to P̃t over [T, t] given by Girsanov’s Theorem. We will show that
the following equationdX (τ) = (rX (τ)− q) dt+ σG̃ (X (τ))X (τ) dB̃ (τ) ,

X(T ) = x.
(1.101)



106

admits a unique strong solution X on the probabiity space (Ω,Ft, P̃t)
over [T, t]. If this is true, then, by definition of B̃, we see that X is the
unique strong solution to (1.100) on the probability space (Ω,F ,P) over
[T, t]. Since this can be done for arbitrary t ≥ T , we would get the claim.

So, let us show that, for every t ≥ T , (1.101) has a unique strong solution
on the space (Ω,Ft, P̃t).

• Existence of a weak solution to (1.101). Note that G̃ is continuous since
Ṽ ′, Ṽ ′′ are continuous and since Ṽ ′′ (l+) = −∞while Ṽ ′ (l+) < +∞.
Moreover G̃ is clearly bounded. Thus applying Theorem 2.4, p. 163,
of [Ikeda, Watanabe; 1981] we get the existence of a weak solution.

• Pathwise uniqueness for (1.101). We want to apply Yamada-Watanabe
Theorem (see

- [Yamada, Watanabe; 1971] or

- Theorem 3.5-(ii), p. 390, of [Revuz, Yor; 1999] or

- Proposition 2.13, p. 291, of [Karatzas, Shreve; 1991])

with the weakened assumptions of [Revuz, Yor; 1999], Exercise 3.14,
p. 397.

– Estimate in a right-neighborhood of l. Note that by Remark 1.3.15,
we know that Ṽ ′(l+) is finite and that rl > q implies l > 0.
Therefore we have

G̃(l) = 0 = lim
x→l+

(
− λṼ ′(x)
σxṼ ′′(x)

)
=

2
σλlṼ ′(l+)

[ρṼ (l)− (rl −A)Ṽ ′(l+)− Ũ(l)].

So, by Remark 1.3.27, there exists ε ∈ (0, 1) such that, for every
x ∈ [l, l + ε),

G̃(x) = − λṼ ′(x)
σxṼ ′′(x)

=
2

σλxṼ ′(x)

[
ρṼ (x)− (rx− q)Ṽ ′(x)− Ũ(x)

]
.

Thus, taking into account that Ṽ ′(·) ∈ [Ṽ ′(l + ε), Ṽ ′(l+)] in the
intercal [l, l + ε) with Ṽ (l+), Ṽ ′(l + ε) ∈ (0,+∞), we can find
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K1,K2 > 0 such that, for any x, y ∈ [l, l + ε), x ≥ y,

∣∣∣G̃ (x)x− G̃ (y) y
∣∣∣ = 2

∣∣∣∣∣ρṼ (x)− (rx− q)Ṽ ′(x)− Ũ(x)
σλṼ ′(x)

−ρṼ (y)− (ry − q)Ṽ ′(y)− Ũ(y)
σλṼ ′(y)

∣∣∣∣∣
≤
∣∣∣∣[ 2
σλṼ ′(x)

− 2
σλṼ ′(y)

] [
ρṼ (x)− (rx− q)Ṽ ′(x)− Ũ(x)

]∣∣∣∣
+
∣∣∣∣ 2
σλṼ ′(y)

∣∣∣∣
∣∣∣∣∣ [ρṼ (x)− (rx− q)Ṽ ′(x)− Ũ(x)

]
−
[
ρṼ (y)− (ry − q)Ṽ ′(y)− Ũ(y)

] ∣∣∣∣∣
≤ K1 |x− y|+K2

∣∣∣ Ṽ ′ (x)− Ṽ ′ (y)
∣∣∣

≤ K1|x− y|+K2

∣∣∣∣∫ x

y

Ṽ ′′ (ξ) dξ
∣∣∣∣ ,

so by (1.96) we get, for some KH > 0, for any x, y ∈ [l, l + ε),∣∣∣G̃ (x)x− G̃ (y) y
∣∣∣2 ≤ KH |x− y| .

– Estimate out of a right-neighborhood of l. Arguing as before, for
some KL > 0, we get the following estimate on [l + ε,+∞), for
every x ∈ [l+ε,+∞) and for every y ∈ [x−1, x+1]∩[l+ε,+∞),∣∣∣G̃ (x)x− G̃ (y) y

∣∣∣2
= 4

∣∣∣∣∣
(
ρṼ (x)− (rx− q)Ṽ ′(x)− Ũ(x)

σλṼ ′(x)
∧ x

)

−

(
ρṼ (y)− (ry − q)Ṽ ′(y)− Ũ(y)

σλṼ ′(y)
∧ y

)∣∣∣∣∣
2

≤ KL

1 +

∣∣∣∣∣ρṼ (x)− (rx− q)Ṽ ′(x)− Ũ(x)
Ṽ ′(x)Ṽ ′(x+ 1)

∣∣∣∣∣
2

+
∣∣∣∣ 1
Ṽ ′(x+ 1)

∣∣∣∣2
 |x− y|2 .

Recall that the drift coefficient of the equation is Lipschitz continu-
ous and that G was set identically zero on the set (−∞, l]. Therefore
we can apply the cited result of [Revuz, Yor; 1999], using for the dif-
fusion coefficient the estimate, holding for every x ∈ [l+ε,+∞) and
for every y ∈ [x− 1, x+ 1] ∩ [l,+∞),∣∣G̃(x)x− G̃(y)y

∣∣2 ≤ [1 + g(x)[G̃(x)x]2
]
ρ(|x− y|),

where

g(x) =

0, on [l, l + ε),
1

[G(x)x]2

[∣∣∣ρṼ (x)−(rx−q)Ṽ ′(x)−Ũ(x)

Ṽ ′(x)Ṽ ′(x+1)

∣∣∣+
∣∣∣ 1
Ṽ ′(x+1)

∣∣∣]2
, on [l + ε,+∞),
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ρ(r) = KH |r|+KL|r|2.

So we get pathwise uniqueness for the equation.

2. The fact that XG̃(t) ≥ l almost surely follows from the fact that G̃(x) = 0
when x ≤ l; this can be proved for example arguing by contradiction.

3. Take the control
θG̃(t) := G̃(XG̃(t;T, x);

then we clearly have X(t;T, x, θG̃(·)) = XG̃(t;T, x), for every t ≥ T . The
claim follows then by Theorem 1.3.1. �

Remark 1.3.31. In this remark we want to analyze the behaviour of the “opti-
mal” diffusion XG̃ (actually we will see that it is optimal in the next result) at
the boundary l. XG̃ is the unique solution to the stochastic differential equa-
tion

dX(t) = [rX(t)− q + σG̃(X(t))X(t)]dt+ σG̃ (X (t))X(t)dB(t).

On the other hand we can rewrite the diffusion setting Y (t) := X(t)− l, so that
Y is the solution of the stochastic differential equation

dY (t) = [rY (t) + b+ Σ(Y (t))]dt+ Σ (Y (t)) dB(t),

where
b := rl − q, Σ(y) := σG̃(y + l) · (y + l).

First of all notice that, since b > 0 and Σ(0) = 0, the boundary 0 is not absorb-
ing for Y . Therefore, since Y is continuous, Lemma 19.8 of [Kallenberg; 1997]
shows that the boundary 0 is instantaneous (or reflecting, see [Kallenberg; 1997],
p. 380) for the diffusion Y and so the boundary l is reflecting for the diffusion
XG̃.
Moreover thanks to (1.96) we have

lim
y→0+

∣∣∣∣Σ(y)
√
y

∣∣∣∣ = lim
x→l+

∣∣∣∣∣σG̃(x)x√
x− l

∣∣∣∣∣ = lim
x→l+

∣∣∣∣∣ λṼ ′(x)
Ṽ ′′(x)

√
x− l

∣∣∣∣∣ = 2
√
b.

Following [Feller; 1952], straightforward computations show that Feller’s clas-
sification of the boundary 0 for Y (and so of the boundary l for XG̃) is deter-
mined by the behaviour at 0, for generic η > 0 fixed, of the integrals

u(y) =
∫ η

y
dz

[∫ η

z

2
Σ(s)2

e−B(s)

]
eB(z), v(y) =

∫ η

y
dz

[∫ η

z
eB(s)ds

]
2

Σ(z)2
e−B(z),

where
B(z) =

∫ η

z

2(rv + b+ Σ(v)
Σ(v)2

dv.
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Taking into account that for any ε > 0 we can find a sufficiently small η > 0
such that √

(4b− ε)y ≤ Σ(y) ≤
√

(4b+ ε)y, y ∈ [0, η],

straightforward computations show that u(0) < +∞, v(0) < +∞. This means
that the boundary l is regular. The fact that u(0) < +∞means that the bound-
ary l is accessible for XG̃, i.e.

P{∃ t ≥ T | XG̃(t;T, x) = l} > 0, ∀x > l,

see [Feller; 1954]. �

Theorem 1.3.32. Let rl > q and Ũ (l) , Ũ ′ (l) be finite. Then, for every x ≥ l, the
control strategy θ∗ (·) ∈ Θ̃ad (x) such that

θ∗ (t) = G̃
(
XG̃ (t;T, x)

)
,

where G̃ is given by (1.99) and XG̃ (·;T, x) is the unique strong solution to (1.100),
is the unique optimal strategy at x.

Proof. We cannot proceed with the standard proof of the verification the-
orem in the regular case (see on this, e.g., [Yong, Zhou; 1999], p. 268) since
the function Ṽ is not C2 up to the boundary. Thus we use an approximation
procedure. Given any ε > 0 we define a function Ṽε ∈ C2 (R) such that

• Ṽε (x) = Ṽ (x) in [l + ε,+∞);

• Ṽε (x) = a1 + b1x+ c1x
2 in

(
l+ q

r
2 , l + ε

)
, where

c1 =
1
2
Ṽ ′′ (l + ε) ,

b1 = Ṽ ′ (l + ε)− Ṽ ′′ (l + ε) (l + ε) ,

a1 = Ṽ (l + ε)− Ṽ ′ (l + ε) (l + ε) +
1
2
Ṽ ′′ (l + ε) (l + ε)2 ;

• Ṽ ′ε (x) ≥ 0 in R and Ṽ ′ε (x) = 0 for x ≤ q
r .

To define Ṽε on
[
q
r ,

l+ q
r

2

]
it is enough to take a suitable third degree polynomial.

Since for x ∈ [l, l + ε]

Ṽε (x)− Ṽ (x) = Ṽ (l + ε)− Ṽ (x)− Ṽ ′ (l + ε) (l + ε− x) +
1
2
Ṽ ′′ (l + ε) (l + ε− x)2

Ṽ ′ε (x)− Ṽ ′ (x) = Ṽ ′ (l + ε)− Ṽ ′ (x)− Ṽ ′′ (l + ε) (l + ε− x)

Ṽ ′′ε (x)− Ṽ ′′ (x) = Ṽ ′′ (l + ε)− Ṽ ′′ (x) ,

using that εṼ ′′ (l + ε)→ 0 as ε→ 0 (see (1.96)), we have

Ṽε −→ Ṽ , Ṽ ′ε −→ Ṽ ′, uniformly in [l,+∞) , (1.102)
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and

H̃0
(
x, Ṽ ′ε (x) , Ṽ ′′ε (x)

)
−→ H̃0

(
x, Ṽ ′ (x) , Ṽ ′′ (x)

)
, uniformly in [l,+∞) .

(1.103)
We claim that Ṽε solves in R the HJB equation

ρṼε (x)− (rx− q) Ṽ ′ε (x)− H̃0
(
x, Ṽ ′ε (x) , Ṽ ′′ε (x)

)
= gε (x) (1.104)

where gε → Ũ uniformly in [l,+∞) as ε → 0 while gε (x) → −∞ for every
x < l.
Indeed, (1.102), (1.103) and Remark 1.3.29 imply immediately that gε → Ũ

uniformly in [l,+∞). Moreover it is clear by its definition that Ṽε (x) → −∞
for every x < l and that Ṽ ′ε (x) = 0 for every x < q

r . Since Ṽ ′ε (x) ≥ 0 and

H̃0
(
x, Ṽ ′ε (x) , Ṽ ′′ε (x)

)
≥ 0, then we have

gε (x) ≤ ρṼε (x) , ∀x < l,

and so the claim.
Take x ≥ l, θ(·) ∈ Θ̃ad(x) and set X(t) = X (t;T, x, θ(·)). Consider the

function

(t, x) 7−→ e−ρ(t−T )Ṽε (x) . (1.105)

Since Ṽ is concave, by construction Ṽ ′ε is bounded. Then, taking into account
that also θ(·) is bounded and that X ∈ CP([T,+∞);L2(Ω,P)) (Theorem 1.3.1),
we get that the process

t 7→
∫ t

T
σθ(s)X(s)Ṽ ′ε (X(s))dB(s)

is a martingale. Therefore we can apply Dynkin’s formula to X (·) with the
function (1.105), getting, for t1 ≥ T ,

E
[
e−ρ(t1−T )Ṽε (X (t1))− Ṽε (x)

]
= E

[∫ t1

T
e−ρ(t−T )

[
−ρṼε (X (t)) + [Lθ(t)Ṽε] (X (t))

]
dt

]
,

so by (1.104)

E
[
e−ρ(t1−T )Ṽε (X (t1))− Ṽε (x)

]
= E

[ ∫ t1

T
e−ρ(t−T )

[
− gε (X (t))− H̃0

(
X (t) , Ṽ ′ε (X (t)) , Ṽ ′′ε (X (t))

)
− (rX (t)− q) Ṽ ′ε (X (t)) + [Lθ(t)Ṽε] (X (t))

]
dt
]
,
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which implies

Ṽε (x) = E
[∫ t1

T
e−ρ(t−T )gε (X (t)) dt+ e−ρ(t1−T )Ṽε (X (t1))

]
+ E

[ ∫ t1

T
e−ρ(t−T )

[
H̃0
(
X (t) , Ṽ ′ε (X (t)) , Ṽ ′′ε (X (t))

)
− H̃0

cv

(
X (t) , Ṽ ′ε (X (t)) , Ṽ ′′ε (X (t)) ; θ (t)

) ]
dt
]
.

Sending t1 → +∞ we get E
[
e−ρ(t1−T )Ṽε (X (t1))

]
→ 0 by using (1.62), the

last statement of Proposition 1.3.11 and estimating E
[
X (t)β

]
as in the proof

of Proposition 1.3.7. Therefore, by dominated convergence for the term with
gε (recall that gε → Ũ uniformly on [l,+∞) and that Ũ is finite at l and satisfies
(1.62)) and by monotone convergence for the term with H̃0 − H̃0

cv (note that
H̃0 ≥ H̃0

cv),

Ṽε (x) = E
[∫ +∞

T
e−ρ(t−T )gε (X (t)) dt

]
+ E

[ ∫ +∞

T
e−ρ(t−T )

[
H̃0
(
X (t) , Ṽ ′ε (X (t)) , Ṽ ′′ε (X (t))

)
− H̃0

cv

(
X (t) , Ṽ ′ε (X (t)) , Ṽ ′′ε (X (t)) ; θ (t)

) ]
dt
]
. (1.106)

Now we take θ (·) ∈ Θ̃ad (x) and send ε → 0+ in the above formula. We have
by the proof above

Ṽε (x) −→ Ṽ (x) , E
[∫ +∞

T
e−ρ(t−T )gε (X (t)) dt

]
−→ J̃ (x; θ (·)) ,

and

E
[∫ +∞

T
e−ρ(t−T )H̃0

(
X(t) , Ṽ ′ε (X(t)) ,Ṽ ′′ε (X (t))

)
dt

]
−→

E
[∫ +∞

T
e−ρ(t−T )H̃0

(
X (t) , Ṽ ′ (X (t)) , Ṽ ′′ (X (t))

)
dt.

]
This means that also the limit

lim
ε→0+

E
[∫ +∞

T
e−ρ(t−T )H̃0

cv

(
X (t) , Ṽ ′ε (X (t)) , Ṽ ′′ε (X (t)) ; θ (t)

)
dt

]
exists. Take now the closed loop strategy

θx
G̃

(t) = G̃
(
XG̃ (t;T, x)

)
,

where G̃ is given by (1.99) and XG̃ (·;T, x) is the unique strong solution to
(1.100). If we prove that, setting

XG̃ (t) := XG̃ (t;T, x) , H̃0
(
l, Ṽ ′ (l) , V ′′(l)

)
:= 0,
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we have

lim
ε→0+

E
[∫ +∞

T

e−ρ(t−T )H̃0
cv

(
XG̃ (t) , Ṽ ′ε (XG̃ (t)) , Ṽ ′′ε (XG̃ (t)) ; θ∗ (t)

)
dt

]
= E

[∫ +∞

T

e−ρ(t−T )H̃0
(
XG̃ (t) , Ṽ ′ (XG̃ (t)) , Ṽ ′′ (XG̃ (t))

)
dt

]
, (1.107)

then, passing to the limit in (1.106), we obtain

Ṽ (x) = J̃
(
x; θx

G̃
(·)
)
,

and so the optimality of θx
G̃

(·). To prove (1.107) it is enough to observe that

H̃0
cv

(
x, Ṽ ′ε (x) , Ṽ ′′ε (x) ; G̃ (x)

)
−→

−→ H̃0
(
x, Ṽ ′ (x) , Ṽ ′′ (x)

)
=

{
H̃0
cv

(
x, Ṽ ′ (x) , Ṽ ′′ (x) ; G̃ (x)

)
, if x > l,

0, if x = l,

(1.108)

uniformly as ε → 0+. Indeed G̃(l) = 0, so that the left-handside in (1.108) is
equal to 0 for x = l. Moreover, for x ∈ (l,+∞),

H̃0
cv

(
x, Ṽ ′ε (x) , Ṽ ′′ε (x) ; G̃ (x)

)
− H̃0

cv

(
x, Ṽ ′ (x) , Ṽ ′′ (x) ; G̃ (x)

)
= σλG̃ (x)x

[
Ṽ ′ε (x)− Ṽ ′ (x)

]
+

1
2
σ2G̃ (x)2 x2

[
Ṽ ′′ε (x)− Ṽ ′′ (x)

]
.

The first term goes to 0 uniformly as ε→ 0+ thanks to (1.102) while the second
is, for ε sufficiently small and x ∈ (l, l + ε) (for x ≥ l + ε it is zero),

1
2
λ2
(
Ṽ ′ (x)

)2 Ṽ ′′ε (x)− Ṽ ′′ (x)[
Ṽ ′′ (x)

]2 .

Since
Ṽ ′′ε (x)− Ṽ ′′ (x)[

Ṽ ′′ (x)
]2

is negative and greater than
[
Ṽ ′′ (l + ε)

]−1
, the convergence (1.108) follows; so

we get (1.107) and the optimality of θ∗ (·).
The uniqueness follows from the strict concavity of Ũ arguing as in the

proof of Proposition 1.3.12: one takes two different optimal strategies θ1(·)
and θ2(·) with corresponding trajectories X1(·) and X2(·) and one proves that
for any γ ∈ [0, 1] there exists an admissible strategy θγ whose associated tra-
jectory is γX1(·) + (1− γ)X2(·). Then the strict concavity of Ũ implies that
J̃ (x, θγ (·)) > γJ̃ (x, θ1 (·)) + (1− γ)J̃ (x, θ2 (·)) = Ṽ (x), a contradiction. �
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Remark 1.3.33. If rl > q and Ũ(x) = γ−1
(
x− q

r

)γ then, arguing as in the proof
of Proposition 1.3.34, one can see that the function

v(x) = γ−1

(
ρ− γr − λ2γ

2(1− γ)

)−1 (
x− q

r

)γ
is a regular solution to the HJB equation (1.77) in (l,+∞) when λ ≤ σ(1 − γ).
However this function v is not a constrained viscosity solution since it does
not satisfy (1.95) that comes from the boundary condition (see on this Remark
1.3.29), and so v is not the value function.

In next section we will see that we have v = Ṽ when rl = q. Therefore,
from the arguments of next section, it follows that when rl > q the function v
is the value function if the state constraint x ≥ l is replaced by x ≥ q

r , so we
clearly have v ≥ Ṽ .

Finally we observe that the proof of the above Theorem 1.3.32 works if Ṽ
is replaced by any concave constrained viscosity solution to equation (1.77) in
[l,+∞). So, as a byproduct of this theorem, we get that the value function is
the unique concave constrained viscosity solution to equation (1.77) in [l,+∞).
�

1.3.7 An example when rl = q with explicit solution

In the case of rl = q and Ũ ′(l+) = +∞ it is possible to prove a general verifi-
cation theorem on the line of Theorem 1.3.32. We do not do it here for brevity
but we study a special case where, differently from the case rl > q, the explicit
form of the value function and of the optimal couples is available. The utility
function is given by

Ũ(x) =
(x− l)γ

γ
, γ ∈ (−∞, 0) ∪ (0, 1) . (1.109)

This utility function is defined for any x ≥ l, if γ ∈ (0, 1), and for any x > l if
γ ∈ (−∞, 0); therefore the set of admissible strategies is never empty thanks
to Lemma 1.3.4. Moreover it always satisfies Hypothesis 1.3.2. Notice that,
considering the utility as a function of x− l, the above specification represents
constant relative risk aversion preferences. The case of logarithmic utility may
be treated in the same way but we do not do it for brevity.

As in Subsection 1.2.8 we look for a solution to the HJB equation (1.77) of
the form

v (x) = C
(x− l)γ

γ
, γ ∈ (−∞, 0) ∪ (0, 1), (1.110)
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for a suitable constant C. Substituting into the HJB equation (1.77) we see that
it must be

C =
(
ρ− γr − λ2γ

2 (1− γ)

)−1

, (1.111)

under the conditions

ρ > γr +
λ2γ

2(1− γ)
, λ ≤ σ (1− γ) . (1.112)

The first condition is necessary in order to grant the finiteness of the value
function. Indeed for γ ∈ (−∞, 0) this finiteness is obvious, while for γ ∈ (0, 1)
this condition guarantees (1.62) and so the finiteness of the value function.
The second condition, as in Section 1.2.8, guarantees that the maximum point
in the Hamiltonian is smaller than 1, so the no borrowing constraint is never
active: this allows to keep H̃0 in the form which is suitable to find the explicit
solution. When λ > σ(1 − γ) it is not difficult to see that Ṽ (x) < v(x) for any
x > l using the fact that v is the value function of a problem with larger control
set whose optimal trajectory is not admissible for our problem.

Define the feedback map

G(x) =
λ

σ (1− γ)
x− l
x

; (1.113)

the associated closed loop equation isdX (t) =
(

λ2

1− γ
+ r

)
(X (t)− l) dt+ λ

1−γ (X (t)− l) dB (t) ,

X(T ) = x.

(1.114)

Such equation is linear and has a unique strong solutionXG (·;T, x). Moreover
XG (·;T, x) > l almost surely.

The main result of this subsection is the following.

Theorem 1.3.34. Let conditions (1.112) be verified and the utility function Ũ be given
by (1.109) with γ ∈ (−∞, 0) ∪ (0, 1). Then

(i) v given in (1.110), with C given by (1.111), is the value function, i.e.

Ṽ (x) = γ−1

[
ρ− γr − λ2γ

2 (1− γ)

]−1

(x− l)γ , x ≥ l (x > l when γ < 0);

(ii) the feedback control

θx
G̃

(t) :=
λ

σ (1− γ)
· XG(t;T, x)− l

XG(t;T, x)
(1.115)

is admissible and optimal for the problem.
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Proof. Note that the function v is not smooth up to the boundary also in
this case. Nevertheless, since the boundary is abosorbing in this case, we can
give a quite standard proof of the verification.

If γ ∈ (0, 1) and x = l, then the only admissible strategy is θ(·) ≡ 0, so that

v(l) =
Ũ(l)
ρ

= J̃(l, 0) = Ṽ (l).

So let us suppose x > l. We know that the function v given in (1.110) satisfies
the following HJB equation

ρv(y)− (y − l)γ

γ
− v′(y) (ry −A)− H̃0

(
y, v′(y), v′′(y)

)
= 0, y > l. (1.116)

Take θ (·) ∈ Θ̃ad (x) with the associated state trajectory X(·) := X(·;T, x, θ(·)).
Define, with the convention inf ∅ = +∞,

τl := inf{t ≥ T | X(t) = l}, τl+ε := inf{t ≥ T | X(t) = l + ε}, ε ∈ (0, x− l).

It is easy to see that τl+ε ↑ τl almost surely, when ε ↓ 0. Note that v′ is bounded
on [l + ε,+∞) for every ε ∈ (0, x), so that the process

t 7→
∫ t∧τl+ε

T
σθ(s)X(s)v′(X(s))dB(s)

is a martingale. Applying Dynkin’s formula to the process X(·) with the func-
tion (t, x) 7→ e−ρ(t−T )v(x), as in the proof of Theorem 1.3.32 we get, for any
t1 > T ,

v(x) = E
[∫ τl+ε∧t1

T
e−ρ(t−T )Ũ (X (t)) dt+ e−ρ((τl+ε∧t1)−T )v (X (τl+ε ∧ t1))

]
+ E

∫ τl+ε∧t1

T
e−ρ(t−T )

[
H̃0
(
X(t), v′ (X(t)) , v′′ (X(t))

)
− H̃0

cv

(
X(t), v′ (X(t)) , v′′ (X(t)) ; θ(t)

) ]
dt. (1.117)

Since H̃0 ≥ H̃0
cv, we can write, for any t1 > T ,

v(x) ≥ E
[∫ τl+ε∧t1

T
e−ρ(t−T )U (X (t)) dt+ e−ρ((τl+ε∧t1)−T )v (X (τl+ε ∧ t1))

]
.

(1.118)
Now we distinguish two cases.

• γ < 0. In this case, if θ(·) is such that P{τl < +∞} > 0, we clearly have

v(x) ≥ −∞ = J̃(x; θ(·)).
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Thus we can suppose that θ(·) is such that τl = +∞ almost surely. Sup-
pose now that θ(·) is such that

lim sup
t→+∞

E
[
e−ρ(t−T )v(X(t))

]
< 0.

This means that there exist δ > 0, t̄ > T such that, for every t ≥ t̄

E [v(X(t))] ≤ −δeρ(t−T ).

Since ρv(y) ≥ Ũ(y) for every y > l, we get, for every t ≥ t̄

E
[
Ũ(X(t))

]
≤ −δ

ρ
eρ(t−T ).

Since Ũ ≤ 0, this means that

J̃(x, θ(·)) ≤
∫ +∞

t̄
e−ρ(t−T )E

[
Ũ(X(t))

]
dt ≤

∫ +∞

t̄
−δ
ρ
dt = −∞ ≤ v(x).

Therefore we are reduced to suppose without loss of generality that θ(·)
is such that

lim sup
t→+∞

E
[
e−ρ(t−T )v(X(t))

]
= 0.

Since Ũ , v are negative, we can pass (1.118) to the limsup for ε ↓ 0 getting
by Fatou’s Lemma

v(x) ≥ E
[∫ t1

T
e−ρ(t−T )Ũ (X (t)) dt+ e−ρ(t1−T )v (X (t1))

]
Taking now the limsup for t1 → +∞we get

v(x) ≥ J̃(x, θ(·)) + lim sup
t1→+∞

E
[
e−ρ(t1−T )v(X(t1))

]
= J̃(x, θ(·)).

By the arbitrariness of θ(·) we get in this case v(x) ≥ Ṽ (x).

• γ ∈ (0, 1). Starting from (1.118), the passage to the limit for ε ↓ 0 pro-
duces in this case by dominated convergence (due to the growth proper-
ties of Ũ , v and to the integrability properties of X)

v(x) ≥ E
[
I{τl=+∞}

[∫ t1

T
e−ρ(t−T )Ũ (X (t)) dt+ e−ρ(t1−T )v (X (t1))

]]
E
[
I{τl<+∞}

[∫ t1∧τl

T
e−ρ(t−T )Ũ (X (t)) dt+ e−ρ((t1∧τl)−T )v (X (t1 ∧ τl))

]]
(1.119)
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Note that on the set {τl < +∞}we have

e−ρ(τl−T )v (X (τl)) = e−ρ(τl−T )v (l) = e−ρ(τl−T ) Ũ (l)
ρ

=
∫ +∞

τl

e−ρ(t−T )Ũ (l) dt =
∫ +∞

τl

e−ρ(t−T )Ũ(X(t))dt. (1.120)

So, letting t1 → +∞ in (1.119) and taking into account (1.120), again we
get by dominated convergence

v(x) ≥ J̃(x, θ(·)).

Since θ(·) is arbitrary, we get v(x) ≥ Ṽ (x).

On the other hand we see that, taking θx
G̃

(·) in (1.117), the second term in the
right handside is zero, so that we get (1.118) with the equality. In this case the
solution

XG̃(·) := X(·;T, x, θx
G̃

(·)) = XG̃(·;T, x)

is known (it is a geometric Brownian motion). We can check that, also in the
case γ < 0, by the integrability properties of XG̃ and the structure of U, v,
every convergence works good with the limit in place of the limsup and with
the equality in place of the inequality. So passing to the limit (1.118) for ε ↓ 0,
t1 → +∞we get

v(x) = JT (x, θx
G̃

(·)),

so that we have

V (x) ≤ v (x) = JT (x, θx
G̃

(·)) ≤ V (x) .

Therefore we see that v(x) = V (x) and that θ∗(·) is optimal. �

Remark 1.3.35. In the case rl = q, U ′(l) = +∞, the problem could be faced by
duality/martingale method, e.g. as in the papers [Bouchard, Pham; 2004] and
[Blanchett-Scaillet, El Karoui, Jeanblanc, Martellini; 2008]. �

1.3.8 Analysis of the optimal policies

In this subsection we discuss the properties of the optimal policies described
in Subsections 1.3.6 and 1.3.7 in the cases

• rl > q, U(l) and U ′(l) finite;

• rl = q, U ′(l) = +∞.
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First of all observe that in both cases the optimal feedback map is given
by the function G of (1.99). When G < 1, this function is (similarly to the
Merton model) the product of the payoff for every unit of risk λ

σ and of the
quantity − Ṽ ′

x Ṽ ′′
, i.e. the Arrow-Pratt measure of risk tolerance of the indirect

utility function Ṽ (the value function).

This implies that the optimal feedback map is increasing with the payoff
per unit of risk and with the relative risk aversion of Ṽ , while the relation
between the optimal policy and the level of wealth is known only implicitly,
unless we know the explicit expression of Ṽ .

In the case of rl > q, U(l) and U ′(l) finite, even taking a CRRA utility
function the explicit form of the value function is not available. As seen in
Remark 1.3.33 the natural candidate solution to the HJB equation does not
satisfy the required boundary condition. This comes from the presence of the
state constraints x ≥ l and from the fact that in this case the control θ(·) ≡ 0
bring the state from the boundary x = l in the interior of the state region.

So, even starting from initial wealth equal to the solvency level l, the set
of admissible strategies does not reduce to the trivial one (investment in the
riskless asset forever) but allows to the fund manager to reinvest in the risky
asset.

The possibility to exit from the boundary l (if the wealth process starts
from or reaches it) is given by the fact that the capital amount l invested in
the riskless asset will generate a return per unit of time rl. Hence the accrued
return will produce disposable wealth to be invested in the risky asset and the
wealth process can exit from the trivial state X(·) ≡ l.

When rl = q, U ′(l) = +∞, and the utility function is in CRRA form (un-
der constraints on the parameters), an explicit form of Ṽ is available and it is
exactly the natural candidate solution to the HJB equation. Indeed, here the
situation at the boundary is different. The control θ(·) ≡ 0 leaves forever the
state in the boundary x = l, so when the initial wealth x equals l the unique
admissible allocation strategy is given by investing all the wealth in the risk-
less asset forever, and no risky investment is allowed. On the contrary, when
initial wealth x is strictly greater than l the fund wealth will never reach the
solvency level.

Concerning the case rl = q treated in Subsection 1.3.7 the explicit form
of the value function allows us to make a further consideration. According
to the common sense, the portfolio selection rule (1.113) suggests to increase
the fraction invested in the risky asset if the wealth level grows, and diminish
the share invested in it if the fund level decreases. Indeed, this kind of policy
seems to be reasonable with the social target of a pension fund, whose manager
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must be interested in protecting the wealth level and in caring about the risk
the portfolio strategies involve.

Finally, we observe that within our model (whether the case of rl > q, U(l)
and U ′(l) finite, or the case of rl = q and U ′(l) = +∞) we have similar results
if we assume that the portfolio strategy θ(·) belongs to [0, θ0] with θ0 < 1, i.e.
if the pension fund is forced not to invest the total amount of its wealth in the
risky asset. Sometimes this constraint is imposed by the supervisory authority.
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Chapter 2

Adding the surplus: an
infinite-dimensional approach

In this chapter we extend the model described and studied in Chapter 1 adding
a surplus term in the expression for the benefits. The main references for this
chapter are the papers [Federico; 2008] and [Federico; WP]. The introduction
of such a term is relevant from a financial point of view. Indeed usually the
pension funds provide for their members also a surplus term as benefit besides
a minimum guarantee term. Sometimes such a term depends on a contract
subscribed in advance between the fund and the members; this contract can
be viewed as a function depending on the past wealth of the fund in the “last”
period: the higher is the performance of the fund in this period, the higher
is the surplus paid to the fund members in retirement. From a mathemati-
cal point of view this unavoidably leads to a delay term in the state equation,
making the problem considerably more difficult to treat. Delay problems have
basically an infinite-dimensional nature. Sometimes the structure of the prob-
lem is such that it can be reduced to a finite-dimensional problem (see, e.g., for
the stochastic case

- [Elsanousi, Øksendal, Sulem; 2000],
- [Larrsen; 2002],
- [Larrsen, Risebro; 2003],
- [Øksendal, Sulem; 2001],

- [Øksendal, Zhang; 2008]).

However this is not our case, so we choose to treat the problem by repre-
sentation in infinite dimension (for this kind of approach we refer also to
[Vinter, Kwong; 1981] in the deterministic case and to

- [Chojnowska-Michalik, 1978],
- [Da Prato, Zabczyk; 1996],
- [Federico, Øksendal; 2009],
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- [Gozzi, Marinelli; 2004],

- [Gozzi, Marinelli, Savin],

in the stochastic case). This approach transforms the non-markovian problem
with delay in an infinite-dimensional markovian problem, allowing to apply
the dynamic programming techniques; the price to pay is that, as we said, the
problem becomes infinite-dimensional.

The main results of this chapter are the rewriting of the problem in infinite
dimension, the proof of the continuity of the value function in the infitine-
dimensional setting and the proof that the value function is a constrained
viscosity solution of the infinite-dimensional HJB equation in the special case
when the boundary is absorbing. Due to the intrinsic difficulties of the prob-
lem, we have to stop our analysis just at a this viscosity stage.

2.1 The model with surplus

Within the model described in Section 1.1 and Section 1.3, we add a surplus
term in the expression b(·) of the benefits flow. We use here the same notations
as the ones used in Section 1.1 and Section 1.3, but we get rid of the subscript
˜ over the symbols appearing in Section 1.3. Moreover we will use the symbol
x(·) in place of X(·) for the state variable: we will use the symbol X(·) to
represent the state in the infinite-dimensional setting.

As we said, many pension funds provide for their members a surplus pre-
mium over the minimum guarantee. Very often the surplus contract is related
to a performance index of the fund growth in the last period [t− T, t]: the idea
behind is that the fund pays something more than the minimum guarantee to
its member in retirement, if the fund growth was good in the period during
which they were adhering to the fund. Therefore in general it is natural to set
a contract which is mathematically represented by a path dependent function
S
(
t, x(·)|[t−T,T ]

)
. We choose as expression for the surplus term the function

S
(
t, x(·)|[t−T,t]

)
= f0

(
x(t)− x(t− T )

)
, (2.1)

where f0 : R → [0,+∞) is increasing, convex and Lipschitz continuous with
Lipschitz constant K0. With the form (2.1) for the surplus, the equation (1.2)
for the wealth process x(·) becomes a stochastic delay differential equation:

dx(t) = [(r + σλθ(t))x(t)− q] dt− f0 (x(t)− x(t− T )) dt+ σθ(t)x(t)dB(t).

Remark 2.1.1. Of course other expressions for the surplus contract are possi-
ble. First of all we notice that without difficulties everything can be extended
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to the case of surplus function of this kind

S
(
t, x(·)|[t−T,t]

)
= f0

(
x(t)− κx(t− T )

)
,

where κ ≥ 0.

However, we stress that it is meaningful to consider a surplus term which
is a function of the ratio x(t)

x(t−T ) rather than of the difference x(t)− x(t− T ), i.e.

S(t, x(·)|[t−T,t]) = f0

(
x(t)

x(t− T )

)
.

For example, referring to (1.4) for the model of the contributions flow, the cu-
mulative benefit expression could be

b(t) = g + S
(
t, x(·)|[t−T,t]

)
= c̄ · αw · e

»
δ+ξ

“
1
T

log
x(t)

x(t−T )
−δ

”+
–
T
− 1

δ + ξ
(

1
T log x(t)

x(t−T ) − δ
)+ ,

where ξ ∈ (0, 1) is the retrocession rate, i.e. the share of the fund return ex-
ceeding δ awarded to the fund members. In this case the fund corresponds
as return rate to its members in retirement a minimum guarantee rate δ plus
a fraction ξ ∈ (0, 1) of the fund return rate (in the period during which these
members were adhering to the fund) exceeding δ. This kind of contract leads
to technical complications, due to existence problems for the state equation
and, mainly, to the unavoidable loss of concavity of the value function, but it
seems more meaningful from a financial point of view; we hope to investigate
this contract in future works. �

Again the objective functional (expressing the total expected discounted
utility coming from the wealth) which we want to maximize is given by

E
[∫ +∞

T
e−ρ(t−T )U (x (t)) dt

]
, (2.2)

where ρ > 0 is the discount individual rate andU is a utility function satisfying
Hypothesis 1.3.2.

Remark 2.1.2. In this case the manager’s point of view in the optimization has
a direct consequence on the benefits of the workers (and not only an indirect
one as discussed in Subsection 1.1.5): since the surplus term depends on the
performance of the fund, a good management of the fund with regard to the
functional above will have a good correspective in the surplus payments. �
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2.2 The stochastic control problem with delay

Now we come to a precise formulation of the problem. First of all notice that
the initial time t = T has been chosen as the first time of operations of the fund.
However it also makes sense, in order to apply a dynamic programming ap-
proach, to look to a pension fund that is already running after a given amount
of time s ≥ T so to establish an optimal decision policy from s on.

Consider the convex sets

C :=
{
η = (η0, η1(·)) ∈ [l,+∞)× C([−T, 0); R)

∣∣ lim
ζ→0

η1(ζ) = η0

}
(2.3)

and

D :=
{
η ∈ C | η1(·) ≥ l(T + ·)}, (2.4)

where l(·) (the solvency level) is given according to (1.7). We have D ⊂ C ⊂ E,
where

E :=
{

(x0, x1(·)) ∈ R× C([−T, 0); R)
∣∣ lim
ζ→0

x1(ζ) = x0

}
. (2.5)

The space E is a Banach space when endowed with the norm

‖(x0, x1(·))‖E = |x0|+ sup
ζ∈[−T,0)

|x1(ζ)|.

Dealing with a delay equation we have to specify not only the present, but also
the past for the initial datum. We allow the initial past-present η belonging
to the space C (see Remark 2.2.2 below). Now set η ∈ C and consider the
following stochastic delay differential equation for the dynamics of the wealthdx(t) = [(r + σλθ(t))x(t)− q] dt− f0 (x(t)− x(t− T )) dt+ σθ(t)x(t)dBs(t),

x(s) = η0, x(s+ ζ) = η1(ζ), ζ ∈ [−T, 0).
(2.6)

Theorem 2.2.1. For any (Fst )t≥s-progressively measurable [0, 1]-valued process θ(·)

• equation (2.6) admits on the filtered probability space (Ω,F , (Fst )t∈[s,+∞),P),
a unique strong solution;

• this solution belongs to the space CP([s,+∞);Lp(Ω,P)) of the p-mean contin-
uous progressively measurable processes for any p ∈ [1,+∞).

Proof. See Theorem 6.16, Chapter 1, in [Yong, Zhou; 1999]. �

We denote the unique strong solution to (2.6) by x (t; s, x, θ(·)).
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Remark 2.2.2. Of course, from a financial point of view, the natural space of
initial data for the initial time s ≥ T would be

Ds := {(η0, η1(·)) ∈ [l,+∞)×C([−T, 0); R) | lim
ζ→0

η1(ζ) = η0, η1(·) ≥ l(s+·)} ⊂ C,

which is, in particular, time-dependent. Nevertheless it makes sense (and it
is convenient from a mathemathical point of view) to enlarge the set of initial
data for initial time s ≥ T to the wider class C in order to consider a set of
initial data not time-dependent. �

2.2.1 The set of admissible strategies

In the framework above we define the set of the admissible control strategies
for initial time s ≥ T and initial past-present η ∈ C by

Θad(s, η) := {θ(·) prog. meas. w.r.t. (Fst )t≥s | x (t; s, η, θ(·)) ≥ l, t ≥ s} . (2.7)

Lemma 2.2.3. Let η ∈ C; then Θad(T, η) 6= ∅ if and only if the null strategy θ(·) ≡ 0
(corresponding to the riskless investment of the whole wealth at every time) is admis-
sible.

Proof. Of course if θ(·) ≡ 0 belongs to Θad(s, x), then Θad(s, x) 6= ∅. Again
the proof of the converse implication is an application of the Girsanov Theo-
rem A.1.1. Let θ(·) be an admissible control for initial time T and initial past-
present η ∈ C; by Girsanov’s Theorem, for n ∈ N, n ≥ 2, we can write the
dynamics of x(·) := x(·;T, η, θ(·)) in the interval [T, nT ], under the probability
P̃nT given by Girsanov’s Theorem, as

dx(t) = [rx(t)− q] dt− f0(x(t)− x(t− T ))dt+ σθ(t)x(t)dB̃(t),

where B̃(t) := B(t)+λt is a Brownian motion under P̃nT in the interval [T, nT ].
Since x(·) ∈ CP([T,+∞);L2(Ω)), we can pass to the expectations getting (tak-
ing also into account the convexity of f0 and Jensen’s inequality)

dẼnT [x(t)] =
[
rẼnT [x(t)]− q

]
dt− ẼnT [f0(x(t)− x(t− T ))] dt,

≤
[
rẼnT [x(t)]− q

]
dt− f0

(
ẼnT [x(t)]− ẼnT [x(t− T )]

)
dt, (2.8)

By assumption x(t;T, η, θ(·)) ≥ l for t ≥ T , so that also ẼnT [x(t;T, η, θ(·))] ≥ l

for t ∈ [T, nT ]. But the dynamics of y(·) := x(·;T, η, 0) is given by

dy(t) = [ry(t)− q] dt− f0 (y(t)− y(t− T )) dt, (2.9)
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Working in the interval [T, 2T ], we can see the delay term as a datum, so that
(2.8) and (2.9) can be seen as in the theory of ordinary differential equations.
Moreover

y(T ) = ẼnT [x(T )] = η0, y(T + ζ) = ẼnT [x(T + ζ)] = η1(ζ), ζ ∈ [−T, 0).

Thus we can apply the standard comparison criterion for ordinary differential
equations to get

y(t) ≥ ẼnT [x(t)] ≥ l, for t ∈ [T, 2T ]. (2.10)

Then, in the interval [2T, 3T ], since f0 is increasing, thanks to (2.10) we have

f0

(
ẼnT [x(t)]− ẼnT [x(t− T )]

)
≥ f0

(
ẼnT [x(t)]− y(t− T )

)
,

so that

dẼnT [x(t)] ≤
[
rẼnT [x(t)]− q

]
dt− f0

(
ẼnT [x(t)]− y(t− T )

)
dt. (2.11)

Again we can see y(t − T ), t ∈ [2T, 3T ], as datum in (2.9) and (2.11). Taking
also into account that, by (2.10), y(2T ) ≥ ẼnT [x(2T )], we can again apply the
standard comparison criterion for ordinary differential equation getting

y(t) ≥ ẼnT [x(t)] ≥ l, for t ∈ [ 2T, 3T ].

Iterating the argument we get, for any i = 1, ...n− 1,

y(t) ≥ ẼnT [x(t;T, η, θ(·))] ≥ l, for t ∈ [ i T, (i+ 1)T ].

The claim follows by the arbitrariness of n. �

Due to Lemma 2.2.5, we are led to introduce the following assumption.

Hypothesis 2.2.4.
f0(l − l0) ≤ rl − q.

Lemma 2.2.5. If Hypothesis 2.2.4 holds true, then the null strategy θ(·) ≡ 0 belongs
to Θad(T, η) for all η ∈ D. In particular Θad(T, η) is not empty for each η ∈ D.

Proof. Suppose that Hypotesis 2.2.4 holds true. Let us consider the state
trajectory x(·) corresponding to the null strategy; at time t, supposing the con-
straint satified in the past and so in particular x(t − T ) ≥ l0, we have, taking
into account that f0 is increasing,

dx(t) = (rx(t)− q)dt− f0(x(t)− x(t− T ))dt

≥ (rx(t)− q)dt− f0(x(t)− l0)dt.
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Thus, whenever x(t) ≤ l (if there is the case), we have

dx(t) ≥ (rl − q)dt− f0(l − l0)dt = (rl − q)dt− f0(l − l0)dt ≥ 0.

Then a straight contradiction argument shows the claim. �

By Lemma 2.2.5 we will assume from now on that Hypothesis (2.2.4) holds
true. Let us see the behaviour of the solution in some special cases: we give a
lemma which will be useful afterwards.

Lemma 2.2.6. Let η ∈ D. Then:
(i) If rl = q and η0 = l, then Θad(T, η) = {0} and x(·;T, η, 0) ≡ l.
(ii) If η0 > l, then x(·;T, η, 0) ≥ l + α for some α > 0.

Proof. (i) Let η0 = l = q/r. By Lemma 2.2.5 we know that 0 ∈ Θad(T, η).
With the same argument of Lemma 2.2.3 (taking into account that in this case
rl − q = f0(l − l0) = 0), one can show that, if θ(·) is an admissible strategy,
then it has to be x(t;T, η, θ(·)) ≥ l and Ẽu[x(t;T, η, θ(·))] ≡ l for t ∈ [T, u] (for
arbitrary u ≥ T ), so x(·;T, η, θ(·)) ≡ l and we can say that θ(·) ≡ 0 is the unique
admissible strategy.

(ii) Let us consider the state trajectory x(·) corresponding to the null stra-
tegy θ(·) ≡ 0; let us define t0 := inf

{
t ≥ T | x(t) = l + η0−l

2

}
> T . If t0 = +∞,

we have concluded. Otherwise, set ε := l(t0 − T )− l0; the solvency level is
strictly increasing in the interval [0, T ] by the assumptions done in Subsection
1.1.4, so that we have ε > 0. Let us suppose that η0−l

2 ≤ ε. For every t ≥ t0 we
have x(t− T ) ≥ l(t0 − T ); therefore

f0(x(t)− x(t− T )) ≤ f0(x(t)− l(t0 − T ))

= f0(x(t)− (l0 + ε)).

Thus, whenever x(t) ≤ l + η0−l
2 (e.g. in t0),

dx(t) = [rx(t)− q]dt− f0(x(t)− x(t− T ))dt

≥ [rl − q]dt− f0

(
l +

η0 − l
2
− (l0 + ε)

)
dt

≥ [rl − q]dt− f0(l − l0) dt ≥ 0.

Then x(t) ≥ l + η0−l
2 for every t ≥ t0, and the claim follows.

In the case that η0−l
2 > ε, let t1 := inf {t ≥ t0 |x(t) = l + ε}; arguing as above

we can show that x(t) ≥ l + ε for every t ≥ t1, and the claim follows also in
this case. �

Remark 2.2.7. Thanks to Remark 1.3.3 the results of Lemma 2.2.3, Lemma 2.2.5
and Lemma 2.2.6 hold true also for initial time s ≥ T . �
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2.2.2 The value function and its properties

As we said in Section 2.1, the objective functional which we want to maximize
over the set of admissible strategies θ(·) ∈ Θad(s, η) is

J (s, η; θ (·)) := E
[∫ +∞

s
e−ρtU (x (t; s, η, θ(·))) dt

]
, s ≥ T,

where ρ > 0 and U satisfies Hypothesis 1.3.2. First of all we show that the
functional above is well-defined.

Proposition 2.2.8. Let us suppose that Hypothesis 1.3.2 holds true for U and let
s ≥ T , η ∈ C, θ(·) ∈ Θad(s, η); then

E
[∫ +∞

s
e−ρ(t−T )[U+(x(t))] dt

]
< +∞.

Proof. Let us consider the processdx(t) = [(r + σλθ(t))x(t)− q] dt− f0(x(t)− x(t− T ))dt+ σθ(t)x(t)dB(t),

x(s) = η0, x(s+ ζ) = η1(ζ), ζ ∈ [−T, 0),

and compare it with the one without surplus of Section 1.3:dy(t) = [(r + σλθ(t))y(t)− q]dt+ σθ(t)y(t)dB(t),

y(s) = η0.

Therefore, by comparison criterion (see, e.g., [Karatzas, Shreve; 1991], Propo-
sition 2.18), if θ(·) ∈ Θad(s, η), then l ≤ x(·) ≤ y(·). Thus the claim follows by
Proposition 1.3.7. �

We define the value function

V (s, η) := sup
θ(·)∈Θad(s,η)

E
[∫ +∞

s
e−ρ(t−T )U (x (t; s, η, θ(·))) dt

]
, s ≥ T, η ∈ C,

(2.12)
with the convention sup ∅ = −∞.

Definition 2.2.9. (i) Let s ≥ T , η ∈ C. An optimal strategy for initial data
(s, η) is a strategy θ∗(·) ∈ Θad(s, η) such that for the corresponding trajectory
x∗(t) := x(t; s, η, θ∗(·)) we have

V (s, η) = J(s, η; θ∗(·)) = E
[∫ +∞

s
e−ρ(t−T )U(x∗(t))dt

]
.

The couple (θ∗(·), x∗(·)) is called an optimal pair.
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(ii) Let s ≥ T , η ∈ C, ε > 0. An ε-optimal strategy for initial data (s, η)
is a strategy θε(·) ∈ Θad(s, η) such that for the corresponding state trajectory
xε(t) := x(t; s, η, θε(·)) we have

V (s, η)− ε ≤ J(s, η; θε(·)) = E
[∫ +∞

s
e−ρ(t−T )U(xε(t))dt

]
.

The couple (θε(·), xε(·)) is called an ε-optimal pair. �

We have the following result, giving the dependence of the value function with
respect to the time variable.

Proposition 2.2.10. Let s ≥ T and η ∈ C; then

V (s, η) = e−ρ(s−T )V (T, η).

Proof. As in Proposition 1.3.10 �

By the previous result we are reduced to study the function V (T, η); again
with a slight abuse of notation we set

J(η; θ(·)) := J(T, η; θ(·)), V (η) := V (T, η), Θad(η) := Θad(T, η),

and we will write B(·) for BT (·) and Ft for FTt , t ≥ T .

Proposition 2.2.11. Let η, η′ ∈ C such that η0 ≤ η′0, η1(·) ≤ η′1(·). Then we have
V (η) ≤ V (η′).

Proof. If V (η) = −∞ we have to prove nothing. Otherwise let us consider
a control θ(·) ∈ Θad(η) and set x(t) := x(t;T, η, θ(·)), x′(t) := x(t;T, η′, θ(·)).
We have for the dynamics of x′(·) in [T, 2T ],

dx′(t) = [(r + σλθ(t))x′(t)− q] dt− f0(x′(t)− x′(t− T ))dt+ σθ(t)x′(t)dB(t)

= [(r + σλθ(t))x′(t)− q] dt− f0(x′(t)− x(t− T ))dt+ σθ(t)x′(t)dB(t)

+
[
f0(x′(t)− x(t− T ))− f0(x′(t)− x′(t− T ))

]
dt,

where, by monotonicity of f0 and since x(t− T ) ≤ x′(t− T ) for t ∈ [T, 2T ],

f0(x′(t)− x(t− T ))dt− f0(x′(t)− x′(t− T )) ≥ 0. (2.13)

Instead for the dynamics of x(·) in [T, 2T ],

dx(t) = [r + σλθ(t)]x(t)dt− q dt− f0(x(t)− x(t− T ))dt+ σθ(t)x(t)dB(t).

By comparison criterion (see [Karatzas, Shreve; 1991], Chapter 5, Proposition
2.18, and take into account (2.13)) we have x′(t) ≥ x(t) on [T, 2T ]. We can iter-
ate the argument (indeed the proof of the cited result of [Karatzas, Shreve; 1991]
holds true also in the case of random coefficients) and conclude that θ(·) ∈
Θad(η′), i.e Θad(η) ⊂ Θad(η′), and x′(t) ≥ x(t) for every t ≥ T , so we can
conclude by monotonicity of U . �
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Proposition 2.2.12. 1. Let η ∈ D. We have the following statements regarding
the lower finiteness of the value function:

• (i) If U(l) > −∞, then V (η) > −∞.

• (ii) If U(l) = −∞ and η0 > l, then V (η) > −∞.

• (iii) If U(l) = −∞, rl − q = 0 and η0 = l, then V (η) = −∞.

• (iv) If U(l) = −∞, rl − q > f0(k) and η0 = l, we have to distinguish
two cases:

– (iv.a) if U is integrable in l+, then V (η) > −∞;

– (iv.b) if U is not integrable in l+, then V (η) = −∞.

2. Let η ∈ C. We have the following estimate regarding the upper finiteness of the
value function: there exists K > 0 such that

V (η) ≤ K(1 + ηβ0 ),

where β is given by Hypothesis 1.3.2-(ii).

Proof.
1-(i) Of course

V (η) ≥ J(η; 0) ≥
∫ +∞

T
e−ρ(t−T )U(l)dt ≥ U(l)

ρ

and this statement is proved.

1-(ii) By Lemma 2.2.6-(ii) we know that x(·;T, η, 0) ≥ l+α, for some α > 0.
Therefore

V (η) ≥ J(η, 0) ≥
∫ +∞

T
e−ρ(t−T )U(l + α)dt =

U(l + α)
ρ

> −∞,

so also this statement is proved.

1-(iii) By Lemma 2.2.6-(i) we have Θad(η) = {0} and x(·;T, η, 0) ≡ l, so that
J(η; 0) = −∞ and therefore also V (η) = −∞.

1-(iv.a) Let us suppose U integrable at l+ and let η0 = l; consider again the
null strategy θ(·) ≡ 0, the corresponding state trajectory x(·) := x(· ;T, η, 0)
and set

ε :=
rl − q − f0(l − l0)

2
> 0.

Moreover let δ > 0 such that f0(l − l0 + δ) < f0(l − l0) + ε. Then, until

l ≤ x(t) ≤ l + δ,
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the dynamics of x(t) is given by

dx(t) = [rx(t)− q] dt− f0(x(t)− x(t− T ))dt

≥ [rl − q] dt− f0(l + δ − l0)dt ≥ ε dt.

So, until l ≤ x(t) ≤ l+ δ, we have x(t) ≥ l+ ε(t− T ) and then x(t) remains up
to the level l + δ. Let t0 = inf{t ≥ T | x(t) ≥ l + δ}; of course t0 < +∞. We can
write

J(η; 0) =
∫ +∞

T
e−ρ(t−T )U(x(t))dt

≥
∫ t0

T
e−ρ(t−T )U(l + ε(t− T ))dt+

∫ +∞

t0

e−ρ(t−T )U(x(t))dt.

The finiteness of the second part of the objective functional (the part
∫ +∞
t0

) is
obvious, since there we have x(t) ≥ l + δ, so that∫ +∞

t0

e−ρ(t−T )U(x(t))dt ≥ e−(t0−T )

ρ
U(l + δ);

for the first one (the part
∫ t0
T ) we have∫ t0

T
e−ρ(t−T )U(x(t))dt ≥

∫ t0

T
e−ρ(t−T )U(l + ε(t− T ))dt;

by integrability of U and by the change of variable ξ = l+ ε(t− T ), we get the
finiteness also for this term.

1-(iv.b) Let us supposeU not integrable at l+ and let η0 = l; let θ(·) ∈ Θad(η)
and set x(t) := x(t;T, η, θ(·)). The dynamics of x(·) is given bydx(t) = [(r + σλθ(t))x(t)− q] dt− f0(x(t)− x(t− T ))dt+ σθ(t)x(t)dB(t),

x(T ) = η0 = l, x(T + ζ) = η1(ζ), ζ ∈ [−T, 0).

Comparing it with the dinamycs of the problem without surplusdy(t) = [(r + σλθ(t))y(t)− q]dt+ σθ(t)y(t)dB(t),

y(T ) = l,

we see, again by comparison criterion, that l ≤ x(·) ≤ y(·) . Therefore the claim
follows by Proposition 1.3.11-(ii).

2. Let η ∈ C and θ(·) ∈ Θad(η). Again, setting x(t) := x(t;T, η, θ(·)), we
have l ≤ x(·) ≤ y(·), where y(·) is given bydy(t) = [(r + σλθ(t))y(t)− q]dt+ σθ(t)y(t)dB(t),

y(T ) = η0,

Therefore the claim follows by Proposition 1.3.11. �
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Remark 2.2.13. By Proposition 2.2.12, we can see that, when U(l) = −∞ and
η0 = l, the best cases to treat are the cases either when rl − q = f0(k) = 0 or
rl − q > f0(k) ≥ 0. The case rl = f0(k) > 0 can be treated falling into the
previous ones, but we should distinguish with regard to the structure of f0

and η1(·). We will do not treat this case for simplicity. �

Let us define

D(V ) := {η ∈ C | V (η) > −∞}

and

D0 := {η ∈ D | η0 > l};

by Proposition 2.2.12 we get the inclusion

D0 ⊂ D(V ). (2.14)

Moreover, again by Proposition 2.2.12,

U(l) > −∞ =⇒ D ⊂ D(V ).

Proposition 2.2.14. The set D(V ) is convex and the function η 7→ V (η) is concave
on D(V ).

Proof. Fix η, η′ ∈ D(V ); set also ηγ := γη + (1 − γ)η′, γ ∈ [0, 1]; of course
ηγ ∈ C. We have to prove that

V (ηγ) ≥ γV (η) + (1− γ)V (η′). (2.15)

Let ε > 0 and take θ(·) ∈ Θad(η) and θ′(·) ∈ Θad(η′) ε-optimal for η, η′ respec-
tively and x(·), x′(·) the corresponding state trajectories. Then

γV (η) + (1− γ)V (η′) ≤ γ
[
J(η; θ(·)) + ε

]
+ (1− γ)

[
J(η′; θ′(·)) + ε

]
= ε+ γJ(η; θ(·)) + (1− γ)J(η′; θ′(·))

= ε+ γE
[∫ +∞

T
e−ρ(t−T )U

(
x(t)

)
dt

]
+ (1− γ)E

[∫ +∞

T
e−ρ(t−T )U

(
x′(t)

)
dt

]
= ε+ E

[∫ +∞

T
e−ρ(t−T )

[
γU
(
x(t)

)
+ (1− γ)U

(
x′(t)

)]
dt

]
.

The concavity of U implies that

γU
(
x(t)

)
+ (1− γ)U

(
x′(t)

)
≤ U

(
γx(t) + (1− γ)x′(t)

)
, ∀t ≥ T.
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Consequently, if we set xγ(·) := γx(·) + (1− γ)x′(·), we get

γV (η) + (1− γ)V (η′) ≤ ε+ E
[∫ +∞

T
e−ρ(t−T )U

(
xγ(t)

)
dt

]
.

If there exists θγ (·) ∈ Θ (ηγ) such that xγ(·) ≤ x (·;T, ηγ , θγ(·)), then we would
have

ε+ E
[∫ +∞

T
e−ρ(t−T )U

(
xγ(t)

)
dt

]
≤ ε+ J(ηγ ; θγ(·)) ≤ ε+ V (ηγ),

i.e.
γV (η) + (1− γ)V (η′) ≤ ε+ V (ηγ)

and therefore, by the arbitrariness of ε, the claim (2.15) would be proved. We
will show that

θγ(t) := a(t)θ(t) + d(t)θ′(t),

where
a(·) = γ

x(·)
xγ(·)

, d(·) = (1− γ)
x′(·)
xγ(·)

,

is good. The admissibility of θγ(·) is clear since:

(i) for every t ≥ T we have θ (t) , θ′ (t) ∈ [0, 1], and a (t) + d (t) = 1 so by
convexity of [0, 1] we get θγ (t) ∈ [0, 1];

(ii) by construction xγ(t) ≥ l for any t ≥ s, so that also xγ(t;T, ηγ , θγ(·)) ≥ l.

We can write for the dynamics of xγ(·)

dxγ(t) = γ dx(t) + (1− γ) dx′(t)

= γ
[

[(r + σλθ(t))x(t)− q] dt− f0(x(t)− x(t− T ))dt+ θ(t)σx(t)dB(t)
]

+(1− γ)
[

[(r + σλθ′(t))x′(t)− q] dt− f0(x′(t)− x′(t− T ))dt+ θ′(t)σx′(t)dB(t)
]

=
[
rxγ(t)− q + [γθ(t)x(t) + (1− γ)θ′(t)x′(t)]

]
dt

+σ [γθ(t)x(t) + (1− γ)θ′(t)x′(t)] dB(t)

− [γf0(x(t)− x(t− T )) + (1− γ)f0(x′(t)− x′(t− T ))] dt

=
[
rxγ(t)− q +

[
γθ(t)

x(t)
xγ(t)

+ (1− γ)θ′(t)
x′(t)
xγ(t)

]
xγ(t)

]
dt

+σ
[
γθ(t)

x(t)
xγ(t)

+ (1− γ)θ′(t)
x′(t)
xγ(t)

]
xγ(t)dB(t)

− [γf0(x(t)− x(t− T )) + (1− γ)f0(x′(t)− x′(t− T ))] dt

≤ [(r + σλθγ(t))xγ(t)− q] dt− f0(xγ(t)− xγ(t− T ))dt+ σθγ(t)xγ(t)dB(t)

(where the inequality follows by the convexity of the function f0), with initial
condition

xγ(T ) = ηγ0 ; xγ(T + ζ) = ηγ1(ζ), ζ ∈ [−T, 0).

Instead by definition xγ(t;T, ηγ , θγ(·)) satisfies the previous one with equality,
so that, by comparison criterion (see [Protter; 2003], Chapter V, Theorem 54),
we get x(t; s, ηγ , θγ(·)) ≥ xγ(t). The claim follows. �
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2.3 The delay problem rephrased in infinite dimension

In this section we will formulate an infinite-dimensional stochastic control
problem equivalent to the one of the previous section. As we said at the begin-
ning of the chapter we refer to [Vinter, Kwong; 1981] for this kind of approach
in the deterministic case and to

- [Chojnowska-Michalik, 1978],
- [Da Prato, Zabczyk; 1996],
- [Gozzi, Marinelli; 2004],
- [Gozzi, Marinelli, Savin]

in the stochastic case.
Before to proceed we want to expose some considerations about what we

are going to do. As well-known every delay problem can be reformulated as
infinite-dimensional problem. Nevertheless we should take into account two
problems in doing that.

(1) The reformulation of the problem in the infinite-dimensional setting is
only formal: once it has been set, we must show that it works good as
reformulation of the originary delay problem, i.e. we must prove two
results.

(i) We must study the infinite-dimensional problem in terms of exis-
tence and uniqueness of (some kind of) solutions to the state equa-
tion (Theorem 2.3.10 in the paper).

(ii) We must prove that there is actually equivalence (in some “good”
sense) between the originary delay problem and the infinite dimen-
sional one (Theorem 3.2.3 in the paper).

(2) In order to get these results and to proceed beyond with the analysis of
the problem (in particular, in the case of control problems, with the study
of the infinite-dimensional HJB equation), we have to be careful in the
choice of the spaces where to embed the problem. In particular it turns
out to be very important (for the study of the evolution equation and of
the HJB equation) to work, as much as possible, with an Hilbert setting,
because this gives a good representation of the duality relationships in
terms of inner product.

Taking into account the considerations above, we notice that our problem
presents two problem with regard to the embedding in an Hilbert setting.

(i) The delay in the state equation appears concentrated at a point of the
past.
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(ii) The delay in the state equation appears in a nonlinear way.

These two features together make problematic the reformulation in an Hilbert
space. Indeed the natural Hilbert space for the infinite-dimensional reformula-
tion would be L2([−T, 0]; R), but unfortunately in this space the term x1(−T ),
x1 ∈ L2([−T, 0]; R), which will turn out to be in our interest, does not make
sense. If the delay appeared in a linear way, we could overcome this problem
inserting this term in the linear unbounded operator of the evolution equation
(as done, e.g., in [Gozzi, Marinelli; 2004, Gozzi, Marinelli, Savin]; indeed this
term is well defined on the domain of that operator). Unfortunately this is not
our case, so that we are forced to use a more refined framework, dealing also
with a suitable subspace of the Hilbert space. We stress that this methodol-
ogy should be suitable to approach every delay problem presenting the features
described above (even more), i.e. a delay having the following form

g

(
x(t),

∫ 0

−T
x(t+ ξ)dµ(ξ)

)
,

where g is a Lipschitz function and µ a generic measure on [−T, 0].

Now we come to a precise study of the problem along the lines of the con-
siderations expressed above. Let us set

L2
−T := L2([−T, 0]; R), W 1,2

−T := W 1,2([−T, 0]; R)

and consider the Hilbert space

H = R× L2
−T ,

with inner product

〈x, y〉 = x0y0 +
∫ 0

−T
x1(ξ)y1(ξ)dξ

and norm

‖x‖ =
(
|x0|2 +

∫ 0

−T
|x1(ξ)|2dξ

)1/2

,

where x0, x1(·) denote respectively the R-valued and the L2
−T -valued compo-

nents of the generic element x ∈ H ; let also (B(t))t≥T be the same Brownian
motion on the probability space (Ω,F ,P) of the previous section. Let us con-
sider the space E defined in (2.5); we have the estimate

‖x‖H ≤ (1 + T )1/2‖x‖E , x ∈ E,
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so that we have the continuous and dense embedding

ι : (E, ‖ · ‖E) −→ (H, ‖ · ‖H),
x 7−→ x.

Within this section we intend that the spaces E and H are respectively
endowed with the norm ‖ · ‖E and ‖ · ‖H , which render them Banach spaces.
Given an (Ft)t≥T -progressively measurable and [0, 1]-valued process θ(·) and
x ∈ E, we can consider the infinite dimensionalH-valued stochastic evolution
equation starting at time TdX(t) = AX(t)dt+ σλθ(t)ΦX(t)dt− F (X(t))dt+ σθ(t)ΦX(t)dB(t),

X(T ) = x ∈ E,
(2.16)

where

• A : D(A) ⊂ H → H is the unbounded linear operator defined by

(x0, x1(·)) 7→ (rx0, x
′
1(·)),

with

D(A) = {(x0, x1(·)) ∈ H | x1(·) ∈W 1,2
−T , x0 = x1(0)};

above by x1(0) we mean the evaluation at ζ = 0 of the unique (abso-
lutely) continuous representative of x1 ∈W 1,2−T .

• F : E → H is the nonlinear map(
x0

x1(·)

)
7→

(
f(x0, x1(·))

0

)
,

where f : E → R, (x0, x1(·)) 7→ f0(x0 − x1(−T )) + q.

• Φ : H → H is the linear operator defined by Φx := (x0, 0).

It is well known that A is a closed densely defined operator and that it is
the infinitesimal generator of a C0-semigroup (S(t))t≥0 on H ; more precisely
it is defined by

S(t)(x0, x1(·)) =
(
x0e

rt, I[−T,0](t+ ·) x1(t+ ·) + I[0,+∞)(t+ ·) x0e
r(t+·)

)
;

in particular S(t) maps E in itself and

S(t)(x0, 0) =
(
x0e

rt, I[0,+∞)(t+ ·) x0e
r(t+·)

)
.
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Concerning the norm of the semigroup, we have the estimate

‖S(t)x‖2H ≤
∣∣x0e

rt
∣∣2 + 2

∫ 0

−T

∣∣I[−T,0](t+ ζ) x1(t+ ζ)
∣∣2 dζ

+ 2
∫ 0

−T

∣∣∣I[0,+∞)(t+ ζ) x0e
r(t+ζ)

∣∣∣2 dζ ≤ (3 + 2T )e2rt‖x‖2H ;

so
‖S(t)‖L(H) ≤Meωt, (2.17)

with M = (3 + 2T )1/2 and ω = r.

2.3.1 The state equation: existence and uniqueness of mild solutions

In this section we give the definition of mild solution of (2.16) and investigate
the existence and uniqueness of such a solution. The main reference for the
concept of mild solution to an evolution equation is [Da Prato, Zabczyk; 1992].
Basically, since the operator A is defined only on a subspace of H , we cannot
expect to get a strong solution (see [Da Prato, Zabczyk; 1992], Chapter 6) to
(2.16) in general. Indeed, this concept would require that the process X takes
values in D(A). In particular in our case, we cannot require a similar con-
dition, even starting from the initial datum having good regularity. Indeed,
consider for simplicity the equation with θ(·) ≡ 1. Then, also starting from an
initial point x ∈ D(A), the solution X (that formally we want representing the
present and the past of the solution of the state equation (2.16), see Proposi-
tion 3.2.3) should get on its component X1(t) immediately the same regularity
as the Brownian trajectories (i.e. X1(t)(·) should be not differentiable almost
everywhere in the interval [(−t) ∨ (−T ), 0]). So X(t) /∈ D(A) for every t > 0.
Instead the concept of mild solution does not require this kind of regularity. In
finite dimension it would represent the variation of constants formula for the
solution of an ordinary differential equation and the two concepts (strong and
mild solutions) would be equivalent. In infinite dimension it is a weaker con-
cept of solution usually suitable to get existence and uniqueness of solutions.

Definition 2.3.1. A mild solution to (2.16) is an E-valued process (X(t))t≥0

which satisfies, for t ≥ 0, the integral equation

X(t) = S(t)x+
∫ t

0
σλθ(τ)S(t− τ) [ΦX(τ)] dτ

−
∫ t

0
S(t− τ)F (X(τ))dτ +

∫ t

0
σθ(τ)S(t− τ) [ΦX(τ)] dB(τ). (2.18)

Remark 2.3.2. In this remark we want to explain the reasons for the choice of
the space E to study (2.16). This space has three important properties:
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• the expression x1(−T ) is well-defined on the points x ∈ E (while in gen-
eral it is not well defined if x ∈ H);

• it is invariant for the semigroup S(·) and moreover S(·) is aC0-semigroup
also on the space (E, ‖ · ‖E);

• the value function (1.15) is defined on the points of this space.

The first two properties are essential for working with the state equation (2.16).
The third one allows us to link the one-dimensional optimal control problem
with delay defined in the previous section with the infinite-dimensional one
we will define in this section. �

Note that in the equation above the stochastic integration is one dimen-
sional. In order to be able to manipulate this equation and link the L2

−T -valued
integration (stochastic or deterministic) with the canonical R-valued integra-
tion, we need a technical digression. So, let a, b ∈ R, a < b and let G be a
Banach space. Moreover let SP([a, b];L2(Ω;G)) be the space of the simple pre-
dictable processes, i.e. X ∈ SP([a, b];L2(Ω;G)) if

X(t) = X0I{t0}(t) +
n∑
k=0

XkI(tk,tk+1](t),

where a = t0 < t1 < ... < tn = b and the Xk’s are G-valued random variables
measurable with respect to Ftk ; this space is dense in L2

P([a, b];L2(Ω;G)) of
the square-integrable progressively measurable processes, endowed with the
norm

‖X‖L2
P ([a,b];L2(Ω;G)) =

(∫ b

a
E
[
‖X(t)‖2G

])1/2

.

Now take G = L2
−T ; given U ∈ L2(Ω;L2[−T, 0]), we can define, for ζ ∈ [−T, 0],

the R-valued random variable

Z(ζ)(ω) := Ũ(ω)(ζ),

where we denote by the symbols f̄ , Ũ the pointwise well-defined represen-
tatives of generic f ∈ L2

−T and U ∈ L2(Ω;L2
−T ). With a slight abuse of no-

tation, we will write U(ζ) for denoting the equivalence class in L2(Ω; R) of
the R-valued random variable Z(ζ) defined above. Note that, choosing other
representatives, i.e. defining

Z ′(ζ)(ω) := ˜̃U(ω)(ζ)

and denoting by U ′(ζ) the equivalence class in L2(Ω; R) of Z ′(ζ), we would
have U(ζ) = U ′(ζ) (in L2(Ω; R)), for a.e. ζ ∈ [−T, 0].
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Lemma 2.3.3. Let U ∈ L2(Ω;L2
−T ); then U(ζ) ∈ L2(Ω; R) for a.e. ζ ∈ [−T, 0].

Proof. For U ∈ L2(Ω;L2
−T ), let Z(ζ) be the random variable defined above;

we have
E
[
‖U‖2L2

−T

]
< +∞;

this implies ∫
Ω

[∫ 0

−T
Z(ζ)(ω)2dζ

]
P(dω) < +∞,

namely ∫ 0

−T

[∫
Ω
Z(ζ)(ω)2P(dω)

]
dζ < +∞;

thus ∫ 0

−T
E[U(ζ)2]dζ < +∞

and therefore, in particular,

E[U(ζ)2] < +∞, ζ − a.e.

�

Lemma 2.3.4. Let X,Y ∈ L2(Ω;L2
−T )); suppose that, for a.e. ζ ∈ [−T, 0], we have

X(ζ) = Y (ζ) in L2(Ω; R). Then X = Y in L2(Ω;L2
−T ).

Proof. Of course we have, for a.e. ζ ∈ [−T, 0],

(X − Y )(ζ) = X(ζ)− Y (ζ), in L2(Ω; R).

Therefore, arguing with representatives as in the proof of the lemma above for
the next first equality,

E
[
‖X − Y ‖2L2

−T

]
=
∫ 0

−T
E[(X − Y )(ζ)2]dζ =

∫ 0

−T
E[(X(ζ)− Y (ζ))2]dζ = 0.

�

The desired link between the L2
−T -valued integration and the R-valued in-

tegration is given by the following result.

Lemma 2.3.5. Let X ∈ L2
P([a, b];L2(Ω;L2

−T )). Then we have, for a.e. ζ ∈ [−T, 0],
the following equalities in L2(Ω; R):

•
(∫ b

a
X(t)dt

)
(ζ) =

∫ b

a
X(t)(ζ)dt;

•
(∫ b

a
X(t)dB(t)

)
(ζ) =

∫ b

a
X(t)(ζ)dB(t).
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Proof. For X ∈ S([a, b];L2(Ω;L2
−T )) the claim is obvious. Therefore, let

X ∈ L2
P([a, b];L2(Ω;L2

−T )), consider a sequence (Xn) ⊂ S([a, b];L2(Ω;L2
−T ))

such that Xn → X in L2
P([a, b];L2(Ω;L2

−T )). We have the equality in L2(Ω; R),
for n ∈ N and for a.e. ζ ∈ [−T, 0],(∫ b

a
Xn(t)dt

)
(ζ) =

∫ b

a
Xn(t)(ζ)dt. (2.19)

We want to pass to the limit this equality to get the first claim. Since Xn → X

in L2
P([a, b];L2(Ω;L2

−T )), we have∫ b

a
dt

∫ 0

−T
E
[
|Xn(t)(ζ)−X(t)(ζ)|2

]
dζ =

∫ b

a
E
[
‖Xn(t)−X(t)‖2L2

−T

]
dt→ 0,

so that ∫ 0

−T
dζ

∫ b

a
E
[
|Xn(t)(ζ)−X(t)(ζ)|2

]
dt→ 0.

Hence, without loss of generality, taking a subsequence if necessary, we can
suppose that, for a.e. ζ ∈ [−T, 0], we have the convergence Xn(·)(ζ)→ X(·)(ζ)
in the space L2([a, b];L2(Ω; R)), i.e., for a.e. ζ ∈ [−T, 0], the convergence in
L2(Ω; R), ∫ b

a
Xn(t)(ζ)dt→

∫ b

a
X(t)(ζ)dt. (2.20)

Moreover, since Xn → X in L2
P([a, b];L2(Ω;L2

−T )), we have the convergence
in L2(Ω;L2

−T ) ∫ b

a
Xn(t)dt→

∫ b

a
X(t)dt.

Thus, by the latter convergence,∫ 0

−T
E

[((∫ b

a
X(t)dt

)
(ζ)−

(∫ b

a
Xn(t)dt

)
(ζ)
)2
]
dζ −→ 0;

so, without loss of generality, taking if necessary a subsequence, we can con-
clude that, for a.e. ζ ∈ [−T, 0],(∫ b

a
Xn(t)dt

)
(ζ)−→

(∫ b

a
X(t)dt

)
(ζ), in L2(Ω; R). (2.21)

Therefore the first claim follows combining (2.19), (2.20) and (2.21). The proof
of the second claim proceeds in the same way. �

We denote by CP([a, b];L2(Ω;G)) the space of progressively measurableG-
valued processes and mean-square continuous. The space CP([a, b];L2(Ω;G))
endowed with the norm

‖X‖CP =

(
sup
t∈[a,b]

E
[
‖X(t)‖2G

])1/2
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is a Banach space. For n ∈ N and k = 1, ..., n, set tnk := a + k b−an . It is easy to
prove that, for X ∈ CP([a, b];L2(Ω;G)), we have

•
∫ b

a
X(t)dt = lim

n→∞

1
n

n∑
k=1

X(tnk−1),

•
∫ b

a
X(t)dB(t) = lim

n→∞

n∑
k=1

X(tnk−1)(B(tnk)−B(tnk−1)),

where the equalities and the limits have to be intended in the space L2(Ω;G).
Also it is easy to prove that the (stochastic or deterministic) integral of a generic
X ∈ L2

P([a, b];L2(Ω;G)) (in particular the solution to a G-valued stochastic
differential equation) belongs to the space CP([a, b];L2(Ω;G)).

As we said, if x ∈ E, we have ‖x‖H ≤ (1 + T )1/2‖x‖E ; therefore we have
the continuous and dense embedding

ι : L2
P
(
[a, b];L2(Ω; (E, ‖ · ‖E))

)
−→ L2

P
(
[a, b];L2(Ω; (H, ‖ · ‖H))

)
,

X 7−→ X,

and the continuous and dense embedding

ι̃ : CP
(
[a, b];L2(Ω; (E, ‖ · ‖E))

)
−→ CP

(
[a, b];L2(Ω; (H, ‖ · ‖H))

)
,

X 7−→ X.

We are going to prove a slight extension of the existence and uniqueness
result we need. Let g : (E, ‖ · ‖E) → R be a Lipschitz continuous map, with
Lipschitz constant Cg, and consider the following map associated with it

G : E −→ H,

x 7−→

(
g(x)

0

)
.

(2.22)

Let θ(·) be a fixed (Ft)t≥0-progressively measurable and [0, 1]-valued process
θ(·), let x ∈ E, and consider the stochastic evolution equationdX(t) = AX(t)dt+ σλθ(t)ΦX(t)dt−G(X(t))dt+ σθ(t)ΦX(t)dB(t),

X(0) = x ∈ E.
(2.23)

We notice that we cannot use the theory of [Da Prato, Zabczyk; 1992] to treat
(2.23): the nearest result in that book is Theorem 7.19, but, differently from
there, here we do not require any dissipativity of G with respect to 〈·, ·〉H , i.e. we do
not require that, for some ω ≥ 0,

〈G(x)− G(y), x− y 〉H ≤ ω‖x− y‖2H , ∀x, y ∈ E.
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We cannot require this condition because in particular the map F , which is in
our interest, does not satifsy such a condition. ILet us show this fact. Given
ω ≥ 0 we have

〈(F − ωI)(x)− (F − ωI)(y), x− y〉H
= (x0 − y0)

[
f0(x0 − x1(−T ))− f0(y0 − y1(−T ))

]
− ω

[
|x0 − y0|2 +

∫ 0

−T
(x1(ζ)− y1(ζ))2dζ

]
.

We claim that for every ω ≥ 0 there exist x, y ∈ E such that the right hand-side
in the previous expression is strictly positive. Fix ω ≥ 0 and let y = (0, 0),
x0 > 0; by convexity of f0 we can make the expression f0(x0−x1(−T ))− f0(0)
large as we want moving x1(−T ) and, at the same time, to take fix x0 and
|x0|2 +

∫ 0
−T x1(ζ)2dζ. This shows what claimed.

Lemma 2.3.6. Consider, for a, b ∈ R, T ≤ a < b, the linear map

χ : L2
(
(Ω,FTa );E

)
−→ L2

P
(
[a, b];L2(Ω;H)

)
,

ψ 7−→ S(· − a)ψ.

Then, for any ψ ∈ L2((Ω,FTa );E), we have χ(ψ) ∈ CP
(
[a, b];L2(Ω;E)

)
. Moreover

there exists a constant Cb−a such that

‖χ(ψ)‖CP ([a,b];L2(Ω;E)) ≤ Cb−a‖ψ‖L2(Ω;E).

Proof. Let ψ ∈ L2((Ω,FTa );E); for a ≤ t ≤ b, we can choose S(t−a)ψ taking
values in E, because S(t−a) maps E in itself. Moreover S(·) is a strongly con-
tinuous semigroup also on the space E, so that (see e.g. [Engel, Nagel; 2000])
there exists a constant Cb−a such that ‖S(t − a)‖L(E) ≤ Cb−a, t ∈ [a, b]. There-
fore, for t ∈ [a, b], ‖S(t− a)ψ‖E ≤ Cb−a‖ψ‖E , so that S(t− a)ψ ∈ L2(Ω;E).

The fact that χ(ψ) ∈ CP
(
[a, b];L2(Ω;E)

)
follows by dominated conver-

gence, since, by the property of strong continuity of the semigroup, if t0 ∈ [a, b]
and [a, b] 3 t → t0, then S(t − a)ψ−→S(t0 − a)ψ in E (pointwise on Ω af-
ter having chosen a representative for the random variable ψ) and moreover
‖S(t− a)ψ‖E ≤ Cb−a‖ψ‖E .

The last statement follows again because ‖S(t− a)ψ‖E ≤ Cb−a‖ψ‖E . �

Lemma 2.3.7. For a, b ∈ R, T ≤ a < b and for a given (Ft)t≥T -progressively
measurable and [0, 1]-valued process θ(·), consider the linear map

γθ : CP
(
[a, b];L2(Ω;E)

)
−→ CP

(
[a, b];L2(Ω;H)

)
X(·) 7−→

∫ ·
a θ(τ)S(· − τ) [ΦX(τ)] dτ.
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Then, for any X ∈ CP
(
[a, b];L2(Ω;E)

)
, we have γθ(X) ∈ CP

(
[a, b];L2(Ω;E)

)
.

Moreover we have the estimate

‖γθ(X)‖2CP ([a,b];L2(Ω;E)) ≤ 4e2r(b−a)(b− a)2‖X‖2CP ([a,b];L2(Ω;E)).

Proof. Let X ∈ CP
(
[a, b];L2(Ω;E)

)
; for a ≤ t ≤ b, taking into account

Lemma 2.3.5 and the equality I[0,+∞)(t + ζ − τ) = I[τ,+∞)(t + ζ), we have, for
a.e. ζ ∈ [−T, 0], the following equalities:

(
γθ(X)0(t)
γθ(X)1(t)(ζ)

)
=

∫ t

a
θ(τ)S(t− τ) [ΦX(τ)] dτ

=
∫ t

a
θ(τ)S(t− τ) (X0(τ), 0) dτ

=
∫ t

a

(
θ(τ)X0(τ)er(t−τ)

I[τ,+∞)(t+ ζ)θ(τ)X0(τ)er(t+ζ−τ)

)
dτ

=


∫ t
a θ(τ)X0(τ)er(t−τ)dτ

0, if t+ ζ ≤ a

erζ
∫ t+ζ
a θ(τ)X0(τ)er(t−τ)dτ, if t+ ζ ≥ a

 ;

this shows that, for any t ∈ [a, b] and X ∈ CP
(
[a, b];L2(Ω;E)

)
, we can take

the random variable γθ(X)(t) taking values in E. Now we have to show that
γθ(X)(t) ∈ L2(Ω;E). Taking into account Hölder’s inequality, we have

E
[
‖γθ(X)(t)‖2E

]
≤ 2E

[ ∣∣∣∣∫ t

a
θ(τ)X0(τ)er(t−τ)dτ

∣∣∣∣2
+ sup
ζ∈[−T,0)

∣∣∣∣∫ t+ζ

a
θ(τ)X0(τ)er(t−τ)dτ

∣∣∣∣2
]

≤ 4(b− a)e2r(b−a)

∫ t

a
E[|X0(τ)|2]dτ < +∞. (2.24)

By an estimate like the previous one we can get, for t0, t ∈ [a, b],

E
[
‖γθ(X)(t)− γθ(X)(t0)‖2E

]
≤ 4(b− a)e2r(b−a)

∫ t∨t0

t∧t0
E[|X0(τ)|2]dτ.

getting γθ(X) ∈ CP
(
[a, b];L2(Ω;E)

)
, by mean-square continuity of X0(·). The

last statement follows arguing as in the estimate (2.24), but taking the supre-
mum on t ∈ [a, b] before to pass to the expectations. �
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Lemma 2.3.8. Let g : (E, ‖ · ‖) → R be a Lipschitz continuous map, with Lipschitz
constant Cg, and consider the map associated with it

G : E −→ H,

x 7−→

(
g(x)

0

)
;

(of course, if X(·) ∈ CP
(
[a, b];L2(Ω;E)

)
, then g(X(·)) ∈ CP([a, b];L2(Ω; R))).

For T ≤ a < b, consider the nonlinear map

γ : CP
(
[a, b];L2(Ω;E)

)
−→ CP

(
[a, b];L2(Ω;H)

)
X(·) 7−→

∫ ·
a S(· − τ)G(X(τ))dτ.

Then, for any X ∈ CP
(
[a, b];L2(Ω;E)

)
, we have γ(X) ∈ CP

(
[a, b];L2(Ω;E)

)
.

Moreover, for X,Y ∈ CP
(
[a, b];L2(Ω;E)

)
, we have the estimate

‖γ(X)− γ(Y )‖2CP ([a,b];L2(Ω;E)) ≤ 4C2
ge

2r(b−a)(b− a)2‖X − Y ‖2CP ([a,b];L2(Ω;E)).

Proof. Let X ∈ CP
(
[a, b];L2(Ω;E)

)
; for a ≤ t ≤ b, taking into account

Lemma 2.3.5 and the equality I[0,+∞)(t + ζ − τ) = I[τ,+∞)(t + ζ), we have, for
a.e. ζ ∈ [−T, 0], the following equalities:(

γ(X)0(t)
γ(X)1(t)(ζ)

)
=

∫ t

a
S(t− τ)G(X(τ))dτ =

∫ t

a
S(t− τ) (g(X(τ)), 0) dτ

=
∫ t

a

(
g(X(τ))er(t−τ)

I[τ,+∞)(t+ ζ)g(X(τ)))er(t+ζ−τ)

)
dτ

=


∫ t
a g(X(τ))er(t−τ)dτ

0, if t+ ζ ≤ a

erζ
∫ t+ζ
a g(X(τ))er(t−τ)dτ, if t+ ζ ≥ a

 ;

this shows that, for any t ∈ [a, b] and X ∈ CP
(
[a, b];L2(Ω;E)

)
, we can take the

random variable γ(X)(t) taking values in E. Now we have to show that, for
any t ∈ [a, b], γ(X)(t) ∈ L2(Ω;E); indeed we have

E
[
‖γ(X)(t)‖2E

]
≤ 2E

[∣∣∣∣∫ t

a
g(X(τ))er(t−τ)dτ

∣∣∣∣2 + sup
ζ∈[−T,0)

∣∣∣∣∫ t+ζ

a
g(X(τ))er(t−τ)dτ

∣∣∣∣2
]

≤ 8e2r(b−a)(b− a)E
[∫ t

a

(
C2
g‖X(τ)‖2E + |g(0)|2

)
dτ

]
< +∞.

We can prove that γ(X) ∈ CP
(
[a, b];L2(Ω;E)

)
arguing as in the proof of the

previous Lemma and the last statement arguing as in the previous estimate,
but taking the supremum on t ∈ [a, b] before to pass to the expectations. �
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Lemma 2.3.9. For a, b ∈ R, T ≤ a < b and for a fixed (Ft)t≥T -progressively
measurable and [0, 1]-valued process θ(·), consider the linear map

γ̃θ : CP
(
[a, b];L2(Ω;E)

)
−→ CP

(
[a, b];L2(Ω;H)

)
X(·) 7−→

∫ ·
a θ(τ)S(· − τ) [ΦX(τ)] dB(τ).

Then, for any X ∈ CP
(
[a, b];L2(Ω;E)

)
, we have γ̃θ(X) ∈ CP

(
[a, b];L2(Ω;E)

)
.

Moreover we have the estimate

‖γ̃θ(X)‖2CP ([a,b];L2(Ω;E)) ≤ 10e2r(b−a)(b− a)‖X‖2CP ([a,b];L2(Ω;E)).

Proof. Let X ∈ CP
(
[a, b];L2(Ω;E)

)
; for a ≤ t ≤ b, taking into account

Lemma 2.3.5 and the equality I[0,+∞)(t + ζ − τ) = I[τ,+∞)(t + ζ), we have, for
a.e. ζ ∈ [−T, 0], the following equalities:

(
γ̃θ(X)0(t)
γ̃θ(X)1(t)(ζ)

)
=

∫ t

a
θ(τ)S(t− τ) [ΦX(τ)] dB(τ)

=
∫ t

a
S(t− τ) (θ(τ)X0(τ), 0) dB(τ)

=
∫ t

a

(
θ(τ)X0(τ)er(t−τ)

I[τ,+∞)(t+ ζ)θ(τ)X0(τ)er(t+ζ−τ)

)
dB(τ)

=


∫ t
a θ(τ)X0(τ)er(t−τ)dB(τ)

0, if t+ ζ ≤ a

erζ
∫ t+ζ
a θ(τ)X0(τ)er(t−τ)dB(τ), if t+ ζ ≥ a

 ;

this shows that, for any t ∈ [a, b] and X ∈ CP
(
[a, b];L2(Ω;E)

)
, we can take

the random variable γ̃θ(X)(t) taking values in E. Now we have to show that
γ̃θ(X)(t) ∈ L2(Ω;E). Taking into account the Doob’s inequality for continuous
square-integrable martingales and the Itô’s isometry, we have

E
[
‖γ̃θ(X)(t)‖2E

]
≤ 2E

[∣∣∣∣∫ t

a
θ(τ)X0(τ)er(t−τ)dB(τ)

∣∣∣∣2 + sup
ζ∈[−T,0)

∣∣∣∣∫ t+ζ

a
θ(τ)X0(τ)er(t−τ)dB(τ)

∣∣∣∣2
]

≤ 10 E

[∣∣∣∣∫ t

a
θ(τ)X0(τ)er(t−τ)dB(τ)

∣∣∣∣2
]
≤ 10 e2r(b−a)

∫ t

a
E[|X0(τ)|2]dτ < +∞.

Then we can prove that γ̃θ(X) ∈ CP
(
[a, b];L2(Ω;E)

)
and the last statement

arguing as in Lemma 2.3.7. �

Now we are ready to prove the desired existence and uniqueness result.
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Theorem 2.3.10. For every x ∈ E and for every given (Ft)t≥0-progressively measur-
able and [0, 1]-valued process θ(·), equation (2.23) admits a unique mild solution in the
spaceCP

(
[0,+∞);L2(Ω;E)

)
, i.e. there exists a uniqueX ∈ CP

(
[0,+∞);L2(Ω;E)

)
such that

X(t) = S(t)x+
∫ t

0
σλθ(τ)S(t− τ) [ΦX(τ)] dτ −

∫ t

0
S(t− τ)G(X(τ))dτ

+
∫ t

0
σθ(τ)S(t− τ) [ΦX(τ)] dB(τ).

Proof. Let a ≥ T and ψ ∈ L2((Ω,FTa );E); for b > a such that

er(b−a)
[
(2Cg + σλ)(b− a) + 101/2σ(b− a)1/2

]
< 1, (2.25)

consider the map

Γψ,θ : CP
(
[a, b];L2(Ω;E)

)
−→ CP

(
[a, b];L2(Ω;E)

)
,

X 7−→ χ(ψ) + σλγθ(X)− γ(X) + σγ̃θ(X);

by the previous Lemmata and by (2.25) this map is a contraction on the space
CP
(
[a, b];L2(Ω;E)

)
and so it admits a unique fixed point in this space. This

fixed point is the solution to equation (2.23) in the interval [a, b] for initial
time a and initial condition ψ. So starting from T we can find a unique X ∈
CP
(
[T, T + (b− a)];L2(Ω;E)

)
such that, for t ∈ [T, T + (b− a)],

X(t) = S(t− T )x+ σλ

∫ t

T
θ(τ)S(t− τ) [ΦX(τ)] dτ −

∫ t

T
S(t− τ)G(X(τ))dτ

+σ
∫ t

T
θ(τ)S(t− τ) [ΦX(τ)] dB(τ).

Then we can iterate the argument by (b−a)-steps (notice that the achievement
of (2.25) depends only on the difference b−a) and get the solution in the whole
interval [T,+∞) by the semigroup property of S(·). �

Remark 2.3.11. In the proof of Theorem 2.3.10 we could obtain the solution
directly on the whole interval [T,+∞) using the exponential norm on the space
CP([T,+∞);L2(Ω;E)); indeed, if we endow this space with the norm

‖X‖
CP
(

[T,+∞);L2(Ω;E)
) = sup

t∈[a,b]
e−λt

(
E
[
‖X(t)‖2E

])1/2
,

then we could find λ > 0 such that Γψ,θ becomes a contraction on the space
CP
(
[T,+∞);L2(Ω;E)

)
and get the fixed point directly in this space. �
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2.3.2 Equivalence between the stochastic delay problem and the in-
finite dimensional problem

At the beginning of this section we have defined the infinite dimensional equa-
tion (2.16) and we have proved an existence and uniqueness result for such
equation. Now, to give sense to our approach, we want to link (2.16) with
(2.6). The link is given by the following result.

Proposition 2.3.12. Let θ(·) be an (Ft)t≥T -progressively measurable and [0, 1]-valued
process and x ∈ E. Let x(·) be the unique solution to (2.6) with data x, θ(·) in the
space CP([0,+∞);L2(Ω)) and let X(·) be the unique mild solution to (2.16) with
data x, θ(·) in the space CP([0,+∞);L2(Ω;E)). Then

X(·) = (x(·), x(·+ ζ)|ζ∈[−T,0]).

Proof. Let x(·) be the solution to (2.6) and letX(·) := (x(·), x(·+ζ)|ζ∈[−T,0]).
Then X belongs to the space CP([T,+∞);L2(Ω;E)) because the function

[T,+∞)→ L2(Ω; R), t 7→ x(t)

is continuous and therefore uniformly continuous on the compact subsets of
[T,+∞). So we have to prove thatX(t) = (X0(t), X1(t)) = (x(t), x(t+ζ)|ζ∈[−T,0])
satisfies (2.16) on both the components. For the first one we have to verify that,
for any t ≥ T ,

X0(t) = er(t−T )x0 + σλ

∫ t

T
er(t−τ)θ(τ)X0(τ)dτ

−
∫ t

T
er(t−τ) [f0 (X0(τ)−X1(τ)(−T )) + q] dτ + σ

∫ t

T
er(t−τ)θ(τ)X0(τ)dB(τ),

i.e. that

x(t) = er(t−T )x0 + σλ

∫ t

T
er(t−τ)θ(τ)x(τ)dτ

−
∫ t

T
er(t−τ) [f0 (x(τ)− x(τ − T )) + q] dτ + σ

∫ t

T
er(t−τ)θ(τ)x(τ)dB(τ);

but this comes from the assumption that x(·) is a solution to (2.6).

For the second component, taking into account that

I[0,+∞)(t+ · − τ) = I[τ,+∞)(t+ ·)

and Lemma 2.3.4, Lemma 2.3.5, we have to verify, for any t ≥ T , the equalities
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in L2(Ω; R) for a.e. ζ ∈ [−T, 0]

X1(t)(ζ) = I[0,T ](t+ ζ)x1(t+ ζ − T ) + I[T,+∞)(t+ ζ)x0e
r(t+ζ−T )

+σλ
∫ t

T
I[τ,+∞)(t+ ζ)θ(τ)X0(τ)er(t+ζ−τ)dτ

−
∫ t

T
I[τ,+∞)(t+ ζ) [f0 (X0(τ)−X1(τ)(−T )) + q] er(t+ζ−τ)dτ

+σ
∫ t

T
I[τ,+∞)(t+ ζ)θ(τ)X0(τ)er(t+ζ−τ)dB(τ);

i.e., for any t ≥ T , the equalities in L2(Ω,R) for a.e. ζ ∈ [−T, 0]

x(t+ ζ) = I[0,T ](t+ ζ)x1(t+ ζ − T ) + I[T,+∞)(t+ ζ)x0e
r(t+ζ−T )

+σλ
∫ t

T
I[τ,+∞)(t+ ζ)θ(τ)x(τ)er(t+ζ−τ)dτ

−
∫ t

T
I[τ,+∞)(t+ ζ) [f0 (x(τ)− x(τ − T )) + q] er(t+ζ−τ)dτ

+σ
∫ t

T
I[τ,+∞)(t+ ζ)θ(τ)x(τ)er(t+ζ−τ)dB(τ). (2.26)

For ζ ∈ [−T, 0] such that t+ ζ ∈ [0, T ], (2.26) reduces to

x(t+ ζ) = x1(t+ ζ − T )

and this is true by the initial condition of (2.6); instead for ζ ∈ [−T, 0] such that
t+ ζ ≥ T , (2.26) reduces to

x(t+ ζ) = x0e
r(t+ζ−T ) + σλ

∫ t+ζ

T
θ(τ)x(τ)er(t+ζ−τ)dτ

−
∫ t+ζ

T
[f0 (x(τ)− x(τ − T )) + q] er(t+ζ−τ)dτ

+σ
∫ t+ζ

T
θ(τ)x(τ)er(t+ζ−τ)dB(τ);

setting u := t+ ζ this equality becomes, for u ≥ T ,

x(u) = x0e
r(u−T ) + σλ

∫ u

T
θ(τ)x(τ)er(u−τ)dτ

−
∫ u

T
[f0 (x(τ)− x(τ − T )) + q] er(u−τ)dτ + σ

∫ u

T
θ(τ)x(τ)er(u−τ)dB(τ);

again this is true because x(·) solves (2.6). �

Thanks to the previous equivalence result, we can rewrite our optimization
problem in the infinite-dimensional setting: consider the class of equations, for
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θ(·) ∈ Θad(x), x ∈ C,dX(t) = AX(t)dt+ σλθ(t)ΦX(t)dt− F (X(t))dt+ σθ(t)ΦX(t)dB(t),

X(T ) = x.

and denote the mild solution to the previous equation byX(t;T, x, θ(·)). Thanks
to Proposition 3.2.3 the objective functional defined in Section 2.2.2 can be
rewritten as

J (x; θ (·)) = E
[∫ +∞

T
e−ρ(t−T )U (X0 (t;T, x, θ(·))) dt

]
.

2.3.3 Continuous dependence on initial data

In this subsection we investigate the continuous dependence on the initial data
for the mild solution to equation (2.16) with respect to the ‖·‖E-norm and with
respect to the ‖ · ‖H -norm. Moreover we will give also a result of continuity
with respect to the control strategy θ(·).

Proposition 2.3.13. In the hypotheses of Theorem 2.3.10, let x, y ∈ E be two initial
data for the equation and denote by X(x), X(y) the solution associated respectively to
x, y. Then, for u ≥ T , there exists a constant Ku > 0 such that

‖X(x)−X(y)‖CP ([T,u];L2(Ω;E)) ≤ Ku‖x− y‖E .

Proof. Let us consider the map

Γθ : L2((Ω,FTa );E)× CP
(
[a, b];L2(Ω;E)

)
−→ CP

(
[a, b];L2(Ω;E)

)
,

(ψ,X) 7−→ χ(ψ) + σλγθ(X)− γ(X) + σγ̃θ(X);

we have already proved in Theorem 2.3.10 that, for (b−a) small enough, there
exists C < 1 such that

‖Γθ(ψ,X)− Γθ(ψ, Y )‖CP ([a,b];L2(Ω;E)) ≤ C ‖X − Y ‖CP ([a,b];L2(Ω;E)).

Moreover, by Lemma 2.3.6, we know that

‖Γθ(ψ,X)− Γθ(ψ′, X)‖CP ([a,b];L2(Ω;E)) = ‖χ(ψ − ψ′)‖CP ([a,b];L2(Ω;E))

≤ Cb−a‖ψ − ψ′‖L2(Ω;E).

Thus, denoting by X(ψ), X(ψ′) the solution in [a, b] to our equation, starting
from ψ,ψ′ respectively, we have

‖X(ψ)−X(ψ′)‖CP ([a,b];L2(Ω;E)) = ‖Γθ(ψ,X(ψ))− Γθ(ψ′, X(ψ′))‖CP ([a,b];L2(Ω;E))

≤ Cb−a‖ψ − ψ′‖L2(Ω;E)

+C‖X(ψ)−X(ψ′)‖CP ([a,b];L2(Ω;E)),
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therefore

‖X(ψ)−X(ψ′)‖CP ([a,b];L2(Ω;E)) ≤ (1− C)−1Cb−a‖ψ − ψ′‖L2(Ω;E).

Thus, starting from T with initial conditions x, y and iterating by (b− a)-steps
until reaching u, we get the claim. �

Thanks to Proposition 2.3.12, we can prove a continuous dependence on
initial data result with respect to the H-norm under the null control:

Proposition 2.3.14. Let x, y ∈ E be two initial data for the equation (2.16) and
denote by X(x), X(y) the mild solutions associated respectively to x, y, both under
the null control θ(·) ≡ 0. Then, for each u ≥ T , there exists a constant Ku > 0 such
that

‖X(x)−X(y)‖C([T,u];(E,‖·‖H)) ≤ Ku‖x− y‖H .

Proof. Notice that we cannot proceed as in Proposition 2.3.13 because the
function F is not Lipschitz continuous with respect to the H-norm. Take T ≤
a < b such that b− a ≤ T and let γ be the map defined by

γ : C([a, b]; (E, ‖ · ‖H)) −→ C([a, b]; (E, ‖ · ‖H)
X(·) 7−→

∫ ·
a S(· − τ)F (X(τ))dτ.

As in the proof of Lemma 2.3.8, for t ∈ [a, b],

(
γ(X)0(t)
γ(X)1(t)(ζ)

)
=


∫ t
a f(X(τ))er(t−τ)dτ

0, if t+ ζ ≤ a,

erζ
∫ t+ζ
a f(X(τ))er(t−τ)dτ, if t+ ζ ≥ a;

 ;

let K0 be the Lipschitz constant of f0. For every X,Y ∈ C([a, b]; (E, ‖ · ‖H)) we
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have the following estimate with respect to the H-norm:

sup
t∈[a,b]

‖γ(X)(t)− γ(Y )(t)‖2H = sup
t∈[a,b]

[∣∣∣∣∫ t

a

er(t−τ) (f(X(τ))− f(Y (τ))) dτ
∣∣∣∣2

+
∫ 0

(a−t)

∣∣∣∣∣erζ
∫ t+ζ

a

er(t−τ) (f(X(τ)))− f(Y (τ))) dτ

∣∣∣∣∣
2

dζ


≤ sup
t∈[a,b]

[
(t− a)

∫ t

a

e2r(t−τ) |f(X(τ))− f(Y (τ))|2 dτ

+
∫ 0

(a−t)

[
e2rζ(t+ ζ − a)

∫ t+ζ

a

e2r(t−τ) |f(X(τ))− f(Y (τ))|2 dτ

]
dζ

]

≤ 2(b− a)e2r(b−a)K2
0

∫ b

a

[
|X0(τ)− Y0(τ)|2 + |X1(τ)(−T )− Y1(τ)(−T )|2

]
dτ

+2T (b− a)e2r(b−a)K2
0

∫ b

a

[
|X0(τ)− Y0(τ)|2 + |X1(τ)(−T )− Y1(τ)(−T )|2

]
dτ

= 2(b− a)e2r(b−a)(1 + T )K2
0

∫ b

a

[
|X0(τ)− Y0(τ)|2 + |X1(τ)(−T )− Y1(τ)(−T )|2

]
dτ.

Now, if we set X := X(x), Y := X(y), taking into account that

−T ≤ τ − a ≤ b− a− T ≤ 0,

by Proposition 3.2.3 we have

X1(τ)(−T ) = X1(a)(τ − a− T ), Y1(τ)(−T ) = Y1(a)(τ − a− T ).

So we get

sup
t∈[a,b]

‖γ(X)(t)− γ(Y )(t)‖2H ≤ 2(b− a)2e2r(b−a)(1 + T )K2
0‖X − Y ‖2C([a,b];H)

+2(b− a)e2r(b−a)(1 + T )K2
0 ‖X(a)− Y (a)‖2H

≤ 2(b− a)2e2r(b−a)(1 + T )K2
0 ‖X − Y ‖2C([a,b];H)

+2(b− a)e2r(b−a)(1 + T )K2
0 ‖X − Y ‖2C([a,b];H);

thus, for small enough b− a,

‖γ(X)− γ(Y )‖C([a,b];(E,‖·‖H)) ≤ C‖X − Y ‖C([a,b];(E,‖·‖H))

for some 0 < C < 1. Now the claim follows arguing as in the proof of Propo-
sition 2.3.13, taking into account that, if χ is the map defined in Lemma 2.3.6
and ψ,ψ′ ∈ E, then by (2.17)

‖χ(ψ − ψ′)‖C([a,b];(E,‖·‖H)) ≤ (3 + 2T )1/2er(b−a)‖ψ − ψ′‖H .

�

By the previous we get the following very useful result.
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Corollary 2.3.15. Let x, y ∈ E two initial data for the equation (2.16) with null
control θ(·) ≡ 0 and denote by X(x), X(y) the mild solution associated respectively
to x, y. Then, for u ≥ T , there exists a constant Ku > 0 such that

sup
t∈[T,u]

|X0(x)(t)−X0(y)(t)| ≤ Ku‖x− y‖H .

�

Now we give a result of continuous dependence of solutions with respect
to the strategies.

Proposition 2.3.16. In the hypotheses of Theorem 2.3.10, let (θn)n≥1, θ be (Ft)t≥T -
progressively measurable and [0, 1]-valued processes such that

(θn − θ)2 ∗⇀ 0 in L∞(Ω× [T, u])

for some u ≥ T , and denote by X(θn), X(θ) respectively the solutions to the equation
associated with θn, θ. Then

X(θn)→ X(θ), in CP([T, u];L2(Ω;E)).

Proof. Let us denote by X(ψ, θ), X(ψn, θn) the solutions to the equation in
[a, b] starting from ψ,ψn and with controls θ, θn respectively; then we have, by
Proposition 2.3.14, for suitable K > 0 and for small enough (b− a),

‖X(ψ, θ)−X(ψn, θn)‖CP ([a,b];L2(Ω;E))

≤ K‖ψ − ψn‖L2(Ω;E) + ‖X(ψ, θ)−X(ψ, θn)‖CP ([a,b];L2(Ω;E)). (2.27)

Let us consider the map

Γψ : L2([a, b];L2(Ω;E))× CP([a, b];L2(Ω;E)) −→ CP([a, b];L2(Ω;E)),
(θ,X) 7−→ χ(ψ) + σλγθ(X)− γ(X) + σγ̃θ(X);

we know that, for small enough (b − a), there exists C < 1 such that, for any
n ∈ N,

‖Γψ(θn, X)− Γψ(θn, Y )‖CP ([a,b];L2(Ω;E)) ≤ C ‖X − Y ‖CP ([a,b];L2(Ω;E)).

So,

‖X(ψ, θ)−X(ψ, θn)‖CP ([a,b];L2(Ω;E))

≤ ‖Γψ(θ,X(ψ, θ))− Γψ(θn, X(ψ, θ))‖CP ([a,b];L2(Ω;E))

+ ‖Γψ(θn, X(ψ, θ))− Γψ(θn, X(ψ, θn))‖CP ([a,b];L2(Ω;E))

≤ ‖Γψ(θ,X(ψ, θ))− Γψ(θn, X(ψ, θ))‖CP ([a,b];L2(Ω;E))

+ C‖X(ψ, θ)−X(ψ, θn)‖CP ([a,b];L2(Ω;E)),
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i.e.,

‖X(ψ, θ)−X(ψ, θn)‖CP ([a,b];L2(Ω;E))

≤ (1− C)−1‖Γψ(θ,X(ψ, θ))− Γψ(θn, X(ψ, θ))‖CP ([a,b];L2(Ω;E)).

On the other hand

‖Γψ(θ,X(ψ, θ))− Γψ(θn, X(ψ, θ))‖2CP ([a,b];L2(Ω;E))

≤ 2

[
λ2σ2 sup

t∈[a,b]
E
[
‖γθ−θn(X(ψ, θ))(t)‖2E

]
+ σ2 sup

t∈[a,b]
E
[
‖γ̃θ−θn(X(ψ, θ))(t)‖2E

]]

and, as in the proof of Lemma 2.3.7 and Lemma 2.3.9,

sup
t∈[a,b]

E
[
‖γθ−θn(X(ψ, θ))(t)‖2E

]
≤ 4 sup

t∈[a,b]
E

[∣∣∣∣∫ t

a
(θ(τ)− θn(τ))X0(ψ, θ)(τ)er(t−τ)dτ

∣∣∣∣2
]

≤ 4e2r(b−a)(b− a)
∫ b

a
E
[
|θ(τ)− θn(τ)|2|X0(ψ, θ)(τ)|2

]
dτ,

sup
t∈[a,b]

E
[
‖γ̃θ−θn(X(ψ, θ))(t)‖2E

]
≤ 10 sup

t∈[a,b]
E

[∣∣∣∣∫ t

a
(θ(τ)− θn(τ))X0(ψ, θ)(τ)er(t−τ)dB(τ)

∣∣∣∣2
]

≤ 10e2r(b−a)

∫ b

a
E
[
|θ(τ)− θn(τ)|2|X0(ψ, θ)(τ)|2

]
dτ.

So, starting from T , taking n → ∞ and iterating by (b − a)-steps (and taking
in account the inequality (2.27) in the iterations, because the starting point
changes), we get the claim. �

Remark 2.3.17. We notice that the condition θn → θ in measure on Ω × [T, u],
for example, is enough to have (θn − θ)2 ∗⇀ 0 in L∞(Ω× [T, u]).
On the other hand we notice also that the convergence θn

∗
⇀ θ in L∞(Ω×[T, u])

is not enough to have the desired convergence (θn − θ)2 ∗
⇀ 0. Let us consider,

for instance, this framework: the space L∞([0, 1], λ) ∼= (L1([0, 1], λ)∗, where
λ denotes the Lebesgue measure on [0, 1]; then, by the Riemann-Lebesgue
Lemma, we have the convergence sin(nx) ∗⇀ 0, but of course the convergence
sin2(nx) ∗⇀ 0 is not true. �
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2.4 Continuity of the value function

In this section we prove the continuity of the value function with respect to
the ‖ · ‖H -norm in the interior part of its domain and then we extend it to a
‖ · ‖H -continuous function defined on an open set of (H, ‖ · ‖H). Moreover, in
the special case of absorbing boundary, i.e. when rl = q and U(l) > −∞ (see
Proposition 2.4.6-(6)), we prove that the value function is ‖ · ‖H -continuous up
to the boundary. Actually, for brevity, we will prove the lower semicontinuity
of the value function at the boundary and only the idea of the proof of the up-
per semicontinuity. We will indend the topological notions in the ‖ · ‖H norm.
Nevertheless we will use subscripsts to stress in which topological space we
are working.

2.4.1 Continuity in the interior of the domain

In this subsection we study the continuity of the value function in the interior
part of its domain. Let us recall that the domain of V is the set

D(V ) := {x ∈ C | V (x) > −∞}

and that, by Proposition 2.2.12, we have D0 ⊂ D(V ), where D0 was defined in
(2.14).

Lemma 2.4.1. Let x ∈ D0; then there exists ε > 0 such that V is bounded from below
on B(E,‖·‖H)(x, ε).

Proof. Consider the null strategy θ(·) ≡ 0 and set X(t) := X(t;T, x, 0);
by Lemma 2.2.6-(2) there exists β > 0 such that X0(t) ≥ l + β. Set, for y ∈
B(E,‖·‖H)(x, ε), Y (t) := Y (t;T, y, 0). Take ε < β/2K2T , where K2T > 0 is the
constant given in the estimate of Corollary 2.3.15; by the same Corollary, if
‖x− y‖H ≤ ε, then

sup
t∈[T,2T ]

|X0(t)− Y0(t)| ≤ β/2,

so that we have Y0(t) ≥ l + β/2 on [T, 2T ]. Thus, for y ∈ B(E,‖·‖H)(x, ε),

E
[∫ 2T

T
e−ρ(t−T )U(Y0(t))dt

]
≥ 1− e−ρT

ρ
U(l + β/2).

Let z = (z0, z1(·)), where z0 = l + β/2 and z1 : [−T, 0) → R is the constant
function ζ 7→ l + β/2. By Proposition 3.2.3 we have Y (2T ) ≥ z, in the sense
of Proposition 2.2.11. By the semigroup property of the mild solution Y (·),
we have, for t ≥ 2T , Y (t) = X(t; 2T, Y (2T ), 0), so that Y0(t) ≥ X0(t; 2T, z, 0),
for t ≥ 2T . Since z ∈ D0, by Lemma 2.2.6-(2) and Proposition 3.2.3 we have
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X0(t; 2T ; z, 0) ≥ l + βz , where βz > 0 does not depend on y ∈ B(E,‖·‖H)(x, ε).
Thus we can write

V (y) ≥ E
[∫ 2T

T
e−ρ(t−T )U(Y0(t))dt

]
+ E

[∫ +∞

2T
e−ρ(t−T )U(Y0(t))dt

]
=

1− e−ρT

ρ
U(l + β/2) +

1− e−ρT

ρ
U(l + βz/2).

The estimate holds uniformly without regard to the point y ∈ B(E,‖·‖H)(x, ε)
chosen, so that the claim is proved. �

By the previous result we have proved in particular that Int(E,‖·‖H)(D(V ))
is not empty and that D0 ⊂ Int(E,‖·‖H)(D(V )). The proof of the following
Lemma can be found e.g. in [Ekeland, Temam; 1976], Chapter 1, Corollary 2.4.

Lemma 2.4.2. Let Z be a topological vector space and f : Z → R̄ concave and proper.
Let us define

D(f) := {z ∈ Z | f(z) > −∞};

if f is bounded from below on a neighborhood of some z0 ∈ D(f), then Int(D(f)) is
not empty and f is continuous on Int(D(f)).

Thus from Lemma 2.4.1 and Lemma 2.4.2 above we can get the following
result.

Corollary 2.4.3. The value function V is continuous on Int(E,‖·‖H)(D(V )). �

For semplicity of notation we set

V := Int(E,‖·‖H)(D(V )). (2.28)

We want to extend V to a continuous function defined on an open set of (H, ‖ ·
‖H) containing V . Notice that, if A is an open set of (H, ‖ · ‖H), then A ∩ E is
‖ · ‖H -dense in A.

Proposition 2.4.4. There exist an open setO of (H, ‖·‖H) and a continuous function
V̄ : O → R such that:

1. O ⊃ V and V̄ |V = V .

2. V = O ∩ E and O = Int(H,‖·‖H)

(
Clos(H,‖·‖H)(V)

)
.

3. O is convex and V̄ is concave on O.
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Proof. 1. Let x ∈ V ; we know that V is continuous at x in E, so that,
by concavity, it is Lipschitz continuous on B(E,‖·‖H)(x, ρx) = {y ∈ E | ‖y −
x‖H < ρx} ⊂ V for suitable ρx > 0 (see again Corollary 2.4, Chapter 1,
of [Ekeland, Temam; 1976]). B(E,‖·‖H)(x, ρx) is dense in B(H,‖·‖H)(x, ρx), since
B(E,‖·‖H)(x, ρx) = B(H,‖·‖H)(x, ρx) ∩ E. Thus we can extend by continuity V

to a continuous function Vx on B(H,‖·‖H)(x, ρx) = {y ∈ H | ‖y − x‖H < ρx}.
Of course we can repeat this construction for all the points of V . These ex-
tensions are compatible each other, in the sense that, if x, x′ ∈ V and y ∈
B(H,‖·‖H)(x, ρx) ∩ B(H,‖·‖H)(x′, ρx′), then Vx(y) = Vx′(y). Indeed, by density,
we can take a sequence (xn) ⊂ B(E,‖·‖H)(x, ρx) ∩ B(E,‖·‖H)(x′, ρx′) such that
xn → y; on this sequence we have Vx(xn) = V (xn) = Vx′(xn), therefore, taking
the limit for n→∞, we get Vx(y) = Vx′(y) by continuity of Vx, Vx′ .

Let us define the open set O of (H, ‖ · ‖H) by

O :=
⋃
x∈V

B(H,‖·‖H)(x, ρx); (2.29)

thanks to the compatibility argument it remains defined on O a continuous
function V̄ . Of course

V =
⋃
x∈V

B(E,‖·‖H)(x, ρx) ⊂ O (2.30)

and, by construction, V̄ |V = V .

2. Let x ∈ V ; then, of course x ∈ O and x ∈ E, so that V ⊂ O ∩ E.
Conversely let x ∈ O ∩ E; then, since x ∈ O, from (2.29) we have x ∈
B(H,‖·‖H)(z, ρz) for some z ∈ V and, on the other hand, since x ∈ E, we have
x ∈ B(H,‖·‖H)(z, ρz) ∩ E = B(E,‖·‖H)(z, ρz), so that, by (2.30), we have x ∈ V
and therefore we can conclude that also O ∩ E ⊂ V .
About the second statement, thanks to the fact that E is dense in H and thatO
is open in (H, ‖ · ‖H), we can write

Int(H,‖·‖H)

(
Clos(H,‖·‖H)

(
V
))

= Int(H,‖·‖H)

(
Clos(H,‖·‖H)

(
O ∩ E

))
= Int(H,‖·‖H)

(
Clos(H,‖·‖H)

(
O
))

= O. (2.31)

3. The convexity of O follows by (2.31) and by the fact that V is convex.
The concavity of V̄ follows by its continuity and by concavity of V on V . �

Hereafter, with a slight abuse of notation, we still indicate the extended
value function V̄ on O by V .

2.4.2 Continuity at the boundary

In this subsection we study the continuity properties of value function at the
boundary. We start with a topological lemma which makes clear the link
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between the boundary Fr(H,‖·‖H)(O) of O in (H, ‖ · ‖H) and the boundary
Fr(E,‖·‖H)(V) of V in (E, ‖ · ‖H). Notice that Fr(E,‖·‖H)(V) is not empty: indeed,
by Proposition 2.2.12, we have {x ∈ D | x0 = l} ⊂ Fr(E,‖·‖H)(V).

Lemma 2.4.5. We have the following statements:

1. E \ V = (H \O) ∩ E.

2. Clos(E,‖·‖H)(V) = Clos(H,‖·‖H)(O) ∩ E.

3. Fr(E,‖·‖H)(V) = Fr(H,‖·‖H)(O) ∩ E.

Proof. 1. By Proposition 2.4.4-(2) we know that V = O ∩ E. Thus we can
write

(H \O) ∩ E = (H ∩ E) \ (O ∩ E) = E \ V.

2. Let x ∈ Clos(E,‖·‖H)(V); then we can find a sequence (xn) ⊂ V such that

xn
‖·‖H−→ x; of course (xn) ⊂ O, so that x ∈ Clos(H,‖·‖H)(O); on the other hand

x ∈ E, since x ∈ Clos(E,‖·‖H)(V), so that x ∈ Clos(H,‖·‖H)(O) ∩ E.
Conversely, let x ∈ Clos(H,‖·‖H)(O) ∩ E; we know (Proposition 2.4.4) that

Clos(H,‖·‖H)(O) = Clos(H,‖·‖H)(V).

Thus there exists a sequence (xn) ⊂ V such that xn
‖·‖H−→ x; together with the

assumption x ∈ E, this shows that x ∈ Clos(E,‖·‖H)(V).
3. Notice that E \ V and H \O are closed respectively in (E, ‖ · ‖H) and

(H, ‖ · ‖H). Let x ∈ Fr(E,‖·‖H)(V); this means that x ∈ Clos(E,‖·‖H)(V) ∩ (E \ V).
Thanks to the point (2) of this proposition we get x ∈ Clos(H,‖·‖H)(O)∩(H \O)∩
E, i.e. x ∈ Fr(H,‖·‖H)(O) ∩ E.
Conversely, let x ∈ Fr(H,‖·‖H)(O) ∩ E; this means that x ∈

(
Clos(H,‖·‖H)(O) ∩

E
)
∩
(
(H \O) ∩ E

)
, so that, by the point (2), x ∈ Clos(E,‖·‖H)(V) ∩ (E \ V), i.e.

x ∈ Fr(E,‖·‖H)(V). �

Refining the assumptions on the parameters of the model the boundary
becomes absorbing.

Proposition 2.4.6. Let rl = q, U(l) > −∞ and let C ⊂ E be the convex set defined
in (2.3). Then the following statements hold:

1. We have D(V ) = {x ∈ C | 0 ∈ Θad(x)} = Clos(E,‖·‖H)(V).

2. Let x ∈ D(V ); then either there exists β > 0 such that X0(t;T, x, 0) ≥ l + β

for all t ≥ T (first case) or there exists s ∈ [T, 2T ) such that X0(s;T, x, 0) = l

(second case). In the second case X0(t;T, x, 0) = l, for every t ≥ s.
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3. We have x ∈ V if and only if x ∈ D(V ) and there exists β > 0 such that
X(t;T, x, 0) ≥ l + β, for all t ≥ T .

4. We have x ∈ Fr(E,‖·‖H)(V) if and only if x ∈ D(V ) and there exists s ∈ [T, 2T )
such that X(s;T, x, 0) = l. In this case X0(t;T, x, 0) = l, for t ≥ s.

5. We have Fr(E,‖·‖H)(V) = {x ∈ C | Θad(x) = {0}}.

6. The boundary Fr(E,‖·‖H)(V) is absorbing for the problem, in the sense that, if
x ∈ Fr(E,‖·‖H)(V), then we have X(t;T, x, 0) ∈ Fr(E,‖·‖H)(V) for all t ≥ T .

Proof. 1. Recall that, by definition, D(V ) = {x ∈ C | V (x) > −∞}. By the
assumption U(l) > −∞, we get x ∈ D(V ) if and only if x ∈ C and Θad(x) 6= ∅
and, thanks to Lemma 2.2.3, this occurs if and only if x ∈ C and 0 ∈ Θad(x), so
that D(V ) = {x ∈ C | 0 ∈ Θad(x)}.

Since by definition V = Int(E,‖·‖H)(D(V )), we can say that

{x ∈ C | 0 ∈ Θad(x)} = D(V ) ⊂ Clos(E,‖·‖H)(V),

so that it remains to prove the inclusion

Clos(E,‖·‖H)(V) ⊂ D(V ) = {x ∈ C | 0 ∈ Θad(x)}.

So let us take x ∈ Clos(E,‖·‖H)(V) = V ∪ Fr(E,‖·‖H)(V). If x ∈ V , then, by
definition of V , x ∈ D(V ). So let us suppose x ∈ Fr(E,‖·‖H)(V); we want to
prove that x ∈ {x ∈ C | 0 ∈ Θad(x)}, i.e. X0(·;T, x, 0) ≥ l. Let us suppose,
by contradiction, that, for some t ≥ T , ε > 0, we have X0(t;T, x, 0) ≤ l −
ε. By definition of Fr(E,‖·‖H)(V), there exists y ∈ V ⊂ D(V ) such that ‖x −
y‖H < ε/2Kt, where Kt is the constant in the estimate of Corollary 2.3.15; so,
by the same result, we would have X0(t;T, y, 0) ≤ l − ε/2, i.e., by Lemma
2.2.3, Θad(y) = ∅ and thus y /∈ D(V ). Therefore the contradiction arises and
the claim is proved.

2. Let x ∈ D(V ). If x0 = l, then we have X(T ;T, x, 0) = l and we are in the
second case. So let x ∈ D(V ) be such that x0 > l. Of course, since x1(ζ) → x0

when ζ → 0−, we can find ε > 0 such that x1(ζ) ≥ l for ζ ∈ [−ε, 0). Let us
suppose that we are not in the second case, i.e. X0(t;T, x, 0) > 0 for every
t ∈ [T, 2T ); then there exists some α > 0 such that X0(t;T, x, 0) ≥ l + α, for
t ∈ [T, 2T − ε]. We want to show that then we are in the first case. By the
semigroup property of the mild solution X(·;T, x, 0) we have, for t ≥ 2T − ε,
X0(t;T, x, 0) = X0(t; 2T−ε,X(2T−ε;T, x, 0), 0); sinceX1(2T−ε;T, x, 0)(·) ≥ l
and X0(2T − ε;T, x, 0) ≥ l + α, we have X(2T − ε;T, x, 0) ∈ D0. There-
fore, by Lemma 2.2.6-(2), there exists α′ > 0 such that X0(t; 2T − ε,X(2T −
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ε;T, x, 0), 0) ≥ l + α′, for all t ≥ 2T − ε, so that we get what desired taking
β = α ∧ α′.

About the second part of the statement, notice that, when X0(t;T, x, 0) =
l, thanks to Proposition 3.2.3, we have from the state equation with delay
dX0(t;T, x, 0) ≤ rl − q = 0. On the other hand x ∈ D(V ), so that we know, by
the point (1), that 0 ∈ Θad(x); thus also dX0(t;T, x, 0) ≥ 0. Therefore we get
dX0(t;T, x, 0) = 0 and the proof is complete.

3. If x ∈ D(V ) is such that X0(·;T, x, 0) ≥ l + β for some β > 0, then,
arguing as in Lemma 2.4.1, we get x ∈ V . Conversely let x ∈ V ; of course
x ∈ D(V ); thus we have to prove that X0(t;T, x, 0) > 0 for t ∈ [T, 2T ) and
then, by the point (2), we get the claim. So let us suppose by contradiction that,
for some s ∈ [T, 2T ), we have X0(s;T, x, 0) = l; since x ∈ V , there exists ε > 0
such that B(E,‖·‖H)(x, ε) ⊂ V ⊂ D(V ) = {x ∈ C | 0 ∈ Θad(x)} and in particular
it has to be x0 > l. On the other hand we can choose y ∈ B(E,‖·‖H)(x, ε) such
that y1(ζ) = x1(ζ), for ζ ∈ [−T, s + 2T−s

2 − 2T ], and y0 < x0. Working in
the interval [T, s + 2T−s

2 ] we can forget to be concerned with a delay equation
and consider the term x(t − T ) in the equation as a datum. Thus, thanks to
Proposition 3.2.3, we have for the dynamics of X0(·;T, x, 0) and X0(·;T, y, 0)
in the interval [T, s+ 2T−s

2 ]

dX0(t;T, x, 0)) = [rX0(t;T, x, 0)− q] dt− f0 (X0(t;T, x, 0)− x1(t− 2T )) dt,

X0(T ;T, x, 0) = x0;

dX0(t;T, y, 0)) = [rX0(t;T, y, 0)− q] dt− f0 (X0(t;T, y, 0)− y1(t− 2T )) dt,

X0(T ;T, y, 0) = y0.

These two dynamics refer to the same ordinary differential equation on the
interval [T, s + 2T−s

2 ], since y1(ζ) = x1(ζ), for ζ ∈ [−T, s + 2T−s
2 − 2T ]. Such

differential equation satisfies the classic hypothesis of the Cauchy’s Theorem
for ordinary differential equations. Therefore, by uniqueness, since y0 < x0,
the solution starting at y0 has to stay strictly below the solution starting at x0;
in particular, since X0(s;T, x, 0) = l, we get X0(s;T, y, 0) < l, i.e. 0 /∈ Θad(y)
and the contradiction arises.

4. If we denote by the symbol
◦
∪ the disjoint union, we have

Clos(E,‖·‖H)(V) = V
◦
∪ Fr(E,‖·‖H)(V),
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since V is open. By the point (2) we can split D(V ) as

D(V ) =
{
x ∈ D(V ) | ∃β > 0 s.t. X0(·;T, x, 0) ≥ l + β

}
◦
∪
{
x ∈ D(V ) | ∃ s ∈ [T, 2T ) s.t. X0(s;T, x, 0) = l

}
.

On the other hand, by the point (3), we can say that

V = {x ∈ D(V ) | ∃β > 0 s.t. X0(·;T, x, 0) ≥ l + β},

so that, by the point (1) it has to be

Fr(E,‖·‖H)(V) = {x ∈ D(V ) | ∃ s ∈ [T, 2T ) s.t. X0(s;T, x, 0) = l},

i.e. the claim.

5. Let us suppose that x ∈ Fr(E,‖·‖H)(V). We know, by the point (1),
that 0 ∈ Θad(x); moreover, by the point (4), there exists s ∈ [T, 2T ) such
that X0(s;T, x, 0) = l. Let us suppose that θ(·) ∈ Θad(x). Then, arguing as
in the proof of Lemma 2.2.3, we get, using the same notation therein, that
Ẽ2T [X0(s;T, x, θ(·))] ≤ X0(s;T, x, 0) = l. On the other hand, since θ(·) ∈
Θad(x), it has to be X0(s;T, x, θ(·)) ≥ l almost surely; therefore we can say that
X0(s;T, x, θ(·)) = l almost surely, so that Var [X0(s, T, x, θ(·))] = 0 and this fact
can occur only if θ(t) ≡ 0 for t ∈ [T, s]. Afterwards, for t ≥ s, of course it must
be θ(t) ≡ 0. Therefore we have proved that

Fr(E,‖·‖H)(V) ⊂ {x ∈ D(V ) | Θad(x) = {0}}.

Conversely let us suppose that x ∈ D(V ) is such that Θad(x) = {0}. If, by
contradiction, x ∈ V , then we can find ε > 0 such that B(E,‖·‖H)(x, ε) ⊂ V . Let
us consider the constant strategy θ ≡ 1 and let us define the stopping time

τ := inf{t ≥ T |X(t;T, x, 1) /∈ B(E,‖·‖H)(x, ε)}.

The trajectories of X(·;T, x, 1) are ‖ · ‖E-continuous and therefore they are also
‖ · ‖H -continuous, so that τ > T almost surely. Now define the strategy

θ(t) =

1, if t ≤ τ,

0, if t > τ.

By definition X(τ ;T, x, 1) ∈ V , so that in particular 0 ∈ Θad(X(τ ;T, x, 1));
therefore we have θ(·) 6= 0 and θ(·) ∈ Θad(x), so that a contradiction arises.

6. Let t ≥ T ; by the point (5), if x ∈ Fr(E,‖·‖H)(V), then the only admissible
strategy is the null one; therefore it has to be also Θad(X(t;T, x, 0)) = {0}. Ap-
plying again the point (5) we get X(t;T, x, 0) ∈ Fr(E,‖·‖H)(V), i.e. the claim. �
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Proposition 2.4.7. Let U(l) > −∞, rl = q. Then the (extended) value function

V : O ∪ Fr(E,‖·‖H)(V)→ R

is continuous at the boundary Fr(E,‖·‖H)(V).

Proof. (i) Here we prove the lower semicontinuity at the boundary. So let
x ∈ Fr(E,‖·‖H)(V) and notice that, since V is continuous on O and V is dense in
O, without loss of generality we can prove that

V (x) ≤ lim inf
y→x

y∈Clos(E,‖·‖H )(V)

V (y).

Set X(t) := X(t, T, x, 0); by Proposition 2.4.6-(5) we know that the only ad-
missible strategy is the null one and, by Proposition 2.4.6-(4), there exists s ∈
[T, 2T ) such that X0(t) = l for every t ≥ s; therefore

V (x) = J(x, 0) =
∫ s

T
e−ρ(t−T )U(X0(t))dt+

∫ +∞

s
e−ρ(t−T )U(l)dt.

Take ε > 0, y ∈ B(E,‖·‖H)(x, ε)∩Clos(E,‖·‖H)(V) and set Y (t) := X(t;T, y, 0). Of
course 0 ∈ Θad(y) and

V (y) ≥ J(y, 0) =
∫ s

T
e−ρ(t−T )U(Y0(t))dt+

∫ +∞

s
e−ρ(t−T )U(Y0(t))dt

≥
∫ s

T
e−ρ(t−T )U(Y0(t))dt+

∫ +∞

s
e−ρ(t−T )U(l)dt.

By Corollary 2.3.15 we get |X0(t)− Y0(t)| ≤ Ks ε, for t ∈ [T, s], where Ks is the
constant given in the same Corollary. Therefore we get the claim by uniform
continuity of U .

(ii) As we said, we give only a sketch of the proof of the upper semicon-
tinuity at the boundary. Again, without loss of generality, we can reduce the
problem to prove

V (x) ≥ lim sup
y→x

y∈Clos(E,‖·‖H )(V)

V (y).

The heart of the idea is that our value function is obviously smaller of the
value function of the corresponding problem without surplus, i.e. the value
function which is the object of Section 1.3. Here wel call this value function
without surplus V 0. We know, by Proposition 1.3.14, that V 0 is continuous up
to l.

Let x ∈ Fr(E,‖·‖H)(V) be such that x0 = l; then, by Proposition 2.4.6-(2), we
get V (x) = U(l)/ρ = V 0(x0). On the other hand, since for each x ∈ C we have
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V (x) ≤ V 0(x0), we must have

lim sup
y→x

y∈Clos(E,‖·‖H )(V)

V (y) ≤ lim sup
y→x

y∈Clos(E,‖·‖H )(V)

V 0(y0) = V 0(x0) = V (x),

so that the claim is proved in this case.
Now let x ∈ Fr(E,‖·‖H)(V) be such that x0 > l; then, by Proposition 2.4.6,

we can write, for some s ∈ [T, 2T ),

V (x) =
∫ s

T
e−ρ(t−T )U(X0(t;T, x, 0)dt+

∫ +∞

s
e−ρ(t−T )U(l)dt.

Let us take a sequence (yn) ⊂ Clos(E,‖·‖H)(V) such that yn
‖·‖H−→ x; we can write,

by Dynamic Programming Principle (see Proposition 2.5.7 and Remark 2.5.8),

V (yn)

≤ sup
θ(·)∈Θad(yn)

E
[∫ s

T
e−ρ(t−T )U(X0(t;T, x, 0)dt+ e−ρ(s−T )V (X(s;T, yn, θ(·)))

]
≤ sup

θ(·)∈Θad(yn)
E
[∫ s

T
e−ρ(t−T )U(X0(t;T, x, 0)dt+ e−ρ(s−T )V 0(X0(s;T, yn, θ(·)))

]
.

Then, using Girsanov’s Theorem A.1.1, the convexity of the map f0, Corollary
2.3.15 and the continuity of V 0, one could prove that the limsup of the last
term in the previous inequality is less than V (x), concluding the proof. �

Remark 2.4.8. As we have seen also in Subsection 1.2.4, the proof of the conti-
nuity of the value function is not an easy topic in the context of control prob-
lems with state constraints. The fact that the value function is concave was
very useful to prove the continuity result in the interior of the domain in this
section. Unfortunately the concavity property does not say anything about the
continuity of the value function at the boundary and we have to work directly
with estimates on the state equation to prove continuity properties. As we
have seen, when the boundary is absorbing we can estimate the value func-
tion at the boundary due to the fact that the only admissible strategy in this
case is the null one. This fact together with the estimate V ≤ V 0 allowed us to
prove the continuity at the boundary when it is absorbing. When the bound-
ary is not absorbing is absolutely not clear how we could proceed to prove
continuity properties. �

2.5 The Hamilton-Jacobi-Bellman equation

In this section we write and study the infinite-dimensional Hamilton-Jacobi-
Bellman equation associated with the value function. Unless differently speci-
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fied we intend the topological notions referred to the ‖ · ‖H -norm.
For x ∈ H , let us define

Σ(x) : R −→ H.

a 7−→ a (Φx)

For an operator Q ∈ L(H), we can use the representation on the components
R and L2

−T ,

Q =

(
Q11 Q12

Q21 Q22

)
,

where Q11 ∈ L(R) ∼= R, Q12 ∈ L(L2
−T ; R), Q21 ∈ L(R, L2

−T ) and Q22 ∈ L(L2
−T ).

Let us define, for x = (x0, x(·)) ∈ E, p ∈ D(A∗), Q ∈ L(H) and θ ∈ [0, 1],
the function

Hcv(x, p,Q; θ) := U(x0) +
1
2
θ2σ2Tr[QΣ(x)Σ(x)∗] + 〈σλθΦx− F (x), p〉

= U(x0)− f(x)p0 +
1
2
θ2σ2x2

0Q11 + σλθx0p0.

Formally the HJB equation associated with V in the space H is

ρv(x) = 〈x,A∗vx(x)〉+H(x, vx(x), vxx(x)), (2.32)

where
H(x, p,Q) := sup

θ∈[0,1]
Hcv(x, p,Q; θ).

Notice that we can write

H(x, p,Q) = U(x0)− f(x)p0 + sup
θ∈[0,1]

{
1
2
θ2σ2x2

0Q11 + σλθx0p0

}
As in Section 1.2 and Section 1.3, we define

H0
cv(x0, p0, Q11; θ) :=

1
2
θ2σ2x2

0Q11 + σλθx0p0. (2.33)

When p0 ≥ 0, Q11 ≤ 0, p2
0 + Q2

11 > 0, has a unique maximum point over
θ ∈ [0, 1] given by

θ∗ = − λp0

σxQ11
∧ 1

(where we mean that, for Q11 = 0, θ∗ = 1) and

H0(x0, p0, Q11) := sup
θ∈[0,1]

H0
cv (x0, p0, Q11; θ)

=

−
λ2p2

0
2Q11

, if θ∗ < 1,

σλx0p0 + 1
2σ

2x2
0Q11, if θ∗ = 1.
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When p0 = Q11 = 0, each θ ∈ [0, 1] is a maximum point and we have

H0 (x0, p0, Q11) = 0.

Thus (2.32) can be rewritten as

ρv(x) = 〈x,A∗vx(x)〉H +U(x0)− f(x)vx0(x) +H0(x0, vx0(x), vx0x0(x)). (2.34)

Remark 2.5.1. We want to underline some specific features of the above HJB
equation.

• It is defined on the points of E, due the presence of f which is defined
on this space.

• It is fullynonlinear, as the nonlinearity involves also the second deriva-
tive.

• The linear term is unbounded.

• f(·) is not continuous with respect to ‖ · ‖H .

• The terms associated with the control θ involve only the derivatives with
respect to the real component of v: therefore one may hope to prove a
verification theorem giving optimal feedback strategies even only hav-
ing regularity properties of the value function with respect to the real
component (see the argument used in Chapter 3). This makes clear the
importance of Proposition 2.4.4 which splits the real and the infinite di-
mensional component in the argument of the value function, leaving
open the possibility of studying the regularity of this function only with
respect to the real component. Of course at this stage this possibility is
only theoretical, since we have given only an abstract extension of the
value function on the set O; we have no constructive information about
this extended function at the points of O\V , because it is not viewed at
these points as optimum of an infinite-dimensional control problem. �

Hamilton-Jacobi equations in infinite dimension are treated in literature
basically by means of three different approaches.

• Regular solutions. This approach has been started by Barbu and Da Prato
(see

- [Barbu, Da Prato; 1981],

- [Barbu, Da Prato; 1983a],

-[Barbu, Da Prato; 1983b])
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and then developed by many other authors. This theory is based on the
deep study of the linear part of the Hamilton-Jacobi equation when the
nonlinear part does not appear (i.e. the equation reduces to the so called
Kolmogorov equations studied in Chapter 9 of [Da Prato, Zabczyk; 1992])
and then on the use of perturbation methods for the treatment of the non-
linear part.

• Mild solutions and backward SDEs. For this approach we mainly refer to
the paper [Fuhrman, Tessitore; 2004]. It provides existence and unique-
ness of mild solutions of the HJB equation by means of forward and
backward infinite-dimensional stochastic evolution equations.

• Viscosity Solutions. The theory of viscosity solutions to Hamilton-Jacobi
equations in infinite dimension has been started by Crandall and Li-
ons for the first-order case in a series of papers (we refer in particular
to [Crandall, Lions; 1990] and [Crandall, Lions; 1991] for the case of un-
bounded linear term). The viscosity approach to infinite-dimensional
HJB equations coming from control problems with state constraint is
studied in [Cannarsa, Gozzi, Soner; 1991] and [Kocan, Soravia; 1998] in
the deterministic case. There are not many papers treating the second-
order case: we mainly refer to

– [Gozzi, Rouy, Swiech; 2000],
– [Gozzi, Swiech; 2000],
– [Gozzi, Sritharan, Swiech; 2005],
– [Ishii; 1993],
– [Kelome, Swiech; 2003],
– [Lions; 1988], [Lions; 1989a], [Lions; 1989b],
– [Swiech; 1994].

The first two methods work in the case of semilinear equations, i.e. when
the equation is linear on the second derivative. In particular the second meth-
ods makes addressable also cases of nonlinearities in the first derivatives leav-
ing out by the fisrt method as well as remove trace conditions on the second
derivatives required by the first method.

The viscosity approach works also when the equation is fully nonlinear,
i.e. when the nonlinearity involves also the second derivative. So, since as
observed our equation is fully nonlinear, we choose to treat the HJB by a vis-
cosity approach. The nearest paper seems to be [Kelome, Swiech; 2003], where
a second-order fully nonlinear equation with a similar unbounded operator is
studied and an existence-uniqueness result is proved. Nevertheless our prob-
lem is more difficult with respect to the one studied in [Kelome, Swiech; 2003],
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due to its particular features: the equation is defined in a subspace of the
Hilbert space, it is a boundary problem due to the state constraint and the
Hamiltonian is not continuous on the state variable with respect to the norm
of the Hilbert space.

2.5.1 Rewriting the problem with a maximal monotone operator

Dealing with viscosity solution, in order to be able to get a uniqueness result
for the equation, it is very important to have a maximal dissipative operator as
linear operator in the equation. Indeed this fact allows to take as test functions
also the radial functions (see Definition 2.5.4-(ii)). This class of functions is
needed to obtain good test functions on which the viscosity property can be
used to prove a comparison result. Therefore, in order to work with a maximal
dissipative operator, we rewrite the state equation asdX(t) = ÃX(t)dt+

[(
r + 1

2

)
+ σλθ(t)

]
ΦX(t)dt− F (X(t))dt+ σθ(t)ΦX(t)dB(t),

X(T ) = x,

(2.35)

where Ã = A −
(
r + 1

2

)
Φ; of course X is a mild solution to (2.35) if and only

if it is a mild solution to (2.16). We also rewrite the HJB equation (2.32) as

ρv(x) = 〈x, Ã∗vx(x)〉+ H̃(x, vx(x), vxx(x)) (2.36)

where, for x ∈ E, p ∈ D(Ã∗), Q ∈ L(H),

H̃(x, p,Q) = sup
θ∈[0,1]

H̃cv(x, p,Q; θ),

and

H̃cv(x, p,Q; θ) = U(x0) +
(
r +

1
2

)
x0p0 − f(x)p0 +H0

cv(x0, p0, Q11; θ),

whereH0
cv was defined in (2.33). Notice that D(Ã∗) = D(A∗) and

Ã∗ = A∗ −
(
r +

1
2

)
Φ∗ = A∗ −

(
r +

1
2

)
Φ.

The following proposition gives the desired properties of the operator Ã; we
will use the dissipativity of Ã to obtain a Dynkin type formula with inequality
for radial functions.

Proposition 2.5.2. The operator Ã is maximal dissipative.

Proof. (i) We have, for x ∈ D(Ã) = D(A), taking into account that x1(0) =
x0,

〈Ãx, x〉 = −1
2
x2

0 +
∫ 0

−T
x′1(ξ)x1(ξ)dξ = −1

2
x2

0 +
[
x1(·)2

2

]0

−T
= −x1(−T )2 ≤ 0,
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so that Ã is dissipative.

(ii) In order to prove that Ã is maximal we have to prove that the image of
(Ã− I) is the whole space H ; this means that, for each y = (y0, y1(·)) ∈ H , we
must be able to find x = (x0, x1(·)) ∈ D(Ã) such that−3

2x0 = y0,

x′1(·)− x1(·) = y1(·) a.e.;

this means that we must be able to solve the first order ordinary problem of
finding f ∈W 1,2

−T such that, for given g ∈ L2
−T ,f ′ − f = g,

f(0) = α ∈ R;

As in the classical case the solution is given by the variation of constants for-
mula

f(t) =
(
α−

∫ 0

−T
g(ξ)e−ξdξ

)
et +

∫ t

−T
g(ξ)et−ξdξ.

�

2.5.2 Test functions and Dynkin type formulae

In this section we define two sets of functions which will play an important
role in the definition of viscosity solution to the HJB equation and we prove
Dynkin type formulae for these functions applied to the process X mild solu-
tion todX(t) = ÃX(t)dt+

[(
r + 1

2

)
+ σλθ(t)

]
ΦX(t)dt−G(X(t))dt+ σθ(t)ΦX(t)dB(t),

X(T ) = x ∈ E,
(2.37)

where G : E → H , x 7→ (g(x), 0), and g : (E, ‖ · ‖E) → R is Lipschitz con-
tinuous. We have proved in Theorem 2.3.10, for any given [0, 1]-valued and
(Ft)t≥T -progressively measurable process θ(·), existence and uniqueness of a
mild solution to equation (2.37) in the class CP

(
[T,+∞);L2(Ω, (E, ‖ · ‖E))

)
.

Let us start with an approximation result which will be useful for our goal.

Lemma 2.5.3. Let X(·) be the mild solution to equation (2.37) and let Ãn be the
Yosida approximations for the operator Ã. Then the stochastic differential equationdXn(t) = ÃnXn(t)dt+

[(
r + 1

2

)
+ σλθ(t)

]
ΦX(t)dt−G(X(t))dt+ σθ(t)ΦX(t)dB(t),

Xn(T ) = x,

(2.38)
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admits a unique strong solution in CP([T,+∞);L2(Ω, E)). Moreover, for any t ∈
[T,+∞),

Xn(t)→ X(t), in L2(Ω;H), (2.39)

and, for any a ∈ [T,+∞),

Xn → X, in L2(Ω× [T, a];H). (2.40)

Proof. First of all notice that, in the equation (2.38), X(·) is a given pro-
cess. Let S̃n be the uniformly continuous semigroups onH genenerated by the
bounded operators Ãn and S̃ that generated by the unbounded operator Ã.
Ã is maximal dissipative, so that it generates a contractive semigroup (see
Corollary II.3.20 in [Engel, Nagel; 2000]); therefore, for any t ≥ 0,

‖S̃(t)‖L(H) ≤ 1. (2.41)

Moreover also the semigroups S̃n are contractive (see Theorem II.3.5 again in
[Engel, Nagel; 2000]), so that, for any t ≥ 0,

‖S̃n(t)‖L(H) ≤ 1. (2.42)

Moreover, for any t ≥ 0 and x ∈ H , we have the convergence, for n→∞,

‖S̃(t)x− S̃n(t)x‖H → 0. (2.43)

The proof of the existence and uniqueness for the strong solution to (2.38)
follows e.g. by Proposition 6.4 of [Da Prato, Zabczyk; 1992], because of the
boundedness of Ãn. Of course a strong solution is also a mild solution, there-
fore we can write

Xn(t) = S̃n(t− T )x+
∫ t

T

[(
r +

1
2

)
+ σλθ(τ)

]
S̃n(t− τ)ΦX(τ)dτ

−
∫ t

T
S̃n(t− τ)G(X(τ))dτ + σ

∫ t

T
θ(τ)S̃n(t− τ)ΦX(τ)dB(τ).

Therefore, setting K := r + 1
2 + σ(λ+ 1),

‖X(t)−Xn(t)‖H ≤ ‖S̃(t− T )x− S̃n(t− T )x‖H

+K
∫ t

T
‖(S̃(t− τ)− S̃n(t− τ))ΦX(τ)‖Hdτ

+
∫ t

T
‖(S̃(t− τ)− S̃n(t− τ))G(X(τ))‖Hdτ. (2.44)

Let Cg be the Lipschitz constant of the map g : (E, ‖ · ‖E)→ R; then

E
[∫ t

T

‖G(X(τ))‖2Hdτ
]
≤ E

[∫ t

T

‖G(X(τ))‖2Edτ
]
≤ E

[∫ t

T

|g(X(τ))|2dτ
]

≤ 2E
[∫ t

T

(
C2
g‖X(τ)‖2E + |g(0)|2

)
dτ

]
< +∞. (2.45)
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The first and the second term of the right-handside of (2.44) can be dominated
in L2(Ω; R) thanks to (2.41), (2.42) and by Hölder’s inequality; the third one
can be dominated thanks to (2.41), (2.42), (2.45) and by Hölder’s inequality.
Moreover the right-handside of (2.44) converges pointwise to 0, when n →
∞, thanks to (2.43). Therefore (2.39) follows by dominated convergence from
(2.44) taking the expectations and letting n→∞.

Integrating (2.44) on [T, a], taking the expectations and then letting n→∞
we get in the same way (2.40) by dominated convergence. �

Definition 2.5.4. (i) We call T1 the set of functions ψ ∈ C2(H) such thatψx(x) ∈
D(A∗) for any x ∈ H and ψ,ψx, Ã∗ψx, ψxx are uniformly continuous.

(ii) We call T2 the set of functions g ∈ C2(H) which are radial and nonde-
creasing, i.e.

g(x) = g0(‖x‖), g0 ∈ C2([0,+∞); R), g′0 ≥ 0,

and g, gx, gxx are uniformly continuous. �

Let us define, for θ ∈ [0, 1], the operator Lθ on T1 by

[Lθψ](x) := −ρψ(x) + 〈x, Ã∗ψx(x)〉+
[
r +

1
2

+ σλθ

]
〈Φx, ψx(x)〉

+〈G(x), ψx(x)〉+
1
2
σ2θ2 Tr [Σ(x)Σ(x)∗ψxx(x)]. (2.46)

Lemma 2.5.5 (Dynkin’s formula (i)). Let ψ ∈ T1, let X(·) be the solution to (2.37)
and let τ be a bounded stopping time; then we have

E
[
e−ρ(τ−T )ψ(X(τ))− ψ(x)

]
= E

[∫ τ

T
e−ρ(t−T )[Lθ(t)ψ](X(t))dt

]
.

Moreover the same formula holds true also for stopping time almost surely finite such
that, for some r > 0, X(t) ∈ B(x, r) for t ≤ τ .

Proof. First step. Let us suppose that τ takes a finite number of finite val-
ues; we can apply the Dynkin’s formula to the approximating processes Xn of
Lemma 2.5.3 (see Theorem 4.7 of [Da Prato, Zabczyk; 1992]) with the function
e−ρ(t−T )ψ(x) to get

E
[
e−ρ(τ−T )ψ(Xn(τ))− ψ(x)

]
= E

[∫ τ

T
e−ρ(t−T )

(
− ρψ(Xn(t))

+ 〈ÃnXn(t), ψx(Xn(t))〉+
[
r +

1
2

+ σλθ(t)
]
〈ΦX(t), ψx(Xn(t))〉

− 〈G(X(t)), ψx(Xn(t))〉+
1
2
σ2θ(t)2Tr [Σ(X(t))Σ(X(t))∗ψxx(Xn(t))]

)
dt

]
;
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we want to get the first claim letting n → ∞ and taking into account Lemma
2.5.3 and the continuity properties of ψ and its derivatives. By (2.39) we have
Xn(τ)→ X(τ) in L2(Ω;H), so that we have the desired convergence in the left
handside thanks to Lemma A.1.2. For the right handside we have the desired
convergences of the bounded terms thanks to (2.40) and Lemma A.1.2, taking
also into account the estimate (2.45) for the term containing G.

The only non trivial convergence in the right hand-side is that one con-
cerned with the unbounded linear term, i.e.

E
[∫ τ

T
e−ρ(t−T )〈ÃnXn(t), ψx(Xn(t))〉dt

]
−→

−→ E
[∫ τ

T
e−ρ(t−T )〈X(t), Ã∗ψx(X(t))〉dt

]
.

Without loss of generality we can suppress in the following argument the term
e−ρ(t−T ) which is bounded. Let x ∈ H and (yn) ⊂ D(Ã∗), y ∈ D(Ã∗); we have

|〈Ãnxn, yn〉 − 〈x, Ã∗y〉| ≤ |〈Ãnxn, yn〉 − 〈Ãnx, yn〉|+ |〈Ãnx, yn〉 − 〈Ãnx, y〉|

+|〈Ãnx, y〉 − 〈x, Ã∗y〉|

= |〈(xn − x), Ã∗nyn〉|

+|〈x, Ã∗n(yn − y)〉|+ |〈x, (Ã∗n − Ã∗)y〉|.

let us indicate by ‖ · ‖L the operator norm for the linear bounded operators(
D(Ã∗), ‖ · ‖D(Ã∗)

)
→ (H, ‖ · ‖H) .

We have the convergence Ã∗nv → Ã∗v for any v ∈ D(Ã∗) (see Proposition 4.13
in [Li, Yong; 1995], Lemma 3.4-(ii) and Corollary B.12 in [Engel, Nagel; 2000]).
So, by the Banach-Steinhaus Theorem A.2.3 we have ‖Ã∗n‖L ≤ C for some
C > 0. Thus

|〈Ãnxn, yn〉 − 〈x, Ã∗y〉|

≤ C
[
‖xn − x‖H ‖yn‖D(Ã∗) + ‖x‖H ‖yn − y‖D(Ã∗ |

]
+ |〈x, (Ã∗n − Ã∗)y〉|.

Therefore, by Hölder’s inequality,

E
[∫ τ

T

∣∣∣ 〈ÃnXn(t), ψx(Xn(t))〉 − 〈X(t), Ã∗ψx(X(t))〉
∣∣∣ dt]

≤ C E
[∫ τ

T
‖Xn(t)−X(t)‖2Hdt

]
E
[∫ τ

T
‖ψx(Xn(t))‖2

D(Ã∗)
dt

]
+ C E

[∫ τ

T
‖X(t)‖2Hdt

]
E
[∫ τ

T
‖ψx(Xn(t))− ψx(X(t))‖2

D(Ã∗)
dt

]
+ E

[∫ τ

T
‖X(t)‖H‖(Ã∗n − Ã∗)ψx(X(t))‖D(Ã∗)dt

]
.
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The first and the second term of the right handside go to 0 thanks to (2.40) and
Lemma A.1.2 (recall that we are assuming ψx, Ã∗ψx uniformly continuous).
The third one converges pointwise to 0 and the integrand is dominated by

(C + ‖Ã∗‖L) ‖X(·)‖H ‖ψx(X(·))‖D(Ã∗),

which is integrable thanks to Hölder’s inequality, so that we can conclude by
dominated convergence.

Second step. Now let τ be a bounded stopping time; of course we may find
a suquence (τn) of stopping time taking a finite number of finite values such
that τn ↑ τ almost surely; by the first step for these stopping time the claim
holds true, therefore we can pass to the limit and again conclude the proof in
this case by dominated convergence.

Third step. Let τ be a stopping time almost surely finite such that, for some
r > 0, X(t) ∈ B(x, r) for t ≤ τ ; we can find a sequence of bounded stopping
times (τn) such that τn ↑ τ ; for these stopping times the claim holds true by
the second step; moreover notice that, by the equivalence result of Proposition
3.2.3, if X(t) ∈ B(x, r) for t ≤ τ , then X(t) ∈ B(E,‖·‖E)(x, r′) for some r′;
therefore, taking also into account the estimate (2.45), we can get the claim for
τ passing to the limit by dominated convergence thanks to Lemma A.2.4. �

Now, for θ ∈ [0, 1], let us define the operator Gθ on T2 by

[Gθg](x) := −ρg(x) +
[
r +

1
2

+ σλθ

]
〈Φx, gx(x)〉

+〈G(x), gx(x)〉+
1
2
σ2θ2 Tr [gxxΣ(x)Σ(x)∗]. (2.47)

Lemma 2.5.6 (Dynkin’s formula (ii)). Let g ∈ T2, let X(·) be the solution to (2.37)
and τ a stopping time almost surely finite such that, for some r > 0, X(t) ∈ B(x, r)
for t ≤ τ ; then we have

E
[
e−ρ(τ−T )g(X(τ))− g(x)

]
≤ E

[∫ τ

T
e−ρ(t−T )[Gθ(t)g](X(t))dt

]
.

Proof. The proof follows the same line of the proof of Lemma 2.5.5; but in
this case we cannot have the convergence for the term 〈ÃnXn(u), gx(Xn(u))〉;
nevertheless we have

〈Ãnxn, gx(xn)〉 =
g′0(‖xn‖)
‖xn‖

〈Ãnx, xn〉;

since Ã is dissipative we have 〈Ãnxn, xn〉 ≤ 0 for any n ∈ N and so the claim
follows taking the limsup. �
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2.5.3 The Dynamic Programming Principle and the value function
as viscosity solution to the HJB equation

In this section we will work to investigate the properties of the value function
as viscosity solution to the HJB equation (2.32) associated with it. The link
between the HJB equation and the value function is given by the Dynamic
Programming Principle.

Proposition 2.5.7 (Dynamic Programming Principle). Let x ∈ D(V ) and let(
τ θ(·)

)
θ(·)∈Θad(x)

be a family of stopping times with respect to FT such that τ θ(·) ∈
[T,+∞) almost surely. Then, setting Xθ(·)(t) := X(t;T, x, θ(·)), we have

V (x) = sup
θ(·)∈Θad(x)

E

[∫ τθ(·)

T

e−ρ(t−T )U
(
X
θ(·)
0 (t)

)
dt+e−ρ(τ

θ(·)−T )V
(
Xθ(·)(τθ(·))) ].

�

Remark 2.5.8. We do not give the proof of the statement of the previous Propo-
sition. For a proof of this kind of statement in the infinite dimensional case we
refer to [Gozzi, Sritharan, Swiech; 2005], when the value function is continu-
ous and the state unconstrained. Similar arguments can be used to prove the
result in our case, taking into account the separability of our space H . We
want to stress that in Proposition 2.4.7 we proved the continuity of the value
function at the boundary only using the “easy” inequality of the Dynamic Pro-
gramming Principle, which can be proved without measurable selection ar-
guments, so that we could use the continuity of the value function to prove,
without loss of generality, the Dynamic Programming Principle. �

Now we give a definition of viscosity solution for the equation (2.32); we
will prove that the value function solves (2.32) in this sense. Recall that the set
V was defined in (2.28) and the set O was defined in Proposition 2.4.4. Recall
also that V = O ∩ E.

Definition 2.5.9. (i) A continuous function v : O −→ R is called a viscosity
subsolution to equation (2.32) on V if, for any triple (xM , ψ, g) ∈ V × T1 × T2

such that xM is a local maximum point of v − ψ − g, we have

ρv(xM ) ≤ 〈xM , Ã∗ψx(xM )〉+ H̃(xM , ψx(xM ) + gx(xM ), ψxx(xM ) + gxx(xM )).

(ii) A continuous function v : O −→ R is called a viscosity supersolution to
equation (2.32) on V if, for any triple (xm, ψ, g) ∈ V × T1 × T2 such that xm is a
local minimum point of v − ψ + g, we have

ρv(xm) ≥ 〈xm, Ã∗ψx(xm)〉+ H̃(xm, ψx(xm)− gx(xm), ψxx(xm)− gxx(xm)).
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(iii) A continuous function v : O −→ R is called a viscosity solution to equation
(2.32) on V if it is both a viscosity subsolution and a viscosity supersolution.�

Proposition 2.5.10. The value function V is a viscosity solution to (2.32) on V .

Proof. (i) Let xm, ψ, g be as in Definition 2.5.9-(ii); without loss of generality
we assume

V (xm) = ψ(xm)− g(xm). (2.48)

Let B(H,‖·‖H)(xm, ε) ⊂ O be such that

V (x) ≥ ψ(x)− g(x), ∀x ∈ B(H,‖·‖H)(xm, ε). (2.49)

Fix a constant control θ ∈ [0, 1] and let X(t) := X(t;T, xm, θ) be the state solu-
tion for our problem associated with the control θ and starting from xm at time
T ; set

τ θ := inf{t ≥ T | X(t) /∈ B(H,‖·‖H)(xm, ε)};

this is of course a stopping time. Moreover the trajectories of X(·) are continu-
ous in (E, ‖ ·‖E), therefore in (H, ‖ ·‖H), so that τ θ > T almost surely. By (2.48)
and (2.49) we get, for T ≤ t ≤ τ θ,

e−ρ(t−T )V (X(t))− V (xm) ≥ e−ρ(t−T ) (ψ(X(t))− g(X(t)))− (ψ(xm)− g(xm)) .
(2.50)

Let h > T and set τ θh := τ θ ∧h; by the dynamic programming principle we get,
for all θ ∈ [0, 1],

V (xm) ≥ E

[∫ τθh

T
e−ρ(t−T )U(X0(t))dt+ e−ρ(τθh−T )V (X(τ θh))

]
. (2.51)

So, by (2.50) and (2.51) we get, for all θ ∈ [0, 1],

0 ≥ E

[∫ τθh

T
e−ρ(t−T )U(X0(t))dt+ e−ρ(τθh−T )V (X(τ θh))− V (xm)

]

≥ E

[∫ τθh

T
e−ρ(t−T )U(X0(t))dt

+ e−ρ(τθh−T )
(
ψ(X(τ θh))− g(X(τ θh))

)
− (ψ(xm)− g(xm))

]
. (2.52)

Now we can apply the Dynkin formulae to the function

ϕ(t, x) = e−ρ(t−T )(ψ(x)− g(x))

and put the result in (2.52) getting, for all θ ∈ [0, 1],

0 ≥ E

[∫ τθh

T
e−ρ(t−T )

(
U(X0(t)) + [Lθψ](X(t))− [Gθg](X(t))

)
dt

]
,
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i.e., for all θ ∈ [0, 1],

0 ≥ E

[∫ τθh

T
e−ρ(t−T )

(
− ρ(ψ(X(t))− g(X(t))) + 〈x, Ã∗ψx(X(t))〉

+ H̃cv(X(t), ψx(X(t))− gx(X(t)), ψxx(X(t))− gxx(X(t))); θ
)
dt

]
.

Therefore, for all θ ∈ [0, 1], we can write

0 ≥ E
[ 1
h− T

∫ h

T
I[T,τθ](t)e

−ρ(t−T )
(
−ρ(ψ(X(t))−g(X(t)))+〈x, Ã∗ψx(X(t))〉

+ H̃cv(X(t), ψx(X(t))− gx(X(t)), ψxx(X(t))− gxx(X(t))); θ
)
dt
]
.

Now, using the continuity properties of ψ, g and their derivatives and of H̃cv,
taking into account that τ θ > T almost surely and passing to the limit for
h→ T , we get by dominated convergence, for all θ ∈ [0, 1],

0 ≥ −ρ(ψ(xm)− g(xm)) + 〈xm, Ã∗ψx(xm)〉

+ H̃cv (xm, ψx(xm)− gx(xm), ψxx(xm)− gxx(xm); θ) ,

i.e., taking into account (2.48) and passing to the supremum on θ ∈ [0, 1],

ρV (xm) ≥ 〈xm, Ã∗ψx(xm)〉+ H̃ (xm, ψx(xm)− gx(xm), ψxx(xm)− gxx(xm)) .

Notice that, passing to the limit in H̃cv, we have to use that X(t) → xm in
(E, ‖ · ‖E) almost surely, as t ↓ T , since H̃cv is not continuous with respect to
‖ · ‖H on the variable x, due to the presence in H̃cv of the term f , which is not
continuous with respect to ‖ · ‖H .
Therefore we have proved that V is a supersolution on V .

(ii) Let xM , ψ, g be as in Definition 2.5.9-(i); without loss of generality we
assume

V (xM ) = ψ(xM ) + g(xM ). (2.53)

Let B(H,‖·‖H)(xM , ε′) ⊂ O be such that

V (x) ≤ ψ(x) + g(x), ∀x ∈ B(H,‖·‖H)(xM , ε
′). (2.54)

We have to prove that

ρV (xM ) ≤ 〈x, Ã∗ψx(xM )〉+ H̃ (xM , ψx(xM ) + gx(xM ), ψxx(xM ) + gxx(xM )) .

Let us suppose by contradiction that there exists ν such that

0 < ν ≤ ρV (xM )− 〈xM , Ã∗ψx(xM )〉

− H̃ (xM , ψx(xM ) + gx(xM ), ψxx(xM ) + gxx(xM )) .
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By the continuity propreties of ψ, g and their derivatives and of H̃, we can find
ε > 0 such that, for any x ∈ B(E,‖·‖E)(xM , ε),

0 < ν/2 ≤ ρV (x)− 〈x, Ã∗ψx(x)〉 − H̃ (x, ψx(x) + gx(x), ψxx(x) + gxx(x)) .
(2.55)

Notice that to state (2.55) we have to take the ball in the space (E, ‖ · ‖E), since
H̃ is not continuous with respect to ‖ ·‖H on the variable x, due to the presence
of the term f , which is not continuous with respect to ‖ · ‖H .
Without loss of generality, since ‖ · ‖H ≤ (1 + T )1/2‖ · ‖E , taking a smaller
ε if necessary, we can suppose that B(E,‖·‖E)(xM , ε) ⊂ B(H,‖·‖H)(xM , ε′) and
therefore, taking into account (2.54), that

V (x) ≤ ψ(x) + g(x), for any x ∈ B(E,‖·‖E)(xM , ε). (2.56)

Consider a generic control θ(·) ∈ Θad(xM ) and set X(t) := X(t;T, xM , θ(·)); let
us define the stopping time

τ θ := inf
{
t ≥ T | X(t) /∈ B(E,‖·‖E)(xM , ε)

}
∧ (2T ).

The trajectories of X(·) are continuous in (E, ‖ · ‖E), so that we have

T < τ θ ≤ 2T

almost surely. Now we can apply (2.55) to X(t), for t ∈ [T, τ θ], and get

0 < ν/2 ≤ ρV (X(t))− 〈X(t), Ã∗ψx(X(t))〉

−H̃ (X(t), ψx(X(t)) + gx(X(t)), ψxx(X(t)) + gxx(X(t))) ;

we multiply by e−ρ(t−T ), integrate on [T, τ θ] and take the expectations getting,
also taking into account (2.56),

0 <
ν

2
E

[∫ τθ

T
e−ρ(t−T )dt

]

≤ E

[∫ τθ

T
e−ρ(t−T )

(
ρ(ψ(X(t)) + g(X(t)))− 〈X(t), Ã∗ψx(X(t))〉

−H̃ (X(t), ψx(X(t)) + gx(X(t)), ψxx(X(t)) + gxx(X(t)))
)
dt

]
.

We claim that there exists a constant δ > 0, independent on the control θ(·)
chosen, such that

ν

2
E

[∫ τθ

T
e−ρ(t−T )dt

]
≥ δ;
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we will prove this fact in Lemma 2.5.11.
So, assuming what claimed above, we can write, taking into account (2.56),

δ + E

[∫ τθ

T
e−ρ(t−T )U(X0(t)) dt

]

≤ E

[∫ τθ

T
e−ρ(t−T )

[
−Lθ(t)ψ(X(t))− Gθ(t)g(X(t))

]
dt

]
.

Now we apply the Dynkin formulae to X on [T, τ θ] with the function

ϕ(t, x) = e−ρ(t−T )(ψ(x) + g(x))

and, comparing with the previous inequality, we get

ψ(xM ) + g(xM )− E
[
e−ρ(τθ−T )

(
ψ(X(τ θ)) + g(X(τ θ)

)]
≥ δ + E

[∫ τθ

T
e−ρ(t−T )U(X(t)) dt

]
;

from the previous inequality, taking into account (2.53) and (2.56), we get

V (xM )− E[e−ρ(τθ−T )V (X(τ θ))] ≥ δ + E

[∫ τθ

T
e−ρ(t−T )U(X0(t)) dt

]
;

on the other hand, if we choose a δ/2-optimal control θ(·) ∈ Θad(xM ), we get

V (xM )− δ/2 ≤ E

[∫ τθ

T
e−ρ(t−T )U(X0(t)) dt+

∫ +∞

τθ
e−ρ(t−T )U(X0(t))dt

]

≤ E

[∫ τθ

T
e−ρ(t−T )U(X0(t)) dt+ e−ρ(τθ−T )V (X(τ θ))

]
.

So we have proved by contradiction that V is even a viscosity subsolution. �

Lemma 2.5.11. Let τ θ defined as in the part (ii) of the proof of Proposition 2.5.10.Then
there exists α > 0 such that, for each θ(·) ∈ Θad(x̄),

E

[∫ τθ

T
e−ρ(t−T )dt

]
≥ α.

Proof. Here, in order to semplify the notation, we write x̄ for xM .
First step. Let θ(·) ∈ Θad(x̄) and define the stopping time

τθ := inf{t ≥ T | |X0(t)− x̄0| ≥ ε/4} ∧ (2T );
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in this step we show that there exists β > 0 such that, for every θ(·) ∈ Θad(x̄),

E
[∫ τθ

T
e−ρ(t−T )dt

]
≥ β.

For the controls such that P{τθ < 2T} < 1/2, we have the estimate

E
[∫ τθ

T
e−ρ(t−T )dt

]
≥ 1

2

[
1− e−ρT

ρ

]
.

Therefore we can suppose without loss of generality that P{τθ < 2T} ≥ 1/2.
Recalling Proposition (3.2.3) and setting x(t) := x(t;T, x̄, θ(·)) for the solution
to (2.6), we have

τθ = inf{t ≥ T | |x(t)− x̄0| ≥ ε/4} ∧ (2T ).

Now we can apply the classical Dynkin’s formula to the one-dimensional pro-
cess y(·) := x(·)− x̄0 with the function ψ(t, y) = e−ρ(t−T )y2 on [T, τθ] and get

E
[
e−ρ(τθ−T ) (x(τθ)− x̄0)2

]
= E

[∫ τθ

T

(
−ρe−ρ(t−T )(x(t)− x̄0)2

)
dt

]
+ E

[∫ τθ

T
e−ρ(t−T )(x(t)− x̄0)(r + σλθ(t))x(t)dt

]
− E

[∫ τθ

T
e−ρ(t−T )(x(t)− x̄0)[f0 (x(t)− x(t− T )) + q]dt

]
+ E

[∫ τθ

T
e−ρ(t−T )σ2θ(t)2x(t)2dt

]
;

now, taking into account that before τθ we have

|x(t)− x̄0| < ε/4, |x(t− T )| ≤ ‖x̄‖E + ε/4

and that |θ(t)| ≤ 1, we can write, passing to the modulus on the right hand-side
and taking into account that f0 is Lipschitz continuous with Lipschitz constant
K0,

E
[
e−ρ(τθ−T ) (x(τθ)− x̄0)2

]
≤ E

[∫ τθ

T
ρe−ρ(t−T ) ε

2

16
dt

]
+ E

[∫ τθ

T
e−ρ(t−T ) ε

4
(r + σλ)

(
|x̄0|+

ε

4

)
dt

]
+ E

[∫ τθ

T
e−ρ(t−T ) ε

4

[
K0

(
|x̄0|+

ε

4
+
(ε

4
+ ‖x̄‖E

))
+ q
]
dt

]
+ E

[∫ τθ

T
e−ρ(t−T )σ2

(
|x̄0|+

ε

4

)2
dt

]
,

so that, for some K > 0,

E
[
e−ρ(τθ−T ) (x(τθ)− x̄0)2

]
≤ K E

[∫ τθ

T
e−ρ(t−T )dt

]
. (2.57)
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Recalling that (x(τθ) − x̄0)2 ≤ ε2/16 on [T, τθ] and (x(τθ) − x̄0)2 = ε2/16 on
{τθ < 2T}, and considering that

e−ρ(τθ−T ) = 1− ρ
∫ τθ

T
e−ρ(t−T )dt,

we can write by (2.57)

ε2

16
P{τθ < 2T} − ρε2

16
E
[∫ τθ

T
e−ρ(t−T )dt

]
≤ KE

[∫ τθ

T
e−ρ(t−T )dt

]
,

so that, by the assumption P{τθ < +∞} ≥ 1/2,

1
32
ε2 ≤

(
K +

ρε2

16

)
E
[∫ τθ

T
e−ρ(t−T )dt

]

and we get what claimed with β = ε2

32

(
K + ρε2

16

)−1
.

Second step. The function (x̄)1(·) is uniformly continuous and we have
x̄0 = limζ→0− x̄1(ζ); let ω(·) be its modulus of uniform continuity. Let x(t) :=
x(t;T, x̄, θ(·)) be the solution to (2.6). If we denote by ω′(·) the modulus of
uniform continuity of the trajectory s 7→ x(s) on [0, τθ] (thus depending on the
trajectory, i.e. on the point of the probability space), we have

ω′(η) = sup
|s−s′|<η
s,s′∈[0,τθ]

|x(s)− x(s′)|;

but, by definition of τθ, if |s− s′| < η,

|x(s)− x(s′)| ≤


ω(η), if s, s′ ∈ [0, T ],

ε/2, if s, s′ ∈ [T, τθ],

ω(η) + ε/2, if 0 ≤ s < T < s′ ≤ τθ;

therefore ω′(η) ≤ ω(η) + ε/2 without regard to the trajectory. Thus take c > 0
such that ω(c) < ε/4; we get, for T ≤ t ≤ τθ ∧ (T + c),

‖X(t)− x̄‖E =

[
sup

ζ∈[−T,0)

∣∣X1(t)(ζ)− x̄1(ζ)
∣∣]+

∣∣X0(t)− x̄0

∣∣
≤

[
sup

ζ∈[−T,0)

∣∣x(t+ ζ)− x(T + ζ)
∣∣]+ ε/4 ≤ ω(c) +

ε

2
+
ε

4
< ε.
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Therefore we have τ θ ≥ τθ ∧ (T + c). Thus we can write

E

[∫ τθ

T
e−ρ(t−T )dt

]
≥ E

[∫ T+c

T
I{τθ≥T+c}e

−ρ(t−T )dt

]
+E

[∫ τθ

T
I{τθ<T+c}e

−ρ(t−T )dt

]
=

1− e−ρc

ρ
P {τθ ≥ T + c}

+E
[∫ τθ

T
I{τθ<T+c}e

−ρ(t−T )dt

]
.

We claim that the last term is greater than a strictly positive number indepen-
dent on θ(·) (that is enough to make our proof complete); indeed let us suppose
by contradiction that there exists a sequence (θn(·)) such that

1− e−ρc

ρ
P {τθn ≥ T + c}+ E

[∫ τθn

T
I{τθn<T+c}e

−ρ(t−T )dt

]
−→ 0;

then, of course, we would have

P {τθn ≥ T + c} −→ 0 (2.58)

and also
E
[∫ τθn

T
I{τθn<T+c}e

−ρ(t−T )dt

]
−→ 0. (2.59)

We consider

E
[∫ τθn

T
e−ρ(t−T )dt

]
− E

[∫ τθn

T
I{τθn<T+c}e

−ρ(t−T )dt

]
(2.60)

and rewrite it as

E
[∫ 2T

T
I[T,τθn ](t)

(
1− I{τθn<T+c}

)
e−ρ(t−T )dt

]
;

by (2.58) the integrand converges to 0 in measure P× dt on Ω× [T, 2T ]; so, by
dominated convergence,

E
[∫ 2T

T
I[T,τθn ](t)

(
1− I{τθn<T+c}

)
e−ρ(t−T )dt

]
−→ 0,

i.e. also the expression in (2.60) goes to 0. Taking into account (2.59), we should
conclude that also

E
[∫ τθn

T
e−ρ(t−T )dt

]
−→ 0,

but this convergence contradicts the first step. �

Now we give a definition of constrained viscosity solution on

Clos(H,‖·‖H)(O) ∩ E = Clos(E,‖·‖H)(V).
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Recall that we have proved in Lemma 2.4.5-(3) that

Fr(E,‖·‖H)(V) = Fr(H,‖·‖H)(O) ∩ E.

Definition 2.5.12. A continuous function v : O ∪ Fr(E,‖·‖H)(V) → R, is said
a constrained viscosity solution to equation (2.32) on Clos(E,‖·‖H)(V) if v is a
viscosity solution to (2.32) on V and if

(i) (supersolution property at the boundary) for any triple

(xm, ψ, g) ∈ Fr(E,‖·‖H)(V)× T1 × T2

such that xm is a local minimum point for v − ψ + g on O ∪ Fr(E,‖·‖H)(V), we
have

ρv(xm) ≥ 〈xm, Ã∗ψx(xm)〉+ H̃cv(xm, ψ(xm)− g(xm), ψxx(xm)− gxx(xm); 0);

(ii) (subsolution property at the boundary) for any triple

(xM , ψ, g) ∈ Fr(E,‖·‖H)(V)× T1 × T2

such that xM is a local maximum point for v − ψ − g on O ∪ Fr(E,‖·‖H)(V), we
have

ρv(xM ) ≤ 〈xM , Ã∗ψx(xM )〉+ H̃(xM , ψ(xM )− g(xM ), ψxx(xM )− gxx(xM )).

�

We can give the main result.

Theorem 2.5.13. Let U(l) > −∞ and rl = q. Then the value function V is a
constrained viscosity solution to (2.32) on Clos(E,‖·‖H)(V).

Proof. We have proved in Proposition 2.5.10 that V is a viscosity solu-
tion on V . The proof of the viscosity properties at the points of the boundary
Fr(E,‖·‖H)(V) follows the same line of the proof of Proposition 2.5.10. Notice
that in this case the proof is even easier: in this case the stopping times are
constant, since we are constrained to choose θ = 0 in the case of the superso-
lution and θ(·) ≡ 0 (see Proposition 2.4.6-(5)) in the case of the subsolution.
�

Remark 2.5.14. Usually in stochastic control problems with state contraints
the definition of solution for the HJB equation which works good to get the
uniqueness is the definition of constrained viscosity solution. It was intro-
duced by Soner, see [Soner; 1986], in the deterministic case and successfully
developed and applied in the stochastic case in other papers, for instance
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[Katsoulakis; 1994] and [Zariphopoulou; 1994]. It consists in requiring the sub-
solution property at the boundary.

In [Ishii, Loreti; 2002] it is also required the supersolution property at the
boundary replacingH with

Hin(·) = sup
θ∈A
Hcv(·; θ),

where A is the subset of the control space for which the diffusion term of the
state equation vanishes and the correspondent drift term directs inside to the
state space (under the assumption that A is not empty). This last condition
is similar to our supersolution condition at the boundary, but in our case the
drift term is such that the state remains on the boundary of the state space.

Finally we notice that in this case of absorbing boundary we could use at
the boundary also a Dirichlet type condition. Indeed, since the boundary is
absorbing and the only admissible strategy is the null one, the value function
is theoretically computable at the boundary points. In particular the value
function is really explicitely computable at the boundary points

x = (x0, x1(·)) ∈ Fr(E,‖·‖H)(V)

such that x0 = l: indeed for these points x we clearly have the expression
V (x) = U(l)/ρ. �

Remark 2.5.15. We want to point out that, if we tried to prove a subsolution
viscosity property at the boundary in the general case (when the boundary is
not necessarily absorbing) for the upper semicontinuous envelope of the value
function, we would be in trouble. Indeed, denoting by V ∗ this upper semicon-
tinuous envelope, we cannot apply the Dynamic Programming Principle to
V ∗ starting from xM ∈ Fr(E,‖·‖H)(V). Then a possible technique to proceed
consists in working on a sequence (xn) ⊂ V approximating xM , applying the
Dynamic Programming Principle starting from these points xn and passing to
the limit. The trouble for this approach consists in the fact that the term f in
the equation is not continuous with respect to ‖ · ‖H , whereas the upper semi-
continuous envelope is defined with respect to this norm. The same problem
would come up if we tried to prove a supersolution viscosity property for the
lower semicontinuous envelope. Therefore we need to have semicontinuity
properties for the value function at the boundary, in order to be able to apply
the Dynamic Programming Principle directly on these points to get viscosity
properties there. This consideration motivates the choice to work with an ab-
sorbing boundary, in order to get the continuity for the value function at the
boundary (Proposition 2.4.7). Finally our opinion is that the lower semicon-
tinuity of the value function at the boundary holds also in the case when the
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boundary is not absorbing, but of course the proof of this fact would require a
more subtle argument. �

2.6 Comments, future developements and an example

In the context of Chapter 1 the surplus term did not appear, so that the prob-
lem was one-dimensional without delay. In the present context the delay term
makes the problem considerably more difficult and an infinite-dimensional
approach seems to be necessary in order to make the problem markovian and
apply the dynamic programming techniques. As we have seen, while the top-
ics treated in this chapter are quite standard in a context without delay, adding
the delay make them immediately nontrivial. On the other hand we need them
in order to proceed with the study of the problem.

The main results of this chapter are

• the rewriting of the problem in an infinite dimensional setting (Section
2.3);

• the study of the infinite dimensional state equation (Theorem 2.3.10);

• the proof of the equivalence between the delay one dimensional problem
and the abstract infinite dimensional one (Proposition 2.3.12);

• the proof of the continuity of the value function in the infinite dimen-
sional setting (Corollary 2.4.3 and Proposition 2.4.7).

• the proof that the value function is a constrained viscosity solution (in the
sense given in Definition 2.5.12) of the associated infinite-dimensional
HJB equation (Theorem 2.5.13).

The investigation leaves open several topics, such as whether the given
definition of constrained viscosity solution is strong enough to guarantee the
uniqueness or not, the regularity properties of the value function and a verifi-
cation theorem giving optimal feedback strategies for the problem (see also the
next chapter on this topic). The nearest result seems to be the one concerned
uniqueness. The other topics seem to be not addressable with the standard
techniques until now available, so that new techniques seem to be necessary.

We want to comment also on the possible numerical approach to the prob-
lem. The numerical approach to stochastic control problems can be probabilis-
tic or analytic. The probabilistic approach consists in the study of the conver-
gence of a suitable sequence of discretized control problems. This is the so
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called method of Markov’s chains, described in [Kushner; 1977], which basi-
cally consists in discretizing the time set, the state space and the control space
of the original control problems. In [Kushner; 1977] also the case of delay sys-
tems is treated. More recent references on this approach for stochastic delay
control problems are the papers [Fischer, Nappo; 2008], [Fischer, Nappo; 2007],
[Kushner; 2006]. However another possible approach is the analytic one, which
considers directly the numerical study of the differential problem, i.e. of the
HJB equation. This is done, e.g., in [Barles, Souganidis; 1991] in the context of
viscosity solutions. Therein it is proved that a suitable approximation scheme
for the equation leads to a good approximation for the value function, provid-
ing that a comparison result holds true for the viscosity solutions of the HJB
equation. For approximation schemes for HJB equations arising in stochastic
control problems with delay see also [Chang, Peng, Pemy; 2008].

We want to spend some words more about the applications of delay equa-
tions in Economics and Finance. Problems with delay arise naturally in many
situations, although sometimes, also due to their intrinsic difficulty, they are
not investigated with fair depth. We refer to [Kolmanovskii, Shaikhet; 1996]
for an overview on the works on this mathematical subject and their applica-
tions. We mention the following papers.

• Economics: the so called time-to-build problems; see, e.g., the papers

- [Asea, Zak; 1999],
- [Bambi; 2008],
- [Federico, Goldys, Gozzi; 2009a],
- [Kydland, Prescott; 1982].

• Advertising models: see [Gozzi, Marinelli; 2004], [Gozzi, Marinelli, Savin].

• Finance: see, e.g., [Øksendal, Sulem; 2001].

• Pension funds: see [Gabay, Grasselli; 2009]. Therein the delay appears in
an exogenous process, so that the problem can be treated by a duality
approach. Here it is worth to stress that the delay arises quite naturally in
the context of pension funds, due to the lag between the time of entrance of
the worker into the fund and the time of exit from it.

Moreover, we should say that the infinite dimensional framework has been
succesfully used in many applied contexts. In particular it has been applied
in Finance to model and study problems arising in the context of bond mar-
kets. Indeed, starting from the Heath-Jarrow-Morton model and the Musiela
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parametrization (see [Heath, Jarrow, Morton; 1992], [Musiela; 1993]), many au-
thors have set problems related to forward rates in infinite dimensional spaces
(see, e.g.,

- [Ekeland, Taflin; 2005],
- [Goldys, Musiela, Sondermman; 2000],
- [Filipovic; 2001],
- [Kelome, Swiech; 2003],
- [Vargiolu; 1999]).

Before to conclude the chapter we want to give an example in order to show
how the infinite dimensional approach to stochastic optimal control problems
with delay can work in order to solve explicitely the problem in some “good”
cases.

2.6.1 An example of a solvable stochastic optimal control problem
with delay by means of the infinite-dimensional approach

Here we give an example (out of the assumptions of the chapter). We think
that, on the line of this example, it would be worth to try to estabilish condi-
tions ensuring the solvability of stochastic optimal control problems with de-
lay by means of their infinite-dimensional representation, in the spirit of what
is done in [Larrsen, Risebro; 2003] by means of a finite-dimensional approach.

In the same setting of the chapter, suppose to be involved with the man-
agement of an investment fund having the following rules.

• At time t = 0 the community of members endows the fund with an initial
amount η0 > 0.

• At each time t ≥ 0 the fund must satisfy the capital requirement

x(t) +
∫ t

t−1
x(t+ ξ)dξ ≥ l, P− a.s., (2.61)

where 0 ≤ l ≤ η0 and where it is set x(ξ) = η1(ξ) ≥ l for ξ ∈ [−1, 0) (it
might be, e.g., η1(·) ≡ l or η1(·) ≡ η0).

• At each time t ≥ 0 the fund pays to the members the instantaneous re-
turn of its wealth with respect to the market spot rate r, i.e. the quantity
rx(t).

• At each time t ≥ 0 there is a flow of money between the members and
the fund that is related to the trend of the fund in the last year. Precisely
the fund pays the (positive or negative) quantity x(t) − x(t − 1) to its
members.
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• The manager can invest in the risky asset and in the riskless one, but
short selling of the risky asset are not allowed.

• The manager fee at time t ≥ 0 is by contract proportional to

x(t) +
∫ t

t−1
x(t+ ξ)dξ − l.

Since in this example we do not require a state constraint on the current value
of the fund, we prefer to define the investment strategy in terms of the amount
π(·) invested in the risky asset, because this gives a better representation of the
investment constrain. Indeed it can be simply expressed as π(·) ≥ 0, in place
of θ(·)x(·) ≥ 0 that would involve also the state. We assume that the strategies
π(·) must be progressively mesaurable and moreover that must satisfy the in-
tegrability condition π(·) ∈ L2

loc([0,+∞);L2(Ω)). Using this representation for
the investment and the assumptions above, the dynamics of the fund starting
at time 0 from the generic initial “present-past” state x = (x0, x1(·)) isdx(t) = σλπ(t)dt− (x(t)− x(t− 1))dt+ σπ(t)dB(t),

x(0) = x0, x(ξ) = x1(ξ), ξ ∈ [−1, 0),
(2.62)

which is again a stochastic controlled dynamics with delay in the state. We
denote the solution to (2.62) by x(·; (x0, x1(·)), π(·)).

Let H = R × L2([−1, 0]; R), x := (x0, x1(·)) ∈ H and denote by Πad(x) the
set of admissible strategies starting form x, i.e.

Πad(x) := {π(·) ∈ L2
loc([0,+∞);L2(Ω; [0,+∞))) |

π(·) is progressively mesaurable and x(t; (x0, x1(·)), π(·)) satisfy (2.61) ∀t ≥ 0}.

One could prove that Πad(x) ⊃ {0} for every x ∈ D where

D = {x ∈ H | x0 ≥ l, x1(·) ≥ l},

so in particular for the initial datum η = (η0, η1(·)) which indeed belongs to D.
We can rewrite the problem in the space H as in Section 2.3. In this case

many topics are much easier thanks to the specific structure of the problem. In
particular here the delay is linear, so that we can insert it in the linear operator,
and work on the whole space H . The (unbounded) linear operator, denoted
by Ã, in this case is defined on

D(Ã) = {(x0, x1(·)) ∈ H | x1(·) ∈W 1,2([−1, 0]; R), x0 = x1(0)}

by
Ã(x0, x1(·)) = (−x0 + x1(−T ), x′1(·)).
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The operator Ã is the generator of a strongly continuous semigroup (S̃(t))t≥0

on H (see, e.g., [Hale, Verduyn; 1993]). It turns out that there exists a unique
mild solution in the sense of Definition 2.3.1 to the H-valued SDEdX(t) = ÃX(t)dt+ σλπ(t) · n̂ dt+ σπ(t) · n̂ dB(t),

X(0) = x ∈ H,
(2.63)

where n̂ = (1, 0) ∈ H . Notice that in this case, since we do not need to work
with a subspace of H as state space, the initial datum is allowed to be in H .
We denote the mild solution to (2.63) by X(·;x, π(·)). Moreover, arguing as in
the paper, we could see that such mild solution X(·) := X(·;x, π(·)) has the
property that (X0(t), X1(t)) =

(
x(t), x(t+ ξ)|ξ∈[−1,0]

)
for every t ≥ 0, where

x(·) is the solution to (2.62), i.e. the equivalence result holds.
Consider h = (1, 1) ∈ H . Then the capital requirement can be expressed as

〈X(t), h〉H ≥ l for every t ≥ 0. Then, setting

G = {x ∈ H | 〈x, h〉H ≥ l},

we can see that D ⊂ G and that Πad(x) ⊃ {0}. Moreover the boundary

∂G = {x ∈ H | 〈x, h〉H = l}

is absorbing in the sense that

x ∈ ∂G =⇒ Πad(x) = {0}; 〈X(t;x, 0), h〉H = l, ∀t ≥ 0. (2.64)

To show this fact we introduce the concept of weak solution to (2.63). A process
X(·) is called a weak solution of (2.63) if, for every t ≥ 0 and a ∈ D(A∗),

〈X(t), a〉H = 〈x, a〉H +
∫ t

0
〈X(s), Ã∗a〉Hds

+
∫ t

0
σλπ(s)〈n̂, a〉Hds+

∫ t

0
σπ(s)〈n̂, a〉HdB(s),

where Ã∗ is the adjoint of Ã defined on

D(Ã∗) = {(y0, y1(·)) ∈ H | y1(·) ∈W 1,2([−1, 0]; R), y1(−1) = y0}

by

Ã∗(y0, y1(·)) = (−y0 + y1(0),−y′1(·)).

Theorem 6.5, Chapter 6, in [Da Prato, Zabczyk; 1992] states that X is a mild
solution to (2.63) if and only if it is a weak solution. Therefore we have that
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X(·) := X(·;x, π(·)) is a weak solution to (2.63), so that in particular

〈X(t), h〉H = 〈x, h〉H +
∫ t

0
〈X(s), Ã∗h〉Hds

+
∫ t

0
σλπ(s)〈n̂, h〉Hds+

∫ t

0
σπ(s)〈n̂, h〉HdB(s),

Notice that h ∈ D(Ã∗) and Ã∗h = 0. Therefore, if x ∈ ∂G, we have

〈X(t;x, 0), h〉H = 〈x, h〉H = l, ∀t ≥ 0.

On the other hand, starting from x ∈ ∂G, due to the stochastic term in the
equation, any other strategy π(·) different from the null one would bring the
state to violate the requirement 〈X(t), h〉H ≥ l. Therefore (2.64) is proved.

Now suppose that the utility function of the manager is U(z) = zγ

γ , z ≥ 0,
γ ∈ (0, 1), and that his individual discount factor is ρ > 0. Then the natural aim
of the manager would be to maximize the expected intertemporal discounted
utility coming from his fee, i.e. the functional

E
[∫ +∞

0
e−ρt

(〈X(t), h〉H − l)γ

γ
dt

]
.

We can write formally the infinite dimensional HJB equation for this prob-
lem, that is

ρv(x) = 〈x,A∗vx(x)〉H +
(〈x, h〉H − l)γ

γ
− λ2

2
vx0(x)2

vx0x0(x)
, (2.65)

Due to the specific structure of the equation, we may guess that a solution to
the HJB equation has the form

v(x) = C
(〈x, h〉H − l)γ

γ
. (2.66)

Indeed we can check that, if

C =
(
ρ− λ2

2(1− γ)

)−1

, (2.67)

the function v given by (2.66) is a solution to (2.65).
If we add the assumption

ρ >
λ2

2(1− γ)
, (2.68)

we see that v is positive and concave, therefore it is a very good candidate to be
the value function V of the problem. To prove that it is really the value function
and to give an optimal feedback strategy for the problem, we need to argue
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with verification techniques in infinite dimension. In order to do that we need
a Dynkin type formula for v applied to the mild solution X(·) := X(·;x, π(·)),
x ∈ Int(G), of (2.63). Indeed, it is possible to prove that, for every stopping
time τ ≥ 0 almost surely finite, and such that 〈X(t), h〉H ≥ l+ ε for some ε > 0
for every t ∈ [0, τ ], we have

E
[
e−ρτv(X(τ))− v(x)

]
= E

[∫ τ

0
e−ρt[Lπ(t)v](X(t))dt

]
, (2.69)

where
[Lπv](x) := −ρv(x) + σλπvx0(x) +

1
2
σ2π2vx0x0(x).

Now take x ∈ Int(G) (the claim is trivial for x ∈ ∂G, due to (2.64)) and take
any strategy π(·) ∈ Πad(x). Consider the mild solution X(·) := X(·;x, π(·)) to
(2.63) associated to this strategy. Let t0 > 0, ε > 0 and let τε,t0 be the stopping
time defined by

τε,t0 = inf{t ≥ 0 | 〈X(t), h〉H ≤ l + ε} ∧ t0.

Applying (2.69) we get

E
[
e−ρτε,t0v(X(τε,t0))− v(x)

]
= E

[∫ τε,t0

0
e−ρt[Lπ(t)v](X(t))dt

]
.

Since v is solution of the HJB equation we get, ordering the terms,

v(x) = E
[
e−ρτε,t0 v(X(τε,t0))

]
+ E

[∫ τε,t0

0

e−ρt
(〈X(t), h〉H − l)γ

γ
dt

]
+E

[∫ τε,t0

0

e−ρt
(
−λ

2

2
vx0(X(t))2

vx0x0(X(t))
− σλπ(t)vx0(X(t))− 1

2
σ2π(t)2vx0x0(X(t))

)
dt

]
.

(2.70)

Since v is positive, we see that the first term in the right handside is positive;
moreover, due to the concavity and to the monotonicity of v with respect to
the variable x0, we see that also the third term in the right handside of (2.70) is
positive. Therefore

v(x) ≥ E
[∫ τε,t0

0
e−ρt

(〈X(t), h〉H − l)γ

γ
dt

]
(2.71)

Taking the limsup for t0 → +∞, ε ↓ 0, we get by Fatou’s Lemma

v(x) ≥ E
[∫ +∞

0
e−ρt

(〈X(t), h〉H − l)γ

γ
dt

]
,

By the arbitrariness of π(·) we have shown that v(x) ≥ V (x).
Now take the feedback map

G(x) =
λ

σ(1− γ)
(〈x, h〉H − l) .
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It is straightforward to see that the closed loop equation associated to this feed-
back map, i.e.dX(t) = ÃX(t)dt+ λ2

1−γ (〈X(t), h〉H − l) · n̂ dt+ λ
1−γ (〈X(t), h〉H − l) · n̂ dB(t),

X(0) = x ∈ H,
(2.72)

admits a unique mild solution XG. Define the feedback strategy

πG(t) := G(XG(t)). (2.73)

We can see that πG(·) ∈ Πad(x). Moreover, taking (2.70) with πG(·) we see that
the third term in the right handside vanishes, so that (2.70) reduces to

v(x) = E
[
e−ρτε,t0v(XG(τε,t0))

]
+ E

[∫ τε,t0

0
e−ρt

(〈XG(t), h〉H − l)γ

γ
dt

]
.

By dominated convergence we get

v(x) = E
[∫ +∞

0
e−ρt

(〈XG(t), h〉H − l)γ

γ
dt

]
.

With the argument above we have proved the following.

Theorem 2.6.1. Let assumption (2.68) hold. The function v defined in (2.66), with
C given by (2.67), is the value function, i.e. v = V and the feedback strategy πG(·)
defined in (2.73) is optimal for the problem. �

Finally we observe that (2.72) considered in weak form shows that the op-
timal trajectory XG is such that the one dimensional process

Z(·) := 〈XG(·), h〉H − l

is a geometric Brownian motion. Therefore, if x ∈ Int(G) the optimal state
never reaches the boundary ∂G; if x ∈ ∂G the optimal state, as we have shown
also before, remains on the boundary ∂G. According to Feller’s boundary clas-
sification, we can say that ∂G is a natural boundary for the infinite dimensional
diffusion XG.
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Chapter 3

Optimal Control of DDEs with
State Constraints

The object of this chapter is the study of a deterministic control problem with
diffused delay in the state. The main references for this chapter are the papers
[Federico, Goldys, Gozzi; 2009a] and [Federico, Goldys, Gozzi; 2009b]. The mo-
tivation for introducing such a problem within the present thesis is purely
mathematical. Indeed this problem represents a first starting point to approach
problems like the one described in Chapter 2. The problem which is the ob-
ject of Chapter 2 is very specific and it was not possible to solve it completely.
The problem stated and studied in the present chapter has some features very
similar to the ones of the problem of Chapter 2 and allows a (theoretically)
complete solution.

Here we study a class of optimal control problems with state constraints
where the state equation is a differential equation with delays. This class in-
cludes some problems arising in economics, in particular the so-called models
with time to build, see [Asea, Zak; 1999], [Bambi; 2008], [Kydland, Prescott; 1982].
As in Chapter 2 we embed the problem in a suitable Hilbert space H and con-
sider the associated Hamilton-Jacobi-Bellman equation. This kind of infinite-
dimensional HJB equation has not been previously studied and is difficult due
to the presence of state constraints and the lack of smoothing properties of the
state equation.

The main result is the proof of a C1 regularity result for a class of first
order infinite dimensional HJB equations associated to the optimal control of
deterministic delay equations arising in economic models.

The C1 regularity of solutions of the HJB equations arising in determinis-
tic optimal control theory is a crucial issue to solve in a satisfactory way the
control problems. Indeed, even in finite dimension, in order to obtain the op-
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timal strategies in feedback form one usually needs the existence of an ap-
propriately defined gradient of the solution. It is possible to prove verifica-
tion theorems and representation of optimal feedbacks in the framework of
viscosity solutions, even if the gradient is not defined in classical sense (see
e.g. [Bardi, Capuzzo-Dolcetta; 1997, Yong, Zhou; 1999]), but this is usually not
satisfactory in applied problems since the closed loop equation becomes very
hard to treat in such cases.

The need of C1 regularity results for HJB equations is particularly impor-
tant in infinite dimension since in this case verification theorems in the frame-
work of viscosity solutions are rather weak and in any case not applicable to
problems with state constraints (see e.g [Fabbri, Gozzi, Swiech, Li, Yong; 1995]).
To the best of our knowledge C1 regularity results for first order HJB equation
have been proved by method of convex regularization introduced by Barbu
and Da Prato [Barbu, Da Prato; 1983b] and then developed by various authors
(see e.g.

- [Barbu, Da Prato; 1985a],
- [Barbu, Da Prato; 1985b],
- [Barbu, Da Prato, Popa; 1983],
- [Barbu, Precupanu; 1986],
- [Di Blasio; 1985],
- [Di Blasio; 1991],
- [Faggian; 2005],
- [Gozzi; 1989],
- [Gozzi; 1991]).

All these results do not hold in the case of state constraints and, even without
state constraints, do not cover problems where the state equation is a nonlin-
ear differential equation with delays. In the papers [Cannarsa, Di Blasio; 1995,
Cannarsa, Di Blasio; 1993, Faggian; 2008] a class of state constraints problems
is treated using the method of convex regularization but theC1 type regularity
is not proved.

Using the approach of Chapter 2, we embed the problem in an infinite
dimensional control problem in the Hilbert space H = R × L2([−T, 0]; R),
where intuitively speaking R describes the “present” and L2([−T, 0]; R) de-
scribes the “past” of the system. In this paper we consider the associated
Hamilton-Jacobi-Bellman (HJB) equation in H that has not been previously
studied. Such a HJB is difficult due to the presence of state constraints and the
lack of smoothing properties of the state equation.

We prove that the value function is continuous in a sufficiently big open set
ofH (Proposition 3.2.10), that it solves in the viscosity sense the associated HJB
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equation (Theorem 3.3.3) and it has continuous classical derivative in the di-
rection of the “present” (Theorem 3.3.5). This regularity result is enough to de-
fine the formal optimal feedback strategy in classical sense, since the objective
functional only depends on the “present”. When such a strategy effectively
exists and is admissible we prove (Theorem 3.3.11) that it must be optimal for
the problem: this is not trivial since we do not have the full gradient of the
value function and so we need to use a verification theorem for viscosity solu-
tion which is new in this context. We then give (Proposition 3.3.15) sufficient
conditions under which the formal optimal feedback exists and is admissible.
Finally we show some approximation results that allow to apply our main the-
orem to obtain ε-optimal strategies for a wider class of problems (Propositions
3.4.2, 3.4.5, 3.4.7).

The method we use to prove regularity is completely different from the
one of convex regularization mentioned above. Indeed, it is based on a fi-
nite dimensional result of Cannarsa and Soner [Cannarsa, Soner; 1989] (see
also [Bardi, Capuzzo-Dolcetta; 1997], pag. 80) that exploits the concavity of
the data and the strict convexity of the Hamiltonian to prove the continuous
differentiability of the viscosity solution of the HJB equation. Generalizing to
the infinite dimensional case such result is not trivial as the definition of vis-
cosity solution in this case strongly depends (via the unbounded differential
operator A contained in the state equation) on the structure of the problem. In
particular we need to establish specific properties of superdifferential that are
given in Subsection 3.2.3.

We believe that such a method could be also used to analyze other prob-
lems featuring concavity of the data and strict convexity of the Hamiltonian.

3.1 Setup of the control problem and preliminary results

In this section we will formally define the control delay problem giving some
possible motivations for it. As in Chapter 2 we will use the notations

L2
−T := L2([−T, 0]; R), W 1,2

−T := W 1,2([−T, 0]; R).

We will denote by H the Hilbert space

H := R× L2
−T ,

endowed with the inner product

〈·, ·〉H = 〈·, ·〉R + 〈·, ·〉L2
−T
,
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and the norm
‖ · ‖2H = | · |2R + ‖ · ‖2L2

−T
.

We will denote by η := (η0, η1(·)) the generic element of this space. For conve-
nience we set also

H+ := (0,+∞)× L2
−T , H++ := (0,+∞)× {η1(·) ∈ L2

−T | η1(·) ≥ 0 a.e.}.

Remark 3.1.1. We notice that the economic motivations we are mainly inter-
ested in (see [Asea, Zak; 1999, Bambi; 2008], [Kydland, Prescott; 1982] and Re-
mark 3.1.7 above) require to study the optimal control problem with the initial
condition in H++. However, the set H++ is not convenient to work with, since
its interior with respect to the ‖ · ‖H -norm is empty. That is why we enlarge
the problem and allow the initial state belonging to the class H+. �

For η ∈ H+, we consider an optimal control of the following differential
delay equation:x′(t) = rx(t) + f0

(
x(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
− c(t),

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0),
(3.1)

with state constraint x(·) > 0 and control constraint c(·) ≥ 0. We set up the
following assumptions on the functions a, f0.

Hypothesis 3.1.2.

• a(·) ∈W 1,2
−T is such that a(·) ≥ 0 and a(−T ) = 0;

• f0 : [0,∞)× R→ R is jointly concave, nondecreasing with respect to the
second variable, Lipschitz continuous with Lipschitz constant Cf0 , and

f0(0, y) > 0, ∀y > 0. (3.2)

�

Remark 3.1.3. In the papers
- [Asea, Zak; 1999],
- [Bambi; 2008],
- [Kydland, Prescott; 1982]

the pointwise delay is used. We cannot treat exactly this case for technical
reason that are explained in Remark 3.4.6 below. However we have the free-
dom of choosing the function a in a wide class and this allows to take account
of various economic phenomena. Moreover we can approximate the point-
wise delay with suitable sequence of functions {an} getting convergence of
the value function and constructing ε-optimal strategies (see Subsections 3.4.2
and 3.4.3). �
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From now on we will assume that f0 is extended to a Lipschitz continuous
map on R2 setting

f0(x, y) := f0(0, y), for x < 0.

For technical reasons, which will be clear in Subsection 3.2.2, we work with the
case r > 0, noting that nevertheless the case r ≤ 0 can be treated by shifting
the linear part of the state equation. Indeed in this case we can rewrite the
state equation taking for example as new coefficient for the linear part r̃ = 1
and shifting the nonlinear term defining f̃0(x, y) = f0(x, y)− (1− r)x.

We say that a function x : [−T,∞) → R+ is a solution to equation (3.1) if
x(t) = η1(t) for t ∈ [−T, 0) and

x(t) = η0+
∫ t

0
rx(s)ds+

∫ t

0
f0

(
x(s),

∫ 0

−T
a(ξ)x(s+ ξ)dξ

)
ds−

∫ t

0
c(s)ds, t ≥ 0.

Theorem 3.1.4. For any given η ∈ H+, c(·) ∈ L1
loc([0,+∞); R+), equation (3.1)

admits a unique solution that is absolutely continuous on [0,+∞).

Proof. Let K = supξ∈[−T,0] a(ξ). For any t ≥ 0, z1, z2 ∈ C([−T, t]; R), we
have∫ t

0

[
r|z1(s)− z2(s)|

+
∣∣∣∣f0

(
z1(s),

∫ 0

−T
a(ξ)z1(s+ ξ)

)
− f0

(
z2(s),

∫ 0

−T
a(ξ)z2(s+ ξ)

)∣∣∣∣
]
ds

≤
∫ t

0

[
r|z1(s)− z2(s)|+ Cf0

[
|z1(s)− z2(s)|+K

∫ 0

−T
|z1(s+ ξ)− z2(s+ ξ)|dξ

]]
ds

≤
∫ t

0

[
(r + Cf0)|z1(s)− z2(s)|+ Cf0K

∫ t

−T
|z1(ξ)− z2(ξ)|dξ

]
ds

≤ (r + Cf0)
∫ t

0

|z1(s)− z2(s)|ds+ tCf0K

∫ t

−T
|z1(ξ)− z2(ξ)|dξ

≤ [(r + Cf0) + tCf0K]
∫ t

−T
|z1(ξ)− z2(ξ)|dξ

≤ [(r + Cf0) + tCf0K](t+ T )1/2

(∫ t

−T
|z1(ξ)− z2(ξ)|2dξ

)1/2

.

Due to the previous inequality, the claim is a straight consequence of Theorem
3.2, pag. 246, of [Bensoussan, Da Prato, Delfour, Mitter; 2007]. �

We denote by x(·; η, c(·)) the unique solution of (3.1) with initial point η ∈
H+ and under the control c(·). We emphasize that this solution actually satis-
fies pointwise only the integral equation associated with (3.1); it satisfies (3.1)
in differential form only for almost every t ∈ [0,+∞).
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For η ∈ H+ we define the class of the admissible controls starting from η as

C(η) := {c(·) ∈ L1
loc([0,+∞); R+) | x(·; η, c(·)) > 0}.

Setting x(·) := x(·, ; η, c(·)), the problem consists in maximizing the functional

J(η; c(·)) :=
∫ +∞

0
e−ρt [U1(c(t)) + U2(x(t))] dt, ρ > 0,

over the set of the admissible strategies.

The following will be standing assumptions on the utility functions U1, U2,
holding throughout the whole paper.

Hypothesis 3.1.5.

(i) U1 ∈ C([0,+∞); R) ∩C2((0,+∞); R), U ′1 > 0, U ′1(0+) = +∞, U ′′1 < 0 and
U1 is bounded.

(ii) U2 ∈ C((0,+∞); R) is increasing, concave, bounded from above. More-
over ∫ +∞

0
e−ρtU2

(
e−Cf0 t

)
dt > −∞. (3.3)

�

Since U1, U2 are bounded from above, the previous functional is well-
defined for any η ∈ H+ and c(·) ∈ C(η). We set

Ū1 := lim
s→+∞

U1(s), Ū2 := lim
s→+∞

U2(s).

Remark 3.1.6. We give some comments on Hypothesis 3.1.5 and on the struc-
ture of the utility in the objective functional.

1. The assumption that U1, U2 are bounded from above is done for simplic-
ity to avoid too many technicalities. It guarantees that the value function
is bounded from above and this fact simplifies arguments in the follow-
ing parts of this paper. Similarly the assumption that U1 is bounded from
below guarantees that the value function is bounded from below. We
think that it is possible to replace such assumptions with more general
conditions relating the growth of U1, U2, the value of ρ and the param-
eters of the state equation. Typically, such a condition requires that ρ is
sufficiently large.

2. All utility functions bounded from below satisfy (3.3). Also

U2(x) = log(x), U2(x) = xγ , γ > − ρ

Cf0

,
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satisfy (3.3). Note also that (3.3) is equivalent to∫ +∞

0
e−ρtU2

(
ξe−Cf0 t

)
dt > −∞, ∀ξ > 0.

3. When r < 0, then in (3.3) we have to replace Cf0 with |r|+ Cf0 .

4. In Subsection 3.3.3 we will assume that U2 is not integrable at 0+. In the
case of power utility, if we want both the no integrability condition and
(3.3) holding, we have to require ρ > Cf0 and − ρ

Cf0
≤ γ < −1.

5. If we assume that

∃δ > 0 such that rx+ f0(x, 0) ≥ 0,∀x ∈ (0, δ], (3.4)

then the assumption (3.3) can be suppressed. Since (3.2) implies f0(0, 0) ≥
0, (3.4) occurs for example if x 7→ rx+f0(x, 0) is nondecreasing, therefore
in particular if r ≥ 0 and f0 depends only on the second variable. �

Remark 3.1.7. The control problem described above covers also the following
optimal consumption problem. We may think of the dynamics defined in (3.1)
as the dynamics of the bank account driven by a contract which takes into
account the past history of the accumulation of wealth. Such a situation arises
when the bank offers to the customer an interest rate r smaller than the market
spot rate rM and as a compensation, it provides a premium on the past of the
wealth (this may happen e.g. for pension funds). Then the following equation
is a possible simple model of the evolution of the bank account under such a
contract: x′(t) = rx(t) + g0

(∫ 0
−T a(ξ)x(t+ ξ)dξ

)
− c(t),

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0),

where g0 : R → R is a concave, Lipschitz continuous and strictly increasing
function such that g0(0) ≥ 0. Dependence on the past is an incentive for the
customer to keep his investments with the bank for a longer period of time
in order to receive gains produced by the term g0. Here we assume the point
of view of the customer and we think it is interesting to study the behaviour
of the optimal consumption in this setting, comparing it with the one coming
from the classical case, which corresponds to set r = rM , g ≡ 0.

We think also that our technique could be adapted to cover optimal adver-
tising model with nonlinear memory effects (see [Gozzi, Marinelli, Savin] on
this subject in a stochastic framework). �
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For η ∈ H+ the value function of our problem is defined by

V (η) := sup
c(·)∈C(η)

J(η, c(·)), (3.5)

with the convention sup ∅ = −∞. The domain of the value function is the set

D(V ) := {η ∈ H+ | V (η) > −∞}.

Due to the assumptions on U1, U2 we directly get that V ≤ 1
ρ(Ū1 + Ū2).

3.1.1 Preliminary results

In this subsection we investigate some first qualitative properties of the delay
state equation and of the value function.

Lemma 3.1.8 (Comparison). Let η ∈ H+ and let c(·) ∈ L1
loc([0,+∞); R+). Let

x(t), t ≥ 0, be an absolutely continuous function satisfying almost everywhere the
differential inequalityx′(t) ≤ rx(t) + f0

(
x(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
− c(t),

x(0) ≤ η0, x(s) ≤ η1(s), for a.e. s ∈ [−T, 0).

Then x(·) ≤ x(·; η, c(·)).

Proof. Set ā := supξ∈[−T,0] |a(ξ)|, y(·) := x(·; η, c(·)) and h(·) := [x(·)−y(·)]+.
We must show that h(·) = 0. Let ε > 0 be fixed and such that

εCf0 āT e
ε(r+Cf0 ) ≤ 1/2 (3.6)

and let M := maxt∈[0,ε] h(t). By monotonicity of f0 we get

f0

(
x(t),

∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
≤ f0

(
x(t),

∫ 0

−T
a(ξ)y(t+ ξ)dξ + āTM

)
, t ∈ [0, ε]. (3.7)

Define, for n ∈ N,

ϕn(x) :=


0, for x ≤ 0,

nx2, for x ∈ (0, 1/2n],

x− 1/4n, for x > 1/2n.
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The sequence (ϕn)n∈N ⊂ C1(R; R) is such that

ϕn(x) = ϕ′n(x) = 0, for every x ∈ (−∞, 0], n ∈ N,

0 ≤ ϕ′n(x) ≤ 1, for every x ∈ R, n ∈ N,

ϕn(x)→ x+, uniformly on x ∈ R,

ϕ′n(x)→ 1, for x ∈ (0,+∞).

We can write for t ∈ [0, ε], taking into account (3.7),

ϕn(x(t)− y(t)) = ϕn(x(0)− η0) +
∫ t

0
ϕ′n(x(s)− y(s))[x′(s)− y′(s)]ds

≤
∫ t

0
ϕ′n(x(s)− y(s))

[
r(x(s)− y(s))

+ f0

(
x(s),

∫ 0

−T
a(ξ)x(s+ ξ)dξ

)
− f0

(
y(s),

∫ 0

−T
a(ξ)y(s+ ξ)dξ

)]
ds

≤
∫ t

0
ϕ′n(x(s)− y(s))

[
r(x(s)− y(s))

+ f0

(
x(s),

∫ 0

−T
a(ξ)y(s+ ξ)dξ + āTM

)
− f0

(
y(s),

∫ 0

−T
a(ξ)y(s+ ξ)dξ

)]
ds

≤
∫ t

0
ϕ′n(x(s)− y(s))

[
(r + Cf0)|x(s)− y(s)|+ CāTM

]
ds.

Letting n→∞we get

h(t) ≤
∫ t

0
(r + Cf0)h(s)ds+ Cf0 āTMt ≤

∫ t

0
(r + Cf0)h(s)ds+ Cf0 āTMε.

Therefore by Gronwall’s Lemma we get

h(t) ≤ εCf0 āTMeε(r+Cf0 ), for t ∈ [0, ε],

and by (3.6)

h(t) ≤ M

2
, for t ∈ [0, ε].

This shows that M = 0, i.e. that h = 0 on [0, ε]. Iterating the argument, since ε
is fixed, we get h ≡ 0 on [0,+∞), i.e. the claim. �

Proposition 3.1.9. We have

H++ ⊂ D(V ), D(V ) = {η ∈ H+ | 0 ∈ C(η)}.

Proof. Let η ∈ H++ and set x(·) := x(·; η, 0). By assumption, x(0) = η0 > 0
and until x(t) > 0 we have

x′(t) = rx(t) + f0

(
x(t),

∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
≥ rx(t) + f0(x(t), 0).
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Since f0(0, 0) ≥ 0 and f0(·, 0) is Lipschitz continuous (with Lipschitz constant
Cf0), we get

x′(t) ≥ −Cf0 x(t), until x(t) > 0.

This fact forces to be

inf{t ≥ 0 | x(t) = 0} = +∞,

and x(t) ≥ η0e
−Cf0 t for any t ≥ 0, which proves the inclusion H++ ⊂ D(V )

thanks to (3.3).

Now let η ∈ D(V ); then, by definition of D(V ), there exists c(·) ∈ C(η). By
Lemma 3.1.8 0 ∈ C(η), so that we have the inclusion D(V ) ⊂ {η ∈ H+ | 0 ∈
C(η)}. Conversely let η ∈ H+ be such that 0 ∈ C(η). Then, by definition of
C(η), we have

inf
t∈[0,T ]

x(t; η, 0) ≥ ξ > 0.

Repeating the argument used above, we get x(t; η, 0) ≥ ξe−Cf0 (t−T ) for t ≥ T ,
so that η ∈ D(V ) and the proof is complete. �

Remark 3.1.10. It is straightforward to see that the proof of Proposition 3.1.9
above works if we replace the assumption (3.3) with the assumption (3.4). �

Definition 3.1.11. (i) Let η ∈ D(V ). An admissible control c∗(·) ∈ C(η) is
said to be optimal for the initial state η if J(η; c∗(·)) = V (η). In this case the
corresponding state trajectory x∗(·) := x(·; η, c∗(·)) is said to be an optimal
trajectory and the couple (x∗(·), c∗(·)) is said an optimal couple.

(ii) Let η ∈ D(V ), ε > 0; an admissible control cε(·) ∈ C(η) is said ε-optimal
for the initial state η if J(η; cε(·)) > V (η) − ε. In this case the correspond-
ing state trajectory xε(·) := x(·; η, cε(·)) is said an ε-optimal trajectory and the
couple (xε(·), cε(·)) is said an ε-optimal couple. �

Proposition 3.1.12. The set D(V ) is convex and the value function V is concave on
D(V ).

Proof. Let η, η̄ ∈ D(V ) and set, for λ ∈ [0, 1], ηλ = λη + (1− λ)η̄. For ε > 0,
let cε(·) ∈ C(η), c̄ε(·) ∈ C(η̄) be two controls ε-optimal for the initial states η, η̄
respectively. Set

x(·) := x(·, η, cε(·)), x̄(·) := x(·; η, c̄ε(·)), cλ(·) := λcε(·) + (1− λ)c̄ε(·).
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Finally set xλ(·) := λx(·) + (1− λ)x̄(·). Let us write the dynamics for xλ(·):

x′λ(t) = λx′(t) + (1− λ)x̄′(t)

= λ

[
rx(t) + f0

(
x(t),

∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
− cε(t)

]
+(1− λ)

[
rx̄(t) + f0

(
x̄(t),

∫ 0

−T
a(ξ)x̄(t+ ξ)dξ

)
− c̄ε(t)

]
≤ rxλ(t) + f0

(
xλ(t),

∫ 0

−T
a(ξ)xλ(t+ ξ)dξ

)
− cλ(t),

where the inequality follows from the concavity of f0 with initial condition ηλ.
Let x(·; ηλ, cλ(·)) be a solution of the equation

x′(t) = rx(t) + f0

(
x(t),

∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
− cλ(t).

Since by construction xλ(·) > 0, by Lemma 3.1.8 we have

x(·; ηλ, cλ(·)) ≥ xλ(·) > 0.

This shows that cλ(·) ∈ C(ηλ). By concavity of U1, U2 and by monotonicity of
U2 we get

V (ηλ) ≥ J(ηλ; cλ(·)) ≥ λJ(η; cε(·))+(1−λ)J(η; c̄ε(·)) > λV (η)+(1−λ)V (η̄)−ε.

Since ε is arbitrary, we get the claim. �

From the assumptions of monotonicity of the utility functions and from
Lemma 3.1.8 we obtain the following result.

Proposition 3.1.13. The function η 7→ V (η) is nondecreasing in the sense that

η0 ≥ η̄0, η1(·) ≥ η̄1(·) =⇒ V (η0, η1(·)) ≥ V (η̄0, η̄1(·)).

�

Indeed, the value function is strictly increasing in the first variable.

Proposition 3.1.14. We have the following statements:

1. V (η) < 1
ρ(Ū1 + Ū2) for any η ∈ H+.

2. limη0→+∞ V (η0, η1(·)) = 1
ρ(Ū1 + Ū2), for all η1(·) ∈ L2

−T .

3. V is strictly increasing with respect to the first variable.
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Proof. 1. Let η ∈ D(V ) and set

ā := sup
ξ∈[−T,0]

a(ξ), p := sup
ξ∈[0,T ]

x(ξ; η, 0), q :=
∫ 0

−T
η+

1 (ξ)dξ.

Let c(·) ∈ C(η) and set x(·) := x(·; η, c(·)); by comparison criterion we have
x(t) ≤ p in [0, T ].

Since f0 is Lipschitz continuous, there exists C > 0 such that

f0(x, y) ≤ C(1 + |x|+ |y|), ∀x, y ∈ R.

Therefore, for t ∈ [0, T ], we can write, considering the state equation in integral
form,

x(t) ≤ η0 + rTp+ TC(1 + |p|+ |ā(Tp+ q)|)−
∫ T

0
c(τ)dτ.

Define

K := η0 + rTp+ TC(1 + |p|+ |ā(Tp+ q)|);

since c(·) ∈ C(η), we have x(t) > 0 in [0, T ], so that∫ T

0
c(τ)dτ ≤ K.

Denoting by m the Lebesgue measure, this means that

m{τ ∈ [0, T ] | c(τ) ≤ 2K/T} ≥ T/2.

Therefore (in the next inequality, since e−ρt is decreasing, we suppose without
loss of generality that c(·) ≤ 2K/T on

[
T
2 , T

]
)

∫ +∞

0
e−ρtU1(c(t))dt

≤
∫ T/2

0
e−ρtU1(c(t))dt+

∫ T

T/2
e−ρtU1(2K/T )dt+

∫ +∞

T
e−ρtU1(c(t))dt

≤ Ū1

ρ
−
∫ T

T/2
e−ρt

(
Ū1 − U1(2K/T )

)
dt.

Since the quantity Ū1 − U1(2K/T ) is strictly positive and does not depend on
c(·), the claim is proved.

2. For given η1(·) ∈ L2
−T , let K > 0, M > 0 and let us define the control

c(t) :=

M, if t ∈ [0,K],

0, if t > K.
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Take η0 > 0. Since f0 is Lipschitz continuous and nondecreasing with respect
to the second variable, we can see that, until it is positive, x(t; (η0, η1(·)), c(·))
satisfies the differential inequalityx′(t) ≥ −C(1 + x(t) + q)−M,

x(0) = η0,

for some C > 0, where

q :=

(
sup

ξ∈[−T,0]
a(ξ)

)(∫ 0

−T
η−1 (ξ)dξ

)
.

This actually shows that, for any M > 0, K > 0, R > 0, we can find η0 such
that c(·) ∈ C(η0, η1(·)) and x(·; (η0, η1(·)), c(·)) ≥ R on [0,K]. By the arbitrari-
ness of M,K,R the claim is proved.

3. Fix η1(·); we know that η0 7→ V (η0, η1(·)) is concave and increasing. If it
is not strictly increasing, then it has to be constant on an half line [k,+∞), but
this contradicts the first two claims. �

3.2 The delay problem rephrased in infinite dimension

Our aim is to apply the dynamic programming technique in order to solve the
control problem described in the previous section. However, this approach re-
quires a markovian setting. That is why we will reformulate the problem as an
infinite-dimensional control problem. Let n̂ = (1, 0) ∈ H+ and let us consider,
for η ∈ H and c(·) ∈ L1([0,+∞); R+), the following evolution equation in the
space H : X ′(t) = AX(t) + F (X(t))− c(t)n̂,

X(0) = η ∈ H+.
(3.8)

In the equation above:

• A : D(A) ⊂ H −→ H is an unbounded operator defined by

A(η0, η1(·)) := (rη0, η
′
1(·))

on
D(A) := {η ∈ H | η1(·) ∈W 1,2

−T , η1(0) = η0};

• F : H −→ H is a Lipschitz continuous map defined by

F (η0, η1(·)) := (f (η0, η1(·)) , 0) ,

where f(η0, η1(·)) := f0

(
η0,
∫ 0
−T a(ξ)η1(ξ)dξ

)
.
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As in Chapter 2 A is the infinitesimal generator of a strongly continuous semi-
group (S(t))t≥0 on H with explicit expression given by

S(t)(η0, η1(·)) =
(
η0e

rt, I[−T,0](t+ ·) η1(t+ ·) + I[0,+∞)(t+ ·) η0e
r(t+·)

)
.

3.2.1 The state equation: existence and uniqueness of mild solutions
and equivalence with the delay problem

In this subsection we give a definition of the mild solution to (3.8), prove the
existence and uniqueness of such a solution and the equivalence between the
one dimensional delay problem and the infinite dimensional one.

Definition 3.2.1. A mild solution of (3.8) is a function X ∈ C([0,+∞);H)
which satisfies the integral equation

X(t) = S(t)η +
∫ t

0
S(t− τ)F (X(τ))dτ +

∫ t

0
c(τ)S(t− τ)n̂ dτ. (3.9)

Theorem 3.2.2. For any η ∈ H , there exists a unique mild solution of (3.8).

Proof. Due to the Lipschitz continuity of F and to (2.17), the proof follows
from the Fixed Point Theorem. �

We denote byX(·; η, c(·)) = (X0(·; η, c(·)), X1(·; η, c(·))) the unique solution
to (3.8) for the initial state η ∈ H and under the control c(·) ∈ L1([0,+∞); R+).
The following equivalence result justifies our approach.

Proposition 3.2.3. Let η ∈ H+, c(·) ∈ C(η) and let x(·), X(·) be respectively the
unique solution to (3.1) and the unique mild solution to (3.8) starting from η and
under the control c(·). Then, for any t ≥ 0, we have the equality in H

X(t) =
(
x(t), x(t+ ξ)ξ∈[−T,0]

)
.

Proof. Let x(·) be a solution of (3.1) and let Z(·) := (x(·), x(· + ζ)|ζ∈[−T,0]).
Then Z(·) belongs to the space C([0,+∞);H) because the function [0,+∞) 3
t 7→ x(t) ∈ R is (absolutely) continuous. Therefore, it remains to prove that
Z(t) = (Z0(t), Z1(t)) satisfies (3.8) and then the claim will follow by unique-
ness. For the first component we have to verify that, for any t ≥ 0,

Z0(t) = ertη0 +
∫ t

0
er(t−τ)f0

(
Z0(τ),

∫ 0

−T
a(ξ)Z1(τ)(ξ)dξ

)
dτ−

∫ t

0
er(t−τ)c(τ)dτ,

i.e. that

x(t) = ertη0 +
∫ t

0
er(t−τ)f0

(
x(τ),

∫ 0

−T
a(ξ)x(τ + ξ)dξ

)
dτ −

∫ t

0
er(t−τ)c(τ)dτ,
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but this follow from the assumption that x(·) is a solution to (3.1).
For the second component, taking into account that

I[0,+∞)(t+ · − τ) = I[τ,+∞)(t+ ·),

we have to verify, for any t ≥ 0, for a.e. ζ ∈ [−T, 0],

Z1(t)(ζ) = I[−T,0](t+ ζ)η1(t+ ζ) + I[0,+∞)(t+ ζ)η0e
r(t+ζ)

+
∫ t

0
I[τ,+∞)(t+ ζ) er(t+ζ−τ)f0

(
Z0(τ),

∫ 0

−T
a(ξ)Z1(τ)(ξ)dξ

)
dτ

−
∫ t

0
I[τ,+∞)(t+ ζ) er(t+ζ−τ)c(τ)dτ,

i.e., for any t ≥ 0, for a.e. ζ ∈ [−T, 0],

x(t+ ζ) = I[−T,0](t+ ζ)η1(t+ ζ) + I[0,+∞)(t+ ζ) η0e
r(t+ζ)

+
∫ t

0
I[τ,+∞)(t+ ζ) er(t+ζ−τ)f0

(
x(τ),

∫ 0

−T
a(ξ)x(τ + ξ)dξ

)
dτ

−
∫ t

0
I[τ,+∞)(t+ ζ) er(t+ζ−τ)c(τ)dτ. (3.10)

For ζ ∈ [−T, 0] such that t+ ζ ∈ [−T, 0], (3.10) reduces to

x(t+ ζ) = η1(t+ ζ)

and this is true since η1 is the initial condition of (3.1). If ζ ∈ [−T, 0] is such
that t+ ζ ≥ 0, then (3.10) reduces to

x(t+ ζ) = η0e
r(t+ζ) +

∫ t+ζ

0
er(t+ζ−τ)f0

(
x(τ),

∫ 0

−T
a(ξ)x(τ + ξ)dξ

)
dτ

−
∫ t+ζ

0
er(t+ζ−τ)c(τ)dτ.

Setting u := t+ ζ this equality becomes, for u ≥ 0,

x(u) = x0e
ru +

∫ t

0
er(u−τ)f0

(
x(τ),

∫ 0

−T
a(ξ)x(τ + ξ)dξ

)
dτ −

∫ t

0
er(u−τ)c(τ)dτ.

Again this is true because x(·) solves (3.1). �

3.2.2 Continuity of the value function

In this subsection we prove a continuity property of the value function that
will be useful to investigate the geometry of its superdifferential in the next
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subsection. To this end we recall that the generatorA of the semigroup (S(t))t≥0

has bounded inverse in H given by

A−1 : (H, ‖ · ‖H) −→ (D(A), ‖ · ‖H),

η 7−→
(
η0

r ,
η0

r −
∫ 0
· η1(ξ)dξ

)
.

It is well known that A−1 is compact in H . It is also clear that A−1 is an iso-
morphism of H onto D(A) endowed with the graph norm.

We define the ‖ · ‖−1-norm on H by

‖η‖−1 := ‖A−1η‖.

In the next proposition we characterize the adjoint operator A∗ and its domain
D(A∗).

Proposition 3.2.4. Let η = (η0, η1(·)) ∈ H . Then η ∈ D(A∗) if and only if

(η0, η1(·)) ∈ D :=
{
η ∈ H | η1 ∈W 1,2

−T , η1(−T ) = 0
}
.

Moreover, if this is the case, then

A∗η = (rη0 + η1(0),−η′1(·)). (3.11)

Proof. Let (η0, η1(·)) ∈ D. Then, for ζ ∈ D(A),

〈Aζ, η〉 = rζ0η0 +
∫ 0

−T
ζ ′1(s)η1(s) ds = rζ0η0 + ζ0η1(0)−

∫ 0

−T
ζ1(s)η′1(s) ds,

thus ζ 7→ 〈Aζ, η〉 is continuous on D(A) with respect to the norm ‖ · ‖, i.e.
η ∈ D(A∗) and

A∗η = (rη0 + η1(0),−η′1(·)).

Therefore, η ∈ D (A∗) and (3.11) holds. To show that D (A∗) = D note first that
for t ≤ T

S∗(t) (η0, η1(·)) =
(
ert
(
η0 +

∫ 0

−t
η1(ξ)erξdξ

)
, η1(· − t)I[−T,0](· − t)

)
. (3.12)

Clearly, D is dense in H and it is easy to check that S∗(t)D ⊂ D for any t ≥ 0.
Hence, by Theorem 1.9 on p. 8 of [Davies; 1980] D is dense in D (A∗) endowed
with the graph norm. Finally, using (3.11) it is easy to show that D is closed in
the graph norm of A∗ and we find that D (A∗) = D. �

Lemma 3.2.5. The map F is Lipschitz continuous with respect to ‖ · ‖−1.
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Proof. Due to the Lipschitz continuity of f0, it is sufficient to prove that

|η0|+
∣∣∣∣∫ 0

−T
a(ξ)η1(ξ)dξ

∣∣∣∣ ≤ Ca(·)‖η‖−1, ∀η ∈ H. (3.13)

Indeed, since |η0| ≤ r‖η‖−1 (0, a(·)) ∈ D(A∗), we find that∣∣∣∣∫ 0

−T
a(ξ)η1(ξ)dξ

∣∣∣∣ = |〈(0, a(·)), η〉| = |〈(0, a(·)), AA−1η〉|

= |〈A∗(0, a(·)), A−1η〉| ≤ ‖A∗(0, a(·))‖ · ‖η‖−1.

So, since |η0| ≤ r‖η‖−1, we get (3.13) with Ca(·) = r + ‖A∗(0, a(·))‖. �

Remark 3.2.6. The condition a(−T ) = 0 is in general necessary for the previ-
ous result. Indeed, consider for example the case a(·) ≡ 1. Then the sequence

ηn = (ηn0 , η
n
1 (·)), ηn0 := 0, ηn1 (·) := I[−T,−T+1/n](·), n ≥ 1,

is such that∣∣∣∣∫ 0

−T
a(ξ)ηn1 (ξ)dξ

∣∣∣∣ = 1 ∀n ≥ 1, ‖ηn‖−1 → 0 when n→∞,

so that (3.13) cannot be satisfied. If for example, f0(r, u) = u, the previous
result does not hold. �

Lemma 3.2.7. Let X(·), X̄(·) be the mild solutions to (3.8) starting respectively from
η, η̄ ∈ H and both under the null control. Then there exists a constant C > 0 such
that

‖X(t)− X̄(t)‖−1 ≤ C‖η − η̄‖−1, ∀t ∈ [0, T ].

In particular
|X0(t)− X̄0(t)| ≤ rC‖η − η̄‖−1, ∀t ∈ [0, T ].

Proof. From (3.9) we can write, for all t ∈ [0, T ],

X(t)− X̄(t) = S(t)(η − η̄) +
∫ t

0
S(t− τ)

[
F (X(τ))− F (X̄(τ))

]
dτ,

so that

A−1(X(t)−X̄(t)) = S(t)A−1(η− η̄)+
∫ t

0
S(t−τ)A−1

[
F (X(τ))− F (X̄(τ))

]
dτ,

i.e., taking into account Lemma 3.2.5, there exists some K > 0 such that

‖X(t)− X̄(t)‖−1 ≤ K
(
‖η − η̄‖−1 +

∫ t

0
‖X(τ)− X̄(τ)‖−1dτ

)
and the claim follows by Gronwall’s Lemma. �
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Proposition 3.2.8. The set D(V ) is open in the space (H, ‖ · ‖−1).

Proof. Let η̄ ∈ D(V ), η ∈ H+ and set X̄(·) := X(·; η̄, 0), X(·) := X(·; η, 0).
By Proposition 3.1.9 we have X̄(t) ≥ ξ > 0 for t ∈ [0, T ]. For any ε ∈

(
0, ξ

2rC

)
and any η such that ‖η−η̄‖−1 < ε, Lemma 3.2.7 yieldsX0(t) ≥ ξ/2 for t ∈ [0, T ].
Arguing as in Proposition 3.1.9 we get X0(t) ≥ ξ

2e
−K(t−T ) for t ≥ T . Thus we

have the claim. �

Remark 3.2.9. Note that D(V ) is open also with respect to ‖ · ‖H . �

Proposition 3.2.10. The value function is continuous with respect to ‖·‖−1 onD(V ).
Moreover

(ηn) ⊂ D(V ), ηn ⇀ η ∈ D(V ) =⇒ V (ηn)→ V (η). (3.14)

Proof. The function V is concave and, thanks to the proof of Lemma 3.2.8,
it is ‖·‖−1-locally bounded from below at the points ofD(V ). Therefore the first
claim follows by a classic result of convex analysis (see [Ekeland, Temam; 1976],
Chapter 1, Corollary 2.4).

The claim (3.14) follows by the first claim and since A−1 is compact. �

3.2.3 Properties of superdifferential

In this subsection we focus on the properties of the superdifferential of con-
cave and ‖ · ‖−1-continuous functions. This will be very useful in proving a
regularity result for the value function. Recall that, if v is a function defined
on some open setO of H , the subdifferential and the superdifferential of v at a
point η̄ ∈ O are the convex and closed sets defined respectively by

D−v(η̄) :=
{
ζ ∈ H

∣∣∣ lim inf
η→η̄

v(η)− v(η̄)− 〈η − η̄, ζ〉H
‖η − η̄‖

≥ 0
}
,

D+v(η̄) :=
{
ζ ∈ H

∣∣∣ lim sup
η→η̄

v(η)− v(η̄)− 〈η − η̄, ζ〉H
‖η − η̄‖

≤ 0
}
.

It is well-known that, if D+v(η)∩D−v(η) 6= ∅, then D+v(η)∩D−v(η) = {ζ}, v
is differentiable at η and ∇v(η) = ζ. Moreover the set of the reachable gradients
is defined as

D∗v(η̄) :=
{
ζ ∈ H

∣∣∣ ∃ηn → η̄ such that ∃∇v(ηn), ∇v(ηn)→ ζ
}
.

If O is convex and open and v : O → R is concave, then the set D+v is not
empty at any point of O and

D+v(η̄) =
{
ζ ∈ H

∣∣∣ v(η)− v(η̄) ≤ 〈η − η̄, ζ〉H , ∀η ∈ O
}

= co (D∗v(η̄)) .
(3.15)

In this case, if D+v(η̄) = {ζ}, then v is differentiable at η and∇v(η) = ζ.



Optimal Control of DDEs with State Constraints 209

Lemma 3.2.11. The following statements hold:

1. A−1(D(V )) is a convex open set of (D(A), ‖ · ‖H).

2. O := Int(H,‖·‖H)

(
Clos(H,‖·‖H)

(
A−1(D(V ))

))
is a convex open of (H, ‖ ·‖H).

3. O ⊃ A−1(D(V )) and D(V ) = O ∩D(A).

Proof. The first and the second statement are obvious. We prove the
third one. Of course, since A−1(D(V )) is open in (D(A), ‖ · ‖H), we can find
(εx)x∈A−1(D(V )), εx > 0, such that

A−1(D(V )) =
⋃

x∈A−1(D(V ))

B(D(A),‖·‖H)(x, εx).

By this representation of A−1(D(V )) we can see that

O =
⋃

x∈A−1(D(V ))

B(H,‖·‖H)(x, εx).

Therefore we get both the claims of the third statement. �

Proposition 3.2.12. Let v : D(V ) → R be a concave function continuous with
respect to ‖ · ‖−1. Then

1. v = u ◦A−1, where u : O ⊂ H → R is a concave ‖ · ‖H -continuous function.

2. D+v(η) ⊂ D(A∗), for any η ∈ D(V ).

3. D+u(A−1η) = A∗D+v(η), for any η ∈ D(V ). In particular, since A∗ is
injective, v is differentiable at η if and only if u is differentiable at A−1η.

4. If ζ ∈ D∗v(η), then there exists a sequence ηn → η such that there exist∇v(ηn)
and the convergences∇v(ηn)→ ζ, A∗∇v(ηn) ⇀ A∗ζ hold true.

Proof. Within this proof, for η ∈ D(V ), we set η′ := A−1η. SinceA−1 is one-
to-one, there is a one-to-one correspondence between the elements η ∈ D(V )
and η′ ∈ A−1(D(V )).

1. Let us define the function u0 : A−1(D(V ))→ R by

u0(η′) := v(η).

Thanks to the assumptions on v, we see that u0 is a concave continuous func-
tion on (A−1(D(V )), ‖ · ‖H). By the third statement of Lemma 3.2.11 we see
that A−1(D(V )) is ‖ · ‖H -dense in O. Since v is concave it is locally Lipschitz
continuous, so that can be extended to a concave ‖ · ‖H -continuous function u
defined on O. This function u satisfies the claim by construction.
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2. Let η̄ ∈ D(V ), ζ ∈ D+v(η̄). Then

v(η)− v(η̄) ≤ 〈η − η̄, ζ〉H , ∀η ∈ D(V ),

i.e.

u(η′)− u(η̄′) ≤ 〈A(η′ − η̄′), ζ〉H , ∀η′ ∈ A−1(D(V )).

Thus the function

Tζ : (D(A), ‖ · ‖H) −→ R,
η′ 7−→ 〈Aη′, ζ〉H ,

is lower semicontinuous at η̄′. It is also linear and therefore it is continuous on
(D(A), ‖ · ‖), so that we can conclude that ζ ∈ D(A∗).

3. Let η̄ ∈ D(V ), ζ ∈ D+v(η̄). Then

v(η)− v(η̄) ≤ 〈η − η̄, ζ〉, ∀η ∈ D(V ),

i.e.

u(η′)− u(η̄′) ≤ 〈A(η′ − η̄′), ζ〉H = 〈(η′ − η̄′), A∗ζ〉H , ∀η′ ∈ A−1(D(V )),

so that A∗ζ ∈ D+u(η̄′), that gives D+u(A−1η) ⊃ A∗D+v(η).

Conversely let η̄′ ∈ A−1(D(V )) and ζ ′ ∈ D+u(η̄′). Then

u(η′)− u(η̄′) ≤ 〈A(η′ − η̄′), ζ ′〉H , ∀η′ ∈ A−1(D(V )),

i.e.

v(η)− v(η̄) ≤ 〈A−1(η − η̄), ζ ′〉H = 〈(η − η̄), (A−1)∗ζ ′〉H , ∀η ∈ D(V ).

Since (A−1)∗ = (A∗)−1, we get (A∗)−1ζ ′ ∈ D+v(η̄), that gives also the opposite
inclusion D+u(A−1η) ⊂ A∗D+v(η).

4. Let η̄ ∈ D(V ) and ζ ∈ D∗v(η̄). Due to (3.15), we can find a sequence
ηn → η̄ such that ∇v(ηn) exists for any n ∈ N and ∇v(ηn) → ζ. Thanks to
the third claim we can say that also ∇u(η̄′n) exists and ∇u(η̄′n) = A∗∇v(ηn).
The sequence∇u(η̄′n) is bounded, due to the fact that the set-valued map η′ 7→
D+u(η̄′) is locally bounded. Therefore from any subsequence we can extract
a subsubsequence weakly converging to some element ζ ′ ∈ H . A∗ is a closed
operator, so that it is also a weakly closed operator. Therefore we can conclude
that ζ ∈ D(A∗) and ζ ′ = A∗ζ. Since this holds for any subsequence, we can
conclude that A∗∇v(ηn) ⇀ A∗ζ. �
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3.3 Dynamic Programming

The dynamic programming principle states that, for any η ∈ D(V ) and for any
s ≥ 0,

V (η) = sup
c(·)∈C(η)

[∫ s

0
e−ρt (U1(c(t) + U2(X0(t))) dt+ e−ρsV (X(s; η, c(·)))

]
.

The HJB equation associated is

ρv(η) = 〈η,A∗∇v(η)〉H + f(η)vη0(η) + U2(η0) +H(vη0(η)), (3.16)

whereH is the Legendre transform of U1, i.e.

H(ζ0) := sup
c≥0

(U1(c)− ζ0c) , ζ0 > 0.

Due to Hyphothesis 3.1.5-(i) and to Corollary 26.4.1 of [Rockafellar; 1970], we
have that H is strictly convex on (0,+∞). Notice that, thanks to Proposition
3.1.14-(3),

D+
η0
V (η) := {ζ0 ∈ R | (ζ0, ζ1(·)) ∈ D+V (η)} ⊂ (0,∞)

for any η ∈ D(V ), i.e. whereH is defined.

3.3.1 Viscosity solutions

First we study the HJB equation using the viscosity solutions approach. In
order to follow this approach, we have to define a suitable set of regular test
functions. This is the set

τ :=
{
ϕ ∈ C1(H) | ∇ϕ(·) ∈ D(A∗), ηn → η ⇒ A∗∇ϕ(ηn) ⇀ A∗∇ϕ(η)

}
.

(3.17)
Let us define, for c ≥ 0, the operator Lc on τ by

[Lcϕ](η) := −ρϕ(η) + 〈η,A∗∇ϕ(η)〉H + f(η)ϕη0(η)− cϕη0(η).

Lemma 3.3.1. Let ϕ ∈ τ , c(·) ∈ L1([0,+∞); R+) and set X(t) := X(t; η, c(·)).
Then the following identity holds for any t ≥ 0:

e−ρtϕ(X(t))− ϕ(η) =
∫ t

0
e−ρs[Lc(s)ϕ](X(s))ds.

Proof. The statement holds if we replace A with the Yosida approxima-
tions. Then we can pass to the limit and get the claim thanks to the regularity
properties of the functions belonging to τ . �
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Definition 3.3.2. (i) A continuous function v : D(V ) → R is called a viscosity
subsolution of (3.16) on D(V ) if for any ϕ ∈ τ and any ηM ∈ D(V ) such that
v − ϕ has a ‖ · ‖H -local maximum at ηM we have

ρv(ηM ) ≤ 〈ηM , A∗∇ϕ(ηM )〉H + f(ηM )ϕη0(ηM ) + U2(η0) +H(ϕη0(ηM )).

(ii) A continuous function v : D(V )→ R is called a viscosity supersolution
of (3.16) on D(V ) if for any ϕ ∈ τ and any ηm ∈ D(V ) such that v − ϕ has a
‖ · ‖H -local minimum at ηm we have

ρv(ηm) ≥ 〈ηm, A∗∇ϕ(ηm)〉H + f(ηm)ϕη0(ηm) + U2(η0) +H(ϕη0(ηm)).

(iii) A continuous function v : D(V )→ R is called a viscosity supersolution
of (3.16) on D(V ) if it is both a viscosity sub and supersolution.

We can prove the following:

Theorem 3.3.3. The value function V is a viscosity solution of (3.16) on D(V ).

Proof. (i) We prove that V is a viscosity subsolution. Let (ηM , ϕ) ∈ D(V )×τ
be such that V − ϕ has a local maximum at ηM . Without loss of generality we
can suppose V (ηM ) = ϕ(ηM ). Let us suppose, by contradiction that there
exists ν > 0 such that

2ν ≤ ρV (ηM )−
(
〈ηM , A∗∇ϕ(ηM )〉H + f(ηM )ϕη0(ηM ) +U2(η0) +H(ϕη0(ηM ))

)
.

Let us define the function

ϕ̃(η) := V (ηM ) + 〈∇ϕ(ηM ), η − ηM 〉H + ‖η − ηM‖2−1.

We have
∇ϕ̃(η) = ∇ϕ(ηM ) + (A∗)−1A−1(η − ηM ),

Thus ϕ̃ is a test function and we must have also

2ν ≤ ρV (ηM )−
(
〈ηM , A∗∇ϕ̃(ηM )〉H + f(ηM )ϕ̃η0(ηM ) +U2(η0) +H(ϕ̃η0(ηM ))

)
.

By concavity of V we have

V (ηM ) = ϕ̃(ηM ), ϕ̃(η) ≥ V (η) + ‖η − ηM‖2−1, ∀η ∈ D(V ).

By the continuity property of ϕ̃ we can find ε > 0 such that

ν ≤ ρV (η)−
(
〈η,A∗∇ϕ̃(η)〉H + f(η)ϕ̃η0(η) + U2(η0) +H(ϕ̃η0(η))

)
,

∀η ∈ Bε := B(H,‖·‖H)(ηM , ε).
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Take a sequence δn > 0, δn → 0 and, for any n, take a δn-optimal control
cn(·) ∈ Cad(ηM ). Set Xn(·) := X(·; ηM , cn(·)) and define

tn := inf{t ≥ 0 | ‖Xn(t)− ηM‖ = ε} ∧ 1.

Of course tn is well-defined and belongs to (0, 1]. Moreover, by continuity of
trajectories, Xn(t) ∈ Bε, for t ∈ [0, tn). We distinguish two cases:

lim sup
n

tn = 0 or lim sup
n

tn > 0.

In the first case we can write

δn ≥ −
∫ tn

0
e−ρt [U1(cn(t)) + U2(Xn

0 (t))] dt−
(
e−ρtnV (X(tn))− V (ηM )

)
≥ −

∫ tn

0
e−ρt [U1(cn(t)) + U2(Xn

0 (t))] dt

−
(
e−ρtn(ϕ̃(Xn(tn)))− ϕ̃(ηM )

)
+ e−ρtn‖Xn(tn)− ηM‖2−1

= −
∫ tn

0
e−ρt

[
U1(cn(t)) + U2(Xn

0 (t)) + [Lcn(t)ϕ̃](Xn(t))
]
dt

+e−ρtn‖Xn(tn)− ηM‖2−1

≥ −
∫ tn

0
e−ρt

[
U2(Xn

0 (t))− ρϕ̃(Xn(t)) + 〈Xn(t), A∗∇ϕ̃(Xn(t))〉H

+f(Xn(t))ϕ̃η0(Xn(t)) +H(ϕ̃η0(Xn(t)))
]
dt+ e−ρtn‖Xn(tn)− ηM‖2−1

≥ tnν + e−ρtn‖Xn(tn)− ηM‖2−1,

thus it has to be
‖Xn(tn)− ηM‖2−1 → 0.

Let us show that this is impossible. The above convergence implies in particu-
lar that

|Xn
0 (tn)− (ηM )0| → 0. (3.18)

Moreover, by definition of tn, it has to be

|Xn
0 (t)− (ηM )0| ≤ ε, t ∈ [0, tn]. (3.19)

Since tn → 0, taking into account (3.19), we have also

‖Xn
1 (tn)− (ηM )1‖L2

−T
→ 0. (3.20)

The convergences (3.18) and (3.20) are not compatible with the definition of tn
and the contradiction arises. In the second case we can suppose, eventually
passing to a subsequence, that tn → t̄ ∈ (0, 1]. So we get as before

δn ≥ tnν + e−ρtn‖Xn(tn)− ηM‖2−1 ≥ tnν;

since δn → 0 and tnν → t̄ν, again a contradiction arises.

(ii) The proof that V is a viscosity supersolution is standard. We refer to
[Li, Yong; 1995]. �
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3.3.2 Smoothness of viscosity solutions

In this subsection we show that the concave ‖ · ‖−1-continuous viscosity so-
lutions of (3.16) (so that in particular the value function V ) are differentiable
along the direction n̂ = (1, 0). For this purpose we need the following lemma.

Lemma 3.3.4. Let v : D(V )→ R a concave ‖ · ‖−1-continuous function and suppose
that η̄ ∈ D(V ) is a differentiability point for v and that∇v(η̄) = ζ. Then

1. There exists a test function ϕ such that v − ϕ has a local maximum at η̄ and
∇ϕ(η̄) = ζ.

2. There exists a test function ϕ such that v − ϕ has a local minimum at η̄ and
∇ϕ(η̄) = ζ.

Proof. Thanks to Proposition 3.2.12 and due to the concavity of v, the first
statement is clearly satisfied by the function 〈·, ζ〉H . We prove now the second
statement, which is more delicate. We use the notation of Proposition 3.2.12.
Thanks to the third claim of Proposition 3.2.12, we have A∗ζ ∈ D+u(η̄′). This
means that

u(η′)− u(η̄′)− 〈η′ − η̄′, A∗ζ〉H ≥ −‖η′ − η̄′‖H · ε(‖η′ − η̄′‖H),

where ε : [0,+∞)→ [0,+∞) is an increasing function such that

‖η′ − η̄′‖H → 0 =⇒ ε(‖η′ − η̄′‖H)→ 0.

The previous inequality can be rewritten also as

u(η′)− u(η̄′)− 〈A(η′ − η̄′), ζ〉H ≥ −‖η′ − η̄′‖H · ε(‖η′ − η̄′‖H).

Passing to v this reads as

v(η)− v(η̄)− 〈η − η̄, ζ〉H ≥ −‖η − η̄‖−1 · ε (‖η − η̄‖−1) ,

where ε (‖η − η̄‖−1) → 0, when ‖η − η̄‖−1 → 0. We look for a test function of
this form:

ϕ(η) = v(η̄) + 〈η − η̄, ζ〉H + g (‖η − η̄‖−1) ,

where g : [0,+∞) → [0,+∞) is a suitable increasing C1 function such that
g(0) = 0. Notice that ϕ(η̄) = v(η̄), so that, in order to prove that v − ϕ has a
local minimum at η̄, we have to prove that ϕ ≤ v in a neighborhood of η̄.

Let us define the function

g(r) :=
∫ 2r

0
ε(s)ds ≥

∫ 2r

r
ε(s)ds ≥ rε(r).
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Then

ϕ(η) = v(η̄) + 〈η − η̄, ζ〉H − g(‖η − η̄‖−1)

≤ v(η̄) + 〈η − η̄, ζ〉H − ‖η − η̄‖−1 · ε(‖η − η̄‖−1)

≤ v(η).

Moreover

∇ϕ(η) =

ζ − (A∗)−1 ε(2‖η − η̄‖−1)
‖η − η̄‖−1

A−1(η − η̄), if η 6= η̄,

ζ, if η = η̄,

i.e. ϕ is a test function and∇ϕ(η̄) = ζ. �

Now we can state and prove the main result.

Theorem 3.3.5. Let v be a concave ‖ · ‖−1-continuous viscosity solution of (3.16) on
D(V ). Then v is differentiable along the direction n̂ = (1, 0) at any point η ∈ D(V )
and the function η 7→ vη0(η) is continuous on D(V ).

Proof. Let η ∈ D(V ) and ζ, ξ ∈ D∗v(η̄). Thanks to Proposition 3.2.12, there
exist sequences (ηn), (η̃n) such that:

• ηn → η, η̃n → η;

• ∇v(ηn) and∇v(η̃n) exist for all n ∈ N;

• A∗∇v(ηn) ⇀ A∗ζ and A∗∇v(η̃n) ⇀ A∗ξ.

Thanks to Lemma 3.3.4 we can write, for any n ∈ N,

ρv(ηn) = 〈ηn, A∗∇v(ηn)〉H + f(ηn)vη0(ηn) + U2(ηn0 ) +H(vη0(ηn)),

ρv(η̃n) = 〈η̃n, A∗∇v(η̃n)〉H + f(η̃n)vη0(η̃n) + U2(ηn0 ) +H(vη0(η̃n)).

Passing to the limit we get

〈η,A∗ζ〉H+f(η)ζ0+U2(η0)+H(ζ0) = ρv(η) = 〈η,A∗ξ〉H+f(η)ξ0+U2(η0)+H(ξ0).
(3.21)

On the other hand λζ + (1− λ)ξ ∈ D+v(η̄), for any λ ∈ (0, 1), so that we have
the subsolution inequality

ρv(η) ≤ 〈η,A∗[λζ + (1− λ)ξ]〉H + f(η)[λζ0 + (1− λ)ξ0] + U2(η0)

+H(λζ0 + (1− λ)ξ0), ∀λ ∈ (0, 1). (3.22)
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Combining (3.21) and (3.22) we get

H(λζ0 + (1− λ)ξ0) ≥ λH(ζ0) + (1− λ)H(ξ0);

since H is strictly convex, the previous inequality implies ζ0 = ξ0. This means
that the projection ofD∗v(η) onto n̂ is a singleton. Thanks to (3.15) this implies
also that the projection of D+v(η) onto n̂ is a singleton and therefore that v is
differentiable in the direction n̂ at η.

We prove now that the map η 7→ vη0(η) is continuous on D(V ). To this aim
take η ∈ D(V ) and let (ηn) be a sequence such that ηn → η. We have to show
that vη0(ηn) → vη0(η). Of course for any n ∈ N there exists pn1 ∈ L2

−T such
that (vη0(ηn), pn1 ) ∈ D+v(ηn). Since v is concave, it is also locally Lipschitz
continuous so that the super-differential is locally bounded. Therefore, from
any subsequence (vη0(ηnk)), we can extract a sub-subsequence (vη0(ηnkh )) such
that

(
vη0(ηnkh ), p

nkh
1

)
is weakly convergent towards some limit point. Due to

the concavity of v this limit point must live in the set D+v(η). In particular the
limit point of (vη0(ηnkh )) must coincide with vη0(η). This holds true for any
subsequence (vη0(ηnk)), so that the claim follows by the usual argument on
subsequences. �

Remark 3.3.6. Notice that in the assumptions of Theorem 3.3.5 we do not re-
quire that v is the value function, but only that it is a concave ‖·‖−1-continuous
viscosity solution of (3.16). �

3.3.3 Verification theorem and optimal feedback strategies

Thanks to the regularity result of the previous subsection we can define, at
least formally, the “candidate” optimal feedback map on D(V ), which is given
by

C(η) := argmaxc≥0 (U1(c)− cVη0(η)) , η ∈ D(V ). (3.23)

Note that this map is well-defined since V is concave and, by Proposition
3.1.14, strictly increasing, so that we have Vη0(η) ∈ (0,+∞) for all η ∈ D(V ).
Existence and uniqueness of the argmax follow from the assumptions on U1.
Moreover, since Vη0 is continuous on D(V ), also C is continuous on D(V ). The
closed-loop delay state equation associated with this map is, for η ∈ D(V ),x′(t) = rx(t) + f0

(
x(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
− C

(
(x(t), x(t+ ξ)|ξ∈[−T,0])

)
,

x(0) = η0, x(s) = η1(s), s ∈ [−T, 0).
(3.24)

Now we want to prove a Verification Theorem: if the closed loop equation
(3.24) has a strictly positive solution x∗(·) (so that

(
x∗(t), x∗(t+ ξ)|ξ∈[−T,0]

)
∈
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D(V ) for all t ≥ 0 and the term C
(
(x∗(t), x∗(t+ ξ)|ξ∈[−T,0])

)
is well-defined for

every t ≥ 0), then the feedback strategy

c∗(t) := C
(
(x∗(t), x∗(t+ ξ)|ξ∈[−T,0])

)
(3.25)

is optimal. Notice that, by definition of c∗(·), if x∗(·) is a strictly positive so-
lution of (3.24), then c∗(·) is admissible and, setting X∗(t) := X(t; η, c∗(·)), we
have

X∗(t) =
(
x∗(t), x∗(t+ ξ)|ξ∈[−T,0]

)
∈ D(V ), ∀t ≥ 0.

The proof of the Verification Theorem, in the classical case, is done by com-
puting the derivative

t 7→ d

dt

[
e−ρtV (X∗(t))

]
. (3.26)

and then using the HJB equation and integrating the resulting equality.
We want to get exactly the classical statement but we cannot proceed with

the classical proof since we cannot compute the derivative (3.26). So we pro-
ceed using the fact that V is a viscosity solution (as e.g. in [Yong, Zhou; 1999],
Theorem 3.9, Chapter 5, and in [Li, Yong; 1995], Theorems 5.4, 5.5, Chapter 6).
But two main difficulties arise (strongly connected each other):

• The function
t 7→ e−ρtV (X∗(t)) (3.27)

is not Lipschitz continuous so, it may not have a.e. derivative. Indeed we
do not require the initial datum η belonging to D(A) and the operator A
works as a shift operator on the infinite-dimensional component so we
do not have the condition X∗(t) ∈ D(A) for almost every t ≥ 0 that
would give the required Lipschitz regularity for the function (3.27): only
continuity is ensured. Without this Lipschitz regularity we cannot apply
the Fundamental Theorem of Calculus as done e.g. in [Li, Yong; 1995],
Theorems 5.4, 5.5, Chapter 6.

• Consequently we have to deal with the concept of Dini derivatives of the
function (3.27) and, since we want to integrate them, we need something
like a Fundamental Theorem of Calculus in inequality form relating the
function and the integral of its Dini derivative. Such a result in the con-
text of stochastic verification theorems for viscosity solutions is given
in [Yong, Zhou; 1999], Lemma 5.2, Chapter 5. Unfortunately we discov-
ered that such result is not true as it is stated (we give a counterexample
in Remark 3.3.10), so we have to use a more refined result, the so called
Saks Theorem, that needs stronger assumptions and that is based on the
theory of Dini derivatives.
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Recall first that, if g is a continuous function on some interval [α, β] ⊂ R, the
right Dini derivatives of g are defined by

D+g(t) = lim sup
h↓0

g(t+ h)− g(t)
h

, D+g(t) = lim inf
h↓0

g(t+ h)− g(t)
h

, t ∈ [α, β),

and the left Dini derivatives by

D−g(t) = lim sup
h↑0

g(t+ h)− g(t)
h

, D−g(t) = lim inf
h↑0

g(t+ h)− g(t)
h

, t ∈ (α, β].

Proposition 3.3.7. If g is a continuous real function on [α, β], then the bounds of
each Dini’s derivative are equal to the bounds of the set of the difference quotients{

g(t)− g(s)
t− s

∣∣∣ t, s ∈ [α, β]
}
.

�

Proof. See [Bruckner; 1978], Theorem 1.2, Chapter 4. �

An immediate consequence of Proposition 3.3.7 above is the following.

Proposition 3.3.8 (Monotonicity result). Let g ∈ C([α, β]; R) be such that

D+g(t) ≥ 0, ∀t ∈ [α, β).

Then g is nondecreasing on [α, β]. �

The following Lemma is a special case of the Saks Theorem (see, e.g., Chap-
ter VI, Theorem 7.3, of [Saks; 1964]). We give the proof in a special case using
the Monotonicity result above.

Lemma 3.3.9. Let g ∈ C([0,+∞); R). Suppose that there exists µ ∈ L1([0,+∞); R)
such that

D−g(t) ≥ µ(t), for a.e. t ∈ (0,+∞). (3.28)

and that

D−g(t) > −∞ ∀t ∈ (0,+∞) (3.29)

except at most for those of a countable set. Then, for every 0 ≤ α ≤ β < +∞,

g(β)− g(α) ≥
∫ β

α
µ(t)dt. (3.30)
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Proof. We give the proof in the special case when µ is continuous and (3.28)
holds for every t ∈ (0,+∞)1. Since D−g(t) ≥ µ(t) for every t ∈ (0,+∞), we
have

D−

[
g(t)−

∫ t

0
µ(s)ds

]
≥ 0, ∀t ∈ (0,+∞).

Thanks to Proposition 3.3.7 we have also

D+

[
g(t)−

∫ t

0
µ′(s)ds

]
≥ 0, ∀t ∈ [0,+∞).

Therefore, due to Proposition 3.3.8, the function

t 7→ g(t)−
∫ t

0
µ(s)ds

is nondecreasing, getting the claim. �

Remark 3.3.10. We give some remarks on Lemma 3.3.9.

• If µ is continuous and (3.28) holds for all t > 0 (as we assume in the proof
of Lemma 3.3.9), then (3.29) is verified.

• In general we cannot avoid to assume (3.29): without it, then (3.30) is
no longer true. For example, if g = −f on [0, 1], where f is the Cantor
function and µ ≡ 0, we have

µ(t) = 0 = g′(t) = D−g(t) for a.e. t ∈ (0, 1].

Therefore, taking α = 0, β = 1, the left handside of (3.30) is −1, while
the right handside is 0. Indeed in this case D−g = −∞ on the Cantor set.
So Lemma 5.2, Chapter 5, of [Yong, Zhou; 1999] is not correct. Indeed the
condition required therein is not sufficient to apply Fatou’s Lemma: it is
assumed that only the limsup of difference quotients is estimated from
above by an integrable function while also all difference quotients should
be estimated from above by the same integrable function (and this is not
true in the case of our counterexample). Therefore, one could substitute
the assumption (3.29) with the following: there exists µ ∈ L1([0,+∞); R)
such that for some h0 > 0 and for almost every t > 0 we have

g(t+ h)− g(t)
h

≥ µ(t), −h0 ≤ h < 0.

�
1In the use of this Lemma that we will do in the next Verification Theorem 3.3.11, actually

these conditions are satisfied.
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Theorem 3.3.11 (Verification). Let η ∈ H+ and let x∗(·) be a solution of (3.24) such
that x∗(·) > 0; let c∗(·) be the strategy defined by (3.25). Then c∗(·) is admissible and
optimal for the problem.

Proof. As said above the fact that c∗(·) is admissible is a direct consequence
of the assumption x∗(·) > 0 and of the definition of c∗(·).

Set X∗(·) := X(· ; η, c∗(·)) and let s > 0. Let p1(s) ∈ L2
−T be such that

(Vη0(X∗(s)), p1(s)) ∈ D+V (X∗(s))

and let

ϕ(ζ) := V (X∗(s)) + 〈(Vη0(X∗(s)), p1(s)) , ζ −X∗(s)〉H , ζ ∈ H,

so that

ϕ(X∗(s)) = V (X∗(s)), ϕ(ζ) ≥ V (ζ), ζ ∈ H.

From Proposition 3.2.12 we know that ϕ ∈ τ , so that

lim inf
h↑0

e−ρ(s+h)V (X∗(s+ h))− e−ρsV (X∗(s))
h

≥ lim inf
h↑0

e−ρ(s+h)ϕ(X∗(s+ h))− e−ρsϕ(X∗(s))
h

= e−ρs
[
Lc∗(s)ϕ

]
(X∗(s)) = e−ρs

[
−ρV (X∗(s))+〈X(s), A∗ (Vη0(X∗(s)), p1(s))〉H

+ f(X∗(s))Vη0(X∗(s))− c∗(s)Vη0(X∗(s))
]
.

By definition of c∗(·) we get

lim inf
h↑0

e−ρ(s+h)V (X∗(s+ h))− e−ρsV (X∗(s))
h

+ e−ρs[U1(c∗(s)) + U2(X∗0 (s))]

≥ e−ρs
[
− ρV (X∗(s)) + 〈X∗(s), A∗ (Vη0(X∗(s)), p1(s))〉H

+ f(X∗(s))Vη0(X∗(s)) +H(X∗(s)) + U2(X∗0 (s))
]
.

Due to the subsolution property of V we get

lim inf
h↑0

e−ρ(s+h)V (X∗(s+ h))− e−ρsV (X∗(s))
h

+e−ρs[U1(c∗(s))+U2(X∗0 (s))] ≥ 0.

The function s 7→ e−ρsV (X∗(s)) and the function s 7→ e−ρs[U1(c∗(s))+U2(X∗0 (s))]
are continuous; therefore we can apply Lemma 3.3.9 on [0,M ], M > 0, getting

e−ρMV (X∗(M)) +
∫ M

0
e−ρs[U1(c∗(s)) + U2(X∗0 (s))]ds ≥ V (η).
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Since V,U1, U2 are bounded from above, taking the limsup for M → +∞ we
get by Fatou’s Lemma∫ +∞

0
e−ρs[U1(c∗(s)) + U2(X∗0 (s))]ds ≥ V (η),

which gives the claim. �

Remark 3.3.12. We have given in Theorem 3.3.11 a sufficient condition of opti-
mality: indeed, we have proved that if the feedback map defines an admissible
strategy then such a strategy is optimal. Of course, a natural question arising
is whether, at least with a special choice of data, such a condition is also nec-
essary for the optimality, i.e. if, given an optimal strategy, it can be written as
feedback of the associated optimal state. From the viscosity point of view the
answer to this question relies in requiring that the value function is a bilateral
viscosity subsolution of (3.16) along the optimal state trajectories, i.e. requir-
ing that the value function satisfies the property of Definition 3.3.2-(i) also with
the reverted inequality along such trajectories.

Such a property of the value function is related to the so-called backward
dynamic programming principle which is, in turn, related to the backward study
of the state equation (see [Bardi, Capuzzo-Dolcetta; 1997], Chapter III, Section
2.3). Differently from the finite-dimensional case, this topic is not standard in
infinite-dimension unless the operator A is the generator of a strongly contin-
uous group, which is not our case.

However, in our case we can use the delay original setting of the state equa-
tion to approach this topic. Then the problem reduces to find, at least for suf-
ficient regular data, a backward continuation of the solution. This problem is
faced, e.g., in [Hale, Verduyn; 1993], Chapter 2, Section 5. Unfortunately our
equation does not fit the main assumption required therein, which in our set-
ting basically corresponds to require that the function a(·), seen as measure,
has an atom at −T . Investigation on this is left for future research. �

Up to now we did not make any further assumption on the functions a and
U2 beyond Hypotheses 3.1.2 and 3.1.5; in particular it could be U2 ≡ 0. How-
ever without any further assumption we have no information on the behaviour
of Vη0 when we approach the boundary of D(V ) and therefore we are not able
to say anything about the existence of solutions of the closed loop equation
and whether they satisfy or not the state constraint. So basically we cannot say
whether the hypothesis of Theorem 3.3.11 is satisfied or not. In order to give
sufficient conditions for that, we need to do some further assumptions.
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Hypothesis 3.3.13. We will make use of the following assumptions

(i) U2 is not integrable at 0+, (ii)
∫ 0

−ε
a(ξ)dξ > 0, ∀ε > 0. (3.31)

�

Lemma 3.3.14.

1. The following holds
∂‖·‖HD(V ) = ∂‖·‖−1

D(V ).

Thanks to the previous equality we write without ambiguity ∂D(V ) for denot-
ing the boundary of D(V ) referred to ‖ · ‖H or ‖ · ‖−1 indifferentely.

2. Suppose that (3.31)-(i) holds; then

lim
η→η̄

Vη0(η) = +∞, ∀η̄ ∈ ∂D(V ),

where the limit is taken with respect to ‖ · ‖H .

Proof. We work with the original one-dimensional state equation with de-
lay.

1. First of all note that, thanks to Proposition 3.1.14 and Proposition 3.2.8,
the set D(V ) has the following structure

D(V ) =
⋃

η1∈L2
−T

(
(ηη1

0 ,+∞)× {η1}
)
, (3.32)

where, for η1 ∈ L2
−T , we set ηη1

0 = inf{η0 > 0 | (η0, η1(·)) ∈ D(V )}. For any
η ∈ H set xη(·) := x(·; η, 0) and consider the function g : H → R defined by

g(η0, η1(·)) := inf
t∈[0,T ]

xη(t).

Thanks to Lemma 3.2.7 this function is continuous (with respect to both the
norms ‖ · ‖H and ‖ · ‖−1), so we have the following representation of D(V ) in
terms of g:

D(V ) = {g > 0}.

Lemma 3.1.8 shows that g is increasing with respect to the first variable. Ac-
tually g is strictly increasing with respect to the first variable. Let us show
this fact. Let η1 ∈ L2

−T and take η0, η̄0 ∈ R such that η0 > η̄0. Define y(·) :=
x(·; (η0, η1(·)), 0), x(·) := x(·; (η̄0, η1(·)), 0) and let z(·), z̄(·) be respectively the
solutions on [0, T ] of the differential problems without delayz′(t) = rz(t) + f0

(
z(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
,

z(0) = η0,
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z̄′(t) = rz̄(t) + f0

(
z̄(t),

∫ 0
−T a(ξ)x(t+ ξ)dξ

)
,

z̄(0) = η̄0,

Then we have, on the interval [0, T ], z̄(·) ≡ x(·) and, by comparison criterion,
y(·) ≥ z(·); moreover we can apply the classic Cauchy-Lipschitz Theorem for
ODEs getting uniqueness for the solutions of the above ODEs, which yields
z(·) > z̄(·) on [0, T ]. Thus y(·) > x(·) on [0, T ], proving that g is strictly increas-
ing with rescpect to the first variable.

The continuity (with respect to both the norms) of g, (3.32) and the fact that
g is strictly increasing with respect to the first variable lead to have

∂‖·‖HD(V ) = ∂‖·‖−1
D(V ) = {g = 0} =

⋃
η1∈L2

−T

(
{ηη1

0 } × {η1}
)
.

2. First we prove that

lim
η→η̄

V (η) = −∞, ∀η̄ ∈ ∂D(V ).

Let η̄ ∈ ∂D(V ) and let (ηn) ⊂ D(V ) be a sequence such that ηn → η̄. We can
suppose without loss of generality that (ηn) ⊂ B(η̄, 1). Set

xn(·) := x(·; ηn, 0), pn := sup
ξ∈[0,2T ]

xn(ξ).

Thanks to Lemma 3.2.7 there exists K > 0 such that pn ≤ K for any n ∈ N. So,
since f0(x, y) ≤ C0(1 + |x|+ |y|) for some C0 > 0, we have for the dynamics of
xn(·) in the interval [0, 2T ]

d

dt
xn(t) ≤ rxn(t) +R,

where

R := C0

(
1 +K + ‖a‖L2

−T
(‖η̄1‖L2

−T
+ 1) + ‖a‖L2

−T
T 1/2K

)
.

Therefore there exists C > 0 such that, for any s ∈ [0, T ), n ∈ N,

xn(t) ≤ xn(s) er(t−s)+
R

r
(er(t−s)−1) ≤ xn(s)(1+C(t−s))+C(t−s), t ∈ [s, 2T ].

(3.33)
By continuity of g we have limn→∞ g(ηn0 , η

n
1 (·)) = 0. Thus for any ε > 0 we can

find n0 ∈ N such that, for n ≥ n0, there exists sn ∈ [0, T ) such that

xn(sn) ≤ ε. (3.34)

We want to show that∫ +∞

0
e−ρtU2(xn(t))dt −→ −∞, n→∞. (3.35)



224

For this purpose, sinceU2 is bounded from above, it is clear that we can assume
without loss of generality U2(·) ≤ 0. We have for n ≥ n0, taking into account
(3.33) and (3.34),∫ +∞

0
e−ρtU2(xn(t))dt ≤ e−2ρT

∫ 2T

sn

U2

(
xn(sn)(1 + C(t− sn)) + C(t− sn)

)
dt

≤ e−2ρT

∫ 2T

sn

U2(ε(1 + C(t− sn)) + C(t− sn))dt

≤ e−2ρT

C(ε+ 1)

∫ CT

ε
U2(x)dt.

Therefore, by the arbitrariness of ε and since U2 is not integrable at 0+, we get
(3.35). This is enough to conclude that J(ηn; 0) → −∞, as n → ∞. Of course
we have xn(·) ≥ x(·; ηn, c(·)) for any c(·) ∈ C(ηn). Since U1 is bounded from
above this is enough to say that also V (ηn)→ −∞, as n→∞.

Now we prove the claim. Let η̄ ∈ ∂D(V ) and (ηn) ⊂ D(V ) be such that
ηn → η̄, suppose without loss of generality (ηn) ⊂ B(η̄, 1) and set xn(·) :=
x(· ; (ηn0 + 1, ηn1 ), 0) > 0. Since f0 is Lipschitz continuous and nondecreasing on
the second variable, there exists C > 0 such that

f0

(
x(t),

∫ 0

−T
a(ξ)x(t+ ξ)dξ

)
≥ −C

(
1 + x(t) + ‖a‖L2

−T
(‖η̄1‖L2

−T
+ 1)

)
=: −R̃.

Suppose R̃ ≤ 0 . Then d
dtx

n(t) ≥ rxn(t), so that, since ηn0 > 0, we have xn(t) ≥
ηn0 + 1 ≥ 1. This leads to the estimate

V (ηn0 + 1, ηn1 (·)) ≥ K, n ∈ N,

for some K > 0. Due to the concavity of V we have the estimate

Vη0(ηn) ≥ V (ηn0 + 1, ηn1 (·))− V (ηn0 , η
n
1 (·)) ≥ K − V (ηn0 , η

n
1 (·))→ +∞,

i.e. the claim.
Suppose then R̃ > 0 and set xn(·) := x(· ; (ηn0 + R̃/r, ηn1 ), 0). Then

d

dt
xn(t) ≥ rxn(t)− R̃,

so that, since ηn0 > 0, we have xn(t) ≥ R̃/r > 0. This leads to the estimate

V (ηn0 + R̃/r, ηn1 (·)) ≥ K, n ∈ N,

for some K > 0. Due to concavity of V we have the estimate

Vη0(ηn) ≥ r

R̃

[
V (ηn0 + R̃/r, ηn1 (·))− V (ηn0 , η

n
1 (·))

]
≥ r

R̃
[K − V (ηn0 , η

n
1 (·))]→ +∞,

i.e. the claim. �
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Proposition 3.3.15. Let (3.31) hold, let η ∈ H++ and consider the closed-loop delay
state equation (3.24). Then this equation admits a solution x∗(·) ∈ C1([0,+∞); R).
Moreover, for all t ≥ 0,

x∗(t) > 0, (x∗(t), x∗(t+ ξ)|ξ∈[−T,0]) ∈ D(V ).

In particular the feedback strategy defined in (3.25) is admissible.

Proof. Thanks to Lemma 3.3.14, if U2 is not integrable at 0+ we can extend
the map C to a continuous map defined on the whole space (H, ‖·‖H) defining
C ≡ 0 on D(V )c. We set

G(η) := rη0 + f (η)− C (η) , η ∈ H,

and note that G is continuous.

Local existence. Let η̄ ∈ H the initial datum for the equation. We have to
show the local existence of a solution ofx′(t) = G

(
(x(t), x(t+ ξ)|ξ∈[−T,0])

)
,

x(0) = η̄0, x(s) = η̄1(s), s ∈ [−T, 0),

Since G is continuous, there exists b > 0 such that

m := sup
‖η−η̄‖2≤b

|G(η)| < +∞.

By continuity of translations in L2(R; R) we can find a ∈ [0, T ] such that∫ −t
−T
|η̄1(t+ ξ)− η̄1(ξ)|2dξ ≤ b/4, ∀t ∈ [0, a];

moreover, without loss of generality, we can suppose that∫ 0

−a
|η̄1(ξ)|2dξ ≤ b/16.

Set
α := min

{
a,

b

2m
,
b

16
(
b+ 2|η̄0|2

)−1
}
.

Define
M :=

{
x(·) ∈ C ([0, α]; R)

∣∣ |x(·)− η̄0|2 ≤ b/2
}

;

M is a convex closed subset of the Banach space C([0, α]; R) endowed with the
sup-norm. Define

x(t+ ξ) := η̄1(t+ ξ), if t+ ξ ≤ 0,
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and observe that, for t ∈ [0, α], x(·) ∈M ,∫ 0

−t
|x(t+ ξ)− η̄1(ξ)|2dξ ≤

∫ 0

−t

(
2|x(t+ ξ)|2 + 2|η̄1(ξ)|2

)
dξ

≤ 2
[∫ 0

−t

(
2 (|x(t+ ξ)− η̄0|)2 + 2|η̄0|2

)
dξ +

∫ 0

−t
|η̄1(ξ)|2dξ

]
≤ 2

[
2t
(
b

2
+ |η̄0|2

)
+

b

16

]
≤ b/4.

So, for t ∈ [0, α], x(·) ∈M , we have

∥∥(x(t), x(t+ ξ)|ξ∈[−T,0]

)
− η̄
∥∥2

H
≤ |x(t)− η̄0|2 +

∫ 0

−t
|x(t+ ξ)− η̄1(ξ)|2dξ

+
∫ −t
−T
|η̄1(t+ ξ)− η1(ξ)|2dξ

≤ b/2 + b/4 + b/4 = b.

Define, for t ∈ [0, α], x(·) ∈M ,

[J x](t) := η̄0 +
∫ t

0
G
(
x(s), x(s+ ξ)|ξ∈[−T,0]

)
ds, t ∈ [0, α].

We have ∣∣∣ [J x](t)− η0

∣∣∣ ≤ ∫ t

0

∣∣G (x(s), x(s+ ξ)|ξ∈[−T,0]

)∣∣ ds
≤ tm ≤ b/2.

Therefore we have proved that J maps the closed and convex set M in itself.
We want to prove that J admits a fixed point, i.e., by definition of J , the
solution we are looking for. By Schauder’s Theorem it is enough to prove that
J is completely continuous, i.e. that J (M) is compact. For any x(·) ∈ M , we
have the estimate∣∣∣ [J x](t)−[J x](t̄)

∣∣∣ ≤ ∫ t∨t̄

t∧t̄

∣∣G (x(s), x(s+ ξ)|ξ∈[−T,0]

)∣∣ ds ≤ m|t−t̄|, t, t̄ ∈ [0, α].

Therefore J (M) is a uniformly bounded and equicontinuous family in the
space C([0, α]; R). Thus, by Ascoli-ArzelàTheorem, J (M) is compact.

Global existence. Let η ∈ H++ and let x∗(·) be the solution of equation (3.24)
defined on an interval [0, β), β > 0. Note that, by continuity of f0, C, we have
x∗(·) ∈ C1([0, β); R).
Since C(·) ≥ 0, we have x∗(·) ≤ x(·; η, 0); therefore x∗(·) is dominated from
above on [0, β) by

max
t∈[0,β]

x(·; η, 0).
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We want to show that it is also dominated from below in order to apply the
extension argument. Let us suppose that x∗(t̄) = 0 for some t̄ ∈ [0, β). We want
to show that this leads to a contradiction, so that, without loss of generality, we
can suppose that

t̄ = min{t ∈ (0, β) | x∗(t) = 0}.

Therefore x∗(·) > 0 in a left neighborhood of t̄. Since f0 satisfies (3.2) and
thanks to (3.31)-(ii), we must have d

dtx
∗(t̄) > 0, which contradicts x∗(·) > 0 in a

left neighborhood of t̄. Therefore we can say that x∗(·) > 0 on [0, β), so that in
particular x∗(·) is bounded from below by 0 on [0, β). Therefore, arguing as in
the classical extension theorems for ODE, we could show that we can extend
x∗(·) to a solution defined on [0,+∞) and, again by the same argument above,
it will be x∗(·) > 0 on [0,+∞). �

3.4 Approximation results

In this section we obtain some approximation results which may be used in
order to produce ε-optimal controls for a wider class of problems. Herein we
assume that

rx+ f0(x, 0) ≥ 0, ∀x ≥ 0, (3.36)

which implies in particular (3.4). In fact, all the results given below hold under
(3.4) as well. We assume (3.36) only to simplify the proofs. Moreover we incor-
porate the term rx in the state equation within the term f0, so that consistently
with (3.36) we assume that

f0(x, 0) ≥ 0, ∀x ≥ 0. (3.37)

3.4.1 The case without utility on the state

In the previous section we introduced an assumption of no integrability of
the utility function U2. This was necessary in order to ensure the existence of
solutions for the closed loop equation and the admissibility of the feedback
strategy. This fact is quite uncomfortable, because usually in consumption
problems the objective functional is given by a utility depending only on the
consumption variable, i.e. the case U2 ≡ 0 should be considered. Of course we
could take a U2 heavily negative in a right neighborhood of 0 and equal to 0
out of this neighborhood, considering this as a forcing on the state constraint
(states too near to 0 must be avoided). However we want to give here an
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approximation procedure to partly treat also the case U2 ≡ 0, giving a way to
construct at least ε-optimal strategies in this case.

So, let us consider a sequence of real functions (Un2 ) such that

Un2 ↑ 0, Un2 not integrable at 0+, Un2 ≡ 0 on [1/n,+∞). (3.38)

Let us denote by Jn and V n respectively the objective functionals and the value
functions of the problems where the utility on the state is given by Un2 and by
J0 and V 0 respectively the objective functional and the value function of the
problem where the utility on the state disappears, i.e. U2 ≡ 0. It is immediate
to see that monotonicity implies

V n ↑ g ≤ V 0. (3.39)

Thanks to the previous section, for any problem V n, n ∈ N, we have an optimal
feedback strategy c∗n(·).

Lemma 3.4.1. Let η ∈ D(V 0) ⊂ H+. Then, for any ε > 0, there exists an ε-optimal
strategy cε(·) ∈ C(η) for V 0(η) such that

inf
t∈[0,+∞)

x(t; η, cε(·)) > 0.

Proof. Let ε > 0 and take an ε/2-optimal control cε/2(·) ∈ C(η) for V 0(η).
Let M > T be such that

1
ρ
e−ρM (Ū1 − U1(0)) < ε/2. (3.40)

Define the control

cε(t) :=

cε/2(t), for t ∈ [0,M ],

0, for t > M.

By Lemma 3.1.8 we have

x(·; η, cε(·)) ≥ x(·; η, cε/2(·))

and, by the assumption (3.37) and since cε(t) = 0 for t ≥ M , it is not difficult
to see that

x(t; η, cε(·)) ≥ x(M ; η, cε(·)), for t ≥M,

so that

inf
t∈[0,+∞)

x(t; η, cε(·)) = inf
t∈[0,M ]

x(t; η, cε(·)) > 0.
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We claim that cε(·) is ε-optimal for V 0(η), which yields the claim. Since cε/2(·)
is ε/2-optimal for V 0(η), taking also into account (3.40), we get

V 0(η)−
∫ +∞

0
e−ρtU1(cε(t))dt = V 0(η)−

∫ +∞

0
e−ρtU1(cε/2(t))dt

+
∫ +∞

M
e−ρt(U1(cε/2(t))− U1(0))dt < ε/2 + ε/2 = ε.

�

Proposition 3.4.2. Let η ∈ D(V 0) and ε > 0. Then V n(η)→ V 0(η) and, when n is
large enough, c∗n(·) is ε-optimal for V 0(η).

Proof. Let ε > 0 and take an ε-optimal control cε(·) ∈ C(η) for V 0(η) such
that (Lemma 3.4.1)

m := inf
t∈[0,+∞)

x(t; η; cε(·)) > 0.

Take n ∈ N such that 1/n < m. Since Un2 ≡ 0 on [m,+∞), we have

V 0(η)− ε ≤ J(η; cε(·)) =
∫ +∞

0
e−ρtU1(cε(t))dt

=
∫ +∞

0
e−ρt [U1(cε(t)) + Un2 (x(t; η, cε(·)))] dt

= Jn(η, cε(·)) ≤ V n(η) = Jn(η, c∗n(·)) ≤ J0(η, c∗n(·)).

The latter inequality, toghether with (3.39), proves both the claims. �

3.4.2 The case with pointwise delay in the state equation

In this subsection we want to show that our problem is a good approximation
for growth models with time to build and concentrated lag and discuss why
our approach cannot work directly when the delay is concentrated in a point.
In this case the state equation isy′(t) = f0

(
y(t), y

(
t− T

2

))
− c(t),

y(0) = η0, y(s) = η1(s), s ∈ [−T, 0).
(3.41)

It is possible to prove, as done in Theorem 3.1.4, that this equation admits,
for every η ∈ H+, and for every c(·) ∈ L1

loc([0,+∞); R), a unique absolutely
continuous solution. We denote this solution by y(·; η, c(·)). The aim is to
maximize, over the set

C0
ad(η) := {c(·) ∈ L1

loc([0,+∞); R) | y(·; η, c(·)) > 0}, (3.42)
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the functional

J0(η, c(·)) =
∫ +∞

0
e−ρt [U1(c(·)) + U2(y(t; η, c(·)))] dt.

Denote by V0 the associated value function. By monotonicity of f0 we straightly
get H++ ⊂ D(V0).

Let us take a sequence (ak)k∈N ⊂W 1,2
−T such that

ak(−T ) = 0,

‖ak‖L2
−T
≤ 1,

(3.31)-(ii) holds true ∀ak,

ak
∗
⇀ δ−T/2 in (C([−T, 0]; R))∗ ,

(3.43)

where δ−T/2 is the Dirac measure concentrated at−T/2. We denote by xk(·; η, c(·))
the unique solution of (3.1) where a(·) is replaced by ak(·).

Proposition 3.4.3. Let η ∈ H+, c(·) ∈ L1
loc([0,+∞); R) and set y(·) := y(·; η, c(·)),

xk(·) := xk(·; η, c(·)). Then there exists a continuous and increasing function h such
that h(0) = 0 and

sup
s∈[0,t]

|xk(s)− y(s)| ≤ h(t)uk(t), t ∈ [0,+∞), (3.44)

where uk(t)→ 0, as k →∞, uniformly on bounded sets.

Proof. Note that

‖ak‖(C([−T,0];R))∗ = sup
‖f‖∞=1

∣∣∣∣∫ 0

−T
ak(ξ)f(ξ)dξ

∣∣∣∣
≤
∫ 0

−T
|ak(ξ)|dξ ≤ ‖ak‖L2

−T
· T 1/2 ≤ T 1/2. (3.45)

Let t ≥ 0; we have, for any ζ ∈ [0, t],

|xk(ζ)− y(ζ)|

=
∫ ζ

0

[
f0

(
xk(s),

∫ 0

−T
ak(ξ)xk(s+ ξ)dξ

)
− f0

(
y(s), y

(
s− T

2

))]
ds

≤ Cf0

[∫ t

0
|xk(s)− y(s)|ds+

∫ t

0

∣∣∣∣∫ 0

−T
ak(ξ)(xk(s+ ξ)− y(s+ ξ))dξ

∣∣∣∣ ds
+
∫ t

0

∣∣∣∣∫ 0

−T
ak(ξ)y(s+ ξ)dξ − y

(
s− T

2

)∣∣∣∣ ds
]
. (3.46)

Call
gk(t) := sup

s∈[−T,t]
|xk(s)− y(s)| = sup

s∈[0,t]
|xk(s)− y(s)|,
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and set, for s ∈ [0, t],

uk(s) := Cf0

∫ s

0

∣∣∣∣∫ 0

−T
ak(ξ)y(r + ξ)dξ − y

(
r − T

2

)∣∣∣∣ dr.
Note that, for every s ∈ [0, t], the function [−T, 0] 3 ξ 7→ xk(s+ ξ)− y(s+ ξ) is
continuous, therefore thanks to (3.45) we can write from (3.46)

gk(t) ≤ Cf0

[∫ t

0
gk(s)ds+ T 1/2

∫ t

0
gk(s)ds+ uk(t)

]
.

Therefore, setting K := Cf0(1 + T 1/2), we get by Gronwall’s Lemma

gk(t) ≤ uk(t) +KteKtuk(t) =: h(t)uk(t). (3.47)

Note that, since ak
∗
⇀ δ−T/2 in (C([−T, 0]; R))∗, we have the pointwise conver-

gence ∫ 0

−T
ak(ξ)y(s+ ξ)dξ −→ y

(
s− T

2

)
, s ∈ [0, t];

moreover∣∣∣∣∫ 0

−T
ak(ξ)y(s+ ξ)dξ

∣∣∣∣ ≤ ‖ak‖L2
−T
·
∥∥ y(s+ ξ)|ξ∈[−T,0]

∥∥
L2
−T

≤ Cη,c(·) < +∞, ∀s ∈ [0, t],

where the last inequality follows from the fact that the function [0, t] → L2
−T ,

s 7→ y(s + ξ)|ξ∈[−T,0] is continuous. Therefore we have by dominated conver-
gence uk(t)→ 0. By (3.47) we get (3.44). �

For k ∈ N, η ∈ H+, let

Ckad(η) := {c(·) ∈ L1
loc([0,+∞); R) | xk(·; η, c(·)) > 0}, (3.48)

Consider the problem of maximizing over Ckad(η) the functional

Jk(η, c(·)) :=
∫ +∞

0
e−ρt [U1(c(t)) + U2(xk(t; η, c(·)))] dt

and denote by Vk the associated value function. Note that, since we have as-
sumed (3.37), straightly we get H++ ⊂ D(Vk) for every k ∈ N. Thanks to the
previous section we have a sequence of optimal feedback strategies for the se-
quence of problems (Vk(η))k∈N, in the sense that we have a sequence (c∗k(·))k∈N

of feedback controls such that c∗k(·) ∈ Ckad(η) for every k ∈ N and

Jk(η; c∗k(·)) = sup
c(·)∈Ckad(η)

Jk(η; c(·)) =: Vk(η), ∀k ∈ N.
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Lemma 3.4.4. Let η ∈ H++.

• For any ε > 0 there exists an ε-optimal strategy cε(·) ∈ C0
ad(η) for the problem

V0(η) such that
inf

t∈[0,+∞)
y(t; η, cε(·)) > 0.

• Assume that
lim
x→0+

[xU2(x)] = −∞. (3.49)

Then, for any ε > 0 there exists ν > 0 such that for any k ∈ N there exists an
ε-optimal control cεk(·) ∈ Ckad(η) for the problem Vk(η) such that

inf
t∈[0,+∞)

xk(t; η, cεk(·)) ≥ ν. (3.50)

Proof. (i) Let ε > 0 and take an ε/2-optimal control cε/2(·) ∈ C0
ad(η) for the

problem V0(η). Take M > 0 large enough to satisfy

1
ρ
e−ρM (Ū1 − U1(0)) < ε/2. (3.51)

Define the control

cε(t) :=

cε/2(t), for t ∈ [0,M ],

0, for t > M.

A comparison criterion like the one proved in Lemma 3.1.8 can be proved also
for equation (3.41). Therefore we have

y(·; η, cε(·)) ≥ y(·; η, cε/2(·)) (3.52)

and, since we have assumed (3.37),

inf
t∈[0,+∞)

y(t; η, cε(·)) = inf
t∈[0,M ]

y(t; η, cε(·)).

We claim that y(·; η, cε(·)) is ε-optimal for V0, which yields the claim. Since
cε/2(·) is ε/2-optimal for V0(η), taking also into account (3.51) and (3.52),

V0(η)−
∫ +∞

0
e−ρt [U1(cε(t)) + U2(y(t; η, cε(·)))] dt

= V0(η)−
∫ +∞

0
e−ρt(U1(cε/2(t)) + U2(y(t; η, cε/2(·)))dt

+
∫ +∞

M
e−ρt(U1(cε/2(t))− U1(0))dt

+
∫ +∞

M
e−ρt

[
U2(y(t; η, cε/2(·))− U2(y(t; η, cε(t)))

]
dt < ε/2 + ε/2 = ε.
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(ii) Due to (3.37) we have xk(·; η, 0) ≥ η0 for every k ∈ N. Let

j0 :=
U1(0) + U2(η0)

ρ
.

Then we have Vk(η) ≥ Jk(η, 0) ≥ j0 for every k ∈ N. Take M > 0 large enough
to satisfy

1
ρ
e−ρM (Ū1 − U1(0)) < ε. (3.53)

Arguing as done to get (3.33) and taking into account the comparison criterion,
we can find CM > 0 such that, for every k ∈ N and for every c(·) ∈ Ckad(η), we
have for all s ∈ [0,M ] and for all t ∈ [s,M + 1],

xk(t; η, c(·)) ≤ xk(s; η, c(·))(1 + CM (t− s)) + CM (t− s). (3.54)

Now take ν > 0 small enough to have
(i) ν < 1,

(ii) ν
2CM

< 1,

(iii) ν
2CM

U2(2ν)e−ρ(M+1) < j0 − Ū1+Ū2
ρ − 1 < 0.

(3.55)

For k ∈ N, thanks to the previous section we have optimal strategies in feed-
back form c∗k(·) ∈ Ckad(η) for Vk; we claim that xk(t; η, c∗k(·)) > ν for t ∈ [0,M ]
for every k ∈ N. Indeed suppose by contradiction that for some t0 ∈ [0,M ] we
have xk(t0; η, c∗k(·)) = ν; then by (3.54) and (3.55)-(i),(ii) we get that

xk(t; η, c∗k(·)) ≤ 2ν, for t ∈
[
t0, t0 +

ν

2CM

]
.

Therefore, by (3.55)-(iii),∫ t0+ ν
2CM

t0

e−ρtUn2 (xk(t; η, c∗k(·)))dt ≤ j0 −
Ū1 + Ū2

ρ
− 1.

This shows that
Jk(η, c∗k(·)) ≤ j0 − 1 ≤ Vk(η)− 1.

This fact contradicts the optimality of c∗k(·). Therefore we have proved that for
the choice of ν given by (3.55) we have

xk(t; η, c∗k(·)) > ν, for t ∈ [0,M ].

We can continue the strategy c∗k(·) afterM taking the null strategy, i.e. defining
the strategy

cεk(·) :=

c∗k(t), for t ∈ [0,M ],

0, for t > M.
(3.56)
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Then by (3.37) we have xk(·; η, cεk(·)) > ν for every k ∈ N. We claim that
cεk(·) is ε-optimal for Vk(η) for every k ∈ N, which proves the claim. Indeed,
taking into account the comparison criterion and (3.53) for the inequality in
the following,

Vk(η)−
∫ +∞

0
e−ρt(U1(cεk(t)) + U2(xk(t; η, cεk(·)))dt

= Vk(η)−
∫ +∞

0
e−ρt(U1(c∗k(t)) + U2(xk(t; η, c∗k(·)))dt

+
∫ +∞

M
e−ρt(U1(c∗k(t))− U1(0))dt

+
∫ +∞

M
e−ρt(U2(xk(t; η, c∗k(·))− U2(xk(t; η, cεk(t))))dt < ε.

�

Proposition 3.4.5. Let η ∈ H++ and suppose that (3.49) holds true. We have
Vk(η) → V0(η), as k → ∞. Moreover for every ε > 0 we can find a constant
Mε and a kε such that the strategy (c∗k is the optimal feedback strategy for the problem
of Vk)

ckε,Mε(t) :=

c∗kε(t), for t ∈ [0,Mε],

0, for t > Mε.
(3.57)

is ε-optimal strategy for the problem V0(η).

Proof. (i) Here we show that

lim inf
k→∞

Vk(η) ≥ V0(η), (3.58)

Let ε > 0 and let cε(·) ∈ C0
ad(η) be an ε-optimal strategy for the problem

V0(η). Thanks to Lemma 3.4.4-(i) we can suppose without loss of generality
2ν1 := inft∈[0,+∞) y(t; η, cε(·)) > 0. The function U1 is uniformly continuous on
[0,+∞) and the function U2 is uniformly continuous on [ν1,+∞). Let ων1 be a
modulus of uniform continuity for both these functions. Take M > 0 such that

−1
ρ
e−ρM (Ū1 + Ū2)− 1− e−ρM

ρ
ων1(ν1) +

1
ρ
e−ρM (U1(0) +U2(ν1)) ≥ −ε, (3.59)

Define

cεM (t) :=

cε(t), for t ∈ [0,M ],

0, for t > M.

Let kM be such that
h(M)uk(M) < ν1, ∀k ≥ kM , (3.60)
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where uk and h are the functions appearing in (3.44). Then, thanks to Propo-
sition 3.4.3 and to the monotonicity property of f0, it is straightforward to see
that xk(t; η, cεM (·)) ≥ ν1 > 0, so that in particular cεM (·) ∈ Ckad(η) for all k ≥ kM .
For all k ≥ kM , we have, thanks to Proposition 3.4.3 and by definition of kM ,∫ +∞

0
e−ρt[U1(cεM (t)) + U2(xk(t; η, cεM (·)))]dt

=
∫ M

0
e−ρt[U1(cεM (t)) + U2(xk(t; η, cεM (·)))]dt

+
∫ +∞

M
e−ρt[U1(cεM (t)) + U2(xk(t; η, cεM (·)))]dt

≥
∫ M

0
e−ρt[U1(cε(t)) + U2(y(t; η, cε(·)))]dt

− 1− e−ρM

ρ
ων1(ν1) +

1
ρ
e−ρM (U1(0) + U2(ν1))

≥
∫ +∞

0
e−ρt[U1(cε(t)) + U2(y(t; η, cε(·)))]dt

− 1
ρ
e−ρM (Ū1 + Ū2)− 1− e−ρM

ρ
ων1(ν1) +

1
ρ
e−ρM (U1(0) + U2(ν1)).

so that by (3.59)
Vk(η) ≥ V0(η)− 2ε, (3.61)

which shows (3.58).

(ii) Now we show that

lim sup
k→∞

Vk(η) ≤ V0(η). (3.62)

Let ε > 0; thanks to Lemma 3.4.4-(ii) we can construct a sequence (cεk(·))k∈N,
cεk(·) ∈ Ckad(η) for every k ∈ N, of ε-optimal controls for the sequence of prob-
lems (Vk(η))k∈N such that

2ν2 := inf
k∈N

inf
t∈[0,+∞)

xk(t; η, cεk(·)) > 0.

Let ων2 be a modulus of uniform continuity for U1 on [0,+∞) and for U2 on
[ν2,+∞). Take M̃ > 0 such that

−1
ρ
e−ρM̃ (Ū1 + Ū2)− 1− e−ρM̃

ρ
ων2(ν2) +

1
ρ
e−ρM̃ (U1(0) + U2(ν2)) > −ε (3.63)

and define the controls

cε
k,M̃

(t) :=

cεk(t), for t ∈ [0, M̃ ],

0, for t > M̃.
(3.64)
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As before we can find kM̃ such that we have

h(M̃)uk(M̃) < ν2, ∀k ≥ kM̃ , (3.65)

In this case we have y(·; η, cεk(·)) ≥ ν2 and∫ +∞

0
e−ρt[U1(cε

k,M̃
(t)) + U2(y(t; η, cε

k,M̃
(·)))]dt

=
∫ M̃

0
e−ρt[U1(cε

k,M̃
(t)) + U2(y(t; η, cε

k,M̃
(·)))]dt

+
∫ +∞

M̃
e−ρt[U1(cε

k,M̃
(t)) + U2(y(t; η, cε

k,M̃
(·)))]dt

≥
∫ M̃

0
e−ρt[U1(cεk(t)) + U2(xk(t; η, cεk(·)))]dt

− 1− e−ρM̃

ρ
ων2(ν2) +

1
ρ
e−ρM̃ (U1(0) + U2(ν2))

≥
∫ +∞

0
e−ρt[U1(cεk(t)) + U2(xk(t; η, cεk(·)))]dt

− 1
ρ
e−ρM̃ (Ū1 + Ū2)− 1− e−ρM̃

ρ
ων2(ν2) +

1
ρ
e−ρM̃ (U1(0) + U2(ν2)). (3.66)

By (3.63), we get, for k ≥ kM̃ ,

V0(η) ≥ Vk(η)− 2ε,

which proves (3.62).

(iii) The procedure of construction of cεk,M in (ii) yields ε-optimal controls
for the limit problem V0(η). Indeed, starting from ε > 0, we can compute
ν1, ν2,M, M̃ depending on ε such that (3.59) and (3.63) hold true. Then, if
(ak)k∈N is chosen in a clever way, for example if (ak)k∈N is a sequence of gaus-
sian densities, we can compute kM , kM̃ such that (3.60),(3.65) hold true. Thanks
to (3.66) and (3.61), for every k ≥ kM ∨kM̃ the controls cε

k,M̃
(·) defined in (3.64)

are 4ε-optimal for the limit problem V 0(η). Replacing ε with ε/4 we get the
controls in (3.57). �

Remark 3.4.6. When the delay is concentrated in a point in a linear way, we
could tempted to insert the delay term in the infinitesimal generator A and
try to work as done in Section 3.2. Unfortunately this is not possible. Indeed
consider this simple case:y′(t) = ry(t) + y (t− T ) ,

y(0) = η0, y(s) = η1(s), s ∈ [−T, 0),
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In this case we can define

A : D(A) ⊂ H −→ H, (η0, η1(·)) 7−→ (rη0 + η1(−T ), η′1(·)).

where again

D(A) := {η ∈ H | η1(·) ∈W 1,2([−T, 0]; R), η1(0) = η0}.

The inverse of A is the operator

A−1 : (H, ‖·‖H) −→ (D(A), ‖·‖H) (η0, η1(·)) 7−→
(
η0 − c
r

, c+
∫ ·
−T

η1(ξ)dξ
)
,

where

c =
1

r + 1
η0 −

r

r + 1

∫ 0

−T
η1(ξ)dξ.

In this case we would have the first part of Lemma 3.2.7, but not the second
part, because it is not possible to control |η0| by ‖η‖−1. Indeed take for example
r such that 1−r

1+r = 1
2 , and (ηn)n∈N ⊂ H such that

ηn0 = 1/2,
∫ 0

−T
ηn1 (ξ)dξ = 1, n ∈ N.

We would have c = 1/2, so that
∣∣∣ηn0−cr

∣∣∣ = 0. Moreover we can choose ηn1 such
that, when n→∞, ∫ 0

−T

∣∣∣∣ 1
2

+
∫ s

−T
ηn1 (ξ)dξ

∣∣∣∣2 ds −→ 0.

Therefore we would have |ηn0 | = 1/2 and ‖ηn‖−1 → 0. This shows that the
second part of Lemma 3.2.7 does not hold. Once this part does not hold, then
everything in the following argument breaks down. �

3.4.3 The case with pointwise delay in the state equation and with-
out utility on the state

Now we want to approximate the problem of optimizing, for η ∈ H++,

J0
0 (η, c(·)) :=

∫ +∞

0
e−ρtU1(c(t))dt,

over the set (3.42), where y(·; η, c(·)) follows the dynamics given by (3.41). Let
us denote by V 0

0 the corresponding value function and let us take a sequence
of real functions (Un2 ) as in (3.38), but with the assumption of no integrability
at 0+ replaced by the stronger assumption

lim
x→0+

xUn2 (x) = −∞, ∀n ∈ N.
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Fix n ∈ N and consider the sequence of functions (ak)k∈N defined in (3.43). For
k ∈ N, consider the problem of maximizing over the set Ckad(η) defined in (3.48)
the functional

Jnk (η, c(·)) :=
∫ +∞

0
e−ρt(U1(c(t)) + Un2 (xk(t; η, c(·)))dt,

where xk(·; η, c(·)) follows the dynamics given by (3.1) when a(·) is replaced
by ak(·), and denote by V n

k the associated value function.

Moreover, for k ∈ N, consider the problem of maximizing

J0
k (η, c(·)) :=

∫ +∞

0
e−ρtU1(c(t))dt,

over Ckad(η) and denote by V 0
k the associated value function.

Finally consider the problem of maximizing over the set C0
ad(η) the func-

tional

Jn0 (η, c(·)) :=
∫ +∞

0
e−ρt(U1(c(t)) + Un2 (y(t; η, c(·)))dt,

and denote by V n
0 the associated value function.

For fixed n ∈ N, the problems V n
k approximate, when k →∞, the problem

V n
0 in the sense of Proposition 3.4.5, i.e. we are able to produce kε,n,Mε,n large

enough to make the strategy ckε,n,Mε,n(·) defined as in (3.57) admissible and
ε-optimal for the problem V n

0 (η).

Proposition 3.4.7. Let η ∈ H++, let kε,n,Mε,n, ckε,n,Mε,n(·) as above. For every
ε > 0 we can find nε such that

lim
ε↓0

V nε
kε,nε

(η) = V 0
0 (η). (3.67)

Moreover the controls ckε,nε ,Mε,nε
(·) defined as in (3.57) are admissible and 3ε-optimal

for the problem V 0
0 (η).

Proof. Let ε > 0 and consider the strategies cε(·) and cεM (·) defined as in the
part (i) of the proof of Proposition 3.4.5. Notice that actually M = M(ε, n) =:
M ε
n. Notice also that by definition of kε,n, M ε

n we have xkε,n(·; η, cεMε
n
(·)) ≥ ν1

and that (3.51) in particular implies

1
ρ
e−ρM

ε
n(Ū1 − U1(0)) ≤ ε.

Take nε ∈ N such that 1/nε < ν1 (notice that ν1 depends on ε and does not
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depend on n). Then, since Unε2 ≡ 0 on [ν1,+∞), we can write

V 0
0 (η)− ε ≤ J0

0 (η; cε(·)) =
∫ +∞

0
e−ρtU1(cε(t))dt

=
∫ +∞

0
e−ρt

[
U1(cε(t)) + Unε2 (xkε,nε (t; η, c

ε
Mε
nε

(·)))
]
dt

≤ Jnεkε,nε (η, c
ε
Mε
nε

(·)) +
1
ρ
e−ρM

ε
nε (Ū1 − U1(0)) ≤ V nε

kε,nε
(η) + ε, (3.68)

so that
lim inf
ε↓0

V nε
kε,nε

(η) ≥ V 0
0 (η). (3.69)

On the other hand the strategies ckε,n,Mε,n(·) defined in (3.57) are admissible
for the problem V 0

0 (since the state equation related to V n
0 and to V 0

0 is the
same) and ckε,n,Mε,n(·) is ε-optimal for V n

kε,n
(η) for every n ∈ N. Therefore

V nε
kε,nε

(η)− ε ≤ Jnεkε,nε (η; ckε,nε ,Mε,nε
(·)) ≤ J0

kε,nε
(η; ckε,nε ,Mε,nε

(·))

= J0
0 (η; ckε,nε ,Mε,nε

(·)) ≤ V 0
0 (η), (3.70)

which shows
lim sup
ε↓0

V n
kε,n(η) ≤ V 0

0 (η). (3.71)

Combining (3.69) and (3.71) we get (3.67). Combining (3.68) and (3.70) we
get

V 0
0 (η) ≤ J0

0 (η; ckε,nε ,Mε,nε
(·)) + 3ε,

i.e. the last claim. �
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Chapter 4

Constrained choices in the
decumulation phase of a pension
plan

In this chapter we investigate a different problem in the pension funds’ field,
i.e. the problem of managing the pension of a single representative parteci-
pant after retirement. The main reference for this chapter is the working paper
[Di Giacinto, Federico, Gozzi, Vigna; WP].

In countries where immediate annuitization is the only option available
to retiring members of defined contribution pension schemes, members who
retire at a time of low bond yield rates have to accept a pension lower than the
one available with higher bond yields. In UK and US the retiree is allowed to
defer annuitization at some time after retirement, withdraw periodic income
from the fund and invest the rest of it in the period between retirement and
annuitization. This allows the retiree to postpone the decision to purchase an
annuity until a more propitious time. In UK there are limits imposed on both
the consumption (which must be between 35% and 100% of the annuity which
would have been purchasable immediately on retirement) and on how long
the annuity purchase can be deferred (the fund must be used to purchase an
annuity at age 75, if this has not been done earlier). On the other hand, there
is virtually unlimited freedom to invest the fund in a broad range of assets.

The three degrees of freedom of the retiree (amount of consumption, in-
vestment allocation and time of annuitization), together with the important
issue of ruin possibility, have been investigated in the actuarial and financial
literature in many papers. Among others we mention

- [Albrecht, Maurer; 2002],
- [Cairns, Blake, Dowd; 2000],
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- [Gerrard, Haberman, Vigna; 2004],
- [Gerrard, Haberman, Vigna; 2006],
- [Milevsky, 2001],
- [Milevsky, Moore, Young; 2006],

- [Milevsky, Young; 2007].

Here we consider the position of a representative participant to a defined
contribution pension fund who retires and compulsorily has to purchase an
annuity within a certain period of time after retirement. In the interim the
accumulated capital is dynamically allocated while the pensioner withdraws
periodic amounts of money to provide for daily life in accordance with restric-
tions imposed by the scheme’s rules or by legislation. in particular we assume
that an individual who retires at time t = 0 acquires control of a fund of size x0

which is invested in a market that consists of a risky and a riskless asset. The
value of the risky asset is assumed to follow a geometric Brownian motion
model. At age T the entire fund must be invested in an annuity. The retiree
is given only one degree of freedom, namely the investment allocation. The
income withdrawn from the fund in the unit time is assumed to be fixed and
equal to b0 and the retiree is obliged to annuitize at future time T .

Due to the difficulty that arises by the inclusion of constraints on the vari-
ables, we do not consider here the first and the third degrees of freedom of the
pensioner, namely the optimal consumption strategy and the optimal annu-
itization time, treated – without restrictions on the variables – e.g. in the pa-
pers [Gerrard, Haberman, Vigna; 2006] and [Gerrard, Hojgaard, Vigna; 2008].
On the other hand, differently from the previous literature, we analyze the
problem in the presence of short selling constraints, extending the work done
by [Gerrard, Haberman, Vigna; 2004].

In this chapter we will solve explicitely the problem when the constraint is
only on the strategy. When the constraint is also on the state we will character-
ize the value function as unique viscosity solution of the HJB equation and, in
the special case without running cost in the objective functional, we will solve
the problem explicitely (in this case the solution is much less trivial).

4.1 The model

In our model we consider the position of an individual who chooses the draw-
down option at retirement, i.e. withdraws a certain income until he achieves
the age at which the purchase of the annuity is compulsory. As in Chapters 1
& 2, the fund is invested in two assets, a riskless asset, with constant instanta-
neous rate of return r ≥ 0, and a risky asset, whose price follows a geometric



Constrained choices in the decumulation phase of a pension plan 243

Brownian motion with constant volatility σ > 0 and drift µ := r + σλ, where
λ ≥ 0 is the risk premium. The pensioner withdraws an amount b0 in the
unit of time. Therefore, according to [Merton; 1969] the state equation that
describes the dynamics of the fund wealth is the followingdX(s) = [rX(s) + σλπ(s)− b0] ds+ σπ(s)dB(s),

X(0) = x0,

where x0 is the fund wealth at the retirement date t = 0, B(·) is a standard
Brownian motion on a probability space (Ω,F ,P) and π(·) is the progressively
measurable process (with respect to the filtration generated by B(·)) repre-
senting the amount of money invested in the risky asset at time t ∈ [0, T ]. We
impose the constraint π(·) ≥ 0, i.e. short selling of risky asset is not allowed.

We introduce the loss function

L(t, x) = (F (t)− x)2 , (4.1)

where F (·) is the target function, i.e. the target that the agent wishes to track
at any time t ∈ [0, T ].

In [Højgaard, Vigna; 2007] it is proved that the quadratic loss function ap-
plied to the defined contribution pension schemes is a particular case of mean
variance portfolio optimization approach. In other words, the optimal portfo-
lio found via the quadratic loss function (4.1) is an efficient portfolio in the
mean-variance setting. Namely, there is no other portfolio that provides a
higher expected return with the same variance, and no other portfolio that
provides a lower variance with the same mean.

According to [Gerrard, Haberman, Vigna; 2004], we choose

F (t) =
b0
r

+
(
F̄ − b0

r

)
e−r(T−t), (4.2)

where F̄ = F (T ) ∈ (0, b0/r] can be chosen arbitrarily. The interpretation of
the target function is straightforward. Should the fund hit F (t) at time t ≤ T ,
the pensioner would be able, by investing the whole portfolio in the riskless
asset, to consume b0 from t to T and receive the desired target F̄ at the time T
of compulsory annuitization.

As it is shown in [Gerrard, Haberman, Vigna; 2004], with this choice of the
target function the fund never reaches the target, provided that at initial time
t = 0 the fund x0 is lower than the target F (0).

The optimization problem consists in minimizing, over the set of the ad-
missible strategies, the functional

E
[∫ T

0
κe−ρtL(t,X(t))dt+ e−ρTL(T,X(T ))

]
,
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where ρ ≥ 0 is the individual discount factor, κ ≥ 0 is a weighting constant
which measures the importance the running cost for deviation experienced
before T .

4.2 Constraint on the strategies

In this section we study the optimization problem considering only the con-
straint on the strategies. We suppose that short selling of risky asset is not
allowed, i.e. it must be π(·) ≥ 0. So, the set of admissible strategy is

Πad =
{
π(·) progressively measurable with respect to (FBt )t∈[0,T ],

π(·) ∈ L2(Ω× [0, T ]; [0,+∞))
}
.

In this case the set of admissible strategies can be taken independent of the
initial (s, x). Given the initial data (s, x) ∈ [0, T ]× R, the state equation isdX(t) = [rX(t) + σλπ(t)− b0] ds+ σπ(t)dB(t),

X(s) = x.

This equation admits, for given π(·) ∈ Πad, a unique strong solution on (Ω,F ,P)
(see, e.g., Theorem 6.16, Chapter 1, of [Yong, Zhou; 1999] or Section 5.6.C of
[Karatzas, Shreve; 1991]) and we denote it byX(·; t, x, π(·)). The objective func-
tional is given by

J(s, x;π(·)) := E

[∫ T

s

κe−ρt(F (t)−X(t; s, x, π(·)))2dt+e−ρT (F̄−X(T ; s, x, π(·)))2

]
.

The value function is defined by

V (s, x) := inf
π(·)∈Πad

J(s, x;π(·)).

4.2.1 Properties of the value function

In this subsection we prove some properties of the value function. We start
with a lemma that analyzes the behaviour of the state trajectory under the null
control.

Lemma 4.2.1. Let s ∈ [0, T ], x = F (s). Then X(t; s, x, 0) = F (t) for all t ∈ [s, T ].

Proof. Let s ∈ [0, T ], x ∈ R, and set X(·) := X(·; s, x, 0). The dynamics of
X(·) is given by dX(t) = (rX(t)− b0) dt,

X(s) = x.
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The “dynamics” of the target F (·) after s is given bydF (t) = (rF (t)− b0) dt,

F (s) = F (s).

Therefore X(·) and F (·) solve the same ordinary differential equation. If x =
F (s) they have also the same initial condition, so they coincide. �

Lemma 4.2.1 shows that the null strategy π(·) ≡ 0 is optimal for the ini-
tial datum (s, F (s)), since we have J(s, F (s); 0) = 0 and, on the other hand,
V (·, ·) ≥ 0. In particular V (s, F (s)) = 0 for each s ∈ [0, T ]. Note also that, if
x 6= F (s), then it has to be V (s, x) > 0. This suggests that the graph of F (·)
works as a barrier for the problem, so that we are led to separate the space
[0, T ]× R in two regions

U1 := {(s, x) | s ∈ [0, T ], x ≤ F (s)}, U2 := {(s, x) | t ∈ [0, T ], x ≥ F (s)}.

Notice that

U1 ∪ U2 = [0, T ]× R, U1 ∩ U2 = {(s, F (s)) | s ∈ [0, T ]}.

Remark 4.2.2. The financial problem makes sense for x0 ≤ F (0) and actually
in applying the dynamic programming we can restrict to study the problem in
the region U1 (thanks to Lemma 4.2.3 below). However, by sake of complete-
ness we treat also the problem in the region U2. �

Lemma 4.2.3. Let (s, x) ∈ [0, T ]×R, π(·) ≥ 0 a strategy; setX(·) := X(·; s, x, π(·))
and define, with the convention inf ∅ = T , the stopping time

τ := inf{t ≥ s | X(t) = F (t)};

define the strategy

πτ (t) :=

π(t), if t < τ,

0, if t ≥ τ.

Then J(s, x;πτ (·)) ≤ J(s, x;π(·)).

Proof. It follows straightly from Lemma 4.2.1. �

Definition 4.2.4. Let (s, x) ∈ [0, T ] × R, δ > 0; a strategy πδ(·) ≥ 0 is called
δ-optimal if

J(s, x;πδ(·)) ≤ V (s, x) + δ.

�

Proposition 4.2.5. Let s ∈ [0, T ]. The function R→ R, x 7→ V (s, x) is convex.
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Proof. Step 1. In this step we will prove that x 7→ V (s, x) is convex on
(−∞, F (s)]. Let us suppose x, y ≤ F (s). Let δ > 0 and let πδx(·), πδy(·) two
controls δ-optimal for x, y respectively, i.e.

J(s, x;πδx(·)) ≤ V (s, x) + δ, J(s, y;πδy(·)) ≤ V (s, y) + δ.

Set X(t) := X(t; s, x, πδx(·)), Y (t) := X(t; s, y, πδy(·)). Without loss of generality,
thanks to Lemma 4.2.3, we can suppose X(t), Y (t) ≤ F (t) for all t ∈ [s, T ]. We
want to prove that, for all γ ∈ [0, 1],

V (s, γx+ (1− γ)y) ≤ γV (s, x) + (1− γ)V (s, y).

Fix γ ∈ [0, 1] and set Z(t) := γX(t) + (1− γ)Y (t); of course Z(t) ≤ F (t), for all
t ∈ [s, T ]. We have

γV (s, x) + (1− γ)V (s, y) + δ ≥ γJ(s, x;πδx(·)) + (1− γ)J(s, y;πδy(·))

= γE
[∫ T

s
κe−ρt(F (t)−X(t))2dt+ e−ρT (F̄ −X(T ))2

]
+ (1− γ)E

[∫ T

s
κe−ρt(F (t)− Y (t))2dt+ e−ρT (F̄ − Y (T ))2

]
≥ E

[∫ T

s
κe−ρt(F (t)− Z(t))2dt+ e−ρT (F̄ − Z(T ))2

]
, (4.3)

where the last inequality follows by convexity of ξ 7→ (F (t)− ξ)2. Let us write
the dynamics for Z(·):

dZ(t) = γdX(t) + (1− γ)dY (t)

= γ
[
rX(t) + σλπδx(t)− b0

]
dt+ (1− γ)

[
rY (t) + σλπδy(t)− b0

]
dt

+γσπδx(t)dB(t) + (1− γ)σπδy(t)dB(t)

=
[
rZ(t) + σλ(γπδx(t) + (1− γ)πδy(t))− b0

]
dt

+σ
(
γπδx(t) + (1− γ)πδy(t)

)
dB(t).

Thus, if we define πz(·) := γπδx(·) + (1− γ)πδy(·) ≥ 0, we get

Z(t) = X(t; s, γx+ (1− γ)y, πz(·)).

Therefore,

E
[∫ T

s
κe−ρt(F (t)− Z(t))2dt+ e−ρT (F (T )− Z(T ))2

]
≥ V (s, γx+ (1− γ)y)

(4.4)
and comparing (4.3) with (4.4) we get the claim in this case by the arbitrariness
of δ.



Constrained choices in the decumulation phase of a pension plan 247

Step 2. We can argue exactly as in the step 1 and conclude that x 7→ V (s, x)
is convex on [F (s),+∞).

Step 3. We can notice that V (s, ·) is nonnegative and that, thanks to Lemma
4.2.1, V (s, F (s)) = 0, so that F (s) is a minimum for V (s, ·). Thus the global
convexity of V (s, ·) follows from the convexity on the two half lines (−∞, F (s)],
[F (s),+∞) and from the fact that it has a minimum in F (s). �

Since, for s ∈ [0, T ], V (s, ·) is convex and admits a minimum at x = F (s),
we have directly the following result. However we give a proof of the state-
ment independent on Proposition 4.2.5.

Proposition 4.2.6. Let s ∈ [0, T ]; the function x 7→ V (s, x) is decreasing on
(−∞, F (s)] and increasing on [F (s),+∞).

Proof. We prove the statement on (−∞, F (s)]; the other one follows as
well. So, let x ≤ y ≤ F (s), let δ > 0 and πδ(·) ≥ 0 a δ-optimal strategy for x, so
that

V (s, x) + δ ≥ J(s, x;πδ(·)). (4.5)

Set X(t) := X(t; s, x, πδ(·)) and Y (t) := X(t; s, y, πδ(·)). Again, thanks to
Lemma 4.2.3, we can suppose without loss of generality that X(t) ≤ F (t) for
all t ∈ [s, T ]. By comparison criterion (see, e.g., [Karatzas, Shreve; 1991]) we
have X(t) ≤ Y (t) for all t ∈ [s, T ]. Let us define the strategy

π̃(t) :=

πδ(s), if Y (t) < F (t),

0, if Y (t) = F (t);

of course π̃(·) ≥ 0 and, if we set Ỹ (t) := X(t; s, y, π̃(·)), again thanks to Lemma
4.2.1 we get X(t) ≤ Ỹ (t) ≤ F (t), for all t ∈ [s, T ]. Thus, by monotonicity of
L(t, ·),

J(s, x;πδ(·)) ≥ J(s, y; π̃(·)) (4.6)

and of course

J(s, y; π̃(·)) ≥ V (s, y). (4.7)

Comparing (4.5), (4.6) and (4.7) we get the claim by the arbitrariness of δ. �

4.2.2 The HJB equation

Since we are in the context of optimal control problems with finite horizon,
the HJB equation associated with the value function V is a nonlinear parabolic
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PDE with terminal boundary condition. We are going to define this equation.
To this aim let us define the Hamiltonian current-value

Hcv : R2 × [0,+∞) −→ R,
(p, P ;π) 7−→ 1

2σ
2Pπ2 + σλpπ.

and the Hamiltonian

H : R2 −→ R ∪ {−∞},
(p, P ) 7−→ inf

π≥0
Hcv(p, P, π).

Given (p, P ) ∈ R × (0,+∞), the function π 7→ Hcv(p, P ;π) has a unique mini-
mum point on [0,+∞) given by

π∗ = − λ p
σ P
∨ 0,

so in this case the Hamiltonian can be written as

H(p, P ) =

−
λ2p2

2P , if p < 0,

0, if p ≥ 0.
(4.8)

The HJB equation is
vs(s, x) + (rx− b0)vx(s, x) + κe−ρs(F (s)− x)2 +H (vx(s, x), vxx(s, x)) = 0,

on [0, T ]× R,

v(T, x) = e−ρT (F̄ − T )2, x ∈ R.
(4.9)

Recall that we have set

U1 := {(s, x) | s ∈ [0, T ], x ≤ F (s)}, U2 := {(s, x) | s ∈ [0, T ], x ≥ F (s)}.

If we suppose that the value function is smooth onU1 and onU2, then, inspired
by the previous subsection that gives information on the signs of Vx, Vxx on
the regions U1 and U2, we can split the HJB equation in these two regions.
Supposing Vxx > 0, we get that V should satisfy the equation

κe−ρs(F (s)− x)2 + vs(s, x) + (rx− b0)vx(s, x)− λ2v2
x(s, x)

2vxx(s, x)
= 0,

on U1\{(s, F (s)) | s ∈ [0, T ]},

κe−ρs(F (s)− x)2 + vs(s, x) + (rx− b0)vx(s, x) = 0,

on U2\{(s, F (s)) | s ∈ [0, T ]},
(4.10)

with boundary conditionsvx(s, F (s)) = 0, s ∈ [0, T ],

v(T, x) = e−ρT (F̄ − x)2, x ∈ R.
(4.11)
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Definition 4.2.7. A function v is called a classical solution to (4.10)-(4.11) if

• v ∈ C1,1([0, T ]× R; R) ∩ C1,2
((

[0, T ]× R
)
\{(s, F (s)) | s ∈ [0, T ]}; R

)
,

• v satisfies pointwise in classical sense (4.10) (the derivatives with respect
to the time variable at s = 0 and s = T have to be intended respectively
as right and left derivative)

• v satisfies the boundary conditions (4.11) �

We look for an explicit classical solution to (4.10)-(4.11),

Lemma 4.2.8. 1. Let v1(s, x) = e−ρsA1(s)(F (s)−x)2, whereA1(·) is the unique
solution of the ordinary differential equationA′1(s) =

(
ρ+ λ2 − 2r

)
A1(s)− κ,

A1(T ) = 1.

i.e., setting a1 := ρ+ λ2 − 2r,

A1(s) =


(

1− κ

a1

)
e−a1(T−s) +

κ

a1
, if a1 6= 0,

κ(T − s) + 1, if a1 = 0.

Then

(a) v1x ≤ 0 on U1;

(b) v1xx > 0 on U1;

(c) v1 solves
κe−ρs(F (s)− x)2 + vs(s, x) + (rx− b0)vx(s, x)− λ2v2

x(s, x)
2vxx(s, x)

= 0,

on [0, T ]× R,

v(T, x) = e−ρT (F̄ − x)2, x ∈ R.
(4.12)

2. Let v2(s, x) = e−ρsA2(s)(F (s)−x)2, where A2(·) is the unique solution of the
ordinary differential equationA′2(s) = (ρ− 2r)A2(s)− κ,

A2(T ) = 1,

i.e., setting a2 := ρ− 2r.

A2(s) =


(

1− κ

a2

)
e−a2(T−s) +

κ

a2
, if a2 6= 0,

κ(T − s) + 1, if a2 = 0.

Then
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(a) v2x ≥ 0 on U2;

(b) v2xx > 0 on U2;

(c) v2 solvesκe−ρs(F (s)− x)2 + vs(s, x) + (rx− b0)vx(s, x) = 0, on [0, T ]× R,

v(T, x) = e−ρT (F̄ − x)2, x ∈ R.
(4.13)

3. For s ∈ [0, T ], we have

(a) v1(s, F (s)) = v2(s, F (s)) = 0;

(b) v1t(s, F (s)) = v2s(s, F (s)) = 0;

(c) v1x(s, F (s)) = v2x(s, F (s)) = 0.

Moreover

• if λ = 0, then v1xx(s, F (s)) = v2xx(s, F (s)) for s ∈ [0, T ];

• if λ > 0, then v1xx(s, F (s)) 6= v2xx(s, F (s)) for s ∈ [0, T ).

Proof. Let us consider, for A(·) ∈ C1([0, T ]; R), the function

v(s, x) = e−ρsA(s)(F (s)− x)2.

We have

vt(s, x) = −ρe−ρsA(s)(F (s)−x)2+e−ρsA′(s)(F (s)−x)2+2e−ρsA(s)(F (s)−x)F ′(s),

vx(s, x) = −2e−ρsA(s)(F (s)− x),

vxx(s, x) = 2e−ρsA(s).

Notice also that
F ′(s) = rF (s)− b0.

Finally it is immediate to check, splitting the proofs in the cases a1 < 0, a1 = 0,
a1 > 0 and a2 < 0, a2 = 0, a2 > 0, that the functions A1(·), A2(·) are strictly
positive on [0, T ]. Therefore all the statements follow by simple computations
taking A(·) = A1(·) and A(·) = A2(·). �

Proposition 4.2.9. Define on [0, T ]× R the function

v(s, x) :=

v1(s, x), if (s, x) ∈ U1,

v2(s, x), if (s, x) ∈ U2.
(4.14)

Then v is a classical solution to (4.10)-(4.11) in the sense of Definition 4.2.7.

Proof. It follows from Lemma 4.2.8 �
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4.2.3 The Verification Theorem and the optimal feedback strategy

The aim of this subsection is to prove a Verification Theorem stating that the
function v defined in (4.14) is actually the value function and moreover giving
an optimal feedback strategy for the problem.

Lemma 4.2.10 (Fundamental identity).

1. Let (s, x) ∈ U1, let v1 be the function defined in Lemma 4.2.8-(1) and finally let
π(·) ≥ 0 be a strategy such that X(·; s, x, π(·)) ∈ U1. Then

v1(s, x) = J(s, x;π(·))

+E

[∫ T

s

(
H
(
v1x(t,X(t)), v1xx(t,X(t))

)
−Hcv

(
v1x(t,X(t)), v1xx(t,X(t));π(t)

) )
dt

]
.

2. Let (s, x) ∈ U2, let v2 be the function defined in Lemma 4.2.8-(2) and finally let
π(·) ≥ 0 be a strategy such that X(·; s, x, π(·)) ∈ U2. Then

v2(s, x) = J(s, x;π(·))

+E

[∫ T

s

(
H
(
v2x(t,X(t)), v2xx(t,X(t))

)
−Hcv

(
v2x(t,X(t)), v2xx(t,X(t));π(t)

) )
dt

]
.

Proof. (1) Let v1 be the function defined in Lemma 4.2.8-(1); by the same
lemma v1 solves (4.12) on U1. Since v1x ≤ 0, v1xx > 0 on U1, we get

H(v1x(s, x), v1xx(s, x)) = −λ
2v2
x(s, x)

2vxx(s, x)
, (s, x) ∈ U1,

so that v1 solves the HJB equation (4.9) on U1. Let us take π(·) such that the
corresponding state trajectory X(·) := X(·; s, x, π(·)) remains in U1 and apply
the Dynkin formula to X(·) with the function v1; we get

E [v1(T,X(T ))− v1(s, x)] = E

[∫ T

s

(
v1s(t,X(t)) + (rX(t)− b0) v1x(t,X(t))

+Hcv
(
v1x(t,X(t)), v1xx(t,X(t));π(t)

))
dt

]
,

i.e.

v1(s, x) = E

[
e−ρT (F̄ −X(T ))2−

∫ T

s

(
v1s(t,X(t)) + (rX(t)− b0) v1x(t,X(t))

+Hcv
(
v1x(t,X(t)), v1xx(t,X(t));π(t)

))
dt

]
.
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Taking into account the assumption on π(·) and the fact that, as shown, v1

solves the originary HJB equation on U1, we can write

v1(s, x) = E

[
e−ρT (F̄ −X(T ))2 +

∫ T

s

κe−ρt(F (t)−X(t))2 ds

+
∫ T

s

(
H
(
v1x(t,X(t)), v1xx(t,X(t))

)
−Hcv

(
v1x(t,X(t)), v1xx(t,X(t));π(t)

))
dt

]

= J(s, x;π(·)) + E

[∫ T

s

(
H
(
v1x(t,X(t)), v1xx(t,X(t))

)
−Hcv

(
v1x(t,X(t)), v1xx(t,X(t));π(t)

))
dt

]
.

(2) Let v2 be the function defined in Lemma 4.2.8-(2); by the same lemma v2

solves (4.13) on U2. Since v2x ≥ 0, v2xx > 0 on U1, we get

H(v2x(s, x), v2xx(s, x)) = 0, (s, x) ∈ U2,

so v2 solves the HJB equation (4.9) on U2. Now the proof follows the same line
of the proof of the previous statement. �

Lemma 4.2.11. .

1. Let (s, x) ∈ U1. There exists a unique process X(·) solution of the equationdX(t) =
[
rX(t) + λ2(F (t)−X(t))− b0

]
dt+ λ(F (t)−X(t))dB(t),

X(s) = x.

Moreover the process X(·) is such that (t,X(t)), t ∈ [s, T ], lives in U1.

2. Let (s, x) ∈ U2. The (deterministic) process X(·) := X(·; s, x, 0) is such that
(t,X(t)), t ∈ [s, T ], lives in U2.

Proof. (1) The proof of the existence and uniqueness of X is standard (see,
e.g., [Karatzas, Shreve; 1991], Chapter 5, Theorem 2.9). About the second part
of the statement, notice that, if write the dynamics of Z(·) := F (·)−X(·) in the
interval [s, T ], we getdZ(t) =

(
r − λ2

)
Z(t)dt− λZ(t)dB(t),

Z(s) = F (s)− x.

Therefore Z(·) is a geometric Brownian motion with positive starting point, so
that it has to be positive and this claim is proved.
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(2) Let (s, x) ∈ U2; the explicit expression of X(t) := X(t; s, x, 0) is

X(t) =
b0
r

+
(
x− b0

r

)
er(t−s),

Comparing this expression with (4.2) we get the claim. �

Let us define the feedback map

(s, y) 7→ G(s, y) :=

λ
σ (F (s)− y), if (s, y) ∈ U1,

0, if (s, y) ∈ U2.
(4.15)

Notice that, thanks to Lemma 4.2.8-(1a), we have

F (s)− y = − v1x(s, y)
v1xx(s, y)

. (4.16)

Moreover, by definition of G and due to Lemma 4.2.11, the strategy πs,xG (·)
defined by the feedback map (4.15), i.e.

πs,xG (t) := G(t,XG(t; s, x)), t ∈ [s, T ], (4.17)

where XG(·; s, x) is the solution of the closed loop equationdX(t) = [rX(t) + σλG(X(t))− b0] dt+ σG(X(t))dB(t),

X(s) = x,

is admissible.

Theorem 4.2.12 (Verification). Let (s, x) ∈ [0, T ]× R let v be the function defined
in (4.14). Then V (s, x) = v(s, x). Moreover π(·) ∈ Πad is optimal for the initial
(s, x) if and only if

π(t) = G(t,X(t; s, x, π(·)), P− a.s., ∀t ∈ [s, T ]. (4.18)

In particular the feedback strategy πs,xG (·) defined in (4.17) is the unique optimal stra-
tegy starting from the initial (s, x).

Proof. Let (s, x) ∈ U1 and π(·) ∈ Πad and set X(·) := X(·; s, x, π(·)). Let us
suppose X(·) ∈ U1. Thus we can apply Lemma 4.2.10 to X(·) with v1 getting

v1(t, x) = J(t, x;π(·))

+ E

[∫ T

s

(
H
(
v1x(t,X(t)), v1xx(t,X(t))

)
−Hcv

(
v1x(t,X(t)), v1xx(t,X(t));π(t)

) )
dt

]
≤ J(s, x;π(·)). (4.19)
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Taking into account Lemma 4.2.3, this shows that v1(s, x) ≤ V (s, x).
Now considerX(·; s, x, πs,xG (·)) = XG(·; s, x) =: XG(·). We see from Lemma

4.2.11-(1) that also XG(·) ∈ U1, so that we can apply the fundamental identity
also to XG(·) with v1. Taking into account (4.16) we see that, by (4.8) and
by Lemma 4.2.8-(1b), the feedback map minimizes at any time t ∈ [s, T ] the
Hamiltonian current value. Thus we get in this case v1(s, x) = J(s, x;πs,xG (·)),
which shows that v1(s, x) = V (s, x) = J(s, x;πs,xG (·)).

The fact that an optimal strategy must satisfy (4.18) is consequence of the
first claim and of (4.19).

Finally the uniqueness of the optimal strategy is consequence of the char-
acterization (4.18) and of the uniqeness of solutions to the closed loop equation
stated in Lemma 4.2.11-(1).

If (s, x) ∈ U2 we can argue exactly in the same way with v2 getting the
claim also in this case. �

Remark 4.2.13. Theorem 4.2.12 and Lemma 4.2.8-(3) say that

• if λ = 0, then the value function is C2 with respect to the state variable;

• if λ > 0, then the value function is C1 with respect to the state variable,
but not C2. �

4.3 Constraints on the state and on the control

In this section we study the problem with the additional capital requirement
(state constraint) that X(T ) ≥ S̄ almost surely, where 0 ≤ S̄ < F̄ . It will turn
out that this constraint implies the “no ruin” constraint, i.e. X(t) ≥ 0 almost
surely for every t ∈ [0, T ].

The setting is very similar to the one of Section 1.2, so that we will refer to
that section for the proofs of some results.

For s ∈ [0, T ], x ∈ R, let π(·) be progressively measurable with respect to
FBs , where Bs(t) = B(t) − B(s), t ∈ [s, T ], π(·) ≥ 0 and let X(·; s, x, π(·)) be
the unique solution todX(t) = [rX(t) + σλπ(t)− b0] dt+ σπ(t)dBs(t),

X(s) = x.

The set of admissible strategies, in this case depending on the initial (s, x), is

Π0
ad(s, x) =

{
π(·) progressively measurable with respect to FBs ,

π(·) ∈ L2(Ω× [s, T ]; [0,+∞))
∣∣ X(T ; s, x, π(·)) ≥ S̄

}
.
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The objective functional is again, for s ∈ [0, T ], x ∈ R,

J(s, x;π(·)) := E

[∫ T

s

κe−ρt(F (t)−X(t; s, x, π(·)))2dt+e−ρT (F̄−X(T ; s, x, π(·)))2

]
.

We denote the value function by W , so that

W (s, x) = sup
π(·)∈Π0

ad(s,x)

J(s, x;π(·)).

4.3.1 The set of admissible strategies

In this subsection we analyze some properties of the set of admissible strate-
gies and rewrite the problem in a more convenient form in the region that is
meaningful from the financial point of view.

Let us set
S(t) :=

b0
r
−
(
b0
r
− S̄

)
e−r(T−t). (4.20)

Proposition 4.3.1. Let s ∈ [0, T ], x ∈ R. We have

1. Π0
ad(s, x) 6= ∅ if and only if 0 ∈ Πad(s, x).

2. 0 ∈ Π0
ad(s, x) if and only if x ≥ S(s).

3. If x = S(s), then Π0
ad(s, x) = {0}.

4. If x > S(s), then Π0
ad(s, x) ) {0}.

5. The state constraint X(T ) ≥ S̄ is equivalent to

X(t) ≥ S(t), P− a.s. ∀t ∈ [0, T ].

�

Proof. 1. Clearly, if 0 ∈ Π0
ad(s, x), then Π0

ad(s, x) 6= ∅. Conversely suppose
that Π0

ad(s, x) 6= ∅ and let π(·) ∈ Π0
ad(s, x). This means that X(T ; s, x, π(·)) ≥

S̄ almost surely, therefore Ẽ[X(T ; s, x, π(·))] ≥ S̄, where Ẽ denotes the ex-

pectation under the probability P̃ = e−λB(T )−λ
2

2 · P given by the Girsanov
transformation (see Theorem A.1.1). As, e.g., in Proposition 1.12, we have
X(T ; s, x, 0) = Ẽ[X(T ; s, x, π(·)] ≥ S̄, so that 0 ∈ Π0

ad(s, x).
2. The state equation yields

X(t; s, x, 0) =
b0
r
−
(
b0
r
− x
)
er(t−s),

so that from the expression of S(·) in (4.20) we get the claim.
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3. If x = S(s), we have X(t; s, x, 0) = S(t) on [s, T ]; therefore 0 ∈ Π0
ad(s, x).

On the other hand, arguing as in Proposition 1.2.6, one can see that

π(·) ∈ Π0
ad(s, x) =⇒ π(·) ≡ 0,

so the claim.
4. Let x > S(s). Define the stopping time

τ := inf{t ≥∈ [s, T ] | X(t; s, x, 1) = S(t)} ∧ T.

Define the strategy

πτ (t) :=

π(t), if t ∈ [s, τ ],

0, if t ∈ [τ, T ].

Then πτ (·) ∈ Π0
ad(s, x) and π(·) is not identically null, so the claim.

5. The claim reduces to show that, for every π(·) ∈ Π0
ad(s, x), we have

X(t) ≥ S(t) almost surely for every t ∈ [s, T ]. This follows arguing by contra-
diction and using the previous item. �

Due to Proposition 4.3.1, the value function is defined on the set

D = {(s, x) ∈ [0, T ]× R | x ≥ S(s)}.

Consider the set

C := {(s, x) ∈ [0, T ]× R | S(s) ≤ x ≤ F (s)} ⊂ D.

Since the optimal strategy π∗(·) ≡ 0 of the (state) unconstrained problem start-
ing from a point of the set (s, x) ∈ D \C satisfies X(t; s, x, 0) ≥ F (t), we have
W = V on this set, where V is the value function of the (state) unconstrained
problem studied in the previous section. In other words the state constrained
problem is already solved on the region Cc keeping the strategy π∗(·) ≡ 0.

For the points belonging to C we have the following representation for the
value function W .

Proposition 4.3.2. Let (s, x) ∈ C and consider the set of admissible strategies

Πad(s, x) =
{
π(·) progressively measurable with respect to

(
FBst

)
t∈[s,T ]

,

π(·) ∈ L2(Ω× [s, T ]; [0,+∞)),

S(t) ≤ X(t; s, x, π(·)) ≤ F (t), t ∈ [s, T ]
}
⊂ Π0

d(s, x).

Then we have
W (s, x) = sup

π(·)∈Πad(s,x)
J(s, x;π(·)).
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Proof. The argument of Lemma 4.2.3 yields the claim. �

Proposition 4.3.2 says that on the set C the original problem is equivalent
to the problem with state constraint

S(t) ≤ X(t) ≤ F (t), t ∈ [s, T ].

The analogue of Proposition 4.3.1 is the following.

Proposition 4.3.3. Let (s, x) ∈ C. We have

• 0 ∈ Πad(s, x).

• If x = S(s) or x = F (s), then Πad(s, x) = {0}.

• If S(s) < x < F (s), then Πad(s, x) ) {0}.

Proof. The claims can be obtained as in the proof of Proposition 4.3.1. �

Notice that, rephrasing the problem in these new terms, both the lateral
boundaries

∂∗FC := {(s, x) ∈ [0, T ]×R | x = F (s)}, ∂∗SC := {(s, x) ∈ [0, T ]×R | x = S(s)},

are absorbing for the problem, in the sense that, if x = S(s) (respectively x =
F (s)), then the only admissible strategy is π(·) ≡ 0 and X(t; s, x, 0) = S(t) for
t ∈ [s, T ] (respectively X(t; s, x, 0) = F (t) for t ∈ [s, T ]).

4.3.2 Properties of the value function

As in Section 1.2 we have the following properties for the value function W .

Proposition 4.3.4. Let s ∈ [0, T ]. The function [S(s), F (s)] → R, x 7→ W (s, x) is
convex.

Proof. It follows the line of the proof of Proposition 1.2.10. �

Proposition 4.3.5. Let s ∈ [0, T ]. The function [S(s), F (s)] → R, x 7→ W (s, x) is
decreasing.

Proof. It follows the line of Proposition 1.2.11 �

Proposition 4.3.6. The function W is continuous on C.

Proof. It follows the line the case β = r of Subsection 1.2.4 �.
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4.3.3 The HJB equation

We want to associate to the control problem an HJB equation. Thanks to Sub-
section 4.3.2 this equation is the same as the one of Section 4.2 and differs from
it because of the presence of Dirichlet lateral boundary conditions coming from
the state constraints. Calling

Int∗(C) := {(s, x) ∈ C | s ∈ [0, T ), S(s) < x < F (s)}

the HJB equation reads as

ws(s, x) + (rx− b0)wx(s, x) + κe−ρs(F (s)− x)2 +H(wx(s, x), wxx(s, x)) = 0,

(s, x) ∈ Int∗(C), (4.21)

with boundary conditions
w(s, F (s)) = 0, s ∈ [0, T ];

w(s, S(s)) = g(s) + e−ρT (F̄ − S̄)2, s ∈ [0, T ];

w(T, x) = e−ρT (F̄ − x)2, x ∈ [S̄, F̄ ],

(4.22)

where

g(s) = κ(F̄ − S̄)2

∫ T

s
e−(ρ+2r)(T−t)dt. (4.23)

Next we give the definitions of classical and viscosity solution for (4.21)-(4.22).

Definition 4.3.7. A function w is called a classical solution to (4.21)-(4.22) if

• w ∈ C(C; R) ∩ C1,2(Int∗(C); R),

• w satisfies pointwise in classical sense (4.21) (the derivative with respect
to the time variable at s = 0 has to be intended as right derivative)

• w satisfies the boundary Dirichlet conditions (4.22). �

Definition 4.3.8. A function w is called a viscosity solution to (4.21)-(4.22) if

• w ∈ C(C; R);

• w is a viscosity subsolution of (4.21) on Int∗(C), i.e. for every (sM , xM ) ∈
Int∗(C) and ϕ ∈ C1,2(Int∗(C); R) such that w − ϕ has a local maximum at
(sM , xM ) we have

− ϕs(sM , xM )− (rxM − b0)ϕx(sM , xM )− κe−ρsM (F (sM )− xM )2

−H(ϕx(sM , xM ), ϕxx(sM , xM )) ≤ 0; (4.24)
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• w is a viscosity supersolution of (4.21) on Int∗(C), i.e. for every (sm, xm) ∈
Int∗(C) and ϕ ∈ C1,2(Int∗(C); R) such that w − ϕ has a local minimum at
(sm, xm) we have

− ϕs(sm, xm)− (rxm − b0)ϕx(sm, xm)− κe−ρsm(F (sm)− xm)2

−H(ϕx(sm, xm), ϕxx(sm, xm)) ≥ 0;

• w satisfies the Dirichlet boundary conditions (4.22). �

Now we operate a transformation to get a nicer domain. Let us consider
the diffeomorphism

L : [0, T ]× [S̄, F̄ ] −→ C,
(s, z) 7−→ (s, x) = L(s, z) :=

(
s, ze−r(T−s) + b0

r

(
1− e−r(T−s)

))
.

Equation (4.21)-(4.22) transformed via the diffeomorphism L leads to consider
the equation

hs(s, z) + κe−ρs(F (s)− L(s, z))2 +H(hz(s, z), hzz(s, z)) = 0,

(s, z) ∈ [0, T )× (S̄, F̄ ), (4.25)

with boundary conditions
h(s, F̄ ) = 0, s ∈ [0, T ];

h(s, S̄) = g(s) + e−ρT (F̄ − S̄)2, s ∈ [0, T ];

h(T, z) = e−ρT (F̄ − z)2, z ∈ [S̄, F̄ ],

(4.26)

where g(s) was defined in (4.23). We note that (4.25)-(4.26) is associated with
the control problem

sup
π(·)∈Π̃ad(s,z)

E

[∫ T

s
κe−ρt(F (s)− L(t, Z(t; s, x, π(·))))2dt+ (F̄ − Z(T ; s, z, π(·)))2

]
,

where dZ(t) = σλπ(t)dt+ σπ(t)dB(t),

Z(s) = z,

and

Π̃ad(s, z) =
{
π(·) progressively measurable with respect to

(
FBst

)
t∈[s,T ]

,

π(·) ∈ L2(Ω× [s, T ]; [0,+∞)),

S̄ ≤ Z(t; s, z, π(·)) ≤ F̄ , t ∈ [s, T ]
}
.
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Remark 4.3.9. Although a priori the stochastic optimal control problem as-
sociated with (4.25)-(4.26) can be defined on any probability space, we see it
defined on the originary probability space (Ω,F ,P) and taking the same Brow-
nian motion B. In this way we have the relationship

Z(t; s, z, π(·)) = [L(t, ·)]−1 (X(t; s, x, π(·))) ,

where z = [L(s, ·)]−1(x), x ∈ [S(s), F (s)]. �

Let us give also the definition of viscosity solution to (4.25)-(4.26).

Definition 4.3.10. A function h is called a viscosity solution to (4.25)-(4.26) if

• h ∈ C([0, T ]× [S̄, F̄ ]; R);

• h is a viscosity subsolution of (4.25) on [0, T ) × (S̄, F̄ ), i.e. for every
(sM , zM ) ∈ [0, T )× (S̄, F̄ ) and ϕ ∈ C1,2([0, T )× (S̄, F̄ ); R) such that h−ϕ
has a local maximum at (sM , zM ) we have

− ϕs(sM , zM )− κe−ρsM (F (sM )− L(sM , zM ))2

−H(ϕz(sM , zM ), ϕzz(sM , zM )) ≤ 0;

• h is a viscosity supersolution of (4.25) on [0, T ) × (S̄, F̄ ), i.e. for every
(sm, zm) ∈ [0, T )× (S̄, F̄ ) and ϕ ∈ C1,2([0, T )× (S̄, F̄ ); R) such that h−ϕ
has a local minimum at (sm, zm) we have

− ϕs(sm, zm)− κe−ρsm(F (sm)− L(sm, zm))2

−H(ϕz(sm, zm), ϕzz(sm, zm)) ≥ 0;

• h satisfies the Dirichlet boundary conditions (4.26). �

Let us make more precise the relationship between (4.21)-(4.22) and (4.25)-
(4.26). We have the following.

Proposition 4.3.11.

1. Equation (4.21)-(4.22) admits a unique viscosity solution if and only if equation
(4.25)-(4.26) admits a unique viscosity solution. Moreover, in this case, h is the
unique viscosity solution to (4.25)-(4.26) if and only

w(s, x) := h(s, [L(s, ·)]−1(x)), (s, x) ∈ C, (4.27)

is the unique viscosity solution to (4.21)-(4.22).
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2. Uniqueness of viscosity solutions holds for equation (4.25)-(4.26) (so, by the
previous item, also for equation (4.21)-(4.22)).

3. The value function W is a viscosity solution of (4.21)-(4.22). Therefore, in
particular, existence holds for equation (4.21)-(4.22) (so, by item (1), also for
equation (4.25)-(4.26)).

Proof. 1. This claim is consequence of straightforward computations trans-
forming equation (4.21)-(4.22) into equation (4.25)-(4.26) via the diffeomor-
phism L.

2. This claim follows from Theorem V.8.1 of [Fleming, Soner; 1993]. Indeed,
condition V-(7.1) of [Fleming, Soner; 1993] is easily verified in our case.

3. The proof that the value function W is a viscosity solution to HJB (4.21)-
(4.22) basically follows the line of Theorem 1.2.23. We do not give the proof
here, but we point out that we must only take care of the fact that the space of
controls is unbounded here. �

Thanks to Proposition 4.3.11 we have obtained the following characteriza-
tion of the value function W .

Theorem 4.3.12. The value function W is the unique viscosity solution to (4.21)-
(4.22). �

4.3.4 An example with explicit solution

This subsection is devoted to the study of a case allowing an explicit solution
for the problem (when the running cost is null, i.e. κ = 0). Such a solution is
not trivial and presents an interesting link with the Black-Scholes formula for
the price of the European put option (see Remark 4.3.15).

Hereafter we assume that the risk premium λ is strictly positive. The case
λ = 0, less meaningful from a financial point of view, can be treated apart:
it could be seen quite easily that in this case the optimality consists simply
in keeping the null strategy, i.e. in investing the whole wealth in the riskless
asset.

We make a further transformation to get a linear equation. This method
can be successfully used in the case of HJB equation coming from optimal
portfolio allocation problems, for which the nonlinearity in the equation takes
the form v2

x/vxx. We refer, e.g., to the papers [Elie, Touzi; 2008], [Gao; 2008],

[Højgaard, Vigna; 2007], [Milevsky, Moore, Young; 2006], [Milevsky, Young; 2007].
So, let κ = 0; in this case we can suppress the term e−ρT appearing in the

bequest functional, i.e. considering without loss of generality ρ = 0. We will
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do it for sake of simplicity. In this case (4.25)-(4.26) becomes

hs(s, z) +H(hz(s, z), hzz(s, z)) = 0, (s, z) ∈ [0, T )× (S̄, F̄ ), (4.28)

with boundary conditions
h(s, F̄ ) = 0, s ∈ [0, T ];

h(s, S̄) = (F̄ − S̄)2, s ∈ [0, T ];

h(T, z) = (F̄ − z)2, z ∈ [S̄, F̄ ],

(4.29)

Let us give the definition of classical solution to (4.28)-(4.29).

Definition 4.3.13. A function h is called a classical solution to (4.28)-(4.29) if

• h ∈ C([0, T ]× [S̄, F̄ ]; R) ∩ C1,2([0, T )× (S̄, F̄ ); R),

• h satisfies pointwise in classical sense (4.28) (the derivative with respect
to the time variable at s = 0 has to be intended as right derivative),

• h satisfies the boundary Dirichlet conditions (4.29). �

Suppose that the unique viscosity solution h to (4.28)-(4.29) is such that
h ∈ C1,2([0, T )× (S̄, F̄ )). Suppose also that for every s ∈ [0, T ]

hz(s, z) < 0, ∀z ∈ (S̄, F̄ ), hzz(s, z) > 0, ∀z ∈ (S̄, F̄ ). (4.30)

i.e. in particular h(s, ·) is strictly decreasing and strictly convex. Moreover
suppose that

lim
z↓S̄

hz(s, z) = −∞, ∀s ∈ [0, T ). (4.31)

Due to (4.30), taking into account the structure (4.8) for the Hamiltonian, we
see that h satisfies in classical sense

hs(s, z)−
λ2h2

z(s, z)
2hzz(s, z)

= 0, (s, z) ∈ [0, T )× (S̄, F̄ ), (4.32)

and is the unique classical solution to (4.28)-(4.29). Given such a solution h, for
every (s, y) ∈ [0, T ] × [0,+∞), there exists a unique minimizer g(s, y) ∈ [S̄, F̄ ]
of the function [S̄, F̄ ] → R+, z 7→ h(s, z) + zy. Since h is continuous, also g is
continuous.

Let us look at the behaviour of g for fixed s ∈ [0, T ). First of all we note
that, since h(s, ·) is decreasing, also g(s, ·) is decreasing. Moreover, for every
y ∈ (0,+∞) the minimizer g(s, y) of z 7→ h(s, z) + zy belongs to (S̄, F̄ ) and is
characterized by the relationship

hz(s, g(s, y)) = −y. (4.33)
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Finally we have

g(s, 0) = F̄ ; lim
y→+∞

g(s, y) = S̄.

When s = T , the unique minimizer g(T, y) ∈ [S̄, F̄ ] of

[S̄, F̄ ] 3 z 7→ h(T, z)

is explicitely computable, since h(T, ·) is known. Indeed

g(T, y) =
(
F̄ − y

2

)
∨ S̄.

Proposition 4.3.14. Suppose that the unique viscosity solution h to (4.28)-(4.29) is of
class C1,3([0, T )× (S̄, F̄ ); R) and satisfies (4.30)-(4.31) and let g be defined as above.
Then g is a classical solution (in a sense analogous to Definitions 4.3.7-4.3.13) of

gs(s, y) + λ2ygy(s, y) +
λ2

2
y2gyy(s, y) = 0 on [0, T )× (0,+∞), (4.34)

with boundary conditions
g(s, 0) = F̄ , s ∈ [0, T ];

g(T, y) =
(
F̄ − y

2

)
∨ S̄, y ∈ (0,+∞);

limy→+∞ g(s, y) = S̄, s ∈ [0, T ).

(4.35)

Conversely, if g ∈ C([0, T ]× [0,+∞); R) ∩ C1,2([0, T )× (0,+∞); R) is a classical
solution to (4.34)-(4.35) satisfying

g(s, ·) ∈ [S̄, F̄ ], gy(s, ·) < 0, ∀s ∈ [0, T ), (4.36)

then h ∈ C1,3([0, T )× (S̄, F̄ ); R) defined byh(s, z) := S̄ −
∫ z

S̄
[g(s, ·)]−1(ξ)dξ, (s, z) ∈ [0, T )× [S̄, F̄ ],

h(T, z) = (F̄ − z)2, z ∈ [S̄, F̄ ],
(4.37)

is a classical solution (actually the unique classical solution) to (4.28)-(4.29) and sat-
isfies (4.30)-(4.31).

Proof. Let h be the unique viscosity solution to (4.28)-(4.29) and suppose
that h ∈ C1,3([0, T ) × (S̄, F̄ ); R) and that it satisfies (4.30)-(4.31). Let g be de-
fined as above. Due to (4.30), we know that h satisfies (4.32). Deriving this
equation with respect to z we get

hsz(s, z) =
λ2

2
2hz(s, z)hzz(s, z)2 − h2

zhzzz(s, z)
hzz(s, z)2

, (s, z) ∈ [0, T )×(S̄, F̄ ). (4.38)
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Deriving (4.33) with respect to s, y and twice with respect to z yields

hsz(s, g(s, y)) + hzz(s, g(s, y))gs(s, y) = 0, (4.39)

hzz(s, g(s, y))gy(s, y) = −1, (4.40)

hzzz(s, g(s, y))g2
y(s, y) + hzz(s, g(s, y))gyy(s, y) = 0. (4.41)

Plugging (4.39)–(4.41) into (4.38) yields

gs(s, y)
gy(s, y)

=
λ2

2

[
−2y − y2 gyy(s, y)

gy(s, y)

]
, (s, y) ∈ [0, T )× (0,+∞).

Multiplying by gy we get (4.34). The boundary conditions (4.35) for g are easily
verified starting from the boundary conditions (4.29) for h.

Conversely, let g ∈ C([0, T ] × [0,+∞); R) ∩ C1,2([0, T ) × (0,+∞); R) be a
classical solution to (4.34)-(4.35) satisfying (4.36) and let h be defined by (4.37).
The structure of g (we have to consider also the probabilistic representation of
the solution g given below and Remark 4.3.15 for an idea about the shape of g
and its derivatives) yields (4.30)-(4.31) for h.

Using backward the argument above we get that h solves (4.38). Integrat-
ing (4.38) with respect to s we see that, for some continuus function C(s),

hs(s, z)−
λ2h2

z(s, z)
2hzz(s, z)

= C(s), (s, z) ∈ [0, T )× (S̄, F̄ ), (4.42)

Deriving h with respect to s, z and twice with respect to z and computing
these derivatives at (0, F̄−) yields (again we have to consider the probabilistic
representation of g for an idea about the shape of g and about the behaviour at
y = 0+ of g and gy)

hs(s, F̄−) = 0, hz(s, F̄−) = 0, hzz(s, F̄−) = 1/2; ∀s ∈ [0, T ). (4.43)

Plugging (4.43) into (4.42) yields C(s) ≡ 0 therein. So, taking also into account
(4.30), we see that h solves (4.28). The boundary conditions (4.29) for h are
verified starting from the boundary conditions (4.35) for g. �

As known, the classical solution to (4.34)-(4.35) exists, is unique and satis-
fies (4.36)1. Indeed it is given by the Kolmogorov probabilistic representation

g(s, y) = E [g(T, Y (T ; s, y))] , (s, y) ∈ [0, T ]× [0,+∞),
1The uniqueness of such a solution g is consistent with the fact that (4.25)-(4.26) admits a

unique viscosity solution, so that the function h defined in (4.37) must be the unique viscosity
(actually classical) solution to (4.32)-(4.29). Indeed two different solutions g1, g2 to (4.34)-(4.35)
and satisfying (4.36) would give rise to two different solutions h1, h2 to (4.32)-(4.29), which is
not possible due to Proposition 4.3.11.
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where Y (·; s, y) is the solution ofdY (t) = λ2Y (t)dt+ λY (t)dB̃(t),

Y (s) = y,
(4.44)

where B̃ is a standard Brownian motion defined on some probability space
(Ω̃, F̃ , P̃). Since the law of Y (T ; s, y) is known (it is the log-normal law), we
can explicitely compute g. It is given by

g(s, y) = (F̄ − S̄)Φ(k(s, y))− y

2
eλ

2(T−s)Φ(k(s, y)− λ
√
T − s) + S̄,

(s, y) ∈ [0, T )× [0,+∞),

g(T, y) =
(
F̄ − y

2

)
∨ S̄,

(4.45)
where

k(s, y) =
log
(

2(F̄−S̄)
y

)
− λ2

2 (T − s)

λ
√
T − s

(4.46)

and where Φ(·) is the cumulative distribution function of a standard normal
random variable, i.e.

Φ(x) =
1√
2π

∫ x

−∞
e−

ξ2

2 dξ.

Moreover, g satisfies (4.35)-(4.36), thus, by Proposition 4.3.14, h defined in
(4.37) is the unique classical solution to (4.32)-(4.29).

Remark 4.3.15. Despite of some constants, we see that the expression of g is
related to the price of a European put option in an appropriate Black-Scholes
market. �

4.3.5 The feedback map

Due to the previous subsection we can say that the value function W is the
unique classical solution of the HJB equation

ws(s, x) + (rx− b0)wx(s, x)− λ2w2
x(s, x)

2wxx(s, x)
= 0, (s, x) ∈ Int∗(C), (4.47)

with boundary conditions
w(s, F (s)) = 0, s ∈ [0, T ];

w(s, S(s)) = g(s) + e−ρT (F̄ − S̄)2, s ∈ [0, T ];

w(T, x) = e−ρT (F̄ − x)2, x ∈ [S̄, F̄ ],

(4.48)
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(the structure (4.8) for the Hamiltonian is provided by the fact that Wxx, as
well as hzz , is strictly positive). Moreover W is explicitely computable starting
from g given in (4.45).

The feedback map related to W is (extended for convenience to [0, T )× R)

G(s, x) :=

−
λ

σ

Wx(s, x)
Wxx(s, x)

, s ∈ [0, T ), S(s) < x < F (s),

0, s ∈ [0, T ), x ≥ F (s) or x ≤ S(s).
(4.49)

It can be expressed as well in terms of h, g, given by (4.37), (4.45) by means of
the transformations done in the previous subsection. Indeed, for s ∈ [0, T ),
S(s) < x < F (s), we can write

G(s, x) = −λ
σ

Wx(s, x)
Wxx(s, x)

= −λ
σ

hz(s, [L(s, ·)]−1(x))
hzz(s, [L(s, ·)]−1(x))

e−r(T−s)

= −λ
σ

(
[g(s, ·)]−1

(
[L(s, ·)]−1 (x)

))
gy

(
s, [g(s, ·)]−1

(
[L(s, ·)]−1 (x)

))
e−r(T−s).

(4.50)

Proposition 4.3.16. Let s0 ∈ [0, T ). The feedback map G defined in (4.49) is contin-
uous on [0, s0] × R. Moreover it is α-Holder continuous with respect to x uniformly
in s ∈ [0, s0] for every α ∈ (0, 1).

Proof. We prove the claim in several steps.
(i) First of all we notice that, sinceL is a diffeomorphism, the claim is equiv-

alent to prove that the function

G̃(s, z) :=

[g(s, ·)]−1 (z) · gy
(
s, [g(s, ·)]−1 (z)

)
, z ∈ (S̄, F̄ ),

0, z ≤ S̄ or z ≥ F̄ ,
(4.51)

is continuous on [0, s0] × R and α-Holder continuous with respect to z uni-
formly in s ∈ [0, s0] for every α ∈ (0, 1).

(ii) Since G̃ ∈ C1,2([0, s0] × (S̄, F̄ ); R), the claim is true on every compact
set contained in [0, s0]× (S̄, F̄ ).

(iii) Here we prove G̃(s, ·) is continuous on [S̄, F̄ ] (therefore on R) for every
s ∈ [0, s0]. Thanks to (ii) and to the definition of G̃(s, ·) on (−∞, S̄] ∪ [F̄ ,+∞),
we need to prove the claim only at the endpoint S̄ from the right and at the
endpoint F̄ from the left. This is equivalent to prove that, for every s ∈ [0, s0],

lim
z→S̄+

G̃(s, z) = 0, lim
z→F̄−

G̃(s, z) = 0,

i.e.
lim

y→+∞
ygy(s, y) = 0, lim

y→0+
ygy(s, y) = 0.
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The limits above are true by straightforward computations.
(iv) Here we prove that G̃(s, ·) is Lipschitz continuous on [F̄ − ε, F̄ ] for

some ε > 0. uniformly with respect to s ∈ [0, s0]. To this aim, it suffices to
show that G̃z is bounded on [0, s0]× [F̄ − ε, F̄ ] for some ε > 0. We have

G̃z(s, z) = 1 +
[g(s, ·)]−1(z) · gyy

(
s, [g(s, ·)]−1(z)

)
gy (s, [g(s, ·)]−1(z))

Therefore we study the limit for z → F̄− of G̃z(s, ·), or equivalently

lim
y→0+

ygyy(s, y)
gy(s, y)

.

Straightforward computations show that

lim
y→0+

ygyy(s, y)
gy(s, y)

= 0

uniformly in s ∈ [0, s0], which is enough to get the claim of this step.
(v) This is the most difficult step. Here we prove that, for every α ∈ (0, 1),

the map G̃(s, ·) is α-Holder continuous on [S̄, S̄ + ε] for some ε > 0 uniformly
with respect to s ∈ [0, s0]. The argument below holds uniformly with respect
to s ∈ [0, s0], so here we fix s ∈ [0, s0] without loss of generality for our goal.
To this aim it suffices to show that G̃z(s, z) · (z − S̄)1−α is bounded on [0, s0]×
[S̄, S̄ + ε] for some ε > 0. Therefore, we are led to study the limit for z → S̄ of
G̃z(s, z) · (z − S̄)1−α, or equivalently

lim
y→+∞

ygyy(s, y)
gy(s, y)

(g(s, y)− S̄)1−α. (4.52)

A direct study of the limit above is quite hard. However, we notice that we can
simplify it applying de l’Hôpital’s rule “backward”. Indeed, consider

lim
y→+∞

ygy(s, y)− (g(s, y)− S̄)(
g(s, y)− S̄

)α . (4.53)

The limit above is in the form 0
0 so that we can apply de l’Hôpital rule getting

lim
y→+∞

ygy(s, y)− (g(s, y)− S̄)(
g(s, y)− S̄

)α =
1
α
· lim
y→+∞

ygyy(s, y)
gy(s, y)

(g(s, y)− S̄)1−α. (4.54)

Therefore, from (4.54) we see that (4.52) behaves as (4.53), i.e. as

lim
y→+∞

ygy(s, y)
(g(s, y)− S̄)α

. (4.55)

We observe that

d

dy

[
y
(
g(s, y)− S̄

)1−α] = (1− α)
ygy(s, y)(

g(s, y)− S̄
)α +

(
g(s, y)− S̄

)1−α
,
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so that (4.55) behaves as

lim
y→+∞

(
d

dy

[
y
(
g(s, y)− S̄

)1−α])
. (4.56)

To study the limite above, we observe that, for sufficiently large M > 0 we
have

d2

dy2

[
ygy(s, y)

(g(s, y)− S̄)α

]
≥ 0, y ≥M.

Therefeore, the function

y 7→ ygy(s, y)
(g(s, y)− S̄)α

(4.57)

is convex on [M,+∞). It is straight to check that

lim
y→+∞

(
y
(
g(s, y)− S̄

)1−α) = 0. (4.58)

By convexity of (4.57), we must have also

lim
y→+∞

(
d

dy

[
y
(
g(s, y)− S̄

)1−α]) = 0

and the claim is proved.
(vi) Due to items (iii) and (iv) we can see that G̃ is continuous with respect

to (s, z) up to the boundary [0, s0] × {F̄} on the left with respect to z, i.e. for
z → F̄−.

Due to items (iii) and (v) we can see that G̃ is continuous with respect to
(s, z) up to the boundary [0, s0] × {S̄} on the right with respect to z, i.e. for
z → S̄+.

(vii) The claim of item (i) is obvious on the set [0, s0]×((−∞, S̄]∪ [F̄ ,+∞)),
so the general claim is definitively proved. �

Another important property of the feedback map G is that it is bounded.

Proposition 4.3.17. The map G defined in (4.50) is bounded on [0, T )× R.

Proof. It is clear that we can prove the statement for the map G̃ defined in
(4.51) on the set [0, T )× (S̄, F̄ ). This claim is equivalent to prove that the map

(s, y) 7→ ygy(s, y)

is bounded on the set [0, T ) × (0,+∞). It is also clear that, since as known2

gy is bounded on [0, T ) × (0,+∞), it suffices to prove the claim on the set
[0, T )× [M,+∞) for some M > 0.

2Recall that g has the same structure of the price of a European put option (see Remark
4.3.15).
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We have

gy(s, y) =
1√
2π

(F̄ − S̄)e−
k(s,y)2

2 ky(s, y)− 1
2
eλ

2(T−s)Φ
(
k(s, y)− λ

√
T − s

)
− 1√

2π
y

2
eλ

2(T−s)e−
(k(s,y)−λ

√
T−s)2

2 ky(s, y) (4.59)

and
ky(s, y) = − 1

λ
√
T − s

· 1
y
.

We notice that ygy(s, y) is negative and that for y ≥ 2(F̄−S̄) the first two terms
in the right handside of (4.59) are negative, while the third one is positive.
Therefore, for y ≥ 2(F̄ − S̄),

|ygy(s, y)| ≤ K1
e−

k(s,y)2

2

λ
√
T − s

+K2 yΦ
(
k(s, y)− λ

√
T − s

)
,

for some K1,K2 > 0. Set

p(s, y) :=
e−

k(s,y)2

2

λ
√
T − s

, q(s, y) := yΦ
(
k(s, y)− λ

√
T − s

)
.

We claim that p, q are bounded on [0, T ) × [M,+∞) for some M ≥ 2(F̄ − S̄),
that is enough to conclude. We have

p(s, y) =

(
e
− 1

2

“
log

“
2(F̄−S̄)

y

”
−λ2

2 (T−s)
”2) 1

λ2(T−s)

λ
√
T − s

. (4.60)

Notice that, if α(y) ∈ (0, α0], α0 < 1, there exists Cα0 > 0 such that

1√
x
α(y)1/x ≤ Cα0 , x > 0. (4.61)

Take M ≥ 2(F̄ − S̄) large enough to have

e
− 1

2

“
log

“
2(F̄−S̄)
M

””2

≤ α0 < 1.

Take Cα0 > 0 such that (4.61) holds. From (4.60) we get on the set [0, T ) ×
[M,+∞)

p(s, y) ≤ Cα0 .

Consider now q. We have on [0, T )× (0,+∞)

q(s, y) ≤ yΦ
(

log
(

2(F̄ − S̄)
y

))
.

It is straightforward to check that

lim
y→+∞

[
yΦ
(

log
(

2(F̄ − S̄)
y

))]
= 0,

so q is bounded on [0, T )× (0,+∞). Therefore we get the claim. �
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4.3.6 The closed loop equation and the optimal feedback strategy

Thanks to Proposition 4.3.16 in the previous subsection, the classical theory
on one dimensional SDEs allows to study the closed loop equation associated
with G.

Proposition 4.3.18. Let G be the map defined in (4.50) and let s ∈ [0, T ). For every
s0 ∈ [s, T ) the closed loop equationdX(t) = [rX(t) + σλG(t,X(t))− b0] dt+ σG(t,X(t))dB(t),

X(s) = x ∈ [S(s), F (s)],
(4.62)

admits a unique strong solutionXs0
G (·; s, x) on (Ω,F ,P) in the interval [s, s0]. More-

over we have

S(t) ≤ Xs0
G (t; s, x) ≤ F (t), P− a.s., ∀t ∈ [s, s0]. (4.63)

Proof. Since G is continuous on [s, s0]×R, we see that Theorem 2.4, p. 163,
of [Ikeda, Watanabe; 1981] provides the existence of a weak solution.

Since G is α-Holder continuous, α ≥ 1/2, with respect to y uniformly with
respect to the time variable, the Yamabe-Watanabe Theorem (see, e.g.,

- [Yamada, Watanabe; 1971] or
- Theorem 3.5-(ii), p. 390, of [Revuz, Yor; 1999] or
- Proposition 2.13, p. 291, of [Karatzas, Shreve; 1991])

ensures pathwise uniqueness for the solution.
By Yamada-Watanabe theory, pathwise uniqueness and weak existence im-

ply existence (and uniqueness) of a strong solution (see, e.g., Section 5.3.D, pp.
308–311, of [Karatzas, Shreve; 1991]).

The statement (4.63) follows by definition of G and due to the absorbing
properties of ∂∗FC and ∂∗SC (see Proposition 4.3.3 and the considerations be-
low). �

By uniqueness straightly we see that

0 ≤ s ≤ s0 ≤ s′0 < T, x ∈ [S(s), F (s)] =⇒ X
s′0
G (·; s, x)|[s,s0] = Xs0

G (·; s, x).

So, we have a unique strong solution XG(·; s, x) to (4.62) in the right-open
interval [s, T ). Moreover

S(t) ≤ XG(t; s, x) ≤ F (t), P− a.s., ∀t ∈ [s, T ). (4.64)

Therefore, for s ∈ [0, T ), x ∈ [S(s), F (s)], consider the feedback strategy
πs,xG (·) defined by

πs,xG (t) :=

G(t,XG(t; s, x)), if t ∈ [s, T ),

0, if t = T.
(4.65)
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This is the candidate optimal strategy for the problem. First let us show
that it is admissible.

Proposition 4.3.19. For every s ∈ [0, T ), x ∈ [S(s), F (s)], the feedback strategy
πs,xG (·) defined in (4.65) is admissible, i.e. πs,xG (·) ∈ Πad(s, x).

Proof. By Proposition 4.3.17 we know that G is bounded on [0, T ) × R, so
that πs,xG (·) ∈ L∞(Ω× [s, T ]; R) ⊂ L2([Ω× [s, T ]; R). Moreover clearly we have
by definition of πs,xG (·)

X(t; s, x, πs,xG (·)) = XG(t; s, x), P− a.s., ∀t ∈ [s, T ),

so that from (4.64) we see also that

S(t) ≤ X(t; s, x, πs,xG (·)) ≤ F (t), P− a.s., ∀t ∈ [s, T ).

By continuity of trajectories we have also

S(T ) ≤ X(T ; s, x, πs,xG (·)) ≤ F (T ), P− a.s.

and the claim is proved. �

Theorem 4.3.20 (Verification). Let (s, x) ∈ C and let π(·) ∈ Πad(s, x). Then π(·)
is optimal for the initial (s, x) if and only if

π(t) = G(t,X(t; s, x, π(·)), P− a.s., ∀t ≥ s.

In particular the feedback strategy πs,xG (·) defined in (4.65) is the unique optimal stra-
tegy starting from the initial (s, x).

Proof. Since W is a classical solution of the HJB equation (4.47)-(4.48), the
proof follows the line of the proof of Theorem 4.2.12. Here we have only to
take care of the state constraint, as in the proof of Theorem 1.2.30. A similar
argument works thanks to Proposition 4.3.19. �

Remark 4.3.21. Due to the fact that the feedback map is α-Holder continuous
for every α ∈ (0, 1) with respect to the space variable uniformly with respect to
s ∈ [0, s0], it would be possible to prove that the boundaries ∂∗SC, ∂∗FC are never
reached by the optimal diffusion (t,XG(t; s, x))t∈[s,s0] when (s, x) ∈ Int∗(C).
From the point of view of Feller’s boundaries classification, this means that
these boundaries are natural for the optimal diffusion in the time interval [s, T ).
However, we cannot exclude that the optimal diffusion touches these bound-
aries at time T , i.e. that XG(T ; s, x) = F̄ or XG(T ; s, x) = S̄ with positive
probability. �
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Remark 4.3.22. The process Y defined by (4.44) is just an auxiliary process
defined in order to give a computable representation of the solution g to (4.34)-
(4.35). However, there is a relationship between the solution of (4.44) and the
optimal process XG, as we are going to show.

On the original probability space (Ω,F ,P) consider the SDEdỸ (t) = λỸ (t)dB(t),

Ỹ (s) = y,
(4.66)

where B is the originary Brownian motion defined on this space.
(Notice that this is equivalent to consider the equationdY (t) = λ2Y (t)dt+ λY (t)dB̃(t),

Y (s) = y,
(4.67)

i.e. (4.44) on the probability space (Ω,F , P̃), where

P̃ = eλB(t)−λ
2

2 · P, B̃(t) = B(t)− λt, t ∈ [0, T ],

By Girsanov’s Theorem B̃ is a Brownian motion under P̃.)
Let g be the solution of (4.34)-(4.35) and consider the process

Z̃(t) := g(t, Ỹ (t)),

where Ỹ is the solution to (4.66). The Itô formula, the fact that g solves (4.34)
and the expression of G̃ in (4.51) yield

dZ̃(t) = gt(t, Ỹ (t))dt+ gy(t, Ỹ (t))dỸ (t) +
1
2
λ2Ỹ (t)2gyy(t, Ỹ (t))dt

=
[
gt(t, Ỹ (t)) + λ2Ỹ (t)gy(t, Ỹ (t)) +

1
2
λ2Ỹ (t)2gyy(t, Ỹ (t))

]
dt

− λ2Ỹ (t)gy(t, Ỹ (t))dt+ λỸ (t)gy(t, Ỹ (t))dB(t)

= −λ2Ỹ (t)gy(t, Ỹ (t))dt+ λỸ (t)gy(t, Ỹ (t))dB(t)

= σλG̃(t, Z̃(t))dt− σG̃(t, Z̃(t))dB(t). (4.68)

This shows that

X̃(t) := L(t, Z̃(t)) = L(t, g(t, Ỹ (t))) (4.69)

solvesdX(t) = [rX(t) + σλG(t,X(t))− b0] dt− σG(t,X(t))dB(t),

X(s) = x = L(t, g(t, Ỹ (t))) ∈ [S(s), F (s)].
(4.70)
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Therefore X̃(t) has the same law of XG(t; s, x). This can be used in the simu-
lations, because simulating Ỹ is much easier than simulating XG. Moreover,
this argument can be used to study the closed loop equation through (4.66): in-
deed, we see that Ỹ solves (4.66) if and only if X̃ defined in (4.69) solves (4.70).
Despite of a minus sign in the diffusion, (4.70) is the same as (4.62), so that,
since (4.66) admits a unique strong solution on (Ω,F ,P), also (4.62) admits a
unique solution on (Ω,F ,P), i.e. the statement of Proposition 4.3.18. �

4.3.7 Numerical application

In this subsection we show a numerical application of the model presented
in the present section. We consider the position of a male retiree aged 60
with initial wealth x0 = 100. Consistently with the compulsory annuitiza-
tion age of 75 holding in UK, we set T = 15. The market parameters are
r = 0.03, µ = 0.08, σ = 0.15, implying a Sharpe ratio equal to β = 0.33. The
pension rate purchasable at retirement, using Italian projected mortality tables
(RG48) is b0 = 6.22. The choice of the final target F and the final guarantee
S are evidently subjective and are determined by the member’s risk aversion.
High risk aversion will lead to a high guarantee and a low level of the target,
while a high target and a low guarantee will be driven by low risk aversion.
We have tested three levels of risk aversion. Thus, high risk aversion is associ-
ated to terminal safety level S = 2

3b0a75 and final target equal to F = 1.5b0a75,
where a75 is the actuarial value of a unitary lifetime annuity issued to an in-
dividual aged 75; medium risk aversion is associated to terminal safety level
S = 1

2b0a75 and final target equal to F = 1.75b0a75; low risk aversion is as-
sociated to terminal safety level3 S = 10−4 = 0+ and final target equal to
F = 2b0a75. These values are reported in Table 1 below.

S F
High risk aversion 2

3b0a75 1.5b0a75

Medium risk aversion 1
2b0a75 1.75b0a75

Low risk aversion 0 2b0a75

Table 1. Terminal safety level S and final target F for different risk profiles.

The interpretation of these choices is immediate. With high and medium risk
aversion, the minimum pension rate guaranteed is, respectively, two third and
half of the annuity rate that was possible to have on immediate annuitization
at retirement, b0; the targeted wealth is sufficient to fund a final pension that

3According to Remark ?? we have to consider S > 0. Evidently, from a practical point of
view, being owner of a fund of 10−4 EUR is equivalent to ruin.
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amounts to, respectively, 1.5 and 1.75 of b0. With low risk aversion, ruin is
avoided but no money is left for annuitization at age 75; on the other hand,
the targeted pension pursued is twice b0. It is worth mentioning that even the
more risk averse individual has some restrictions in choosing the minimum in-
come guaranteed. Indeed, it is clear from the formulation of the problem that
the value of S̄ has to satisfy S̄ ≤ z0 = x0e

rT − b0
r (erT − 1). The most risk averse

choice would be S = z0, but in this case the only admissible strategy would
be θ(·) ≡ 0, i.e. the whole fund wealth must be invested in the riskless asset
(see Proposition (4.3.1)), and one would end up after 15 years with an annuity
lower than that purchasable at retirement4. This choice makes little sense in a
realistic framework, given that here the bequest motive is disregarded and the
individual takes the income drawdown option only in the hope of being able
to buy a better annuity than b0. For this reason, we here consider only cases
where S < z0, which in this example means S < 0.7b0a75.

We have carried out 1000 Monte Carlo simulations for the behaviour of the
risky asset, with discretization step equal to one week. In order to do so, we
have simulated the process Ỹ given by equation (4.66) with starting point

Ỹ (0) = y = [g(0, ·)]−1(z0),

inserting the corresponding values of S, F and z0 as above. With each risk
aversion we have generated the same 1000 scenarios, by applying in each case
the same stream of pseudo random numbers.

For each risk aversion choice, we report the following results:

• evolution of the fund under optimal control during the 15 years time, by
showing a graph with mean and standard deviation and a graph with
some percentiles

• behaviour of the optimal investment strategy θ∗ over the 15 years time,
by showing a graph with some percentiles

• distribution of the final annuity that can be bought with the final fund at
age 75, comparison with the annuity purchasable at retirement.

Figures 1–4 report results for high risk aversion, figures 5–8 those for medium
risk aversion, figures 9–12 those for low risk aversion. In particular, figures 1,

4This is clear considering the mortality credits obtained when investing in an insurance
product, that enhance the riskless rate.
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5 and 9 report, over 15 years time, the mean and dispersion of the fund tra-
jectories, while figures 2, 6 and 10 report their percentiles. Figures 3, 7 and 11
report some percentiles of the distribution of the optimal investment alloca-
tion θ∗ over 15 years, and figures 4, 8 and 12 report the distribution of the final
annuity upon annuitization at time T .
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Figure 1. High risk aversion. Figure 2. High risk aversion.
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Figure 3. High risk aversion. Figure 4. High risk aversion.
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Figure 5. Medium risk aversion. Figure 6. Medium risk aversion.
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Figure 7. Medium risk aversion. Figure 8. Medium risk aversion.
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Figure 9. Low risk aversion. Figure 10. Low risk aversion.
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Figure 11. Low risk aversion. Figure 12. Low risk aversion.
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From the graphs we can make the following comments:

• Obviously, the wealth trajectories always lie strictly between the two bar-
riers S(t) and F (t) for t < T . In fact, the two bottom and upper absorbing
barriers cannot be reached before time T .

• Looking at the graphs reporting the percentiles of the trajectories, Figg.
2, 6 and 10, however, it seems that in some cases the fund touches the
bottom target S(t). This is due to the approximation error made by the
machine, that is unavoidable. In fact, for not too low values of η, Φ(η) is
so close to 0 that it cannot be distinguished from it. The result is that in
the practical applications for not too high values of y one has Φ(k(t, y)) =
Φ(k(t, y)−β

√
T − t) = 0 and g(t, y) = S̄, meaning that the fund is on the

safety level S(t), which is theoretically not true.

• When risk aversion decreases, the boundaries for the wealth process be-
come larger. This is due to the obvious fact that strategies are more ag-
gressive and the range of final outcomes increases, both in the positive
as well as in the negative direction.

• Inspection of Figg. 3, 7 and 11 shows that when risk aversion decreases,
optimal strategies become riskier. In fact, with high risk aversion the 95th

percentile of θ∗ stays below 2 even immediately prior to time T , whereas
with low risk aversion it lies between 5 and 6 close to T . On the other
hand, clearly, all strategies are bounded away from 0.

• Comparing Figg. 4, 8 and 12 it is immediate to see that the distribution
of the final annuity becomes more and more spread when risk aversion
decreases. Moreover, with high risk aversion one can observe a consid-
erable concentration around the guaranteed income 2

3b0 = 4.15. In fact,
in almost 50% of the cases, the fund approaches S(t) and stays close to
it until T (this can be noticed also by thorough inspection of Fig. 2). On
the contrary, the distribution of final annuity looks very favourable in
the case of low risk aversion, where in most of the cases the annuity lies
between 9 and 12, and unfavourable scenarios leading to final income
equal to 0 happen in ca 5% of the cases.

One should not forget that the real goal of the pensioner who opts for phased
withdrawals is to be better off than immediate annuitization when final annu-
itization takes place. Thus, it is of greatest interest to provide her with detailed
information regarding the distribution of the final annuity achieved. To some
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extent, this has been already shown in Figg. 4, 8 and 12. However, the hys-
tograms cannot report relevant information that are of immediate use for the
member who has to choose a risk profile. In particular, for the member’s deci-
sion making it is relevant the comparison between the final annuity achievable
by taking income drawdown option and b0, the pension rate purchasable at re-
tirement. Table 2 reports useful statistics of the distribution of the final annuity
achieved at age 75, for each risk aversion. The first nine line report mean, stan-
dard deviation, min, max and some percentiles of the distribution of the final
annuity. Lines 10 and 11 report, respectively, the guaranteed income S/a75 and
the targeted income F/a75 (as chosen in Table 1), while the last line reports the
probability (i.e. the frequency over 1000 scenarios) that the final annuity is
higher than b0.

HIGH MEDIUM LOW

RISK AVERSION RISK AVERSION RISK AVERSION

mean 5.70 7.44 9.40
st.dev. 1.74 2.73 3.38

min 4.15 3.11 0.00
5th perc. 4.15 3.11 0.00
25th perc. 4.15 4.87 8.45
50th perc. 4.75 8.41 10.80
75th perc. 7.33 9.80 11.72
95th perc. 8.71 10.55 12.21
max 9.29 10.86 12.42

guaranteed income S/a75 4.15 3.11 0
targeted income F/a75 9.33 10.885 12.44
prob(final annuity > b0) 39.20% 68.80% 84.10%

Table 2. Distribution of final annuity at age 75. Annuity on immediate
annuitization b0 = 6.22.

The following comments can be made:

• The mean of the final annuity is 5.70, 7.44, 9.40 with high, medium and
low risk aversion, respectively. The probability of being able to afford a
final annuity higher than b0 = 6.22 is 39.20%, 68.80% and 84.10% with
high, medium and low risk aversion, respectively.

• This shows that if risk aversion is too high, the price for having a high
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guarantee on the final income5 is that the chances of reaching the desired
annuity reduce dramatically. In fact, in 60% of the cases the individual
ends up with a final annuity lower than b0 and, even worse, in almost
50% of the cases the individual receives exactly the guaranteed income,
that is only two third of b0. This is likely to be an undesirable result for
the pensioner and it seems to indicate that if the member’s risk aversion
is too high, it is not convenient to take the income drawdown option.
This result was already observed by [Gerrard, Haberman, Vigna; 2006].

• On the other hand, with medium and low risk aversion the chances of
being better off with annuitization at time T are almost 70% and 85%,
respectively. This is an encouraging result, given that from retirement
to T the pensioner has withdrawn the prescribed rate of b0 and that she
was also guaranteed with a minimum lifetime income at retirement, or
at worst against ruin.

• The low risk aversion profile could turn out to be particularly attractive
to a member whose global post-retirement income was not heavily af-
fected by the second pillar provision. In fact, 1) the chances of exceeding
the immediate annuitization income b0 are extremely high (84%), 2) in
75 cases out of 1000 the member ends up with an annuity higher than
8.45, that is well above b0 = 6.22, 3) in about 5 cases out of 1000 the final
annuity is null and 4) ruin never occurs.

• Clearly, the price to pay for having a favourable distribution of final
income is to take more risk, which translates into more aggressive in-
vestment policies. This is highlighted by Fig.11, that reports the optimal
investment strategies for low risk aversion. In more than 25% of the
cases, the optimal strategy consists in borrowing considerable amounts
of money to be invested in the risky asset. This kind of strategy is evi-
dently not feasible in the presence of real world constraints.

5Observe in fact that the value of S = 0.67b0a75 is chosen to be very close to the upper
boundary z0 = 0.70b0a75
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Appendix A

Here we provide some results of functional analysis and measure theory used
in the thesis.

A.1 Some results in Probability and Measure Theory

Theorem A.1.1 (Girsanov). Let (Ω,F ,P) be a probability space on which there is
defined a Brownian motion (B(t))t≥0. Let (FBt )t≥0 be the filtration generated by the
Brownian motion. For an (Ft)t≥0-progressively measurable process γ consider the
processes

B̃(t) = B(t) +
∫ t

0
γ(s)ds,

L(t) = exp
(
−
∫ t

0
γ(s)dB(s)− 1

2

∫ t

0
γ2(s)ds

)
and assume that γ satisfies the Novikov condition

E
[
exp

(
1
2

∫ t

0
γ2(s)ds

)]
<∞, t ∈ [0,+∞).

Then (B̃(s))0≤s≤t is a Brownian motion under the probability P̃t := L(t) ·P << P|FBt
on FBt defined by the Radon-Nikodym derivative L(t). �

Proof. See, e.g., [Karatzas, Shreve; 1991], Chapter 3, Section 3.5, or also
[Revuz, Yor; 1999], Chapter VIII. �

Lemma A.1.2. Let (M,M, µ) be a finite measure space. Let p ≥ 1 and set Lp :=
Lp(M,M, µ; R). Let (fn), f ⊂ Lp be such that fn → f in Lp. Finally let ψ : R→ R
be uniformly continuous. Then ψ(fn), ψ(f) ∈ Lp and ψ(fn)→ ψ(f) in Lp.

Proof. Let x be the generic element of M . Since ψ is uniformly continuous
there exists a modulus of uniform continuity ω and it has sublinear growth.
Therefore, for suitable a, b > 0,

|ψ(f(x))| ≤ |ψ(f(x))−ψ(0)|+ |ψ(0)| ≤ ω(|f(x)|)+ |ψ(0)| ≤ a|f(x)|+ b+ |ψ(0)|.

281
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Since µ is finite and f ∈ Lp, we get ψ(f) ∈ Lp. The same argument holds for
ψ(fn), n ∈ N.
Let us show that ψ(fn)→ ψ(f) in Lp. Let ε > 0; we have, for some C > 0,∫

M
|ψ(f)− ψ(fn)|pdµ

=
∫
{|f−fn|≤ε}

|ψ(f)− ψ(fn)|pdµ+
∫
{|f−fn|>ε}

|ψ(f)− ψ(fn)|pdµ

≤ µ(M)ω(ε)p + µ{|f − fn| > ε} C
(
‖f‖pLp + ‖fn‖pLp + 1

)
.

Taking the limsup for n → ∞, the last term of the rigth hand-side goes to 0,
since fn

µ→ f and ‖fn‖Lp → ‖f‖Lp . Therefore

lim sup
n→∞

∫
M
|ψ(f)− ψ(fn)|pdµ ≤ µ(M)ω(ε)p.

Since ω(ε)→ 0 when ε→ 0, by the arbitrariness of ε we get the claim. �

A.2 Some results in Functional Analysis

Theorem A.2.1 (Ascoli-Arzelà). Let (S, d) be a compact metric space and let C(S)
be the Banach space of the real-valued functions x : S → R endowed with the sup-
norm ‖x‖ = sups∈S |x(s)|. Let (xn)n∈N ⊂ C(X) be a sequence of equi-bounded and
equi-uniformly continuous functions, i.e.

• there exists M > 0 such that |xn(s)| ≤M for every n ∈ N,

• for every ε > 0 there exists δ > 0 such that

d(s, s′) < δ =⇒ |xn(s)− x− n(s′)| < ε, ∀n ∈ N.

Then (xn)n∈N is relatively compact in C(S). In particular we can extract a subse-
quence (xnk)k∈N converging towards some x̄ ∈ C(S).

Proof. See [Yosida; 1980], Chapter III, Section 3. �

Theorem A.2.2 (Schauder). Let X be a Banach space and let M ⊂ X be nonempty,
closed, convex and bounded. Let F : X → X completely continuous (i.e. F is
continuous and maps bounded sets into relatively compact sets). Then F admits a
fixed point.

Theorem A.2.3 (Banach-Steinhaus). Let X,Y be Banach spaces and let {Ta}a∈A
be a family of bounded linear operator from X to Y such that

sup
a∈A
‖Tax‖Y < +∞, ∀x ∈ X.
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Then the family {Ta}a∈A is equibounded, i.e.

sup
a∈A
‖Ta‖L(X,Y ) < +∞.

Proof. See, in more generality, [Yosida; 1980], Chapter II, Section 1. �

Lemma A.2.4. Let (X, ‖·‖) be a Banach space and f : X → R uniformly continuous.
Then f is bounded on the bounded sets of X .

Proof. Fix ε > 0 and let δ > 0 be such that

‖x− y‖ < δ =⇒ |f(x)− f(y)| < ε.

Let us suppose by contradiction that

R := sup{r ≥ 0 | f(B(0, r)) is bounded} < +∞. (A.1)

Of course, by continuity of f , it results R > 0; by (A.1), we can find a sequence

(xn) ⊂ B(0, R+ δ/2)\B(0, R)

such that
|f(xn)| ≥ n, n ∈ N. (A.2)

On the other hand, again for (A.1), if

yn :=
R− (δ/3 ∧R/2)

‖xn‖
xn,

then, by definition of R, |f(yn)| ≤ K, for some K > 0. Since ‖xn − yn‖ < δ, by
uniform continuity of f we have |f(xn) − f(yn)| < ε for every n ∈ N, which
implies |f(xn)| ≤ K + ε for every n ∈ N. This contradicts (A.2), so that the
claim is proved. �
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