
Scuola Normale Superiore di Pisa
Classe di Scienze Matematiche, Fisiche e Naturali

Universität Zürich
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Introduction

The main topic of this thesis is the study of the ordinary differential equation

(0.1)

{
γ̇(t) = b(t, γ(t))
γ(0) = x

γ : [0, T ]→ Rd

under various regularity assumptions on the vector field

b(t, x) : [0, T ]× Rd → Rd .

The theory is simple and very classical in the case when b is sufficiently smooth, i.e. Lip-
schitz with respect to the spatial variable, uniformly with respect to the time variable.
This is the so-called Cauchy–Lipschitz theory. In this case we can identify a unique
flow of the vector field b, that is a map

X(t, x) : [0, T ]× Rd → Rd

which gathers together all trajectories, in the sense that it solves

(0.2)


∂X

∂t
(t, x) = b(t,X(t, x))

X(0, x) = x .

Moreover, additional regularity of the vector field is inherited by the flow, as for instance
regularity of x 7→ X(t, x).

In this classical situation there is also a strong connection with the transport equa-
tion, an evolutionary partial differential equation which has the form

(0.3)

{
∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0
u(0, x) = ū(x)

u : [0, T ]× Rd → R .

When γ(t) is a solution of (0.1), the quantity g(t) = u(t, γ(t)) is constant with respect
to time: indeed

ġ(t) =
∂u

∂t
(t, γ(t)) +∇xu(t, γ(t)) · γ̇(t)

=
∂u

∂t
(t, γ(t)) + b(t, γ(t)) · ∇xu(t, γ(t)) = 0 .

This means that (0.3) can be uniquely solved thanks to the theory of characteristics:
the unique solution u(t, x) is the transport of the initial data ū(x) along solutions of
(0.1), more precisely

u(t, x) = ū
(
X(t, ·)−1(x)

)
.
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6 Introduction

Recently a big interest has grown on the extensions of this theory to situations in
which the vector field b is less regular. Apart from the theoretical importance of such
an extension, the main motivation comes from the study of many nonlinear partial
differential equations of the mathematical physics. In various physical models of the
mechanics of fluids it is essential to deal with densities or with velocity fields which
are not smooth, and this corresponds to effective real world situations: for instance
the turbulent behaviour of viscous fluids or the shock waves produced by a supersonic
airplane.

We do not try to give here an account of the extremely wide literature on this topic,
but we rather prefer to illustrate with some detail a specific case which will be presented
again later on and which was a motivation for one of the main results collected in this
thesis, namely Ambrosio’s theorem (see Theorem 2.12).

The theory of conservation laws models situations in which the change of the
amount of a physical quantity in some domain is due only to an income or an out-
come of the quantity across the boundary of the domain. In the general case of several
space dimensions and of a vector physical quantity these equations take the form

(0.4)

{
∂tu+ div

(
F (u)

)
= 0

u(0, ·) = ū ,

where u : [0, T ]×Rd → Rk is the unknown and F : Rk →Md×k is a given smooth map,
called the flux.

The well-posedness theory for these equations is presently understood only in the
scalar case k = 1, and this goes back to Kružkov [103], and in the one-dimensional
case d = 1, via the Glimm scheme [97], or the front tracking method of Dafermos [74],
or the more recent vanishing viscosity method of Bianchini and Bressan [34]. On the
contrary, the general case d ≥ 2 and k ≥ 2 is presently very far from being understood.

For this reason the standard approach is to tackle some particular examples, pos-
sibly in order to get some insight on the general case. For instance, consider the case
in which the nonlinearity F (u) in (0.4) depends only on the modulus of the solution:

(0.5)


∂tu+

d∑
j=1

∂

∂xj

(
f j(|u|)u

)
= 0

u(0, ·) = ū .

This is the so-called Keyfitz and Kranzer system, introduced in [102]. For any j =
1, . . . , d the map f j : R+ → R is assumed to be smooth. A natural heuristic strategy,
implemented by Ambrosio, Bouchut and De Lellis in [15] and [11], is based on a formal
decoupling of (0.5) in a scalar conservation law for the modulus ρ = |u|
(0.6) ∂tρ+ div

(
f(ρ)ρ

)
= 0

and a linear transport equation for the angular part θ = u/|u|
(0.7) ∂tθ + f(ρ) · ∇θ = 0 .

Therefore, it is natural to consider weak solutions u of (0.5) such that ρ = |u| is a
solution of (0.6) in the sense of entropies (the right notion of [103] which ensures
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existence, uniqueness and stability in the scalar case). These solutions of (0.5) are
called renormalized entropy solutions and in [11] the authors showed the well-posedness
of renormalized entropy solutions in the class of maps u ∈ L∞([0, T ] × Rd; Rk) such
that |u| ∈ BVloc. In this case the Kružkov solution ρ of (0.6) enjoys BVloc regularity,
but in general it is not better, due to the creation of shocks. This means that we have
to deal with the transport equation (0.7) in which the vector field f(ρ) is BVloc but not
better, so that we are forced to go beyond the Cauchy–Lipschitz theory.

The theory of ordinary differential equations out of the smooth context starts with
the seminal work by DiPerna and Lions [84]. We want to focus now on the three
main ingredients of this approach, in order to orient the reader through the material
presented in this thesis; a precise description of the content of each chapter will be
made later in this Introduction.

In a quite different fashion with respect to the Cauchy–Lipschitz theory, the start-
ing point is now the Eulerian problem, i.e. the well-posedness of the PDE. The first
ingredient is the concept of renormalized solution of the transport equation. We say
that a bounded distributional solution u of the transport equation

(0.8) ∂tu+ b · ∇u = 0

is a renormalized solution if for every function β ∈ C1(R; R) the identity

(0.9) ∂t
(
β(u)

)
+ b · ∇

(
β(u)

)
= 0

holds in the sense of distributions. Notice that (0.9) holds for smooth solutions, by
an immediate application of the chain-rule. However, when the vector field is not
smooth, we cannot expect any regularity of the solutions, so that (0.9) is a nontrivial
request when made for all bounded distributional solutions. We say that a vector
field b has the renormalization property if all bounded distributional solutions of (0.8)
are renormalized. The renormalization property asserts that nonlinear compositions of
the solution are again solutions, or alternatively that the chain-rule holds in this weak
context. The overall result which motivates this definition is that, if the renormalization
property holds, then solutions of (0.3) are unique and stable.

The problem is then shifted to the validity of the renormalization property. This
property is not enjoyed by all vector fields: the point is that some regularity, tipically in
terms of weak differentiability, is needed. The second ingredient is a series of renorma-
lization lemmas, which ensure the renormalization property for vector fields satisfying
various regularity assumptions. The typical proof ultimately relies on the regularization
scheme introduced in [84] and the regularity of the vector field comes into play when one
shows that the error term in the approximation goes to zero. The two most significant
results of renormalization are due to DiPerna and Lions [84] and to Ambrosio [8], who
deal respectively with the Sobolev and the BV case.

The third ingredient is the possibility of transferring these results to the Lagrangian
problem, i.e. to the ODE, establishing a kind of extended theory of characteristics. In
this setting the right notion of solution of the ODE is that of regular Lagrangian flow
[8], in which the “good” solution is singled out by the property that trajectories do
not concentrate in small sets (this approach is slightly different from the one originally
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adopted in [84] to obtain results at the ODE level). The strength of this approach
relies in the possibility of formulating an abstract connection between PDE and ODE.
In this way, all the efforts made on the Eulerian side are automatically translated into
well-posedness results for the regular Lagrangian flow.

We now illustrate the contribution of the author to the development of this research
area. The following papers, with the exception of the first one, have been produced
during the author’s PhD studies in 2005–2007 at the Scuola Normale Superiore di Pisa,
with a co-supervision at the Universität Zürich.

In a joint work with Luigi Ambrosio and Stefania Maniglia [14] we study some fine
properties of normal traces of vector fields with measure divergence and we apply them
to show the renormalization property for special vector fields with bounded deforma-
tion. Moreover, we prove approximate continuity properties of solutions of transport
equations. This work is not presented in detail in this thesis, since it has already been
presented in the Tesi di Laurea [64]. We mention it in Section 2.7 for the results rela-
tive to the renormalization property and in Section 6.7 for some more recent progresses
based on the approximate continuity results.

The paper with Camillo De Lellis [65] settles, in the negative, a conjecture made
by Bressan about the possibility of applying transport equation techniques to the study
of multi-dimensional systems of conservation laws, in the same spirit of the derivation
mentioned for the Keyfitz and Kranzer system. This is briefly presented in Section 5.2.

In the two-dimensional divergence-free case the presence of a Hamiltonian func-
tion which is (at least formally) conserved along the flow gives an additional structure
to the problem and this allows a dramatic reduction of the regularity needed for the
uniqueness. In a first paper with Ferruccio Colombini and Jeffrey Rauch [57] we show
that all the results contained in the literature on this problem hold also in the case
of bounded, and not necessarily zero, divergence. However, a technical assumption of
unclear meaning is present in all these results. A further investigation, in a work in
progress in collaboration with Giovanni Alberti and Stefano Bianchini [5], identifies
the sharpest hypothesis needed for the uniqueness and clarifies its meaning. A new
technique of dimensional reduction via a splitting on the level sets of the Hamiltonian
is introduced. The positive result, which is presented in a basic case in Chapter 4, is
complemented by two counterexamples which show the necessity of the “extra assump-
tion”.

In a joint work with François Bouchut [37] the meaning of the renormalization
property is discussed: its connections with forward and backward uniqueness, strong
continuity and smooth approximations of the solution are analysed. Chapter 3 is com-
pletely devoted to the presentation of these results.

A second paper in collaboration with Camillo De Lellis [66] (see also the conference
proceedings [67]) introduces a new approach to the theory of regular Lagrangian flows,
in the W 1,p case with p > 1. This approach is based on some a priori quantitative
estimates, which can be derived directly at the ODE level, with no mention to the
PDE theory. These estimates allow to recover in a direct way various known well-
posedness results, but also have some new interesting corollaries, in terms of regularity
and compactness of the regular Lagrangian flow. This work is presented in Chapter 7.
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Eventually we mention the lecture notes [13] in collaboration with Luigi Ambrosio:
they present a self-contained survey of the theory of regular Lagrangian flows, with a
particular interest to the recent developments.

We finally illustrate the content of the various chapters of this thesis. For more
details the reader is referred to the introduction of each chapter.

In Chapter 1 we present the Cauchy–Lipschitz theory: we start with the classical
Picard–Lindelöf theorem regarding existence and uniqueness for ODEs with Lipschitz
vector field and we present some variants and extensions. Then we prove existence,
uniqueness and regularity of the classical flow of a vector field. Finally we present some
ideas of the theory of characteristics and the connection between the ODE and the
transport and the continuity equations in the smooth case.

Starting from Chapter 2 we begin to consider the non-smooth case from the Eulerian
viewpoint. We first introduce heuristically the motivation for the concept of renormal-
ized solution. Then we define rigorously the notion of weak (distributional) solution
and we see that existence holds under very general hypotheses. The renormalization
property is then introduced, together with its consequences for the well-posedness of
the PDE. We describe the DiPerna–Lions regularization scheme and the proof of the
renormalization property by DiPerna and Lions in the Sobolev case and by Ambrosio
in the BV case. Finally we comment on other various renormalization results and on
the case of nearly incompressible vector fields.

Chapter 3 is devoted to [37]: we show, first in the divergence-free framework and
then in more general cases, the relations between the notions of renormalization, strong
continuity of the solution with respect to the time, forward and backward uniqueness
in the Cauchy problem and approximation (in the sense of the norm of the graph of
the transport operator) of the solution with smooth maps.

The two-dimensional case is analysed in detail in Chapter 4, in which we mainly
follow [5]. In the basic case of an autonomous bounded divergence-free vector field we
show that, assuming a weak Sard property on the Hamiltonian, the two-dimensional
PDE can be split on the level sets of the Hamiltonian. Then we show uniqueness “line
by line”, using explicit arguments and a careful study of the structure of the level sets,
and this eventually implies uniqueness for the full two-dimensional equation.

Chapter 5 collects many counterexamples to the uniqueness, in particular the exam-
ples of [82] and [84] which shed light on the necessity of the assumptions made. More-
over, some related constructions are presented, in particular the counterexample of
[65], which shows the impossibility of building a theory for multi-dimensional systems
of conservation laws based on transport equations, and the examples of [62], relative
to the lack of propagation of regularity in the transport equation.

With Chapter 6 we start to present the Lagrangian viewpoint. First, the equivalence
between pointwise uniqueness for the ODE and uniqueness of positive measure-valued
solutions of the continuity equation is shown, exploiting the superposition principle for
solutions of the PDE. Then, we introduce the concept of regular Lagrangian flow and
we show how the uniqueness of bounded solutions of the continuity equation implies
existence and uniqueness of the regular Lagrangian flow. We finally comment on the
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DiPerna–Lions’ notion of flow and on the case of nearly incompressible vector fields,
with particular attention to a compactness conjecture made by Bressan.

Chapter 7 is devoted to the a priori quantitative estimates for Sobolev vector fields
[66]. The estimates are derived first in the bounded case, and then assuming more
general growth conditions. The consequences regarding existence, uniqueness, stability
(in a quantitative form), compactness and regularity of the regular Lagrangian flow are
presented. Some applications to the propagation of a mild regularity in the transport
equation and to a mixing conjecture made by Bressan are also addressed.

Finally, in the Appendix we recall some basic tools and results which are widely
used throughout the whole thesis.

As a general warning to the reader we observe that in many cases we do not state
our results under the sharpest possible assumptions: this is done in order to simplify the
exposition and to avoid annoying technicalities. For instance, in almost all the thesis
we deal only with globally bounded vector fields, but more general growth conditions
would be sufficient, compare Section 7.3. All the statements are typically completely
rigorous, while concerning the proofs we have sometimes chosen to skip some details,
to merely specify the main steps or to enlighten some important or delicate points, at
the expense of a more complete proof. This is done according to the author’s taste and
not to the absolute importance of each result. For the main notation used we refer the
reader to the Appendix or to the first place where each symbol or locution appears.

Present author’s address:

Gianluca Crippa
Dipartimento di Matematica
Università degli Studi di Parma
viale G.P. Usberti 53/A (Campus)
43100 PARMA (Italy)
phone: +39 0521 906968
fax: +39 0521 906950
email: gianluca.crippa@unipr.it
web: http://cvgmt.sns.it/people/crippa/

Revised version – October 30, 2008



CHAPTER 1

The theory in the smooth framework

In this chapter we illustrate the main results of the theory of ordinary differential
equations in the smooth framework. Most of these results are very classical, hence we
give only a sketch of the proofs. In Sections 1.1 and 1.2 we study existence, uniqueness
and stability properties of the solutions. In Section 1.3 we introduce the concept of flow
of a vector field. In Section 1.4 we illustrate the link between the ordinary differential
equation and two partial differential equations, namely the transport equation and the
continuity equation. Basic references for these topics are for instance [18], [39], [94],
[98] and [121].

1. The ordinary differential equation

Let b : D ⊂ Rt×Rd
x → Rd be a continuous time-dependent vector field, where D is

an open set. A (classical) solution of the ordinary differential equation

(1.1) γ̇(t) = b(t, γ(t))

consists of an interval [t1, t2] ⊂ R and a function γ ∈ C1([t1, t2]; Rd) which satisfies (1.1)
for every t ∈ [t1, t2]. In particular this implies that (t, γ(t)) ∈ D for every t ∈ [t1, t2].
We also say that γ is an integral curve or a characteristic curve of the vector field b.
Notice that, if b ∈ C∞(D; Rd), then every characteristic curve of b is in C∞([t1, t2]; Rd).

Now we fix (t0, x0) ∈ D and we consider the Cauchy problem for the ordinary
differential equation:

(1.2)

{
γ̇(t) = b(t, γ(t))
γ(t0) = x0 .

A solution to this problem is a function γ ∈ C1([t1, t2]; Rd) which is a characteristic
curve of b and satisfies the condition γ(t0) = x0. In particular we must require t0 ∈
[t1, t2].

It is immediate to check that γ ∈ C1([t0− r, t0 + r]; Rd) is a solution of (1.2) if and
only if γ ∈ C0([t0 − r, t0 + r]; Rd) and satisfies the identity

γ(t) = x0 +
∫ t

t0

b(s, γ(s)) ds for every t ∈ [t0 − r, t0 + r].

2. Existence and uniqueness in the classical setting

We want to discuss the well-posedness of (1.2) under the assumption that the vector
field b is sufficiently smooth. The following simple example shows that the situation
could be complicated even in the case of quite simple one-dimensional vector fields.

11



12 1. THE THEORY IN THE SMOOTH FRAMEWORK

Example 1.1 (The square root example). We consider on R the (continuous but
not Lipschitz) vector field b(t, x) =

√
|x|. The ordinary differential equation{

γ̇(t) =
√
|γ(t)|

γ(0) = 0

has the solution

γc(t) =
{

0 if t ≤ c
1
4(t− c)2 if t ≥ c

for every value of the parameter c ∈ [0,+∞]. The solution can “stay at rest” in the
origin for an arbitrary time. This example will be considered again later on: see Remark
6.6.

This example stresses that some smoothness assumptions are necessary to obtain
uniqueness. The following classical result by Picard–Lindelöf requires Lipschitz conti-
nuity of b with respect to the spatial variable, with some uniformity with respect to
the time.

Theorem 1.2 (Picard–Lindelöf). Let b be a continuous vector field defined on an
open set containing the rectangle

D =
{

(t, x) ∈ R× Rd : |t− t0| ≤ α , |x− x0| ≤ β
}
.

Assume that b is Lipschitz continuous with respect to the spatial variable, uniformly
with respect to the time, in D, i.e.

(1.3) |b(t, x)− b(t, y)| ≤ K|x− y| for every (t, x), (t, y) ∈ D,

and let M be such that |b(t, x)| ≤ M in D. Then there exists a unique solution γ ∈
C1([t0 − r, t0 + r]; Rd) to (1.2), where

r < min
{
α,

β

M
,

1
K

}
.

Proof. Choosing r as in the statement we define Ir = [t0− r, t0 + r]. We will show
that there exists a unique γ ∈ C0(Ir; Rd) such that

γ(t) = x0 +
∫ t

t0

b(s, γ(s)) ds for every t ∈ Ir.

We want to identify a complete metric space X on which the operator

T [γ](t) = x0 +
∫ t

t0

b(s, γ(s)) ds

is a contraction. We set

X =
{
γ ∈ C0(Ir; Rd) : γ(t0) = x0 and |γ(t)− x0| ≤ β for every t ∈ Ir

}
.

X is a closed subset of C0(Ir; Rd) equipped with the norm of the uniform convergence,
hence it is a complete metric space. If γ ∈ X then clearly T [γ] is a continuous map
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which satisfies T [γ](t0) = x0. Moreover

|T [γ](t)− x0| ≤
∣∣∣∣∫ t

t0

|b(s, γ(s))| ds
∣∣∣∣ ≤M |t− t0| ≤Mr < β .

This implies that T takes value in X.
We now check that T is a contraction. Take γ1 and γ2 in X. Then

|T [γ1](t)− T [γ2](t)| ≤
∣∣∣∣∫ t

t0

|b(s, γ1(s))− b(s, γ2(s))| ds
∣∣∣∣

≤ K
∣∣∣∣∫ t

t0

|γ1(s)− γ2(s)| ds
∣∣∣∣

≤ K|t− t0|‖γ1 − γ2‖L∞(Ir) ≤ Kr‖γ1 − γ2‖L∞(Ir) .

This implies that

‖T [γ1]− T [γ2]‖L∞(Ir) ≤ Kr‖γ1 − γ2‖L∞(Ir)

and since Kr < 1 we can apply the Banach fixed point theorem to get the existence of
a unique fixed point for T . This is precisely the unique solution to (1.2). �

Remark 1.3. This result is also valid if we assume that b is only summable with
respect to the time variable and Lipschitz continuous in x uniformly in t. For a proof
see for instance Theorem 4.0.7 of [22].

If we drop the Lipschitz continuity assumption, then we lose uniqueness of the
solution: compare with Example 1.1. However, we still have existence, thanks to the
following result.

Theorem 1.4 (Peano). Let b be a continuous and bounded vector field defined on
an open set containing the rectangle

D =
{

(t, x) ∈ R× Rd : |t− t0| ≤ α , |x− x0| ≤ β
}
.

Then there exists a local solution to (1.2).

Proof. We take r < min{α, β/M} and consider again the operator T and the
space X defined in the proof of Theorem 1.2. X is a non-empty bounded convex
closed subset of C0(Ir; Rd) equipped with the norm of the uniform convergence and
T : X → X is a continuous operator (because of the uniform continuity of b). Moreover
for every γ ∈ X we can estimate

|T [γ](t)− T [γ](t′)| =
∣∣∣∣∫ t

t′
|b(s, γ(s))| ds

∣∣∣∣ ≤M |t− t′| .
Hence by the Ascoli–Arzelà theorem T is a compact operator. Then the existence of
a fixed point in X is ensured by the Caccioppoli–Schauder fixed point theorem (see
Corollary 11.2 of [95]). �

Remark 1.5. In the one-dimensional autonomous case we have (local) uniqueness
provided b is continuous and b(x0) 6= 0. Indeed, set G(x) =

∫ x
x0

dy
b(y) . Since b(x0) 6= 0 we
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can find a neighbourhood of x0 in which G is of class C1 with G′ 6= 0; hence G has a
C1 inverse. If γ is a solution of (1.2) defined in a neighbourhood of 0 we can compute

d

dt
G(γ(t)) =

γ̇(t)
b(γ(t))

= 1 ,

which eventually implies G(γ(t)) = t and thus γ(t) = G−1(t). Since G only depends
on b, this means that the solution is unique. This is only true in a neighbourhood of
t = t0: similarly to the case described in Example 1.1, the solution of the problem{

γ̇(t) =
√
|γ(t)|

γ(0) = x0 < 0

reaches the origin (and up to that time it is unique), but it can stay at rest there for
an arbitrary amount of time before leaving it.

We now present two other conditions which are a bit more general than the Lipschitz
condition required in Theorem 1.2, but nevertheless they are sufficient to get uniqueness.

Proposition 1.6 (One-sided Lipschitz condition). Uniqueness forward in time for
(1.2) holds if the Lipschitz continuity condition (1.3) in Theorem 1.2 is replaced by the
following one-sided Lipschitz condition:(

b(t, x)− b(t, y)
)
· (x− y) ≤ K|x− y|2 for every (t, x), (t, y) ∈ D.

By “forward in time” we mean the following: two solutions γ1 and γ2 to (1.2),
which by definition satisfy γ1(t0) = γ2(t0) = x0, coincide for t > t0. Observe that the
one-sided Lipschitz condition cannot guarantee uniqueness backward in time, since it
is not invariant under an inversion of the sign of t in the equation, which amounts to a
change of sign of b.

Proof of Proposition 1.6. Consider r(t) = |γ1(t) − γ2(t)|2 and notice that
r(t0) = 0. Using the one-sided Lipschitz condition we can estimate

ṙ(t) = 2
(
γ1(t)− γ2(t)

)
·
(
b(t, γ1(t))− b(t, γ2(t))

)
≤ K|γ1(t)− γ2(t)|2 = Kr(t) .

This implies that
d

dt

[
r(t)e−Kt

]
≤ 0 ,

hence
r(t)e−Kt ≤ r(t0)e−Kt0 = 0 for every t ≥ t0,

that is the desired thesis. �

Proposition 1.7 (Osgood condition). Uniqueness for (1.2) holds if the Lipschitz
continuity condition (1.3) in Theorem 1.2 is replaced by the following Osgood condition:

|b(t, x)− b(t, y)| ≤ ω(|x− y|) for every (t, x), (t, y) ∈ D,

where ω : R+ → R+ is an increasing function satisfying ω(0) = 0, ω(z) > 0 for every
z > 0 and ∫ 1

0

1
ω(z)

dz = +∞ .
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Proof. As in the proof on the previous proposition we define r(t) = |γ1(t)−γ2(t)|2.
We have r(t0) = 0 and we assume by contradiction that r(t) > 0 for t ∈]t0, t0 + r[ for
some r > 0. This local forward uniqueness clearly implies global forward uniqueness,
and backward global uniqueness is proved in the same way. We compute

ṙ(t) = 2
(
γ1(t)− γ2(t)

)
·
(
γ̇1(t)− γ̇2(t)

)
= 2
(
γ1(t)− γ2(t)

)
·
(
b(t, γ1(t))− b(t, γ2(t))

)
.

Using the Osgood condition and integrating with respect to the time we get

(1.4) r(t) ≤ 2
∫ t

t0

√
r(s) ω(r(s)) ds .

We notice that
√
r(s) = |γ1(t)− γ2(t)| ∈ L1([t0, t0 + r]) and we apply an extension of

the Gronwall lemma, which goes as follows. Define

R(t) = 2
∫ t

t0

√
r(s) ω(r(s)) ds .

Since we are assuming that r(t) > 0 for t ∈]t0, t0 + r[ we deduce that R(t) > 0 for
t ∈]t0, t0 + r[. Moreover applying (1.4) we have

Ṙ(t) =
√
r(t) ω(r(t)) ≤

√
r(t) ω(R(t)) ,

from which we get

(1.5)
Ṙ(t)

ω(R(t))
≤
√
r(t) t > t0 .

We set

Ω(z) =
∫ 1

z

1
ω(r)

dr

and we observe that Ω(z) is well-defined for every z > 0, satisfies Ω′(z) = −1/ω(z) and
Ω(z) ↑ +∞ as z ↓ 0, because of the Osgood condition. Integrating (1.5) we deduce that
for every t0 < s < t we have

−Ω(R(t)) + Ω(R(s)) ≤
∫ t

s

√
r(τ) dτ ,

which however cannot hold for s very close to t0. Indeed, since R(s) ↓ 0 as s ↓ t0, in
this case we would have Ω(R(s)) ↑ +∞ as s ↓ t0, while the integral on the right hand
side stays finite. �

We conclude this section with a discussion about the maximal interval of existence
of the solution to (1.2). The solution that we constructed in the previous theorems is
in fact local in time. However, if b : D ⊂ R×Rd → Rd is continuous and bounded, then
every solution γ :]t1, t2[→ Rd of (1.2) can be extended to the closed interval [t1, t2].
Indeed, for every t1 < t < t′ < t2 we have

|γ(t′)− γ(t)| ≤
∫ t′

t
|b(s, γ(s))| ds ≤M |t′ − t| ,
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where M is an upper bound for |b| on D. Hence γ is Lipschitz and admits a unique
extension to the closure of its domain of definition.

Now notice that, if (t1, γ(t1)) or (t2, γ(t2)) is not on the boundary of D, we can
apply again the local existence result proved in Theorem 1.2 (or in Theorem 1.4). We
conclude the following result:

Theorem 1.8. Let b : D ⊂ R×Rd → Rd be a continuous and bounded vector field.
Assume that b is Lipschitz continuous with respect to the spatial variable, uniformly with
respect to the time, on every bounded rectangle contained in D. Fix (t0, x0) ∈ D. Then
there exists a unique solution to (1.2) and it can be extended until its graph touches the
boundary of D. This identifies a maximal interval of existence for the solution to (1.2).

If b is globally defined and bounded we deduce

Corollary 1.9. Let b : I × Rd → Rd be a continuous and bounded vector field,
where I ⊂ R is an interval. Assume that b is locally Lipschitz continuous with respect to
the spatial variable, uniformly with respect to the time. Then, for every (t0, x0) ∈ I×Rd

there exists a unique solution to (1.2) which is defined for t ∈ I.

3. The classical flow of a vector field

We want to compare two solutions γ and γ̂ to the ordinary differential equation,
with initial data at time t0 respectively equal to x0 and x̂0. We can compute

γ(t)− γ̂(t) = x0 − x̂0 +
∫ t

t0

b(s, γ(s)) ds−
∫ t

t0

b(s, γ̂(s)) ds

= x0 − x̂0 +
∫ t

t0

[
b(s, γ(s))− b(s, γ̂(s))

]
ds .

Hence we deduce

|γ(t)− γ̂(t)| ≤ |x0 − x̂0|+ Lip(b)
∫ t

t0

|γ(s)− γ̂(s)| ds ,

where Lip(b) denotes, as usual, the Lipschitz constant of b. A simple Gronwall argument
then gives

(1.6) |γ(t)− γ̂(t)| ≤ |x0 − x̂0| exp
(
K|t− t0|

)
.

This means that the solution depends Lipschitz continuously on the initial data.
A very similar argument shows that, if we consider two solutions γ and γ̂ with the

same initial data x0 but relative to different vector fields b and b̂, we have the continuity
estimate

(1.7) |γ(t)− γ̂(t)| ≤ |t− t0|‖b− b̂‖∞ exp
(
K|t− t0|

)
.

Looking at the solution of (1.2) as a function not only of the time but also of the
initial point x0 we are led to the following definition:
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Definition 1.10 (Classical flow of a vector field). Consider a continuous and
bounded vector field b : I × Rd → Rd, where I ⊂ R is an interval, and let t0 ∈ I.
The (classical) flow of the vector field b starting at time t0 is a map

X(t, x) : I × Rd → Rd

which satisfies

(1.8)


∂X

∂t
(t, x) = b(t,X(t, x))

X(t0, x) = x .

If the vector field b is bounded and Lipschitz with respect to the space variable we
immediately deduce existence and uniqueness of the flow from Corollary 1.9. Moreover
(1.6) also gives Lipschitz regularity of the flow.

Corollary 1.11. Let b : I × Rd → Rd be a continuous and bounded vector field,
where I ⊂ R is an interval. Assume that b is locally Lipschitz continuous with respect
to the spatial variable, uniformly with respect to the time. Then, for every t0 ∈ I there
exists a unique classical flow of b starting at time t0. Moreover, the flow is Lipschitz
continuous with respect to t and x.

Now we want to show that additional smoothness of b implies that the flow is also
smooth with respect to the spatial variable. Assume that b is C1 with respect to the
spatial variable, uniformly with respect to the time. We first discuss the differentiability
in the direction given by a unit vector e ∈ Sd−1. For every small h ∈ R we need to
compare X(t, x) and X(t, x + he). We first observe that differentiating formally (1.8)
with respect to x in the direction e we obtain the following ordinary differential equation
for DxX(t, x)e:

∂

∂t
DxX(t, x)e =

(
Dxb

)
(t,X(t, x))DxX(t, x)e .

Motivated by this, we define we(t, x) to be the solution of

(1.9)


∂we
∂t

(t, x) =
(
Dxb

)
(t,X(t, x))we(t, x)

we(t0, x) = e .

This is a linear ordinary differential equation which depends on the parameter x ∈ Rd.
It is readily checked that for every x ∈ Rd there exists a unique solution we(t, x)
defined for t ∈ I. Moreover it is simple to prove that we(t, x) depends continuously on
the parameter x ∈ Rd.

We claim that

(1.10)
X(t, x+ he)−X(t, x)

h
→ we(t, x) as h→ 0.

This will give DxX(t, x)e = we(t, x) and, since we(t, x) is continuous in x, we will get
that the flow X(t, x) is differentiable with respect to x with continuous differential.
Going back to (1.9) we also deduce that, if b is Ck with respect to the spatial variable,
then the flow X is Ck with respect to x.
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We now prove (1.10). We define the map

ze,h(t, x) =
X(t, x+ he)−X(t, x)

h
.

We notice that ze,h(0, x) = e and we compute

∂ze,h
∂t

(t, x) =
1
h

[
∂X

∂t
(t, x+ he)− ∂X

∂t
(t, x)

]
=

1
h

[
b(t,X(t, x+ he))− b(t,X(t, x))

]
=
(∫ 1

0

(
Dxb

)(
t, τX(t, x+ he) + (1− τ)X(t, x)

)
dτ

)
ze,h(t, x)

=
(
Dxb

)(
t,X(t, x)

)
ze,h(t, x) + Ψe,h(t, x)ze,h(t, x) ,

where we have set

Ψe,h(t, x) =
∫ 1

0

[(
Dxb

)(
t, τX(t, x+ he) + (1− τ)X(t, x)

)
−
(
Dxb

)(
t,X(t, x)

)]
dτ .

Since we are assuming that the vector field b is C1 with respect to the spatial variable
we deduce that

Ψe,h(t, x)→ 0 as h→ 0, uniformly in t and x.

We consider ϕe,h(t, x) = ze,h(t, x)− we(t, x) and we notice that ϕe,h satisfies
∂ϕe,h
∂t

(t, x) =
(
Dxb

)(
t,X(t, x)

)
ϕe,h(t, x) + Ψe,h(t, x)ze,h(t, x)

ϕe,h(0, x) = 0 .

Recalling (1.7) and the fact that |Ψe,h(t, x)| = o(1) and |ze,h(t, x)| = O(1) we deduce
that |ϕe,h(t, x)| = o(1). Going back to the definitions of ϕe,h and of ze,h we see that
this is precisely (1.10). We conclude the following theorem, improving the result of
Corollary 1.11.

Theorem 1.12. Let b : I × Rd → Rd be a smooth and bounded vector field, where
I ⊂ R is an interval. Then for every t0 ∈ I there exists a unique classical flow of b
starting at time t0, which is smooth with respect to t and x.

Notice also that, for every t ∈ I, the map

X(t, ·) : Rd → Rd

is a smooth diffeomorphism. The Jacobian J(t, x) = det(∇xX(t, x)) satisfies the equa-
tion

(1.11)
∂J

∂t
(t, x) = (div b)(t,X(t, x))J(t, x) ,

which also implies that J(t, x) > 0 for every t ∈ I. Moreover, using the notation
X(t, s, x) for the flow of b starting at time s ∈ I, the following semi-group property
holds, as a consequence of the uniqueness of the flow:

(1.12) X(t2, t0, x) = X(t2, t1, X(t1, t0, x)) for every t0, t1, t2 ∈ I.
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4. The transport equation and the continuity equation

In this section we show the relation between the ordinary differential equation and
the transport equation

(1.13) ∂tu(t, x) + b(t, x) · ∇u(t, x) = 0 , u(t, x) : [0, T ]× Rd → R ,

and the continuity equation

(1.14) ∂tµ+ div
(
bµ
)

= 0 ,

where µ = {µt}t∈[0,T ] is a family of locally finite signed measures on Rd, which depends
on the time parameter t ∈ [0, T ]. The continuity equation is intended in distributional
sense, according to the following definition.

Definition 1.13. A family µ = {µt}t∈[0,T ] of locally finite signed measures on Rd

is a solution of the continuity equation (1.14) if∫ T

0

∫
Rd

[
∂tϕ(t, x) + b(t, x) · ∇ϕ(t, x)

]
dµt(x) dt = 0

for every test function ϕ ∈ C∞c (]0, T [×Rd).

We recall here only the main ideas of the theory of characteristics for partial dif-
ferential equations and we derive some explicit formulas for the solution in the smooth
case. The connection between the Lagrangian problem (ODE) and the Eulerian prob-
lem (PDE) will be investigated in detail in Chapter 6, in which a kind of extension of
the theory of characteristics to the non-smooth case will be described.

If we consider a characteristic curve γ(t) of the vector field b(t, x) and a smooth
solution u(t, x) of (1.13) we can easily check that the quantity g(t) = u(t, γ(t)) is
constant with respect to time. Indeed

ġ(t) =
∂u

∂t
(t, γ(t)) +∇xu(t, γ(t)) · γ̇(t)

=
∂u

∂t
(t, γ(t)) + b(t, γ(t)) · ∇xu(t, γ(t)) = 0 .

This means that the solution u is constant on the characteristic lines of b. Hence, if we
couple the transport equation (1.13) with an initial data u(0, ·) = ū, we expect

u(t, x) = ū
(
X(t, ·)−1(x)

)
= ū

(
X(0, t, x)

)
to be a solution of the Cauchy problem. This is easily checked with a direct computa-
tion, observing that the flow X(t, s, x) satisfies the equation

(1.15)
∂X

∂s
(t, s, x) +

(
b(s, x) · ∇x

)
X(t, s, x) = 0 .

This is also the unique solution with initial data ū, since we already know that every
solution has to be constant along characteristics. We then conclude the following
proposition.
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Proposition 1.14. If the vector field b and the initial data ū are C1, then the
transport equation (1.13) has the unique solution

u(t, x) = ū
(
X(t, ·)−1(x)

)
.

Similarly, in the case of a transport equation with a source term f ∈ C1 on the right
hand side

∂tu(t, x) + b(t, x) · ∇u(t, x) = f(t, x) ,

we have the explicit expression

(1.16) u(t, x) = ū(X(0, t, x)) +
∫ t

0
f(s,X(s, t, x)) ds .

We have a similar result for the continuity equation (1.14), coupled with the initial
data µ0 = µ̄ ∈M(Rd).

Proposition 1.15. Assume that the vector field b is C1. Then, for any initial data
µ̄, the solution of the continuity equation (1.14) is given by

(1.17) µt = X(t, ·)#µ̄, i.e.
∫

Rd
ϕdµt =

∫
Rd
ϕ(X(t, x)) dµ̄(x) ∀ϕ ∈ Cc(Rd),

where X(t, ·)#µ̄ denotes the push-forward of the measure µ̄ via the map X(t, ·) : Rd →
Rd, defined according to (A.1).

Proof. Notice first that we need only to check the distributional identity
∂tµ+ div (bµ) = 0 on test functions of the form ψ(t)ϕ(x), that is

(1.18)
∫

R
ψ′(t)〈µt, ϕ〉 dt+

∫
R
ψ(t)

∫
Rd
b(t, x) · ∇ϕ(x) dµt(x) dt = 0 .

We notice that the map

t 7→ 〈µt, ϕ〉 =
∫

Rd
ϕ(X(t, x)) dµ̄(x)

belongs to C1([0, T ]), since the flow X is C1 with respect to the time variable. In
order to check (1.18) we need to show that the distributional derivative of this map
is
∫

Rd b(t, x) · ∇ϕ(x) dµt(x), but by the C1 regularity we only need to compute the
pointwise derivative. Since the flow satisfies

∂X

∂t
(t, x) = b(t,X(t, x))

for every t and x we can deduce

d

dt
〈µt, ϕ〉 =

d

dt

∫
Rd
ϕ(X(t, x)) dµ̄(x)

=
∫

Rd
∇ϕ(X(t, x)) · b(t,X(t, x)) dµ̄(x)

= 〈b(t, ·)µt,∇ϕ〉 ,

hence we have shown the desired thesis. �
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When the initial data is a locally summable function, i.e. µ̄ = ρ̄L d, we can give an
explicit expression for the density ρt of µt:

ρt(x) =
ρ̄

det(∇X(t, ·))
◦
(
X(t, ·)−1

)
(x) .

This is a consequence of (1.17) and of the area formula; for a derivation of this equality
see Section 3 of [13].
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CHAPTER 2

Renormalized solutions and well-posedness of the PDE

In this chapter we begin to investigate the well-posedness of the transport equation
out of the smooth setting. In the first section we present some formal computations in
order to motivate the definition of renormalized solution, which will be central in the
theory. In Section 2.2 we introduce the weak formulation of the transport equation,
which is needed in order to consider the non-smooth case; it is also shown a very general
result of existence of bounded solutions. In Sections 2.3 and 2.4 we introduce the notion
of renormalized solution and we enlighten its importance in the well-posedness theory;
we also propose a general strategy, due to DiPerna and Lions [84], which is one of the
main roads to the proof of the renormalization property and thus of the well-posedness.
In Sections 2.5 and 2.6 we illustrate the proof of the renormalization property in two
important situations, namely the Sobolev case (DiPerna and Lions, [84]) and the BV
case (Ambrosio, [8]). In the last two sections we finally present some other renor-
malization results due to various authors and the case of nearly incompressible vector
fields.

1. A strategy to obtain uniqueness

In this section we describe informally one of the main tools that can be used to
show the well-posedness of the transport equation

(2.1)

{
∂tu(t, x) + b(t, x) · ∇u(t, x) = 0
u(0, x) = ū(x) .

In order to illustrate the motivation for the concept of renormalized solution we present
some computations. We proceed in a merely formal way: the argument cannot be
justified without regularity assumptions on the vector field b, the uniqueness result
being false in this general context (see the counterexample in Section 5.1 and the more
recent ones of [5]). However, this presentation has the advantage of making evident
the main points of the subsequent analysis.

We start from (2.1) and we multiply it by 2u, obtaining

2u∂tu+ 2ub · ∇u = 0 .

Then we rewrite this equality as

(2.2) ∂tu
2 + b · ∇u2 = 0 .

25
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Now we assume that div b = 0 and integrate over all Rd, for every t ∈ [0, T ] fixed. This
gives

d

dt

∫
Rd
u(t, x)2 dx = −

∫
Rd

div
(
b(t, x)u(t, x)2

)
dx = 0 ,

applying the divergence theorem (we also assume a sufficiently fast decay at infinity).
This implies that the L2(Rd) norm is conserved:

(2.3)
d

dt
‖u(t, ·)‖L2(Rd) = 0 .

But the transport equation (2.1) is linear: then, in order to show uniqueness, it is
enough to show that if the initial data is ū ≡ 0, then the only solution is u ≡ 0. But
this is clearly implied by the conservation of the L2(Rd) norm.

This formal argument has in fact two gaps. First, the application of the chain-rule
to obtain (2.2) is not justified: indeed, solutions of (2.1) are not smooth in general,
hence we cannot simply write

∂tu
2 = 2u∂tu and ∇u2 = 2u∇u .

The second gap is a bit more hidden, but it is also extremely relevant. The initial
data in (2.1) is meant in the sense of distributions (see (2.4)). However, in order to
apply (2.3) to show that ‖u(t, ·)‖L2(Rd) = 0 for every t, we need to know a priori that

‖u(t, ·)‖L2(Rd) → ‖ū‖L2(Rd) as t ↓ 0,

but this is a property of strong continuity of the solution that cannot be deduced only
from the weak formulation: see again the example presented in Section 5.1.

2. Weak solutions and existence

We first introduce the weak formulation of the transport equation (2.1). Let b :
[0, T ]×Rd → Rd be a vector field and denote by div b the divergence of b (with respect
to the spatial coordinates) in the sense of distributions.

Definition 2.1. If b and ū are locally summable functions such that the distribu-
tional divergence of b is locally summable, then we say that a locally bounded function
u : [0, T ]×Rd → R is a (weak) solution of (2.1) if the following identity holds for every
function ϕ ∈ C∞c ([0, T [×Rd):

(2.4)
∫ T

0

∫
Rd
u
[
∂tϕ+ ϕdiv b+ b · ∇ϕ

]
dxdt = −

∫
Rd
ū(x)ϕ(0, x) dx .

Notice that this is the standard notion of weak solution of a PDE. For smooth
solutions, equation (2.4) can be immediately deduced from (2.1) multiplying it by ϕ
and integrating by parts.

We can equivalently define weak solutions noticing that, if u ∈ L∞loc([0, T ]×Rd), then
∂tu has a meaning as a distribution. Moreover, assuming that div b ∈ L1

loc([0, T ]×Rd),
we can define the product b · ∇u as a distribution via the equality

〈b · ∇u, ϕ〉 = −〈bu,∇ϕ〉 − 〈udiv b, ϕ〉 for every ϕ ∈ C∞c (]0, T [×Rd).
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This enables us to give directly a distributional meaning to the transport equation
(2.1). The initial data of the Cauchy problem (2.1) can be recovered using the following
observation.

Remark 2.2 (Weak continuity in time). If we test the transport equation (2.1)
against test functions of the form ψ(t)ϕ(x) with ψ ∈ C1

c (]0, T [) and ϕ ∈ C1
c (Rd) we

easily obtain that
d

dt

∫
Rd
u(t, x)ϕ(x) dx =

∫
Rd
u(t, x)

[
ϕ(x)div b(t, x) + b(t, x) · ∇ϕ(x)

]
dx

in the sense of distributions over [0, T ]. This implies in particular the estimate

(2.5)
∣∣∣∣ ddt

∫
Rd
u(t, x)ϕ(x) dx

∣∣∣∣ ≤ ‖ϕ‖C1(Rd)VR(t)

for every ϕ with sptϕ ⊂ BR(0), where

VR(t) = ‖u‖∞
∫
BR(0)

(
|div b(t, x)|+ |b(t, x)|

)
dx ∈ L1([0, T ]) .

Let Lϕ ⊂ [0, T ] be the set of the Lebesgue points of the map t 7→
∫
u(t, x)ϕ(x) dx. We

know that L 1([0, T ]\Lϕ) = 0. Now consider for every R ∈ N a countable set ZR which
is dense in C1

c (BR(0)) with respect to the C1 norm and set LZR = ∩ϕ∈ZRLϕ. Clearly
we have L 1([0, T ] \ LZR) = 0. The restriction of u(t, ·) to LZR provides a uniformly
continuous family of bounded functionals on C1

c (BR(0)), since estimate (2.5) implies∣∣∣∣∫
Rd
u(t, x)ϕ(x) dx−

∫
Rd
u(s, x)ϕ(x) dx

∣∣∣∣ ≤ ‖ϕ‖C1

∫ t

s
VR(τ) dτ

for every ϕ ∈ C1
c (BR(0)) and every s, t ∈ LZR . Therefore u(t, ·) can be extended in

a unique way to a continuous curve ũR(t, ·) in
[
C1
c (BR(0))

]′, for t ∈ [0, T ]. Applying
iteratively this argument a countable number of times, we can construct in a unique
way a continuous curve ũ(t, ·) in

[
C1
c (BR(0))

]′, for t ∈ [0, T ] and for every R ∈ N.
Recalling that u(t, x) ∈ L∞([0, T ] × Rd) this also implies that ũ(t, ·) is a continuous
curve in

[
L1(Rd)

]′.
From the above argument, which is indeed classical in the theory of evolutionary

PDEs (see for instance Lemma 8.1.2 of [18] or Theorem 4.1.1 of [75]), we deduce
that, up to a modification of u(t, ·) in a negligible set of times, we can assume that
t 7→ u(t, ·) is weakly∗ continuous from [0, T ] into L∞(Rd). A similar remark applies
to the continuity equation (1.14): we can assume that the map t 7→ µt is weakly∗

continuous from [0, T ] toM(Rd). It follows in particular that u(t, ·) and µt are defined
for every t ∈ [0, T ], and in particular at the endpoints; this also gives a sense to the
Cauchy data at t = 0. As it will be clear from the example of Section 5.1, in general
we cannot expect strong continuity of the solution with respect to the time.

Existence of weak solutions is quite a trivial issue: since the transport equation is a
linear PDE, it is sufficient to regularize the vector field and the initial data, obtaining
a sequence of smooth solutions to the approximate problems, and then we pass to the
limit to get a solution.
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Theorem 2.3 (Existence of weak solutions). Let b ∈ L∞([0, T ] × Rd; Rd) with
div b ∈ L1

loc([0, T ] × Rd) and let ū ∈ L∞(Rd). Then there exists a weak solution u ∈
L∞([0, T ]× Rd) to (2.1).

Proof. Let ρε be a convolution kernel on Rd and ηε be a convolution kernel on
R1+d. We define ūε = ū ∗ ρε and bε = b ∗ ηε. Let uε be the unique solution to the
regularized transport equation {

∂tu+ bε · ∇u = 0
u(0, ·) = ūε .

This solution exists and is unique for every ε > 0, since the vector field bε is smooth.
From the explicit formula (1.16), for the solution of the transport equation with smooth
vector field, we immediately deduce that {uε} is equi-bounded in L∞([0, T ]×Rd). Thus
we can find a subsequence {uεj}j which converges in L∞([0, T ]×Rd)−w∗ to a function
u ∈ L∞([0, T ] × Rd). Recalling the weak formulation (2.4) it is immediate to deduce
that u is a solution of (2.1). �

3. Renormalized solutions

We now want to face the uniqueness issue. As we already noticed, the application of
the chain-rule that we needed in the computations in Section 2.1 is not always justified.
We define here the notion of renormalized solution, which corresponds to the idea of
“solution which satisfies the desired chain-rule”.

Definition 2.4 (Renormalized solution). Let b : I×Rd → Rd be a locally summable
vector field such that div b is locally summable, where I ⊂ R is an interval. Let
u ∈ L∞(I × Rd) be a solution of the transport equation

∂tu+ b · ∇u = 0 .

We say that u is a renormalized solution if the equation

(2.6) ∂tβ(u) + b · ∇β(u) = 0

holds in the sense of distributions in I × Rd for every function β ∈ C1(R; R).

This property, if satisfied by all bounded weak solutions, can be transferred into a
property of the vector field itself.

Definition 2.5 (Renormalization property). Let b : I×Rd → Rd be a locally sum-
mable vector field such that div b is locally summable, where I ⊂ R is an interval. We
say that b has the renormalization property if every bounded solution of the transport
equation with vector field b is a renormalized solution.

The importance of the renormalization property is summarized in the following
theorem, which corresponds to the rough statement “renormalization implies well-
posedness”.
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Theorem 2.6. Let b : [0, T ] × Rd → Rd be a bounded vector field with div b ∈
L1([0, T ];L∞(Rd)). Define the vector field b̃ :]−∞, T ]× Rd → Rd according to

(2.7) b̃(t, x) =
{

0 if t < 0
b(t, x) if 0 ≤ t ≤ T .

If b̃ has the renormalization property, then bounded solutions of the transport equation
(2.1) are unique and stable. By stability we mean the following: let bk and ūk be two
smooth approximating sequences converging strongly in L1

loc to b and ū respectively,
with ‖ūk‖∞ uniformly bounded; then the solutions uk of the corresponding transport
equations converge strongly in L1

loc to the solution u of (2.1).

Proof. Uniqueness. Since the transport equation is linear, it is sufficient to show
that the only bounded solution to the Cauchy problem{

∂tu+ b · ∇u = 0
u(0, ·) = 0 in D′([0, T ]× Rd)

is u ≡ 0. Extending b to negative times as in the statement of the theorem, we obtain
that the following equation is satisfied, for t ∈]−∞, T ]:{

∂tu+ b̃ · ∇u = 0
u(t, ·) = 0 for t ≤ 0

in D′(]−∞, T ]× Rd).

Since we are assuming that b̃ has the renormalization property we deduce that

(2.8)
{
∂tu

2 + b̃ · ∇u2 = 0
u(t, ·) = 0 for t ≤ 0

in D′(]−∞, T ]× Rd).

Now fix R > 0 and η > 0 and consider a test function ϕ ∈ C∞c (]−∞, T [×Rd) such that
ϕ = 1 on [0, T − η]×BR(0) and

(2.9) ∂tϕ(t, x) ≤ −‖b‖∞|∇ϕ(t, x)| on [0, T ]× Rd.

We define

f(t) =
∫

Rd
u2(t, x)ϕ(t, x) dx .

For every positive ψ ∈ C∞c (] −∞, T [) we test (2.8) against ψ(t)ϕ(t, x) and we apply
Fubini’s theorem to deduce

−
∫ T

−∞
f(t)ψ′(t) dt =

∫ T

−∞

∫
Rd
u2(t, x)ψ(t)

[
∂tϕ(t, x) + b̃(t, x) · ∇ϕ(t, x)

]
dx dt

+
∫ T

−∞
f(t)div b̃(t, x)ψ(t) dt

(2.9)

≤
∫ T

−∞
f(t)div b̃(t, x)ψ(t) dt

≤
∫ T

−∞
f(t)‖div b̃(t, ·)‖L∞(Rd)ψ(t) dt .



30 2. RENORMALIZED SOLUTIONS AND WELL-POSEDNESS OF THE PDE

This means that we have
d

dt
f(t) ≤ ‖div b̃(t, ·)‖L∞(Rd)f(t)

in the sense of distributions in ] − ∞, T ]. But we know, by (2.8), that f(t) = 0
for t < 0. Using the assumption div b ∈ L1([0, T ];L∞(Rd)) (which clearly implies
div b̃ ∈ L1(]−∞, T ];L∞(Rd))) we can apply the Gronwall lemma and deduce that

f(t) =
∫

Rd
u2(t, x)ϕ(t, x) dx = 0

for every t ∈]−∞, T ]. From the arbitrariness of ϕ(t, x) we deduce that u(t, ·) = 0 for
every t ∈ [0, T ], as desired.

Stability. Arguing as in Theorem 2.3, we easily deduce that, up to subsequences,
uk converges in L∞([0, T ]× Rd)− w∗ to a distributional solution u of (2.1). However,
by the uniqueness part of the theorem, we know that this solution is unique, and then
the whole sequence converges to u. Since bk and uk are both smooth, u2

k solves the
transport equation with vector field bk and initial data ū2

k. Arguing as before, u2
k must

converge in L∞([0, T ] × Rd) − w∗ to the unique solution of (2.1) with initial data ū2.
But by the renormalization property this solution is u2. Hence we have shown that
uk

∗
⇀ u and u2

k
∗
⇀ u2 in L∞([0, T ] × Rd) − w∗, and this eventually implies uk → u

strongly in L1
loc([0, T ]× Rd). �

Remark 2.7. In the previous theorem the extension to negative times in (2.7) is
necessary: it is a way of requiring the strong continuity of the solution at the initial
time (see the discussion in Section 2.1 and Theorem 3.1). Another possibility would be
to change the definition of renormalized solution, asking that β(u) should satisfy the
transport equation and have initial data β(ū) (this is the approach of [77] and [79]).

The renormalization property for b̃ in general does not follow from the renorma-
lization property for b. Moreover, even if b has the renormalization property in the
sense of Definition 2.5, it could exist a solution u which is renormalized, but such that
β(u)(0, ·) 6= β(ū). An explicit example is given by the oscillatory solution constructed
by Depauw [82] and presented in Section 5.1. In this case the vector field b has the
renormalization property (in [0, 1] × R2) but the extension b̃ has not the renormaliza-
tion property in ] −∞, 1] × R2; the Cauchy problem for the transport equation with
initial data ū = 0 has more than one solution. This example also shows the sharp-
ness of the assumptions of Theorem 2.12: indeed, b ∈ L1

loc(]0, 1[;BVloc(R2; R2)) but
b 6∈ L1

loc([0, 1[;BVloc(R2; R2)), thus the extension b̃ 6∈ L1
loc(]−∞, 1[;BVloc(R2; R2)).

Remark 2.8. The result in Theorem 2.6, together with the renormalization results
we are going to prove in the rest of this chapter, extends to transport equations with a
linear right hand side of order zero in u of the form

∂tu+ b · ∇u = cu ,

with c ∈ L1([0, T ];L∞loc(Rd)). The only modification in the proof consists in taking
into account an additional term in the Gronwall argument. In particular, choosing
c = −div b, we are able to translate all the forthcoming well-posedness results for the
transport equation into well-posedeness results for the continuity equation.
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Remark 2.9. When dealing with the continuity equation ∂tu + div (bu) = 0 we
can consider the renormalization function β(z) =

√
1 + (z+)2−1 ∈ C1(R). Integrating

formally over Rd we obtain
d

dt

∫
Rd
β(u(t, x)) dx =

∫
Rd

div b(t, x)
[
β(u(t, x))− u(t, x)β′(u(t, x))

]
dx .

Since for this choice of β we have β(z) − zβ′(z) ≤ 0, it turns out that it is enough
to have a control on the negative part of the divergence: we only need to assume
[div b]− ∈ L1([0, T ];L∞(Rd)).

Since in all the forthcoming renormalization results no regularity (but just inte-
grability) is required with respect to the time, it is clear that the zero extension for
negative times remains in the same class of regularity initially assumed for the vector
field. We will deal with vector fields defined on I × Rd, where I ⊂ R is a generic
interval of times, since in order to treat the well-posedness problem for t ∈ [0, T ] we
need to show the renormalization property for the extended vector field, defined on the
time interval I =] −∞, T ]. In the following we are going to illustrate various cases in
which the renormalization property holds: in all these cases the well-posedness for the
transport equation and for the continuity equation presented in Theorem 2.6 will then
hold.

4. The DiPerna–Lions regularization scheme

As we remarked in the initial discussion of Section 2.1, the main obstruction to
the renormalization property is the lack of regularity of the solution u. It is therefore
not surprising that the main technique used to prove this property is a regularization
procedure. This idea goes back to the work by DiPerna and Lions [84], where it was
used to show the renormalization property for Sobolev vector fields. The link between
renormalization and more general regularization procedures will be also investigated in
the next chapter: see in particular Theorem 3.1 and Remark 3.6.

Let us fix an even convolution kernel ρε in Rd. We start from the transport equation
∂tu+ b · ∇u = 0 and we convolve it by ρε. We define uε = u ∗ ρε and we notice that we
can let the convolution act on u in b · ∇u only at the price of an error term:

(2.10) ∂tu
ε + b · ∇uε = b · ∇uε −

(
b · ∇u

)
∗ ρε .

We define the commutator rε as the error term in the right hand side of the previous
equality:

(2.11) rε = b · ∇uε −
(
b · ∇u

)
∗ ρε .

We call this term commutator because it measures the difference in exchanging the two
operations of convolution and of differentiation in the direction of b. Now notice that
the function uε is smooth with respect to the spatial variable. Moreover we have the
identity

∂tu
ε = −

(
b · ∇u

)
∗ ρε ,

hence, for every ε > 0 fixed, the function uε has Sobolev regularity in space-time. This
implies that, if we multiply both sides of (2.10) by β′(uε), we can apply Stampacchia’s
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chain-rule for Sobolev maps (see for instance Section 4.2.2 of [91]) to get

β′(uε)
[
∂tu

ε + b · ∇uε
]

= ∂tβ(uε) + b · ∇β(uε) .

Thus, for every ε > 0 we have the equality

(2.12) ∂tβ(uε) + b · ∇β(uε) = rεβ′(uε) .

Now we would like to pass to the limit as ε→ 0 in order to recover the renormalization
property. The left hand side converges in the sense of distributions to the left hand
side of (2.6). Thus we need to show the convergence to zero of the quantity rεβ′(uε).

Notice that rε converges to zero in the sense of distributions, without any regularity
assumption on b. The sequence β′(uε) is equi-bounded in L∞ and converges L d-a.e. for
every t ∈ I, but this does not allow to deduce the convergence of the product rεβ′(uε).
A first attempt would be to show the strong convergence to zero of the commutator rε.
This is precisely the result that DiPerna and Lions obtained in [84] under a Sobolev
regularity assumption.

5. Vector fields with Sobolev regularity

Theorem 2.10 (DiPerna–Lions). Let b be a bounded vector field belonging to
L1

loc(I;W 1,p
loc (Rd; Rd)), where I ⊂ R is an interval. Then b has the renormalization

property.

Proof. The theorem immediately follows from the discussion in the previous sec-
tion and from the following proposition, in which strong convergence to zero of the
commutator is proved. �

Proposition 2.11 (Strong convergence of the commutator). Let b be a bounded
vector field belonging to L1

loc(I;W 1,p
loc (Rd; Rd)), where I ⊂ R is an interval, and let

u ∈ L∞loc(I × Rd). Define the commutator rε as in (2.11). Then rε → 0 strongly in
L1

loc(I × Rd).

Proof. Playing with the definitions of b·∇u and of the convolution of a distribution
and a smooth function it is not difficult to show the following explicit expression of the
commutator:

(2.13) rε(t, x) =
∫

Rd
u(t, x− εz)b(t, x)− b(t, x− εz)

ε
· ∇ρ(z) dz +

(
udiv b

)
∗ ρε .

We recall the following property, which in fact characterizes functions in Sobolev spaces
(see Theorem 2.1.6 in [131]): for every f ∈W 1,1

loc we have

(2.14)
f(x+ εz)− f(x)

ε
→ ∇f(x)z strongly in L1

loc as ε→ 0,

that is, the difference quotients converge strongly to the derivative. Using (2.14) and the
strong convergence of translations in Lp in (2.13) we obtain that rε converges strongly
in L1

loc(I × Rd) to

u(t, x)
∫

Rd

(
∇b(t, x)z

)
· ∇ρ(z) dz + udiv b .
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The elementary identity ∫
Rd
zi
∂ρ(z)
∂zj

dz = −δij

immediately shows that the limit is zero. This concludes the proof. �

6. Vector fields with bounded variation

In this section we present the main lines of the argument by Ambrosio [8] for the
renormalization for vector fields with bounded variation. The main point which makes
the difference with respect to the Sobolev case is the lack of strong convergence of the
difference quotients (compare with (2.14)). The proof will involve a splitting of the
difference quotients and an anisotropic regularization, based on a local selection of a
“bad” direction given by Alberti’s Rank-one theorem.

Theorem 2.12 (Ambrosio). Let b be a bounded vector field belonging to
L1

loc(I;BVloc(Rd; Rd)), such that div b� L d for L 1-a.e. t ∈ I. Then b has the renor-
malization property.

We intend to give a reasonably detailed description of the proof of this result, mostly
trying to enlighten the main ideas. We will present an approach which is slightly simpler
than the one of the original paper [8]. We also refer to [9], [10] and [79] for an account
of the proof of Ambrosio’s theorem. This theorem has been applied to the study of
various nonlinear PDEs: for instance the Keyfitz and Kranzer system ([15] and [11])
and the semigeostrophic equation ([72], [73] and [31]).

We start by introducing some notation. For the basic terminology and facts about
BV functions we refer to Appendix 3. For every t ∈ I we perform the decomposition
of the spatial derivative of b(t, ·) (which is, by definition, a matrix-valued measure in
Rd) in absolutely continuous and singular part as follows:

Db(t, ·) = Dab(t, ·) +Dsb(t, ·) .
Moreover, we denote by |Db|, |Dab| and |Dsb| the measures obtained by integration of
|Db(t, ·)|, |Dab(t, ·)| and |Dsb(t, ·)| with respect to the time variable, that is∫

I×Rd
ϕ(t, x) d|Db|(t, x) =

∫
I

∫
Rd
ϕ(t, x) d|Db(t, ·)|(x) dt ,∫

I×Rd
ϕ(t, x) d|Dσb|(t, x) =

∫
I

∫
Rd
ϕ(t, x) d|Dσb(t, ·)|(x) dt , σ = a, s ,

for every function ϕ ∈ Cc(I × Rd).

6.1. Difference quotients of BV functions. As we already observed, the strong
convergence of the difference quotients in (2.14) characterizes functions in Sobolev
spaces. Hence a first step in the proof of Theorem 2.12 is a description of the behaviour
of the difference quotients for a function with bounded variation.

For any function f ∈ BVloc and any z ∈ Rd with |z| ≤ ε we have the classical L1

estimate of the increments

(2.15)
∫
K
|f(x+ z)− f(x)| dx ≤ |Dzf |(Kε) for any compact set K ⊂ Rd,
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where Dzf = (Df)z denotes the component of Df in the direction z and Kε is the
open ε-neighbourhood of K.

Moreover, we can give a canonical decomposition of the difference quotients in order
to analyse independently the behaviour of the absolutely continuous part and of the
singular part. Let us start from the case d = 1. If µ is an Rm-valued measure in R
with locally finite variation, then by Jensen’s inequality the functions

µ̂ε(t) =
µ([t, t+ ε])

ε
, t ∈ R

satisfy ∫
K
|µ̂ε(t)| dt ≤ |µ|(Kε) for every compact set K ⊂ R.

A simple density argument then shows that µ̂ε converge in L1
loc(R) to the density of µ

with respect to L 1 whenever µ� L 1. If f ∈ BVloc(R; Rm) and ε > 0 we know that

f(x+ ε)− f(x)
ε

=
Df([x, x+ ε])

ε
=
Daf([x, x+ ε])

ε
+
Dsf([x, x+ ε])

ε

for L 1-a.e. x ∈ R, the exceptional set possibly depending on ε. In this way we have
canonically split the difference quotient of f as the sum of two functions, one strongly
convergent to the absolutely continuous part of the derivative Daf , and the other one
having an L1 norm on any compact set K asymptotically smaller than |Dsf |(K).

This argument can be carried on also in the multi-dimensional case with the help
of the slicing theory of BV functions. If we fix the direction z ∈ Rd, we obtain that
the difference quotients can be canonically split into two parts as follows

(2.16)
b(t, x)− b(t, x− εz)

ε
= b1ε,z(t, x) + b2ε,z(t, x) ,

with

(2.17) b1ε,z(t, x)→ Dab(t, x) z strongly in L1
loc(Rd)

and

(2.18) lim sup
ε→0

∫
K
|b2ε,z(t, x)| dx ≤ |Dsb(t, x) z|(K) for every compact set K ⊂ Rd.

6.2. Isotropic estimate and the defect measure σ. We proceed with the
DiPerna–Lions regularization scheme illustrated in Section 2.4. We arrive at the ex-
pression (2.13) for the commutator and we insert in it the decomposition (2.16) of the
difference quotients, getting

rε = b · ∇uε −
(
b · ∇u

)
∗ ρε

=
∫

Rd
u(t, x− εz)b(t, x)− b(t, x− εz)

ε
· ∇ρ(z) dz +

(
udiv b

)
∗ ρε

=
∫

Rd
u(t, x− εz)b1ε,z(t, x) · ∇ρ(z) dz +

(
udiv b

)
∗ ρε(2.19)

+
∫

Rd
u(t, x− εz)b2ε,z(t, x) · ∇ρ(z) dz .(2.20)
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Arguing as in Section 2.5, applying (2.17) we deduce that (2.19) converges strongly to

u(t, x)
∫

Rd
Dab(t, x)z · ∇ρ(z) dz + u(t, x) div b(t, x)

=− u(t, x) trace
[
Dab(t, x)

]
+ u(t, x) div b(t, x) = 0 ,

since trace
[
Dab(t, x)

]
is the absolutely continuous part of the divergence, which how-

ever coincides with the whole divergence, because we are assuming that div b� L d.
For the integral in (2.20) we use the estimate (2.18) for b2ε,z to deduce the isotropic

estimate

(2.21) lim sup
ε→0

∫
J

∫
K
|rε| dtdx ≤ ‖u‖∞I(ρ)|Dsb|(J ×K) ,

for every compact set K ⊂ Rd and every interval J ⊂ I, where we have defined the
isotropic energy of the convolution kernel ρ to be

I(ρ) =
∫

Rd
|z| |∇ρ(z)| dz .

From the isotropic estimate (2.21) and the equi-boundedness in L∞(I×Rd) of {β′(uε)}
we deduce that the sequence {rεβ′(uε)} has limit points in the sense of measures. Hence
we can introduce the defect measure

(2.22) σ = ∂tβ(u) + b · ∇β(u)

and we deduce from (2.21) that σ is a locally finite measure satisfying

(2.23) |σ| ≤ ‖β′‖∞‖u‖∞I(ρ)|Dsb| as measures on I × Rd.

In particular, this shows that σ is singular with respect to L 1⊗L d. We can interpret
(2.22) by saying that, up to now, we have shown the renormalization property up to
an error term which is a singular measure.

6.3. Anisotropic estimate. We now give another estimate for the local norm of
the commutator rε. In this estimate we do not take any advantage of the cancellations,
but we introduce an anisotropic term related to the derivative of the vector field b which
will be useful in the final estimate.

We denote by Mt the matrix which appears in the polar decomposition of Db(t, ·),
that is the (d×d)-matrix defined |Db(t, ·)|-a.e. by the identity Db(t, ·) = Mt(·)|Db(t, ·)|.
For every z ∈ Rd and for L 1-a.e. t ∈ I we have the identity

(2.24) Dzb(t, ·) · ∇ρ(z) = Mt(·)z · ∇ρ(z) |Db(t, ·)| as measures on Rd.

Going back to (2.13) and using (2.24) and the L1 estimate (2.15) we obtain

(2.25) lim sup
ε→0

∫
J

∫
K
|rε| dtdx ≤

∫
J

∫
K

Λ(Mt(x), ρ) d|Db|(t, x) + d|Dab|(J ×K)

for every compact set K ⊂ Rd and every interval J ⊂ I. Here, for every d × d matrix
N and for every convolution kernel ρ, we have defined the anisotropic energy of ρ as

Λ(N, ρ) =
∫

Rd
|Nz · ∇ρ(z)| dz .
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This implies that the defect measure σ satisfies

(2.26) |σ| ≤ ‖β′‖∞‖u‖∞
[
Λ(Mt(·), ρ)|Db|+ d|Dab|

]
as measures on I × Rd.

6.4. Combination of the two estimates. From (2.23) and (2.26) we obtain
that

(2.27) |σ| ≤ ‖β′‖∞‖u‖∞Λ(Mt(·), ρ)|Dsb| as measures on I × Rd.

This can be deduced from the following general fact: if σ, µ1 and µ2 are positive
measures such that σ ≤ µ1 + µ2 and σ ⊥ µ2, then σ ≤ µ1.

Now we observe that (2.27) holds for every even convolution kernel ρ. The impor-
tant point here is that the defect measure σ does not depend on ρ. Our aim is to show
that σ = 0, and this will be achieved optimizing this estimate. Since the estimate has
a local nature, this optimization procedure is, in a certain sense, equivalent to vary the
regularizing kernel in t and x. We claim that

(2.28) |σ| ≤ ‖β′‖∞‖u‖∞
[
inf
ρ

Λ(Mt(·), ρ)
]
|Dsb| ,

where the infimum is taken over the set

K =
{
ρ ∈ C∞c (Rd), such that ρ ≥ 0 is even and

∫
Rd
ρ = 1

}
.

We first notice that (2.27) gives that σ � |Dsb|, hence there exists a Borel function
f(t, x) such that

(2.29) σ = f(t, x)|Dsb| .
Hence we can rewrite (2.27) as

(2.30) |f(t, x)| ≤ ‖β′‖∞‖u‖∞Λ(Mt(x), ρ) for |Dsb|-a.e. (t, x)

for every fixed ρ. Notice however that the set where the inequality (2.30) fails could in
principle depend on ρ. This is not a problem as soon as we infimize on a countable set
of kernels K′ ⊂ K: we can deduce

(2.31) |f(t, x)| ≤ ‖β′‖∞‖u‖∞
[

inf
ρ∈K′

Λ(Mt(x), ρ)
]

for |Dsb|-a.e. (t, x).

However we notice that, for every fixed matrix M , the map ρ 7→ Λ(M,ρ) is continuous
with respect to the W 1,1 topology. Choosing K′ ⊂ K countable and dense with respect
to the W 1,1 topology we obtain that the infimum over K′ coincides with the infimum
over K. This implies (2.28).

6.5. Local optimization of the convolution kernel. In order to show that
σ = 0 and to obtain the renormalization property we only need to show that the
infimum in (2.28) is actually equal to zero, under the assumption that b has bounded
variation and div b is absolutely continuous with respect to L d. The original proof in
[8] is based on Alberti’s Rank-one theorem (see Theorem A.6) and on an anisotropic
regularization procedure (first introduced by Bouchut [36] in the context of the Vlasov
equation with BV field and subsequently exploited by Colombini and Lerner [60] to
treat the transport equation with conormal-BV vector field). We present in the next
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subsection a simplified version of the proof, based on a lemma due to Alberti, in which
the infimum in (2.28) is computed.

The anisotropic regularization procedure of Bouchut is based on the following
heuristic remark. Suppose that the vector field b depends “nicely” on a group of
variables x1 and “badly” on another group x2. Then it is more efficient to regularize
quickly along the direction x2 and slowly along the direction x1, in order to rule out
faster the bad dependence in x2. This can be achieved using anisotropic convolution
kernels, which are asymptotically very close to the characteristic function of a very thin
rectangle, whose long side is along the x1 direction.

This is applied by Colombini and Lerner [60] to deal with the case of conormal-BV
vector fields, in which the derivative of b is a measure along one direction and an L1

function along the other d − 1 directions. Then they regularize much faster in the
direction along which the derivative is a measure, according to Bouchut’s scheme.

In [8] the selection of the two directions is based on Alberti’s Rank-one theorem
(see Theorem A.6). This result allows to select, for |Dsb(t, ·)|-a.e. x ∈ Rd, two unit
vectors ξt and ηt in such a way that

Dsb(t, ·) = ξt ⊗ ηt|Dsb(t, ·)| .

This can be intepreted as an asymptotic dependence of b(t, ·) on the direction ηt only,
hence the shape of the anisotropic kernel is carefully chosen to be very thin in this
direction.

6.6. Alberti’s lemma. In this section we describe Alberti’s lemma, which allows
to compute exactly the infimum

Λ(M) = inf
ρ∈K

Λ(M,ρ) = inf
ρ∈K

∫
Rd
|Mz · ∇ρ(z)|dz,

for every d× d matrix M . The proof is again related to an anisotropic regularization:
the basic idea is in some sense to take a convolution kernel which is concentrated on a
very long tube made of trajectories of the ordinary differential equation γ̇ = Mγ.

Lemma 2.13. For every d× d matrix M we have

Λ(M) = |trace (M)| .

We observe first that this result allows to conclude the proof of Theorem 2.12.
Indeed, from the assumption div b� L d for L 1-a.e. t ∈ I, it follows that

trace (Mt(·))|Dsb(t, ·)| = 0 for L 1-a.e. t ∈ I.

This means that

inf
ρ∈K

Λ(Mt(·), ρ) = 0

for |Dsb|-a.e. (t, x) ∈ I × Rd. Going back to (2.28) we deduce that σ = 0, hence we
have proved the renormalization result of Theorem 2.12.
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Proof of Lemma 2.13. We first observe that the inequality Λ(M) ≥ |trace (M)|
is trivial. Indeed for every admissible kernel ρ we have∫

Rd
|Mz · ∇ρ(z)| dz ≥

∣∣∣ ∫
Rd
Mz · ∇ρ(z) dz

∣∣∣
=
∣∣∣− ∫

Rd
div (Mz)ρ(z) dz

∣∣∣
=
∣∣∣− trace (M)

∫
Rd
ρ(z) dz

∣∣∣ = |trace (M)| .

We pass to the opposite inequality. Since

Mz · ∇ρ(z) = div (Mz ρ(z))− trace (M) ρ(z)

and ρ ≥ 0, we immediately obtain∫
Rd
|Mz · ∇ρ(z)| dz ≤

∫
Rd
|div (Mz ρ(z))|+ |trace (M)| ρ(z) dz

=
∫

Rd
|div (Mz ρ(z))| dz + |trace (M)| .

Then it suffices to show that

(2.32) inf
ρ∈K

∫
Rd
|div (Mz ρ(z))| dz = 0 .

Step 1. We preliminarily show that

(2.33) inf
µ

∫
Rd
|div (Mz µ)| = 0 ,

where the infimum is now taken over all probability measures µ on Rd. With the
integral we intend the total variation of the distribution div (Mz µ), i.e.

sup
{
〈Mz µ,∇ϕ〉 : ϕ ∈ C∞c (Rd) , ‖ϕ‖∞ ≤ 1

}
.

In particular, the total variation is finite if and only if div (Mz µ) is a finite measure,
and if this is the case it coincides with ‖div (Mz µ)‖M(Rd).

Without loss of generality, we can assume M 6= 0. Now let us consider µ = ξH 1 Γ,
where Γ is the support of a nonconstant integral line γ : [0, T ]→ Rd of the vector field
Mz, i.e. γ satisfies γ̇(t) = Mγ(t) for every t ∈ [0, T ]. The density ξ is of the form

ξ(z) = #{γ−1(z)} α

|Mz|
,

where α is the normalization constant

α−1 =
∫

Γ

#{γ−1(z)}
|Mz|

dH 1(z) =
∫ T

0

1
|Mγ(t)|

|γ̇(t)| dt = T .
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Since

〈div (Mz µ), ϕ〉 = −〈Mz µ,∇ϕ〉 = −
∫

Rd
Mz · ∇ϕ(z) dµ(z)

= −
∫

Γ
Mz · ∇ϕ(z)

#{γ−1(z)}
T |Mz|

dH 1(z)

= − 1
T

∫ T

0
γ̇(t) · ∇ϕ(γ(t)) dt

= − 1
T

[
ϕ(γ(T ))− ϕ(γ(0))

]
for every ϕ ∈ C∞c (Rd), we get

div (Mz µ) = − 1
T

[
δγ(T ) − δγ(0)

]
in D′(Rd).

Hence ∫
Rd
|div (Mz µ)| ≤ 2

T

for any such µ. Then (2.33) follows immediately. Indeed, taken any maximal integral
line γ : [0,+∞[→ Rd, it is enough to consider its restriction to [0, T ] and then to use
the arbitrariness of the choice of T .

Step 2. Now we show the validity of (2.32). For every x ∈ Rd we consider the
maximal solution γx : [0,+∞[→ Rd of the problem{

γ̇x(t) = Mγx(t)
γx(0) = x .

It exists for every initial point x ∈ Rd and is explicitly given by the expression γx(t) =
etMx. We define

A =
{
x ∈ Rd : γx is not a constant

}
.

Notice that A is a nonempty open set which is symmetrical with respect to the origin.
Now fix an even and positive function θ ∈ C∞c (Rd) with

∫
Rd θ = 1 and such that

spt θ ⊂ A. We set

νT =
∫

Rd
µTx θ(x) dx ,

with µTx defined as before, starting from γx|[0,T ].
Let us check that νT is in fact a smooth function. If ϕ ∈ Cc(Rd) we have

〈µTx , ϕ〉 =
1
T

∫ T

0
ϕ(γx(t)) dt .
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Hence we deduce the following expression for νT :

〈νT , ϕ〉 =
∫

Rd
〈µTx , ϕ〉θ(x) dx =

1
T

∫ T

0

∫
Rd
ϕ(etMx)θ(x) dxdt

=
1
T

∫ T

0

∫
Rd
ϕ(y)θ(e−tMy) det(e−tM ) dydt

=
∫

Rd

(
1
T

∫ T

0
θ(e−tMy) det(e−tM )dt

)
ϕ(y)dy .

It is then clear that νT is a smooth function which satisfies all the constraints of the
problem (2.32). Moreover

divz (Mz νT (z)) =
∫

Rd
divz (Mz µTx )θ(x) dx ,

where the divergence inside the integral is in the sense of distributions, for every fixed
value of x. Eventually we get∫

Rd
|divz (Mz νT (z))| dz ≤ 2

T
.

From the arbitrariness of T we obtain (2.32). �

7. Other various renormalization results

We now briefly indicate some other renormalization results for vector fields with
some particular structure. We will not enter into the proofs of such results but we will
rather give some basic references on each of them.

7.1. Conditions on the symmetric part of the derivative. In [50] Capuzzo
Dolcetta and Perthame show, among other things, that the renormalization property
holds for vector fields b such that the symmetric derivative

Eb =
1
2
(
Db+ tDb

)
∈
[
D′(I × Rd)

]d×d
is absolutely continuous with respect to the Lebesgue measure. Their proof is an
adaptation of DiPerna–Lions’ one: if the convolution kernel ρ used in the regularization
procedure is chosen to be radial then it is simple to see that, for every direction z ∈ Rd,
in order to control the commutator it is not necessary to control the whole difference
quotient in the direction z, but only its scalar product with z itself. This control is
precisely the one ensured by the condition on the symmetric derivative.

It would be interesting to adapt this proof to show the renormalization property
for vector fields with bounded deformation, i.e. such that the symmetric part of the
derivative is a measure (see Appendix 3 for a more precise definition of the space BD).
However, as we have just observed, conditions on the symmetric part of the derivative
seem exploitable only through the use of radial convolution kernels; hence the whole
anisotropic regularization technique is apparently not disposable in this context.

A result in this direction has been obtained in a work in collaboration with Ambrosio
and Maniglia [14]: we are able to treat the case of special vector fields with bounded
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deformation, which satisfy by assumption the condition that the singular part of the
symmetric derivative is concentrated on a set of codimension one. The singular part
is ruled out using a chain-rule formula for normal traces of vector fields with measure
divergence. See also [25], [55] and [56] for general results on this notion of trace.
However the Cantor part of the derivative is not treatable with this kind of techniques.

7.2. Partial regularity of the vector field. Looking at the results by DiPerna
and Lions and by Ambrosio it is apparent that the regularity needed on b in the depen-
dence on the spatial variable (Sobolev or BV ) is much greater than the one needed in
the dependence on the time variable (just summability is requested). If we look at the
vector field B(t, x) = (1, b(t, x)) in space-time, for which the transport equation reads

B(t, x) · ∇t,xu(t, x) = 0 ,

we see that B has a kind of “split structure”, in which the first component depends
fairly on the first variable, and the second component depends fairly on the second
variable, but very wildly on the first one. It is then natural to conjecture (see Remark
3.8 of [8]) that the renormalization property should hold for vector fields which admit
a splitting of the type

B =
(
b1(x1), b2(x1, x2)

)
, x1, b1 ∈ Rd1 , x2, b2 ∈ Rd2 ,

under an assumption of good dependence of b1 on x1 and of b2 on x2. Some results in
this direction are available in [104], [105] and [106], in which the partial regularity is
of Sobolev or BV type. The proof relies again on an anisotropic convolution: the idea
is that we have to regularize faster along the x1 direction, because b2 has no regularity
in that direction. It would be interesting to understand if results of this kind can hold
if we admit also an x2 dependence of the b1 component.

7.3. The two-dimensional case. Consider a bounded autonomous vector field
b : R2 → R2 with div b = 0. Then it is possible to find a Lipschitz function H : R2 → R
(called the Hamiltonian) such that b = ∇⊥H. Heuristically we expect that the evolution
is split on the level lines of H, since the value of H is conserved under the flow. Hence
we expect a kind of dimensional reduction of the problem, which we could try to
solve “line by line”. However, in this very general setting, the well-posedness does not
hold: in a joint work with Alberti and Bianchini [5] we construct counterexamples to
the uniqueness for bounded autonomous planar divergence-free vector fields. For the
uniqueness to hold we need to require a weak Sard property of the Hamiltonian (see
(4.11) and Theorem 4.8), under which we are able to implement the idea of the splitting
on the level curves of H. This result has been proved in the same paper [5] and will be
presented in Chapter 4, where we will also indicate more references on the problem.

8. Nearly incompressible vector fields

The aim of this section is to develop a well-posedness theory for vector fields in which
the usual assumption of boundedness of the divergence is replaced by a control of the
Jacobian, or by the existence of a solution of the continuity equation which is bounded
away from zero and infinity. This is particularly important in view of the applications,
for instance to the Keyfitz and Kranzer system (see [15] and [11]). A systematic
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treatement of this topic is done in [77]. Since the assumption on the divergence is
necessary in order to give a distributional meaning to the transport equation (see
Section 2.2), we deal here with the equation in continuity form. We will consider again
the case of nearly incompressible vector fields, from the ODE viewpoint, in Sections 6.6
and 6.7.

Definition 2.14 (Nearly incompressible vector fields). We say that a bounded
vector field b : I × Rd → Rd is nearly incompressible if there exist a function ρ ∈
L∞(I × Rd) and a constant C > 0 such that

(2.34) 0 <
1
C
≤ ρ(t, x) ≤ C < +∞ for L d+1-a.e. (t, x) ∈ I × Rd

and

(2.35) ∂tρ+ div (bρ) = 0 in D′(I × Rd).

Notice that, thanks to Remark 2.2, we can always assume ρ ∈ C([0, T ];L∞(Rd) −
w∗). We remark that every vector field b with bounded divergence is nearly incom-
pressible: if b is smooth, take for ρ the Jacobian determinant of the flow generated by
b, that is ρ(t, x) = det∇xX(0, t, x), which is bounded since we can compute explicitly
ρ(t, x) = exp

[
−
∫ t

0 (div b)(σ,X(σ, t, x))dσ
]
, where X(s, t, x) satisfies ∂X(s, t, x)/∂s =

b(s,X(s, t, x)) and X(t, t, x) = x. A standard approximation argument settles the case
of non-smooth vector fields. In general, however, a nearly incompressible vector field
does not need to have absolutely continuous divergence.

In the spirit of the discussion of Section 2.3 we introduce the definition of renor-
malization property in this new context.

Definition 2.15 (Renormalization property for nearly incompressible vector fields).
We say that a bounded nearly incompressible vector field b : I × Rd → Rd has the
renormalization property if, for some function ρ as in Definition 2.14, every solution
u ∈ L∞(I × Rd) of

∂t
(
ρu
)

+ div
(
bρu
)

= 0 in D′(I × Rd)

satisfies
∂t
(
ρβ(u)

)
+ div

(
bρβ(u)

)
= 0 in D′(I × Rd)

for every function β ∈ C1(R; R).

It can be checked that the renormalization property is independent of the choice of
the function ρ in Definition 2.14. For bounded nearly incompressible vector fields with
the renormalization property it is possible to develop a well-posedness theory arguing
as in Section 2.3: the following proposition can be proved with the same techniques
used there.

Proposition 2.16. Let b : [0, T ] × Rd → Rd be a bounded nearly incompressible
vector field and let ρ as in Definition 2.14. Define the vector field b̃ :]−∞, T ]×Rd → Rd
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according to

(2.36) b̃(t, x) =
{

0 if t < 0
b(t, x) if 0 ≤ t ≤ T

and assume that b̃ has the renormalization property in the sense of Definition 2.15.
Then for every ū ∈ L∞(Rd) there exists a unique bounded solution u of{

∂t
(
ρu
)

+ div
(
bρu
)

= 0(
ρu
)
(0, ·) = ρ(0, ·)ū .

This result implies uniqueness for the continuity equation for nearly incompressible
vector fields with the renormalization property. Some stability results are also available,
for which we refer to Section 3.4 of [77].

Theorem 2.17. Let b : [0, T ]×Rd → Rd be a bounded nearly incompressible vector
field and assume that the vector field b̃ defined as in (2.36) has the renormalization
property in the sense of Definition 2.15. Then for every ζ̄ ∈ L∞(Rd) there exists a
unique solution ζ ∈ L∞([0, T ]× Rd) to{

∂tζ + div (bζ) = 0
ζ(0, ·) = ζ̄ .

The previous uniqueness result justifies the following definition, which will be im-
portant in the discussion of Section 6.6.

Definition 2.18 (Density generated by a vector field). Let b : [0, T ] × Rd → Rd

be a bounded nearly incompressible vector field such that the vector field b̃ defined as
in (2.36) has the renormalization property in the sense of Definition 2.15. Then the
density generated by b is the unique solution ρ ∈ L∞([0, T ]× Rd) of{

∂tρ+ div (bρ) = 0
ρ(0, ·) = 1 .





CHAPTER 3

An abstract characterization of the renormalization
property

In this chapter we present a joint work with Bouchut [37], in which we give a
result of different type compared with the ones of the previous chapter. We do not
want to give new well-posedness theorems, but rather equivalent conditions for the
well-posedness to hold, without regularity assumptions on b.

For simplicity we shall always assume that b ∈ L∞([0, T ] × Rd), and consider an
L2 framework. The approach of [84] and [8] illustrated in Sections 2.5 and 2.6 relies
on an approximation by convolution of a given weak solution to the transport equation
(2.1) and on the renormalization property. Our first theorem (see Theorem 3.1) states
that such properties are indeed equivalent to the well-posedness of both forward and
backward Cauchy problems, up to the fact that the smooth approximate solution (in
the sense of the norm of the graph of the transport operator) is not necessarily given
by convolution. See also [33] for some related results. This is also consistent with
the preliminary discussion of Section 2.1, in which we observed the importance of the
renormalization property and of the strong continuity of the solution with respect to
the time: see again Theorem 3.1 and also Remark 3.7.

Then, one can consider separately the two different issues of forward and backward
uniqueness. Theorem 3.8 states that a characterization of backward uniqueness is the
existence of a solution to the forward Cauchy problem that is approximable by smooth
functions in the sense of the norm of the graph of the transport operator. Finally, we
are also able to consider the case of nearly incompressible vector fields, with possibly
unbounded divergence. We show that the previous results extend naturally to this case.

1. Forward-backward formulation

We will be concerned with the continuity equation

(3.1) ∂tu+ div (bu) = 0 in D′([0, T ]× Rd),

where the vector field b : [0, T ] × Rd → Rd is bounded. No regularity is assumed on
b. We start, in the divergence-free context, with a characterization result which relates
renormalization, strong continuity, uniqueness and approximation with smooth func-
tions of the solution. Notice that, in the divergence-free case, the continuity equation
and the transport equation coincide.

Theorem 3.1. Let b ∈ L∞([0, T ]×Rd; Rd) such that div b = 0. Then the following
statements are equivalent:

45
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(i) b has the uniqueness property for weak solutions in C([0, T ];L2(Rd) − w) for
both the forward and the backward Cauchy problems starting, respectively, from
0 and T ; i.e., the only solutions in C([0, T ];L2(Rd)− w) to the problems{

∂tuF + div (buF ) = 0
uF (0, ·) = 0 ,

{
∂tuB + div (buB) = 0
uB(T, ·) = 0

are uF ≡ 0 and uB ≡ 0.
(ii) The Banach space

(3.2) F =
{
u ∈ C([0, T ];L2(Rd)− w) such that
∂tu+ div (bu) ∈ L2([0, T ]× Rd)

}
with norm

(3.3) ‖u‖F = ‖u‖B([0,T ];L2(Rd)) + ‖∂tu+ div (bu)‖L2([0,T ]×Rd)

has the property that the space of functions in C∞([0, T ] × Rd) with compact
support in x is dense in F .

(iii) Every weak solution in C([0, T ];L2(Rd) − w) of ∂tu + div (bu) = 0 lies in
C([0, T ];L2(Rd) − s) and is a renormalized solution, i.e., for every function
β ∈ C1(R; R) such that |β′(s)| ≤ C(1 + |s|) for some constant C ≥ 0, one has
∂t
(
β(u)

)
+ div

(
bβ(u)

)
= 0 in [0, T ]× Rd.

In the statement of the theorem we used the notation C([0, T ];L2(Rd) − w) and
C([0, T ];L2(Rd)−s) for the spaces of maps which are continuous from [0, T ] into L2(Rd),
endowed with the weak and the strong topology, respectively. With B([0, T ];L2(Rd))
we denoted the space of bounded maps from [0, T ] into L2(Rd), intending that maps
in this space are defined for every t ∈ [0, T ]. We recall that, up to a redefinition in
a negligible set of times, every solution to (3.1) belongs to C([0, T ];L2(Rd) − w) (see
Remark 2.2).

Proof of Theorem 3.1. (i) ⇒ (ii)
Step 1. Cauchy problem in F . It is easy to check that F is a Banach space,

since L2([0, T ] × Rd) and B([0, T ];L2(Rd)) are Banach spaces (the latter denotes the
space of bounded functions, with the supremum norm). We preliminarily show that for
any f ∈ L2([0, T ]× Rd) and u0 ∈ L2(Rd), the Cauchy problem

(3.4)
{
∂tu+ div (bu) = f
u(0, ·) = u0

has a unique solution in F . We proceed by regularization. Consider a sequence of
smooth vector fields {bn}, with bn → b a.e., bn uniformly bounded in L∞, and div bn = 0
for every n. Let un be the solution to the problem{

∂tun + div (bnun) = f
un(0, ·) = u0.

We know that the solution un is unique in C([0, T ];L2(Rd)) and is given by

un(t, x) = u0(Xn(0, t, x)) +
∫ t

0
f(τ,Xn(τ, t, x)) dτ
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(see formula (1.16)), where Xn(s, t, x) is as usual the flow of bn at time s, starting at
the point x at time t. Recalling that div bn = 0, so that Xn(s, t, ·)#L d = L d for every
s and t, we can estimate the L2 norm of un(t, ·) as follows:

‖un(t, ·)‖L2 ≤ ‖u0(Xn(0, t, ·))‖L2 +
∫ t

0
‖f(τ,Xn(τ, t, ·))‖L2 dτ

≤ ‖u0‖L2 +
∫ t

0
‖f(τ, ·)‖L2 dτ

≤ ‖u0‖L2 +
√
T‖f‖L2 .

This implies that the sequence {un} is equi-bounded in C([0, T ];L2(Rd)). From the
equation on un, we have also that, for any ϕ ∈ C∞c (Rd), d/dt(

∫
unϕdx) is bounded

in L2[0, T ]. We deduce that, for any ϕ ∈ L2(Rd),
∫
unϕdx is equicontinuous in

[0, T ] uniformly in n. Thus, up to subsequences, we can suppose that un → u in
C([0, T ];L2(Rd)−w). By the semicontinuity of the norm with respect to weak conver-
gence we also obtain that

(3.5) ‖u(t, ·)‖L2 ≤ ‖u0‖L2 +
√
T‖f‖L2 .

Passing to the limit in the continuity equation, we obtain that u solves the Cauchy
problem {

∂tu+ div (bu) = f
u(0, ·) = u0 .

Noticing that ∂tu + div (bu) = f ∈ L2, we conclude that u ∈ F . Uniqueness is
clear: every solution to the Cauchy problem (3.4) is by definition a weak solution
in C([0, T ];L2(Rd)−w) of the forward Cauchy problem with right-hand side, and thus,
by linearity, uniqueness is guaranteed by the forward part of assumption (i).

Step 2. Density of smooth functions. Define a linear operator

A :
F → L2(Rd)× L2([0, T ]× Rd),

u 7→
(
u(0, ·), ∂tu+ div (bu)

)
.

This operator is clearly bounded by the definition of the norm we have taken on F .
It is also a bijection because of Step 1, with continuous inverse because of (3.5). This
means that A is an isomorphism, and thus we can identify F with the space L2(Rd)×
L2([0, T ] × Rd), and its dual F∗ with L2(Rd) × L2([0, T ] × Rd). Therefore, for every
functional L ∈ F∗, we can uniquely define v0 ∈ L2(Rd) and v ∈ L2([0, T ]×Rd) in such
a way that

Lu =
∫

[0,T ]×Rd

(
∂tu+ div (bu)

)
v dtdx+

∫
Rd
u(0, ·)v0 dx for every u ∈ F .

We recall the classical fact that a subspace of a Banach space is dense if and only if
every functional which is zero on the subspace is in fact identically zero. Then the
density of smooth functions is equivalent to the following implication:

(3.6)
{ ∫

[0,T ]×Rd
(
∂tu+ div (bu)

)
v dtdx+

∫
Rd u(0, ·)v0 dx = 0

∀u ∈ C∞([0, T ]× Rd) with compact support in x

}
=⇒

{
v0 = 0
v = 0

}
.
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If we first take u arbitrary but with compact support also in time, we obtain that∫
[0,T ]×Rd

(
∂tu+ div (bu)

)
v dtdx = 0 ,

and since div b = 0, this is precisely the weak form of

∂tv + div (bv) = 0 .

This implies that v ∈ C([0, T ];L2(Rd) − w). Now, let χ be a cut-off function on R,
i.e., χ ∈ C∞c (R), χ(z) = 1 for |z| ≤ 1, and χ(z) = 0 for |z| ≥ 2. For every function
ϕ ∈ C∞c (Rd), take a function ũ ∈ C∞([0, T ]×Rd) with compact support in x such that
ũ(T, ·) = ϕ. Then, testing in (3.6) with u(t, x) = ũ(t, x)χ

(
(T − t)/ε

)
, we obtain for

0 < ε < T/2

0 =
∫

[0,T ]×Rd

[
∂t

(
ũ(t, x)χ

(
T − t
ε

))
+ div

(
b(t, x)ũ(t, x)χ

(
T − t
ε

))]
v(t, x) dtdx

=
∫

[0,T ]×Rd
[∂tũ(t, x) + div (b(t, x)ũ(t, x))] v(t, x)χ

(
T − t
ε

)
dtdx

−
∫

[0,T ]×Rd

1
ε
χ′
(
T − t
ε

)
ũ(t, x)v(t, x) dtdx.(3.7)

Letting ε → 0, we observe that the first integral converges to 0, since the support of
χ
(
(T − t)/ε

)
is contained in [T − 2ε, T + 2ε]. The second integral can be rewritten as

−
∫ T

0

1
ε
χ′
(
T − t
ε

)[∫
Rd
ũ(t, x)v(t, x) dx

]
dt.

Now, since ũ is smooth and v ∈ C([0, T ];L2(Rd)−w), the integral over Rd is a contin-
uous function of t. Moreover, it is easy to check that

−
∫ T

0

1
ε
χ′
(
T − t
ε

)
dt = 1.

Therefore, coming back to (3.7) and letting ε→ 0 we get

0 =
∫

Rd
ũ(T, x)v(T, x) dx =

∫
Rd
ϕ(x)v(T, x) dx.

Since ϕ ∈ C∞c (Rd) is arbitrary, we obtain v(T, ·) = 0. We conclude that
v ∈ C([0, T ];L2(Rd)− w) solves the Cauchy problem{

∂tv + div (bv) = 0
v(T, ·) = 0.

Thus, by the backward part of the uniqueness assumption (i), we get that v = 0.
Substituting in (3.6), we get that

∫
Rd u(0, ·)v0 dx = 0 for every u ∈ C∞([0, T ] × Rd)

with compact support in space, and this implies that v0 = 0. This concludes the proof
of the implication (3.6), which ensures that (ii) holds.

(ii) ⇒ (iii)
Let u ∈ C([0, T ], L2(Rd)− w) satisfy ∂tu+ div (bu) = 0. Then, by (ii) there exists

a sequence {un} of functions in C∞([0, T ] × Rd) with compact support in space such
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that ‖un − u‖F → 0. In particular this gives that un → u in B([0, T ];L2(Rd)); thus
u ∈ C([0, T ], L2(Rd)− s). Then, define fn = ∂tun + div (bun) ∈ L2([0, T ]×Rd). By the
definition of convergence in F we have that fn → 0 strongly in L2([0, T ] × Rd). For
every function β with the regularity stated we can apply the classical chain-rule, giving

(3.8) ∂t(β(un)) + div (bβ(un)) = β′(un)fn.

The left-hand side clearly converges to ∂t(β(u)) + div (bβ(u)) in the sense of distribu-
tions. Since |β′(s)| ≤ C(1+|s|), the sequence β′(un) is equi-bounded in L2

loc([0, T ]×Rd);
hence from the strong convergence of fn we deduce that the right-hand side of (3.8) con-
verges strongly to zero in L1

loc([0, T ]×Rd). This implies that ∂t
(
β(u)

)
+div

(
bβ(u)

)
= 0.

(iii) ⇒ (i)
This implication is very similar to the one given in Theorem 2.6. However, we

present it with some detail, mostly in order to enlighten the role of the strong continuity
assumption.

Let u ∈ C([0, T ], L2(Rd) − w) satisfy ∂tu + div (bu) = 0. According to (iii), u lies
in C([0, T ], L2(Rd)− s), and applying the renormalization property with β(u) = u2, we
get

(3.9) ∂tu
2 + div (bu2) = 0,

with u2 ∈ C([0, T ], L1(Rd)− s). Consider ψ ∈ C∞c ([0, T ]) and ϕR(x) = ϕ(x/R), where
ϕ ∈ C∞c (Rd) is a cut-off function equal to 1 on the ball of radius 1 and equal to 0 outside
the ball of radius 2. Testing equation (3.9) against functions of the form ψ(t)ϕR(x) we
get ∫ T

0

[∫
Rd
u2ϕ

( x
R

)
dx

]
ψ′(t) dt+

∫ T

0

[∫
Rd
bu2 1

R
∇ϕ

( x
R

)
dx

]
ψ(t) dt = 0.

Thus,

(3.10)
d

dt

∫
Rd
u2ϕ

( x
R

)
dx =

∫
Rd
bu2 1

R
∇ϕ

( x
R

)
dx in D′([0, T ]).

Since the right-hand side of (3.10) is in L∞([0, T ]) and since for every t it is bounded
by the quantity 1

R‖b‖L∞t,x‖∇ϕ‖L∞x ‖u(t, ·)‖2L2
x
, letting R→ +∞ we obtain

(3.11)
d

dt

∫
Rd
u(t, x)2 dx = 0 in [0, T ].

Recalling that u2 ∈ C([0, T ], L1(Rd) − s), (3.11) yields
∫
u(t, x)2dx = cst on [0, T ],

which implies uniqueness for both the forward and the backward Cauchy problems,
proving (i). �

Remark 3.2 (Well-posedness). The space F defined in (3.2) is a natural space for
the study of the Cauchy problem (3.4). Whenever one of the statements of Theorem
3.1 is true, we have existence and uniqueness in F with the estimate (3.5), as shown
in the proof. Moreover, every solution is renormalized and strongly continuous with
respect to time, i.e., u ∈ C([0, T ];L2(Rd) − s). Overall, the following weak stability
holds: if

• {fn} is a bounded sequence in L2([0, T ]× Rd) which converges weakly to f ,
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• {u0
n} is a bounded sequence in L2(Rd) which converges weakly to u0,

• {bn} is a bounded sequence in L∞([0, T ] × Rd) which converges strongly in
L1

loc to b and such that div bn = 0 for every n,

then the solutions {un} to

∂tun + div (bnun) = fn, un(0, ·) = u0
n

converge in C([0, T ];L2(Rd)− w) to the solution u to the Cauchy problem (3.4).

Remark 3.3 (Lp case). We can modify the summability exponent in the definition
of the space F . For every p ∈ ]1,∞[, define Fp as the space containing those functions
u ∈ C([0, T ];Lp(Rd) − w) that satisfy ∂tu + div (bu) ∈ Lp([0, T ] × Rd) and define the
norm ‖ · ‖Fp in the obvious way, which makes Fp a Banach space. Denoting by p′ the
conjugate exponent of p, i.e., 1

p + 1
p′ = 1, the following statements are equivalent:

(i) Smooth functions with compact support in x are dense in Fp and in Fp′ .
(ii) The vector field b has the forward uniqueness property for weak solutions in

C([0, T ];Lp(Rd)−w) and the backward uniqueness property for weak solutions
in C([0, T ];Lp

′
(Rd)− w).

Remark 3.4 (Equivalent norms). According to the proof of Theorem 3.1, if one of
the properties (i), (ii), and (iii) holds, then the norm of F is equivalent to the norm

‖u‖F ,0 = ‖u(0, ·)‖L2(Rd) + ‖∂tu+ div (bu)‖L2([0,T ]×Rd)

(see the estimate (3.5)). In the same spirit, it is easy to prove that ‖ · ‖F is in fact
equivalent to every norm of the form

‖u‖F ,s = ‖u(s, ·)‖L2(Rd) + ‖∂tu+ div (bu)‖L2([0,T ]×Rd)

for s ∈ [0, T ].

Remark 3.5 (Depauw’s counterexample). A simple modification (translation in
time) of the counterexample constructed by Depauw [82] (see Section 5.1) shows that
the renormalization property is really linked to the uniqueness in both the forward and
the backward Cauchy problems. In fact, we can construct a divergence-free vector field
b ∈ L∞([0, 1]× R2; R2) and a function ū ∈ L∞(R2) such that

1. the backward Cauchy problem with datum ū at time t = 1 has a unique
solution, which is, however, not renormalized and not strongly continuous
with respect to time;

2. the forward Cauchy problem with datum 0 at time t = 0 has more than one
solution;

3. the unique solution u(t, x) to the backward Cauchy problem with datum ū at
time t = 1 satisfies{

|u(t, x)| = 0 for 0 ≤ t ≤ 1/2
|u(t, x)| = 1 for 1/2 < t ≤ 1 ;

hence the equivalence of the norms in Remark 3.4 does not hold.
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Remark 3.6 (The Sobolev and the BV cases). In the case of a vector field with
Sobolev regularity with respect to the space variable, b ∈ L1([0, T ];W 1,p′

loc (Rd)) with
1 < p <∞, it is almost possible to prove that the natural regularization by convolution
with respect to the space variable of u ∈ Fp (see Remark 3.3) converges to u with respect
to ‖ · ‖Fp . Indeed, let ηε be a standard convolution kernel in Rd and set uε = u ∗ ηε.
We can compute

∂tu+ div (bu)− ∂tuε − div (buε)

=
[
∂tu+ div (bu)

]
−
[
∂tu+ div (bu)

]
∗ ηε +

[
div (bu) ∗ ηε − div (buε)

]
.

Then the convergence of uε to u with respect to ‖ · ‖Fp is equivalent to the strong
convergence in Lp([0, T ]× Rd) to zero of the commutator

rε = div (bu) ∗ ηε − div (buε).

The results of [84] ensure this strong convergence for every convolution kernel ηε, except
that it holds in L1

loc instead of Lp. We need also a regularization with respect to time
and a cut-off in order to get the density property in Theorem 3.1(ii), but this means
that our strategy is more or less “equivalent” to the one of [84], in the framework of
Sobolev vector fields. However, the situation is different in the BV case studied in [8].
In general, the commutator rε is not expected to converge strongly to zero; our result
shows that, even in this case, there exists some smooth approximation of the solution,
but it is less clear how to construct it in an explicit way.

Remark 3.7 (Strong continuity condition). The condition of continuity with values
in strong L2 in Theorem 3.1(iii) cannot be removed; otherwise the equivalence with (i)
fails. This can be seen again with Depauw’s counterexample with singularity at time
t = 0. In this case all weak solutions are renormalized in [0, T ] × Rd since b is locally
BV in x, but uniqueness of weak solutions does not hold. Another remark is that, in
general, a renormalized solution does not need to be continuous with values in strong
L2, even inside the interval, as the following counterexample shows. On the interval
[−1, 1], take for b Depauw’s vector field in [0, 1] (with singularity at 0), and define
on [−1, 0] the vector field as b(t, x) = −b(−t, x). Consider then the weak solution u
with value 0 at t = 0, which we extend on [−1, 0] by u(t, x) = u(−t, x). Then, u is a
renormalized solution on [−1, 1] but it is not strongly continuous at t = 0.

2. One-way formulation

We now drop the divergence-free condition, which is substituted with an L∞ control.
Moreover, we consider separately the forward and the backward problems, showing that
a characterization of backward uniqueness is the existence of a solution to the forward
Cauchy problem that is approximable by smooth functions in the same sense explained
in Theorem 3.1.

Theorem 3.8. Let b ∈ L∞([0, T ]× Rd; Rd) such that div b ∈ L∞([0, T ]× Rd), and
let c ∈ L∞([0, T ] × Rd). Define the Banach space F and its norm ‖ · ‖F as in (3.2)–
(3.3). Moreover, define F0 ⊂ F as the closure (with respect to ‖ ·‖F) of the subspace of
functions in C∞([0, T ]×Rd) with compact support in x. Then the following statements
are equivalent:
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(i) For every u0 ∈ L2(Rd) and every f ∈ L2([0, T ] × Rd) there exists a solution
u ∈ F0 to the Cauchy problem{

∂tu+ div (bu) + cu = f
u(0, ·) = u0,

u ∈ F0.

(ii) There is uniqueness for weak solutions in C([0, T ];L2(Rd)−w) for the backward
dual Cauchy problem starting from T ; i.e., the only function v belonging to
C([0, T ];L2(Rd)− w) which solves{

∂tv + b · ∇v − cv = 0
v(T, ·) = 0

is v ≡ 0.

Remark 3.9. The two statements in Theorem 3.8 are really the “nontrivial” prop-
erties relative to the vector field b. In general, there is always uniqueness in F0 (see
Step 1 in the proof) and there is always existence of weak solutions in F (this can be
easily proved by regularization, as in the first step of the proof of Theorem 3.1).

Before proving the theorem, we recall the following standard result of functional
analysis (see for instance Theorems II.19 and II.20 of [49]).

Lemma 3.10. Let E and F be Banach spaces and let L : E → F be a bounded linear
operator. Denote by L∗ : F ∗ → E∗ the adjoint operator, defined by

〈v, Lu〉F ∗,F = 〈L∗v, u〉E∗,E for every u ∈ E and v ∈ F ∗.
Then

(i) L is surjective if and only if L∗ is injective and with closed image;
(ii) L∗ is surjective if and only if L is injective and with closed image.

Proof of Theorem 3.8. Step 1. An energy estimate in F0. In this first
step we prove that for every u ∈ F0 the following energy estimate holds:
(3.12)

‖u(t, ·)‖L2
x
≤
(
‖u(0, ·)‖L2

x
+
√
T‖∂tu+ div (bu) + cu‖L2

t,x

)
exp

(
T

∥∥∥∥c+
1
2

div b
∥∥∥∥
L∞t,x

)
.

Let us first prove the estimate for u smooth with compact support in x. We define

f = ∂tu+ div (bu) + cu,

and we multiply this relation by u, getting

∂t
u2

2
+ div

(
b
u2

2

)
+
(
c+

1
2

div b
)
u2 = fu.

For justifying the previous identity, we used the Leibnitz rule

(3.13) ∂i(Hψ) = ψ∂iH +H∂iψ,

valid for ψ ∈ C∞ and H any distribution. Then, integrating over x ∈ Rd we get
d

dt

∫
Rd
u(t, x)2dx = 2

∫
Rd
fu dx− 2

∫
Rd

(
c+

1
2

div b
)
u2dx
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in the sense of distributions in [0, T ]. Therefore, we get for a.e. t ∈ [0, T ]∣∣∣∣ ddt
∫

Rd
u(t, x)2dx

∣∣∣∣ ≤ 2‖f(t, ·)‖L2
x
‖u(t, ·)‖L2

x
+ 2

∥∥∥∥(c+
1
2

div b
)

(t, ·)
∥∥∥∥
L∞x

‖u(t, ·)‖2L2
x
.

This differential inequality can be easily integrated, obtaining

‖u(t, ·)‖L2
x
≤ ‖u(0, ·)‖L2

x
exp

(∫ t

0

∥∥∥∥(c+
1
2

div b
)

(s, ·)
∥∥∥∥
L∞x

ds

)

+
∫ t

0
‖f(s, ·)‖L2

x
exp

(∫ t

s

∥∥∥∥(c+
1
2

div b
)

(τ, ·)
∥∥∥∥
L∞x

dτ

)
ds,

which clearly implies (3.12). In the general case of u ∈ F0, we can find approximations
un smooth with compact support in x such that ‖un − u‖F → 0, and we obtain the
estimate (3.12) at the limit.

Step 2. The operator A0. As in the proof of Theorem 3.1, we consider the
linear operator

A0 :
F0 → L2(Rd)× L2([0, T ]× Rd),

u 7→
(
u(0, ·), ∂tu+ div (bu) + cu

)
.

Since we can estimate

‖A0u‖L2
x×L2

t,x
= ‖u(0, ·)‖L2

x
+ ‖∂tu+ div (bu) + cu‖L2

t,x

≤ ‖u‖Bt(L2
x) + ‖∂tu+ div (bu)‖L2

t,x
+ ‖c‖L∞t,x

√
T‖u‖Bt(L2

x)

≤
(
1 + ‖c‖L∞t,x

√
T
)
‖u‖F ,

we deduce that A0 is a bounded operator. Next, the energy estimate established in the
first step gives that for any u ∈ F0,

‖u‖Bt(L2
x) ≤ exp

(
T

∥∥∥∥c+
1
2

div b
∥∥∥∥
L∞t,x

)
max(1,

√
T )‖A0u‖L2

x×L2
t,x
.

But we have

‖∂tu+ div (bu)‖L2
t,x
≤ ‖∂tu+ div (bu) + cu‖L2

t,x
+ ‖c‖L∞t,x

√
T‖u‖Bt(L2

x),

and we conclude that

(3.14) ‖u‖F ≤ C ‖A0u‖L2
x×L2

t,x
, u ∈ F0.

This means that A0 is injective and with closed image. Notice that the injectivity of
A0 is equivalent to the fact that the only solution u ∈ F0 to{

∂tu+ div (bu) + cu = 0
u(0, ·) = 0

is u ≡ 0.
Step 3. Proof of the equivalence of the two statements. Since, by

Step 2, A0 is injective with closed image, we can apply Lemma 3.10(ii) to get the
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surjectivity of the adjoint operator (A0)∗ : L2(Rd)×L2([0, T ]×Rd)→ (F0)∗. We recall
that the adjoint operator is characterized by the condition

〈(A0)∗(v0, v), u〉 = 〈(v0, v), A0u〉

=
∫

Rd
v0u(0, ·) dx+

∫
[0,T ]×Rd

v
(
∂tu+ div (bu) + cu

)
dtdx,(3.15)

for (v0, v) ∈ L2(Rd)×L2([0, T ]×Rd) and u ∈ F0. Since (A0)∗ is surjective, in particular
it has closed image. Therefore, applying Lemma 3.10(i) we get the equivalence between
surjectivity of A0 and injectivity of (A0)∗.

It is clear that the surjectivity of the operator A0 is equivalent to the existence of
solutions in F0 (statement (i)). Therefore, it remains only to characterize the injectivity
of (A0)∗. Recalling the definition of F0 as the closure of the set of smooth functions
with compact support in x, and recalling the characterization of the adjoint operator
given in (3.15), we obtain that the injectivity of (A0)∗ is equivalent to the following
implication:
(3.16){ ∫

[0,T ]×Rd
(
∂tu+ div (bu) + cu

)
v dtdx+

∫
Rd u(0, ·)v0 dx = 0

∀u ∈ C∞([0, T ]× Rd) with compact support in x

}
=⇒

{
v0 = 0
v = 0

}
.

We argue as in Step 2 of the proof of Theorem 3.1, and test the integral condition
with smooth functions of the form u(t, x) = χ(t/ε)ũ(t, x) (using the same notation as
in the proof of Theorem 3.1). Then, we obtain that the following two properties are
equivalent for any given v0 ∈ L2(Rd) and v ∈ L2([0, T ]× Rd):

1. For every u ∈ C∞([0, T ]× Rd) with compact support in x we have∫
[0,T ]×Rd

(
∂tu+ div (bu) + cu

)
v dtdx+

∫
Rd
u(0, ·)v0 dx = 0.

2. v ∈ C([0, T ];L2(Rd)−w), v0 = v(0, ·), and v is a weak solution of the backward
dual Cauchy problem{

∂tv + b · ∇v − cv = 0
v(T, ·) = 0.

Therefore we deduce that the implication (3.16) is equivalent to the uniqueness of weak
solutions in C([0, T ];L2(Rd)−w) of the backward dual Cauchy problem, i.e., statement
(ii). �

Remark 3.11 (Time inversion). By reversing the direction of time, we see that there
is existence for the backward Cauchy problem in F0 if and only if there is uniqueness
for weak solutions to the forward dual Cauchy problem.

Remark 3.12 (Approximation by smooth functions and renormalization). Solu-
tions in F0 lie in C([0, T ], L2(Rd) − s) and are renormalized: this can be seen as in
the proof of the implication (ii) ⇒ (iii) of Theorem 3.1, using the density of smooth
functions in F0. Conversely, it is possible that some renormalized solutions do not
belong to F0. This can be seen by noticing that one can have several renormalized
solutions to the same Cauchy problem (see an example in [84]), while there is always
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uniqueness in F0. Another difference between the criterion of approximation by smooth
functions and the renormalization property is that F0 is a vector space, while in general
renormalized solutions are not a vector space.

Remark 3.13 (Depauw’s example again). We notice that forward uniqueness and
backward uniqueness of weak solutions are really distinct properties: the example de-
scribed in Remark 3.5 shows how to construct bounded divergence-free vector fields
with backward uniqueness, but not forward uniqueness, and vice versa.

3. Nearly incompressible vector fields

We recall (see Definition 2.14) that a vector field b ∈ L∞([0, T ]× Rd; Rd) is nearly
incompressible if there exists a function ρ ∈ C([0, T ];L∞(Rd) − w∗), with 0 < C−1 ≤
ρ ≤ C <∞ for some constant C > 0, such that the identity

(3.17) ∂tρ+ div (bρ) = 0

holds in the sense of distributions in [0, T ]× Rd.

Theorem 3.14. Let b ∈ L∞([0, T ]×Rd; Rd) be a nearly incompressible vector field,
and fix an associated function ρ ∈ C([0, T ];L∞(Rd) − w∗) as in Definition 2.14. We
define the Banach space F and its norm ‖ · ‖F as in (3.2)–(3.3). Let F1 ⊂ F be the
closure of {

ρϕ : ϕ ∈ C∞([0, T ]× Rd) with compact support in x
}

with respect to ‖ · ‖F . Then the following statements are equivalent:
(i) For every u0 ∈ L2 and every f ∈ L2 there exists a solution u ∈ F1 to the

Cauchy problem {
∂tu+ div (bu) = f
u(0, ·) = u0,

u ∈ F1.

(ii) There is uniqueness for weak solutions in C([0, T ];L2(Rd)−w) for the backward
dual Cauchy problem starting from T ; i.e., the only function ρv belonging to
C([0, T ];L2(Rd)− w) which solves{

∂t(ρv) + div (bρv) = 0
ρ(T, ·)v(T, ·) = 0

is ρv ≡ 0.

Remark 3.15. In this context, the equation ∂t(ρv) + div (bρv) = 0 is dual to the
equation ∂tu+ div (bu) = 0, since we can write (formally, since it is not possible to give
a meaning to the product b · ∇v without a condition of absolute continuity of div b)

∂t(ρv) + div (bρv) = ρ
(
∂tv + b · ∇v

)
.

Proof of Theorem 3.14. The proof is very close to that of Theorem 3.8; thus
we shall sometimes omit the technical details.

Step 1. An energy estimate in F1. We preliminarily prove that for every
u ∈ F1 the following estimate holds (C is the constant in (2.34)):

(3.18) ‖u‖Bt(L2
x) ≤ C‖u(0, ·)‖L2

x
+ C
√
T‖∂tu+ div (bu)‖L2

t,x
.
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Fix a smooth function ϕ with compact support in Rd, and define

f = ∂t(ρϕ) + div (bρϕ) = ρ(∂tϕ+ b · ∇ϕ)

(use the Leibniz rule (3.13) and formula (3.17)). We deduce with the same argument
that

2ϕf = ρ(∂tϕ2 + b · ∇ϕ2) = ∂t(ρϕ2) + div (bρϕ2) .
Thus, we get the following estimate in the sense of distributions in [0, T ]:

d

dt

∫
Rd
ρ(t, x)ϕ(t, x)2 dx = 2

∫
Rd
ϕ(t, x)f(t, x) dx

≤ 2‖f(t, ·)‖L2
x
‖ϕ(t, ·)‖L2

x

≤ 2
√
C‖f(t, ·)‖L2

x

[∫
Rd
ρ(t, x)ϕ(t, x)2 dx

]1/2

.

By integration with respect to time this implies[∫
Rd
ρ(t, x)ϕ(t, x)2 dx

]1/2

≤
[∫

Rd
ρ(0, x)ϕ(0, x)2 dx

]1/2

+
√
C

∫ t

0
‖f(s, ·)‖L2

x
ds.

Using (2.34) we deduce

1√
C
‖ρ(t, ·)ϕ(t, ·)‖L2

x
≤
√
C‖ρ(0, ·)ϕ(0, ·)‖L2

x
+
√
C

∫ t

0
‖f(s, ·)‖L2

x
ds,

and thus

(3.19) ‖ρ(t, ·)ϕ(t, ·)‖L2
x
≤ C‖ρ(0, ·)ϕ(0, ·)‖L2

x
+ C
√
T‖∂t(ρϕ) + div (bρϕ)‖L2

t,x
.

But by definition of F1, the validity of (3.19) for every smooth function ϕ with compact
support in x implies the validity of (3.18) for every function u ∈ F1.

Step 2. The operator A1. We define the linear operator

A1 :
F1 → L2(Rd)× L2([0, T ]× Rd),

u 7→
(
u(0, ·), ∂tu+ div (bu)

)
.

It is immediate to see that the operator A1 is bounded. Using the energy estimate (3.18)
it is also immediate to check that ‖u‖F ≤ C̃‖A1u‖, and therefore that A1 is injective
with closed image. Applying Lemma 3.10(ii) we obtain that the adjoint operator

(A1)∗ : L2(Rd)× L2([0, T ]× Rd)→ (F1)∗

is surjective. The adjoint operator is characterized by the identity

〈(A1)∗(v0, v), u〉 = 〈(v0, v), A1u〉

=
∫

Rd
v0u(0, ·) dx+

∫
[0,T ]×Rd

v
(
∂tu+ div (bu)

)
dtdx(3.20)

for (v0, v) ∈ L2(Rd)× L2([0, T ]× Rd) and u ∈ F1.
Step 3. Proof of the equivalence of the two statements. Statement (i)

(existence of solutions in F1) is the surjectivity of the operator A1, which is equivalent
(applying Lemma 3.10(i) and using the surjectivity of (A1)∗ proved in Step 2) to the
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injectivity of (A1)∗. But recalling the characterization (3.20) and the definition of the
space F1, we see that the injectivity of (A1)∗ is equivalent to the following implication
for v0 ∈ L2(Rd) and v ∈ L2([0, T ]× Rd):
(3.21){ ∫

[0,T ]×Rd
(
∂t(ρϕ) + div (bρϕ)

)
v dtdx+

∫
Rd ρ(0, ·)ϕ(0, ·)v0 dx = 0

∀ϕ ∈ C∞([0, T ]× Rd) with compact support in x

}
=⇒

{
v0 = 0
v = 0

}
.

Arguing as in Step 3 of the proof of Theorem 3.8 we obtain that the following two
properties are equivalent:

• For every ϕ ∈ C∞([0, T ]× Rd) with compact support in x we have∫
[0,T ]×Rd

(
∂t(ρϕ) + div (bρϕ)

)
v dtdx+

∫
Rd
ρ(0, ·)ϕ(0, ·)v0 dx = 0.

• ρv ∈ C([0, T ];L2(Rd)− w), ρ(0, ·)v0 = ρ(0, ·)v(0, ·), and ρv is a weak solution
of the backward dual Cauchy problem{

∂t(ρv) + div (bρv) = 0
ρ(T, ·)v(T, ·) = 0.

Then we deduce that implication (3.21) is equivalent to statement (ii), and this con-
cludes the proof of the theorem. �





CHAPTER 4

Well-posedness in the two-dimensional case

In this chapter we describe some well-posedness results that are available in the
two-dimensional case. Due to the special structure of the problem, which admits a
Hamiltonian function conserved (at least formally) by the flow, the assumptions needed
for the uniqueness are dramatically weaker than those of Chapter 2. We start in the
first section by presenting some standard considerations and collecting some results
available in the literature; we also mention a first result obtained with Colombini and
Rauch [57] which goes beyond the divergence-free assumption. The rest of the chapter
is devoted to the presentation of a work in progress in collaboration with Alberti and
Bianchini [5], in which sharp well-posedness results in the two-dimensional case are
obtained. We present here just the basic case of a bounded divergence-free vector
field, while some variations are possible. The uniqueness holds under an additional
assumption: we must require the weak Sard property (4.11), which turns out to be
necessary, in view of the counterexamples contained in [5].

1. Bounded planar divergence-free vector fields

Let us consider an autonomous vector field b ∈ L∞(R2; R2) in the plane such that
div b = 0. It is well-known that in this situation it is possible to find a Hamiltonian
function H ∈ Lip(R2) such that

(4.1) b(x) = ∇⊥H(x) =
(
−∂H(x)

∂x2
,
∂H(x)
∂x1

)
for L 2-a.e. x ∈ R2.

The starting point for all the two-dimensional well-posedness results is the heuristic
remark that the value of the Hamiltonian is constant on the trajectories. Indeed, if
γ̇(t) = b(γ(t)), then we can compute

d

dt
H(γ(t)) = ∇H(γ(t)) · γ̇(t) = ∇H(γ(t)) · b(γ(t)) = ∇H(γ(t)) · ∇⊥H(γ(t)) = 0 .

This means that the trajectories “follow” the level sets of the Hamiltonian. Heuristi-
cally, one can try to implement the following strategy:

(a) Localize the equation to each level set, thanks to the fact that the level sets
are invariant under the action of the flow;

(b) Understand the structure of the level sets, trying to prove that generically
they are “one-dimensional sets”;

(c) See the equation on each level set as a one-dimensional problem and show
uniqueness for it;

59
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(d) Deduce uniqueness for the problem in R2 from the uniqueness of all the prob-
lems on the level sets.

Since we can hope for uniqueness on the level sets under quite general hypotheses,
the reduced equation being one-dimensional, we expect stronger well-posedness results
in this case: it is natural to imagine that no regularity of b (in terms of weak derivatives)
would be needed.

We first indicate the essential literature on this subject. Previous results by Bouchut
and Desvillettes [38], Hauray [100] and Colombini and Lerner ([58] and [60]) show
that uniqueness holds for the transport equation relative to an autonomous bounded
divergence-free vector field, under the following additional condition on the local direc-
tion of the vector field: there exists an open set Ω ⊂ R2 such that H 1(R2 \Ω) = 0 and
for every x ∈ Ω the following holds:

(4.2) there exist ξ ∈ S1, α > 0 and ε > 0 such that,
for L 2-a.e. y ∈ Bε(x), we have b(y) · ξ ≥ α.

The validity of this condition permits a local change of variable, which straightens
the level sets of the Hamiltonian, thus reducing the equation to a one-dimensional
problem (the second spatial variable appears as a parameter in the equation after
the change of variable). A first extension to the non-divergence-free case is due to
Colombini and Rauch [63]: they are able to show that the uniqueness holds in the case
of autonomous bounded vector fields with bounded divergence for which there exists a
positive Lipschitz function θ, bounded and bounded away from zero, such that

(4.3) div (θb) = 0 .

In [63] it is also conjectured that this hypothesis on the existence of the function θ
could be removed. In a subsequent paper in collaboration with Colombini and Rauch
[57] we show that this is the case: in fact we are able to prove the following result.

Theorem 4.1. Assume that b ∈ L∞(R2; R2) and that div b ∈ L∞(R2). Assume
that there exists an open set Ω ⊂ R2 such that H 1(R2 \ Ω) = 0 and that the condition
in (4.2) holds for every x ∈ Ω. Then we have uniqueness in L∞([0, T ] × R2) for the
Cauchy problem for the transport equation.

However, the meaning of condition (4.2) is not completely clear: while in the sta-
tionary problem it just expresses the fact the surface on which we consider the initial
data is noncharacteristic, in the time-space problem it is a kind of local regularity of
the direction of b. In particular, condition (4.2) prevents the existence of “too many”
zeros of the vector field.

In the rest of this chapter we present a more recent result, still in progress, in
collaboration with Alberti and Bianchini [5]. In this paper the strategy is a bit different:
we do not perform a local change of variable according to the Hamiltonian, but we rather
split the equation on the level sets of the Hamiltonian, using the coarea formula. Then
we would like to look at the equation level set by level set. It turns out that, where
∇H 6= 0, the level sets are in fact nice rectifiable curves, and this will allow to consider
the PDE in the parametrization. The interesting point is that, in order to separate the
evolution in {∇H = 0} from the evolution in {∇H 6= 0}, we need a condition which
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is reminiscent of (4.2), in the sense that it regards again the “amount of the critical
points of H”. This is precisely the weak Sard property in (4.11). However we notice
that condition (4.11) is much weaker than the previous one; moreover, two examples
(for which we refer to [5]) indicate that the weak Sard property is necessary in order
to obtain uniqueness. We present here a detailed account of our proof in the basic case
of a bounded divergence-free vector field: we remark that various generalizations and
extensions are possible (we refer again to [5]).

2. Splitting on the level sets of the Hamiltonian

We will be concerned with the Cauchy problem for the transport equation

(4.4)

{
∂tu+ b · ∇u = 0
u(0, ·) = ū

in D′([0, T ]× R2),

where ū ∈ L∞(R2). We assume that b ∈ L∞(R2; R2) has compact support and that
div b = 0. Recall that this implies the existence of a Hamiltonian function H ∈ Lipc(R2)
which satisfies (4.1); we denote by Lipc(X) the space of Lipschitz functions with com-
pact support defined on X. We remark that the compactness of the support has been
assumed in order to simplify the classification of the level sets in Theorem 4.5 and to
avoid localizations in the equation, but it is not really essential for our problem.

We consider the weak formulation of (4.4): u(t, x) ∈ L∞([0, T ] × R2) is a weak
solution of (4.4) if for every ϕ(t, x) ∈ Lipc([0, T [×R2) we have

(4.5)
∫ T

0

∫
R2

u
(
∂tϕ+ b · ∇ϕ

)
dxdt = −

∫
R2

ūϕ(0, ·) dx .

We now recall a particular case of the coarea formula (A.3). For every h ∈ R we
denote by Eh the level sets

Eh =
{
x ∈ R2 : H(x) = h

}
.

Then, for H ∈ Lipc(R2) and for every function φ ∈ L1(R2), we have

(4.6)
∫

R2∩{∇H 6=0}
φdx =

∫
R

[∫
Eh

φ

|∇H|
dH 1

]
dh .
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Using (4.6) in (4.5) and recalling that b = ∇⊥H we obtain

(4.7)

0 =
∫ T

0

∫
{∇H=0}

u∂tϕdxdt+
∫
{∇H=0}

ūϕ(0, ·) dx

+
∫ T

0

∫
{∇H 6=0}

u
(
∂tϕ+ b · ∇ϕ

)
dxdt+

∫
{∇H 6=0}

ūϕ(0, ·) dx

=
∫ T

0

∫
{∇H=0}

u∂tϕdxdt+
∫
{∇H=0}

ūϕ(0, ·) dx

+
∫ T

0

∫
R

[∫
Eh

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1

]
dhdt

+
∫

R

[∫
Eh

ū

|∇H|
ϕ(0, ·) dH 1

]
dh .

The following lemma will allow the selection of the level sets of the Hamiltonian.
We recall that we denote by H#L 2 the push-forward of the Lebesgue measure on R2

via the function H, defined according to (A.1).

Lemma 4.2. If u(t, x) is a weak solution of (4.4) and η(h) ∈ L1(R, H#L 2), then
u(t, x)η(H(x)) is a weak solution of (4.4).

Proof. Considering the weak formulation (4.5) with test function

ψ(t, x) = ϕ(t, x)η(H(x))

we deduce the validity of the lemma for any Lipschitz function η. The thesis for every
η ∈ L1(R, H#L 2) follows from an approximation procedure, since no derivatives of η
are involved in the weak formulation. �

We now introduce some notation that will be used in the rest of this chapter. We
consider the measure λϕ defined by

λϕ = H#

((∫ T

0
u∂tϕdt+ ūϕ(0, ·)

)
L 2 {∇H = 0}

)
.

It is readily checked that λϕ � H#

(
L 2 {∇H = 0}

)
. We denote by λϕ(h) the density

of λϕ with respect to H#

(
L 2 {∇H = 0}

)
, i.e.

λϕ = λϕ(h)H#

(
L 2 {∇H = 0}

)
.

Moreover, for every η ∈ L1(R, H#L 2), we have

λη(H)ϕ = η(h)λϕ(h)H#

(
L 2 {∇H = 0}

)
.

We perform the decomposition of H#

(
L 2 {∇H = 0}

)
into the absolutely continuous

and the singular (with respect to L 1) parts:

H#

(
L 2 {∇H = 0}

)
=
[
H#

(
L 2 {∇H = 0}

)]a(h)L 1 +
[
H#

(
L 2 {∇H = 0}

)]s
.
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Going back to (4.7), using Lemma 4.2 and the notation introduced we obtain, for
every η ∈ L1(R, H#L 2),

(4.8)

∫
R
η(h)λϕ(h)d

[
H#

(
L 2 {∇H = 0}

)]
(h)

+
∫ T

0

∫
R
η(h)

[∫
Eh

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1

]
dhdt

+
∫

R
η(h)

[∫
Eh

ū

|∇H|
ϕ(0, ·) dH 1

]
dh = 0 .

The arbitrariness of the function η ∈ L1(R, H#L 2) in (4.8) then gives the following:
(i) for L 1-a.e. h ∈ R we have

(4.9)
λϕ(h)

[
H#

(
L 2 {∇H = 0}

)]a(h)

+
∫ T

0

∫
Eh

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt+

∫
Eh

ū

|∇H|
ϕ(0, ·) dH 1 = 0 ;

(ii) for
[
H#

(
L 2 {∇H = 0}

)]s-a.e. h ∈ R we have

(4.10) λϕ(h) = 0 .

3. The weak Sard property

We see from equation (4.9) that the dynamics in {∇H 6= 0} and in {∇H = 0}
could be coupled: this can actually happen, as shown in the examples constructed in
[5]. This means that we can have interactions between the areas in which the velocity
is zero and the ones in which it is nonzero. In order to separate the two dynamics we
need the following weak Sard property of the Hamiltonian.

Definition 4.3. We say that H ∈ Lipc(R2) satisfies the weak Sard property if

(4.11) H#

(
L 2 {∇H = 0}

)
⊥ L 1 .

Using the notation introduced in the previous section this means that[
H#

(
L 2 {∇H = 0}

)]a(h) = 0 for L 1-a.e. h ∈ R.

The connection with the classical Sard theorem (see for instance Theorem 3.4.3 of
[92]) is evident: here we are requiring that the “image” (via the push-forward through
H) of the Lebesgue measure L 2 restricted to the set of the critical points {∇H = 0}
is “not seen” by the Lebesgue measure L 1 in the codomain.

Assuming the weak Sard property we can separate the two dynamics, hence from
equations (4.9) and (4.10) we deduce the following result.

Theorem 4.4. Let b ∈ L∞(R2; R2) with compact support and assume that div b = 0.
Let H ∈ Lipc(R2) be as in (4.1) and assume that H satisfies the weak Sard property
(4.11). Let u ∈ L∞([0, T ]× Rd) be a weak solution of (4.4). Then we have

(4.12)
∫ T

0

∫
Eh

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt+

∫
Eh

ū

|∇H|
ϕ(0, ·) dH 1 = 0
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for L 1-a.e. h ∈ R and

(4.13)
∫ T

0

∫
{∇H=0}

u∂tϕdxdt+
∫
{∇H=0}

ūϕ(0, ·) dx = 0 .

Notice that (4.13) gives u(t, x) = ū for L 1 ⊗L 2-a.e. (t, x) ∈ [0, T ] × {∇H = 0}.
This means that, thanks to the weak Sard property, the uniqueness for the Cauchy
problem (4.4) is equivalent to the uniqueness for the “reduced problems” (4.12) on the
level sets, for L 1-a.e. h ∈ R. The issue of the uniqueness on the level sets is discussed
in Section 4.5.

We stress the fact that the weak Sard property (4.11) is not just a technical as-
sumption that we need in order to implement our strategy: it is really necessary for the
well-posedness, as pointed out by the two counterexamples of [5], where nonuniqueness
phenomena are shown in the case of vector fields which do not satisfy (4.11).

4. Structure of the level sets

In this section we give a detailed description of the structure of the level sets

Eh = {x ∈ R2 : H(x) = h} .

We first notice, by the continuity of H and by the assumption of compactness of the
support, that for every h 6= 0 the set Eh is compact. Moreover, applying the coarea
formula (4.6) with φ ≡ 1 we obtain∫

R

[∫
Eh

1
|∇H|

dH 1

]
dh = L 2

(
{∇H 6= 0}

)
< +∞ ,

by the compactness of sptH. This implies that

(4.14)
∫
Eh

1
|∇H|

dH 1 < +∞ for L 1-a.e. h ∈ R.

In particular, since |∇H| ≤ ‖b‖∞, this yields

H 1(Eh) < +∞ for L 1-a.e. h ∈ R.

For every h ∈ R, we denote by Ch the family of all the connected components C of Eh
such that H 1(C) > 0 (in fact, these are just the connected components which contain
more than one point).

We collect together in the following theorem all the results relative to the classifi-
cation of the level sets. For the proof we refer to [5]. See Appendix 1 for the notion of
rectifiable set.

Theorem 4.5. Let H ∈ Lipc(R2). For L 1-a.e. h ∈ R the following statements
hold.

(i) Eh is H 1-rectifiable and H 1(Eh) < +∞; the map H is differentiable in x
and ∇H 6= 0 at H 1-a.e. x ∈ Eh; the function 1/|∇H| belongs to L1(Eh,H 1).

(ii) The family Ch is countable and H 1 (Eh \ ∪C∈ChC) = 0.
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(iii) Every C ∈ Ch is a closed simple curve. More precisely, it is possible to find a
Lipschitz injective parametrization γ : [α, β]∗ → C such that

(4.15) γ̇(s) = ∇⊥(γ(s)) for L 1-a.e. s ∈ [α, β]∗,

where we denote by [α, β]∗ the quotient space consisting of the interval [α, β]
with identified endpoints, endowed with the distance

dist [α,β]∗(x, y) = min
{
|x− y|, (β − α)− |x− y|

}
.

We will also need the following topological lemma.

Lemma 4.6. Let h ∈ R such that the conclusions of Theorem 4.5 hold. Then, for
every C ∈ Ch, there exists a decreasing sequence {Un} of bounded open sets in R2 such
that ∂Un ∩ Eh = ∅ for every n and Eh ∩ (∩nUn) = C.

5. Uniqueness on the level sets

We first show, using Lemma 4.6, that equation (4.12) can be separated into a family
of equations on the connected components of each level set.

Proposition 4.7. Let b ∈ L∞(R2; R2) with compact support and assume that
div b = 0. Let H ∈ Lipc(R2) be as in (4.1) and assume that H satisfies the weak
Sard property (4.11). Let u ∈ L∞([0, T ] × Rd) be a weak solution of (4.4). Then, for
every C ∈ Ch, for L 1-a.e. h ∈ R, we have

(4.16)
∫ T

0

∫
C

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt+

∫
C

ū

|∇H|
ϕ(0, ·) dH 1 = 0 .

Proof. We fix h ∈ R such that the conclusions of Theorems 4.4 and 4.5 hold. We
choose a sequence {Un} as in Lemma 4.6. Since ∂Un and Eh are compact sets we have

dist (∂Un, Eh) = εn > 0 .

Thus we fix a standard convolution kernel ρ with spt ρ ⊂ B1(0) and for every n we set

γn(x) = 1Un ∗ ρεn/4(x) .

We rewrite equation (4.12) with the test function ϕ(t, x)γn(x). We have

0 =
∫ T

0

∫
Eh

u

|∇H|

(
∂tϕγn + b · ∇

(
ϕγn

))
dH 1dt+

∫
Eh

ū

|∇H|
ϕ(0, ·)γn dH 1

=
∫ T

0

∫
Eh∩Un

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt+

∫
Eh∩Un

ū

|∇H|
ϕ(0, ·) dH 1 .

We now let n→∞ in the above equality. Recalling (4.14) and applying the Lebesgue
dominated convergence theorem we eventually obtain (4.16). �

We are now in the position to formulate and prove our main result.

Theorem 4.8. Let b ∈ L∞(R2; R2) with compact support and assume that div b = 0.
Let H ∈ Lipc(R2) be as in (4.1) and assume that H satisfies the weak Sard property
(4.11). Then, for every initial data ū ∈ L∞(R2), the Cauchy problem (4.4) has a unique
solution u ∈ L∞([0, T ]× R2).
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Proof. The existence is obtained by the same regularization technique used in
Theorem 2.3. To show the uniqueness, by linearity it suffices to show that the only
solution u ∈ L∞([0, T ]× R2) with initial data ū ≡ 0 is u ≡ 0. Recalling the discussion
at the end of Section 4.3 and the result of Proposition 4.7, it is enough to show that,
for every C ∈ Ch, for L 1-a.e. h ∈ R, the validity of∫ T

0

∫
C

u

|∇H|
(
∂tϕ+ b · ∇ϕ

)
dH 1dt = 0

for every ϕ(t, x) ∈ Lipc([0, T [×R2) implies u(t, x) = 0 for L 1⊗H 1-a.e. (t, x) ∈ [0, T ]×
C. We proceed in several steps.

Step 1. Parametrization of C. We fix h ∈ R such that the conclusions of
Theorem 4.5 and of Proposition 4.7 hold. Using the result in Theorem 4.5 (iii) we
know that every C ∈ Ch is a closed simple curve and we choose a Lipschitz injective
parametrization γ : [α, β]∗ → C which satisfies (4.15). Hence from (4.16) (with ū ≡ 0)
we get

(4.17)
∫ T

0

∫ β

α
u(t, γ(s))

(
(∂tϕ)(t, γ(s)) + b(γ(s)) · (∇ϕ)(t, γ(s))

)
dsdt = 0

for every ϕ ∈ Lipc([0, T [×R2). We set

(4.18) ϕ̃(t, s) = ϕ(t, γ(s)) .

Differentiating both sides of (4.18) with respect to s we get

∂sϕ̃(t, s) = (∇ϕ)(t, γ(s)) · γ̇(s) = (∇ϕ)(t, γ(s)) · (∇⊥H)(γ(s)) ,

and this implies

(4.19) b(γ(s)) · (∇ϕ)(t, γ(s)) = (∇⊥H)(γ(s)) · (∇ϕ)(t, γ(s)) = ∂sϕ̃(t, s) .

Setting ũ(t, s) = u(t, γ(s)) and inserting (4.19) in (4.17) we obtain

(4.20)
∫ T

0

∫ β

α
ũ
(
∂tϕ̃+ ∂sϕ̃

)
dsdt = 0

for every ϕ̃ : [0, T ] × [α, β]∗ → R of the form ϕ̃(t, s) = ϕ(t, γ(s)) for some ϕ ∈
Lipc([0, T [×R2).

Step 2. Test functions in [0, T ]× [α, β]∗. We notice that, up to now, we cannot
see (4.20) as a distributional equation on [0, T ]× [α, β]∗: indeed, we are allowed to use
as test functions only the particular ϕ̃’s of the form above. However, the following
lemma from [5] holds.

Lemma 4.9. Every ψ ∈ Lipc([0, T [×, [α, β]∗) can be approximated uniformly with a
sequence of functions {ϕ̃n} of the form above and such that Lip(ϕ̃n) is equi-bounded.

This means that we can write (4.20) with ϕ̃ = ϕ̃n for every n and passing to the
limit we get

(4.21)
∫ T

0

∫ β

α
ũ
(
∂tψ + ∂sψ

)
dsdt = 0

for any ψ ∈ Lipc([0, T [×, [α, β]∗). This is now a distributional equation on [0, T ]×[α, β]∗.
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Step 3. Uniqueness on C. Now it suffices to notice that (4.21) is the distribu-
tional form of the Cauchy problem

(4.22)

{
∂tũ+ ∂sũ = 0
ũ(0, ·) = 0 .

By the smooth theory for the transport equation of Section 1.4 we know that the only
solution to this problem is ũ ≡ 0. From the definition of ũ we see that this means that
u(t, x) = 0 for L 1 ⊗H 1-a.e. (t, x) ∈ [0, T ]× C. We conclude the desired thesis. �

We close this chapter by presenting a particular case in which the weak Sard prop-
erty (4.11) is satisfied by the function H ∈ Lipc(R2) associated to b as in (4.1) and thus
the uniqueness result of Theorem 4.8 holds. See [5] for the proof.

Corollary 4.10. Let b ∈ L∞(R2; R2) with compact support and assume that
div b = 0 and that b is approximately differentiable L 2-a.e. in R2. Then, for eve-
ry initial data ū ∈ L∞(R2), the Cauchy problem (4.4) has a unique solution u ∈
L∞([0, T ]× R2).

We observe that the approximate differentiability assumption on b in Corollary 4.10
is of “qualitative” type, in contrast with the weak regularity assumptions (for instance
Sobolev or BV ) in Chapter 2.





CHAPTER 5

Counterexamples to the well-posedness and related
constructions

In this chapter we present some counterexamples, whose aim is to show the sharp-
ness of the assumptions made in the various renormalization theorems. In the first
section we illustrate an elegant construction by Depauw [82], which yields an explicit
example of nonuniqueness for a vector field enjoying a regularity very close to the one
needed in Ambrosio’s theorem. This example has striking consequences on the possi-
bility of building a theory for multi-dimensional systems of conservation laws based on
transport equations: this is obtained in a joint work with De Lellis [65] and is briefly
presented in Section 5.2. In Section 5.3 we make some comments on two counterex-
amples to the uniqueness (in fact at the ODE level) by DiPerna and Lions [84]. The
last section is devoted to some examples by Colombini, Luo and Rauch [62], relative
to the lack of propagation of classical regularities for vector fields which are less than
Lipschitz.

1. Depauw’s counterexample

Following some ideas of Aizenman ([2]), Depauw in [82] and Colombini, Luo and
Rauch in [61] have recently given some counterexamples to the uniqueness for the
transport equation with a bounded divergence-free vector field (see also [48] for a
related construction).

These examples also show the sharpness of the result by Ambrosio in Theorem
2.12: for instance, the vector field constructed in [82] is “almost BV ”, in a sense that
will be clear in a moment. The example of Depauw consists of a bounded planar
divergence-free vector field a(t, x) with two different bounded distributional solutions
of

(5.1)

{
∂tw + div (aw) = 0
w(0, ·) = 0 .

We want to show briefly the construction of this vector field. First of all we define
b : [−1/2, 1/2]2 → R2 as

(5.2) b(x1, x2) =

 (0, 4x1) if 0 < |x2| < |x1| < 1/4
(−4x2, 0) if 0 < |x1| < |x2| < 1/4
0 otherwise

69
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1/2

1/2

Figure 1. Depauw’s vector field.

and we extend it periodically to R2 (see Figure 1). The field a(t, x) is then given by

a(t, x) =
{

0 if t < 0 or t > 1
b(2jx) if t ∈ Ij = 2−j(1

2 , 1) for some j ∈ N ,

and we also define c(t, x) = a(1 − t, x). It follows immediately that a and c are
bounded and divergence-free. Moreover, note that for L 1-a.e. t ∈ R we have a(t, ·) ∈
BVloc(R2; R2), but a does not belong to L1([0, α];BVloc(R2)) for any α > 0.

We want to describe the flow of c. First of all, we recall that for 0 ≤ t0 < t1 < 1
we denote by X(c)(t1, t0, x) the solution at time t1 of the problem{

ψ̇(t) = c(t, ψ(t))
ψ(t0) = x .

Note that X(c) is well-defined since c is piecewise smooth on [t0, t1]×R2. Next we let u0

be the Z2-periodic function given by u0(x1, x2) = sgn (x1x2) on the square
(
− 1

2 ,
1
2

)2.
If we define uk(x) = u0(2kx), then uk

(
X(c)

(
1− 2−k, 1− 2−k−1, x

))
= uk+1(x) (see

Figure 2).
By the semigroup property of X(c) we conclude that u0(X(c)(0, 1−2−k, x)) = uk(x).

Therefore u(t, x) = u0

(
X(c)(0, t, x)

)
is a bounded distributional solution of

(5.3)
{
∂tu+ div (uc) = 0
u(0, ·) = u0 .

Note that u(t, ·) converges weakly (but not strongly) to 0 as t ↑ 1. Therefore w defined
by w(t, x) = u(1− t, x) is a nontrivial weak solution of (5.1).

2. Oscillatory solutions to transport equations

The example of [82] presented in Section 5.1 has severe consequences on the possi-
bility of building a theory for multi-dimensional systems of conservation laws based on



2. OSCILLATORY SOLUTIONS TO TRANSPORT EQUATIONS 71

1/2

1/21/2

1/2

Figure 2. The effect of Depauw’s vector field b acting for a time of 1/2
on a chessboard of side 1/4.

transport equations. We recall the Keyfitz and Kranzer system

(5.4)

 ∂tu+
d∑
j=1

∂

∂xj

(
f j(|u|)u

)
= 0

u(0, ·) = ū

u : [0, T ]× Rd → Rk

already presented in the Introduction. For every j = 1, . . . , d the map f j : R+ → R
is smooth. Notice the very special feature of this system: the nonlinearity only de-
pends on the moduls of the solution. Even in the presence of this special “triangular”
structure, Bressan [48] proved that the Cauchy problem (5.4) can be ill posed in L∞,
showing initial data u which generate renormalized entropy solutions with wild oscilla-
tions, whose weak limit is not a solution any more. We can decouple (5.4) in a scalar
conservation law for the modulus ρ = |u|

(5.5) ∂tρ+ div
(
f(ρ)ρ

)
= 0

and a continuity equation for the angular part θ = u/|u|

(5.6) ∂t(ρθ) + div
(
f(ρ)ρθ

)
= 0 .

The heuristic idea behind the well-posedness result for (5.4) in [15] and [11] is to con-
sider first Kružkov’s entropy solutions of (5.5). If |ū| ∈ BV (Rd) then from the theory
of entropy solutions ([103]) we have ρ(t, ·) ∈ BV (Rd) for every t ∈ [0, T ]. Then we
consider the continuity equation (5.6) for the vector unknown θ: the vector field f(ρ) be-
longs to BV ([0, T ]×Rd) and (5.5) means that this vector field is nearly incompressible.
We observe that the theory of renormalized solutions for nearly incompressible vector
fields presented in Section 2.8 does not cover immediately this case (the renormalization
property in this general framework is presently an open problem: see Conjecture 6.18).
However, some ad hoc arguments based on additional properties of the vector field f(ρ)
(namely the fact that (5.5), as a continuity equation in ρ with f(ρ) fixed, possesses a
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solution enjoying BV regularity) are enough to show well-posedness for (5.6), in the
class of the so-called renormalized entropy solutions (see [15], [11] and [77] for the
details).

It is therefore tempting to try to generalize this approach to more general systems
of conservations laws. Another kind of prototype of multi-dimensional system consists
in two continuity equations coupled through some nonlinearity:

(5.7)


∂tu+ div

(
f(v)u

)
= 0

∂tv + div
(
g(u)v

)
= 0

u(0, ·) = ū

v(0, ·) = v̄

f, g : R→ Rd

u, v : [0, T ]× Rd → R .

The natural attempt would be the implementation of an iterative procedure. We first
find u1 and v2 solutions to the two continuity equations with fixed vector fields:

∂tu1 + div
(
f(v̄)u1

)
= 0

∂tv1 + div
(
g(ū)v1

)
= 0

u1(0, ·) = ū

v2(0, ·) = v̄ .

We iterate this procedure, finding for every k ∈ N solutions uk and vk to the continuity
equations in which the vector fields are fixed and depend on the solutions uk−1 and
vk−1 found in the previous step:

∂tuk + div
(
f(vk−1)uk

)
= 0

∂tvk + div
(
g(uk−1)vk

)
= 0

uk(0, ·) = ū

vk(0, ·) = v̄ .

Then one might expect convergence of the two sequences {uk} and {vk} to a solution
of (5.7). To do this, we need to identify a function space S ⊂ L∞

(a) which embeds compactly in L1
loc, in order to be able to show the existence of

the limit, at least up to subsequences;
(b) which contains BV , because equations of this type, already in the scalar case,

develop singularities along surfaces of codimension one (shocks) in finite time;
(c) such that every transport equation with initial data in S and with vector field

belonging to S and with bounded divergence possesses a solution belonging
to S , to be sure that at each passage of the iteration we can choose a solution
which belongs to our space.

The question of the existence of such a space was originally raised by Bressan.
However, in a joint work with De Lellis [65], we are able to show that such a space
does not exist. We will not be more precise on the statement of this result, for which
we refer to [65]. Instead we prefer to describe the idea of our proof and its connection
with the counterexample in Section 5.1.

A small modification of the construction by Depauw yields an autonomous diver-
gence-free vector field u ∈ L∞, an initial data v ∈ L∞ ∩ BV , and a time T > 0 such
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that in [0, T ]× R3 there exists a unique bounded weak solution of

(5.8)
{
∂tv + div (uv) = 0
v(0, ·) = v̄ ,

and v(t, ·) converges to v(T, ·) weakly∗ in L∞ but not strongly in L1
loc.

With an explicit construction it is possible to show the existence of vector fields
fi ∈ BV ∩L∞ with div fi ∈ L∞ and initial data w̄i ∈ BV ∩L∞ such that if we consider
the unique weak solutions of

(5.9)
{
∂twi + div (fiwi) = 0
wi(0, ·) = w̄i ,

then wi(1, ·) is the i-th component ui of Depauw’s vector field.
This means that, if we assume the existence of a space S satisfying our require-

ments, then necessarily fi, w̄i ∈ S , because of (b). From the closure property (c) and
thanks to the fact that the solutions to the systems (5.9) are unique we deduce that
ui = wi(1, ·) ∈ S . Since, again from (b), v̄ ∈ S , we consider (5.8) and deduce from (c)
that v ∈ S . But we already noticed that v(t, ·) converges to v(T, ·) weakly∗ in L∞ but
not strongly in L1

loc, and this violates the compactness condition (a). Hence we deduce
that such a space S cannot exist.

This result is clearly a counterexample to the strategy (it is not possible to solve
multi-dimensional systems via reduction to transport equations), but not to the well-
posedness result. It would be very interesting to understand whether one can use similar
constructions to produce hyperbolic systems of conservation laws ∂tU + divF (U) = 0
and BV initial data with highly oscillatory admissible solutions. Slight modifications of
our example produce fluxes F such that each DFi is triangular, but the corresponding
systems are not hyperbolic.

3. Two counterexamples by DiPerna and Lions

In this section we comment two counterexamples to the uniqueness presented by
DiPerna and Lions in [84]. These counterexamples are in the spirit of the ODE frame-
work: the “right” notion of solution of the ODE in this relaxed setting will be presented
in Section 6.3, but roughly speaking we require that the flow does not concentrate tra-
jectories, in the sense that the push-forward of the Lebesgue measure L d via the flow
X(t, ·) is absolutely continuous with respect to L d and has bounded density (this is
the so-called regular Lagrangian flow, compare in particular with Definition 6.4).

3.1. A W 1,p vector field with unbounded divergence. The first example of
[84] is relative to a vector field with Sobolev regularity but with unbounded divergence,
for which an infinite family of solutions to the ODE is constructed. The construction
of [84] (taken from a previous work by Beck [30]) is two-dimensional, but since the
vector field is constant in the second direction the phenomenon is intrinsically one-
dimensional, thus we are going to describe it as a flow on the real line. Moreover,
it has been pointed out by Ambrosio that all but one among the constructed flows
create concentration of trajectories. Thus this example is not a counterexample to
the uniqueness of the regular Lagrangian flow. It would be interesting to understand
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whether it is possible to have examples of nonuniqueness of the solution even in the
cases where the uniqueness of the regular Lagrangian flow is already known.

For any p ∈ [1,+∞[ fixed, we construct a uniformly continuous vector field b ∈
W 1,p

loc ∩ L
∞(R; R) and infinitely many solutions to the ODE with vector field b. Let us

consider a compact set K ⊂ [0, 1] with empty interior and a function g ∈ C∞(R) with
0 ≤ g < 1 and such that {g = 0} = K. We set f(x) =

∫ x
0 g(s) ds. Assuming that g(s)

converges to 1 for |s| → ∞ we obtain that f is bijective. We also consider

A = {µ ∈M+(K) : µ does not possess atoms} .

For every µ ∈ A we set

Λ−1
µ (x) = x+ µ([0, x]) , fµ = f ◦ Λµ .

Noticing that Λ−1
µ is strictly increasing and continuous we deduce that fµ is well-defined,

continuous and strictly increasing. Moreover, Λµ is 1-Lipschitz. We also set

b(x) = f ′(f−1(x)) , Xµ(t, x) = fµ(t+ f−1
µ (x)) .

Since f and fµ are strictly increasing and continuous, we obtain that b and Xµ are
well-defined and continuous. Moreover it is immediate to check that Xµ satisfies the
semigroup property.

We want to show that Xµ is everywhere differentiable with respect to t (equivalently,
that fµ is everywhere differentiable) and that

(5.10)

∂Xµ

∂t
(t, x) = f ′µ(t+ f−1

µ (x)) = f ′µ(f−1
µ (Xµ(t, x)))

(∗)
= f ′(f−1(Xµ(t, x))) = b(Xµ(t, x)) .

Notice that, once we know that fµ is differentiable, (∗) is the only equality in (5.10)
which is not an immediate consequence of the definitions given above. The validity of
(5.10) will imply that, for every µ ∈ A, the map Xµ is a flow relative to the vector field
b.

We claim that fµ is differentiable and that for every z ∈ R the following equality
holds:

(5.11) f ′µ(z) = f ′(Λµ(z)) .

Using (5.11) with z = f−1
µ (Xµ(t, x)) and recalling that Λµ ◦ f−1

µ = f−1 we see that
(5.11) implies the validity of the equality marked by (∗) in (5.10). We now prove (5.11)
considering two cases.

Case 1. If Λµ(z) 6∈ K, then for s sufficiently close to z we have

Λ−1
µ (Λµ(z) + s− z) = s ,

since the complement of K is an open set. Hence fµ is differentiable in z with f ′µ(z) =
f ′(Λµ(z)), and (5.11) holds for such a z.

Case 2. If Λµ(z) ∈ K, recalling that Λµ is 1-Lipschitz, for s is sufficiently close to
z we obtain

|fµ(s)− fµ(z)| = |f(Λµ(s))− f(Λµ(z))| ≤ C|Λµ(s)− Λµ(z)|2 ≤ C|s− z|2 ,
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since f ′(Λµ(z)) = 0. Hence f ′µ(z) = 0 = f ′(Λµ(z)) and we eventually get (5.11) also in
this case.

We now show how it is possible to choose g in such a way that b ∈ W 1,p
loc (R; R) for

an arbitrary p ∈ [1,+∞[. Noticing that

b′(x) = g′(f−1(x))[g(f−1(x))]−1

we can compute∫
R
|b′(x)|p dx =

∫
R
|g′(f−1(x))|p |g(f−1(x))|−p dx =

∫
R
|g′(y)|p |g(y)|−(p−1) dy .

Therefore, it is enough to choose g0 satisfying all the previous requirements imposed
on g and eventually set g = gp0 . Since this implies |g|−(p−1)|g′|p = pp|g′0|p, it is enough
to choose g0 such that g′0 ∈ Lp(R). Notice also that div b(x) = b′(x) does not belong to
L∞(R).

We finally show why the only flow Xµ which does not create concentration of
trajectories is the one corresponding to µ = 0. We preliminarily show that

(i) The set f(K) has zero Lebesgue measure;
(ii) The set Λ−1

µ (K) has strictly positive Lebesgue measure, if µ 6= 0.
We observe that the statement in (i) is immediate, since f is smooth and K consists

of the critical points of f . To show (ii) we notice that

(5.12) Λ−1
µ ([0, 1]) = [0, 1 +m] ,

where m = µ([0, 1]). But since the derivative of Λ−1
µ is less or equal to 1 on [0, 1] \K

we also have

(5.13) L 1
(
Λ−1
µ ([0, 1] \K)

)
≤ L 1

(
[0, 1] \K

)
≤ 1 .

From (5.12) and (5.13) we deduce

(5.14) L 1
(
Λ−1
µ (K)

)
≥ m,

and this proves (ii).
Using (5.14) and the equivalence

Xµ(t, x) ∈ f(K) ⇐⇒ t ∈ Λ−1
µ (K)− f−1

µ (x)

we eventually obtain the equality

(5.15)
∫

R

∫
R

1f(K)(Xµ(t, x)) dtdx =
∫

R
L 1
(
Λ−1
µ (K)− f−1

µ (x)
)
dx = +∞

for every µ ∈ A with µ 6= 0. This implies the existence of two sets A, B ⊂ R with
strictly positive Lebesgue measure such that

Xµ(t, x) ∈ f(K) for every (t, x) ∈ A×B,

thus we have concentration of trajectories in the negligible set f(K) for a set of times
with positive measure. Moreover, it is possible to check that the density of the measure(

Xµ(t, ·)#L 1
) (

R \ f(K)
)

does not belong to L∞loc(R).
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This example should be compared with the much simpler one presented in Remark
6.6, relative to the square root case. One difference is that in the case presented here
each flow Xµ satisfies the semigroup property, while every flow relative to the vector
field b(x) =

√
|x| which “stops” in the origin for a positive time does not satisfy the

semigroup property.

3.2. A divergence-free vector field with derivatives of fractional order.
The second example of [84] regards an autonomous divergence-free vector field b in R2

such that b ∈W s,1
loc (R2; R2) for every s ∈ [0, 1[ and b ∈ Lp(R2; R2)+L∞(R2; R2) for every

p ∈ [1, 2[. For the definition and the main properties of Sobolev spaces with fractional
order we refer to [1] and [124]. We will construct two regular Lagrangian flows (which
in fact preserve the Lebesgue measure) relative to this vector field. One might wonder
if this lack of derivative which leads to nonuniqueness could be compensated by an
enlargement of the summability exponent, i.e. if we have uniqueness for vector fields
in W s,p with s < 1 and p = p(s) sufficiently large. This is not at all the case: some
variations of the counterexamples of [5] show that we cannot hope for uniqueness even
for vector fields belonging to all the Hölder spaces Cα(R2; R2) with α ∈ [0, 1[.

Since we want to construct a divergence-free vector field we start by defining the
following Hamiltonian function H : R2 → R. We set

H(x, y) =

 −x/|y| if |x| < |y|
−(x− |y|+ 1) if x > |y|
−(x+ |y| − 1) if x < −|y| .

Thus we define b as
b1(x, y) = −∂H

∂y
= −sgn y

(
x

|y|2
1{|x|≤|y|} + sgnx 1{|x|>|y|}

)

b2(x, y) =
∂H

∂x
= −

(
1
|y|

1{|x|≤|y|} + 1{|x|>|y|}

)
.

The only non trivial verification is the W s,1 regularity of b: we postpone it to the
end of this subsection. We now explicitly define two different flows X and X̃ relative
to b. By simmetry it suffices to define the flows for initial data in the set

Q = {(x, y) ∈ R2 : x > 0 , y > 0 , x 6= y} .
When x > y we set

X1(t, x, y) = X̃1(t, x, y) =

{
x− t if t ≤ y
x− 2y + t if t ≥ y

X2(t, x, y) = X̃2(t, x, y) = y − t .

When x < y we set X1(t, x, y) =
x

y
|y2 − 2t|1/2

X2(t, x, y) = σ|y2 − 2t|1/2
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and X̃1(t, x, y) = σ
x

y
|y2 − 2t|1/2

X̃2(t, x, y) = σ|y2 − 2t|1/2 ,

where σ = 1 if t ≤ y2/2 and σ = −1 if t ≥ y2/2. It is immediate to check that X and
X̃ are two different regular Lagrangian flows relative to b and that they preserve the
Lebesgue measure in R2.

Let us finally check that b ∈W s,1
loc (R2; R2). We will give only a sketch of the proof,

which uses some technical results from the theory of Besov spaces: see Section 11 of
[124], [80] and [125] for the precise statements of the results required here.

First of all we observe that

Bs
1,1(R2) ⊂W s,1(R2) ,

where the Besov space Bs
1,1(R2) is defined according to Definition 10.3 of [124]. Thus

it suffices to show that b ∈ Bs
1,1 around the origin. The following equivalence of norms

holds:

(5.16) ‖f‖Bs1,1 ∼ ‖f‖Bs−1
1,1

+ ‖Df‖Bs−1
1,1

.

For s < 1, the first term in the right hand side of (5.16) can be dropped. Moreover,
when α < 0, we have the equivalence of norms

(5.17) ‖g‖Bα1,1 ∼
∫ 1

0
ε−α‖g ∗ ϕε‖L1

dε

ε
,

where {ϕε} is a standard convolution kernel. Combining all the previous remarks, we
need to show that

(5.18)
∫ 1

0
ε1−s‖Db ∗ ϕε‖L1

dε

ε
< +∞ .

We estimate the L1 norm inside the integral as follows:

(5.19)
‖Db ∗ ϕε‖L1(R2) = ‖Db ∗ ϕε‖L1(B2ε(0)) + ‖Db ∗ ϕε‖L1(R2\B2ε(0))

≤ C

ε
‖b‖L1(B3ε(0)) + C‖Db‖M(R2\Bε(0)) .

Inserting (5.19) in (5.18) and noticing that

‖b‖L1(B3ε(0)) ∼ ε and ‖Db‖M(R2\Bε(0)) ∼ log ε

we deduce that the integral in (5.18) is bounded by

C

∫ 1

0

[
log ε
εs

+
1
εs

]
dε ,

which is finite since s < 1. This completes the proof.
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4. Lack of propagation of regularity

In the case b ∈ Lip(Rd; Rd) we have propagation of the Hölder regularity of the
initial data, in the following sense: if ū ∈ Cα ∩ L∞(Rd) for some α ∈ [0, 1[ and
u ∈ L∞([0, T ]× Rd) is the unique solution of the Cauchy problem{

∂t + b · ∇u = 0
u(0, ·) = ū ,

then u(t, ·) ∈ Cα(Rd) for every t ∈ [0, T ]. Indeed, the solution can be expressed as

u(t, x) = ū
(
X(t, ·)−1(x)

)
and the inverse of the flow X(t, ·)−1 : Rd → Rd is a Lipschitz map (Corollary 1.11).

One might wonder if similar results are true for less regular vector fields. In fact,
for “classical” regularities of the solution, nothing of this sort is true, as pointed out
by Colombini, Luo and Rauch [62]. However, in Section 7.5 we will show that a mild
regularity, namely Lipexpp regularity, is propagated by W 1,p vector fields with bounded
divergence. In the remaining of this section we illustrate the two main examples of [62].

Example 5.1 (Lack of propagation of continuity). Consider a nonnegative function
f ∈ C(R) such that f(s) = 0 for s ≤ 0 and f(s) = s(log s)2 for 0 < s ≤ e−2/2. Assume
that f is nondecreasing and uniformly bounded. Set

b(x, y) =
(
− f(y),−f(x)

)
.

Then b is a bounded divergence-free vector field, which belongs to Cα(R2; R2) for every
α ∈ [0, 1[ and to W 1,p

loc (R2; R2) for every p ∈ [1,+∞[. Now consider any initial data
ū ∈ C∞c (R2) such that ū = 0 if x ≤ 0 and y ≤ 0, and ū > 0 if x > 0 and y > 0 are
small. Then, for every relatively open set Ω ⊂ [0, T ] × R2 such that (0, 0, 0) ∈ Ω, the
unique solution u ∈ L∞([0, T ]× R2) with initial data ū is not continuous in Ω.

Example 5.2 (Lack of propagation of BV regularity). Consider a function g ∈
Cc(R) such that g(s) = −s log |s|+ s for s close to 0 and set

b(x, y) =
(
g(y), 0

)
.

Set r =
√
x2 + y2 and consider an initial data ū ∈ L∞ ∩W 1,1(R2) such that

ū(x, y) = cos
(

1
r(log r)2

)
for r small.

Then there exists a unique solution u ∈ L∞([0, T ] × R2) with initial data ū, and
u(t, ·) 6∈ BVloc(R2) for t small.
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CHAPTER 6

The connection between PDE and ODE

In this chapter we are going to describe the connection between the Eulerian prob-
lem (PDE) and the Lagrangian problem (ODE) out of the smooth setting. In Section 1.4
we presented the classical theory of characteristics, which relates the two problems in
the case of a sufficiently smooth vector field. Here we are going to present the theory
of regular Lagrangian flows, developed by Ambrosio in [8] (see also [13]). In order to
study existence, uniqueness and stability of solutions to the ODE, we consider suitable
measures in the space of continuous maps, allowing for superposition of trajectories.
Then, in some special situations we are able to show that this superposition actually
does not occur, but still this “probabilistic” interpretation is very useful to understand
the underlying techniques and to give an intrinsic characterization of the flow. We will
establish an abstract connection between the well-posedness in the class of bounded
solutions for the continuity equation

(6.1)

{
∂tµ+ div (bµ) = 0
µ0 = µ̄

and the well-posedness of a suitable notion of solution (the regular Lagrangian flow) of
the ordinary differential equation

(6.2)

{
γ̇(t) = b(t, γ(t))
γ(0) = x .

With “abstract” we mean that the spirit of these results will be to deduce the well-
posedness for the ODE from the well-posedness for the PDE; hence all the results shown
in the previous chapters will imply existence, uniqueness and stability for the regular
Lagrangian flow.

In Section 6.5 we briefly comment on the notion of flow defined by DiPerna and
Lions. Section 6.6 is devoted to the case of nearly incompressible vector fields: we
follow an approach, due to De Lellis, based on the notion of density of the regular
Lagrangian flow. The last section presents Bressan’s compactness conjecture and some
recent advances relative to it.

1. Pointwise uniqueness and measure valued solutions

We first present a very general criterion, which relates the pointwise uniqueness
for the ordinary differential equation with the uniqueness for positive measure-valued
solutions to the continuity equation. Notice that, in order to give a meaning to the
product bµ when µ is a measure, we assume b to be defined everywhere in [0, T ]× Rd.

81
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Theorem 6.1. Let A ⊂ Rd be a Borel set. Then the following two properties are
equivalent:

(i) Solutions of the ordinary differential equation (6.2) are unique for every initial
point x ∈ A;

(ii) Positive measure-valued solutions of the continuity equation (6.1) are unique
for every initial data µ̄ which is a positive measure concentrated on A, i.e. such
that µ̄(Rd \A) = 0.

Proof of (ii) ⇒ (i) in Theorem 6.1. This implication is rather easy. Assume
that for some x ∈ A there exist two different solutions γ(t) and γ̃(t) of the ODE starting
from x. Then consider µt = δγ(t) and µ̃t = δγ̃(t). We clearly have µ0 = µ̃0 = δx. It is
readily checked that µt and µ̃t are solutions of the continuity equation, but since they
are different we are violating assumption (ii). �

The converse implication is much more complicated and requires the so-called su-
perposition principle, which roughly speaking says that every positive measure-valued
solution of the continuity equation can be obtained as a superposition of solutions
obtained via propagation along characteristics. The superposition principle will be
presented in the next section, together with the proof of the implication (i) ⇒ (ii) of
Theorem 6.1.

We remark that the applicability of Theorem 6.1 is in fact very limited. On one
hand, pointwise uniqueness for the ordinary differential equation is known only under
very strong regularity assumptions on the vector field, namely in the cases we presented
in Chapter 1 (for instance Lipschitz regularity, one-sided Lipschitz condition, Osgood
condition). On the other hand, uniqueness for the continuity equation is known only
for particular classes of solutions, tipically for solutions which are bounded functions.
It is reasonable that this kind of “weaker PDE uniqueness” should reflect into a weaker
notion of uniqueness for the ODE: this leads to the concept of regular Lagrangian flow,
which is presented in Section 6.3.

2. The superposition principle

In order to understand better the meaning of the superposition principle we recall
formula (1.17). If there is a unique flow X(t, x) associated to the vector field b, the
only solution of the continuity equation with initial data µ̄ ∈M(Rd) is the measure µt
characterized by

(6.3) 〈µt, ϕ〉 =
∫

Rd
ϕ(X(t, x)) dµ̄(x) ∀ϕ ∈ Cc(Rd) .

In the following we use the notation ΓT for the space C([0, T ]; Rd) of continuous paths
in Rd. For every x ∈ Rd let us consider a probability measure ηx ∈ P(ΓT ) concentrated
on the trajectories γ ∈ ΓT which are absolutely continuous integral solutions of the
ordinary differential equation with γ(0) = x. All the families {ηx}x∈Rd in the following
discussions are weakly measurable, i.e. for every function Φ ∈ Cb(ΓT ) the map

x 7→ 〈ηx,Φ〉 =
∫

ΓT

Φ(γ) dηx(γ)
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is measurable.

Definition 6.2 (Superposition solution). The superposition solution induced by
the family {ηx}x∈Rd is the family of measures µηxt ∈ M(Rd), for t ∈ [0, T ], defined as
follows:

(6.4) 〈µηxt , ϕ〉 =
∫

Rd

(∫
ΓT

ϕ(γ(t)) dηx(γ)
)
dµ̄(x) ∀ϕ ∈ Cc(Rd) .

Using this notation we can give an alternative interpretation of (6.3). If for every
x ∈ Rd the solution of the ODE starting from x is unique, then the only admissible
measure ηx in (6.4) is ηx = δX(·,x). But then we have

〈µδX(·,x)

t , ϕ〉 =
∫

Rd

(∫
ΓT

ϕ(γ(t)) dδX(·,x)(γ)
)
dµ̄(x) =

∫
Rd
ϕ(X(t, x)) dµ̄(x) ,

so in this case we reduce to the “deterministic” formula (6.3). We can regard the
superposition solution of Definition 6.2 as a “probabilistic” version of (6.3): if there
is more than one solution to the ordinary differential equation, then we define our
“averaged push-forward” by substituting the quantity ϕ(X(t, x)) with the average∫

ΓT
ϕ(γ(t)) dηx(γ). Let us check that (6.4) defines a solution of the continuity equation.

Since the measure ηx is concentrated on solutions of the ODE starting from x ∈ Rd for
L d-a.e. x ∈ Rd, using Fubini’s theorem we deduce that

γ̇(t) = b(t, γ(t)) for L d ⊗ ηx-a.e. (x, γ) ∈ Rd × ΓT
for L 1-a.e. t ∈ [0, T ]. We notice that, for any ϕ ∈ C∞c (Rd), the map t 7→ 〈µηxt , ϕ〉 is
Lipschitz. Indeed, we can estimate∣∣ϕ(γ(t))− ϕ(γ(s))

∣∣ ≤ ‖∇ϕ‖∞‖b‖∞|t− s|
and this implies∣∣〈µηxt , ϕ〉 − 〈µηxs , ϕ〉∣∣ =

∣∣∣∣∫
Rd

∫
ΓT

[
ϕ(γ(t))− ϕ(γ(s))

]
dηx(γ) dµ̄(x)

∣∣∣∣
≤ ‖∇ϕ‖∞‖b‖∞µ̄

(
sptϕ+BT‖b‖∞(0)

)
|t− s| .

Thus the distributional derivative of the map t 7→ 〈µηxt , ϕ〉 coincides with the pointwise
one. But since an immediate computation of the pointwise derivative gives

d

dt
〈µηxt , ϕ〉 =

d

dt

∫
Rd

(∫
ΓT

ϕ(γ(t)) dηx(γ)
)
dµ̄(x)

=
∫

Rd

∫
ΓT

∇ϕ(γ(t)) · b(t, γ(t)) dηx(γ) dx

=
∫

Rd
b(t, x) · ∇ϕ(x) dµt(x) ,

we obtain that the continuity equation holds.
The superposition principle says that, for positive solutions, this construction can

be reversed: every positive measure-valued solution µt can be realized as a superposition
solution µηxt for some {ηx}x∈Rd as above. The result in the form we are going to present
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is a slight generalization of the one proved in Section 8.2 of [18]: since we will need to
deal with L∞ solutions of the continuity equation we need to consider here measures
µt which are only locally finite. We refer to Section 4 of [13] for the case in which
µt ∈ P(Rd) and the vector field satisfies the global summability assumption∫ T

0

∫
Rd

|b(t, x)|
1 + |x|

dµt(x) dt < +∞ .

See also Maniglia [111] for an extension to the non homogeneous case.

Theorem 6.3 (Superposition principle). Fix a bounded vector field b : [0, T ]×Rd →
Rd and let µt ∈ M+(Rd) be a positive locally finite measure-valued solution of the
continuity equation. Then µt is a superposition solution, i.e. there exists a family
{ηx}x∈Rd ⊂ P(ΓT ), with ηx concentrated on absolutely continuous integral solutions of
the ODE starting from x, for µ̄-a.e. x ∈ Rd, such that µt = µηxt for any t ∈ [0, T ].

Proof. Step 1. Uniform control of the local masses. The measure µt
is just locally finite; however, due to the finite speed of propagation of the transport
equation (we are assuming that b is uniformly bounded), it is easy to show the existence
of a function mR, independent of the time, such that

(6.5) µt(BR(0)) ≤ mR for every t ∈ [0, T ].

This can be proved by integration on suitable cones, see for instance Lemma 2.11
of [11] (the argument used for bounded solutions remains unchanged in the case of
measure-valued solutions).

Step 2. Construction of an adapted convolution kernel. We want to
contruct a positive convolution kernel ρ ∈ Ck(Rd) with spt ρ = Rd and

∫
Rd ρ(x) dx = 1

in such a way that, for some function m̃R, we have

(6.6) µεt(BR(0)) ≤ m̃R for every t ∈ [0, T ] and every ε ∈]0, 1[,

where µεt = µt ∗ ρε. This can be done as follows.
For every j ∈ N consider a standard convolution kernel ρj with spt ρj = Bj(0),

ρj ≥ 0 and
∫

Rd ρj(x) dx = 1. We define

ρ(x) =
∞∑
j=1

cjρj(x) .

We want to choose the numbers cj in order to obtain a convolution kernel ρ which
satisfies the desired properties. If we choose cj > 0 for every j and

∑
j cj = 1 we obtain

that ρ is strictly positive on the whole Rd and has unit total mass. Moreover, in order
to obtain a Ck function, we also require

∑
j cj‖ρj‖Ck < ∞, which is clearly satisfied

for every k ∈ N if we choose a sequence cj which goes to zero sufficiently fast.
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We now show how it is possible to choose the sequence cj in such a way that the
uniform control (6.6) is satisfied. We compute

µεt(BR(0)) =
∫
BR(0)

µεt(x) dx =
∫
BR(0)

∫
Rd
ρε(x− y) dµt(y) dx

=
∫
BR(0)

∫
Rd

∞∑
j=1

cjρ
ε
j(x− y) dµt(y) dx =

∞∑
j=1

cj

∫
BR(0)

∫
Rd
ρεj(x− y) dµt(y) dx

=
∞∑
j=1

cj

∫
Rd

∫
BR(0)

ρεj(x− y) dx dµt(y) =
∞∑
j=1

cj

∫
BR+j(0)

∫
BR(0)

ρεj(x− y) dx dµt(y)

≤
∞∑
j=1

cj

∫
BR+j(0)

dµt(y) ≤
∞∑
j=1

cjmR+j .

This means that we need to choose the sequence cj > 0 in such a way that

(6.7) m̃R =
∞∑
j=1

cjmR+j <∞

for every R ∈ N. It can be easily checked that it is enough to choose each cj such that

cjmj , cjmj+1, . . . cjm2j ≤
1
2j
.

Indeed with this choice we can estimate

m̃R =
∞∑
j=1

cjmR+j =
R−1∑
j=1

cjmR+j +
∞∑
j=R

cjmR+j ≤
R−1∑
j=1

cjmR+j +
∞∑
j=R

1
2j
<∞ .

Noticing that, if a sequence cj satisfies (6.7) and 0 < c′j ≤ cj , then also the sequence
c′j satisfies (6.7), we conclude that it is possible to choose a sequence which satisfies
all the requirements we need. Hence we have constructed a kernel ρ with the claimed
property (6.6).

Step 3. Smoothing. We fix a convolution kernel ρ as in the previous step and
we consider

µεt(x) =
(
µt ∗ ρε

)
(x) and bε(t, x) =

(
b(t, ·)µt

)
∗ ρε(x)

µεt(x)
.

It is immediate to check the uniform L∞ bound
(6.8)

|bε(t, x)| =
|
(
b(t, ·)µt

)
∗ ρε(x)|

µεt(x)
≤
∫

Rd |ρ
ε(x− y)b(t, y)| dµεt(y)

µεt(x)
≤ ‖b‖∞µ

ε
t(x)

µεt(x)
= ‖b‖∞

and that µεt is a solution of the continuity equation with vector field bε, that is

∂tµ
ε + div (bεµεt) = ∂tµt ∗ ρε + div

(
b(t, ·)µt

)
∗ ρε = 0 .

Since bε is globally bounded and Ck with respect to the space (it is indeed a ratio of
two Ck functions and the denominator does not vanish) we can define a unique flow
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Xε(t, x) associated to bε, which is globally defined for t ∈ [0, T ]. The representation
µεt = Xε(t, ·)#µ

ε
0 given by Proposition 1.15 holds and we define

ηεx = δXε(·,x) ∈ P(ΓT )

and

ηε = µε0 ⊗ ηεx ∈M+(Rd × ΓT ) ,

where the tensor product by definition satisfies

〈ηε,Φ(x, γ)〉 =
∫

Rd

∫
ΓT

Φ(x, γ) dηεx(γ) dµε0(x)

for every function Φ ∈ Cb(Rd × ΓT ) whose support has compact projection over Rd.
Step 4. Tightness. We consider the functional Ψ : Rd × ΓT → [0,+∞] defined

by

Ψ : (x, γ) 7→
∫ T

0
|γ̇(t)|2 dt ;

the functional takes the value +∞ for all the curves γ ∈ ΓT which do not belong to
AC2([0, T ]; Rd), the space of absolutely continuous maps with square-integrable deriva-
tive. For every R > 0 we define the space ΓT,R ⊂ ΓT of the curves starting from BR(0),
that is

ΓT,R =
{
γ ∈ ΓT : γ(0) ∈ BR(0)

}
,

and the localized functional

ΨR(x, γ) =
{

Ψ(x, γ) if (x, γ) ∈ BR(0)× ΓT,R
+∞ otherwise.

It is readily checked that ΨR is coercive for every R. For every finite λ > 0 let
(x, γ) ∈ {ΨR ≤ λ}. Since λ is finite we deduce that x ∈ BR(0) and that γ(0) ∈ BR(0).
Moreover for every s and t ∈ [0, T ] we can compute

|γ(t)− γ(s)| =
∣∣∣∣∫ t

s
γ̇(τ) dτ

∣∣∣∣ ≤ (∫ T

0
|γ̇(τ)|2 dτ

)1/2

|t− s|1/2 ≤ λ1/2|t− s|1/2 .

Applying the Ascoli–Arzelà theorem we deduce that each sublevel is relatively compact
in Rd × ΓT , as desired.

We define also the truncated measure

ηε,R = ηε
(
BR(0)× ΓT,R

)
∈M+(Rd × ΓT ) ,

which is in fact a finite measure. Now we want to evaluate the value of the truncated
measure ηε,R on the localized functional ΨR. Using the definition of ηε, the fact that µεt
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is a solution of the continuity equation and the uniform bound on bε we can estimate

〈ηε,R,ΨR〉 =
∫

Rd×ΓT

ΨR(x, γ) dηε,R(x, γ) =
∫
BR(0)

∫
ΓT,R

Ψ(x, γ) dηεx(γ) dµε0(x)

=
∫
BR(0)

∫ T

0

∣∣∣∣∂Xε

∂t
(t, x)

∣∣∣∣2 dt dµε0(x) =
∫ T

0

∫
BR(0)

|bε(t,Xε(t, x))|2 dµε0(x) dt

=
∫ T

0

∫
Xε(t,BR(0))

|bε(t, x)|2 dµεt(x) dt ≤
∫ T

0

∫
BR+T‖b‖∞ (0)

|bε(t, x)|2 dµεt(x) dt

≤ ‖b‖2L∞([0,T ]×Rd)

∫ T

0
dµεt
(
BR+T‖b‖∞(0)

)
dt ≤ T‖b‖2L∞([0,T ]×Rd)m̃R+T‖b‖∞ .

Together with the coercivity of ΨR, this gives that, for every fixed R, the family
{ηε,R}ε ⊂ M+(Rd × ΓT ) is tight (see the discussion in Appendix 1). Noticing that
this family is also equi-bounded by the simple estimate

ηε,R(Rd × ΓT ) = µε0(BR(0)) ≤ m̃R ,

we can apply the Prokhorov theorem (Theorem A.1) and deduce that it is relatively
sequentially narrowly compact. With a standard diagonal argument (based on the fact
that narrow convergence is preserved under the restriction of measures) it is possible
to construct a sequence {ηεi}i ⊂M+(Rd × ΓT ) and a measure η ∈M+(Rd × ΓT ) such
that

ηεi,R → ηR narrowly in M+(Rd × ΓT ) for every R.

For future use, we say that ηεi converges toward η in the sense of the truncated narrow
convergence in M+(Rd × ΓT ).

Step 5. Disintegration and equality µt = µηxt . Up to now we have con-
structed a measure η ∈ M+(Rd × ΓT ). It is clear that the marginal on Rd of η is µ̄.
Indeed, for every ε ∈]0, 1[ we have

(
πRd
)

#
ηε = µε0 and the truncated narrow conver-

gence is inherited by the marginal; this, combined with the fact that µε0 converges to µ̄
weakly in Rd, gives that

(
πRd
)

#
η = µ̄. This implies that we can apply the disintegration

theorem recalled in Appendix 1 to obtain

η = µ̄⊗ ηx ,

with ηx ∈ P(ΓT ) for µ̄-a.e. x ∈ Rd.
We notice that in the proof we preferred to show convergence at the level of measures

on the product Rd×ΓT rather than convergence of ηx for µ̄-a.e. x. In this way we get a
subsequence {εi} along which we have convergence which does not depend on the point
x; choosing the limit ηx along a different subsequence for each point x could produce a
family {ηx}x∈Rd with non-measurable dependence with respect to x.

We now check that µηxt = µt. Indeed, for every ε ∈]0, 1[, applying the definition of
ηεx and the fact that µεt = Xε(t, ·)#µ

ε
0, we deduce that

(6.9) 〈µη
ε
x
t , ϕ〉 =

∫
Rd
ϕ(Xε(t, x)) dµε0(x) =

∫
Rd
ϕ(x) dµεt(x) = 〈µεt, ϕ〉
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for every ϕ ∈ Cc(Rd). Note that

(6.10)
∫

Rd
ϕ(x) dµεt(x)→

∫
Rd
ϕ(x) dµt(x) = 〈µt, ϕ〉

by the truncated narrow convergence of µεt to µt. Moreover

(6.11)

∫
Rd
ϕ(Xε(t, x)) dµε0(x) =

∫
Rd×ΓT

ϕ(γ(t)) dηε(x, γ)

→
∫

Rd×ΓT

ϕ(γ(t)) dη(x, γ) =
∫

Rd

∫
ΓT

ϕ(γ(t)) dηx(γ) dµ̄(x) = 〈µηxt , ϕ〉

by the truncated narrow convergence of ηε to η along the chosen subsequence. We
finally obtain the desired equality µηxt = µt from (6.10) and (6.11).

Step 6. η is concentrated on solutions of the ODE. In this last step we
want to show that ηx is concentrated on solutions of the ODE for µ̄-a.e. x ∈ Rd. It is
enough to show that

(6.12)
∫
BR(0)×ΓT

∣∣∣∣γ(t)− x−
∫ t

0
b(s, γ(s)) ds

∣∣∣∣ dη(x, γ) = 0

for every t ∈ [0, T ] and for every R > 0. Indeed, for every t ∈ [0, T ] and every R ∈ N
this gives a µ̄-negligible set Nt,R ⊂ BR(0) such that the equality

(6.13) γ(t) = x+
∫ t

0
b(s, γ(s)) ds

holds for every x ∈ BR(0) \Nt,R for ηx-a.e. γ ∈ ΓT . Choosing

N =
⋃

t∈[0,T ]∩Q

⋃
R∈N

Nt,R

(which is clearly L d-negligible) and using the continuity of each trajectory γ, we deduce
that (6.13) holds for every t ∈ [0, T ], for every x ∈ Rd \N for ηx-a.e. γ ∈ ΓT .

Our objective is then to show (6.12) for any t ∈ [0, T ] and any R ∈ N. The technical
difficulty is that this test function, due to the lack of regularity of b, is not continuous.
We claim that
(6.14)∫

BR(0)×ΓT

∣∣∣∣γ(t)− x−
∫ t

0
a(s, γ(s)) ds

∣∣∣∣ dη(x, γ) ≤
∫ T

0

∫
Rd
|b(s, x)− a(s, x)| dµs(x) ds

for every continuous vector field a. We first show how the claimed equation (6.14)
implies our thesis. It is enough to choose a sequence {ak} of continuous vector fields
such that

(6.15)
∫ T

0

∫
Rd
|b(s, x)− ak(s, x)| dµs(x) ds→ 0 as k →∞.

This can be done by observing that continuous functions are dense in L1
loc([0, T ]×Rd), µ)

with respect to the global norm L1([0, T ]×Rd, µ) (here µ =
∫ T

0 µt dt ∈M+([0, T ]×Rd)).
To see this, it is enough to write f ∈ L1

loc([0, T ]×Rd, µ) as a sum of compactly supported
functions fi and then mollify each fi with a fixed kernel βε, but choosing a parameter
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ε = ε(i) small enough in such a way that the difference fi − fi ∗ βε(i) decays like 2−i

and the series of the characteristic functions of spt
(
fi ∗ βε(i)

)
is bounded.

Assuming the validity of (6.14) we can then estimate∫
BR(0)×ΓT

∣∣∣∣γ(t)− x−
∫ t

0
b(s, γ(s)) ds

∣∣∣∣ dη(x, γ)

≤
∫
BR(0)×ΓT

∣∣∣∣γ(t)− x−
∫ t

0
ak(s, γ(s)) ds

∣∣∣∣+
∣∣∣∣∫ t

0
b(s, γ(s))− ak(s, γ(s)) ds

∣∣∣∣ dη(x, γ)

≤ 2
∫ T

0

∫
Rd
|b(s, x)− ak(s, x)| dµs(x) ds .

In the last inequality we used (6.14) to estimate the first term and the fact that µt = µηxt
to compute the second one (which is eventually estimated by the global integral on the
whole Rd). Recalling (6.15) we obtain the desired formula (6.12).

It remains to show (6.14). For every ε ∈]0, 1[ we compute∫
BR(0)×ΓT

∣∣∣∣γ(t)− x−
∫ t

0
a(s, γ(s)) ds

∣∣∣∣ dηε(x, γ)

=
∫
BR(0)

∣∣∣∣Xε(t, x)− x−
∫ t

0
a(s,Xε(s, x)) ds

∣∣∣∣ dµε0(x)

≤
∫ t

0

∫
BR(0)

∣∣(bε − a)(s,Xε(s, x))
∣∣ dµε0(x) ds

≤
∫ t

0

∫
BR(0)

[∣∣(bε − aε)(s,Xε(s, x))
∣∣+
∣∣(aε − a)(s,Xε(s, x))

∣∣] dµε0(x) ds

≤
∫ t

0

∫
BR+T‖b‖∞ (0)

[∣∣(bε − aε)(s, x)
∣∣+
∣∣(aε − a)(s, x)

∣∣] dµεs(x) ds ,

where we have used the definition of ηε, the fact that µεt = Xε(t, ·)#µ
ε
0 and we have set

aε(t, x) =
[(
a(t, ·)µt

)
∗ ρε(x)

]
/µεt(x). We estimate the first integral. Setting d = b − a

we notice that

|bε − aε| = |dε| =
∣∣(d(t, ·)µt

)
∗ ρε

∣∣
µεt

,

hence∫ t

0

∫
BR+T‖b‖∞ (0)

|dε(s, x)| dµεs(x) ds =
∫ t

0

∫
BR+T‖b‖∞ (0)

∣∣(d(s, ·)µs
)
∗ ρε(x)

∣∣ dx ds
≤
∫ t

0

∫
Rd

∫
BR+T‖b‖∞ (0)

ρε(x− y) dx|d(s, y)| dµs(y) ds ≤
∫ T

0

∫
Rd
|d(s, y)| dµs(y) ds .

Since a is continuous we have that aε → a locally uniformly, hence the second integral
vanishes as ε→ 0. Passing to the limit in the inequalities above (along the subsequence
for which we have truncated narrow converge of ηε to η) we obtain (6.14). �

Using the superposition principle we can conclude the proof of Theorem 6.1.
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Proof of (i) ⇒ (ii) in Theorem 6.1. Let µt be a positive measure-valued solu-
tion of the continuity equation with initial data µ̄. Applying Theorem 6.3 we deduce
that µt = µηxt , with ηx ∈ P(ΓT ) concentrated on the absolutely continuous integral so-
lutions of the ODE starting from x, for every point x ∈ A. But assumption (i) precisely
means that, for every x ∈ A, the solution is unique. Hence, for every x ∈ A the measure
ηx is a Dirac mass supported on the unique trajectory starting from x, and eventually
this gives an explicit formula for the solution µt, which is therefore unique. �

The importance of the superposition principle also relies in the fact that it will
allow, using truncations and restrictions of the measures ηx, several manipulations of
solutions of the continuity equation: these constructions are not immediate at the level
of the PDE, but they are extremely useful in various occasions, see for instance the
proof of Proposition 6.9.

This viewpoint is very close in spirit to Young’s theory of generalized surfaces
and controls [130], a theory with remarkable applications also to nonlinear PDEs (see
[83] and [122]) and to the calculus of variations (see [28]). There are also strong
connections with Brenier’s weak solutions of the incompressible Euler equation (see
[42]), with Kantorovich’s viewpoint in the theory of optimal transportation (see [87]
and [118]) and with Mather’s theory (see [113], [114] and [29]).

3. The regular Lagrangian flow

As we remarked at the end of Section 6.1, out of the smooth context of the Cauchy–
Lipschitz theory the notion of pointwise uniqueness of the ordinary differential equation
is not any more the appropriate one. We need to relax the notion of solution, assuming
an additional condition which will ensure uniqueness under the various weak differen-
tiability assumptions presented in the previous chapters. With this new concept of
solution we will have uniqueness “in the selection sense”: every time we approximate
the vector field b with a smooth sequence bh we obtain that the classical flows Xh

associated to them converge to the chosen flow for b (see Remark 6.6 and Theorem
6.12). This notion of solution is encoded in the following definition.

Definition 6.4 (Regular Lagrangian flow). Let b : [0, T ]×Rd → Rd be a bounded
vector field. We say that a map X : [0, T ] × Rd → Rd is a regular Lagrangian flow
relative to the vector field b if

(i) for L d-a.e. x ∈ Rd the map t 7→ X(t, x) is an absolutely continuous integral
solution of γ̇(t) = b(t, γ(t)) for t ∈ [0, T ], with γ(0) = x;

(ii) there exists a constant L independent of t such that

X(t, ·)#L d ≤ LL d .

The constant L in (ii) will be called the compressibility constant of X.

Compare this notion of solution with the one by DiPerna and Lions, presented in
Section 6.5. We remark that condition (ii) in Definition 6.4 is a uniform compressibility
condition: we ask that trajectories do not concentrate, and we quantify this with the
compressibility constant L. This condition is also important because we obtain a notion
of solution which is invariant under modifications of b on negligible sets: if b(t, x) =
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b̃(t, x) for L d+1-a.e. (t, x) ∈ [0, T ]×Rd it is easy to check that X is a regular Lagrangian
flow relative to b if and only if it is a regular Lagrangian flow relative to b̃.

Remark 6.5 (Lb-Lagrangian flows). It is also possible to define a more general
concept of solution, the one of Lb-Lagrangian flow (see Definition 13 of [13]). Consider
a convex class Lb of positive measure-valued solutions µt of the continuity equation
with vector field b, satisfying the monotonicity assumption

0 ≤ µ′t ≤ µt ∈ Lb =⇒ µ′t ∈ Lb ,
whenever µ′t is a solution of the continuity equation and satisfies an appropriate in-
tegrability condition. Then, given a measure µ̄ ∈ M+(Rd), we can define the notion
of Lb-Lagrangian flow starting from µ̄ requiring that the map X(·, x) is an absolutely
continuous integral solution of the ordinary differential equation for µ̄-a.e. x ∈ Rd and
that the measures µt = X(t, ·)#µ̄ induced via push-forward belong to the class Lb. We
can see Lb-Lagrangian flows as suitable selections of solutions of the ordinary differen-
tial equation, made in such a way to produce densities in Lb. The notion we have given
in Definition 6.4 corresponds to the case Lb = L∞([0, T ] × Rd). We decided here to
focus only on this concept of solution in order to simplify the presentation, but also
because tipically the well-posedness results at the PDE level can be shown for bounded
solution, hence L∞ is the most natural class to be considered (but see also Remark
6.8).

Remark 6.6. Let us consider again the square root example (see Example 1.1):{
γ̇(t) =

√
|γ(t)|

γ(0) = x0 .

Solutions of the ODE are not unique for x0 = −c2 < 0. Indeed, they reach the
origin in time 2c, where they can stay for an arbitrary time T , then continuing as
γ(t) = 1

4(t − T − 2c)2. Let us consider for instance the Lipschitz approximation (that
could easily be made smooth) of b(γ) =

√
|γ| given by

bε(γ) =


√
|γ| if −∞ < γ ≤ −ε2

ε if −ε2 ≤ γ ≤ λε − ε2√
γ − λε + 2ε2 if λε − ε2 ≤ γ < +∞,

with λε − ε2 > 0. Then, solutions of the approximating ODEs starting from −c2 reach
the value −ε2 in time tε = 2(c− ε) and then they continue with constant speed ε until
they reach λε− ε2, in time Tε = λε/ε. Then, they continue as λε− 2ε2 + 1

4(t− tε−Tε)2.
Choosing λε = εT , with T > 0, by this approximation we select the solutions that

do not move, when at the origin, exactly for a time T .
Other approximations, as for instance bε(γ) =

√
ε+ |γ|, select the solutions that

move immediately away from the singularity at γ = 0. Among all possibilities, this
family of solutions γ(t, x0) is singled out by the property that γ(t, ·)#L 1 is absolutely
continuous with respect to L 1, so that no concentration of trajectories occurs at the
origin. To see this fact, notice that we can integrate in time the identity

0 = γ(t, ·)#L 1({0}) = L 1 ({x0 : γ(t, x0) = 0})
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and use Fubini’s theorem to obtain

0 =
∫

R
L 1({t : γ(t, x0) = 0}) dx0 .

Hence, for L 1-a.e. x0, the trajectory γ(·, x0) does not stay at 0 for a strictly positive
set of times.

This example shows that we cannot always expect stability: we have exhibited a
family of smooth approximating sequences which converge toward a family of distinct
flows of the equation. However, only one of these flows satisfies the compressibility
assumption. The point here is the lack of control in L∞ on the divergence of the vector
field (compare with Theorem 6.12 and with the first example in Section 5.3).

4. Ambrosio’s theory of regular Lagrangian flows

In this section we present the derivation of the results of existence, uniqueness
and stability for the regular Lagrangian flow deduced from the well-posedness in the
class of bounded solutions for the continuity equation. This abstract passage is due to
Ambrosio; we refer to [8] for the original approach in the BV case and to the lecture
notes [9], [10] and [13] for the formalization of the argument in the general case.
We notice that these results, in the Sobolev framework, have been already obtained
by DiPerna and Lions in [84] with different techniques. We also mention the recent
work by Figalli [93] in which a similar theory is developed in the context of stochastic
differential equations.

This approach is strongly based on the notion of superposition solution: starting
from the “generalized flow” given by the measures ηx ∈ P(Rd) we perform various
constructions at the level of measure-valued solutions of the continuity equation; at
that point the PDE well-posedness comes into play, allowing to deduce results about
the measures ηx, roughly speaking obtaining that the generalized flow is in fact a regular
Lagrangian flow, since ηx selects a single trajectory for L d-a.e. x ∈ Rd.

Theorem 6.7 (Existence and uniqueness of the regular Lagrangian flow). Let b :
[0, T ] × Rd → Rd be a bounded vector field. Assume that the continuity equation (6.1)
has the uniqueness property in L∞([0, T ] × Rd). Then the regular Lagrangian flow
associated to b, if it exists, is unique. Assume in addition that the continuity equation
(6.1) with initial data µ̄ = L d has a positive solution in L∞([0, T ]×Rd). Then we have
existence of a regular Lagrangian flow relative to b.

With a little abuse of terminology, in the statement of the theorem we write “µt ∈
L∞” meaning that we require that µt is an absolutely continuous (with respect to L d)
measure, whose density is essentially uniformly bounded. With uniqueness property
in L∞([0, T ] × Rd) we mean that, for every initial data µ̄ ∈ L∞(Rd), if µ1

t , µ
2
t ∈

L∞([0, T ] × Rd) are two solutions of (6.1) with µ1
0 = µ2

0 = µ̄, then we must have
µ1
t (x) = µ2

t (x) for L d+1-a.e. (t, x) ∈ [0, T ]× Rd.
Notice that, using a simple regularization argument, the existence of a positive

solution assumed in the theorem is satified for instance if b has bounded divergence.

Remark 6.8 (Uniqueness of Lb-Lagrangian flows). Theorem 6.7 could be genera-
lized as follows, recalling the notion of Lb-Lagrangian flow discussed in Remark 6.5:
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if the continuity equation has the uniqueness property in Lb, then there is a unique
Lb-Lagrangian flow. The proof is very similar to the one we are going to present: the
reader is referred to Section 4 of [13] for the details and the modifications needed.

In the remaining part of this section we illustrate the proof of Theorem 6.7. We
first show that Theorem 6.7 is a consequence of the following proposition.

Proposition 6.9. Let b : [0, T ]× Rd → Rd be a bounded vector field. Assume that
the continuity equation (6.1) has the uniqueness property in L∞([0, T ]×Rd). Consider a
family {ηx}x∈Rd ⊂ P(ΓT ) such that ηx is concentrated on absolutely continuous integral
solutions of the ordinary differential equation starting from x, for L d-a.e. x ∈ Rd.
Assume that the superposition solution of the continuity equation µηxt induced by this
family belongs to L∞([0, T ]× Rd). Then ηx is a Dirac mass for L d-a.e. x ∈ Rd.

Remark 6.10. We notice that the uniqueness result of Proposition 6.9 is in a
certain sense stronger than the one of Theorem 6.7, since it holds in the wider class of
the “multivalued solutions” given by the measures {ηx}x∈Rd .

Proof of Theorem 6.7. Uniqueness of the regular Lagrangian flow.
Assume that there exist two different regular Lagrangian flows X1(t, x) and X2(t, x)
relative to the vector field b. We show that it is possibile to construct a family of
measures {ηx}x∈Rd ⊂ P(ΓT ) such that

• for L d-a.e. x ∈ Rd the measure ηx is concentrated on absolutely continuous
integral solutions of the ordinary differential equation starting from x;
• the superposition solution µηxt induced by the family {ηx}x∈Rd belongs to
L∞([0, T ]× Rd);
• the measure ηx is not a Dirac mass for every x belonging to a set of positive

Lebesgue measure.
These three properties are clearly in contrast with the result in Proposition 6.9: hence,
if we are able to construct such a family, we obtain a contradiction that gives the proof
of the theorem.

We first consider for L d-a.e. x ∈ Rd the measures η1
x = δX1(·,x) and η2

x = δX2(·,x).
Define

ηx =
1
2
(
η1
x + η2

x

)
.

We check that the superposition solution µηxt is a bounded function. Indeed for every
ϕ ∈ Cc(Rd) we can compute

〈µηxt , ϕ〉 =
∫

Rd

∫
ΓT

ϕ(γ(t)) dηx(γ) dx

=
∫

Rd

∫
ΓT

ϕ(γ(t)) d
(

1
2
(
δX1(·,x) + δX2(·,x)

))
dx

=
∫

Rd

1
2

(
ϕ(X1(t, x)) + ϕ(X2(t, x))

)
dx

=
1
2

∫
Rd
ϕ(y) d

(
X1(t, ·)#L d

)
(y) +

1
2

∫
Rd
ϕ(y) d

(
X2(t, ·)#L d

)
(y) .
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This means that

µηxt =
1
2

(
X1(t, ·)#L d +X2(t, ·)#L d

)
,

and by condition (ii) in the definition of regular Lagrangian flow we obtain that µηxt
belongs to L∞([0, T ]× Rd). The fact that ηx is concentrated on solutions of the ODE
is clear by its definition. Moreover, ηx is not a Dirac mass for every x ∈ Rd such that
X1(·, x) 6= X2(·, x), and this happens in a set of points x of positive measure, since we
are assuming that the two regular Lagrangian flows X1 and X2 are different.

Existence of the regular Lagrangian flow. Let µt ∈ L∞([0, T ]×Rd) be a
positive solution of the continuity equation with initial data µ̄ = L d. Noticing that the
assumptions of Theorem 6.3 are satisfied, we apply the superposition principle deducing
that µt = µηxt for some family {ηx}x∈Rd , with ηx concentrated on absolutely continuous
integral solutions of the ODE starting from x, for L d-a.e. x ∈ Rd. Since the continuity
equation has the uniqueness property in L∞([0, T ] × Rd) we apply Proposition 6.9 to
deduce that ηx is a Dirac mass for L d-a.e. x ∈ Rd. Denote by X(·, x) the element of ΓT
on which ηx is concentrated, for L d-a.e. x ∈ Rd; we check that the map X(t, x) defined
in this way is a regular Lagrangian flow associated to b. Condition (i) in Definition
6.4 is clearly satisfied because ηx is concentrated on solutions of the ODE. To check
condition (ii) it is enough to notice that X(t, ·)#L d = µt ∈ L∞([0, T ]× Rd). �

We now pass to the proof of Proposition 6.9. We will use the following general
criterion, whose proof is rather easy.

Lemma 6.11. Let {ηx}x∈Rd ⊂ P(ΓT ) satisfy the following property: for every t ∈
[0, T ] and every pair of disjoint Borel sets E1, E2 ⊂ Rd we have

ηx
(
{γ : γ(t) ∈ E1}

)
ηx
(
{γ : γ(t) ∈ E2}

)
= 0 for L d-a.e. x ∈ Rd.

Then ηx is a Dirac mass for L d-a.e. x ∈ Rd.

Proof of Proposition 6.9. We argue by contradiction and we use the criterion
in Lemma 6.11. We find t̄ ∈]0, T ], a Borel set C ⊂ Rd with L d(C) > 0 and a couple of
disjoint Borel sets E1, E2 ⊂ Rd such that

ηx
(
{γ : γ(t̄) ∈ E1}

)
ηx
(
{γ : γ(t̄) ∈ E2}

)
6= 0 for every x ∈ C.

Possibly passing to a smaller set C still having strictly positive Lebesgue measure we
can assume that

(6.16) 0 < ηx
(
{γ : γ(t̄) ∈ E1}

)
≤Mηx

(
{γ : γ(t̄) ∈ E2}

)
for every x ∈ C

for some constant M . We now want to localize to trajectories starting from the set C
and arriving (at time t̄) in the sets E1 and E2. We define

η1
x = 1C(x)ηx {γ : γ(t̄) ∈ E1} and η2

x = M1C(x)ηx {γ : γ(t̄) ∈ E2} .

Now denote by µ1
t and µ2

t (for t ∈ [0, t̄]) the superposition solutions of the continuity
equation induced by the families of measures η1

x and η2
x respectively. Notice that the

superposition solutions are well-defined even if η1
x and η2

x are not probability measures,
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but just positive measures with finite mass for L d-a.e. x ∈ Rd. For every ϕ ∈ Cc(Rd)
we can compute

〈µ1
0, ϕ〉 =

∫
Rd

∫
ΓT

ϕ(γ(0)) d
(
1C(x)ηx {γ : γ(t̄) ∈ E1}

)
(γ) dx

=
∫
C

∫
{γ : γ(t̄)∈E1}

ϕ(γ(0)) dηx(γ) dx

=
∫
C
ϕ(x)ηx

(
{γ : γ(t̄) ∈ E1}

)
dx ,

from which we deduce

µ1
0 = ηx

(
{γ : γ(t̄) ∈ E1}

)
L d C .

An analogous computation gives

µ2
0 = Mηx

(
{γ : γ(t̄) ∈ E2}

)
L d C .

Recalling (6.16) we obtain that µ1
0 ≤ µ2

0. Now let f : Rd → [0, 1] be the density of µ1
0

with respect to µ2
0 (i.e. f satisfies µ1

0 = fµ2
0) and set

η̃2
x = Mf(x)1C(x)ηx {γ : γ(t̄) ∈ E2} .

Consider the superposition solution µ̃2
t (defined for t ∈ [0, t̄]) induced by the family of

measures η̃2
x. We can readily check that µ1

0 = µ̃2
0 and that

〈µ1
t̄ , ϕ〉 =

∫
C

∫
{γ : γ(t̄)∈E1}

ϕ(γ(t̄)) dηx(γ) dx

and
〈µ̃2
t̄ , ϕ〉 =

∫
C
Mf(x)

∫
{γ : γ(t̄)∈E2}

ϕ(γ(t̄)) dηx(γ) dx .

We deduce that µ1
t̄ is concentrated on E1 and µ̃2

t̄ is concentrated on E2. Hence µ1
t and

µ̃2
t are solutions in L∞([0, T ]×Rd) of the continuity equation with the same initial data

at time t = 0, but they are different at time t = t̄. We are violating the uniqueness
assumption and from this contradiction we obtain the thesis. �

In a similar fashion it is possible to show a result of abstract stability: if the conti-
nuity equation is well-posed for each approximating vector field bk then the associated
regular Lagrangian flows converge strongly to the regular Lagrangian flow associated
to the limit vector field b.

Theorem 6.12 (Stability of the regular Lagrangian flow). Consider a sequence {bk}
of vector fields such that

(6.17) ‖bk‖L∞([0,T ]×Rd) + ‖div bk‖L∞([0,T ]×Rd) ≤ C
and assume that for each bk the continuity equation has the uniqueness property in
L∞([0, T ] × Rd). Assume that the sequence {bk} converges in L1

loc([0, T ] × Rd) to a
vector field b ∈ L∞([0, T ]×Rd) with div b ∈ L∞([0, T ]×Rd). Assume that the continuity
equation with vector field b has the uniqueness property in L∞([0, T ] × Rd). Then the
regular Lagrangian flows Xk associated to bk converge strongly in L∞([0, T ];L1

loc(Rd))
to the regular Lagrangian flow X associated to b.
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We only give a sketch of the proof, which is closely related to the one of the unique-
ness result of Theorem 6.7. We refer the reader to Section 3 of [10] for more details.

As in the proof of the superposition principle we consider for every k the measure
ηk ∈ M+(Rd × ΓT ) associated to the regular Lagrangian flow Xk. Using the bounds
(6.17) it is possible to show that ηk is locally tight. Consider a limit point η ∈M+(Rd×
ΓT ). Arguing as in Step 6 of the proof of Theorem 6.3 and using the convergence of
bk to b we obtain that η is concentrated on trajectories of the ODE with vector field b.
Moreover from the narrow convergence and from (6.17) we get that η induces bounded
superposition solutions to the continuity equation. We can then apply Proposition 6.9
to get that η is in fact concentrated on a graph of a regular Lagrangian flow associated
to b. But under our assumptions we already know from Theorem 6.7 that such a regular
Lagrangian flow is unique, and this means that we have

(x,Xk(·, x))#L d → (x,X(·, x))#L d

locally narrowly. From this it is possible to deduce the strong convergence of Xk to X
in L∞([0, T ];L1

loc(Rd)).

Remark 6.13. The strength of this abstract approach relies in the fact that, having
at our disposal the PDE well-posedness results for Sobolev or BV vector fields (see
Sections 2.5 and 2.6), for the various cases addressed in Section 2.7 and for the two-
dimensional case (see Chapter 4) we can immediately conclude, using Theorems 6.7
and 6.12, existence, uniqueness and stability of the regular Lagrangian flow in all these
situations (see also Remarks 2.8 and 2.9).

5. DiPerna–Lions’ notion of flow

The approach to the ordinary differential equation due to DiPerna and Lions [84]
is quite different. It is based on an observation that we already made in the smooth
setting: the flow X(t, s, x) starting at time s from the point x satisfies

∂X

∂s
(t, s, x) +

(
b(s, x) · ∇x

)
X(t, s, x) = 0

(see equation (1.15)), that is a transport equation with vector field b. In this way results
relative to the PDE can be transferred to the ODE. DiPerna–Lions’ notion of flow is
based on the following three axioms:

(a) The ordinary differential equation
∂

∂t
X(t, x) = b(t,X(t, x))

X(0, x) = x

is satisfied in the sense of distributions in [0, T ]× Rd;
(b) The push-forward of the Lebesgue measure satisfies

1
C

L d ≤ X(t, ·)#L d ≤ CL d ;
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(c) The semi-group property holds: for L d-a.e. x ∈ Rd we have

X(t,X(s, x)) = X(s+ t, x) for every s, t ≥ 0 with s+ t ≤ T .

Up to a redefinition of the flow X on a negligible set, condition (a) is equivalent to
condition (i) in the definition of regular Lagrangian flow. However, Definition 6.4(ii)
only asks for an upper bound on the push-forward of the Lebesgue measure, while (b)
also requires a bound from below. Moreover, the semi-group property (c) is completely
removed in the approach of [8]: it is in fact a consequence of the other two assumptions,
using the following argument (see Remark 6.7 of [8]).

Fix s ∈ [s′, T ] and define

X̃(t, x) =
{
X(t, s′, x) if t ∈ [s′, s]
X(t, s,X(s, s′, x)) if t ∈ [s, T ].

It is immediate to check that X̃(·, x) is a solution of the ODE in [s′, T ] for L d-a.e. x ∈
Rd. Moreover we easily obtain the following compressibility condition for X̃:

X̃(t, ·)#L d ≤ L2L d ,

where L is a compressibility constant for the regular Lagrangian flow X. By the
uniqueness result we obtain that X̃(t, x) = X(t, s′, x), and this means that the semi-
group property (c) holds.

In this framework we also mention the recent result by Hauray, Le Bris and Lions
[101] in which uniqueness of this notion of flow (for Sobolev vector fields) is shown
directly at the ODE level, with a very simple argument.

6. The density of a regular Lagrangian flow

We now present another approach to the theory of regular Lagrangian flows, based
on the concept of density transported by the flow and particularly useful to deal with
nearly incompressible vector fields (recall Definition 2.14); see Section 2.8 for the PDE
theory in this framework. The presentation here is very close to the one by De Lellis
([77] and [79]) and we refer to these papers for a complete exposition.

This approach works naturally under a compressibility assumption which is a bit
weaker than the one assumed in the standard definition of regular Lagrangian flow (see
Definition 6.4(ii)): we will only need that

(6.18) X(t, ·)#L d � L d for L 1-a.e. t ∈ [0, T ].

If X is a regular Lagrangian flow associated to a bounded vector field b we define

µX =
(
id , X

)
#

(
L d+1

(
[0, T ]× Rd

))
,

i.e. µX is the push-forward of the Lebesgue measure on [0, T ]×Rd via the map (t, x) 7→
(t,X(t, x)). The compressibility condition (6.18) gives the existence of a function ρ ∈
L1

loc([0, T ]× Rd) such that

(6.19) µX = ρL d+1 ([0, T ]× Rd) .
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As already remarked in Section 2.8, in the case of a smooth vector field we can explicitly
compute

ρ(t, x) = det∇xX
(
t,X(t, ·)−1(x)

)
.

Definition 6.14. The function ρ defined via (6.19) is called the density of the
regular Lagrangian flow X.

The following proposition establishes a link between this notion and the Eulerian
side of the problem, namely with the continuity equation relative to the vector field b.

Proposition 6.15. Let X be a regular Lagrangian flow associated to a bounded
nearly incompressible vector field b and let ζ̄ ∈ L∞(Rd). Define

µ =
(
id , X

)
#

(
ζ̄L d+1

(
[0, T ]× Rd

))
.

Then there exists ζ ∈ L1
loc([0, T ]×Rd) such that µ = ζL d+1 ([0, T ]×Rd); moreover ζ

is a solution of

(6.20)

{
∂tζ + div (bζ) = 0
ζ(0, ·) = ζ̄ .

The density of the regular Lagrangian flow corresponds to the case ζ̄ = 1 in the
previous proposition: this means that the density ρ satisfies{

∂tρ+ div (bρ) = 0
ρ(0, ·) = 1 .

In particular we deduce that, when b is a bounded nearly incompressible vector field
satisfying the renormalization property (recall Definition 2.15), the density of a regular
Lagrangian flow X relative to b coincides with the density generated by b in the sense
of Definition 2.18. This is precisely the link between the Lagrangian and the Eulerian
problems: the proof of the following theorem, relative to the well-posedness for the
regular Lagrangian flow, is strongly based on the well-posedness for the continuity
equation in Theorem 2.17.

Theorem 6.16. Assume that b is a bounded nearly incompressible vector field such
that the extension b̃ as in (2.36) has the renormalization property in the sense of Defi-
nition 2.15. Then there exists a unique regular Lagrangian flow X associated to b.

Moreover, let {bk} be a sequence of bounded nearly incompressible vector fields such
that the extensions b̃k as in (2.36) have the renormalization property in the sense of
Definition 2.15 and, for every k, let ρk be as in (2.35). Assume that there exists a
constant C such that

‖bk‖∞ + ‖ρk‖∞ + ‖ρ−1
k ‖∞ ≤ C

and that bk → b in L1
loc([0, T ]× Rd). Then the regular Lagrangian flows Xk associated

to bk converge strongly in L1
loc([0, T ]× Rd) to X.

Proof. The existence part is essentially based on an approximation procedure,
which however requires some care, and for this we refer to Theorem 3.22 of [77].
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We now show uniqueness. Let X and Y be two regular Lagrangian flows relative
to the vector field b. Fix ζ̄ ∈ Cc(Rd) and, recalling Theorem 2.17, consider the unique
solution ζ of (6.20). According to Proposition 6.15 we have

ζL d+1
(
[0, T ]× Rd

)
=
(
id , X

)
#

(
ζ̄L d+1

(
[0, T ]× Rd

))
=
(
id , Y

)
#

(
ζ̄L d+1

(
[0, T ]× Rd

))
.

This identity means∫ T

0

∫
Rd
ϕ(x,X(t, x))ζ̄(x) dx dt =

∫ T

0

∫
Rd
ϕ(x, Y (t, x))ζ̄(x) dx dt

for every ϕ ∈ Cc([0, T ] × Rd). Since ζ̄ has compact support this identity is also valid
when ϕ(t, y) = χ(t)yj , for χ ∈ C([0, T ]) and j = 1, . . . , d. Then∫ T

0

∫
Rd
Xj(t, x)χ(t)ζ̄(x) dx dt =

∫ T

0

∫
Rd
Yj(t, x)χ(t)ζ̄(x) dx dt

for any pair of functions χ ∈ C([0, T ]) and ζ̄ ∈ Cc(Rd). This implies that X(t, x) =
Y (t, x) for L d+1-a.e. (t, x) ∈ [0, T ]× Rd.

We finally show the stability property. Let bk → b as in the statement of the
theorem. Fix a function ζ̄ ∈ Cc(Rd). Applying Theorem 2.17 we can define ζ and ζk
as the unique solutions to the problems{

∂tζ + div (bζ) = 0
ζ(0, ·) = ζ̄

and

{
∂tζk + div (bkζk) = 0
ζk(0, ·) = ζ̄ .

By the weak stability of the continuity equation we deduce that, up to subsequences,
ζk
∗
⇀ ζ in L∞([0, T ]× Rd)− w∗. Recalling the characterization in Proposition 6.15 we

see that this means

(6.21)
∫ T

0

∫
Rd
ϕ
(
t,Xk(t, x)

)
ζ̄(x) dtdx→

∫ T

0

∫
Rd
ϕ
(
t,X(t, x)

)
ζ̄(x) dtdx

for every ϕ ∈ Cc([0, T ]× Rd). However, noticing that the regular Lagrangian flows Xk

are locally equi-bounded, we are allowed to use as test functions ζ̄(x) = 1BR(0)(x) and
ϕ(t, x) = |x|2, and this gives

(6.22)
∫ T

0

∫
BR(0)

|Xk(t, x)|2 dtdx→
∫ T

0

∫
BR(0)

|X(t, x)|2 dtdx .

For the same reason we can substitute in (6.21) ζ̄(x) = β(x)1BR(0)(x) and ϕ(t, x) =
γ(t)x · v, where β ∈ Cc(Rd), γ ∈ C([0, T ]) and v ∈ Rd. Since we can approximate X
strongly in L1

loc([0, T ]× Rd) with functions of the form
N∑
i=1

viγi(t)βi(x)

we obtain

(6.23)
∫ T

0

∫
BR(0)

Xk(t, x) ·X(t, x) dtdx→
∫ T

0

∫
BR(0)

|X(t, x)|2 dtdx .
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Putting together (6.22) and (6.23) we get the desired conclusion. �

7. Bressan’s compactness conjecture

In [48] Bressan proposed the following conjecture.

Conjecture 6.17 (Bressan’s compactness conjecture). Let bk : [0, T ]× Rd → Rd,
k ∈ N, be a sequence of smooth vector fields and denote by Xk the (classical) flows
associated to them, i.e. the solutions of

(6.24)


∂Xk

∂t
(t, x) = bk(t,Xk(t, x))

Xk(0, x) = x .

Assume that ‖bk‖∞+‖∇bk‖L1 is uniformly bounded and that the flows Xk are uniformly
nearly incompressible, i.e. that

(6.25)
1
C
≤ det(∇xXk(t, x)) ≤ C for some constant C > 0.

Then the sequence {Xk} is strongly precompact in L1
loc([0, T ]× Rd).

This conjecture was advanced in connection with the Keyfitz and Kranzer system,
in particular to provide the existence of suitable weak solutions (recall Section 5.2). In
fact it is possible to prove well-posedness results for this system bypassing Conjecture
6.17 (see [15] and [11]), which nevertheless remains an interesting question. In this
section we indicate some advances in its proof, mainly contained in [16].

In [11] it has been proved that Conjecture 6.17 would follow from the following
one.

Conjecture 6.18. Any bounded nearly incompressible BV vector field has the
renormalization property in the sense of Definition 2.15.

Conjecture 6.18 implies Conjecture 6.17. Let ρk be the density generated
by Xk. From (6.25) it follows the existence of a constant C̃ > 0 such that

1
C̃
≤ ρk ≤ C̃ .

From the BV compactness theorem and the weak∗ compactness of L∞ it is sufficient to
prove Conjecture 6.17 under the assumptions that bk → b strongly in L1

loc([0, T ]× Rd)
for some BV vector field b and that ρk

∗
⇀ ρ in L∞([0, T ]×Rd)−w∗ for some bounded

function ρ. We notice that this implies that b is bounded, ρ ≥ 1/C̃ and

∂tρ+ div (bρ) = 0 .

The last identity can be deduced passing to the limit in ∂tρk + div (bkρk) = 0.
Then b is a bounded nearly incompressible BV vector field and, if Conjecture

6.18 has a positive answer, b has the renormalization property. If this is the case, we
apply the stability result in Theorem 6.16 to conclude that Xk converges strongly in
L1

loc([0, T ]× Rd) to the unique regular Lagrangian flow associated to b. �
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In order to present the main results of [16] we need to introduce some notation,
taken from [14]. Let Ω ⊂ Rm be an open set and consider B ∈ BVloc(Ω; Rm). Consider
the set Ẽ consisting of the points x ∈ Ω such that the limit

M(x) = lim
r→0

DB(Br(x))
|DB|(Br(x))

exists and is finite and the Lebesgue limit B̃(x) exists. The tangential set of B is
defined as follows:

(6.26) E =
{
x ∈ Ẽ : M(x) · B̃(x) = 0

}
.

We can think of this set as the set on which the vector field B is “orthogonal to its
derivative”. Building on some results of [14], in [16] the following result is shown.

Theorem 6.19. Let b : [0, T ] × Rd → Rd be a bounded nearly incompressible BV
vector field. Consider the vector field B = (1, b) : [0, T ] × Rd → R × Rd and let E be
the tangential set of B. If

(6.27) |Dc
t,x ·B|(E) = |Dc

x · b|(E) = 0

then b has the renormalization property.

In the statement of the theorem we used the notation Dc
t,x · B and Dc

x · b for the
Cantor part of the space-time and of the space divergence of B and b respectively. The
presence of condition (6.27) in the theorem leads to the following question.

Question 6.20. Let B ∈ BVloc ∩ L∞loc(Ω; Rm) and denote by E its tangential set.
Under which conditions does the equality |Dc ·B|(E) = 0 hold?

Indeed some conditions are needed, as shown by a counterexample presented in
Section 8 of [16]. Notice that a positive answer to the following question would be
enough for the proof of Conjecture 6.18; however, the answer to this second question
is presently not known.

Question 6.21. Let B ∈ BVloc ∩ L∞loc(Ω; Rm) and denote by E its tangential set.
Assume that there exists a function ρ ∈ L∞(Ω) such that ρ ≥ C > 0 and div (Bρ) = 0.
Then does the equality |Dc ·B|(E) = 0 hold?

Another approach to Bressan’s compactness conjecture, based on quantitative a
priori estimates for regular Lagrangian flows (and hence bypassing the connection with
the theory of renormalized solutions), will be presented in the next chapter.





CHAPTER 7

A priori estimates for regular Lagrangian flows

In this chapter we present a joint work with De Lellis [66] (see also Section 8
of [13] and [67] for another exposition of these results). We are able to show some
quantitative estimates for W 1,p vector fields, with p > 1, which allow to recover the
results of existence, uniqueness and stability of regular Lagrangian flows presented
in the previous chapter. Moreover these estimates have some new and interesting
corollaries, regarding compactness, quantitative regularity and quantitative stability of
regular Lagrangian flows. They also allow to prove a propagation of a mild regularity
for solutions to the transport equation. One of the merits of this approach is the fact
that the whole derivation is purely Lagrangian, in the sense that everything is deduced
from the estimates and from the definition of regular Lagrangian flow only, with no
mention to the Eulerian side of the problem (compare with the derivation we presented
in Section 6.4). The only drawback lies in the assumption p > 1, which can be relaxed
a bit (in fact our arguments work under the assumption Db ∈ L logL, see Sections 7.2
and 7.4), but we are presently not able to cover the case p = 1, and this does not allow
to reach the very important BV setting.

1. A purely Lagrangian approach

We recall that, as we discussed in Section 6.3, for a vector field b which is merely
locally summable we can give the following definition of regular Lagrangian flow. This
notion turns out to be the right one in the study of the ordinary differential equation
with weakly differentiable vector field. Notice that the boundedness assumption on the
vector field assumed in the previous chapters is not essential: in this chapter we will
also address the theory of regular Lagrangian flows relative to vector fields satisfying
more general growth conditions.

Definition 7.1 (Regular Lagrangian flow). Let b ∈ L1
loc([0, T ] × Rd; Rd). We say

that a map X : [0, T ]× Rd → Rd is a regular Lagrangian flow for the vector field b if
(i) for L d-a.e. x ∈ Rd the map t 7→ X(t, x) is an absolutely continuous integral

solution of γ̇(t) = b(t, γ(t)) for t ∈ [0, T ], with γ(0) = x;
(ii) there exists a constant L independent of t such that

(7.1) X(t, ·)#L d ≤ LL d .

The constant L in (ii) will be called the compressibility constant of X.

We illustrated in the previous chapter the results by DiPerna and Lions [84] and
by Ambrosio [8] regarding existence, uniqueness and stability of regular Lagrangian
flows, in the Sobolev and BV context respectively. However the argument that we
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have shown is quite indirect: as we have seen it exploits the connection between the
ordinary differential equation and the Cauchy problem for the continuity equation.

We show in this chapter how many of the results of the DiPerna–Lions theory
relative to regular Lagrangian flows can be recovered from simple a priori estimates,
directly in the Lagrangian formulation. Though our approach works under various re-
laxed hypotheses, namely controlled growth at infinity of the field b and Lploc and L logL
assumptions on Dxb, for simplicity in this introductory discussion we consider a vector
field b in W 1,p ∩ L∞, with p > 1. Assuming the existence of a regular Lagrangian flow
X, we give estimates of integral quantities depending on X(t, x)−X(t, y). These esti-
mates depend only on ‖b‖W 1,p + ‖b‖∞ and the compressibility constant L of Definition
7.1(ii). Moreover, a similar estimate can be derived for the difference X(t, x)−X ′(t, x)
of regular Lagrangian flows of different vector fields b and b′, depending only on the
compressibility constant of b and on ‖b‖W 1,p + ‖b‖∞ + ‖b′‖∞ + ‖b − b′‖L1 . As direct
corollaries of our estimates we then derive:

(a) Existence, uniqueness, stability, and compactness of regular Lagrangian flows;
(b) Some mild regularity properties, like the approximate differentiability proved

in [19], that we recover in a new quantitative fashion.

The regularity property in (b) has an effect on solutions to the transport equation: we
can prove that, for b ∈W 1,p ∩L∞ with bounded divergence, solutions to the transport
equation propagate the same mild regularity of the corresponding regular Lagrangian
flow (we refer to Section 7.5 for the precise statements).

Our approach has been inspired by a recent result of Ambrosio, Lecumberry and
Maniglia [19], proving the almost everywhere approximate differentiability of regular
Lagrangian flows. Indeed, some of the quantities we estimate in this paper are taken
directly from [19], whereas others are just suitable modifications. However, the way we
derive our estimates is different: our analysis relies all on the Lagrangian formulation,
whereas that of [19] relies on the Eulerian one. We also mention a previous work
by Le Bris and Lions [104], in which, among other things, a kind of “differentiability
in measure” of the flow is shown. The relation between this notion and the classical
approximate differentiability has been studied by Ambrosio and Malý [21]. See also
Sections 6 and 7 of [13] for an account of these results.

Unfortunately with our approach we do not recover all the results of the theory of
renormalized solutions. The main problem is that our estimates do not conver the case
Db ∈ L1. Actually, the extension to the case Db ∈ L1 of our (or of similar) estimates
would answer positively to the compactness conjecture made by Bressan in [48] (see
Conjecture 6.17). At the present stage, the theory of renormalized solutions cannot be
extended to cover this interesting case (see Section 6.7 for an account of some partial
results in this direction). In another paper, [47], Bressan raised a second conjecture on
mixing properties of flows of BV vector fields (see Conjecture 7.33 below), which can
be considered as a quantitative version of Conjecture 6.17. In Section 6 we show how
our estimates settle the W 1,p (p > 1) analog of Bressan’s mixing conjecture.

In order to keep the presentation simple, in Section 7.2 we give the estimates and
the various corollaries in the case b ∈W 1,p∩L∞ and in Section 7.3 we present the more
general estimates and their consequences. We thank Herbert Koch for suggesting us
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that the Lipschitz estimates hold under the assumption Db ∈ L logL (see Remark 7.5
and the discussion at the beginning of Section 7.4). In Section 7.4 we show how to prove
directly, via suitable a priori estimates, the compactness conclusion of Conjecture 6.17
when Dbk is bounded in L logL. It has been pointed out independently by François
Bouchut and by Pierre-Emmanuel Jabin that a more careful analysis allows to extend
this approach when the sequence {Dbk} is equi-integrable. In Section 7.5 we discuss
the regularity results for transport equations mentioned above. Finally, in Section 7.6
we prove the W 1,p analog of Bressan’s mixing conjecture.

In all the chapter constants will be denoted by c and ca1,...,aq , where we understand
that in the first case the constant is universal and in the latter that it depends only on
the quantities a1, . . . , aq. Therefore, during several computations, we will use the same
symbol for constants which change from line to line.

2. A priori estimates for bounded vector fields and corollaries

In this section we show our estimates in the particular case of bounded vector
fields. This estimate and its consequences are just particular cases of the more general
theorems presented in the next sections. However, we decided to give independent
proofs in this simplified setting in order to illustrate better the basic ideas of our
analysis.

2.1. Estimate of an integral quantity and Lipschitz estimates.

Theorem 7.2. Let b be a bounded vector field belonging to L1([0, T ];W 1,p(Rd; Rd))
for some p > 1 and let X be a regular Lagrangian flow associated to b. Let L be the
compressibility constant of X, as in Definition 7.1(ii). For every p > 1 define the
following integral quantity:

Ap(R,X) =

[∫
BR(0)

(
sup

0≤t≤T
sup

0<r<2R
−
∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dy

)p
dx

]1/p

.

Then we have

(7.2) Ap(R,X) ≤ C
(
R,L, ‖Dxb‖L1(Lp)

)
.

Remark 7.3. A small variant of the quantity A1(R,X) was first introduced in [19]
and studied in an Eulerian setting in order to prove the approximate differentiability of
regular Lagrangian flows. One basic observation of [19] is that a control of A1(R,X)
implies the Lipschitz regularity of X outside of a set of small measure. This elemen-
tary Lipschitz estimate is shown in Proposition 7.4. The novelty of our point of view
is that a direct Lagrangian approach allows to derive uniform estimates as in (7.2).
These uniform estimates are then exploited in the next subsections to show existence,
uniqueness, stability and regularity of the regular Lagrangian flow.

All the computations in the following proof can be justified using the definition of
regular Lagrangian flow (Definition 7.1): the differentiation of the flow with respect to
the time gives the vector field (computed along the flow itself), thanks to condition (i);
condition (ii) implies that, when we perform a change of variable, we can estimate the
result from above just multiplying by the compressibility constant L.
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During the proof, we will use some tools borrowed from the theory of maximal
functions. We recall that, for a function f ∈ L1

loc(Rd; Rm), the local maximal function
is defined as

Mλf(x) = sup
0<r<λ

−
∫
Br(x)

|f(y)| dy .

For more details about the maximal function and for the statements of the lemmas we
are going to use, we refer to Appendix 4.

Proof of Theorem 7.2. For 0 ≤ t ≤ T , 0 < r < 2R and x ∈ BR(0) define

Q(t, x, r) = −
∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dy .

From Definition 7.1(i) it follows that for L d-a.e. x and for every r > 0 the map
t 7→ Q(t, x, r) is Lipschitz and

dQ

dt
(t, x, r) ≤ −

∫
Br(x)

∣∣∣∣dXdt (t, x)− dX

dt
(t, y)

∣∣∣∣ (|X(t, x)−X(t, y)|+ r)−1 dy

= −
∫
Br(x)

|b(t,X(t, x))− b(t,X(t, y))|
|X(t, x)−X(t, y)|+ r

dy .

We now set R̃ = 4R + 2T‖b‖∞. Since we clearly have |X(t, x) − X(t, y)| ≤ R̃,
applying Lemma A.9 we can estimate

dQ

dt
(t, x, r) ≤ cd−

∫
Br(x)

(
MR̃Db(t,X(t, x)) +MR̃Db(t,X(t, y))

) |X(t, x)−X(t, y)|
|X(t, x)−X(t, y)|+ r

dy

≤ cdMR̃Db(t,X(t, x)) + cd−
∫
Br(x)

MR̃Db(t,X(t, y)) dy .

Integrating with respect to the time, passing to the supremum for 0 < r < 2R and
exchanging the supremums we obtain

sup
0≤t≤T

sup
0<r<2R

Q(t, x, r)

≤ c+ cd

∫ T

0
MR̃Db(t,X(t, x)) dt+ cd

∫ T

0
sup

0<r<2R
−
∫
Br(x)

MR̃Db(t,X(t, y)) dydt .(7.3)

Taking the Lp norm over BR(0) we get

Ap(R,X) ≤ cp,R + cd

∥∥∥∥∫ T

0
MR̃Db(t,X(t, x)) dt

∥∥∥∥
Lp(BR(0))

(7.4)

+cd

∥∥∥∥∥
∫ T

0
sup

0<r<2R
−
∫
Br(x)

MR̃Db(t,X(t, y)) dydt

∥∥∥∥∥
Lp(BR(0))

.(7.5)
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Recalling Definition 7.1(ii) and Lemma A.8, the integral in (7.4) can be estimated with

(7.6)
cdL

1/p

∫ T

0

∥∥MR̃Db(t, x)
∥∥
Lp(BR+T‖b‖∞ (0))

dt

≤ cd,pL
1/p

∫ T

0
‖Db(t, x)‖Lp(BR+R̃+T‖b‖∞ (0)) dt .

The integral in (7.5) can be estimated in a similar way with

cd

∫ T

0

∥∥∥∥∥ sup
0<r<2R

−
∫
Br(x)

[
(MR̃Db) ◦ (t,X(t, ·))

]
(y) dy

∥∥∥∥∥
Lp(BR(0))

dt

= cd

∫ T

0

∥∥M2R

[
(MR̃Db) ◦ (t,X(t, ·))

]
(x)
∥∥
Lp(BR(0))

dt

≤ cd,p

∫ T

0

∥∥[(MR̃Db) ◦ (t,X(t, ·))
]

(x)
∥∥
Lp(B3R(0))

dt

= cd,p

∫ T

0

∥∥(MR̃Db) ◦ (t,X(t, x))
∥∥
Lp(B3R(0))

dt

≤ cd,pL
1/p

∫ T

0
‖MR̃Db(t, x)‖Lp(B3R+T‖b‖∞ (0)) dt

≤ cd,pL
1/p

∫ T

0
‖Db(t, x)‖Lp(B3R+T‖b‖∞+R̃(0)) dt .(7.7)

Combining (7.4), (7.5), (7.6) and (7.7), we obtain the desired estimate for Ap(R,X). �

We now show how the estimate of the integral quantity gives a quantitative Lipschitz
estimate.

Proposition 7.4 (Lipschitz estimates). Let X : [0, T ] × Rd → Rd be a map.
Then, for every ε > 0 and every R > 0, we can find a set K ⊂ BR(0) such that
L d(BR(0) \K) ≤ ε and for any 0 ≤ t ≤ T we have

Lip (X(t, ·)|K) ≤ exp
cdAp(R,X)

ε1/p
.

Proof. Fix ε > 0 and R > 0. We can suppose that the quantity Ap(R,X) is
finite, otherwise the thesis is trivial; under this assumption, thanks to (A.7) we obtain
a constant

M = M(ε, p, Ap(R,X)) =
Ap(R,X)
ε1/p

and a set K ⊂ BR(0) with L d(BR(0) \K) ≤ ε and

sup
0≤t≤T

sup
0<r<2R

−
∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dy ≤M ∀x ∈ K .

This clearly means that

−
∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dy ≤M for all x ∈ K, t ∈ [0, T ] and r ∈]0, 2R[.
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Now fix x, y ∈ K. Clearly |x− y| < 2R. Set r = |x− y| and compute

log
(
|X(t, x)−X(t, y)|

r
+ 1
)

= −
∫
Br(x)∩Br(y)

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dz

≤ −
∫
Br(x)∩Br(y)

log
(
|X(t, x)−X(t, z)|

r
+ 1
)

+ log
(
|X(t, y)−X(t, z)|

r
+ 1
)
dz

≤ cd−
∫
Br(x)

log
(
|X(t, x)−X(t, z)|

r
+ 1
)
dz + cd−

∫
Br(y)

log
(
|X(t, y)−X(t, z)|

r
+ 1
)
dz

≤ cdM =
cdAp(R,X)

ε1/p
.

This implies that

|X(t, x)−X(t, y)| ≤ exp
(
cdAp(R,X)

ε1/p

)
|x− y| for every x, y ∈ K.

Therefore

Lip(X(t, ·)|K) ≤ exp
cdAp(R,X)

ε1/p
.

�

Remark 7.5. The quantitative Lipschitz estimate also holds under the assumption
b ∈ L1([0, T ];W 1,1(Rd; Rd)) ∩ L∞([0, T ] × Rd; Rd) and MλDb ∈ L1([0, T ];L1(Rd)) for
every λ > 0. To see this we define

Φ(x) =
∫ T

0
MR̃Db(t,X(t, x)) dt

and we go back to (7.3), which can be rewritten as

sup
0≤t≤T

sup
0<r<2R

Q(t, x, r) ≤ c+ cdΦ(x) + cdM2RΦ(x) .

For ε < 1/(4c) we can estimate

L d

({
x ∈ BR(0) : c+ cdΦ(x) + cdM2RΦ(x) >

1
ε

})
≤ L d

({
x ∈ BR(0) : cdΦ(x) >

1
4ε

})
+ L d

({
x ∈ BR(0) : cdM2RΦ(x) >

1
2ε

})
≤ εcd

∫
BR(0)

Φ(x) dx+ εcd

∫
B3R(0)

Φ(x) dx

≤ εcd
∫ T

0

∫
B3R(0)

MR̃Db(t,X(t, x)) dxdt

≤ εcdL
∫ T

0

∫
B3R+T‖b‖∞ (0)

MR̃Db(t, x) dxdt ,

where in the third line we applied the Chebyshev inequality and the weak estimate
(A.6) and in the last line Definition 7.1(ii). This means that it is possible to find a set
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K ⊂ BR(0) with L d(BR(0) \K) ≤ ε such that

−
∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dy ≤ cdL

ε

∫ T

0

∫
B3R+T‖b‖∞ (0)

MR̃Db(t, x) dxdt

for every x ∈ K, t ∈ [0, T ] and r ∈]0, 2R[. Arguing as in the final part of the proof of
Proposition 7.4 we obtain the Lipschitz estimate also in this case.

2.2. Existence, regularity and compactness. In this subsection we collect
three direct corollaries of the estimates derived above, concerning approximate differ-
entiability, existence and compactness of regular Lagrangian flows.

Corollary 7.6 (Approximate differentiability of the flow). Let b be a bounded
vector field belonging to L1([0, T ];W 1,p(Rd; Rd)) for some p > 1, or belonging to
L1([0, T ];W 1,1(Rd; Rd)) and satisfying MλDb ∈ L1([0, T ];L1(Rd)) for every λ > 0,
and let X be a regular Lagrangian flow associated to b. Then X(t, ·) is approximately
differentiable L d-a.e. in Rd, for every t ∈ [0, T ].

Proof. The proof is an immediate consequence of the Lusin type approximation of
the flow with Lipschitz maps given in Proposition 7.4 and Remark 7.5 and of Theorem
A.4. �

We now prove an “abstract” compactness lemma, which will be used immediately
after to show a result of compactness of the flow. We prefer to state this lemma
separately and in a more general way since we will refer to it also during the proofs of
the other compactness results.

Lemma 7.7. Let Ω ⊂ Rn be a bounded Borel set and let {fh} be a sequence of maps
into Rm. Suppose that for every δ > 0 we can find a positive constant Mδ < ∞ and,
for every fixed h, a Borel set Bh,δ ⊂ Ω with L n(Ω \Bh,δ) ≤ δ in such a way that

‖fh‖L∞(Bh,δ) ≤Mδ

and
Lip

(
fh|Bh,δ

)
≤Mδ .

Then the sequence {fh} is precompact in measure in Ω.

Proof. For every j ∈ N we find the value M1/j and the sets Bh,1/j as in the
assumption of the lemma, with δ = 1/j. Now, arguing component by component,
we can extend every map fh|Bh,1/j to a map f jh defined on Ω in such a way that the
equi-bounds are preserved, up to a dimensional constant: we have

‖f jh‖L∞(Ω) ≤M1/j for every h

and
Lip

(
f jh

)
≤ cnM1/j for every h.

Then we apply the Ascoli-Arzelà theorem (notice that by uniform continuity all the
maps f jh can be extended to the compact set Ω̄) and using a diagonal procedure we find
a subsequence (in h) such that for every j the sequence {f jh}h converges uniformly in
Ω to a map f j∞.
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Now we fix ε > 0. We choose j ≥ 3/ε and we find N = N(j) such that∫
Ω
|f ji − f

j
k | dx ≤ ε/3 for every i, k > N .

Keeping j and N(j) fixed we estimate, for i, k > N∫
Ω

1 ∧ |fi − fk| dx ≤
∫

Ω
1 ∧ |fi − f ji | dx+

∫
Ω

1 ∧ |f ji − f
j
k | dx+

∫
Ω

1 ∧ |f jk − fk| dx

≤ L n(Ω \Bi,1/j) +
∫

Ω
|f ji − f

j
k | dx+ L n(Ω \Bk,1/j)

≤ 1
j

+
ε

3
+

1
j
≤ ε .

It follows that the given sequence has a subsequence which is Cauchy with respect to
the convergence in measure in Ω. This implies the thesis. �

We now go back to the compactness of the flow.

Corollary 7.8 (Compactness of the flow). Let {bh} be a sequence of vector fields
equi-bounded in L∞([0, T ] × Rd; Rd) and in L1([0, T ];W 1,p(Rd; Rd)) for some p > 1,
or equi-bounded in L∞([0, T ] × Rd; Rd) and in L1([0, T ];W 1,1(Rd; Rd)) and such that
{MλDbh} is equi-bounded in L1([0, T ];L1(Rd)) for every λ > 0. For each h, let Xh be
a regular Lagrangian flow associated to bh and let Lh be the compressibility constant of
Xh, as in Definition 7.1(ii). Suppose that the sequence {Lh} is equi-bounded. Then the
sequence {Xh} is strongly precompact in L1

loc([0, T ]× Rd).

Proof. Fix δ > 0 and R > 0. Since {bh} is equi-bounded in L∞([0, T ] × Rd), we
deduce that {Xh} is equi-bounded in L∞([0, T ]×BR(0)): let C1(R) be an upper bound
for these norms. Applying Proposition 7.4, for every h we find a Borel set Kh,δ such
that L d(BR(0) \Kh,δ) ≤ δ and

Lip
(
Xh(t, ·)|Kh,δ

)
≤ exp

cdAp(R,Xh)
δ1/p

for every t ∈ [0, T ].

Recall first Theorem 7.2 implies that Ap(R,Xh) is equi-bounded with respect to h,
because of the assumptions of the corollary. Moreover, using Definition 7.1(i) and
thanks again to the equi-boundedness of {bh} in L∞([0, T ]×Rd), we deduce that there
exists a constant Cδ2(R) such that

Lip
(
Xh|[0,T ]×Kh,δ

)
≤ Cδ2(R) .

If we now set Bh,δ = [0, T ]×Kh,δ and Mδ = max
{
C1(R), Cδ2(R)

}
, we are in the position

to apply Lemma 7.7 with Ω = [0, T ]× BR(0). Then the sequence {Xh} is precompact
in measure in [0, T ]×BR(0), and by equi-boundedness in L∞ we deduce that it is also
precompact in L1([0, T ] × BR(0)). Using a standard diagonal argument it is possible
to conclude that {Xh} is locally precompact in L1([0, T ]× Rd). �

Corollary 7.9 (Existence of the flow). Let b be a bounded vector field belonging to
L1([0, T ];W 1,p(Rd; Rd)) for some p > 1, or belonging to L1([0, T ];W 1,1(Rd; Rd)) and
satisfying MλDb ∈ L1([0, T ];L1(Rd)) for every λ > 0. Assume that
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[div b]− ∈ L1([0, T ];L∞(Rd)). Then there exists a regular Lagrangian flow associated to
b.

Proof. This is a simple consequence of the previous corollary. Choose a positive
convolution kernel in Rd and regularize b by convolution. It is simple to check that the
sequence of smooth vector fields {bh} we have constructed satisfies the equi-bounds of
the previous corollary. Moreover, since every bh is smooth, for every h there is a unique
regular Lagrangian flow associated to bh, with compressibility constant Lh given by

(7.8) Lh = exp
(∫ T

0
‖[div bh(t, ·)]−‖L∞(Rd) dt

)
.

Thanks to the positivity of the chosen convolution kernel, the sequence {Lh} is equi-
bounded, then we can apply Corollary 7.8. It is then easy to check that every limit
point of {Xh} in L1

loc([0, T ]× Rd) is a regular Lagrangian flow associated to b. �

Remark 7.10. An analogous existence result could be obtained removing the hy-
pothesis on the divergence of b, and assuming that there is some approximation proce-
dure such that we can regularize b with equi-bounds on the compressibility constants
of the approximating flows. This remark also applies to Corollaries 7.21 and 7.28.

2.3. Stability estimates and uniqueness. In this subsection we show an esti-
mate similar in spirit to that of Theorem 7.2, but comparing flows for different vector
fields. A direct corollary of this estimate is the stability (and hence the uniqueness) of
regular Lagrangian flows.

Theorem 7.11 (Stability of the flow). Let b and b̃ be bounded vector fields belonging
to L1([0, T ];W 1,p(Rd; Rd)) for some p > 1. Let X and X̃ be regular Lagrangian flows
associated to b and b̃ respectively and denote by L and L̃ the compressibility constants
of the flows. Then, for every time τ ∈ [0, T ], we have

‖X(τ, ·)− X̃(τ, ·)‖L1(Br(0)) ≤ C
∣∣∣log

(
‖b− b̃‖L1([0,τ ]×BR(0))

)∣∣∣−1
,

where R = r + T‖b‖∞ and the constant C only depends on τ , r, ‖b‖∞, ‖b̃‖∞, L, L̃,
and ‖Dxb‖L1(Lp).

Proof. Set δ = ‖b− b̃‖L1([0,τ ]×BR(0)) and consider the function

g(t) =
∫
Br(0)

log

(
|X(t, x)− X̃(t, x)|

δ
+ 1

)
dx .
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Clearly g(0) = 0 and after some standard computations we get

g′(t) ≤
∫
Br(0)

∣∣∣∣∣dX(t, x)
dt

− dX̃(t, x)
dt

∣∣∣∣∣ (|X(t, x)− X̃(t, x)|+ δ
)−1

dx

=
∫
Br(0)

|b(t,X(t, x))− b̃(t, X̃(t, x))|
|X(t, x)− X̃(t, x)|+ δ

dx

≤ 1
δ

∫
Br(0)

|b(t, X̃(t, x))− b̃(t, X̃(t, x))| dx

+
∫
Br(0)

|b(t,X(t, x))− b(t, X̃(t, x))|
|X(t, x)− X̃(t, x)|+ δ

dx .(7.9)

We set R̃ = 2r+T (‖b‖∞+‖b̃‖∞) and we apply Lemma A.9 to estimate the last integral
as follows:∫
Br(0)

|b(t,X(t, x))− b(t, X̃(t, x))|
|X(t, x)− X̃(t, x)|+ δ

dx ≤ cd
∫
Br(0)

MR̃Db(t,X(t, x))+MR̃Db(t, X̃(t, x)) dx .

Inserting this estimate in (7.9), setting r̃ = r+T max{‖b‖∞, ‖b̃‖∞}, changing variables
in the integrals and using Lemma A.8 we get

g′(t) ≤ L̃

δ

∫
Br+T‖b̃‖∞ (0)

|b(t, y)− b̃(t, y)| dy +
(
L̃+ L

) ∫
Br̃(0)

MR̃Db(t, y) dy

≤ L̃

δ

∫
Br+T‖b̃‖∞ (0)

|b(t, y)− b̃(t, y)| dy + cdr̃
n−n/p(L̃+ L

)
‖MR̃Db(t, ·)‖Lp

≤ L̃

δ

∫
Br+T‖b̃‖∞ (0)

|b(t, y)− b̃(t, y)| dy + cd,pr̃
n−n/p(L̃+ L

)
‖Db(t, ·)‖Lp .

For any τ ∈ [0, T ], integrating the last inequality between 0 and τ we get

(7.10) g(τ) =
∫
Br(0)

log

(
|X(τ, x)− X̃(τ, x)|

δ
+ 1

)
dx ≤ C1 ,

where the constant C1 depends on τ , r, ‖b‖∞, ‖b̃‖∞, L, L̃, and ‖Dxb‖L1(Lp).
Next we fix a second parameter η > 0 to be chosen later. Using the Chebyshev

inequality we find a measurable set K ⊂ Br(0) such that L d(Br(0) \K) ≤ η and

log

(
|X(τ, x)− X̃(τ, x)|

δ
+ 1

)
≤ C1

η
for x ∈ K.

Therefore we can estimate∫
Br(0)

|X(τ, x)− X̃(τ, x)| dx

≤ η
(
‖X(τ, ·)‖L∞(Br(0)) + ‖X̃(τ, ·)‖L∞(Br(0))

)
+
∫
K
|X(τ, x)− X̃(τ, x)| dx

≤ ηC2 + cdr
dδ (exp(C1/η)) ≤ C3 (η + δ exp(C1/η)) ,(7.11)
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with C1, C2 and C3 which depend only on T , r, ‖b‖∞, ‖b̃‖∞, L, L̃, and ‖Dxb‖L1(Lp).
Without loss of generality we can assume δ < 1. Setting

η = 2C1| log δ|−1 = 2C1(− log δ)−1 ,

we have exp(C1/η) = δ−1/2. Thus we conclude

(7.12)
∫
Br(0)

|X(τ, x)− X̃(τ, x)| dx ≤ C3

(
2C1| log δ|−1 + δ1/2

)
≤ C| log δ|−1 ,

where C depends only on τ , r, ‖b‖∞, ‖b̃‖∞, L, L̃, and ‖Dxb‖L1(Lp). This completes the
proof. �

Corollary 7.12 (Uniqueness of the flow). Let b be a bounded vector field belonging
to L1([0, T ];W 1,p(Rd; Rd)) for some p > 1. Then the regular Lagrangian flow associated
to b, if it exists, is unique.

Proof. It follows immediately from the stability proved in Theorem 7.11. �

Remark 7.13 (Stability with weak convergence in time). Theorem 7.11 allows to
show the stability when the convergence of the vector fields is just weak with respect to
the time. This setting is in fact very natural in view of the applications to the theory
of fluid mechanics (see Theorem II.7 in [84] and [107], in particular Theorem 2.5).
In particular, under suitable bounds on the sequence {bh}, the following form of weak
convergence with respect to the time is sufficient to get the thesis:∫ T

0
bh(t, x)η(t) dt −→

∫ T

0
b(t, x)η(t) dt in L1

loc(Rd) for every η ∈ C∞c (0, T ).

Indeed, fix a parameter ε > 0 and regularize with respect to the spatial variable only
using a standard convolution kernel ρε. We can rewrite the difference Xh(t, x)−X(t, x)
as

Xh(t, x)−X(t, x) =
(
Xh(t, x)−Xε

h(t, x)
)

+
(
Xε
h(t, x)−Xε(t, x)

)
+
(
Xε(t, x)−X(t, x)

)
,

where Xε and Xε
h are the flows relative to the regularized vector fields bε and bεh re-

spectively. Now, it is simple to check that
• The last term goes to zero with ε, by the classical stability theorem (the

quantitative version is not needed at this point);
• The first term goes to zero with ε, uniformly with respect to h: this is due to

the fact that the difference bεh − bh goes to zero in L1
loc([0, T ]× Rd) uniformly

with respect to h, if we assume a uniform control in W 1,p on the vector fields
{bh}, hence we can apply Theorem 7.11, and we get the desired convergence;
• The second term goes to zero for h→∞ when ε is kept fixed, because we are

dealing with flows relative to vector fields which are smooth with respect to
the space variable, uniformly in time, and weak convergence with respect to
the time is enough to get the stability.

In order to conclude, we fix an arbitrary δ > 0 and we first find ε > 0 such that the
norm of the third term is smaller than δ and such that the norm of the first term
is smaller than δ for every h. For this fixed ε, we find h such that the norm of the



114 7. A PRIORI ESTIMATES FOR REGULAR LAGRANGIAN FLOWS

second term is smaller than δ. With this choice of h we have estimated the norm of
Xh(t, x)−X(t, x) with 3δ, hence we get the desired convergence.

Remark 7.14 (Another way to show compactness). If we apply Theorem 7.11 to
the flows X(t, x) and X̃(t, x) = X(t, x+ h)− h relative to the vector fields b(t, x) and
b̃(t, x) = b(t, x+ h), where h ∈ Rd is fixed, we get for every τ ∈ [0, T ]

‖X(τ, ·)−X(τ, ·+ h)− h‖L1(Br(0)) ≤ C
∣∣log

(
‖b(t, x)− b(t, x+ h)‖L1([0,τ ]×BR(0))

)∣∣−1

≤ C

| log(h)|
.

Hence we have a uniform control on the translations in the space, and we can de-
duce a compactness result applying the Riesz-Fréchet-Kolmogorov compactness crite-
rion (Lemma 7.26).

3. Estimates for more general vector fields and corollaries

In this section we extend the previous results to more general vector fields, in
particular we drop the boundedness condition on b. More precisely, we will consider
vector fields b : [0, T ]× Rd → Rd satisfying the following regularity assumptions:

(R1) b ∈ L1([0, T ];W 1,p
loc (Rd; Rd)) for some p > 1;

(R2) We can write
b(t, x)
1 + |x|

= b̃1(t, x) + b̃2(t, x)

with b̃1(t, x) ∈ L1([0, T ];L1(Rd; Rd)) and b̃2(t, x) ∈ L1([0, T ];L∞(Rd; Rd)).

Since we are now considering vector fields which are no more bounded, we have to
take care of the fact that the flow will be no more locally bounded in Rd. However,
we can give an estimate of the measure of the set of the initial data such that the
corresponding trajectories exit from a fixed ball at some time.

Definition 7.15 (Sublevels). Fix λ > 0 and let X : [0, T ]× Rd → Rd be a locally
summable map. We set

(7.13) Gλ =
{
x ∈ Rd : |X(t, x)| ≤ λ ∀t ∈ [0, T ]

}
.

Proposition 7.16 (Uniform estimate of the superlevels). Let b be a vector field
satisfying assumption (R2) and let X be a regular Lagrangian flow associated to b, with
compressibility constant L. Then we have

L d(BR(0) \Gλ) ≤ g(R, λ) ,

where the function g only depends on ‖b̃1‖L1(L1), ‖b̃2‖L1(L∞) and L; moreover we have
that g(R, λ) ↓ 0 for R fixed and λ ↑ +∞.

Proof. Let φt be the density of X(t, ·)#

(
1BR(0)L

d
)

with respect to L d and notice
that, by the definition of push-forward and by Definition 7.1(ii), we have ‖φt‖1 = ωdR

d
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and ‖φt‖∞ ≤ L. Thanks to Definition 7.1(i) we can compute∫
BR(0)

sup
0≤t≤T

log
(

1 + |X(t, x)|
1 +R

)
dx ≤

∫
BR(0)

∫ T

0

∣∣dX
dt (t, x)

∣∣
1 + |X(t, x)|

dtdx

=
∫ T

0

∫
BR(0)

|b(t,X(t, x))|
1 + |X(t, x)|

dxdt

≤
∫ T

0

∫
Rd

|b(t, x)|
1 + |x|

φt dxdt .

Using the Hölder inequality, for every decomposition of b(t, x)/(1+|x|) as in assumption
(R2) we get∫

BR(0)
sup

0≤t≤T
log
(

1 + |X(t, x)|
1 +R

)
dx ≤ L‖b̃1‖L1(L1) + ωdR

d‖b̃2‖L1(L∞) .

From this estimate we easily obtain

L d(BR(0) \Gλ) ≤
[
log
(

1 + λ

1 +R

)]−1 (
L‖b̃1‖L1(L1) + ωdR

d‖b̃2‖L1(L∞)

)
,

and the right hand side clearly has the properties of the function g(R, λ) stated in the
proposition. �

3.1. Estimate of an integral quantity and Lipschitz estimates. We start
with the definition of an integral quantity which is a generalization of the quantity
Ap(R,X) of Theorem 7.2. In this new setting we will need a third variable (the trun-
cation parameter λ), hence we define Ap(R, λ,X) to be
(7.14)[∫

BR(0)∩Gλ

(
sup

0≤t≤T
sup

0<r<2R
−
∫
Br(x)∩Gλ

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dy

)p
dx

] 1
p

,

where the set Gλ is the sublevel relative to the map X, defined as in Definition 7.15.
In the following proposition, we show a bound on the quantity Ap(R, λ,X) which

corresponds to the bound on Ap(R,X) in Theorem 7.2.

Theorem 7.17. Let b be a vector field satisfying assumptions (R1) and (R2) and let
X be a regular Lagrangian flow associated to b, with compressibility constant L. Then
we have

Ap(R, λ,X) ≤ C
(
R,L, ‖Dxb‖L1([0,T ],Lp(B3λ(0)))

)
.

Proof. We start as in the proof of Theorem 7.2, obtaining the validity of inequality
(7.3) for every x ∈ Gλ. Since |X(t, x)−X(t, y)| ≤ 2λ, applying Lemma A.9 we deduce

dQ

dt
(t, x, r) ≤ cdM2λDb(t,X(t, x)) + cd−

∫
Br(x)∩Gλ

M2λDb(t,X(t, y)) dy .
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Then, arguing exactly as in the proof of Theorem 7.2, we get the estimate

Ap(R, λ,X) ≤ cp,R + cd

∥∥∥∥∫ T

0
M2λDb(t,X(t, x)) dt

∥∥∥∥
Lp(BR(0)∩Gλ)

(7.15)

+cd

∥∥∥∥∥
∫ T

0
sup

0<r<2R
−
∫
Br(x)∩Gλ

M2λDb(t,X(t, y)) dydt

∥∥∥∥∥
Lp(BR(0)∩Gλ)

.(7.16)

Recalling Definition 7.1(ii) and Lemma A.8, the integral in (7.15) can be estimated
with

cdL
1/p

∫ T

0
‖M2λDb(t, x)‖Lp(Bλ(0)) dt ≤ cd,pL

1/p

∫ T

0
‖Db(t, x)‖Lp(B3λ(0)) dt .

The integral in (7.16) can be estimated in a similar way with

cd

∫ T

0

∥∥∥∥∥ sup
0<r<2R

−
∫
Br(x)∩Gλ

[(M2λDb) ◦ (t,X(t, ·))] (y) dy

∥∥∥∥∥
Lp(BR(0)∩Gλ)

dt

≤ cd

∫ T

0

∥∥∥∥∥ sup
0<r<2R

−
∫
Br(x)

[(M2λDb) ◦ (t,X(t, ·))] (y)1Gλ(y) dy

∥∥∥∥∥
Lp(BR(0)∩Gλ)

dt

= cd

∫ T

0
‖M2R [(M2λDb) ◦ (t,X(t, ·))1Gλ(·)] (x)‖Lp(BR(0)∩Gλ) dt

≤ cd,p

∫ T

0
‖[(M2λDb) ◦ (t,X(t, ·))1Gλ(·)] (x)‖Lp(B3R(0)) dt

= cd,p

∫ T

0
‖(M2λDb) ◦ (t,X(t, x))‖Lp(B3R(0)∩Gλ) dt

≤ cd,pL
1/p

∫ T

0
‖M2λDb(t, x)‖Lp(Bλ(0)) dt

≤ cd,pL
1/p

∫ T

0
‖Db(t, x)‖Lp(B3λ(0)) dt .

Then we obtain the desired estimate for Ap(R, λ,X). �

Proposition 7.18 (Lipschitz estimates). Let X and b be as in Theorem 7.17.
Then, for every ε > 0 and every R > 0, we can find λ > 0 and a set K ⊂ BR(0) such
that L d(BR(0) \K) ≤ ε and for any 0 ≤ t ≤ T we have

Lip (X(t, ·)|K) ≤ exp
cdAp(R, λ,X)

ε1/p
.

Proof. The proof is exactly the proof of Proposition 7.4, with some minor modi-
fications due to the necessity of a truncation on the sublevels of the flow. This can be
done as follows. For ε > 0 and R > 0 fixed, we apply Proposition 7.16 to get a λ large
enough such that L d(BR(0)\Gλ) ≤ ε/2. Next, using equation (A.7) and the finiteness
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of Ap(R, λ,X), we obtain a constant

M = M(ε, p, Ap(R, λ,X)) =
Ap(R, λ,X)

(ε/2)1/p

and a set K ⊂ BR(0) ∩Gλ with L d
(
(BR(0) ∩Gλ) \K

)
≤ ε/2 and

sup
0≤t≤T

sup
0<r<2R

−
∫
Br(x)∩Gλ

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dy ≤M ∀x ∈ K .

Hence the set K satisfies L d(BR(0) \K) ≤ ε and

−
∫
Br(x)∩Gλ

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dy ≤M ∀x ∈ K,∀t ∈ [0, T ], ∀r ∈]0, 2R[ .

The proof can be concluded as the proof of Proposition 7.4, where now the integrals
are performed on the sublevels Gλ. �

3.2. Existence, regularity and compactness.

Corollary 7.19 (Approximate differentiability of the flow). Let b be a vector field
satisfying assumptions (R1) and (R2) and let X be a regular Lagrangian flow associated
to b. Then X(t, ·) is approximately differentiable L d-a.e. in Rd, for every t ∈ [0, T ].

Proof. The proof is an immediate consequence of the Lusin type approximation
of the flow with Lipschitz maps given in Proposition 7.18 and of Theorem A.4. �

Corollary 7.20 (Compactness of the flow). Let {bh} be a sequence of vector fields
satisfying assumptions (R1) and (R2). For every h, let Xh be a regular Lagrangian
flow associated to bh and let Lh be the compressibility constant associated to Xh, as in
Definition 7.1(ii). Suppose that for every R > 0 the uniform estimate

(7.17) ‖Dxbh‖L1([0,T ];Lp(BR(0))) + ‖b̃h,1‖L1(L1) + ‖b̃h,2‖L1(L∞) + Lh ≤ C(R) <∞

is satisfied, for some decomposition bh/(1 + |x|) = b̃h,1 + b̃h,2 as in assumption (R2).
Then the sequence {Xh} is locally precompact in measure in [0, T ]× Rd.

Proof. The proof is essentially identical to the proof of Corollary 7.8. Fix R > 0
and δ > 0. Applying Proposition 7.16 and thanks to the uniform bound given by (7.17),
we first find λ > 0 big enough such that

L d
(
BR(0) \Ghλ

)
≤ δ/3 ,

with Ghλ as in Definition 7.15. Thanks again to (7.17), we can apply Theorem 7.17
to deduce that the quantities Ap(R, λ,Xh) are uniformly bounded with respect to h.
Now we apply Proposition 7.18 with ε = δ/3 to find, for every h, a measurable set
Kh ⊂ BR(0) ∩Ghλ such that

L d
(
(BR(0) ∩Ghλ) \Kh

)
≤ δ/3

and
Lip (Xh(t, ·)|Kh) is uniformly bounded w.r.t. h.
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Now we are going to show a similar Lipschitz estimate with respect to the time. Since
the maps

[0, T ]×Kh 3 (t, x) 7→ bh(t,Xh(t, x))

are uniformly bounded in L1([0, T ] ×Kh) (this is easily deduced recalling assumption
(R2), the bound (7.17) and the fact that Kh ⊂ BR(0)), for every h, applying the
Chebyshev inequality, we can find a measurable set Hh ⊂ [0, T ]×Kh such that

L d
(
([0, T ]×Kh) \Hh

)
≤ δ/3

and
‖bh(t,Xh(t, x))‖L∞(Hh) ≤ C/δ ,

where the constant C only depends on the constant C(R) given by (7.17). Then we
deduce that ∥∥∥∥dXh

dt
(t, x)

∥∥∥∥
L∞(Hh)

is uniformly bounded w.r.t. h.

Hence we have found, for every h, a measurable set Hh ⊂ [0, T ]×BR(0) such that

L d
(
([0, T ]×BR(0)) \Hh

)
≤ δ

and
‖Xh‖L∞(Hh) + Lipt,x (Xh|Hh) uniformly bounded w.r.t. h.

Then we apply Lemma 7.7 to obtain that the sequence {Xh} is precompact in measure
in [0, T ] × BR(0). A standard diagonal argument gives the local precompactness in
measure of the sequence in the whole [0, T ]× Rd. �

Corollary 7.21 (Existence of the flow). Let b be a vector field satisfying assump-
tions (R1) and (R2) and such that [div b]− ∈ L1([0, T ];L∞(Rd)). Then there exists a
regular Lagrangian flow associated to b.

Proof. It is sufficient to regularize b with a positive convolution kernel in Rd and
apply Corollary 7.20. It is simple to check that the regularized vector fields satisfy the
equi-bounds needed for the compactness result. �

3.3. Stability estimates and uniqueness.

Theorem 7.22 (Stability estimate). Let b and b̃ be vector fields satisfying assump-
tions (R1) and (R2). Let X and X̃ be regular Lagrangian flows associated to b and b̃

respectively and denote by L and L̃ the compressibility constants of the flows. Then for
every λ > 1 and every τ ∈ [0, T ] the following estimate holds

(7.18)
∫
Br(0)

1 ∧ |X(τ, x)− X̃(τ, x)| dx ≤ C

log(λ)
+ Cλ‖b− b̃‖L1([0,τ ]×Bλ(0)) ,

where the constant C only depends on L, L̃ and on the L1(L1) +L1(L∞) norm of some
decomposition of b and b̃ as in assumption (R2), while the constant Cλ depends on λ,
r, L, L̃ and ‖Db‖L1([0,τ ];Lp(B3λ(0))).
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Proof. For any given λ > 1 fixed define the sets Gλ and G̃λ, relatively to X and
X̃, as in (7.13). Set

δ = δ(λ) = ‖b− b̃‖L1([0,τ ]×Bλ(0)) .

Define

g(t) =
∫
Br(0)∩Gλ∩G̃λ

log

(
|X(t, x)− X̃(t, x)

δ
+ 1

)
dx .

Clearly we have g(0) = 0 and we can estimate

g′(t) ≤
∫
Br(0)∩Gλ∩G̃λ

|b(t,X(t, x))− b̃(t, X̃(t, x))|
|X(t, x)− X̃(t, x)|+ δ

dx

≤
∫
Br(0)∩Gλ∩G̃λ

|b(t, X̃(t, x))− b̃(t, X̃(t, x))|
|X(t, x)− X̃(t, x)|+ δ

+
|b(t,X(t, x))− b(t, X̃(t, x))|
|X(t, x)− X̃(t, x)|+ δ

dx

≤
∫
Br(0)∩Gλ∩G̃λ

1
δ
|b(t, X̃(t, x))− b̃(t, X̃(t, x))|+ |b(t,X(t, x))− b(t, X̃(t, x))|

|X(t, x)− X̃(t, x)|
dx

≤ 1
δ

∫
Br(0)∩Gλ∩G̃λ

|b(t, X̃(t, x))− b̃(t, X̃(t, x))| dx

+cd

∫
Br(0)∩Gλ∩G̃λ

(
M2λDb(t,X(t, x)) +M2λDb(t, X̃(t, x))

)
dx

≤ L̃

δ

∫
Bλ(0)

|b(t, x)− b̃(t, x)| dx+ cd(L+ L̃)
∫
Bλ(0)

M2λDb(t, x) dx

≤ L̃

δ

∫
Bλ(0)

|b(t, x)− b̃(t, x)| dx+ cd,p(L+ L̃)λn−n/p‖Db(t, ·)‖Lp(B3λ(0)) .

Integrating with respect to t between 0 and τ we obtain

g(τ) =
∫
Br(0)∩Gλ∩G̃λ

log

(
|X(τ, x)− X̃(τ, x)

δ
+ 1

)
dx

≤ L̃+ cd,p(L+ L̃)λn−n/p‖Db‖L1([0,τ ];Lp(B3λ(0))) = Cλ ,

where the constant Cλ depends on λ but also on the other parameters relative to b and
b̃. Now fix a value η > 0 which will be specified later. We can find a measurable set
K ⊂ Br(0) ∩Gλ ∩ G̃λ such that L d

(
(Br(0) ∩Gλ ∩ G̃λ) \K

)
< η and

log

(
|X(τ, x)− X̃(τ, x)

δ
+ 1

)
≤ Cλ

η
∀x ∈ K .
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Then we deduce that∫
Br(0)

1 ∧ |X(τ, x)− X̃(τ, x)| dx

≤ L d
(
Br(0) \ (Gλ ∩ G̃λ)

)
+ L d

(
(Br(0) ∩Gλ ∩ G̃λ) \K

)
+
∫
K
|X(t, x)− X̃(t, x)| dx

≤ C

log(λ)
+ η + Cδ exp(Cλ/η) ≤ C

log(λ)
+ Cλ‖b− b̃‖L1([0,τ ]×Bλ(0)) ,

choosing η = 1/ log(λ) in the last line. �

Corollary 7.23 (Stability of the flow). Let {bh} be a sequence of vector fields
satisfying assumptions (R1) and (R2), converging in L1

loc([0, T ]×Rd) to a vector field b
which satisfies assumptions (R1) and (R2). Denote by X and Xh the regular Lagrangian
flows associated to b and bh respectively, and denote by L and Lh the compressibility
constants of the flows. Suppose that, for some decomposition bh/(1 + |x|) = b̃h,1 + b̃h,2
as in assumption (R2), we have

‖b̃h,1‖L1(L1) + ‖b̃h,2‖L1(L∞) equi-bounded in h

and that the sequence {Lh} is equi-bounded. Then the sequence {Xh} converges to X
locally in measure in [0, T ]× Rd.

Proof. Notice that, under the hypotheses of this corollary, the constants Ch,τ and
Ch,τλ in (7.18) can be chosen uniformly with respect to τ ∈ [0, T ] and h ∈ N. Hence we
find universal constant C and Cλ, depending only on the assumed equi-bounds, such
that ∫

Br(0)
1 ∧ |X(τ, x)−Xh(τ, x)| dx ≤ Ch,τ

log(λ)
+ Ch,τλ ‖b− bh‖L1([0,τ ]×Bλ(0))

≤ C

log(λ)
+ Cλ‖b− bh‖L1([0,T ]×Bλ(0)) .(7.19)

Now fix ε > 0. We first choose λ big enough such that
C

log(λ)
≤ ε

2
,

where C is the first constant in (7.19). Since now λ is fixed, we find N such that for
every h ≥ N we have

‖b− bh‖L1([0,T ]×Bλ(0)) ≤
ε

2Cλ
,

thanks to the convergence of the sequence {bh} to b in L1
loc([0, T ] × Rd). Notice that

N depends on λ and on the equi-bounds, but in turn λ only depends on ε and on the
equi-bounds. Hence we get∫

Br(0)
1 ∧ |X(τ, x)−Xh(τ, x)| dx ≤ ε for every h ≥ N = N(ε).

This means that {Xh(τ, ·)} converges to X(τ, ·) locally in measure in Rd, uniformly
with respect to τ ∈ [0, T ]. In particular we get the thesis. �
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Corollary 7.24 (Uniqueness of the flow). Let b be a vector field satisfying assump-
tions (R1) and (R2). Then the regular Lagrangian flow associated to b, if it exists, is
unique.

Proof. It follows immediately from Corollary 7.23. �

4. A direct proof of compactness

In this section we propose an alternative proof of the compactness result of Theorem
7.8, which works under an assumption of summability of the maximal function of Db.
The strategy of this proof is slightly different from the previous one: we are not going
to use the Lipschitz estimates of Proposition 7.4 and Remark 7.5, but instead we prove
an estimate of an integral quantity which turns out to be sufficient to get compactness,
via the Riesz-Fréchet-Kolmogorov compactness criterion.

We will assume the following regularity assumption on the vector field:
(R3) For every λ > 0 we have MλDb ∈ L1([0, T ];L1

loc(Rd)).
Notice that, by Lemma A.8, this assumption is equivalent to the condition∫ T

0

∫
Bρ(0)

|Dxb(t, x)| log (2 + |Dxb(t, x)|) dxdt <∞ for every ρ > 0.

This means that Dxb ∈ L1([0, T ];L logLloc(Rd)), i.e. a slightly stronger bound than
Dxb ∈ L1([0, T ], L1

loc(Rd)).
We define a new integral quantity, which corresponds to the one defined in Theorem

7.2 for p = 1, but without the supremum with respect to r. For R > 0 and 0 < r < R/2
fixed we set

a(r,R,X) =
∫
BR(0)

sup
0≤t≤T

−
∫
Br(x)

log
(
|X(t, x)−X(t, y)|

r
+ 1
)
dydx .

We first give a quantitative estimate for the quantity a(r,R,X), similar to the one for
Ap(R,X).

Theorem 7.25. Let b be a bounded vector field satisfying assumption (R3) and let
X be a regular Lagrangian flow associated to b, with compressibility constant L. Then
we have

a(r,R,X) ≤ C
(
R,L, ‖MR̃Dxb‖L1([0,T ];L1(BR̃(0)))

)
,

where R̃ = 3R/2 + 2T‖b‖∞.

Proof. We start as in the proof of Theorem 7.2, obtaining inequality (7.3) (but
this time it is sufficient to set R̃ = 3R/2 + 2T‖b‖∞). Integrating with respect to the
time and then with respect to x over BR(0), we obtain

a(r,R,X) ≤ cR + cd

∫
BR(0)

∫ T

0
MR̃Db(t,X(t, x)) dtdx

+cd

∫
BR(0)

∫ T

0
−
∫
Br(x)

MR̃Db(t,X(t, y)) dydtdx .
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As in the previous computations, the first integral can be estimated with

cdL
∥∥MR̃Db

∥∥
L1([0,T ];L1(BR+T‖b‖∞ (0)))

,

but this time we cannot bound the norm of the maximal function with the norm of the
derivative. To estimate the last integral we compute

cd

∫
BR(0)

∫ T

0
−
∫
Br(x)

MR̃Db(t,X(t, y)) dydtdx

= cd

∫
BR(0)

∫ T

0
−
∫
Br(0)

MR̃Db(t,X(t, x+ z)) dzdtdx

≤ cd−
∫
Br(0)

∫ T

0

∫
BR(0)

MR̃Db(t,X(t, x+ z)) dxdtdz

≤ cd−
∫
Br(0)

∫ T

0
L

∫
B3R/2+T‖b‖∞ (0)

MR̃Db(t, w) dwdtdx

= cdL‖MR̃Db‖L1([0,T ];L1(B3R/2+T‖b‖∞ (0))) .

Hence the thesis follows, by definition of R̃. �

Next we show in Corollary 7.27 how this estimate implies compactness for the flow.
We will need the following well-known criterion for strong compactness in Lp.

Lemma 7.26 (Riesz-Fréchet-Kolmogorov compactness criterion). Let F be a
bounded subset of Lp(RN ) for some 1 ≤ p <∞. Suppose that

lim
|h|→0

‖f(· − h)− f‖p = 0 uniformly in f ∈ F .

Then F is relatively compact in Lploc(R
N ).

Corollary 7.27 (Compactness of the flow). Let {bh} be a sequence of vector fields
equi-bounded in L∞([0, T ] × Rd; Rd) and suppose that the sequence {MλDbh} is equi-
bounded in L1([0, T ];L1

loc(Rd)) for every λ > 0. For each h, let Xh be a regular La-
grangian flow associated to bh and let Lh be the compressibility constant associated to
Xh, as in Definition 7.1(ii). Suppose that the sequence {Lh} is equi-bounded. Then the
sequence {Xh} is strongly precompact in L1

loc([0, T ]× Rd).

Proof. We apply Theorem 7.25 to obtain that, under the assumptions of the
corollary, the quantities a(r,R,Xh) are uniformly bounded with respect to h. Now
observe that, for 0 ≤ z ≤ R̃ (with R̃ = 3R/2 + 2T‖b‖∞ as in Theorem 7.25), thanks to
the concavity of the logarithm we have

log
(z
r

+ 1
)
≥

log
(
R̃
r + 1

)
R̃

z .
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Since |Xh(t, x)−Xh(t, y)| ≤ R̃ this implies that∫
BR(0)

sup
0≤t≤T

−
∫
Br(x)

|Xh(t, x)−Xd(t, y)| dydx

≤ R̃

log
(
R̃
r + 1

)C (R,Lh, ‖MR̃Dbh‖L1([0,T ];L1(BR̃(0)))

)
≤ g(r) ,

where the function g(r) does not depend on h and satisfies g(r) ↓ 0 for r ↓ 0. Changing
the integration order this implies

−
∫
Br(0)

∫
BR(0)

|Xh(t, x)−Xh(t, x+ z)| dxdz ≤ g(r) ,

uniformly with respect to t and h.
Now notice the following elementary fact. There exists a dimensional constant

αd > 0 with the following property: if A ⊂ B1(0) is a measurable set with
L d(B1(0) \ A) ≤ αd, then A + A ⊃ B1/2(0). Indeed, if the thesis were false, we
could find x ∈ B1/2(0) such that x 6∈ A + A. This would imply in particular that
x 6∈ (A ∩B1/2(0)) + (A ∩B1/2(0)), so that

(7.20)
[
x−

(
A ∩B1/2(0)

)]
∩
[
A ∩B1/2(0)

]
= ∅ .

Now notice that there exists a dimensional constant γd such that

L d
(
B1/2(0) ∩ (x−B1/2(0))

)
≥ γd ,

since we are supposing x ∈ B1/2(0). But since L d(B1(0) \A) ≤ αd, we also have

L d
(
B1/2(0) \

(
A ∩B1/2(0)

))
≤ αd

and

L d
((
x−B1/2(0)

)
\
(
x−

(
A ∩B1/2(0)

)))
= L d

(
B1/2(0) \

(
A ∩B1/2(0)

))
≤ αd .

But this is clearly in contradiction with (7.20) if we choose αd < γd/2.
Then fix αd as above and apply the Chebyshev inequality for every h to obtain,

for every 0 < r < R/2, a measurable set Kr,h ⊂ Br(0) with L d
(
Br(0) \ Kr,h

)
≤

αdL
d(Br(0)) and∫

BR(0)
|Xh(t, x+ z)−Xh(t, x)| dx ≤ g(r)

αd
for every z ∈ Kr,h.

For such a set Kr,h, thanks to the previous remark, we have that Kr,h+Kr,h ⊃ Br/2(0).
Now let v ∈ Br/2(0) be arbitrary. For every h we can write v = z1,h + z2,h with
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z1,h, z2,h ∈ Kr,h. We can estimate the increment in the spatial directions as follows:∫
BR/2(0)

|Xh(t, x+ v)−Xh(t, x)| dx

=
∫
BR/2(0)

|Xh(t, x+ z1,h + z2,h)−Xh(t, x)| dx

≤
∫
BR/2(0)

|Xh(t, x+ z1,h + z2,h)−Xh(t, x+ z1,h)|+ |Xh(t, x+ z1,h)−Xh(t, x)| dx

≤
∫
BR(0)

|Xh(t, y + z2,h)−Xh(t, y)| dy +
∫
BR(0)

|Xh(t, x+ z1,h)−Xh(t, x)| dx ≤ 2g(r)
αd

.

Now notice that, by Definition 7.1(i), for L d-a.e. x ∈ Rd we have

dXh

dt
(t, x) = bh(t,Xh(t, x)) for every t ∈ [0, T ].

Then we can estimate the increment in the time direction in the following way

|Xh(t+ τ, x)−Xh(t, x)| ≤
∫ τ

0

∣∣∣∣dXh

dt
(t+ s, x)

∣∣∣∣ ds
=
∫ τ

0
|bh(t+ s,Xh(t+ s, x))| ds ≤ τ‖bh‖∞ .

Combining these two informations, for (t0, t1) ⊂⊂ [0, T ], R > 0, v ∈ Br/2(0) and
τ > 0 sufficiently small we can estimate∫ t1

t0

∫
BR/2(0)

|Xh(t+ τ, x+ v)−Xh(t, x)| dxdt

≤
∫ t1

t0

∫
BR/2(0)

|Xh(t+ τ, x+ v)−Xh(t+ τ, x)|+ |Xh(t+ τ, x)−Xh(t, x)| dxdt

≤ T
2g(r)
αd

+
∫ t1

t0

∫
BR/2(0)

τ‖bh‖∞ dxdt ≤ T
2g(r)
αd

+ cdTR
dτ‖bh‖∞ .

The thesis follows applying the Riesz-Fréchet-Kolmogorov compactness criterion (see
Lemma 7.26), recalling that {bh} is uniformly bounded in L∞([0, T ]× Rd). �

Corollary 7.28 (Existence of the flow). Let b be a bounded vector field satisfying
assumption (R3) and such that [div b]− ∈ L1([0, T ];L∞(Rd)). Then there exists a
regular Lagrangian flow associated to b.

Proof. It is sufficient to regularize b with a positive convolution kernel in Rd and
apply Corollary 7.27. It is simple to check that the regularized vector fields satisfy
the equi-bounds needed for the compactness result, due to the convexity of the map
z 7→ z log(2 + z) for z ≥ 0. �
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5. Lipexpp–regularity for transport equations with W 1,p coefficients

In this section we show that solutions to transport equations with Sobolev coeffi-
cients propagate a very mild regularity property of the initial data; compare the result
of Theorem 7.31 with the examples of Section 5.4.

Definition 7.29 (The space Lipexpp). We say that a function f : E ⊂⊂ Rd → Rk

belongs to Lipexpp(E) if for every ε > 0 there exists a measurable set K ⊂ E such that

(i) L d(E \K) ≤ ε;
(ii) Lip(f |K) ≤ exp

(
Cε−1/p

)
for some constant C <∞ independent on ε.

Moreover we denote by |f |LEp(E) the smallest constant C such that the conditions above
hold.

Remark 7.30. Note that:

• Lipexp∞ is the space of functions which coincide with a Lipschitz function
almost everywhere;
• |f |LEp(E) is not homogeneus, and then it is not a norm, and can be explicitely

defined as

|f |LEp(E) = sup
ε>0

{
ε1/p log min

{
Lip(f |K) : L d(E \K) ≤ ε

}}
;

• one can compare this definition with a similar result for Sobolev functions: if
f ∈ W 1,p(E; Rk), then for every ε > 0 there exists a set K ⊂ E such that
L d(E \K) ≤ ε and Lip(f |K) ≤ ‖Df‖Lp(E)ε

−1/p.

Theorem 7.31. Let b be a vector field satisfying assumptions (R1) and (R2) and
such that div b ∈ L1([0, T ];L∞(Rd)). Let ū ∈ L∞(Rd) such that ū ∈ Lipexpp(Ω) for
every Ω ⊂⊂ Rd. Let u be the solution of the Cauchy problem

(7.21)

{
∂tu(t, x) + b(t, x) · ∇u(t, x) = 0
u(0, ·) = ū .

Then for every Ω ⊂⊂ Rd we have that

sup
0≤t≤T

|u(t, ·)|LEp(Ω) <∞ .

Remark 7.32. Recalling Remark 2.2 we observe that we can define u(t, ·) for every
t ∈ [0, T ] in such a way that u ∈ C([0, T ], L1

loc(Rd)− w).

Proof of Theorem 7.31. Let X be the regular Lagrangian flow generated by b.
Then:

(a) There exists a constant C > 0 such that C−1L d(Ω) ≤ L d
(
X(t,Ω)

)
≤

CL d(Ω) for every t ∈ [0, T ] and for every Ω ⊂ Rd; therefore, for every t ∈
[0, T ], we can define Ψ(t, x) via the identity X(t,Ψ(t, x)) = Ψ(t,X(t, x)) = x
for L d-a.e. x ∈ Rd;

(b) For every t we have u(t, x) = u(Ψ(t, x)) for almost every x.



126 7. A PRIORI ESTIMATES FOR REGULAR LAGRANGIAN FLOWS

Note that if for every t we consider the regular Lagrangian flow Φ(t, ·, ·) of
dΦ
dτ

(t, τ, x) = −b(t− τ,Φ(t, τ, x))

Φ(t, 0, x) = x ,

then Ψ(t, x) = Φ(t, t, x). Therefore, thanks to Proposition 7.18 we conclude that

sup
0≤t≤T

|Ψ(t, ·)|LEp(Ω) ≤ C1(Ω)

for every Ω ⊂⊂ Rd.
Let t ∈ [0, T ], R > 0 and ε > 0 be given. Choose K1 ⊂ BR(0) such that

• L d
(
BR(0) \K1

)
≤ ε/3,

• Lip(Ψ(t, ·)|K1) ≤ exp(|Ψ(t, ·)|LEp(BR(0))(ε/3)−1/p).

Applying Proposition 7.16 we can find R̄ > 0 such that

L d
(
Ψ(t, BR(0)) \BR̄(0)

)
≤ ε

3C
,

where C is the constant in (a). Now, select K2 ⊂ BR̄(0) such that

• L d
(
BR̄(0) \K2

)
≤ ε/3C,

• Lip(ū|K2) ≤ exp(|ū|LEp(BC(R)(0))(ε/3C)−1/p),

where again C is as in (a). Next consider K = K1 ∩ (Ψ(t, ·))−1(K2) = K1 ∩X(t,K2).
Since

BR(0) \K ⊂
(
BR(0) \K1

)
∪
(
BR(0) \X(t,K2)

)
⊂
(
BR(0) \K1

)
∪X

(
t,Ψ(t, BR(0)) \BR̄(0)

)
∪X(t, BR̄(0) \K2) ,

we have

L d
(
BR(0) \K

)
≤ L d

(
BR(0) \K1

)
+ L d

(
X
(
t,Ψ(t, BR(0)) \BR̄(0)

))
+ L d

(
X(t, BR̄(0) \K2)

)
≤ ε .

Given x, y ∈ K we have Ψ(t, x),Ψ(t, y) ∈ K2 and hence we can estimate

|u(t, x)− u(t, y)| = |u(Ψ(t, x))− ū(Ψ(t, y))| ≤ Lip(ū|K2)|Ψ(t, x)−Ψ(t, y)|
≤ Lip(ū|K2)Lip(Ψ(t, ·)|K1)|x− y|

= |x− y| exp
{[

(3C)1/p|ū|LEp(BR̄(0)) + 31/p|Ψ(t, ·)|LEp(BR(0))

]
ε−1/p

}
.

Therefore ε1/p log(Lip(u(t, ·)|K)) is bounded by a constant independent of ε and t (but
which depends on R). Taking the supremum over t and ε, we conclude that

sup
0≤t≤T

|u(t, ·)|LEp(BR(0)) ≤ C(R) ,

and this concludes the proof. �
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6. An application to a conjecture on mixing flows

In [47] the author considers a problem on mixing vector fields on the two-dimensio-
nal torus K = R2/Z2. In this section, we are going to show that the Lipschitz estimate
of Proposition 7.18 gives an answer to this problem, although in the Lp setting (p > 1)
instead of the L1 setting considered in [47].

Fix coordinates x = (x1, x2) ∈ [0, 1[×[0, 1[ on K and consider the set

A =
{

(x1, x2) : 0 ≤ x2 ≤ 1/2
}
⊂ K .

If b : [0, 1] ×K → R2 is a smooth time-dependent vector field, we denote as usual by
X(t, x) the flow of b and by Φ : K → K the value of the flow at time t = 1. We assume
that the flow is nearly incompressibile, so that for some κ′ > 0 we have

(7.22) κ′L 2(Ω) ≤ L 2
(
X(t,Ω)

)
≤ 1
κ′

L 2(Ω)

for all Ω ⊂ K and all t ∈ [0, 1]. For a fixed 0 < κ < 1/2, we say that Φ mixes the set
A up to scale ε if for every ball Bε(x) we have

κL 2(Bε(x)) ≤ L 2
(
Bε(x) ∩ Φ(A)

)
≤ (1− κ)L 2(Bε(x)) .

Then in [47] the following conjecture is proposed:

Conjecture 7.33 (Bressan’s mixing conjecture). Under these assumptions, there
exists a constant C depending only on κ and κ′ such that, if Φ mixes the set A up to
scale ε, then ∫ 1

0

∫
K
|Dxb| dxdt ≥ C| log ε| for every 0 < ε < 1/4.

In this section we show the following result:

Theorem 7.34. Let p > 1. Under the previous assumptions, there exists a constant
C depending only on κ, κ′ and p such that, if Φ mixes the set A up to scale ε, then∫ 1

0
‖Dxb‖Lp(K) dt ≥ C| log ε| for every 0 < ε < 1/4.

Proof. We set M = ‖Dxb‖L1([0,1];Lp(K)) and A′ = K \ A. Applying Proposition
7.18, and noticing that the flow is bounded since we are on the torus, for every constant
η > 0 we can find a set B with L 2(B) ≤ η such that

(7.23) Lip
(
Φ−1|K\B

)
≤ exp(βM) ,

where the constant β depends only on κ′, η and p. Since Φ mixes the set A up to scale
ε, for every x ∈ A we have

(7.24) L 2
(
Bε(Φ(x)) ∩ Φ(A′)

)
≥ κL 2

(
Bε(Φ(x))

)
.

We define
Ã =

{
x ∈ A : Bε(Φ(x)) ∩

[
Φ(A′) \B

]
= ∅
}
.

From this definition and from (7.24) we get that for every x ∈ Ã
(7.25) L 2

(
Bε(Φ(x)) ∩B

)
≥ κL 2

(
Bε(Φ(x))

)
.
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From (7.25) and the Besicovitch covering theorem we deduce that for an absolute
constant c we have

L 2
(
Φ(Ã)

)
≤ c

κ
L 2(B) ≤ cη

κ
.

From the compressibility condition (7.22) we deduce

L 2(Ã) ≤ cη

κκ′
.

Since, using again (7.22), we know that

L 2
(
Φ−1(B)

)
≤ L 2(B)

κ′
≤ η

κ′
,

we can choose η > 0, depending on κ and κ′ only, in such a way that

L 2
(
Ã
)

+ L 2
(
Φ−1(B)

)
≤ 1

6
.

This implies the existence of a point x̄ ∈ A \
[
Ã∪Φ−1(B)

]
with dist (x̄, A′) ≥ 1/6. Let

ȳ = Φ(x̄). Since x̄ 6∈ Ã, we can find a point z̄ ∈ Bε(ȳ) ∩
[
Φ(A′) \ B

]
. Clearly we have

|ȳ − z̄| ≤ ε and (since Φ−1(z) ∈ A′) we also have |x̄− Φ−1(z̄)| ≥ 1/6.
Since ȳ, z̄ 6∈ B, we can apply (7.23) to deduce

1
6
≤ εLip

(
Φ−1|K\B

)
≤ ε exp(βM) ,

where now β depends only on κ, κ′ and p, since η has been fixed. This implies that

M = ‖Dxb‖L1([0,1];Lp(K)) ≥
1
β

log
(

1
6ε

)
.

Hence we can find ε0 > 0 such that

M ≥ 1
2β
| log ε| for every 0 < ε < ε0.

We are now going to show the thesis for every 0 < ε < 1/4. Indeed, suppose that
the thesis is false. Then, we could find a sequence {bh} of vector fields and a sequence
{εh} with ε0 < εh < 1/4 in such a way that

‖Dxbh‖L1([0,1];Lp(K)) ≤
1
h
| log εh|

and the corresponding map Φh mixes the set A up to scale εh. This implies that

‖Dxbh‖L1([0,1];Lp(K)) ≤
1
h
| log εh| ≤

1
h
| log ε0| −→ 0 as h→∞.

Up to an extraction of a subsequence, we can assume that εh → ε̄ and that Φh → Φ
strongly in L1(K). For this, we apply the compactness result in Theorem 7.20, noticing
that (7.22) gives a uniform control on the compressibility constants of the flows and
that we do not need any assumption on the growth of the vector fields, since we are on
the torus and then the flow is automatically uniformly bounded. Now, notice that the
mixing property is stable with respect to strong convergence: this means that Φ has
to mix up to scale ε̄ ≤ 1/4. But since ‖Dxbh‖L1([0,1];Lp(K)) → 0, we deduce that Φ is
indeed a translation on K, hence it cannot mix the set A up to a scale which is smaller
than 1/4. From this contradiction we get the thesis. �
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Remark 7.35. We notice that the constant 1/4 in Theorem 7.34 depends on the
shape of the set A: this bound comes from the fact that a translation does not mix up
to a scale ε < 1/4. Our proof can be easily extended to the case of a measurable set A
with any shape, giving a different upper bound for the values of ε such that the result
is true.





Appendix: Background material and technical results

In this appendix we collect some results on measure theory, Lipschitz functions,
BV functions (for which good general references are [17], [18], [91], [92] and [96]) and
on the theory of maximal functions (for which we refer to [120]).

1. Measure theory

Let X be a separable metric space. We denote by B(X) the family of the Borel
subsets of X, by P(X) the family of the Borel probability measures on X, byM(X) the
family of the locally finite Borel measures on X and by M+(X) the subset of M(X)
consisting of all nonnegative locally finite Borel measures on X. In a similar fashion
we can consider vector-valued or matrix-valued measures on X. The total variation of
a measure µ ∈M(X) is denoted by |µ|. In the case when |µ|(X) < +∞ we say that µ
has finite mass and we set ‖µ‖M(X) = |µ|(X). The support of a measure µ ∈M(X) is
the closed set defined by

sptµ = {x ∈ X : |µ|(U) > 0 for each open neighborhood U of x } .
A measure µ ∈M(X) is concentrated on a Borel set E ⊂ X if |µ|(X \ E) = 0.

If µ ∈ M(X) and ν ∈ M+(X) we say that µ is absolutely continuous with respect
to ν (and we write µ� ν) if |µ|(E) = 0 for every Borel set E ⊂ X such that ν(E) = 0.
We say that two measures µ and ν ∈M(X) are mutually singular (and we write µ ⊥ ν)
if they are concentrated on disjoint Borel sets. If µ ∈M(X) and E ⊂ X is a Borel set,
the restriction of µ to E is the measure µ E ∈M(X) defined by (µ E)(A) = µ(A∩E)
for every Borel set A ⊂ X. If f : X → Y is a Borel map between two separable metric
spaces X and Y and µ ∈ M(X) we denote by f#µ ∈ M(Y ) the push-forward of the
measure µ, defined by

(A.1) (f#µ)(E) = µ(f−1(E)) for every Borel set E ⊂ Y .

We denote by L d the Lebesgue measure on Rd and with H k the k-dimensional
Hausdorff measure on Rd. For any subset A of Rd we define the characteristic function
1A as

1A(x) =
{

1 if x ∈ A
0 if x 6∈ A.

A family F ⊂M+(X) is bounded if there exists a constant C with ‖µ‖M(X) ≤ C for
each µ ∈ F . We say that a bounded sequence {µh} ⊂ M+(X) is narrowly convergent
to µ ∈M+(X) as h→∞ if

lim
h→∞

∫
X
f(x) dµh(x) =

∫
X
f(x) dµ(x)
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for every f ∈ Cb(X), the space of continuous and bounded real functions defined on
X. We say that a bounded family F ⊂M+(X) is tight if for every ε > 0 there exists a
compact set Kε ⊂ X such that µ(X \Kε) ≤ ε for every µ ∈ F . The following theorem
characterizes the relatively compact subsets with respect to the narrow topology.

Theorem A.1 (Prokhorov). Assume that X is a complete metric space. Then a
bounded family F ⊂ M+(X) is relatively compact with respect to the narrow conver-
gence if and only if it is tight.

Moreover, a necessary and sufficient condition for tightness is the existence of a
coercive functional Ψ : X → [0,+∞] such that

∫
X Ψ dµ ≤ 1 for every µ ∈ F . It is also

simple to check that a bounded family F ⊂ M+(X × Y ) is tight if and only if the
families of the marginals

(
πX
)

#
F ⊂M+(X) and

(
πY
)

#
F ⊂M+(Y ) are tight.

We also recall a particular case of the disintegration theorem. Let µ ∈M+(X×Y ),
define ν = (πX)#µ and assume that ν ∈ M+(X). Then there exists a Borel family
{µx}x∈X ⊂M+(Y ), which is uniquely determined ν-a.e., such that

µ =
∫
X
µx dν(x) .

Fix a measure µ ∈ M+(X). We say that a sequence of functions {fh} defined on
X and with values in Rk converges in µ-measure to a function f if

lim
h→∞

µ
(
{x ∈ X : |fh(x)− f(x)| > δ}

)
= 0 for every δ > 0.

We say that a Borel set Σ ⊂ Rd is H k-rectifiable if there exist countably many
Lipschitz functions fi : Rk → Rd such that

H k
(

Σ \
⋃
i

fi
(
Rk
))

= 0 .

We finally recall the coarea formula for Lipschitz functions (see for instance Sec-
tion 2.12 of [17]): for every Lipschitz map f : Rd → Rd−k and every positive Borel
function ϕ : Rd → [0,+∞] there holds

(A.2)
∫

Rd
ϕJ dL d =

∫
Rd−k

[∫
Eh

ϕdH k

]
dL d−k(h) ,

where J = [det(∇f · t∇f)]1/2 is the Jacobian of f and Eh = {x ∈ Rd : f(x) = h}, for
h ∈ Rd−k, are the level sets of the function f . If φ ∈ L1(Rd) from (A.2) we also deduce

(A.3)
∫

Rd
φdL d =

∫
Rd−k

[∫
Eh

φ

J
dH k

]
dL d−k(h) .

2. Lipschitz functions, extension theorems and approximate
differentiability

A map f : Ω ⊂ Rd → Rk is Lipschitz if there exists a constant L such that

(A.4) |f(x)− f(y)| ≤ L|x− y| for every x, y ∈ Ω.

The minimal constant L such that (A.4) holds is called the Lipschitz constant of the
function f and is denoted by Lip(f).
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Theorem A.2 (Rademacher). A Lipschitz function f : Rd → Rk is differentiable
at L d-a.e. x ∈ Rd.

It is simple to check that every real-valued Lipschitz function f : Ω ⊂ Rd → R can
be extended to a function f̃ : Rd → R with Lip(f̃) = Lip(f) (by extension we mean
that f̃ |Ω = f). Indeed, it is sufficient to set f̃ = f+ or f̃ = f−, where

f±(x) = inf
{
f(y)± L|x− y| : y ∈ Ω

}
and L = Lip(f). Let us notice that f+ and f− are respectively the biggest and the
smallest extensions. The same result holds also if Ω is a metric space. Moreover,
arguing componentwise, we deduce that every Lipschitz function f : Ω ⊂ Rd → Rk can
be extended to a function f̃ : Rd → Rk with Lip(f̃) =

√
k Lip(f). In fact, for subsets

of Rd, also the following stronger result holds:

Theorem A.3 (Kirszbraun). Let f : Ω ⊂ Rd → Rk be a Lipschitz function. Then
there exists an extension f̃ : Rd → Rk with Lip(f̃) = Lip(f).

Its proof is considerably more difficult and we mention it for completeness, although
it is not strictly necessary in our presentation.

We say that a Borel map f : Rd → Rk is approximately differentiable at x ∈ Rd if
there exists a linear map L : Rd → Rk such that the difference quotients

y 7→ f(x+ εy)− f(x)
ε

locally converge in measure as ε ↓ 0 to Ly. This is clearly a local property. It is possible
to show that, if f |K is a Lipschitz map for some set K ⊂ Rd, then f is approximately
differentiable at almost every point of K. In the following theorem we show a kind of
converse of this statement: an approximately differentiable map can be approximated,
in the Lusin sense, with Lipschitz maps.

Theorem A.4. Let f : Ω → Rk. Assume that there exists a sequence of Borel
sets Ah ⊂ Ω such that L d

(
Ω \ ∪hAh

)
= 0 and f |Ah is Lipschitz for any h. Then f

is approximately differentiable at L d-a.e. x ∈ Ω. Conversely, if f is approximately
differentiable at all points of Ω′ ⊂ Ω, we can write Ω′ as a countable union of sets Ah
such that f |Ah is Lipschitz for any h (up to a redefinition of f in an L d-negligible set).

3. Functions with bounded variation

We say that a function f : Ω ⊂ Rd → R has bounded variation, and we write
f ∈ BV (Ω), if f ∈ L1(Ω) and the distribution derivative Df is a vector-valued finite
measure in Ω. We also introduce the space BVloc(Ω) of functions with locally bounded
variation as the class of those f : Ω ⊂ Rd → R such that f ∈ BV (Ω̃) for every
Ω̃ ⊂⊂ Ω. The spaces BV (Ω; Rk) and BVloc(Ω; Rk) are defined by requiring BV or
BVloc regularity on each component. The space BV (Ω) is a Banach space with the
norm

‖f‖BV (Ω) = ‖f‖L1(Ω) + ‖Df‖M(Ω) .
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When f ∈ L1(Ω; Rk) we can consider the set of points of approximate discontinuity
Sf defined by

Ω \ Sf =

{
x ∈ Ω : ∃z ∈ Rk s.t. −

∫
Br(x)

|f(y)− z| dy → 0 as r → 0

}
.

Every x ∈ Ω\Sf is called a point of approximate continuity. The value z ∈ Rk appearing
in the definition, when it exists, is unique and is denoted by f̃(x). It is simple to check
that Sf is a Borel set and that the equality f = f̃ holds L d-a.e. in Ω \ Sf . We also
introduce the set of points of approximate jump Jf ⊂ Sf :

Jf =

{
x ∈ Sf : ∃ν ∈ Sd−1, ∃z± ∈ Rk s.t. −

∫
B±ν,r(x)

|f(y)− z±| dy → 0 as r → 0

}
,

where we have defined the half-balls

B±ν,r(x) = {y ∈ Br(x) : (y − x) · ν ≷ 0} .

The triple (ν, z−, z+), when it exists, is unique up to a permutation of z− and z+ and a
change of sign of ν, and is denoted by (ν(x), f−(x), f+(x)). Notice that f−(x) 6= f+(x)
when they exist, since x ∈ Sf . It is easy to check that Jf is a Borel set and that f±

and ν can be chosen to be Borel functions in their domain of definition.
For f ∈ BV (Ω; Rk), with Ω ⊂ Rd, we can use the Lebesgue decomposition theorem

to obtain
Df = Daf +Dcf ,

with Daf � L d and Ds ⊥ L d. The measure Daf is called the absolutely continuous
part of the derivative and the measure Dsf is called the singular part of the derivative.
The singular part can be decomposed as

Dsf = Djf +Dcf = Dsf Jf +Dsf (Ω \ Jf ) ,

where Djf is the jump part of the derivative and Dcf is the Cantor part of the de-
rivative. The subspace SBV (Ω; Rk) ⊂ BV (Ω; Rk) of special function with bounded
variation consists of those f ∈ BV (Ω; Rk) with Dcf = 0.

The following important result relative to the structure of BV functions holds. For
the notion of rectifiable set we refer to Appendix 1.

Theorem A.5 (Structure of BV functions). Let f ∈ BV (Ω; Rk). Then the approx-
imate jump set is countably H d−1-rectifiable, H d−1(Sf \ Jf ) = 0 and

(A.5) Djf =
(
f+ − f−

)
⊗ ν H d−1 Jf .

The following deep result by Alberti (see [3] and the recent simplified presentation
of [78]) says that the rank-one structure of the jump part of the derivative expressed
by (A.5) is also shared by the Cantor part.

Theorem A.6 (Alberti’s Rank-one theorem). Let f ∈ BV (Ω; Rk). Then there exist
two Borel functions ξ : Ω→ Sd−1 and η : Ω→ Sk−1 such that

Dsf = ξ ⊗ η|Dsf | .
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In a similar fashion we can define the space of vector fields with bounded deformation
in an open set Ω ⊂ Rd by requiring that the simmetric part of the distributional
derivative Ef = 1

2

(
Df + tDf

)
is a measure:

BD(Ω; Rd) =
{
f ∈ L1(Ω; Rd) : Ef is a matrix valued finite measure in Ω

}
.

We refer to [123] and [12] for a presentation of the main properties of this class of
vector fields. As in the BV case we can decompose Ef = Eaf +Ejf +Ecf and define
the space of special vector fields with bounded deformation as

SBD(Ω; Rd) =
{
f ∈ BD(Ω; Rd) : Ecf = 0

}
.

4. Maximal functions

We recall here the definition of the local maximal function of a locally finite measure
and of a locally summable function and we state some well-known properties.

Definition A.7 (Local maximal function). Let µ be a (vector-valued) locally finite
measure. For every λ > 0, we define the local maximal function of µ as

Mλµ(x) = sup
0<r<λ

|µ|(Br(x))
L d(Br(x))

= sup
0<r<λ

−
∫
Br(x)

d|µ|(y) x ∈ Rd .

When µ = fL d, where f is a function in L1
loc(Rd; Rk), we will often use the notation

Mλf for Mλµ.

In Chapter 7 we made an extensive use of the following two lemmas.

Lemma A.8. Let λ > 0. The local maximal function of µ is finite for L d-a.e. x ∈ Rd

and we have ∫
Bρ(0)

Mλf(y) dy ≤ cd,ρ + cd

∫
Bρ+λ(0)

|f(y)| log(2 + |f(y)|) dy .

For p > 1 and ρ > 0 we have the strong estimate∫
Bρ(0)

(Mλf(y))p dy ≤ cd,p
∫
Bρ+λ(0)

|f(y)|p dy ,

which is however false for p = 1. For p = 1 we only have the weak estimate

(A.6) L d ({y ∈ Bρ(0) : Mλf(y) > t}) ≤ cd
t

∫
Bρ+λ(0)

|f(y)| dy ,

for every t > 0.

Lemma A.9. If u ∈ BV (Rd) then there exists an L d-negligible set N ⊂ Rd such
that

|u(x)− u(y)| ≤ cd|x− y| (MλDu(x) +MλDu(y))

for x, y ∈ Rd \N with |x− y| ≤ λ.
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We also recall the Chebyshev inequality: for every t > 0 we have

L d({|f | > t}) ≤ 1
t

∫
{|f |>t}

|f(x)| dx ≤ L d({|f | > t})1/q

t
‖f‖Lp(Ω) ,

where 1
p + 1

q = 1, and this implies

(A.7) L d({|f | > t})1/p ≤
‖f‖Lp(Ω)

t
.
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[125] H. Triebel & H. Winkelvoss: A Fourier analytical characterization of the Hausdorff dimension

of a closed set and of related Lebesgue spaces. Studia Math., 121 (1996), 149–166.
[126] J. I. E. Urbas: Regularity of generalized solutions of Monge–Ampère equations. Math. Z., 197

(1988), 365–393.
[127] A. Vasseur: Strong traces for solutions of multi-dimensional scalar conservation laws. Arch.

Rational Mech. Anal., 160 (2001), 181–193.
[128] C. Villani: Topics in mass transportation. Graduate Studies in Mathematics, 58 (2004), Amer-

ican Mathematical Society.
[129] C. Villani: Optimal transport: old and new. Lecture Notes of the 2005 Saint-Flour Summer

school.
[130] L. C. Young: Lectures on the calculus of variations and optimal control theory. Saunders, 1969.
[131] W. P. Ziemer: Weakly differentiable functions. Sobolev spaces and functions of bounded varia-

tion. Graduate Texts in Mathematics, 120 (1989), Springer-Verlag.


