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Introduction

The investigation of o-minimality has been tightly linked, almost from its
beginning, with the study of groups definable in o-minimal structures.

Since A. Pillay’s work [Pil–88], where he proves that any definable group
has a unique structure of definable group manifold, early results [Raz–91]
[NPR–91] [MS–92] [Str–94a] [Str–94b] [PPS–00a] [PPS–02] showed interesting
connections between definable groups and classic mathematical objects as real
Lie groups and Nash groups. Nevertheless striking differences [PS–99] also
came to light. An important milestone has been reached with the solution
of the so called Pillay’s conjectures [Pil–04] [BOPP–05] [HPP–08a], providing a
strong link between definable groups and real Lie groups: namely there is a
real Lie group G/G00 associated to each definable group G. Under suitable
assumptions, G/G00 is known to embody many group-theoretic, topological,
and model-theoretic properties of G. The aim of the present work is to proceed
with the investigation of the links between a definable group and its associated
Lie group, in particular from the topological point of view.

Early explorations in the field focused on low-dimensional cases ([Raz–91],
[NPR–91], [MS–92], [Str–94b]) and on several algebraic aspects. The o-minimal
Euler characteristic [Str–94a] provided an analogue in the definable context
of the cardinality in the finite groups context. Using the o-minimal Euler
characteristic, A. Strzebonski obtained analogues of the Sylow theorems for
definable groups, and a finiteness result for the torsion on definable abelian
groups. Also the concept of definable compactness introduced by Y. Peterzil and
C. Steinhorn in [PS–99] was to play an important role in the future develop-
ments. In particular, they prove that each non definably compact definable
group has a one-dimensional definable subgroup. However a definably com-
pact (infinite) group may non even have a single definable one-dimensional
subgroup.

Recall that an infinite definable group G is definably semisimple if it has no
abelian infinite normal definable subgroup. A profound study of semisim-
ple definable groups, carried out by M.Otero, Y. Peterzil, A. Pillay, and
S. Starchenko [OPP–96] [PPS–00a] [PPS–02], brought to light a fundamen-
tal dichotomy between the semisimple and the abelian case. A fundamental
fact to be mentioned, in this respect, is that every definable group G is either
abelian-by-finite or it is an extension

1→ Z(G)→ G→ G/Z(G)→ 1

of a definable semisimple group G/Z(G) by a definable abelian group Z(G)
(see [PS–00, Corollary 5.4]).
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Introduction

The semisimple case is very well understood, since it reduces to the
semialgebraic case because of the so called very good reduction: Suppose
that N is an o-minimal expansion of an ordered group. If H is a definably
connected semisimple definable group, then there exists a definable real
closed field R such that H is definably isomorphic in N, over parameters, to
an R-semialgebraic group H ′ defined without parameters1. Moreover, note
that the real close field R does not depend on H [OPP–96, Theorem 1.1]. The
quoted fact is the endpoint of a chain of earlier results (for example [PPS–00a,
Theorem 2.37] [PPS–00b, Theorem 1.1] [PS–00, Corollary 5.1]). The starting
point of it has been the centerless case [PPS–00a, Theorem 2.37], which is dealt
with trough Lie algebræ (adapted to the definable context).

On the other hand, in the abelian case, the Lie algebra has no structure
to work with. In this rather different situation, the most important results
[EO–04] – regarding the classification of the torsion subgroups of a definably
compact abelian group – have been obtained trough the methods of algebraic
topology.

A great breakthrough came with the formulation of the Pillay’s conjectures
(Theorem 1.4.4, as stated in [Pil–04, Conjecture 1.1]). The conjectures, now
proven, state that:

i. for each definable group G in a saturated enough o-minimal structure there is
a smallest type-definable subgroup G00 of bounded index—that subgroup
being of course normal;

ii. the quotient G/G00 equipped with the logic topology (i.e. a subset of G/G00 is
closed if its preimage in G is type-definable) is a real Lie group;

iii. if G is definably compact, then the dimension of G/G00 as a Lie group
coincides with the o-minimal dimension of G.

The proof of the existence of the infinitesimal subgroup G00 and that
G/G00 is a Lie group is due to A. Berarducci, M. Otero, Y. Peterzil and
A. Pillay [BOPP–05]. The equality of the dimension has been proven by
E. Hrushovski, Y. Peterzil and A. Pillay in [HPP–08a] assuming that the un-
derlying o-minimal structure expands a real closed field—this will be our
standing assumption. Entirely new model-theoretic ingredients entered the
scene with the solution of the conjectures: nip theories and Keisler measures.
These and the methods used have significance in the field of model theory
going beyond the realm of o-minimality.

Focusing on the definably compact case, the connections between G

and G/G00 are not limited to the identity of the dimensions. For exam-
ple, the two groups have been proved to have the same cohomology [Ber–09]
(using results in [HP–09]); when G is definably connected they are even ele-
mentarily equivalent (in the group language) [HPP–08a]. A. Berarducci also
proves [Ber–07, Theorem 5.2] that the correspondence between G and G/G00
is indeed an exact functor. In this work, we will investigate further the con-
nection between a definably compact group G definable in an o-minimal
expansion of a real closed field and its Lie counterpart G/G00.

Our principal results are that the homotopy groups of G/G00 do coincide
with the definable homotopy groups of G (Theorem 3.1.9), and that G/G00

1M. Edmundo, G. Jones, N. Peatfield, private communication.
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determines the definable homotopy type of G (Theorem 4.8.7). And we
show that the isomorphisms between the fundamental group of G and the
definable fundamental group of G/G00 given by Theorem 3.1.9 (and already
established in the abelian case – the hard one – in [EO–04]) comes from a
natural map. Examples in [PS–99] show that given two definably compact
groups G and H definable in the same o-minimal structure, the isomorphism
of G/G00 and H/H00 does not imply the definable isomorphism of G and H—
i.e. G/G00 does not determine G up to definable isomorphism. However,
a sensible question is whether G/G00 determines the topology of G. Our
Theorem 3.3.4 reduces the question to the abelian case.

I will now review in more detail the contents of this thesis. The original
results contained in this work have been partly obtained by the author in
collaboration with A. Berarducci and M. Otero, and have been published in
[BMO–08], [BM–10], and [Mam–10]. In particular: Lemma 2.3.2, Section 2.4,
and Section 3.1 contain results obtained in collaboration with A. Berarducci
and M. Otero; and Chapter 4 contains results obtained in collaboration with
A. Berarducci.

In chapter 2, we will introduce some technical machinery regarding an o-
minimal version of the classical notions of fibre bundle and fibration. This part
of the dissertation may be considered pure o-minimal geometry in the spirit
of [vdD–98]. The only prerequisite to chapter 2 is, in fact, that very book. The
results presented can be regarded as generalizations of similar ones known for
definable covering maps (see [EO–04] and [BO–09]). In particular we prove the
homotopy lifting property for definable maps and definable bundle maps, and
we show that a definable map is a fibration if and only if it is locally a fibration
(hence, in particular, a definable fibre bundle is a definable fibration). We will
apply the theory developed here to the definable groups using Lemma 2.1.2
(that a quotient of definable groups is a definable bibre bundle). This will
enable us to apply algebraic topologic tools (like the long exact sequence of
homotpy groups) developed in [BO–09] for definable fibrations.

Although the results are akin to their classical topological counterparts,
there are some remarkable differences. For example, we deemed appropriate
not to equip definable fibre bundles with a definable bundle group, because
many examples would have been lost otherwise—in fact, even a single de-
finable homeomorphism of a definable set may not be an element of any
definable group of homeomorphisms, like x→ x3 in (R,+, ·). Hence we
call definable fibre bundle basically a locally trivial continuous definable map
having fibres definably homeomorphic to some fixed definable set, and as
bundle map we accept any fibre-preserving continuous definable map. In
order for this large structure group (all the definable homeomorphisms of
the fibre) to behave as a topological group, we must however impose some
restriction on the fibre, the correct condition being that the fibre must be
locally definably compact. As a second example, observe that many of the
usual topological arguments make use of devices as the compact-open topol-
ogy on path-spaces or the Lebesgue number: none of these have meaningful
counterparts in the o-minimal setting.

In chapter 3, we will prove several results regarding the topology of
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Introduction

definably compact definable groups. The main propositions here are Theo-
rem 3.1.9 stating that the definable homotopy groups of G are isomorphic to
the homotopy groups of G/G00, and Theorem 3.3.4, which says that every de-
finably compact group is definably homeomorphic to the topological product
of its derived subgroup – which is definable by [HPP–08b] – and an abelian
group. We will also point out a perhaps unexpected discrepancy between the
definably compact world and the compact Lie world: the short exact sequence

1→ [G,G]→ G→ G/[G,G]→ 1

always splits for compact Lie groups, but the same may not happen for
definably compact definable groups (Example 3.3.6).

Theorem 3.1.9 (that the definable homotopy groups of G are isomorphic to
the homotopy groups of G/G00) is established in a somewhat indirect way.
For semisimple groups the result is an easy application of known theory since
it reduces to the semialgebraic case via results in [PPS–00a] and [PPS–02]
(see also the very good reduction for definable semisimple groups [EJP–07]),
the semialgebraic case, in turn, is dealt with using results in [BO–09]. The
hard case is for abelian groups, because of known examples which show
that definably compact abelian groups do not factorize into products of one-
dimensional subgroups (as opposed to compact abelian Lie groups). In the
abelian case, we have been able to prove that the higher homotopy groups are
divisible and finitely generated. This implies that the the higher homotopy
groups are trivial. Our proof works again by transfer to the reals, however we
can not transfer the full group structure, instead we work with the induced
definable H-space structure, which proves flexible enough be transferred.
Finally we join the two cases using the long exact sequence for definable
homotopy groups [BO–09, Section 4].

The same difficulty with the factorization of definably compact abelian
groups is met in the proof of Theorem 3.3.4. Here we introduce a homotopic
invariant (Definition 3.2.2) to characterize trivial principal definable fibre bun-
dle over a definably compact abelian group, and we use Theorem 3.1.6 (every
definably compact abelian group is definably homotopy equivalen to a stan-
dard torus of the same dimension) to replace a possibly wild definable abelian
group with a factorized torus. Theorem 3.1.6 is, in turn, a consequence of
Theorem 3.1.9 and the o-minimal Whitehead Theorem [BO–09, Theorem 5.6].

Finally, in chapter 4, we intend to elaborate on the isomorphism be-
tween the definable fundamental group of G and the fundamental group
of G/G00. The fundamental group was computed in the abelian case, the
hard one, in [EO–04]. We start from the consideration that the original proof
(i.e. [EO–04]+[HPP–08a]) is extremely indirect and doesn’t lead to a natu-
ral nor canonical isomorphism. Using results in [Ber–09] – which in turn
use the compact domination, proven in [HP–09] – we can show that a natural
isomorphism indeed exists. Moreover the fundamental group of each open
subset of G/G00 turns out to be isomorphic to the definable fundamental
group of its preimage in G (the definable fundamental group is well-defined
even though the preimage is just

∨
-definable).

vi



In order to construct an isomorphism between the definable fundamental
group of G and the fundamental group of G/G00, we work, in fact, with
the fundamental groupoids (the set of all paths modulo homotopies, with
the concatenation operation). Basically we show that there is a finite open
covering U of G/G00 with simply connected sets such that the preimages
of the sets in U are open

∨
-definable definably simply connected subsets

of G. Using these isomorphic coverings we get an induced morphism on the
fundamental groupoids, which restricts to an isomorphism of the fundamental
groups. Finally we prove that the constructed isomorphism does not depend
on the choice of the coverings, and it is indeed natural. As a consequence
the finite connected covering maps of G/G00 are in 1-to-1 correspondence
with the finite definably connected definable covering maps of G, and the
quotient of the definable universal cover of G modulo G00 is isomorphic to
the universal cover of G/G00. From this, we can draw consequences on the
definable homotopy type of definably compact groups.

The knowledgeable reader is advised to skip the introductory chapter 1

altogether.
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Chapter 1

Facts & definitions

This short chapter contains a small compendium of established results, defini-
tions, and notations. Moreover, we will establish hereunder our own notations
and conventions.

Our aim, hence, is twofold. First, we would like to give the reader a
concise summary of what we will tacitly assume in the following chapters.
Second, for mere completeness, we would like to define somewhere several
almost-standard terms like definable homotopy or infinitesimal subgroup; even
though arguably our readers don’t need that much care.

The default reference for o-minimality is [vdD–98]. However, on the
specific topic of groups definable in o-minimal structures, as far as we know,
there is no comprehensive treatise, and the vast body of mathematical work in
this field is still scattered through a number of research papers. Nevertheless,
a clean panorama of most of the established theory, with pointers to the
specific works, can be found in [Ote–08].

Nothing in this chapter is original, except, perhaps, the mistakes.



1 . Facts & definitions

1 .1 O-minimality

Definition 1.1.1. An o-minimal structure M = (R,<, . . . ) is a totally or-
dered first order structure in which all definable subsets of R are definable
from the order alone.

In Definition 1.1.1, as well as in the rest of this work, definable means de-
finable with parameters. When intending otherwise, we will stress it explicitly,
or write 0-definable to mean definable without parameters. Notably, although
not immediate from the definition itself, o-minimality is preserved through
elementary equivalence. The first order theory of an o-minimal structure is,
hence, called o-minimal theory: clearly each of its models is o-minimal. For
the basics of o-minimality the reader is referred to [vdD–98]. Nevertheless,
we will collect here those results which will be used more commonly in the
rest of this work.

By the classical quantifier elimination result of Tarski, the theory of real
closed fields with plus and times is o-minimal. From now on, until the end of
the bibliography, we will assume M

def
= (R,<, 0, 1,+, ·, . . . ) to be an o-minimal

expansion of a real closed field. Besides the reals themselves, further examples
of such expansions are:

Example 1.1.2.
i. Other real closed fields, such as the real closure of Q or the Puiseux series

ii. Rexp, the real field with the exponential function [Wil–96]
iii. Ran, the real field with all the analytic functions [0, 1]→ R, by [DvdD–88].

We will now briefly summarize those properties of M thoroughly explained
in [vdD–98]. We do this for completeness, and to help us introduce our
notation in a gradual, organic way. References to Van den Dries’ classical book
will be omitted.

Fact 1.1.3 (Cell decomposition theorem). Each definable subset of Rn (from now
on simply definable set) is a finite union of cells, where a cell is either:

i. a point
ii. the graph of a definable function defined on a cell having R as codomain

iii. the region above or below such a graph, or between two such graphs.

Clearly we have an associated notion of dimension where a point has
dimension 0, a cell of type ii has the same dimension of the domain of the
function, and a cell of type iii has dimension one plus that of the domain.
The dimension of a definable set is the maximal dimension of its cells, it does
not depend on the particular decomposition chosen, and it is invariant under
definable bijections. Clearly, dimension 0 means finite.

A definable function is a function having definable graph. We put on R
the order topology, on Rn we get a product topology, so it makes sense to
speak about continuity of definable functions. A definable map is a definable
continuous function. A definable 1-to-1 map having continuous inverse will
often be named definable homeomorphism, and its domain and codomain
will be definably homeomorphic. Definable functions are very regular: the set
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1.2. Definable spaces, compactness & connectedness

of the discontinuity points of a definable function has dimension smaller than
the domain of the function, and the same holds for differentiability up to any
order.

While we are at functions: let I denote the definable subset [0, 1] of R.
We will call definable homotopy just any definable map having the carte-
sian product of any definable set times I as domain. A definable homotopy
h : X× I→ Y is relative X ′ ⊂ X if for every x ∈ X ′ the function h(x, –) is con-
stant. A definable curve is a definable function having I as domain. A defin-
able path is a continuous definable curve. Of course, definable paths may be
concatenated, i.e. given a definable set X and two definable curves α,β : I→ X

we define

α+β : I→ X

t 7→

{
α(2t) when t < 1

2

β(2t− 1) when 1
2 6 t

however concatenation makes sense just when α(1) = β(0), in this case α+β

is itself a definable path.
The inverse of a definable 1-to-1 function is clearly definable, however

an inverse of a definable, not necessarily 1-to-1, function is, although less
clearly, definable too. This property, known as definable choice or definable
Skolem functions is true whenever M is an o-minimal expansion of an ordered
group.

As well as the cell decomposition theorem, we have the following

Fact 1.1.4 (Triangulation theorem). Each definable set is definably homeomorphic
to the realization of some finite simplicial complex.

Where by finite simplicial complex we mean a finite set K of open
affine simplexes in Rn such that for each σ1,σ2 ∈ K either σ1 ∩ σ1 = ∅ or
σ1 ∩ σ1 = τ for some common face τ of σ1 and σ2. The realization |K| of a
simplicial complex is the union of its simplexes. In particular a finite simplicial
complex is definably homeomorphic to a 0-definable subset of some standard
closed simplex

∆n
def
= {(x0, . . . , xn) ∈ Rn s.t. x0 + · · ·+ xn = 1 and x0,...,n > 0}

1 .2 Definable spaces , compactness & connectedness

A definable space is built by gluing finitely many definable sets. Fix a
definable set X and finitely many injective definable functions {gi}i

gi : Ui → Rni

whose domains {Ui}i are definable subsets of X. Assume that for each i, j the
subset gi(Ui ∩Uj) is relatively open in the image of Ui. And, finally, equip
X with the unique topology that makes all the functions gi into homeomor-
phisms.

3



1 . Facts & definitions

A definable space X is a regular definable space if for every definable
closed subset of X and every point p /∈ X, we can find disjoint definable open
neighbourhoods of p and X. Regular definable spaces are little surprise, in
fact they are just definable sets:

Theorem 1.2.1. Every regular definable space is definably homeomorphic to some
definable set (with the subspace topology).

Clearly definable sets are regular definable spaces. For this reason we will
always speak of definable sets instead of regular definable spaces. Our decision
will fail to stress the fact that we are often interested just in the space (i.e. the
set with its subset topology modulo definable homeomorphisms) and not in
the set itself as a particular subset of something else (like Rn). On the positive
side, however, we think that this improves readability, in particular once the
reader has been warned—as you have been right now.

The notions of compactness and connectedness are not preserved by
elementary extensions. For example [0, 1] ⊂ R is compact and connected,
but the same interval isn’t compact in any non-standard extension of R, and
it is even totally disconnected. To remedy this, suitable notions of definable
compactness and connectedness are given, which work for definable sets.

Definition 1.2.2 (Definable compactness, see [PS–99]). A definable set X is de-
finably compact if for every definable function f : (a,b)→ X the left and
right limits limx→a+ f(x) and limx→b− f(x) exist in X.

Definition 1.2.3 (Definable connectedness). A definable set X is definably

connected if it can not be split into the union of two relatively open non-
empty disjoint definable subsets.

Definition 1.2.2 makes sense even when X is just a definable space, how-
ever, for definable sets, it is equivalent to the more immediate closed and
bounded [PS–99, Theorem 2.1].

About Definition 1.2.3, we would like to remark that a set is definably
connected if and only if it is definably path-connected (i.e. any two points
can be connected through a definable path inside the set), and that definable
sets split into finite union of definably connected components; both are
consequences of cell decomposition.

1 .3 Algebraic topology in the definable context

Definable homotopies have been introduced to the reader in section 1.1. We
say that two definable sets X and Y are definably homotopy equivalent if
there are two definable maps f : X→ Y and g : Y → X which are homotopy
inverse of each other, i.e. f ◦ g and g ◦ f are both definably homotopic to the
identity on their respective domains. In this section we will review several
definable homotopic invariants which will play a role in the present work.

Singular homology [Woe–96] and cohomology [EO–04] have been de-
veloped in the o-minimal context. Basically, given a definable set, to it is
associated a chain complex of definable singular simplices, i.e. of definable

4



1.3. Algebraic topology in the definable context

maps form a standard simplex to the set. The definable homology is defined,
following the classical case, as the homology of that chain complex; the coho-
mology is defined by duality. All the algebraic properties are the same as for
classical (co-)homology. We will use the standard notations H∗ and H∗ for the
o-minimal homology and co-homology, no confusion will ensue.

A more general approach has been adopted in [EJP–06], which works
in any o-minimal structure (i.e. even not expanding a field). The idea is to
work with the o-minimal spectrum of a definable set, where the spectrum
of X is the set of all complete types of the elementary diagram of M con-
taining a defining formula for X (topologized as follows: a basic open set
is the set of those types which contain a defining formula for some defin-
able relatively open subset of X; this topology does not coincide with the
Stone topology). The cohomology of a definable set is, hence, defined trough
the sheaf cohomology of its o-minimal spectrum. This, more abstract, ap-
proach proved useful in later works on the cohomology of definably compact
groups [Ber–07], [Ber–09]. Nevertheless, under our assumptions, the coho-
mology defined as in [EJP–06] turns out to be equivalent to that investigated
in [EO–04] (see [Ber–07, remark 7.3]).

O-minimal homotopy groups are defined as in the topological case: equiva-
lence classes of definable maps In → X modulo definable homotopy relative to
the boundary δ(I). The group operation is as in the classical case, and as in the
classical case all homotopy groups except the fundamental group are abelian.
We will denote the n-th definable homotopy group of (X, x0) by πdef

n (X, x0);
since, when X is definably connected, the base point is irrelevant, in this
case we will just write πdef(X). The definable fundamental group was first
introduced by M. Edmundo as the set of all equivalence classes of definable
paths modulo homotopy, it has been studied in [BO–02]; the definable higher
homotopy groups have been introduced in [BO–09], to which we refer the
reader for a complete discussion.
Hn(–;G), H∗(–;R), and πdef

n are respectively co- contra- and co-variant
functors from the category of definable sets (pointed sets for πdef

n ) with definable
maps to respectively the categories of abelian groups, graded algebras, and
groups.

In particular, there is a long exact sequence for definable homotopy groups,
formally identical to the classical one (see [BO–09, section 4]). Moreover, we
will need the following analogues of well-known classical results (see [BO–09,
Theorem 5.3], and [BO–09, Theorem 5.6]):

Theorem 1.3.1 (The o-minimal Hurewicz theorems). Let X be a definably con-
nected definable set, suppose that πdef

i (X) = 0 for each i < n, then Hn(X; Z) is
isomorphic to the abelianization of πdef

n (X).

Theorem 1.3.2 (The o-minimal Whitehead theorem). Let X and Y be two defin-
ably connected sets, and let f : X→ Y be a definable map such that, for some x0 ∈ X
and all n > 1 the group homomorphism

f∗ : π
def
n (X, x0)→ πdef (Y, f(x0))

is an isomorphism. Then f is a definable homotopy equivalence.

5



1 . Facts & definitions

Both are obtained by transfer from the semialgebraic setting, basically
showing that the structure of definable homotopies reduces to that of semi-
algebraic homotopies. In particular, we will make use of the following re-
sult [BO–09, Corollary 3.6]:

Fact 1.3.3. Let X and Y be two 0-definable sets, and let f : X→ Y be a definable map.
Then there is a 0-definable map g : X→ Y definably homotopic to f. Moreover, if X
and Y are semialgebraic, then g can also be taken semialgebraic.

For definably compact sets, a further homotopic invariant is the o-minimal
Euler characteristic, however we will make no direct use of it in this work.
Perhaps surprisingly, it is preserved by any definable bijection, even non-
continuous.

1 .4 Definable groups

A definable group G is a definable set equipped with a definable group
operation.

There are many natural examples in mathematics, based on the structures
of Example 1.1.2. Finite groups, algebraic groups, and even all compact Lie
groups (since they are definable in Ran, and also since they are isomorphic to
linear groups).

By Pillay’s work [Pil–88] each definable group has a unique structure
of definable manifold that makes it into a topological group. Here, a definable

manifold is a definable space locally definably homeomorphic to Rd, for
some dimension d. By Theorem 1.2.1, under our assumptions, G with its
manifold topology is definably homeomorphic to a definable set with its
subset topology: from now on we will identify G with such a set, and call
the manifold topology Pillay’s topology. In particular, follows from the
uniqueness of Pillay’s topology that any definable homomorphism of definable
groups is continuous.

A major result in the study of definable groups has been the solution
of a set of conjectures known as Pillay’s conjectures, linking the realm
of definable groups with that of Lie groups. All of them deal with the so-
called infinitesimal subgroup G00 of a definable group G. As we will see, a
Lie group arises in a natural way from the quotient G/G00 (even when the
underlying o-minimal structure M is not based on the reals). This group
shares many properties with the original definable group. In fact, most of the
present work will be devoted to the investigation of the relations between the
definable topology of G and the topology of G/G00 in the definably compact
case. In order to make sense of this, we will summarize some model-theoretic
common sense.

We recall that a type-definable set is a set that can be presented as an
infinite intersection

⋂
i∈I Xi where each Xi is definable and I is a possibly

infinite index set. Type-definable sets come equipped with a presentation,
so it makes sense to interpret them in elementary extensions. Unlike what
happens for definable sets, an equality

⋂
i∈I Xi =

⋂
j∈J Yj can hold in some

model and fail in an elementary extension of it. To have a notion of equality

6



1.4. Definable groups

not dependent on the model, we must restrict ourselves to models that are
sufficiently saturated, i.e. assume the following.

Assumption 1.4.1. We assume the model M to be a saturated structure of
some large enough cardinality κ. Moreover we will call small any set of
cardinality less than κ.

With these conventions one has for instance that infinite conjunctions
commute with the existential quantifier, namely

∃x
⋂
i∈I

(x ∈ Xi) ≡
⋂
i∈I
∃x(x ∈ Xi)

provided the family of definable sets {Xi}i∈I is downward directed (e.g. it
is closed under finite intersections). It is common practice to say that such
equalities hold by saturation. A

∨
-definable set is a set presented as a

union
⋃
i∈I Xi, where each Xi is definable and the index set I is small. By

saturation if a type-definable set is included in a
∨

-definable set, there is some
definable set between them.

Honestly, assumption 1.4.1 is asking a lot, since in order to have prop-
erly saturated models we need, in general, the generalized continuum hy-
pothesis; and the question of whether this hypothesis can be eliminated in a
completely general situation has no definite answer. However, in our specific
case, this so-called monster model is a mere figment, intended to relieve the
burden of explicitly stating lower bounds on how much saturated and strongly
homogeneous the structure should be. A posteriori (i.e. considering that the
Pillay’s conjectures have been solved positively), we could as well assume
that small means two to the cardinality of the language and M is k-saturated and
strongly k-homogeneous for some k greater than that.

Definition 1.4.2. Let G be a definable group. Then the infinitesimal sub-
group G00 of G is the smallest type-definable subgroup of G of index less
than κ.

If such a G00 exists, then the quotient G/G00 does not depend on k, as
long as it is greater than 2#language—see [Pil–04]. It follows that, in this case,
there is a well defined group G/G00 associated to G. Hence, we will rightfully
omit any mention of k.

Definition 1.4.3. On the group G/G00 we put the following logic topology.
We say that a subset X of G/G00 if its preimage in G is type-definable.

By now, all of Pillay’s conjectures have been solved positively by works
of A. Berarducci, E. Hrushovski, M. Otero, Y. Peterzil, A. Pillay, and others,
virtually involving in the background all the known theory of groups defin-
able in o-minimal structures. Here are the conjectures, as stated in [Pil–04,
Conjecture 1.1]:

Theorem 1.4.4 (Pillay’s conjectures).
C-i. G00 exists

C-ii. the group G/G00 equipped with the logic topology is a compact Lie group

7



1 . Facts & definitions

C-iii. if G is definably compact then the o-minimal dimension of G coincides with the
dimension of G/G00 as a Lie group

C-iv. if G is definably compact and abelian, then G00 is divisible and torsion-free.

Conjectures C-i and C-ii are proved in [BOPP–05]. The rest is proved,
under our hypothesis that M expands a real closed field, in [HPP–08a].

I would like to stress, here, the high degree of indirectness of the methods
by which C-i· · ·iv have been obtained. For example, C-i&ii are proven through
a merely topological characterization of compact abelian Lie groups (due to
Pontryagin), hence the real field does not arise from the proof in any natural
way. Moreover, C-iii, in the abelian case, is the result of G and G/G00 having
isomorphic torsion, which has been proven – on the G side – by algebraic-
topological means. The latter example is emblematic: since the interesting
property – the dimension – could not be transferred directly between the
definable side and the Lie side, one had to trace it back (in both contexts) to
some auxiliary property – the structure of the torsion subgroup – which can,
by virtue of some model-theoretic result, be pushed to the other side of the
barrier.

The map F : G→ G/G00 is indeed an exact functor from the category of
definably compact definable groups to the category of Lie groups, respec-
tively with definable group isomorphisms and Lie isomorphisms [Ber–07,
Theorem 5.2]. Moreover, C-iii says that the map F : G→ G/G00 preserves the
dimension (using the respective notion of dimension in each category). It is
also known that F preserve the cohomology [Ber–09, Corollary 5.2]. In this
work, we will prove that F preserves the homotopy groups as well (Theo-
rem 3.1.9).

1 .5 Semisimple & abelian definable groups

Recall that an infinite Lie group is said semisimple if it has no infinite connected
abelian normal subgroup. A similar definition is given in the definable context:

Definition 1.5.1. A definable group G is semisimple if it is infinite and it has
no infinite abelian normal definable subgroup.

The class of semisimple definable groups coincides, in fact, with that of
semisimple semialgebraic groups. Namely we have:

Fact 1.5.2. For any semisimple definable group G, there is a group G ′, semialgebraic
without parameters, definably isomorphic to it.

Proofs of the above fact can be found either in [EJP–07, Theorem 3.1] or
in [HPP–08b, Theorem 4.4 (ii)]. All reduce to the centerless case taking the
quotient G/Z(G). The centerless case, in turn, is proven in [PPS–00a, Theorem
4.1] by methods involving the development of Lie algebra machinery in the
definable context. Follows from Fact 1.5.2 that nothing can happen among
semisimple definable groups that doesn’t already happen in the well-known
context of semialgebraic linear groups over the reals.

On the other hand, Hrushovski Peterzil and Pillay prove in [HPP–08b] that
the derived subgroup [G,G] of a definable group G is a definable semisimple

8



1.5. Semisimple & abelian definable groups

subgroup of G. Moreover, we will show that – in the definably compact case
– the definable map G→ G/[G,G] admits a continuous inverse, i.e. that any
definably compact definably connected group is definably homeomorphic to
the product of its derived subgroup and a definably compact abelian group
(see Theorem 3.3.4).

Combining the observations above, we have a strong indication that most
of the intricacies in the investigation of the topology of definably compact
groups must reside in the abelian case. The reason – we may argue – is that,
in this case, there is little algebraic structure to work with. For example, let
us observe that abelian-by-finite definable groups are the only ones that do
not define an infinite field (see [PS–00, Corollary 5.1]). Moreover, as opposed
to the semisimple case, there are striking dissymmetries between definably
compact abelian groups and compact abelian Lie groups. Most notably,
examples are known of definably compact definably connected abelian groups
which do not split into products of one-dimensional definable groups (and
don’t even have one-dimensional definable subgroups: see [PS–99, section 5]),
hence – as opposed to the case of compact abelian Lie groups – the definable
isomorphism class of a definably compact definably connected abelian group
is not determined by the mere dimension.
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Chapter 2

Definable fibre bundles & fibrations

In this chapter we will develop some basic theory of definable fibre bundles
and fibrations. The results established here will be used later to study the
topology of definably compact definable groups.

The notions of definable fibre bundle 2.1.1 and fibration 2.4.1 are modelled
on the classical ones. Both can be seen as generalizations of the notion of de-
finable covering map used in [EO–04] to analyze the torsion of definably
compact abelian groups. The reason we have to introduce our devices is, as
expressed by Lemma 2.1.2, that quotients of definable groups are definable
fibre bundles.

Most of the techniques presented here are analogous to classical topologi-
cal arguments. Not everything that works in the topological setting, however,
is viable in the o-minimal setting as well. Hence, we must choose our tech-
niques with care. The principal difficulties come from the imperfect analogy
between definable notions and their classical counterparts. For example,
we do not have o-minimal analogues of devices as the path space with its
compact-open topology, and collections of definable functions are usually
not definable object. Also definably compact sets are not actually compact,
hence no Lebesgue number, converging subsequences, &c. The difficulties
are solved by ad hoc methods whenever they arise, nevertheless there are
general patterns: for example Lemma 2.2.4 says that the structure group of our
bundles, which we assume to be the set of all definable homeomorphisms of
the fibre, although not a definable object, works as a topological group (i.e.
the inverse is continuous); a second example is Lemma 2.3.2 which has been
used everywhere the Lebesgue number would in a classical argument.



2 . Definable fibre bundles & fibrations

2 .1 Definable fibre bundles

Definition 2.1.1. A definable fibre bundle B = (B,X,p, F) consists of a
definable set F and a definable map p : B→ X between definable sets B and X
with the following properties:

i. p is onto,
ii. there is a finite open definable covering U = {Ui}i of X such that for each i

there exists a definable homeomorphism φi : Ui × F→ p−1(Ui).
The set B is said to be the bundle space of B, the set X is said to be its base,
and F its fibre. Any covering as in ii is said to be a trivialization covering

and the maps φi are called trivialization maps. We will refer to the map p
as the projection, moreover, fixed a trivialization covering U = {Ui}i with
the associated trivialization maps, we will call projection on the fibre each
of the maps pi : p−1(Ui)→ F sending x ∈ p−1(Ui) to the second component
of φ−1

i (x). Finally we will call definable cross section of B any definable
map s : X→ B such that p ◦ s is the identity on X.

Examples of definable fibre bundles are given by definable covering maps,
as defined in [EO–04, Section 2] which are, in fact, definable fibre bundles
having finite fibre, and by projections onto a component of a cartesian product
of definable sets π : X× F→ X. The latter will be referred to as trivial bundle

of base X and fibre F. In particular, we will be interested in the example given
by the following lemma.

Lemma 2.1.2. Let H be a definable subgroup of a definable group G. Then we have
a (principal) definable fibre bundle BG/H

def
= (G,G/H,p,H), where we put on G/H

the quotient topology and p : G→ G/H is the projection.

Before proving the lemma, observe that it actually makes sense, even
though, a priori, the topological space (not group: H may not be normal) G/H
is not a definable set. In fact, by [Ber–08, Theorem 4.3], G/H is definably
homeomorphic to a definable manifold, which, in turn, is definably homeo-
morphic to a definable set—since M expands a real closed field. The quotient
will be tacitly identified with such a set, from now on.

Proof. By definable choice, fix a (possibly discontinuous) definable func-
tion s : G/H→ G such that p ◦ s is the identity on G/H. Let X be a sub-
set of G/H large in G/H (large in the sense of [Pil–88]: � is large in 4
means that that the dimension of 4 \� is less than the dimension of 4
itself) such that s is continuous on X. Without loss of generality, we may
assume X to be open in G/H, in fact the interior of X is large in G/H,
since dim(δ(X)) < dim(X). By [PPS–00a, Claim 2.12] finitely many left trans-
lates U1

def
= a1X, . . . ,Un

def
= anX of X cover G/H (here a1, . . . ,an ∈ G and G

acts on G/H by left multiplication). For each i 6 n we have an induced section
si : Ui → G

si : x 7→ ais(a
−1
i x)

that is continuous on Ui. Therefore, the map φi : Ui ×H→ p−1(Ui) defined
by φi(x,y) = si(x)y is a definable homeomorphism with its inverse sending

12



2.2. Equivalence of definable fibre bundles

x to (xH, (si(xH))−1x). Finally, for each i, the map p ◦φi = p1 : Ui ×H→ Ui
is the projection onto the first coordinate.

Definition 2.1.3. Let B = (B,X,p, F) and B ′ = (B ′,X ′,p ′, F) be definable fibre
bundles having the same fibre. A definable bundle map f : B → B ′ is a
definable map f : B→ B ′ such that:

i. there is a definable map f : X→ X ′ such that the following diagram commutes

B
f //

p

��

B ′

p ′

��
X

f // X ′

ii. for each x ∈ X the map f�p−1(x) is an homeomorphism onto p ′−1 ◦ f(x).
The map f is said to be induced by f on the base spaces.

2 .2 Equivalence of definable fibre bundles

Definition 2.2.1. A definable bundle map f : B → B ′ between definable fibre
bundles B and B ′ is said to be a definable bundle isomorphism whenever
it is a homeomorphism (of the bundle spaces of B and B ′). In this case B
and B ′ are said to be isomorphic.

The following lemma gives us a useful criterion to tell when a definable
bundle map is an isomorphism, under the fairly general hypothesis that the
fibre is locally definably compact—i.e. that each point of it has a definably
compact definable neighbourhood.

Lemma 2.2.2. Let f : B → B ′ be a definable bundle map between the definable fibre
bundles B = (B,X,p, F) and B ′ = (B ′,X ′,p ′, F), with the common fibre F locally
definably compact. Suppose that the map f : X→ X ′ induced by f on the base spaces
is an homeomorphism. Then f is a definable bundle isomorphism.

We will postpone the proof of Lemma 2.2.2 until some additional machin-
ery has been developed.

Definition 2.2.3. Let X, Y, and Z be definable sets. We will call the fam-
ily F = {fx}x∈X of functions from Y to Z a definable family if the function

f : X× Y → Z

(x,y) 7→ fx(y)

is definable. We call F a continuous family whenever f is continuous.

Lemma 2.2.4. Let X and Y be definable sets, with Y locally definably compact.
Consider a definable continuous family F = {fx}x∈X of homeomorphisms of Y. We
claim that the definable family F−1 def

= {f−1x }x∈X of homeomorphisms of Y, which we
will call the inverse of F, is itself continuous.

13



2 . Definable fibre bundles & fibrations

Proof. Clearly F−1 is definable: we want to prove that the function

g : X× Y → Y

(x,y) 7→ f−1x (y)

is continuous. By contradiction, suppose g to be discontinuous at some
point (a,b ′) ∈ X× Y with b ′ = fa(b) for some b ∈ Y. Hence, there are defin-
able paths γ1 : I→ X and γ2 : I→ Y such that γ1(0) = a and γ2(0) = b ′ but
the curve x 7→ f−1

γ1(x)
◦ γ2(x) does not converge to b for x going to 0. Now, for

each x ∈ I define the curve

γ ′x : I→ Y

t 7→

{
γ2 ((1− 2t)x) for t < 1/2
fγ1((2t−1)x)(b) for 1/2 6 t

which is continuous, definable, and joins γ ′x(0) = γ2(x) to γ ′x(1) = fγ1(x)(b).
Additionally, observe that, for x going to 0, the paths γ ′x converge uniformly
to the constant path at b ′. Fix a definably compact definable neighbour-
hood V ⊂ Y of b, and let t : I→ I be the function mapping x to the least t such
that f−1

γ1(x)
◦ γ ′x(t) is in V , which is definable, and is well defined observing

that
f−1
γ1(x)

◦ γ ′x(1) = b ∈ V

Define the curve, not necessarily continuous

γ3 : I→ V

x 7→ f−1
γ1(x)

◦ γ ′x ◦ t(x)

Clearly, for each x ∈ I, either t(x) = 0 or γ3(x) lies on the boundary of V ,
hence exists b ′′ def

= limx→0 γ3(x) and b ′′ 6= b. However

fa(b
′′) = lim

x→0
fγ1(x) ◦ γ3(x) = lim

x→0
γ ′x ◦ t(x) = b ′ = fa(b)

which contradicts fa : Y → Y being an homeomorphism, and, in particular,
1 to 1.

The following example shows that in the statement of Lemma 2.2.4 we can
not drop the assumption on Y to be locally definably compact. Similarly, we
must assume the fibre to be locally definably compact in Lemma 2.2.2.

Example 2.2.5. Working in the o-minimal structure Ralg, let Q be the definable
set R>0 ×R>0 ∪ {(0, 0)} ⊂ R2. We will show a continuous definable family F

of homeomorphisms of Q whose inverse F−1 is not continuous.
For t ∈ R>0, let αt : R>0 → R>0 be the map

αt(x) =

{
min

(
1, t+

(
x−t
t

)2) if t > 0

1 if t = 0

14
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and define the family F = {ft}t∈R>0 as

ft(x,y) =

{
(0, 0) if (x,y) = (0, 0)

αt

(
y

x

)
· (x,y) otherwise

which is clearly continuous (at (0, 0) because α–(–) is bounded by 1). However,
F−1 is not continuous, in fact, considering the path

γ : I→ Q

t 7→ (t, t2)

we have
f−10 ◦ γ(0) = (0, 0) 6= (1, 0) = lim

t→0
f−1t ◦ γ(t)

Now, consider the trivial bundle B = R>0 ×Q, with base R>0 and fibreQ.
The map

B → B

(t, (x,y)) 7→ (t, ft(x,y))

is a bundle map inducing the identity on the base space R>0. However its
inverse is not continuous, hence it can not be a bundle isomorphism.

Proof of Lemma 2.2.2. Clearly f is 1 to 1, so suffices to show that f−1 is contin-
uous. By contradiction, let f(x) be a discontinuity point of f−1. Fix definable
trivialization coverings U = {Ui}i and U ′ = {U ′j}j for B and B ′ respectively,
and fix i and j such that p(x) ∈ Ui and p ′ ◦ f(x) ∈ U ′j. Observe that the set
U

def
= Ui ∩ f

−1
(U ′j) is an open neighbourhood of p(x), so f(U) is an open neigh-

bourhood of p ′ ◦ f(x) = f ◦ p(x), and p ′−1 ◦ f(U) is an open neighbourhood
of f(x). Hence suffices to show that f−1�p ′−1◦f(U) is continuous. For, let φi
and φ ′j be trivialization maps associated to Ui and U ′j respectively. Since φ ′j
sends f(U)× F isomorphically onto p ′−1 ◦ f(U), we can reduce to prove that
φ−1
i ◦ f

−1 ◦φj�f(U)×F is continuous. However, this is equivalent to the family

F−1 def
=
{
pi ◦ f−1 ◦φj(x, –)

}
x∈f(U)

of homeomorphisms of the fibre being continuous, which we have using
Lemma 2.2.4, since it is the inverse of

F
def
=
{
p ′j ◦ f ◦φi

(
f
−1

(x), –
)}
x∈f(U)

where pi and p ′j are the projections on the fibre corresponding to φi and φ ′j.

Definition 2.2.6. Let B = (B,X,p, F) be a definable fibre bundle, and let
f : Y → X be a definable map form the definable set Y to the base space
of B. We define the induced bundle f−1(B)

def
= (A, Y,p ′, F) where

(i) A = {(x,y) ∈ B× Y s.t. p(x) = f(y)}
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(ii) p ′ : A 3 (x,y) 7→ y ∈ Y

Moreover we will refer to the map f̌ : A 3 (x,y) 7→ x ∈ B as induced by f.

Lemma 2.2.7. Using the same notations of Definition 2.2.6 we have that f−1(B) is
actually a definable fibre bundle, and f̌ is a definable bundle map f−1(B)→ B.

Proof. Straightforward: p ′ is clearly onto, so suffices to fix a trivialization
covering U = {Ui}i for B and check that V

def
= {f−1(Ui)}i is a trivialization

covering of f−1(B). For, let φi be a trivialization map for B associated to Ui,
and observe that the following

φ ′i : f
−1(Ui)× F→ p ′−1 ◦ f−1(Ui)

(x,y) 7→ (φi (f(x),y) , x)

is an homeomorphism, hence we may take it as the trivialization map
for f−1(B) associated to f−1(Ui). That f̌ is a bundle map follows imme-
diately by inspection of the definition.

Observation 2.2.8. Consider three definable sets X1,X2, and X3 with two defin-
able maps f1 : X1 → X2 and f2 : X2 → X3 between them. Take a definable fibre
bundle B = (B,X3,p, F), and define B ′ = f−11 (f−12 (B)) and B ′′ = g−1(B),
where g = f2 ◦ f1. Is easy to see from Definition 2.2.6 – and also, when F
is locally definably compact, follows from Theorem 2.2.9 below – that B ′

and B ′′ are isomorphic. In addition, there is a definable bundle isomor-
phism h : B ′ → B ′′ such that ǧ ◦ h = f̌2 ◦ f̌1.

Theorem 2.2.9. Let B = (B,X,p, F) and B ′ = (B ′,X ′,p ′, F) be definable fibre
bundles having the same fibre F, and let f : B → B ′ be a definable bundle map
between them. Suppose that F is a locally definably compact definable set. Then the
the bundle B ′′

def
= f

−1
(B ′), where f is the map induced by f on the base spaces, is

isomorphic to B. Moreover there is a definable bundle isomorphism g : B → B ′′

such that f̌ ◦ g = f.

Proof. By definition, B ′′ = (B ′′,X,p ′′, F) where

B ′′ =
{
(x,y) ∈ B ′ ×X s.t. p ′(x) = f(y)

}
p ′′ : (x,y) 7→ y

We claim that

g : B→ B ′′

x 7→ (f(x),p(x))

works. In fact, g is clearly a definable bundle map, moreover it induces the
identity on the common base space X of B and B ′′, hence, by Lemma 2.2.2, it
is a definable bundle isomorphism. The identity f̌ ◦ g = f is immediate.

Observe that the hypothesis of local compactness can not be dropped
from Theorem 2.2.9, in fact any definable bundle map for which the thesis of
Lemma 2.2.2 fails would make Theorem 2.2.9 fail as well.
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2 .3 Homotopies of definable bundle maps

Definition 2.3.1. Let B = (B,X,p, F) and B ′ = (B ′,X ′,p ′, F) be definable fi-
bre bundles having the same fibre, and let f and g be definable bundle
maps B → B ′. We call homotopy of definable bundle maps between f
and g a definable map h : B× I→ B ′ having the following properties:

i. h0
def
= h(–, 0) = f

ii. h1
def
= h(–, 1) = g

iii. For each t ∈ I the map ht
def
= h(–, t) is a definable bundle map.

In this situation, the function h : X× I 3 (x, t) 7→ ht(x) ∈ X ′ is a definable ho-
motopy between f and g, to which we will refer as the homotopy induced

on the base spaces by h.
Moreover, we will say that h is stationary with the induced homo-

topy h if for any subinterval [t1, t2 ] of I and any x ∈ B the following happens:
h�{x}×[t1,t2 ] is constant if and only if h�{p(x)}×[t1,t2 ] is constant.

Lemma 2.3.2. Let U be a finite definable open covering of X× I. Then, there are
continuous definable functions 0 ≡ g1 6 . . . 6 gk+1 ≡ 1 : X→ I such that:
(?) for each x ∈ X and each i ∈ {1, . . . ,k}, the set {x}× [gi(x),gi+1(x)]] is entirely
contained in some element of U.

Proof. Caveat: Observe that if (?) holds for an ordered set of definable func-
tions G then it also holds for any superset of G.
The proof is by induction on the dimension of X. If dim(X) = 0 then X is finite
and the statement is trivial.

Suppose that the statement is true for dim(X) 6 n, then we will prove it
for dim(X) = n+ 1. Observe that for each x ∈ X there are

0 = l1 < . . . < lh(x)+1 = 1

such that for each i ∈ {1, . . . ,h(x)} the set {x}× [li, li+1 ] is entirely contained
in some element of U. Without loss of generality we may suppose h(x) to
be minimal for each x, then h = supx∈X h(x) <∞ by uniform finiteness. By
definable choice (and by the caveat) we have definable functions

0 ≡ l1 6 . . . 6 lh+1 ≡ 1 : X→ I

not necessarily continuous, such that (?) holds for them. Let X be a finite
partition of X into definable sets such that each of the functions l– is continu-
ous on each of the sets of X. Now consider the set X ′ of the interiors of the
sets in X, and let Y = X \

⋃
X ′: clearly dim(Y) 6 n. By the induction hypoth-

esis we get definable continuous functions 0 ≡ g1 6 . . . 6 gk+1 ≡ 1 : Y → I
such that for each x ∈ Y and each i ∈ {1, . . . ,k} the set {x}× [gi(x),gi+1(x)] is
entirely contained in some element of U. Consider a definable open neigh-
bourhood Z of Y in X such that there is a retraction r : Z→ Y. We claim that,
by continuity of the functions gi ◦ r, we can find in Z a new definable open
neighbourhood Z ′ of Y such that for each x ∈ Z ′ and each i ∈ {1, . . . ,k} the
set {x}× [gi ◦ r(x),gi+1 ◦ r(x)] is entirely contained in some element of U.
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In fact, let U = {Uj}j: working in Z, we observe that, since I is closed
and bounded, the projection p1 : Z× I→ Z on the first component is a closed
function, hence, for each i and j, the set

Zi,j =
{
x ∈ Z s.t. {x}× [gi ◦ r(x),gi+1 ◦ r(x)] ⊂ Uj

}
= Z \ p1

(
{(x, t) ∈ Z× I s.t. t ∈ [gi ◦ r(x),gi+1 ◦ r(x)]} \Uj

)
is open, and so is Z ′ =

⋃
i,j Zi,j, which contains Y by hypothesis.

Finally, we have a definable open covering X ′′ = X ′ ∪ {Z ′} of X such that
the statement of the lemma holds for each element of X ′′: we will show that
this implies the statement for X. For, let {V1, . . . ,Vm} = X ′′ and suppose that
for each i the statement holds for Vi and definable functions gi,j : Vi → I.
Consider a shrinking {V ′1, . . . ,V ′m} of X ′′ such that V ′i ⊂ Vi for each i. Since
I is definably contractible, for each i and j we have a continuous definable
extension g ′i,j : X→ I of gi,j�V ′i . Hence, the continuous definable functions

gr(x) = the r-th element of {g ′i,j(x)}i,j in ascending order

satisfy (?), by the caveat, since a subset of them does on each of the sets V ′i ,
which cover X.

Theorem 2.3.3. Let B = (B,X,p, F) and B ′ = (B ′,X ′,p ′, F) be definable fibre
bundles having the same fibre. Let f : B → B ′ be a definable bundle map and
h̃ : X× I→ X ′ be a definable homotopy of f, i.e. h̃0 = f. Then h̃ can be lifted to an
homotopy h of definable bundle maps such that h0 = f and h = h̃. Moreover, h can
be chosen so that it is stationary with h.

Proof. Let U = {Ui}16i6n be a trivialization covering for B ′, and take a
definable shrinking U ′ = {U ′i}16i6n of U; i.e. U ′ covers X ′ and for each n
holds U ′n ⊂ Un. By Fact 2.3.2 we have finitely many definable maps

0 ≡ g1 6 · · · 6 gk+1 ≡ 1 : X→ I

such that for each x ∈ X and for each j ∈ {1, . . . ,k} the set h̃(x, [gj(x),gj+1(x)])
is entirely contained in some element of U ′. Not to clutter the argument with
quantifications, from now on, we will assume an implicit for each i ∈ {1, . . . ,n}
and each j ∈ {1, . . . ,k}, unless stated otherwise.

Let
Vj,i =

{
x s.t. h̃

(
x, [gj(x),gj+1(x)]

)
⊂ U ′i

}
Clearly, for each j the finite family {Vj,i}i of open definable sets is a covering
of X. Choose definable open subsets Wj,i of X so that Wj,i ⊂ Vj,i and so
that for each j the family {Wj,i}i covers X. Fix definable continuous func-
tions uj,i : X→ I such that uj,i�Wj,i

≡ 1 and uj,i�X\Vj,i ≡ 0, what is possible
by definable partition of unity. Finally define

σj,i : X→ I

x 7→ max
(
0,uj,1(x), . . . ,uj,i(x)

)
τj,i : X→ I

x 7→ gj(x) + σj,i(x)
(
gj+1(x) − gj(x)

)
18



2.3. Homotopies of definable bundle maps

and write τa for τj,i where (j, i) is the a-th pair of indices in lexicographical
order (j is more important, both are increasing).

Stipulating that τ0 denotes the constant 0, we have a finite family {τa}a6nk
of continuous definable functions with the following property: for each a let

Xa = {(x, t) ∈ X× I s.t. 0 6 t 6 τa(x)}

then Xa ⊂ Xa+1, and for each a there is a ba ∈ {1, . . . ,n} such that

h̃(Xa+1 \Xa) ⊂ U ′ba

in fact, ba is i when (j, i) is the a-th pair. For each a let

Ya = {(x, t) ∈ B× I s.t. (p(x), t) ∈ Xa}

The homotopy h is given on Y0 = B× {0}: we will extend it inductively on the
sets Y– up to Ynk = B× I. Fix an a and suppose to have already defined h
on Ya. For (x, t) ∈ Ya+1 \ Ya let

h(x, t) = φ ′−1ba
(
h̃ (p(x), t) ,p ′ba ◦ h (x, τa ◦ p(x))

)
where the formula makes sense since

h(x, τa ◦ p(x)) ∈ Dom(p ′ba) = p
′−1(Uba)

which we have observing that {p(x)}× (τa ◦ p(x), τa+1 ◦ p(x)] is a non-empty
subset of Xa+1 \Xa, hence h̃(p(x), τa ◦ p(x)) ∈ U ′ba ⊂ Uba .

Our function is clearly continuous and fibre preserving, hence a definable
bundle map. Stationarity is immediate by inspection of the formula above.

Corollary 2.3.4. Any definable fibre bundle on a definably contractible base having
locally definably compact fibre is trivial.

Proof. Immediate from Theorem 2.3.3 and Theorem 2.2.9.

Now we give a definition of homotopy equivalence for definable fibre
bundles. Notice that two definable fibre bundles which are homotopy equiva-
lent have definably homotopy equivalent bundle spaces, definably homotopy
equivalent bases, and the same fibre.

Definition 2.3.5. Two definable fibre bundles B and B ′ are said to be homo-
topy equivalent definable fibre bundles if there are two definable bundle
maps f : B → B ′ and g : B ′ → B such that f ◦ g and g ◦ f are both homotopic
to the identity on their respective domains—i.e. there are homotopies of de-
finable bundle maps between each of them and the identity. In this situation, f
and g are said to be homotopy inverse of each other.

Observation 2.3.6. Fix an f : �→4 and let g ′ : 4→ � be a left homotopy in-
verse of f, which means that g ′ ◦ f is homotopic to the identity. Let g ′′ : 4→ �
be a right homotopy inverse of f, i.e. f ◦ g ′′ ∼ Id. Then f has an homotopy
inverse which is g ′ ◦ f ◦ g ′′.
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2 . Definable fibre bundles & fibrations

Theorem 2.3.7. Let X and X ′ be definable sets, and let f : X→ X ′ be a definable
homotopy equivalence—i.e. there is a definable homotopy inverse g : X ′ → X of f.
Consider a definable fibre bundle B ′ = (B ′,X ′,p, F) having X ′ as its base space and
locally definably compact fibre F. Then B

def
= f−1(B ′) is homotopy equivalent to B ′.

Proof. Take a definable homotopy h : X ′ × I→ X ′ with h0 = Id and h1 = f ◦ g.
By Theorem 2.3.3 we have an homotopy of bundle maps h : B ′ × I→ B ′

such that h0 = Id and the homotopy induced by h on the base spaces coin-
cides with h—what justifies our abuse of the notation h. By Theorem 2.2.9
we know that B ′ is isomorphic to h−11 (B ′) which, in turn, is isomorphic
to g−1(B) by observation 2.2.8, and we have as well a definable bundle
isomorphism ψ : B ′ → g−1(B) such that f̌ ◦ ǧ ◦ψ = h1. Hence f̌ has a right
homotopy inverse, which is ǧ ◦ψ.

By the very same argument ǧ – hence ǧ ◦ψ – has a right homotopy inverse.
So ǧ ◦ψ, having both right and left – which is f̌ – homotopy inverses, is a
definable homotopy equivalence between B ′ and B.

2 .4 Definable fibrations

Definition 2.4.1. We will say that a definable map p : E→ B is a definable

fibration if for every definable set X, every definable homotopy f : X× I→ B,
and every definable map g : X→ E such that p ◦ g = f(–, 0) there is a defin-
able homotopy h : X× I→ E such that p ◦ h = f (h is a lifting of f) and
holds h(–, 0) = g(–); i.e. p has the homotopy lifting property with respect
to all definable sets.

Examples of definable fibrations are definable covering maps (see [BO–09,
Proposition 4.10]) and trivial fibre bundles. All of them generalize to the
following o-minimal parallel of the classical result that each fibre bundle is a
fibration.

Theorem 2.4.2. Every definable fibre bundle is a definable fibration.

Proof. Along the lines of Theorem 2.3.3. Let B = (E,B,p, F) be a definable
fibre bundle, and let f : X× I→ B and g : X→ E be as in Definition 2.4.1.
Take a trivialization covering U = {Ui}16i6n of B and a definable shrink-
ing U ′ = {U ′i}16i6n of U. By Lemma 2.3.2 we have finitely many defin-
able maps 0 ≡ g1 6 · · · 6 gk+1 ≡ 1 : X→ I such that for each x ∈ B and for
each j ∈ {1, . . . ,k} the set f(x, [gj(x),gj+1(x)]) is entirely contained in some
element of U ′.

Let
Vj,i =

{
x s.t. f

(
x, [gj(x),gj+1(x)]

)
⊂ U ′i

}
then define the sets {Wj,i}j,i, and the functions {σj,i}j,i and {τj,i}j,i from X to I,
as in the proof of Theorem 2.3.3. Using again the notation τa to denote τj,i
where (j, i) is the a-th pair of indices in lexicographical order, define

Xa = {(x, t) ∈ X× I s.t. 0 6 t 6 τa(x)}
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then Xa ⊂ Xa+1, and for each a there is a ba ∈ {1, . . . ,n} such that

h̃(Xa+1 \Xa) ⊂ U ′ba

A lifting h of f is given on X0 = X× {0} by g: we will extend it inductively
on the sets X– up to Xnk = X× I. Fix an a and suppose to have already
defined h on Xa. For (x, t) ∈ Xa+1 \Xa let

h(x, t) = φ ′−1ba
(
f (p(x), t) ,p ′ba ◦ h (x, τa ◦ p(x))

)
This definition works because of the same reasons as in the proof of Theo-
rem 2.3.3.

In the rest of this section, we will prove the following stronger result
(stating that if a definable map is locally a definable fibration, then it is a
definable fibration).

Theorem 2.4.3. Given a definable map p : E→ B, if there is a finite definable open
covering U of B, such that for each U ∈ U the map p�p−1(U) : p

−1(U)→ U is a
definable fibration, then p is a definable fibration.

In the rest of this section, p : E→ B is a fixed continuous definable map between
definable sets E and B.

Now, we are going to consider a definable subset X of the path-space of B.
More precisely, we will consider a uniform family of paths parametrized by
some definable set X, which we will represent using a continuous definable
function from X× I to B. The reader may think of any x ∈ X as a path itself,
and, by abuse of notation, of f(x,−) as x(−). From this point of view f is
a continuous map from X to the path-space of B with the compact-open
topology. For each such object, we will call lifting function any continuous
definable map sending each pair (e, x), where x is an element of X and e

is a point in p−1(x(0)), to a lifting of x starting at e. It is easily shown
(Lemma 2.4.5) that the existence of a lifting function for any X is equivalent
to p being a definable fibration. Moreover, in Lemma 2.4.8, we will show how,
given lifting functions for each element of a finite definable open covering
of X, we can get a lifting function for X (basically blending the pieces via a
definable partition of unity). Finally, through lemmata 2.3.2 and 2.4.9, we
will use the local triviality of p to get such a covering for any subset X of the
pathspace of B.

Definition 2.4.4. For any definable map f : X× I→ B, let B̄f be the definable
set

B̄f = {(e, x) ∈ E×X s.t. p(e) = f(x, 0)}

We will call a definable map λ : B̄f × I→ E a lifting function for f if for all
(e, x) ∈ B̄f,

p ◦ λ ((e, x), –) = f(x, –) and λ ((e, x), 0) = e

Lemma 2.4.5. The map p is a definable fibration if and only if for any definable set X
and for any definable map f : X× I→ B there is a lifting function for f.
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Proof. To prove the if part, consider functions f : X× I→ B and g : X→ E such
that f(–, 0) = p ◦ g(–). Let λ be a lifting function for f. Then

h
def
= λ((g× Id)(–), –) : X× I→ E

is a lifting of f and h(–, 0) = g(–).
To prove the only if part, consider the homotopy h : B̄f × I→ B defined

by h((e, x), t) = f(x, t). Since h(–, 0) = p ◦ p1, where p1 : B̄f → E is the projec-
tion on the first component, we may lift h to a map λ : B̄f × I→ E such that
λ(–, 0) = p1, which is a lifting function for f.

Definition 2.4.6. For any definable map f : X× I→ B and for any definable
subset W ⊂ X, let W̃f be the definable set

W̃f = {(e, x, s) ∈ E×W × I s.t. p(e) = f(x, s)} .

We will call a definable map Λ : W̃f × I→ E an extended lifting function

for f over W if for all (e, x, s) ∈ W̃f,

p ◦Λ ((e, x, s), –) = f(x, –) and Λ ((e, x, s), s) = e.

The idea of an extended lifting function is that it maps any triple (e, x, s),
where x is a path, s is an element of I, and e is a point in p−1(x(s)), to a
lifting of x passing through e at time s. As we will see in the next lemma, an
extended lifting function is nothing but a lifting function in disguise (basically
because, using appropriate lifting functions, we can lift separately the two
halves of any path which are before and after s); in fact, extended lifting
functions were introduced for merely technical reasons.

Lemma 2.4.7. The following statements are equivalent:
i. for any definable set X and for any definable map f : X× I→ B there is lifting function

for f;
ii. for any definable set X and for any definable map f : X× I→ B there is an extended

lifting function for f over X.

Proof. The direction ii =⇒ i is trivial. For i =⇒ ii, let Y = X× I and let
g ′,g ′′ : Y × I→ B be defined by

g ′((x, s), t) =

{
f(x, s− t) for t 6 s
f(x, 0) for t > s

g ′′((x, s), t) =

{
f(x, s+ t) for t 6 1− s
f(x, 1) for t > 1− s

By i there are lifting functions λ ′ and λ ′′ for g ′ and g ′′ respectively. Now, an
extended lifting function Λ : X̃f × I→ E for f over X is given by

Λ((e, x, s), t) =

{
λ ′((e, (x, s)), s− t) for t 6 s
λ ′′((e, (x, s)), t− s) for t > s
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which is easily proved continuous, moreover for t 6 s we have

p ◦Λ((e, x, s), t) = p ◦ λ ′((e, (x, s)), s− t) = g ′((x, s), s− t) = f(x, t)

and similarly for s < t; and finally

Λ((e, x, s), s) = λ ′((e, (x, s)), 0) = e

Lemma 2.4.8. Let X be a definable set, and let f : X× I→ B be a definable map.
Suppose that there is a finite open covering W of X such that for each element W of W
there is an extended lifting function for f. Then there is a lifting function for f.

Proof. Let W = {Wj}j∈J and consider a definable partition of unity {gj}j∈J
on X (i.e. for each j, gj is a definable map from X to M>0 and

∑
j gj ≡ 1) such

that W ′j ⊂Wj for each j, where W ′j
def
= {x ∈ X s.t. gj(x) > 0}. For each subset κ

of J define

W ′κ =
⋃
j∈κ

W ′j fκ = f�W ′κ×I B̄κ = B̄fκ gκ =
∑
j∈κ

gj

Consider a maximal subset α of J such that there is a lifting function λα for fα.
For the sake of contradiction, suppose there is a j0 ∈ J \α. We shall construct
a lifting function for fβ, where β def

= α∪ {j0}. Let h = gα
gβ

: Wβ → I. Clearly h
is the constant 1 on W ′α \W ′j0 , the constant 0 on W ′j0 \W

′
α, and takes values

in (0, 1) on W ′α ∩W ′j0 . Define µ : B̄{j0} → E by:

µ(e, x) =

{
e for 0 6 h(x) < 1/2
λα((e, x), 2h(x) − 1) for 1/2 6 h(x) < 1

Consider an extended lifting function Λ for f over Wj0 , then we claim that
λβ : B̄β × I→ E defined by:

λβ((e, x), t) =

=


Λ((e, x, 0), t) for 0 6 h(x) < 1/2
λα((e, x), t) for 1/2 6 h(x) 6 1 and 0 6 t 6 2h(x) − 1
Λ((µ(e, x), x, 2h(x) − 1), t) for 1/2 6 h(x) 6 1 and 2h(x) − 1 < t 6 1

is a lifting function for fβ. In fact, to prove the continuity of λβ suffices to
observe that:

Λ((e, x, 0), t) = λα((e, x), t) for h(x) = 1/2 and t = 0

Λ((e, x, 0), t) = Λ((µ(e, x), x, 2h(x) − 1), t) for h(x) = 1/2 and t > 0

λα((e, x), t) = Λ((µ(e, x), x, 2h(x) − 1), t) for 1/2 6 h(x) and t = 2h(x) − 1

for x ∈W ′j0 ⊂Wj0 . Moreover, equations

p ◦ λβ((e, x), t) = f(x, t) and λβ((e, x), 0) = e

which are required by the definition of lifting function, hold because Λ and
λα are (extended) lifting functions.
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Lemma 2.4.9. Let U1, . . . ,Uk be definable subsets of B. Suppose that, for any
definable set X, for any definable map f : X× I→ B, and for any i, there is an
extended lifting function for f over {x ∈ X s.t. f(x, I) ⊂ Ui}. Then, for any definable
set X, for any definable continuous function f : X× I→ B, and for any definable maps
0 ≡ g1 6 . . . 6 gk+1 ≡ 1 : X→ I, there is an extended lifting function for f over
W, where

W = {x ∈ X s.t. f(x, [gi(x),gi+1(x)]) ⊂ Ui for all i = 1, . . . ,k}

Proof. The idea behind the following convoluted formulæ is that, for any i,
using the extended lifting function for Ui (which we have by hypothesis), we
can lift any path x ∈W restricted to the interval [gi(x),gi+1(x)]. Hence, all
we have to do is to lift such paths interval by interval, taking care that they fit
together properly.

Let Y = {(x,a,b) ∈ X× I2 s.t. a < b}, and let h : Y × I→ B be defined by

h((x,a,b), t) =


f(x,a) for t ∈ [0,a)
f(x, t) for t ∈ [a,b]
f(x,b) for t ∈ (b, 1]

By hypothesis, for each i, we have an extended lifting function Λi for h
over Yi

def
= {y ∈ Y s.t. h(y, I) ⊂ Ui}. Let

Li,j = {((e, x, s), t) ∈ W̃f × I s.t. s ∈ [gi(x),gi+1(x)] and t ∈ [gj(x),gj+1(x)]}

and define Λ ′i,j : Li,j → E by

Λ ′i,j((e, x, s), t) =

=


Λi((e, (x,gi(x),gi+1(x)), s), t) for i = j
Λj((Λ

′
i,j−1((e, x, s),gj(x)), (x,gj(x),gj+1(x)),gj(x)), t) for j > i

Λj((Λ
′
i,j+1((e, x, s),gj+1(x)), (x,gj(x),gj+1(x)),gj+1(x)), t) for j < i

It is routine to prove simultaneously by induction on |j− i| that these are
well-defined continuous functions and

∀((e, x, s), t) ∈ Li,j f(x, t) = p ◦Λ ′i,j((e, x, s), t) (?)

Now, let

l : X× I→ {1, . . . ,k}

l(x, s) = i < k iff gi(x) < gi+1(x) and s ∈ [gi(x),gi+1(x))

l(x, s) = k iff s ∈ [gk(x),gk+1(x)]

and define

Λ ′ : W̃f × I→ E

Λ ′((e, x, s), t) = Λ ′l(x,s),l(x,t)((e, x, s), t)
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We have the continuity of Λ ′ since the definable maps Λ ′i,j coincide on the
intersections of their domains, which are closed. That, in turn, may be proved
easily observing that

Λ ′i,i((e, x, s), s) = e

by definition,

Λ ′i,j((e, x,gi(x)), t) = Λ ′i−1,j((e, x,gi(x)), t)

by induction on |j− i|, and

Λ ′i,j((e, x, s),gj(x)) = Λ ′i,j−1((e, x, s),gj(x))

by definition. Since Λ ′((e, x, s), s) = e, by (?) we can conclude that Λ ′ is an
extended lifting function for f over W.

Finally, we have all the ingredients to prove Theorem 2.4.3.

proof of Theorem 2.4.3. We apply Lemma 2.4.5. Fix a definable set X and a
definable map f : X× I→ B, we have to show that there is a lifting function
for f over X. By Lemma 2.4.8, it suffices to find a definable finite open
covering W of X and for each W ∈W an extended lifting function for f
over W.

On the other hand – observing that f−1(U) is a finite definable open
covering of X× I – by Lemma 2.3.2, there are definable maps

0 ≡ g1 6 . . . 6 gk+1 ≡ 1 : X→ I

such that for each x ∈ X and each 1 6 i 6 k the set f(x, [gi(x),gi+1(x)]) is
entirely contained in some element of U. Let U = {Uj}

h
j=1, and for each

function σ : {1, . . . ,k}→ {1, . . . ,h} let

Wσ = {x ∈ X s.t. f(x, [gi(x),gi+1(x)]) ⊂ Uσ(i), for all i = 1, . . . ,k}

The sets {Wσ}σ are a definable finite open covering of X. Therefore, it suffices
to prove that for each σ there is an extended lifting function for f over Wσ.
Fix such a σ and denote Uσ(i) by Uσi , for each i = 1, . . . ,k. By hypothe-
sis p�p−1(Uσi )

: p−1(Uσi )→ Uσi is a definable fibration, for each i = 1, . . . ,k.
Hence by lemmata 2.4.5 and 2.4.7, for each i, each definable Y and each
definable continuous h : Y × I→ Uσi there is an extended lifting function
for h over Y. Therefore, for every i for every definable Z and every defin-
able continuous g : Z× I→ B there is an extended lifting function for g over
{z ∈ Z s.t. g(z, I) ⊂ Uσi }. That is, we are under the hypothesis of Lemma 2.4.9,
and consequently there is an extended lifting function for f over Wσ, as
required.
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Chapter 3

On the topology of definably compact groups

In this chapter, we will deal with the topology of definably compact definable
groups. Our main results are Theorem 3.1.9 and Theorem 3.3.4.

The first theorem states that for any definably compact definably connected
group G and for each n

πn(G) = π
def
n

(
G/G00

)
which is a natural addition to the set of known correlations between the
topological invariants of G and G/G00 (see [EO–04] and [Ber–09]).

Theorem 3.3.4 states that each definably compact definably connected
group G is definably homeomorphic to the product of its derived sub-
group [G,G] – recall that, by results in [HPP–08b], [G,G] is a definable
subgroup of G – and a definable abelian group. This group happens to
be a finite quotient of the center of G. Our result can be seen as a definable
analogue of [Bor–61, Proposition 3.1] which states that every compact con-
nected Lie group is homeomorphic to the topological product of its derived
subgroup and a torus. Perhaps surprisingly, in the Lie case a stronger result is
known: the derived subgroup of a compact Lie group is indeed a semidirect
factor of the group (Borel-Scheerer-Hofmann splitting theorem: see [HM–98,
Theorem 9.39]). We will provide an example showing that the same statement
fails in the definable case.

The relations of mutual dependence of Theorem 3.1.9 and Theorem 3.3.4
are somewhat complicated. To prove the latter we need the abelian case of
the former and Fact 3.3.1. On the other and, given Theorem 3.3.4 we could
obtain Theorem 3.1.9 from the semisimple and the abelian case separately. A
second way to get Theorem 3.1.9 from the semisimple and the abelian case is
to combine [BO–09, Corollary 4.11] and Fact 3.3.1. Nevertheless, our proof,
resorting to algebraic topology devices, makes no use of Fact 3.3.1, which was
not known at the time the proof was first conceived.



3 . On the topology of definably compact groups

3 .1 Homotopy groups of definable groups

The aim of this section is to prove Theorem 3.1.9. The statement is proven
by combining the abelian and the semisimple case trough the long exact
sequence for definable homotopy (see [BO–09]). The semisimple case is an
easy consequence of results in [PPS–00a] (Peterzil, Pillay, and Starchenko
prove there that every definably connected centerless semisimple definable
group is definably isomorphic to a linear group).

For the abelian case, the result is known on the fundamental group [EO–04],
so all that remains to be shown is that πdef

n (G) is trivial for every n > 1. This
apparently simple statement turns out to be definitely non-trivial. In fact,
the direct route of the classical proof (factorizing G into a product of one-
dimensional tori) is barred by examples as in [PS–99, Section 5]. Hence, we
will take an indirect way: we will prove that πdef

n (G) is divisible and finitely
generated. This implies the theorem. Divisibility is not hard to prove using
the group structure of G. To prove that πdef

n (G) is finitely generated, however,
we can not simply invoke the triangulation theorem, since the homotopy
groups of a finite simplicial complex may not be finitely generated. Instead,
we will triangulate G and then show that the finite simplicial complex thus
obtained has a semialgebraic H-space structure. This will allow us to transfer
the problem to the real case and apply the classical result that an H-space with
finitely generated homology groups has finitely generated higher homotopy
groups.

Definition 3.1.1. We will denote by T the definably compact group [0, 1) with
the sum modulo 1 as group operation. We will write Td(R) when there may
be confusion on what structure the interval [0, 1) is in.

Definition 3.1.2. A definable H-space is a definable pointed space (X, x0)
equipped with a definable continuous map µ : X×X→ X such that both
µ(–, x0) and µ(x0, –) are definably homotopic to the identity.

It is clear that a definable H-space definable over R is, in particular, an
H-space (in the classical sense).

Theorem 3.1.3. Let G be a definable group. Then πdef
n (G) is finitely generated for

each n > 0.

Proof. We can assume, without loss of generality, that G is definably connected
and bounded. By the triangulation theorem we can identify G with the
realization |K ′|(M) in M of a finite simplicial complex K ′ with rational vertexes,
one of which is the group identity e. Now, let K be a closed subcomplex of K ′

such that K(M) is a semialgebraic deformation retract of |K ′|(M) containing e.
The multiplication on |K ′|(M) induces a map ν : |K|(M)× |K|(M)→ |K|(M)

which gives to (|K|(M), e) the structure of a definable H-space. Moreover,
by [BO–09, Corollary 3.6], the map ν is definably homotopic to a semialgebraic
continuous map

µ : |K|(M)× |K|(M)→ |K|(M)

28



3.1. Homotopy groups of definable groups

definable without parameters. Of course, µ induces again a definable H-space
structure over (|K|(M), e). Moreover, again by [BO–09], the semialgebraic
maps defined without parameters µ(–, e) and Id|K|(M), which are definably
homotopic, are also semialgebraically homotopic with an homotopy defined
without parameters; similarly for µ(e, –) and Id|K|(M).

Claim 3.1.4. Let |K|(R) denote the realization of K in R, then πn(|K|(R)) is
finitely generated for each n > 1.

Proof. (|K|(R), e) is endowed with a definable H-space structure by µ, or more
precisely by the function defined by the same formula as µ interpreted in R.
Therefore (|K|(R), e) is an H-space. Notice that every path-connected H-space
is a simple space (i.e. its fundamental group acts trivially on all homotopy
groups, see [Spa–66, Chapter 7 Theorem 3.9]), and for simple spaces the
homotopy groups are all finitely generated if the homology groups are so
([Whi–78, Chapter XIII Corollary 7.14]), hence we have the claim since |K|(R)

is a finite simplicial complex.

Now, by [BO–09, Corollary 4.4], πdef
n (|K|(M)) is isomorphic to πn (|K|(R)),

hence it is a finitely generated abelian group. Since πdef
n (|K|(M)) ∼= πdef

n (G), we
get the result.

Corollary 3.1.5. Let G be a definable abelian group. Then πdef
n (G) = 0, for each

n > 2.

Proof. By Theorem 3.1.3, πn(G) is a finitely generated group; moreover, we
know that it is abelian for each n > 2. Since a finitely generated abelian group
is divisible if and only if it is trivial, it suffices to show that πn(G) is divisible
for each n > 1. We may assume that G is definably connected. By [EO–04,
Corollary 2.12] the maps

pk : G→ G

x 7→ kx

with k ∈N>0 are definable covering maps, and hence, by [BO–09, Corollary
4.11] they induce isomorphisms on the higher homotopy groups. As a conse-
quence, for each [α] ∈ πn(G) and for each k ∈N>0 we have some [β] ∈ πn(G)
such that [pk ◦β] = [α], and we can conclude that πn(G) is divisible observing
that [pk ◦β] = k[β].

Theorem 3.1.6. Let G be a definably connected definably compact d-dimensional
abelian group. Then G is definably homotopy equivalent to Td, i.e. there are definable
continuous maps g : G→ Td and f : Td → G, such that f ◦ g and g ◦ f are definably
homotopic to the identity.

Proof. Consider the following map, originally defined in the proof of [OP–09,
Lemma 4.3]:

f : Td → G

(t1, . . . , td) 7→ γ1(t1) + . . .+ γd(td)
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3 . On the topology of definably compact groups

where [γ1], . . . , [γd] are free generators of the definable fundamental group
of G. Then, clearly, f induces an isomorphism between πdef

1

(
Td
)

and πdef
1 (G).

To see the latter, consider for each i = 1, . . . ,d, the loop δi : [0, 1]→ Td defined
by

δi(t) =

(0, . . . ,
i
t, . . . , 0) for t ∈ [0, 1)

(0, 0, . . . , 0) for t = 1

Hence, π1(Td) = 〈[δ1], . . . , [δd]〉 and so the map f induces on the fundamental
groups is f∗([δi]) = [γi], for each i = 1, . . . ,d, which is an isomorphism.

Since by Theorem 3.1.5 all the higher homotopy groups of both G and Td

are trivial, f induces an isomorphism on them as well (in a trivial way), hence,
by the o-minimal version of Whitehead theorem [BO–09, Theorem 5.6], f is an
homotopy equivalence.

By [EO–04, Theorem 1.1], and applying duality, we have Hi(G; Q) ∼= Q(di)

for each i > 0. Here we improve that result by proving the following.

Corollary 3.1.7. Let G be a definably connected definably compact d-dimensional
abelian group. Then the o-minimal homology group Hi(G; Z) ∼= Z(di), for each i > 0.

Proof. By Theorem 3.1.6, for each i > 0we have thatHi(G; Z) ∼= Hi(Td(M); Z),
and by [BO–02, Proposition 3.2] Hi(Td(M); Z) is isomorphic to Hi(Td(R); Z),
which in turn is isomorphic to Z(di).

Next we proceed to study the o-minimal homotopy groups of definably
compact (noncommutative) groups. Towards this aim we first prove some
results concerning homogeneous spaces of the type G/H, where G is a defin-
able group (not necessary definably compact) and H is a definable subgroup
of G. Notice that by [PPS–00a, Corollary 2.14] such G/H can be equipped
with a definable manifold topology so that the canonical action of G on G/H
is continuous. Moreover, by [Ber–08, Theorem 4.3], this topology coincides
with the quotient topology (inherited by that of G), which in turn coincides
with the definable group topology – provided H is normal – of G/H. Notice
also that H being closed in G, the coset space G/H is a regular definable space,
and hence we can consider its definable manifold topology induced by that of
the ambient space.

Fact 3.1.8. Let F be the functor from the category of definably compact groups to the
category of compact Lie groups which sends G to G/G00. Then:

i. F preserves dimension and connectedness (each concept in its category),
ii. F is exact i.e. transforms exact sequences in exact sequences.

Proof. By [HPP–08a, Theorem 8.1] and [Ber–07, Theorem 5.2] respectively.

Our next result says that the functor F also preserves the homotopy groups.

Theorem 3.1.9. Let G be a definably connected definably compact group. Then
πdef
n (G) ∼= πn

(
G/G00

)
for all n.
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3.1. Homotopy groups of definable groups

Proof.
Case G abelian. Let d be the dimension of G. By [EO–04, Theorem 1.1] and
Corollary 3.1.5 above, we have πdef

1 (G) ∼= Zd and πdef
n (G) = 0 for each n > 1,

respectively. On the other hand, since G/G00 is an abelian compact Lie
group of dimension d, we also have π1

(
G/G00

)
∼= Zd and, for n > 1, we

have πn
(
G/G00

)
= 0.

Case n = 1. First note that by the o-minimal Poincaré-Hurewicz theorem
([EO–04, Theorem 5.1]), and the corresponding classical result, it suffices
to prove that H1(G) = H1

(
G/G00

)
. On the other hand, by [Ber–09, Corol-

lary 5.2] and [Ber–07, Remark 7.3], the singular cohomology groups H1(G;L)
and H1

(
G/G00;L

)
are isomorphic for any coefficient group L. Hence, by

the universal coefficient theorem (uct) for cohomology, we are done in
this case. The details are as follows: The uct says that for any chain
complex C, for any abelian group L and for any n > 0, if Hn−1(C) is free
then Hn(C;L) ∼= hom(Hn(C);L). Applying the uct for n = 1 to the (honest)
chain complex associated to the definable singular simplexes on our definable
group G we get H1(G;L) ∼= hom(H1(G);L). Hence, by the corresponding
result for the singular chain complex of G/G00, we have

hom(H1(G);L) ∼= hom
(
H1
(
G/G00

)
;L
)

for any abelian group L. It follows that H1(G) ∼= H1
(
G/G00

)
, since both

groups H1(G) and H1
(
G/G00

)
are abelian and finitely generated.

Before we prove the result in the remaining cases we have the following.

Claim 3.1.10. Let G and H be two definably connected definably compact
groups. Suppose G is a finite extension of H, Then, for every n > 1, if
πn(H) ∼= πn

(
H/H00

)
then πn(G) ∼= πn

(
G/G00

)
.

Proof. By [EO–04, Proposition 2.11], the onto homomorphism G→ H with
finite kernel is a definable covering map. Then, πn(G) ∼= πn(H) for any n > 1
by [BO–09, Corollary 4.11]. By preservation of exactness, the induced map
from G/G00 to H/H00 is also an onto homomorphism with finite kernel,
hence a covering map and so πn

(
G/G00

)
∼= πn

(
H/H00

)
, for any n > 1.

Case G definably semisimple and n > 1. Since the center of G is finite, G is a
finite extension of the definably semisimple centerless group G/Z(G). By
Claim 3.1.10, we may consider G as centerless. On the other hand, we
may assume by results in [PPS–00a, Theorem 4.1] and [PPS–02, proof of
Theorem 5.1(3)] (see [Ote–08, theorems 5.3, 4.2]) that G = G(M) is a semi-
algebraic group over the real algebraic numbers. By [BO–09, Corollary
4.4], πn(G(M)) ∼= πn(G(R)), for every n. But G(R) is G/G00 by the proof
of [Pil–04, Proposition 3.6].
General case. Let Z be the center of G. Then, by [PS–00, Corollary 5.4], the
group G/Z is definably semisimple, hence the result holds for G/Z. By
Lemma 2.1.2 and Theorem 2.4.2 the projection map G→ G/Z is a definable
fibration. Therefore, by [BO–09, Theorem 4.9], for each n > 2, the o-minimal
homotopy groups πn(G,Z) and πn

(
G/Z

)
are isomorphic; and, hence, the
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3 . On the topology of definably compact groups

o-minimal homotopy sequence of the pair (G,Z) is the following long exact
sequence (see [BO–09, Section 4])

· · · → πn+1
(
G/Z

)
→ πn(Z)→ πn(G)→ πn

(
G/Z

)
→ πn−1(Z)→ · · ·

On the other hand, using the exactness of the functor to the Lie category
we have that F(Z) is a closed normal subgroup of F(G), so the projection
map F(G)→ F(G)/F(Z) (∼= F

(
G/Z

)
) is a fibration and hence we have the exact

sequence

· · · → πn+1
(
F
(
G/Z

))
→ πn (F(Z))→ πn (F(G))→ πn

(
F
(
G/Z

))
→ · · ·

Since Z and F(Z) are abelian, we have πn(Z) = 0 and πn(F(Z)) = 0 for all
n > 2. So for n > 3, πn(G) ∼= πn

(
G/Z

)
and πn (F(G)) ∼= πn

(
F
(
G/Z

))
. By

the previous case πn
(
F
(
G/Z

))
∼= πn

(
G/Z

)
. For n = 2, recall that the second

homotopy group of a compact Lie group is trivial, so π2
(
F
(
G/Z

))
= 0, and

therefore also π2
(
G/Z

)
= 0 (by the semisimple case). Since π2(Z) = 0, it

follows that also π2(G) = 0.

Observation 3.1.11. Let k be a characteristic zero field. Then

Hn(G;k) ∼= Hn
(
G/G00;k

)
for each n.

Proof. By a similar argument as the one done in the above proof with the
uct. Indeed, we can use the following facts: (i) the singular cohomology
groups H1(G;L) and H1

(
G/G00;L

)
are isomorphic for any coefficient group

L ([Ber–09, Corollary 5.2]); (ii) the uct; (iii) the fact that Hn(G;k) are free, and
(iv) Hn(G;k) are finite-dimensional k-vector spaces.

3 .2 Bundles on the torus

In this section we will study the special case of definable fibre bundles whose
base is a standard torus. Intending by standard torus Tn for some n,
where T denotes the definable group [0, 1) with the sum modulo 1 and the
Pillay’s topology. T can be definably identified with a definable set with its
subset topology. Alternatively, we could as well have defined T as SO2—i.e.
the set {(x,y) ∈ R2 s.t. x2 + y2 = 1} with the usual operation and the subset
topology, or as any other one-dimensional definably compact group (notice,
however, that for example SO2 and [0, 1) with the sum modulo 1 are in general
not definably isomorphic).

Using the results of Chapter 2 we will give a necessary and sufficient
condition for the triviality of principal definable fibre bundles on a torus.

Observation 3.2.1. Let X be a definably connected definable set such that πdef
n (X)

is trivial—e.g. Tm for any m and for n > 1. Let f,g : In → X be two defin-
able maps, and suppose that f�δ(In) = g�δ(In). Then f and g are definably
homotopic via an homotopy h : In × I→ X such that ht�δ(In) = f�δ(In) for
any t ∈ I.
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Proof. This observation follows immediately from the definition, as in the the
classical case.

Definition 3.2.2. We say that a definable set X has property P if X is definably
connected and, for all n ∈N, any definable map f : δ(In)→ X such that

f( 0 , x2, x3, . . . , xn) = f( 1 , x2, x3, . . . , xn)

f(x1, 0 , x3, . . . , xn) = f(x1, 1 , x3, . . . , xn)
...

f(x1, x2, x3, . . . , 0 ) = f(x1, x2, x3, . . . , 1 )

(?)

is definably homotopic to a constant.

Observation 3.2.3. Equivalently, a definably connected definable set X has
property P if any definable map from δ(In) to X satisfying (?) extends to a
map from In to X.

We are interested in property P because of the following lemma (which
will be used in the following section).

Lemma 3.2.4. Let G be a definably connected definable group. Then G has prop-
erty P .

Proof. Let f : δ(In)→ G be a definable map satisfying (?). It suffices to prove
that f is definably homotopic to a constant function. For each i ∈ {1, . . . ,n}
define the projection pi : In → δ(In) by

(pi(x1, . . . , xn))j =

{
xj if i 6= j
0 if i = j

Now let f0 = f and, for each i ∈ {1, . . . ,n}, define

fi : δ(In)→ G

x 7→ fi−1(x) · (fi−1 ◦ pi(x))−1

Each of these maps satisfies (?)—since f0 does and fi is defined inductively
from fi−1 by means of operations that preserve (?). Moreover, for each i, we
have fi�Si ≡ eG where

Si
def
=
{
(x1, . . . , xn) ∈ δ(In) s.t. ∃ j 6 i xj ∈ {0, 1}

}
what is easy to prove by induction. Since Sn = δ(In), we have that fn ≡ eG,
hence it suffices to prove that fi−1 ∼ fi for each i. We claim that fi−1 ◦ pi is
definably homotopic to a constant, which is enough—in fact, by the definable
connectedness of G, we may assume that constant to be eG, hence

fi−1 = fi−1 · e−1G ∼ fi−1 · (fi−1 ◦ pi)−1 = fi

Here is the required homotopy

δ(In)× I→ G

(x, t) 7→ fi−1 ◦ pi(tx)
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Lemma 3.2.5. Property P is a definable homotopy invariant—i.e. given two defin-
ably homotopy equivalent definable sets X and X ′ one has property P if and only if
the other has.

Proof. Immediate from the definition. Take g : X→ X ′ and g ′ : X ′ → X de-
finable maps definably homotopy inverse of each other. Suppose that X ′

has property P , and let f : δ(In)→ X satisfy (?). By construction f is homo-
topic to g ′ ◦ g ◦ f, but g ◦ f : δ(In)→ X ′ satisfies (?), hence g ◦ f ∼ constant by
hypothesis. As a consequence f ∼ g ′ ◦ g ◦ f ∼ g ′(constant) = constant.

Lemma 3.2.6. Let B = (B, Tn,p, F) be definable fibre bundle having the n-dimen-
sional torus Tn as the base space and a locally definably compact definably connected
definable set F as fibre. Suppose that the bundle space B of B has property P . Then B
admits a definable cross section.

Proof. Let τn : In → Tn be the canonical map

τn : (x1, . . . , xn) 7→ (x1mod 1, . . . , xnmod 1)

By induction on the dimension n, suffices to show that any definable partial
cross section s defined on τn(δ(In)) extends to a global cross section.
Case n = 1. Follows immediately from the definable connectedness of the fibre,
using the fact that τ−11 (B) is isomorphic to a product bundle by Corollary 2.3.4.
Observe, however, that the same argument doesn’t work for n > 1, since we
would need the fibre to be (n− 1)-connected.
Case n > 1. Since B has property P , by observation 3.2.3, the map s ◦ τn
extends to a map f : In → B. By observation 3.2.1, p ◦ f is definably homo-
topic to τn. Since f�δ(In) = s ◦ τn�δ(In) there is a well defined definable
map f ′ : Tn → B such that f = f ′ ◦ τn, moreover p ◦ f ′ is definably homotopic
to the identity on Tn. Hence, by Theorem 2.3.3, the identity on B is homo-
topic to a definable bundle map g : B → B which induces p ◦ f ′ on the base
space Tn of B. As a consequence, by Theorem 2.2.9, B ′

def
= (p ◦ f ′)−1(B) is

isomorphic to B. On the other hand, B ′, which has base space

B ′
def
=
{
(x,y) ∈ B× Tn s.t. p(x) = p ◦ f ′(y)

}
admits a definable cross section, which is s ′ : y 7→ (f ′(y),y). Is thus proven
that B has a definable cross section; some extra care must be taken in order
to ensure that this cross section coincides with s on τn(δ(In)).

Using observation 3.2.1, we get a definable homotopy between p ◦ f ′ and
the identity which is stationary on τn(δ(In)). Hence the bundle map g

given by Theorem 2.3.3 restricts to the identity on p−1 ◦ τn(δ(In)). Now, the
bundle isomorphism from B to g−1(B) given by the proof of Theorem 2.2.9
identifies x ∈ B with (g(x),p(x)), which is in the graph of s ′ if and only
if f ′ ◦ p(x) = g(x). However, on p−1 ◦ τn(δ(In)), we know that g is the identity,
so f ′ ◦ p(x) = g(x) is equivalent to f ′ ◦ p(x) = x, which holds if and only if x
is in the graph of s.

Lemma 3.2.6 gives us a necessary and sufficient condition for the triviality
of a definable principal fibre bundle over a torus.
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Observation 3.2.7. Fix any definable fibre bundle B = (B,X,p, F) having a
definably connected base X. Then the definable fundamental group of X
acts as a group of permutations of the definably connected components of
the fibre p−1(x0) over the base point x0 of X—precisely [γ] ∈ πdef

1 (X) sends a
definably connected component C of p−1(x0) to the connected component
containing γ ′(1) where γ ′ is any lifting of γ at a point in C.

The action is well defined, in fact consider two liftings γ ′ and δ ′ of γ and δ
with [γ] = [δ]. Then the concatenation of γ(1− –) and δ is null-homotopic,
hence, by the homotopy lifting property, the concatenation of γ ′(1− –) and δ ′

is homotopic to a curve contained in the fibre p−1(x0) and joining δ ′(1)
with γ ′(1), i.e. δ ′(1) and γ ′(1) are in the same definably connected component
of the fibre.

Definition 3.2.8. We say that a definable fibre bundle B = (B,X,p,G) is
a principal definable fibre bundle if the following holds:

i. the fibre G of B has a definable group structure that makes it into a topologi-
cal group,

ii. the fibre G acts on B as a group of definable bundle maps inducing the
identity on the base space,

iii. the action of G is definable and continuous, and, on each fibre, it is free and
transitive.

Principal definable fibre bundles having a section, as their topological
colleagues, are trivial.

Observation 3.2.9. Let B = (B,X,p,G) be a principal definable fibre bundle.
Suppose that B admits a section s : X→ B. Then B is trivial.

Proof. Let us denote g · x with g ∈ G and x ∈ X the action of G. Suffices to
check that

f : G×B→ X

(g,b) 7→ g · s(b)

is an homeomorphism. Clearly f is continuous and injective. Recall that,
by [Pil–88], G is a definable manifold. Hence, by the o-minimal invariance of
domain [Joh–01] (i.e. that a continuous definable injection Rn → Rn is open),
it is an homeomorphism.

We have the following lemma—which, as we will see, generalizes to the
case where instead of Tn we have any definably compact abelian group.

Lemma 3.2.10. A principal definable fibre bundle B = (B, Tn,p,G) having a
torus Tn as the base space is trivial if and only if its bundle space B has property P
and πdef

1 (Tn) acts trivially on the connected components of G.

Proof (sketch). The only if part will become evident after Lemma 3.2.4 is proven
in the next section.

For the if part, fix a definably connected component B ′ of B: let p ′

be p�B ′, we claim that B ′
def
= (B ′, Tn,p ′,G0) – where G0 denotes the definably
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connected component of the identity of G – is a principal definable fibre
bundle. In fact, p ′−1(x0) is definably connected: take two points in p ′−1(x0),
then, by definable connectedness of B ′, take a definable path joining them,
and observe that the triviality of the action of the fundamental group implies
that the two end-points of this path are in the same connected component.
Being homeomorphic to a definably connected component of G, the inverse
image p ′−1(x0) must be homeomorphic to G0. The local triviality of B, now,
implies the local triviality of B ′, hence B ′ is a definable fibre bundle. Clearly,
the action of G0 < G on the fibres of B can not permute their definably
connected components, hence B ′ is principal (with the same action as B
restricted to G0).

By Lemma 3.2.6 and observation 3.2.9, B ′ is trivial. The statement follows
working on each definably connected component separately.

3 .3 Failing to split definably compact groups

The aim of this section is to prove Theorem 3.3.4. A corresponding classical
result [Bor–61, Proposition 3.1] can be proven rather straightforwardly by
induction on the dimension:

Let G be our Lie group and let Z0(G) denote the connected
component of the identity of the center of G. Take a connected
subgroup Z of Z0(G) having codimension 1. By induction, we
can assume the statement on Z · [G,G], where [G,G] denotes the
derived subgroup. The base space of the principal fibre bundle
induced by the quotient G/Z · [G,G] is homeomorphic to a circle,
hence, using [Ste–51, Corollary 18.6], the bundle is trivial.

The same approach fails in the o-minimal setting because of the already
observed existence of definably compact abelian definable groups which don’t
factor into products of one-dimensional groups.

As usual we must take a detour. By observation 3.2.9, it suffices to prove
the existence of a section of the definable fibre bundle G→ G/[G,G], however
we can not assume a factorization of the definable abelian group G/[G,G].
Nevertheless, it is a known fact that the existence of sections is, in fact,
an homotopic – more precisely co-homologic – property (by a collection of
techniques known as obstruction theory). Hence we can expect the statement
to be reducible to the case of a factorized torus using Theorem 3.1.6. That
is, indeed, what we are going to do, having identified property P (see
Definition 3.2.2, and Lemma 3.2.6) as the correct homotopic invariant for our
purpose. (A second approach would have been to transfer the result form the
reals working in the spirit of [BO–09]: this involves constructing enough of
obstruction theory on the o-minimal side, and showing that, whatever the co-
homologic objects required, they reduce to the semialgebraic case. Although
this was his original plan, the author didn’t investigate this approach.)

After proving Theorem 3.3.4, we will show that the derived subgroup of
a definably compact definable group may not be a semidirect factor of the
group. The example is slightly surprising since the same statement is indeed
true for compact Lie groups (see [HM–98, Theorem 9.39]).
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3.3. Failing to split definably compact groups

Fact 3.3.1 ([HPP–08b, Corollary 6.4]). Let G be a definably compact definably
connected group, then the derived subgroup [G,G] of G is a definably connected
semisimple definable group. Let Z0(G) denote the definably connected component of
the identity of the center of G. Then G = [G,G] ·Z0(G) and ΓG

def
= [G,G]∩Z0(G)

is finite.

Clearly, from Fact 3.3.1, we have that the quotient G/[G,G] is definably iso-
morphic to Z0(G)/ΓG. We will call BG

def
= (G, Z0(G)/ΓG,p, [G,G]) the bundle

obtained from BG/[G,G] through this (group) isomorphism.

Observation 3.3.2. Let B ′ = (B ′,X ′,p ′, F) be a definable fibre bundle, and let f
be a definable map from a definable set X to the base X ′ of B ′. Consider
the bundle B

def
= f−1(B ′). If B ′ admits a definable cross section s ′ : X ′ → B ′,

then B has a definable cross section too. In fact, by definition,

B =
{
(x,y) ∈ B ′ ×X s.t. p ′(x) = f(y)

}
and

s : X→ B

y 7→
(
s ′ ◦ f(y),y

)
is a cross section of B. In particular, using Theorem 2.2.9, we have that given
two homotopy equivalent definable fibre bundles having locally definably
compact fibre, one has a definable cross section if and only if the other has.

Lemma 3.3.3. Let G be a definably compact definably connect group. Then the
definable fibre bundle BG admits a definable cross section.

Proof. First of all, observe that the fibre of BG is definably connected and
(locally) definably compact. By Theorem 3.1.6 we know that Z0(G)/ΓG is
definably homotopy equivalent to Td, for some d. Let f : Td → Z0(G)/ΓG
be a definable homotopy equivalence, and consider the definable fibre bun-
dle B ′

def
= f−1(BG). By 2.3.7 we have that B ′ is homotopy equivalent to BG,

hence the respective bundle spaces are definably homotopy equivalent. Since,
by Lemma 3.2.4, the bundle space of BG – which is G – has property P , the
same holds for the bundle space of B ′. As a consequence, by Lemma 3.2.6,
B ′ has a definable cross section. The statement is thus proven using observa-
tion 3.3.2.

Theorem 3.3.4. Let G be a definably compact definably connected group. Then G is
definably homeomorphic to the Cartesian product [G,G]×Z0(G)/ΓG of the derived
subgroup of G and an abelian definable group.

Proof. Immediate by Lemma 3.3.3: in fact the homeomorphism is

[G,G]×Z0(G)/ΓG → G

(x,y) 7→ x · s(y)

where · denotes the group operation in G and s is a definable cross section
of BG.
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3 . On the topology of definably compact groups

The same argument proves the following generalization of Lemma 3.2.10.

Theorem 3.3.5. Any principal definable fibre bundle B = (B,A,p,G) having a
definably compact definably connected abelian group A as the base space is trivial
if and only if its bundle space B has property P and πdef

1 (A) acts trivially on the
connected components of G.

Proof. Suffices to observe that the condition on the triviality of the action
of πdef

1 (A) is invariant under homotopy equivalence of definable fibre bundles.
Then follow the same argument in the proof of Lemma 3.3.3 and apply
Lemma 3.2.10.

The following example shows that a definably compact group may not
be (definably isomorphic to) a definable semidirect product of its derived
subgroup with some definable group.

Example 3.3.6. We will construct a definably compact group G definable
in the field Ralg of the algebraic real numbers such that the derived sub-
group of G has no definable semidirect complement in G. Consider any
definably compact group (G, ·) such that its derived subgroup [G,G] has a
definable semidirect complement H < G. Let σ : G→ [G,G] and τ : G→ H be
defined by the equation x = σ(x) · τ(x) for each x ∈ G. Observe that σ�Z(G) is
a group homomorphism, moreover it is the identity on Z(G)∩ [G,G], hence, if
Z0(G)∩ [G,G] is non-trivial, we have a non-trivial definable group homomor-
phism from Z0(G) to [G,G]. Now let T denote [0, 1) with the sum modulo 1,
and let SU2 = SU2(Ralg) denote the group

SU2 = {a+ bi+ cj+ dk}

a2+b2+c2+d2=1
a,b,c,d∈Ralg

with the usual quaternion multiplication. Consider G def
= (T× SU2)/Γ where Γ

is the normal subgroup {(0, 1), (1/2,−1)}. It is easy to check that T× {1,−1} ∼= T
is the center of G, and {0, 1/2}× SU2 ∼= SU2 is the derived subgroup of G,
hence (0,−1) · Γ is an element of Z0(G)∩ [G,G], which therefore is non-trivial.
Follows that, were [G,G] a semidirect factor of G, we would have a definable
non-trivial homomorphism h : T→ SU2. Being a definably connected abelian
definable subgroup of SU2 of dimension 1, the image of h would be a 0-Sy-
low in the sense of [Str–94a]. Follows that Img(h) would be conjugated to
the subgroup SO2

def
= {a+ bi} < SU2; however no non-trivial homomorphism

T→ SO2 can be definable in Ralg (if not we would be able to find a 0-definable
homomorphism, and using it to define π without parameters).
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Chapter 4

Definable fundamental groupoid & finite coverings

The definable fundamental group has played an important role in the investi-
gation of definable groups, and in particular in the solution of Pillay’s conjec-
tures 1.4.4—where it provided the link between the o-minimal dimension of
a definably compact abelian group and the dimension of the corresponding
Lie group (see [EO–04] and [HPP–08a]). As of today, no alternative route
has been devised for this point. Nevertheless, the argument to compute the
fundamental group of a definably compact abelian group is very indirect
(remember that the group can not be factorized), and, for instance, it doesn’t
give any natural isomorphism between the fundamental group of G and that
of G/G00. The obvious difficulty being that paths in G are parametrized by
elements of the o-minimal structure, while paths in G/G00 are parametrized
by real numbers—using the standard part map clearly won’t work.

In this chapter, we try to analyze the situation using the compact domination
conjecture proven in [HP–09]. We will prove a local version of the isomorphism
between the fundamental group of G and that of G/G00, namely that for
any open subset of G its fundamental group is isomorphic to the definable
fundamental group of its preimage in G/G00. Using this, we will show that
the said isomorphism between the fundamental groups of definably compact
and Lie groups is indeed natural (Section 4.3). A second consequence is
that the finite extensions of G and G/G00 respectively – as subcategories of
the objects over G and G/G00 in their respective categories – are isomorphic
categories (Theorem 4.5.3). Furthermore, we will be able to draw consequences
on the definable universal cover (Theorem 4.5.2) and the homotopy type
(Theorem 4.8.7) of definably compact groups.



4 . Definable fundamental groupoid & finite coverings

4 .1 Topological consequences of compact domination

In this section we will explore some topological consequences of the com-
pact domination conjecture proven in [HP–09] (and extended in [HPP–08b]
to the non-abelian case). One of its equivalent formulations says that given
a definably compact group G, the image in G/G00 of a nowhere dense de-
finable subset of G has Haar measure zero. We will only use the following
consequence of compact domination, proven in [Ber–08]: the infinitesimal
subgroup G00 is a decreasing intersection

⋂
i∈N Ci of definably simply con-

nected (actually even definably contractible) definable subsets Ci of G. We
will explore this situation in the following more general setting:

Assumption 4.1.1. Let X be a
∨

-definable set, let Y be a locally simply con-
nected second countable locally compact space, and let f : X→ Y be a surjective
function with the following properties:

i. The preimage of every open subset of Y is
∨

-definable (so in particular X is∨
-definable).

ii. The preimage of every compact subset of Y is type-definable.
iii. For all y ∈ Y the type-definable set f−1(y) is a decreasing intersection

⋂
i∈N Ci

of definably simply connected definable open subsets {Ci}i of X.

Note that the second countability assumption ensures that |Y| 6 2ℵ0 , so in
particular Y is small.

Example 4.1.2. The natural projection map p : G→ G/G00 satisfies assump-
tion 4.1.1 (where G is a definably compact definable group). More generally
let O be an open subset of G/G00, then f�p−1(O) satisfies assumption 4.1.1.

Definition 4.1.3 (Definable fundamental groupoid). Given a
∨

-definable set X,
and a subset Γ of X, let Pdef(X, Γ) be the set of definable paths in X with
endpoints in Γ . Let πdef(X, Γ) be the quotient of Pdef(X, Γ) modulo definable
homotopy of paths (relative to the endpoints). We define an operation + on
πdef(X, Γ) by [α] + [β] = [α+β] where α+β is the concatenation of the paths
α and β. Clearly, this is defined only when the final point of α coincides with
the starting point of β. With this operation πdef(X, Γ) is a groupoid, namely
a category in which every morphism is an isomorphism (the objects are the
elements of Γ , the morphisms are the homotopy classes of paths, and the
composition is the concatenation). In particular when Γ = X we obtain the
definable fundamental groupoid πdef(X,X) of X. When Γ is a singleton we
obtain the definable fundamental group πdef(X, x0)

def
= πdef(X, {x0}), which will

also be written as πdef
1 (X) when the base point is clear from the context or

irrelevant. Dropping def one obtains the corresponding classical notions.

In this section we will prove the following theorem.

Theorem 4.1.4. Let f : X→ Y be as in assumption 4.1.1. Then there is a unique
morphism of groupoids f∗ : πdef(X,X)→ π(Y, Y) with the following properties:

1. f∗ = f on the object part of the groupoids, i.e. f∗ maps the definable homotopy class of
a path with endpoints x and y, to the homotopy class of a path with endpoints f(x)
and f(y) respectively.
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4.1. Topological consequences of compact domination

2. For any open O ⊆ Y, and for any [a] ∈ πdef(X,X) such that Ima ⊆ f−1(O), there is
a path b in Y such that Imb ⊆ O and f∗([a]) = [b].
Moreover for this unique morphism f∗ we have:

3. If Γ is a (possibly infinite) subset of X such that f�Γ is injective, then the restriction
of f∗ to πdef(X, Γ) is an isomorphism onto π(Y, f(Γ)). In particular if Γ is a singleton,
we obtain an isomorphism of the respective fundamental groups.

4. If f : X→ Y satisfies assumption 4.1.1 and O is an open subset of Y, then the restric-
tion fO : f−1(O)→ O of f continues to satisfy the assumption (we have restricted
also the codomain to make the map surjective). In this situation we have a commutative
diagram

πdef(f−1(O), f−1(O))
fO∗ //

��

π(O,O)

��
πdef(X,X)

f∗ // π(Y, Y)

where the vertical arrows are the homomorphisms induced by the inclusion maps.

Corollary 4.1.5. Let G be a definably compact definably connected definable group.
Then the projection p : G→ G/G00 induces an isomorphism

p∗ : π
def
1 (G)

∼=−→ π1(G/G00)

Moreover if O is an open simply connected subset of G/G00, then p−1(O) is an∨
-definable definably simply connected subset of G

Proof. Apply 3 with Γ a single point in p−1(O).

Proof of Theorem 4.1.4. The proof is split into a number of claims and defi-
nitions, and will be completed at the end of this section. The idea is the
following. Given an open cover U of a topological space, the nerve of U is the
simplicial complex whose n-simplexes are the n-tuples of open sets from U

which have a non-empty intersection. We will show that, if U satisfies suitable
assumptions (each element of U is path connected and the intersection of two
elements of U is contained in a simply connected set), then the fundamental
groupoid of the space is determined by the nerve of U. We will apply this
result to the topological space Y. A corresponding result holds also in the
o-minimal category (considering definably path-connected and definably sim-
ply connected sets), so we can apply it to X. We will show (Claim 4) that X
and Y admit two open covers V and U which satisfy the required assumptions
in the respective categories and have isomorphic nerves (in fact V will consist
of the f-preimages of the sets in U: the difficulty here is in choosing U so that
all the conditions are met on both sides simultaneously). This will essentially
prove the result. Guided by the above idea, we will actually develop the proof
without explicit mention of the nerves. Let us now come to the formal details.

Claim 1. f is continuous.

Proof of claim. By our assumptions, for every y ∈ Y, the preimage f−1(y) is a
small directed intersections of definable open sets. So it suffices to show that
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4 . Definable fundamental groupoid & finite coverings

(in a saturated model) the intersection
⋂
i∈IOi of a small directed family of

definable open sets Oi is open. So take x ∈
⋂
i∈IOi and let us show that x is

in the interior. To this aim let Bt(x) ⊂ X be the ball of center x and positive
radius t ∈M. Since Oi is open in X, there is ti > 0 such that for all 0 < t < ti
we have Bt(x)∩X ⊂ Oi. By saturation there is a single positive t∗ ∈M which
for each i is smaller than ti. But then Bt∗(x)∩X ⊂

⋂
i∈IOi so x is in the

interior.

Claim 2. Let D be a definable subset of X. Then f(D) is a compact subset of Y. (It
follows that the same conclusion holds if D is only assumed to be type-definable.)

Proof of claim. Let (Oi | i ∈ I) be an open cover of f(D). We must find a finite
subcover. The definable set D is included in

⋃
i∈J f

−1(Oi) and each f−1(Oi) is∨
-definable. By saturation there is a finite J ⊂ I such that D ⊂

⋃
i∈J f

−1(Oi).
It then follows that f(D) ⊂

⋃
i∈JOi.

Claim 3.
i. Let Z be a compact connected subset of Y. Then the type-definable set f−1(Z) is

definably connected.
ii. Let U be an open connected subset of Y. Then the

∨
-definable set f−1(U) is definably

path-connected.

Proof of claim.
i. By [BOPP–05, Lemma 2.2] if a type-definable set is the intersection of a filtered

family of definably connected sets, then it is itself definably connected. It
then follows from assumption 4.1.1 that for each y ∈ Y, the type-definable
set f−1(y) is definably connected. Now let Z be a compact connected subset
of Y, and suppose for a contradiction that f−1(Z) is the union of two relatively
definable disjoint non-empty open sets A and B. Being relatively definable in
a type-definable set, A and B are in fact type-definable. So their images f(A)
and f(B) are compact by Claim 2. Since Z = f(A)∪ f(B) and Z is connected,
f(A) and f(B) have a non-empty intersection. Take y ∈ f(A)∩ f(B). Then
f−1(y) meets both A and B, contradicting the fact that f−1(y) is definably
connected.

ii. Let x,y ∈ f−1(U). Since Y is locally simply connected, it is in particular locally
path connected, so its connected open subsets are path-connected. We can
thus choose a path a in U connecting f(x) to f(y). Its image Z def

= Im(a) is
a compact connected subset of U. So by i the type-definable set f−1(Z) is
definably connected. Since this set is contained in the

∨
-definable set f−1(U),

by saturation there is a definable set D with f−1(Z) ⊂ D ⊂ f−1(U). The
definably connected component D ′ of D containing x must contain also y
(since it contains f−1(Z)). Now it suffices to recall that a definable set is
definably connected if and only if it is definably path connected.

Definition 4.1.6. An open cover P of a topological space is a star refinement

of a cover Q, if for every P ∈ P, there is a Q ∈ Q such that if P ′ ∈ P has a
non-empty intersection with P then P ′ ⊂ Q. In a metric space, and more
generally in a uniform space, every open cover has a star refinement. Every
Tychonoff space admits a compatible uniform structure, so the existence of
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4.1. Topological consequences of compact domination

star refinements applies to Tychonoff spaces. In particular it applies to any
open subset of a locally compact Hausdorff space.

Claim 4. There are open covers U of Y and V of X having the following properties.
i. V def

= {f−1(U)}U∈U (so V is determined by U).
ii. Each element of U is path connected, and whenever two elements of U have a non-

empty intersection, their union is contained in some simply connected subset of Y.
iii. Each element of V is definably path connected (and

∨
-definable), and whenever

two elements of V have a non-empty intersection, their union is contained in some
definably simply connected subset of X.

Note that it is easy to find a cover U satisfying ii (take a star-refinement of
a cover by simply connected sets). Moreover it will turn out that if U satisfies ii

and we define V as in i, then V satisfies iii. However for the moment we cannot
assume this fact, so we need to do some more work to find the appropriate U.

Proof of Claim 4. By assumption 4.1.1 we can choose, for each y ∈ Y, a defin-
ably simply connected open definable set Cy ⊂ X containing f−1(y). Since
Y is locally simply connected and second countable, we can find a decreas-
ing sequence {On}n∈N of simply connected open neighborhoods of y with⋂
nOn = {y}. Moreover since Y is locally compact, we can arrange so that

for each n the set On is compact and On+1 ⊂ On. By our assumptions
f−1(On+1) is type-definable. Since

⋂
n∈N f

−1(On) = f
−1(y) ⊂ Cy, by satura-

tion, there is some n such that f−1(On) ⊂ Cy. Fix such an n and let Zy = On.
So f−1(Zy) ⊂ Cy. We have thus found a cover Z

def
= {Zy}y∈Y of Y, such that

the preimage of any element of the cover is contained in a definably simply
connected set. Now let U be a star-refinement of Z. We can assume that
each element of U is path-connected, as otherwise we could replace it by its
connected components. So U satisfies ii. Finally let V = {f−1(U)}U∈U. Then
V is a star-refinement of {f−1(U)}U∈Z. We must prove that V satisfies iii.
By Claim 3 each member of V is definably path-connected. By construction
whenever two members of V intersect, their union is contained in a set of the
form Cy, which is a definably simply connected set.

Claim 5. Any
∨

-definable open subset V of X is a small union of definable open sets.

Proof of claim. We can write V as a small directed union
⋃
i∈IDi of definable

sets {Di}i. We claim that V is the union
⋃
i∈I Int(Di) of the interiors of the

sets {Di}i. To this aim, let x ∈ V . Since V is open there is a definable open
neighbourhood U of x contained in

⋃
i∈IDi. Hence by saturation there is

some i ∈ I such that U ⊂ Di. But then x ∈ Int(Di).

Definition 4.1.7. Let P be a family of subsets of a given set. A set is P-small

if it is contained in some member of P. A function is P-small if its image is
P-small.

Claim 6.
i. Given a definable subset D of X, there are finitely many sets in V whose union

covers D. Moreover there is a finite partition of D into definable sets whose closures
are V-small.
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4 . Definable fundamental groupoid & finite coverings

ii. Given a definable path a in X there is a subdivision a = a1 + · · ·+ an of a such that
each ai is V-small.

Proof of claim.
i. Since f(D) is a compact subset of Y, it can be covered by finitely many

members U1, . . . ,Un of U. Then, it follows that D ⊂ V1 ∪ · · · ∪ Vn where we
let Vi

def
= f−1(Ui) ∈ V. Each Vi is

∨
-definable and open, so by saturation there

are definable open subsets Oi of Vi with D ⊂ O1 ∪ · · · ∪On. By shrinking
each Oi if necessary, we may assume that the closure of Oi is included in Vi
for all i. It is now sufficient to take a cell decomposition of D compatible
with O1, . . . ,On.

ii. Take a finite partition P of Im(a) into definable sets whose closures are V-small.
Then take a cell decomposition of I = dom(a) compatible with f−1(D) for
all D ∈ P. The endpoints of the decomposition yield the desired subdivision
of a.

Definition 4.1.8.
i. Given two definable paths a and b in X with the same endpoints, we say that

they are V-contiguous (written a ∼V b) if there are definable paths u, v,a ′,b ′

in X such that a = u+ a ′ + v and b = u+ b ′ + v and Im(a ′)∪ Im(b ′) ⊂ V for
some V ∈ V. Let ∼?V be the transitive closure of ∼V. Two paths in the ∼?V rela-
tion are said to be V-equivalent.

ii. Similarly, dropping all definability conditions, one defines the relation of
U-contiguity and U-equivalence between paths in Y.

Claim 7.
i. Two paths in Y are U-equivalent if and only if they are homotopic (all the homotopies

we consider are relative to the endpoints).
ii. Two definable paths in X are V-equivalent if and only if they are definably homotopic.

Proof of claim. One direction is trivial (equivalent implies homotopic). We
prove the other direction.

i. Implicit in the proof of the van Kampen theorem in [Bro–68]. One argues as
follows. Given an homotopy F : I× I→ Y from a to b, we can subdivide the
homotopy square I× I into small squares so that the image of each of them
under F is U-small. If n is the number of squares in the subdivision of I× I, it
is easy to see that a is U-equivalent to b by a sequence of n contiguity moves.
The converse is trivial, since two U-contiguous paths differ for a subpath
contained in a simply connected set.

ii. Let F : I× I→ X be a definable homotopy between definable paths a = F(0, –)
and b = F(1, –) in X. By Claim 6 the image of F can be partitioned into finitely
many definable sets D1, . . . ,Dn whose closures are V-small. Consider a cell
decomposition of the homotopy square I× I compatible with F−1(Di) for all i.
We can then reason as above with the role of the small squares replaced by
the cells of the decomposition. For the details see the proof of the o-minimal
van Kampen theorem in [BO–02].

We are now ready to define f∗ : πdef(X,X)→ π(Y, Y).
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4.1. Topological consequences of compact domination

Definition 4.1.9. On the object part of the groupoids we set f∗ = f. Given
a definable path a in X and a path b in Y we say that a corresponds to b if
there is a subdivision a = a1 + · · ·+ an into V-small definable paths ai, and
a subdivision b = b1 + · · ·+ bn into U-small paths such that, for all i 6 n, the
endpoints of ai are mapped by f : X→ Y to the respective endpoints of bi. If
a corresponds to b, then we define f∗([a]) = [b].

The proof of the following claim depends only on claims 4 and 7, so it is
rather symmetric in X and Y. This observation will be needed later.

Claim 8. f∗ is well defined.

Proof of claim.
Step 1. First note that two V-small definable paths a and a ′ in X with the
same endpoints are definably homotopic. In fact if V ∈ V and V ′ ∈ V contain
the images of a and a ′ respectively, then by Claim 4 we have that V ∪ V ′ is
contained in a definably simply connected set, and therefore a is definably
homotopic to a ′. Similarly two U-small paths b and b ′ in Y with the same
endpoints are homotopic. So f∗([a]) = [b] is well defined at least when a
and b are V-small.
Step 2. We next show that if a corresponds to b, then the homotopy class of b
is determined by a. So suppose that a = a1 + . . .+ an is a subdivision of a
into V-small definable paths, let ai correspond to bi (a path in Y), and let
b = b1 + . . .+ bn. By step 1, the homotopy class of each bj is determined by
the corresponding aj, but we must prove that the homotopy class of b does
not depend on the chosen subdivision of a. Since any two subdivisions have
a common refinement, it suffices to consider the case in which one of the ai
is further subdivided into V-small paths. So without loss of generality sup-
pose i = 1 and let a1 = a11 + · · ·+ a

k
1 be a subdivision of a1 into V-small paths.

We must show that b1 is homotopic to b11 + · · ·+ b
k
1 where each bj1 is such

that aj1 corresponds to bj1. To this aim let U ∈ U be such that Im(a1) ⊂ f−1(U).
Then in particular the endpoints of a1 and of each aj1 are in f−1(U). Therefore
the endpoints of b1 and of each bj1 are in U. Reasoning as in step 1 we can
then assume that the image of b1 and of each bj1 is entirely contained in U
since we can reduce to this case replacing each of these paths by a homotopic
path. After these reductions, b1 and b11 + · · ·+ b

k
1 are two paths in U with the

same endpoints, and therefore they are homotopic (since U is contained in a
simply connected set).
Step 3. Finally suppose that a is definably homotopic to a ′, and let us show
that b is homotopic to b ′, where a corresponds to b and a ′ to b ′. By Claim 7

we can assume that a ′ is V-contiguous to a. So we can write a = u+ z+ v

and a ′ = u+ z ′ + v with Im(z)∪ Im(z ′) ⊂ V for some V ∈ V. Choose subdivi-
sions of a and a ′ such that z and z ′ are segments of the chosen subdivisions.
By step 2 we may assume that b and b ′ are obtained from a and a ′ using these
subdivisions. So we can assume that b and b ′ are U-contiguous. Therefore,
by Claim 7, they are homotopic.

Claim 9. The definition of f∗ does not depend on the particular choice of the cover U
in Claim 4.
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4 . Definable fundamental groupoid & finite coverings

Proof of claim. Suppose U ′ is a refinement of U still satisfying the conditions
in Claim 4. Then clearly if we define f∗([a]) using U ′ instead of U we get
the same function (since a subdivision of a compatible with the preimages of
the sets in U ′ is also compatible with the preimages of the sets in U). Now
it it suffices to observe that for any two coverings U and U ′ satisfying the
conditions in Claim 4 there is a common refinement which still satisfies the
conditions (take the connected components of the pairwise intersections of an
element of U and an element of U ′).

Claim 10. f∗ is a morphism and satisfies points 1 and 2 in Theorem 4.1.4.

Proof of claim. Note that in Definition 4.1.9, if a = a0 + a1 and a0,a1 corre-
spond to b0 and b1 respectively, then a corresponds to b def

= b0 + b1. Hence f∗
is a morphism. By construction it satisfies 1. We prove 2. Because of Claim 9,
by enlarging U we can suppose it to be a base of the topology of Y. Given an
open subset O of Y, we can then express O as the union of a subfamily U ′

of U. Consider V ′
def
=
{
f−1(U)

}
U∈U ′ . Given a path a in f−1(O), the construc-

tion of [b] = f∗([a]) can be carried out subdividing a into V ′-small paths and
associating to each of them a U ′-small path in Y. The image of b is clearly a
subset of O.

Claim 11. f∗ is the unique morphism satisfying 1 and 2 in Theorem 4.1.4.

Proof of claim. Let O be a simply connected open subset of Y. If a is a definable
path in X with Ima ⊆ f−1(O), condition 2 in Theorem 4.1.4 forces f∗([a])
to be of the form [b] for some path b with Imb ⊆ O. Since O is simply
connected, and the endpoints of b are the images of the endpoints of a, then
[b] is completely determined. So f∗ is determined on the paths satisfying
Im(a) ⊆ f−1(O) for some open simply connected subset O ⊂ Y. By Claim 6

we can reduce to this situation by subdividing the paths.

Claim 12. Let Γ ⊂ X be such that f�Γ : Γ → Y is injective. Then the restriction of f∗
to πdef(X, Γ) is an isomorphism onto π(Y, f(Γ)).

Proof of claim. Choose a right inverse ψ : Y → X of f : X→ Y extending (f�Γ)
−1.

We define an inverse ψ∗ : π(Y, f(Γ))→ πdef(X, Γ) of f∗ as follows. Given
[b] ∈ π(Y, f(Γ)), consider a subdivision b = b1 + · · ·+ bm of b into U-small
paths. For each i, let yi−1 and yi be the endpoints of bi, and let ai be a
V-small path in X from xi−1

def
= ψ(yi−1) to xi

def
= ψ(yi). Then f∗([ai]) = [bi].

Finally define ψ∗([b]) = [a1 + · · ·+ am]. Note that ψ∗ is well defined by the
same argument that proves that f∗ is well defined. Indeed in that proof we
only used claims 4 and 7, so we can repeat the argument with the roles of
X and Y interchanged. We also claim that ψ∗ = (f∗�πdef(X,Γ))

−1. In fact, by
inspection of the definitions, the same pair of subdivisions a = a1 + · · ·+ am
and b = b1 + · · ·+ bm witnesses both f∗([a]) = [b] and ψ∗([b]) = [a] simulta-
neously.

The proof of Theorem 4.1.4 is now complete, except for point 4, which is
clear from the construction and left to the reader.
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4 .2 Equivariance

We now specialize the results of the previous section to the case of spaces
that carry a group structure. So let G be a definably compact group. Let
pG : G→ G/G00 be the projection map, and let

pG∗ : πdef(G,G)→ π(G/G00,G/G00)

be the induced morphism of groupoids as in Theorem 4.1.4.

Definition 4.2.1. The group G acts on πdef(G,G) by x · [a] = [x · a], where
x ∈ G and a is a definable path in G. Similarly we have an action of G/G00
on π(G/G00,G/G00) given by y · [b] = [y · b]. Finally we also have an action
of G on π(G/G00,G/G00) sending (x, [b]) to pG(x) · [b], where x ∈ G and b is
a path in G/G00.

Theorem 4.2.2. The map pG∗ : πdef(G,G)→ π(G/G00,G/G00) is equivariant un-
der the action of G, namely for each x ∈ G and [a] ∈ πdef(G,G), we have

pG∗ (x · [a]) = pG(x) · pG∗ ([a])

Proof. Let x ∈ G and consider the map

px : π
def(G,G)→ π(G/G00,G/G00)

[a] 7→ pG(x−1) · pG∗ (x · [a])

It is easy to check that px is a groupoid morphism satisfying the conditions
1 and 2 of Theorem 4.1.4. Hence, by uniqueness, px = pG∗ for all x ∈ G. It
follows that pG∗ is equivariant.

4 .3 Functors and natural transformations

In this section we establish the functoriality properties of the morphisms pG∗ .
We can regard the correspondence G 7→ πdef(G,G) as the object part of a func-
tor πdef from the category of definably compact groups (and definable group
homomorphisms) to the category of groupoids (and groupoid homomor-
phisms). Similarly we have a functor πdef

1 : G 7→ πdef
1 (G) from definably compact

groups to groups. Finally we have a functor F : G→ G/G00 from definably
compact groups to compact Lie groups (and Lie homomorphisms). By Theo-
rem 4.1.4, for G a definably compact group, the projection pG : G→ G/G00

induces a morphism

pG∗ : πdef(G,G)→ π(G/G00,G/G00)

Theorem 4.3.1. Let G be a definably compact group. The family p∗ = (pG∗ )G is a
natural transformation of the functor

πdef : G 7→ πdef(G,G)

to the functor
π ◦ F : G 7→ π(G/G00,G/G00)
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4 . Definable fundamental groupoid & finite coverings

In other words, given a definable morphism f : G→ G ′ we have a commutative
diagram in the category of groupoids:

πdef(G,G)
πdef(f) //

pG∗
��

πdef(G ′,G ′)

pG
′
∗

��
π(G/G00,G/G00)

π(F(f))// π(G ′/G ′00,G ′/G ′00)

where F(f) : G/G00 → G ′/G ′00 is the induced Lie homomorphism.

Proof. Consider an open cover U ′ of G ′/G ′00 by simply connected sets. Now
consider an open cover U of G/G00 by simply connected sets which re-
fines {F(f)−1(U ′)}U ′∈U ′ . Using these covers in Definition 4.1.9, the commuta-
tivity of the diagram follows immediately.

Remark 4.3.2. Let G be a definably compact group. By [HPP–08a] the sub-
group G00 is torsion free (see [Ber–07] for the non-abelian case), so if Γ is a
finite subgroup of G, then pG maps Γ isomorphically onto its image in G/G00.

Corollary 4.3.3. If Γ is a finite subgroup of a definably compact group G, the
restriction of pG∗ to πdef(G, Γ) is an isomorphism onto π(G/G00, pG(Γ)).

4 .4 Locally definable groups

A locally definable group is a countable union of definable sets, equipped
with a group operation whose restriction to each definable set is definable.
This definition is equivalent to the one in [Edm–06], and it is slightly more
restrictive than the notion of

∨
-definable group in [PS–99] where only the

cardinality of the set of parameters is assumed to be countable (the two notions
coincide if the language is countable). The restriction to countable unions, is
useful in Proposition 4.4.1 below. As usual we assume that the underlying
o-minimal structure M is sufficiently saturated (ω1-saturated will suffice
here). A locally definable function is a function between

∨
-definable sets

whose restriction to each definable set is definable. A locally definable

homomorphism between locally definable groups is a homomorphism which
is locally definable.

Proposition 4.4.1 ([Edm–06, Theorem 4.2]). Let f : B→ C be a surjective locally
definable homomorphism of locally definable groups. Then there is a locally definable
section s : C→ B, namely a locally definable function such that f ◦ s is the identity
on C.

Following [Edm–06, Definition 3.1] we say that subgroup A of a locally
definable group B is compatible if it intersects every definable subset X
of B into a definable set. (In the quoted paper it is actually required that X
be open in the topology induced by the group structure, but this yields an
equivalent definition since every definable subset is contained in an open
definable subset.)
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Proposition 4.4.2 ([Edm–06, Lemma 3.3] and [Edm–06, Theorem 4.2]). A
subgroup A < B of a locally definable group B is compatible if and only if it is
the kernel of a locally definable surjective homomorphism f : B→ C between locally
definable groups.

If 1→ A→ B→ C→ 1 is an exact sequence of locally definable groups
and locally definable homomorphisms, we denote C by B/A: our notation is
unambiguous, since by Proposition 4.4.1 the quotient C is unique up to locally
definable isomorphism. By [Edm–06, Remark 4.7], the third isomorphism
Theorem B/A

∼= (B/L)/(A/L) holds in the category of locally definable groups
and locally definable homomorphisms. More precisely we have:

Proposition 4.4.3 ([Edm–06, Remark 4.7]). Consider an exact sequence

1→ A→ B→ C→ 1

of locally definable groups and locally definable homomorphisms and suppose that
the map A→ B is the inclusion. Let L be a normal subgroup of B contained in A as
a compatible subgroup (it follows that L is compatible also in B). Then there is an
induced exact sequence of locally definable groups

1→ A/L→ B/L→ C→ 1

The proposition is contained in the cited result of [Edm–06], however for
the reader’s convenience we sketch a proof. The homomorphism A→ A/L ad-
mits a locally definable section s : A/L→ A. The homomorphism A/L→ B/L
can be obtained as the composition

A/L
s→ A→ B→ B/L

hence it is locally definable. Similarly we obtain the locally definable homo-
morphism B/L→ C.

4 .5 Universal cover

Let G be a definable group. The (o-minimal) universal cover G̃ of G has
been studied in [EE–07], where in particular it is shown that there is a locally
definable surjective homomorphism f : G̃→ G of locally definable groups
whose kernel is isomorphic to πdef

1 (G). We can injectively embed G̃ into the
fundamental groupoid πdef(G,G) in the following way. Given a definable
path a in G starting at the identify, let ã be its unique lifting to G̃ starting at
the identity, and let ã(1) ∈ G̃ be its endpoint. Any element x of G̃ is of the
form ã(1), and since ã(1) depends only on the definable homotopy class [a],
we have an injective function ι : G̃→ πdef(G,G) sending x to [a]. So we have
ι(G̃) ⊂ πdef(G,G). Notationally we can suppose that ι is the inclusion, namely
we can define

G̃ ⊂ πdef(G,G)

as the subset consisting of all the definable homotopy classes of paths starting
at the identity eG. This identification is only a matter of notational conve-
nience, since literally G̃ is a subset of some cartesian product of M (being a
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4 . Definable fundamental groupoid & finite coverings

locally definable group), while ι(G̃) ⊂ πdef(G,G) is not. With our identification
the group operation of G̃ ⊂ πdef(G,G) is defined by [a] · [b] = [a] + [a(1) · b]
where a(1) is the endpoint of the definable path a and + denotes the op-
eration of the groupoid (induced by concatenation of paths). The covering
homomorphism G̃→ G sends [a] to a(1). The topology on G̃ ⊂ πdef(G,G) is
defined as follows: if U is a definably simply connected open subset of G, then
the set of all [a] ∈ G̃ such that Im(a) ⊂ U is a basic open neighbourhood of eG̃
in G̃. By left translation we obtain the basic open neighbourhoods around the
other points.

With analogous definitions the universal cover of the real Lie group G/G00
can be identified with the subset

G̃/G00 ⊂ π(G/G00,G/G00)

consisting of all the homotopy classes of paths starting at eG/G00 ∈ G/G00.
The purpose of these identifications is to be able to define an homomor-

phism from the universal cover of G to the universal cover of G/G00.

Definition 4.5.1. The morphism of groupoids

pG∗ : πdef(G,G)→ π(G/G00,G/G00)

given by Theorem 4.1.4 induces a map

p̃G : G̃→ G̃/G00

by restriction, namely p̃G([a]) def
= pG∗ ([a]). Since pG∗ is equivariant (Theo-

rem 4.2.2), the map p̃G is a morphism of groups.

Theorem 4.5.2. Given a definably compact definably connected definable groupG, the
kernel of p̃G is isomorphic to G00 via the map [a] 7→ a(1). So we have a commutative
diagram

1 // G00 //
G̃

//

��

G̃/G00
//

��

1

1 // G00 // G // G/G00 // 1

Proof. Let [a] ∈ G̃ be in the kernel (where a is a definable path in G starting
at the identity). Then pG∗ ([a]) = [b] where b is a contractible loop at eG/G00 .
Since pG must send the endpoints of a to the endpoints of b (namely to
the identity of G/G00), it follows that a(1) ∈ G00. So we have a well de-
fined function [a] 7→ a(1) from ker(p̃G) to G00 which moreover is a group
homomorphism. We must prove that it is an isomorphism.

(Surjectivity) Given x ∈ G00 we must find [a] ∈ ker(p̃G) with a(1) = x. To
this aim let U be a a simply connected open neighbourhood of eG/G00 in
G/G00. By Remark 4.1.5, its preimage V in G is a (

∨
-definable) definably

simply connected subset of G. In particular V is definably path connected,
so there is a definable path a in U from eG to x. By Theorem 4.1.4 there is
a path b in U with pG∗ ([a]) = [b]. Since x ∈ G00, the endpoint pG(x) of b is
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the identity of G/G00, namely b is a loop. Moreover since the image of b
is contained in the simply connected set U, we know that [b] is the identity
of G̃/G00, and therefore [a] ∈ ker(p̃G).

(Injectivity) Let [a] ∈ ker(p̃G) and suppose a(1) = eG (namely a is a loop).
By Theorem 4.3.2, the projection pG∗ sends πdef

1 (G) bijectively to π1(G/G00).
Since under this map [a] goes to the identity, it follows that a is definably
contractible, namely [a] is the identity of G̃.

We will obtain similar results for the finite extensions of G/G00.

Theorem 4.5.3. Let G be a definably compact definably connected definable group.
Given an extension of connected Lie groups f : H→ G/G00 with a finite kernel, there
is a definable group extension π : H→ G of G such that H/H00 ∼= H (as coverings
of G/G00). We thus obtain a commutative diagram:

H
ϕ //

π

��

H

f
��

G
p // G/G00

where ϕ : H→ H is the composition of the projection H→ H/H00 with the isomor-
phism H/H00

∼= H.

Proof. Let L be the image of the homomorphism π1(f) : π1(H)→ π1(G/G00).
Then by classical results (see [Hat–02, Proposition 1.36 and 1.37]) we have an
exact sequence

1→ π1(G/G00)/L→ H→ G/G00 → 1

Let L ′ < πdef
1 (G) be the preimage of L under the isomorphism between πdef

1 (G)

and π1(G/G00) of Theorem 4.3.1. By [EE–07] we have an exact sequence of
locally definable groups

1→ πdef
1 (G)→ G̃→ G→ 1

so we can identify πdef
1 (G) with a compatible subgroup of G̃. Since πdef

1 (G)

is discrete, the compatibility condition implies that πdef
1 (G) (hence also its

subgroup L ′) intersects every definable subset of G̃ into a finite set. Moreover
since L ′ < πdef

1 (G) and πdef
1 (G) is contained in the center of G̃ ([Edm–06, Corol-

lary 3.16]), L ′ is normal in G̃. By the third isomorphism theorem we obtain an
exact sequence

1→ πdef
1 (G)/L ′ → G̃/L ′

p→ G→ 1

of locally definable groups. Since the kernel Γ ′ ∼= πdef
1 (G)/L ′ ∼= π1(G/G00)/L

is finite and G is definable, the locally definable group H def
= G̃/L ′ is actually

definable. Note that the image of π1(p) : πdef
1 (H)→ πdef

1 (G) is L ′. We have
an induced homomorphism F(p) : H/H00 → G/G00, and by Theorem 4.3.1
the image of π1(F(p)) : π1(H/H00)→ π1(G/G00) is L, namely it coincides
with the image of π1(f) : π1(H)→ π1(G/G00). Since the covering spaces are
classified by the subgroups of the fundamental group ([Hat–02, Proposition
1.36 and 1.37]), the two coverings f : H→ G/G00 and F(p) : H/H00 → G/G00

are isomorphic.

51
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4 .6 Definably compact semisimple groups

Let G be a definably compact definably connected semisimple group. In this
section we show that the (Lie-)isomorphism type of G/G00 determines the
definable isomorphism type of G.

Lemma 4.6.1. Work in an o-minimal expansion of R. Let f : X→ B be a definable
continuous map. Let p : E→ B be a definable covering map. Let f̃ : X→ E be a lifting
of f (i.e. a continuous function, not necessarily definable, such that p ◦ f̃ = f). Then f̃
is definable.

Proof. By definition of definable covering, we have a definable finite cover U

of B by definably connected definable open sets such that, for any U ∈ U, the
preimage p−1(U) is a finite disjoint union of definably connected open sets on
each of which p is an homeomorphism onto U. Fix U ∈ U and let E1, · · · ,Em
be the definably connected components of p−1(U) and X1, · · · ,Xn be the de-
finably connected components of f−1(U). Note that all these sets are definable.
Fix an i ∈ {1, · · · ,n}. Since we are working over R, a definably connected set is
connected. So, by continuity of f, there is a j ∈ {1, · · · ,m} such that f̃(Xi) ⊂ Ej.
Hence (f̃�Xi)(x) = y if and only if x ∈ Xi ∧ y ∈ Ej ∧ f(x) = p(y). This proves
that f̃�Xi is definable, and the definability of f̃ follows observing that the same
hold for any U ∈ U and any i.

Fact 4.6.2 ([EJP–07, Theorem 3.1] or [HPP–08b, Theorem 4.4(ii)]). For any
semisimple definable group G1, there is a group G2, semialgebraic without parameters,
definably isomorphic to it.

Lemma 4.6.3. Let G1 and G2 be definably connected semialgebraic semisimple
groups defined over R. By [Pil–88], G1(R) and G2(R) have a natural Lie group
structure. Suppose that f : G1(R)→ G2(R) is a Lie isomorphism. Then f is semial-
gebraic over R.

Proof. We first prove the result under the additional assumption that G1
and G2 are centerless. The isomorphism f : G1(R)→ G2(R) induces an iso-
morphism φ : g1 → g2 of the corresponding Lie algebras. Since we are in
the centerless case, the adjoint representation AdG1 : G1(R)→ Aut(g1) is an
isomorphism onto Aut0(g1) and similarly for G2(R). Fixing a basis of the
vector spaces g1 and g2, we can consider AdG1 and AdG2 as semialgebraic
maps. Let φ̃ : Aut0(g1)→ Aut0(g2) be the isomorphism induced by φ. Then
f = AdG1 ◦φ̃ ◦AdG2

−1 and therefore f is semialgebraic over R.
To reduce the general case to the centerless case we use the fact that

G1/Z(G1) and G2/Z(G2) are centerless. Clearly f induces an isomorphism
g : G1/Z(G1)→ G2/Z(G2). By the centerless case g is semialgebraic. By
Lemma 4.6.1, we have that f is semialgebraic.

Remark 4.6.4. In the above lemma we cannot ensure that f is semialgebraic
over Ralg even assuming that G1 and G2 are semialgebraic over Ralg. In fact
let G1 = G2 = SO3. The group of inner automorphisms of SO3 is non-trivial
and connected, so it has the cardinality of the continuum. Therefore there is
some inner automorphism f : SO3 → SO3 which is not definable over Ralg.
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Theorem 4.6.5. Let G1 and G2 be definably compact definably connected semisimple
definable groups. Suppose that there is a Lie isomorphism ψ : G1/G001

→ G2/G002
.

Then there is a definable isomorphism f : G1 → G2. If the o-minimal structure
is sufficiently saturated we can consider the projections pG1 : G1 → G1/G001

and
pG2 : G2 → G2/G002

and we can choose f so that pG2 ◦f = ψ ◦ pG1 .

Proof. By Fact 4.6.2 we may assume G1 and G2 to be semialgebraic without
parameters. So it makes sense to consider the groups G1(R) and G2(R). If M
is sufficiently saturated there is an elementary embedding of R into R (in the
language of fields) and there is a surjective homomorphism G1(M)→ G1(R)

(given by the standard part map) whose kernel is G001 = G001 (M): see [Pil–04].
Similarly for G2. So G1/G001

∼= G1(R) and G2/G002
∼= G2(R) (with the logic

topology). Hence we have a Lie isomorphism ψ ′ : G1(R)→ G2(R) induced
by ψ. By Lemma 4.6.3 ψ ′ is semialgebraic over R. The same formula de-
fines an isomorphism f : G1(M)→ G2(M) with pG2 ◦f = ψ ◦ pG1 . If M is not
sufficiently saturated, then we can go to a saturated extension M ′ to get
an M ′-definable isomorphism f : G1(M

′)→ G2(M
′) as above, and therefore

(quantifying over the parameters) also an M-definable isomorphism from
G1(M) to G2(M).

4 .7 Definably compact abelian groups

In this section we try to understand, in the abelian case, up to which extent
G/G00 determines G. It is known that there are definably compact definably
connected abelian groups G1 and G2 of the same dimension (hence with
G1/G001

∼= G2/G002
) which are not definably isomorphic ([Str–94a, PS–99]).

However by 3.1.6 any two definably compact definably connected abelian
groups of the same dimension are definably homotopy equivalent. The same
proof yields the following:

Lemma 4.7.1. Let G1 and G2 be definably compact definably connected abelian
groups of the same dimension n. (So π1(G1) ∼= π1(G2) ∼= Zn by [EO–04].) Let
θ : π1(G1)→ π1(G2) be an isomorphism. Then there is a definable continuous
map f : G1 → G2 with π1(f) = θ and f(eG1) = eG2 . Moreover, any such map f is a
definable homotopy equivalence.

Proof.
Special case. Suppose that G1 is a direct product of 1-dimensional definable sub-
groups. Choose free generators [a1], . . . , [an] of πdef

1 (G1) such that each x ∈ G1
can be written uniquely in the form x = a1(t1) + · · ·+ an(tn) with 0 6 ti < 1.
Choose definable loops b1, . . . ,bn in G2 such that [b1], . . . , [bn] ∈ πdef

1 (G2)

are the images of [a1], . . . , [an] under θ. Define f(x) = b1(t1) + . . .+ bn(tn).
Then clearly πdef

1 (f) = θ. Since the higher definable homotopy groups of G1
and G2 are zero by 3.1.5, f is a definable homotopy equivalence by the o-
minimal version of Whitehead theorem in [BO–09].
General case. We reduce to the special case as follows. Remember that T is a de-
finably compact definably connected one-dimensional abelian group, and Tn

be the direct product of n copies of T , where n = dimG1. By [EO–04], we have
πdef
1 (G1) ∼= π1(T

n) ∼= Zn. Choose an isomorphism λ : πdef
1 (Tn)→ πdef

1 (G1).
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Then θ ◦ λ : πdef
1 (Tn)→ πdef

1 (G2) is an isomorphism. By the special case we get
definable homotopy equivalences g and h with π1(g) = λ and π1(h) = θ ◦ λ.
Let g ′ be a definable homotopy inverse of g. So f def

= h ◦ g ′ satisfies π1(f) = θ.

To improve on the above result we need a definition.

Definition 4.7.2. Let G1 and G2 be definable groups. Given a subgroup
Γ1 < G1 we say that a definable map f : G1 → G2 is a Γ1-equivariant defin-
able homotopy equivalence if f�Γ1 is an isomorphism onto its image Γ2, and
f admits a definable homotopy inverse f ′ such that the following holds:

i. f(eG1) = eG2 and f(cx) = f(c)f(x) for any c ∈ Γ1 and x ∈ G1;
ii. f ′(eG2) = eG1 and f ′(c ′x ′) = f ′(c ′)f ′(x ′) for any c ′ ∈ Γ2 and x ′ ∈ G2;

iii. there is a definable homotopy h : I×G1 → G1 relative to Γ1 between f ′ ◦ f
and the identity map on G1 such that ht(cx) = cht(x) for any c ∈ Γ1, x ∈ G1,
and t ∈ I;

iv. there is a definable homotopy h ′ : I×G2 → G2 relative to Γ2 between f ◦ f ′
and the identity map on G2 such that h ′t(c

′x ′) = c ′h ′t(x
′) for any c ′ ∈ Γ2,

x ′ ∈ G2, and t ∈ I.
Note that f ′�Γ2 is the inverse of f�Γ1.

To prove the existence of Γ -equivariant homotopy equivalences we need
some preliminary results. The following lemma says that given a definable
covering map p : E→ B we can always lift a definable map f : X→ B to a
map f̃ : X→ E provided there are no obstructions coming from the fundamen-
tal group.

Lemma 4.7.3. Let p : E→ B be a definable covering map, with B definably connected.
And let f : X→ B be a definable map from a definable definably connected set X to B.
Fix base points e0 ∈ E, b0 ∈ B and x0 ∈ X with f(x0) = p(e0) = b0. Consider the
homomorphisms π1(p) and π1(f) induced by p and f on the definable fundamental
groups. If Imπdef

1 (f) ⊂ Imπdef
1 (p) then there is a unique definable map f̃ : X→ E

lifting f (i.e. such that p ◦ f̃ = f) with f̃(x0) = e0.

Proof. The proof of the corresponding classical result (see [Spa–66, Theorem
2.4.5]) can be adapted to the o-minimal category thanks to the definable homo-
topy lifting property 2.4.2. More precisely, for each x ∈ X choose, uniformly
in x, a definable path ax from x0 to x in X. Then bx

def
= f ◦ ax is a definable

path in B. Let b̃x be its (unique) lifting to a definable path in E with starting
point e0. Define f̃(x) as the final point of b̃x. This is independent on the
choice of the paths and works.

Theorem 4.7.4. Let G1 and G2 be definably compact definably connected abelian
groups. Let

ψ : G1/G001
→ G2/G002

be an isomorphism of Lie groups. Let Γ1 be a finite subgroup of G1. Then there is a
Γ1-equivariant definable homotopy equivalence fG1 : G1 → G2 which agrees with ψ
on Γ1 (more precisely for each c ∈ Γ1 we have fG1(c)G002 = ψ(cG001 )).
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4.7. Definably compact abelian groups

Proof. To simplify notations let G1 = G1/G001
and G2 = G2/G002

. Since Γ1 is
finite, the projection G1 → G1 maps Γ1 isomorphically onto its image

Γ1
def
= Γ1G

00
1 /G001

< G1

Let Γ2 = ψ(Γ1) < G2 and let Γ2 be the unique finite subgroup of G2 which is
mapped to Γ2 under the projection G2 → G2.

Passing to the quotient, the isomorphism ψ : G1 → G2 induces an isomor-
phism φ : G1/Γ1 → G2/Γ2 making the following diagram commute (where
the vertical arrows are the projections):

G1
ψ //

��

G2

��
G1/Γ1

φ // G2/Γ2

Since Γ1 and Γ2 are mapped to the identity of G1/Γ1 and G2/Γ2 respectively,
we obtain an induced commutative diagram in the category of groupoids:

π(G1, Γ1)
π(ψ) //

��

π(G2, Γ2)

��
π(G1/Γ1, e)

π(φ) // π(G2/Γ2, e)

(*)

where G1/Γ1 can be naturally identified with (G1/Γ1)/(G1/Γ1)
00 and simi-

larly on the G2 side. By Theorem 4.3.1 and Remark 4.3.2 we have commutative
diagrams

πdef(G1, Γ1) //

p
G1∗

��

πdef(G1/Γ1, e)

p
G1/Γ1∗

��
π(G1, Γ1) // π(G1/Γ1, e)

πdef(G2, Γ2) //

p
G2∗

��

πdef(G2/Γ2, e)

p
G2/Γ2∗

��
π(G2, Γ2) // π(G2/Γ2, e)

(**)

where the vertical arrows are isomorphisms and the horizontal arrows are
induced by the quotient maps. By the composition of diagrams (*) and (**) we
obtain a commutative diagram in the category of groupoids

πdef(G1, Γ1)
θ //

��

πdef(G2, Γ2)

��
πdef(G1/Γ1, e) λ // πdef(G2/Γ2, e)

where θ is uniquely determined by the equation

π(ψ) ◦ pG1∗ = pG2∗ ◦θ
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For each c ∈ Γ1 and [a] ∈ π(G1, Γ1) we have θ(c · [a]) = ψ(c) · θ([a]), where
ψ : Γ1 → Γ2 is defined by ψ(c)G001 = ψ(cG001 ). In fact, using Theorem 4.2.2 we
can verify that ψ(c) · θ([a]) meets the definition of θ(c · [a]):

π(ψ) ◦ pG1∗ (c · [a]) = π(ψ)(pG1(c) · pG1∗ ([a]))

= ψ ◦ pG1(c) · π(ψ) ◦ pG1∗ ([a])

= ψ ◦ pG1(c) · pG2∗ ◦θ([a])

= pG2 ◦ψ(c) · pG2∗ ◦θ([a]) = pG2∗ (ψ(c) · θ([a]))

Using Lemma 4.7.1 we can obtain a definable homotopy equivalence
f : G1/Γ1 → G2/Γ2 with π1(f) = λ and f(eG1/Γ1) = eG2/Γ2 . So, by Lemma 4.7.3
there is a definable continuous map fG1 : G1 → G2 with fG1(eG1) = eG2 mak-
ing the following diagram commute.

G1
fG1 //

p

��

G2

p ′

��
G1/Γ1

f // G2/Γ2

It remains to be shown that fG1 is a Γ1-equivariant definable homotopy equiv-
alence. The equation fG1(c · –) = fG1(c)fG1(–) for c ∈ Γ1 holds because both
maps coincide with the unique lifting of f ◦ p mapping eG1 to fG1(c) ∈ Γ2.
Now let f ′ : G2/Γ2 → G1/Γ1 be a homotopy inverse of f. Define fG1 ′ to be the
unique lifting of f ′ ◦ p ′ at eG1 . Then as above fG1 ′(c ′y) = fG1 ′(c ′)fG1 ′(y) for
any c ′ ∈ Γ2 and y ∈ G2. Let h : I×G1/Γ1 → G1/Γ1 be a definable homotopy
between the identity h0 on G1/Γ1 and f ′ ◦ f, then let h ′ : I×G2/Γ2 → G2/Γ2
be a definable homotopy between the identity h ′0 on G2/Γ2 and f ◦ f ′ = h ′1.
We may assume ht(1) = eG1 for all t (otherwise use (t, x)→ (ht(1))

−1ht(x)

instead of h) and the same for h ′. Finally, define h̃ : I×G1 → G1 as the
unique lifting of h ◦ (Id×p) : I×G1 → G1/Γ1 to G1 and h̃ ′ : I×G2 → G2 as
the unique lifting of h ′ ◦ (Id×p) : I×G2 → G2/Γ2 to G2. By uniqueness of
liftings, h̃ is a definable homotopy between the identity and fG1 ◦ fG2 . Simi-
larly h̃ ′ is a definable homotopy between the identity and fG2 ◦ fG1 . More-
over h̃ and h̃ ′ are constant on I× Γ1 and I× Γ2 since h and h ′ are constant
on I× {e}. The equations h̃t(cx) = ch̃t(x) and h̃ ′t(c

′x ′) = c ′h̃ ′t(x
′), where

c ∈ Γ1 and c ′ ∈ Γ2, follow by uniqueness of liftings.

4 .8 Almost direct products

Given a group G and two subgroups A and B of G, we recall that G is the
almost direct product ofA and B ifG = AB and the functionm : A×B→ G

sending (x,y) to xy is a surjective group homomorphism with a finite kernel.
This implies that ab = ba for all a ∈ A and b ∈ B, and that Γ def

= A∩B is a
finite central subgroup of G. In this situation we write G = A×Γ B. Note that
the kernel of m : A×B→ A×Γ B is Γ∆ def

= {(c, c−1)}c∈Γ .
Every definably compact definably connected group is an almost direct

product of a definably connected abelian subgroup and a semisimple definable
subgroup. More precisely we have:
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Fact 4.8.1. Let G be a definably compact definably connected group. Let Z0(G) be the
definable identity component of the center Z(G) of G. By [HPP–08b] the commutator
subgroup [G,G] is definable and semisimple, and G is an almost direct product of
Z0(G) and [G,G]. The corresponding statement holds in the category of compact
connected Lie groups.

Lemma 4.8.2. Consider almost direct products of definable groups G1 = A1 ×Γ1 B1
and G2 = A2 ×Γ2 B2. Suppose that there are:

i. an isomorphism fΓ1 : Γ1 → Γ2,
ii. a Γ1-equivariant definable homotopy equivalence fA1 : A1 → A2,

iii. a Γ1-equivariant definable homotopy equivalence fB1 : B1 → B2,
satisfying fA1�Γ1 = f

B1�Γ1 = f
Γ1 . Then there is a Γ1-equivariant definable homo-

topy equivalence fG1 : G1 → G2 such that fG1(ab) = fA1(a)fB1(b) for all a ∈ A1
and b ∈ B1. In particular fG1�A1 = f

A1 and fG1�B1 = f
B1 .

Proof. By definition of almost direct product there is a (unique) well de-
fined function fG1 : G1 → G2 satisfying fG1(ab) = fA1(a)fB1(b) for a ∈ A1
and b ∈ B1. Moreover fG1 is continuous since m : A1 ×B1 → G1 is a defin-
able covering map (hence locally fG1 = (fA1 ⊗ fB1) ◦m−1). Let f ′A1 and f ′B1
be homotopy inverses for fA1 and fB1 satisfying the conditions of Defini-
tion 4.7.2 and let f ′G1 : G2 → G1 be defined symmetrically. We claim that fG1
is a definable homotopy equivalence with homotopy inverse f ′G1 . In fact,
let hA1 : I×A1 → A1 be a definable homotopy between f ′A1 ◦ fA1 and the
identity satisfying the conditions of Definition 4.7.2, and let hB1 : I×B1 → B1
be the same for f ′B1 ◦ fB1 . Define

h
G1
t (ab) = hA1t (a)hB1t (b) (4.1)

for a ∈ A1 and b ∈ B1. The fact that hG1t is well defined follows by the
conditions in Definition 4.7.2 and the definition of almost direct product.
A definable homotopy between fG1 ◦ f ′G1 and the identity can be defined
symmetrically. The lemma is thus proven.

Fact 4.8.3 ([Con–09]). Let A and B be type-definable subgroups of a definable
group G, with A normal in G. Then AB is a type-definable subgroup of G and
(AB)00 = A00B00.

Lemma 4.8.4. Let G = A×Γ B be an almost direct product of definable groups. Let
p : G→ G/G00 be the projection map. Then G/G00 = p(A)×p Γ p(B).

Proof. Consider the homomorphism

m : p(A)× p(B)→ G/G00

(aG00,bG00) 7→ abG00

Since G00 = A00B00 (Fact 4.8.3), if abG00 is the identity of G/G00 we have
aa ′ = b−1b ′ for some a ′ ∈ A00 and b ′ ∈ B00. But A∩B = Γ , so there is c ∈ Γ
such that aa ′ = b−1b ′ = c. It follows that aG00 = cG00 and bG00 = c−1G00.
We have thus proven that the kernel of m is

kerm = p(Γ)∆ def
=
{
(cG00, c−1G00)

}
c∈Γ
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a finite subgroup.

Remark 4.8.5. Let G be a definably compact group and let A be a definable
subgroup of G. Let p : G→ G/G00 be the projection map. By [HPP–08a] we
have A∩G00 = A00 (see [Ber–07] for the non-abelian case). Therefore

p(A) = AG00/G00 ∼= A/A00

via the natural homomorphism sending aA00 ∈ A/A00 to aG00 ∈ AG00/G00.

Lemma 4.8.6. Let G be a definably compact definably connected group. Write
G = Z0(G)×Γ [G,G]. Let p : G→ G/G00 be the projection map. Then

p(Z0(G)) = Z0(G/G00)

p([G,G]) = [G/G00,G/G00]

G/G00 = p(Z0(G)) ×p(Γ) p([G,G])

= Z0(G/G00) ×p(Γ) [G/G00,G/G00]

Proof. By Fact 4.8.1 we have dim(G) = dim(Z(G)) + dim([G,G]) and similarly
for G/G00. By [HPP–08a] the dimension of A as a definable group equals the
dimension of A/A00 as a Lie group. So p preserves dimensions. The equal-
ity p([G,G]) = [G/G00,G/G00] is clear. The inclusion p(Z0(G)) ⊂ Z0(G/G00)
is also clear (using the fact the image under p of a definably connected set is
connected). The result follows by counting dimensions.

Theorem 4.8.7. Let G1 and G2 be definably compact definably connected groups.
Suppose that there is a Lie isomorphism ψ : G1/G001

→ G2/G002
. Then:

i. There is a definable homotopy equivalence f : G1 → G2.
ii. Given a finite central subgroup Γ of G1 we can choose f to be Γ -equivariant, or even
Γ ′-equivariant where Γ ′ = Γ [G1,G1] (so in particular f�[G1,G1] is an isomorphism
onto [G2,G2]).

iii. Moreover, assuming saturation, we can ensure that pG2 ◦f�Γ ′ = ψ ◦ pG1�Γ ′ where
pG1 : G1 → G1/G001

and pG2 : G2 → G2/G002
are the projections.

Proof of Theorem 4.8.7. We can write G1 = Z0(G1)×Γ0 [G1,G1] and we can
assume Γ ⊃ Γ0. Let Γ1 = Γ [G1,G1]∩Z0(G1) and note Γ1[G1,G1] = Γ [G1,G1].
Moreover Γ1 is finite: take any c ∈ Γ , fix an x ∈ c[G1,G1]∩Z0(G1), then
for any y ∈ c[G1,G1]∩Z0(G1) we have xy−1 ∈ [G1,G1]∩Z0(G1), which is
finite. By Theorem 4.7.4 (and Lemma 4.8.6) there is a definable Γ1-equivariant
homotopy equivalence fZ : Z0(G1)→ Z0(G2) such that p ◦fZ�Γ = ψ ◦ p�Γ . By
Theorem 4.6.5 (and Lemma 4.8.6) there is a definable isomorphism

f[G1,G1] : [G1,G1]→ [G2,G2]

In particular both fZ and f[G1,G1] are Γ0-equivariant definable homotopy
equivalences. So by Lemma 4.8.2 there is a Γ0-equivariant definable ho-
motopy equivalence fG1 : G1 → G2 such that fG1(ab) = fZ(a)f[G1,G1](b) for
all a ∈ Z0(G1) and b ∈ [G1,G1]. By construction, using equation (4.1) in
Lemma 4.8.2, we have that fG1 is in fact a Γ1[G1,G1]-equivariant definable ho-
motopy equivalence. If the o-minimal structure is sufficiently saturated (and
we choose f[G1,G1] as in Theorem 4.6.5) we obtain pG2 ◦f�Γ ′ = ψ ◦ pG1�Γ ′.
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spectrum (o-minimal), 5

standard torus, 32

star refinement, 42

trivialization covering, 12

trivialization map, 12

type-definable (set), 6
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