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1 Introduction

After the second World War, the development of digital communication, the
invention of computers and the evolution of automatic control prompted the
birth of a new and wide research area spanning programming, data filtering and
signal theory. Within this vast research effort, information theory studies the
abstract bases of data processing and communication. As such, it is one of its
most formal branches with a pervasive use of mathematics.

Since the birth of the discipline has been induced by a technological break-
through, the foundational work has often been done on a case-by-case application-
driven basis. Although this pioneering approach has been spectacularly prolific
in results and effective in applications, it often resorts to use a self-contained
dialect of the mathematical language that on one side is parsimonious, adapted
and intuitively clear, but on the other side lacks the generalisation and problem-
identification capabilities of a a full-blown mathematical theory. Furthermore
quantities and concepts have been defined, that were already well known in
apparently unrelated topics - like statistical mechanics. Reasons for this local-
isation phenomenon might include the fact that the authors of the mentioned
fundamentals works are not always mathematicians or physicists, or even more
simply that the relevant mathematical theories were not yet developed. The
classic example of pioneering work in information theory is Claude E. Shan-
non’s 1948 paper entitled “A Mathematical Theory of Communication” [18]
which gives also the first formulation of the channel coding theorem. It is a
very general and groundbreaking work, and at the same time it is built on sim-
ple analysis and probability theory knowledge. It defines critical notions like
entropy and random coding, and it works its way from there, through succes-
sive assumptions and all the required computations, to its final theorems. Much
work has followed, with a continuous increase in depth, generalisation and math-
ematical precision. The books by Gallager [11] and Csiszar and Korner [5] can
be considered two landmarks of this process. Nevertheless the theory persists
to be mostly self contained, both in results and techniques.

This observation is the primary reason behind the research effort contained
in the present thesis. In this work, the fundamental random coding problem
originally solved by Shannon is rewritten in the precise mathematical language
of large deviation theory, and according to an approach aimed at recovering the
“know-how” in random systems developed in statistical mechanics.

Random coding was originally devised by Shannon only as a technique to
prove the channel coding theorem, not as a practical coding strategy. In the
mentioned paper, he studied the problem of communication with a binary ran-
dom code of block length n and rate R through a memoryless binary symmetric
channel (BSC) with error probability p. He was in this way able to prove its
homonimous theorem on channel capacity: error-free communication is asymp-
totically possible if and only if the rate R is smaller than a capacity C, function
only of the channel parameter p. Despite some early results by Robert Gal-
lager on the feasibility and performance of a class of random codes named “low
density parity check” (LDPC) codes [12], the topic has been soon discarded by
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developers in favor of algebraic codes, because of the decoding problem: the
structure of algebraic codes allows fast decoding, while the absence of structure
in the originally proposed random codes requires a decoding complexity which
grows exponentially with the block length n. Although incapable to achieve
performances close to the theoretical bound defined by Shannon’s channel the-
orem, algebraic codes have been the main focus of applied research until 1993.
In that year, the article “Near Shannon Limit Error-Correcting Coding and
Decoding: Turbo Codes” [2] by Berrou, Glavieux, and Thitimajshima put ran-
dom codes back on the highlights with the introduction of the so called turbo
codes, which - as the name implies - allow for a fast iterative decoding strategy.
The paper sparked a burst of research, both theoretical and applied, which also
rediscovered and fully appreciated Gallagers LDPC codes.

At the same time of this revival, there was an increasing perception of the
general, multidisciplinar nature of some concepts, like disordered systems and
entropy. Originally introduced in termodynamics and statistical mechanics, they
emerged in information theory as well, and showed up in some applications to
stock market prediction, too [4]. In the early 90ties Nicolas Sourlas pioneered
an effort to translate information theory problems to equivalent statistical me-
chanic setups [19], with the aim to recover for the formers the sensibility and
the techniques developed for the latters through the years by physicists, as for
instance the replica trick. Such an approach was extended and detailed in the
case of the random coding problem [20] with a particular attention to turbo
codes [17] and LDPC codes [16].

The scene is completed by the upcoming maturity of the probabilistic theory
of large deviations. Many of the techniques adopted in channel coding analysis,
as for instance the computation of error exponents or the very “method of
types” devised by Csiszar [5], may be seen as special cases of large deviation
computations.

Following this observation, and adopting the Sourlas approach, the present
work was initiated. Our effort is to rewrite the channel coding problem in a
more formal and general setup, recovering physicists’ expertise and precising
the mathematical problems involved. Our aim is to understand more deeply
the phenomena involved in channel coding and to takle its remaining open
questions.

As a test model, we choose the very same channel model originally studied
by Shannon for its channel coding theorem. For this reason we refer to it at
the Shannon problem. We then proceed to describe it with the language of
statistical mechanics according to the Sourlas approach, identifying the critical
quantities for the computation of capacity and error exponent. Such quantities
have the form of free energy densities. Finally, we develop our large deviation
analysis. We choose a general-to-particular approach, developing a rather gen-
eral theorem which we then rephrase with simpler assumptions and eventually
we it apply to the analysis of the Shannon problem in our free energy density
formulation. What we obtain is a new version of the coding theorem, for both
capacity and error exponent, as a function of a parameter β called inverse tem-
perature. This inverse temperature is introduced by the Sourlas approach and it

6



parametrises the decoding strategy used in the problem. As β →∞ we recover
MAP wordwise decoding, while for β equal to a particular value βCrit we obtain
MAP bitwise decoding. Although the results for these two particular decoding
strategies are already known in the literature through dedicated analysis, we get
a new channel coding theorem for a family of “intermediate” decoding strategies
and we are able to make some new observations on the stability of MAP bitwise
decoding against poor knowledge of the channel parameter.

Our aims for future research include a tightness result for the Shannon prob-
lem in the high temperature regime. A generalisation of the channel model or
the introduction of a linear constraint for the random encoder will require a
generalisation of the large deviation theorem here proved.

The layout of this work is as follows. Every chapter is written according
to a general-to-particular approach: first wide discussions, abstract concepts
or results, then a second part focused on the Shannon problem. After the
present introduction, chapter 2 offers an introduction to coding theory and to
the Shannon problem in particular. Chapter 3 is instead dedicated to the Sourlas
approach. Chapter 4 contains our large deviation theorem and its application.
The conclusions in chapter 5 will finally resume the work done and the results
obtained.
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2 Coding theory

2.1 Introduction

This chapter starts with a rather general introduction to coding theory. In order
not to bore the expert, the first paragraph is devised as an optional reading:
all the spanning definitions are duplicated later on. Afterwards we dedicate
three paragraphs respectively to a definition of the channel coding problem, an
outline of its decision formulation, and an introduction to the idea of random
(channel) coding. Finally, in the last paragraph we restrict ourselves to our
focus problem, i.e.what we call the Shannon problem.

In the subsequent chapters we will describe the approaches and techniques
adopted in our analysis, i.e. the statistical-mechanic ansatz and large deviation
theory, along with their application to the binary random coding problem. Then
we will proceed to the final results and conclusions.

2.2 The general problem and its implementations

Abstractly speaking, coding theory studies maps between given couples of spaces,
named the source space S and the encoded space X. Their elements are called
respectively the sourcewords s and the codewords x. A code c can be defined
as an ordered couple of maps t (for “transmit”) and r (for “receive”), called
respectively the encoder and the decoder, as follows:

c = (t, r)

t : S → X

r : X → S

The general problem of coding theory is the search for the code ck minimizing
a given cost function k defined on

C := XS × SX

the space of all codes between S and X, and complying to some eventual further
conditions that can be formalised as a subspace C ′ of C:

k : C → R

ck := arg min
c∈C′

k (c)

We now present the technological intuition behind coding theory along with
some relevant modeling and mathematical issues. Follows a serie of introduc-
tions to the contestualised versions of the general problem.
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2.2.1 Modularity in information systems

Modern coding theory was developed with a focus on direct applications in
electronics and information technology.

According to operative engineering criteria, an information system is split
into several sub-systems dedicated to separate tasks. This allows the design
and realisation of arbitrarily large systems, like the Internet. A first example of
a subsystem is the one dedicated to acquiring and dually reproducing physical
world stimula. It is in other words a converter between real world signals (quan-
tities, processes, fields) and electronic signals. Then these electronic signals can
be processed, stored or remotely transmitted by other dedicated subsistems.

Today the mainstream technology for electronic signals is digital, which
means that such signals are interpreted as being discrete and quantised, and
that they are typically associated to binary data (binary vectors, binary strings,
binary processes). Digital technology sports important features like regeneration
(de-noising), redundancy control, low power consuption and low infrastructure
and maintenance costs. Actually the first two mentioned features, i.e. regen-
eration and redundancy control, are the core topics of two sub-areas of coding
theory, respectively channel coding and source coding. We will present them in
the next sections.

This modular approach and this technology choice have direct modeling
consequences in coding theory. First of all, the coding problem splits into sub-
problems: rate distortion theory for the problem of converting real world signals
into electronic data and vice versa, source coding for data compression (an elab-
oration to use less storage or communication resources), cryptography for data
protection (from unauthorised use in an open environment), channel coding for
data communication.

Secondly, in any of such sub-problems at least one of the two spaces S and
X is taken to be discrete, as for example the space of n-dimensional binary
vectors Bn (which is finite, being B := {0, 1}) or the space of finite binary
strings D :=

⋃
n∈N Bn (which is infinite but countable). It has been proven that

using such spaces, “optimal” solutions in information sub-systems join up to
“optimal” solutions in the complete system, that is, we have the optimality of
modular solutions. This very fact justifies the engineering modular approach.

It is rather easy to characterise the elements of D and Bn with an intuitive
measure of their information content (or complexity, or “self-entropy”), i.e. their
length, which will be variable in the case of D and fixed and equal to n in the case
of Bn. Starting from such a crude measure, information theorists introduced
probabilistic descriptions of the spaces and rediscovered the concept of entropy
as the proper measure of information content. So in some approaches the source
space S is enriched to a probability triple (S, Σ, λ).

Sometimes the space of endless binary sequences L := BN (which is uncount-
able) is also considered for digital data. This may happen for modeling reasons,
as for instance the effort of describing real-time, long-operation systems. Or it
may be for mathematical reasons. This choice, though, brings along its own
problems: first of all, the optimality of modular solutions may break down in
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some pathologic cases. Anyway, we do not plan to use such a device in this the-
sis. We will use the scaling of finite discrete spaces as an alternative workaround
to prove the described asymptotic results.

Finally, let us spend some words on the meaning of “optimality” in informa-
tion engineering. The lack of uniqueness and a kind of weak notion of existence
for some crucial theorem as the Shannon’s one (existence in any neighbourhood
of the prescribed conditions) along with issues of physical implementability of
solutions, leads to a dual concept of “weak optimality”: existence and imple-
mentability of a solution arbitrarily adherent to the prescribed conditions.

Let us now proceed to a series of presentations of the main sub-problems in
coding theory.

2.2.2 Rate distortion theory

Rate distortion theory is the branch of coding theory that looks for “good”
finite discrete representations of real signals, where the “goodness” is formalized
through the definition of a so-called distortion measure. This is the theoretical
core of all technologies that translate real-world stimula into digital data, like
digital cameras or portable CD players.

In rate distortion theory S represent the “real world” and is tipically a
subspace of Rn, while X is discrete and finite to be easily mapped into digital
data. A distortion function d is a map like the following:

d : S × S → R+
0

Let us consider a code cd = (cd,S , cd,X) which minimizes the distortion measure
dmax:

dmax := max
s∈S

d
[

s, cd,X ◦ cd,S (s)
]

If it exists, such a code is the answer to the problem of finding a good repre-
sentation of S in X according to the distortion measure dmax, which plays the
role of our aforementioned cost function f .

Another approach introduces some more knowledge of the source space S
through a probability triple (S, Σ, λ), with associated expectation E. This offer
a new distortion measure E {d}:

E {d} := E
{

d
[

s, cd,X ◦ cd,S (s)
] }

Often S and d are empirically chosen according respectively to the “tipical”
domain of the real world stimulus s and a “qualitative perception” of the final
reproduction cd,X ◦ cd,S (s). Such is the case of the MP3 format, for instance.

2.2.3 Source coding theory

Source coding theory focuses on reducing the load on communication and stor-
age resources by reducing the size of the digital data. The typical setup in
source coding theory is:

S = X = D
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and the main problem is the search for codes c so that each element s′ on a
subset S′ of S is mapped biunivocally to an element s′′ on S:

t (s′) = s′′ , r (s′′) = s′ ∀s′ ∈ S′

so that the following property holds:

l (s′′) ≤ l (s′)

where the function l (s) returns the length of the string s. This requirement
amounts to select codes that compress the strings in S′ (map them into shorter
strings) without losing their information (mantaining biunivocity in S′). The
applications of this problem live mostly in compression software, i.e. computer
programs that ”reduce” the size of digital data files so that they occupy less
storage or communication resources in a (limited) digital system.

There are two main approaches to operative source coding: one algorithmic
and the other probabilistic. We will outline them briefly in a simple, fully
bijective setup. A relaxation of this bijectivity hypothesis will be considered in
the following subsection on lossy compression.

The first approach looks for deterministic algorithms which map finite se-
quences of bits (elements of D) into couples consisting of an incremental vo-
cabolary and a translation of the data accoding to the same vocabulary. A
concatenation of any of such couples’ elements would live in D as well. The
encoder t and the decoder r are in this case both bijective, but only a subset of
D would be encoded into shorter codewords. This subset is specified operatively
by the algorithm and is represented by S′ in our model. A theoretical study of
this operative encoding strategy was pioneered by Kolmogorov [15]. In analogy
with our presentation of rate distortion theory, we could define a worst-case
residual occupation ratio γmax:

γmax := max
s∈S′

γ (s)

γ (s) :=
l (s′′)
l (s′)

and look for codes that minimize it, or equivalently maximize the worst-case
compression ratio ρmin:

ρmin := min
s∈S′

ρ (s)

ρ (s) :=
1

γ (s)
=

l (s′)
l (s′′)

A second approach to source coding comes from probability theory. If we
introduce a probabilistic description of the source (S, Σ, λ) with expectation E
we may choose to minimize -instead of ρmin- one of the following (generally
different) cost functions:

γλ := E {γ (s)}
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ρλ :=
1

E {ρ (s)}
over the set of bijective codes

C ′ :=
{

c ∈ C : r ◦ t (s) = s ∀s ∈ S
}

Of course, if γλ or ρλ are less than one then there exists a subset S′ of S
such that ∀s ∈ S′ we have ρ (s) < 1 or γ (s) > 1 respectively - this means
that we can consider the probabilistic approach within the general frame we
described at the beginning of this section. Theoretical studies of this approach
identified self-information and entropy as the critical quantities in gauging the
“compressibility” of elements of S and the achievable compression rate E {ρ (s)}.
One of the landmarks of this research effort is Shannon’s paper on coding theory
[18].

Lossy compression
By lossy compression we typically intend a source coding problem where bi-

jectivity is not strictly required.
In some sense this problem can be seen as a fusion of source coding and

rate distortion theory, with S = X = D. The cost function would then be a
combination of a distortion measure and residual occupation ratio. The tradoff
between these two shall then be empirically adapted to the problem considered
- this is exactly the case in MP3 audio or MPEG4 video compression.

The relaxation of the bijectivity constraint can deliver benefits even without
introducing a distortion measure. From an algorithmic source coding perspec-
tive, we could decide to identify a superset S′′ of S′ such that the function
r ◦ t needs not to equal to the identity in its complement S\S′′. This of course
can lead to simpler algorithms. From a probabilistic source coding point of
view, we could impose a small arbitrary bound Ploss on the probability of losing
bijectivity:

P {s ∈ S : r ◦ t (s) 6= s} ≤ Ploss

This bound would then identify a subset of acceptable codes:

C ′′ := {c ∈ C : P {s ∈ S : r ◦ t (s) 6= s} ≤ Ploss}

which clearly contains the set of bijective codes:

C ′′ ⊃ C ′

So the domain within which we look for a minimisation of γλ or ρλ is larger,
potentially allowing better codes.

2.2.4 Cryptography

Cryptography is similar to source coding theory in the fact that it typically
takes

S = X = D
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and that code bijectivity is required. However the aim is totally different than
compression, and requires the concept of algorithmic complexity to be made
precise. The task is in fact to provide a code so that encoding is “easy” but
decoding is “difficult” unless we know a secret “key”, so that an encoded (en-
crypted) message can be considered secure (unreadable) from everybody missing
such a key. This can be formalised into a quest for a code c so that the problem
of reconstruction of the decoder r knowing the encoder t lives in NP relatively
to such a key k ∈ D. Since the description of cryptography through a cost
function would require to discuss complexity theory, and since we plan not to
further explore this domain in this thesis, we choose to end this paragraph here.

2.3 Channel coding theory

Channel coding theory studies the problem of communication through a noisy
medium, that is a medium which can unpredictably (randomly) alter the infor-
mation exchanged. Such a phenomenon is of course unwelcome.

The physical elements involved in the problem are a transmitter, a receiver
and a channel (which may be a cable, or the space). In the engineering liter-
ature, a formal setup is offered by the notions of coding scheme, noise model
and decoding strategy. Let us briefly recapitulate the abstract coding setup
introduced in the previous paragraph, and then proceed with an identification
between elements of the latter, of the engineering setup and of the physical
world. Given two spaces S and X, a code c can be defined as an ordered couple
of maps:

c = (t, r)

t : S → X

r : X → S

The coding scheme corresponds in our framework to the t : S → X encoder
map and is implemented by the physical transmitter. It translates electronic
data from the space S to real world signals in X. In channel coding we typically
have:

S = Bm X = Rn

where B := {0, 1}. The decoding strategy is the r : X → S decoder map,
associated to the physical receiver. It translates back real world signals from
X to electronic data in S. The noise model represents the channel, that is the
effect of unpredictable alteration of the transmitted signal. It can be described
by a random function b (for “bruit”, french word for noise), called the random
noise:

b : (Ω,F , P) → XX

where the triple (Ω,F , P) is a probability space with associated expectation E
and XX is the space of the functions from X to X itself. There are, of course,
measurability issues to take care of. Since the channel coding model will be
progressively enriched throughout this paragraph, we choose to precise these
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requirements only at the end of it. The channel coding problem can then be
described as the search for a code c that minimizes some error functional Ef,max

on a set W ⊆ C:
Ef,max := max

s∈W
Ef

Ef : = E {f (r ◦ b (ω) ◦ t (s) , s)}

: =
∫

Ω

f (r ◦ b (ω) ◦ t (s) , s) P (dω)

given the noise n and an arbitrary measurable function f :

f : S × S → R

Notice that Ef depends from s, t and r., while Ef,max only from t and r, which
is of course consistent with our minimisation effort as c = (t, r) varies on W .
This latter subspace of C describes an eventual constraint, as for instance an
“energy” constraint specified by an energy paramenter w ∈ [0,∞]:

W :=
{

c ∈ C : max
s∈S

‖t (s)‖2 ≤ w

}
If we take some extra hypotheses, as for example discreteness and finiteness of
S, we can take

f (t, s) := χ t 6= s

where χA is the indicator function of the set A, and define the maximal (source)word
error probability Pmax (Eerr):

Pmax (Eerr) := max
s∈S

P {Eerr}

Eerr := {ω ∈ Ω : r ◦ b ◦ t (s) 6= s}

the link between the two descriptions being the passage:

P {Eerr} : = E
{

χ (r ◦ b (ω) ◦ t (s) 6= s)

}
= E {f (r ◦ b (ω) ◦ t (s) , s)}
= Ef

Clearly, P {Eerr} depends from s, t and r., while Pmax (Eerr) only from t and r.
Again, we can introduce a probabilistic description of the source (S, Σ, λ). In
this enriched setup we are faced with the problem of relating the two probability
spaces (S, Σ, λ) of the source and (Ω,F , P) of the noise. Since the entities
so described (the unpredictability in the source and the one in the channel)
are unrelated in the model, it seems natural to assume mutual independence
between them. In order to have a unified probability description, we can choose
to define a product probability triple (Ω× S,F ⊗ Σ, P⊗ λ) where F ⊗Σ is the
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σ-algebra generated by the union of the two σ-algebrae F and Σ extended to
the product space Ω × S while P ⊗ λ is of course the product measure. With
this choice we can introduce a new cost function, the average (source)word error
probability Pwerr := P⊗ λ (Eerr).

Alternatively, we can choose one of the two probability spaces (S, Σ, λ) and
(Ω,F , P) as the base space and describe the other as a random variable induced
probability space. Since the channel noise is already described in our setup
through the random variable b : Ω → XX , it seems more natural to choose
(Ω,F , P) as the base triple and define a (F ,Σ)-measurable random variable

s0 : (Ω,F , P) → (S, Σ)

independent of b and such that λ the measure induced by P through s0 in S:

λ (B) := P
(

s−1
0 (B)

)
∀B ∈ Σ

This new random variable s0 can be called the random message.
Of course it is not always possible to add independent random variables on

a predefined space, so formally this is an assumption. Now we can also precise
the measurability requirements for t, b, r. Letting χ be a given sigma-algebra
on X, we assume:

t : (S, Σ) → (X, χ)

b : (Ω×X,F ⊗ χ) → (X, χ)

r : (X, χ) → (S, Σ)

where we have interpreted b s a measurable function from a product space,
instead as a random variable in a function space. Of course, the probability
measure P defined on (Ω,F) makes the measurable function b a “random func-
tion”.

The above choice lead us to redefine the error event, which we do through a
small abuse of notation:

Eerr := {ω ∈ Ω : r ◦ b ◦ t (s0) 6= s0}

Notice that now Eerr depends from t and r, while b and s0 are the random
variables defining it. The average word error probability Pwerr.can now be
formalised as follows:

Pwerr : = P (Eerr)
= E

{
χEerr

}
= E

(
E
(
χEerr

∣∣ s−1
0 (Σ)

) )
= E

(
P
{

Eerr| s−1
0 (Σ)

} )
From now on we will stick to this choice, that is we choose to employ the
enriched probabilistic description of the source (S, Σ, λ) that we suppose in-
duced by the random message s0 : (Ω,F , P) → S independently from the
random noise b : (Ω,F , P) → XX , with the error event defined as Eerr :=
{ω ∈ Ω : r ◦ b ◦ t (s0) 6= s0}.
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2.4 Channel decoding in detail: the decision setup

In the previous paragraph we have identified the channel coding problem as a
quest for a cost function minimizer in a constrained subspace W of the codes’
space C. Here we explore in more detail the formal setup of the channel coding
problem, with a particular focus on the decoder part.

We take the further assumptions that the source space S is finite and that
the induced measure λ is uniform on it. This is a typical setup taken in telecom-
munication engineering, the finiteness hypothesis being crucial to implement a
decoding decision.

Let us now observe that, given the encoder t : S → X, the choice of the cost
function k identifies an optimal decoder r : X → S in the following way:

rt := arg min
γ∈SX

k (γ, t)

provided, of course, that existence and unicity issues are satisfied in some sense.
This problem is covered by decision theory.

The consequence of such a notion is that we can focus on looking for a good
encoder after we specify a cost function and set for the decision theory-optimal
decoder r. This leads to an interesting engineering approach: first set a cost
function and look for a simple encoder so that, associated with the decision
theory-optimal decoder, it constitutes a “good” code in such a cost-defined
sense. Afterwards try to approximate such a decoder with a suboptimal one,
ideally with an iterative algorithm to be artificially stopped after the decoding
process is empirically good enough.

In the next two sections we explore the decoding consequences for two pop-
ular cost function choices. The first one is the already introduced average word
error probability Pwerr which induces wordwise maximum a posteriori proba-
bility decoding. Because of the uniformity assumption on λ, this is equivalent
to maximum likelyhood decoding. This is the reason for being labelled “ML
decoding” in turbo coding literature (turbo codes are a particular case of ran-
dom codes). The second one is the so called average bit error probability Pberr,
to be defined later on, which induces bitwise maximum a posteriori probability
decoding. The word bitwise relates to the projection of the messageword into
the digits of its binary representation, seen as the messageword components in
an appropriately defined vector space, and to the subsequent decoding of such
binary digits (bits) separately from each other. Such idea of an independent
reconstruction of the bit components of a sourceword vector suggests also an-
other name for the associated decoding strategy, that is marginal decoding, as
opposed to the dual label of global decoding employable for the already de-
scribed wordwise decoding. Equivalence with maximum likelyhood decoding
holds in this bitwise case, too. Perhaps surprisingly, this strategy is called MAP
decoding in the aforementioned “turbo literature”.
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2.4.1 wordwise decoding - “ML decoding”

Let us take the average word error probability Pwerr as our cost function. The
decision theory-optimal decoder is then defined by:

rt : = arg min
γ∈SX

Pwerr (γ, t)

= arg min
γ∈SX

P (γ ◦ b ◦ t (s) 6= s)

= arg min
γ∈SX

E
{

χ γ ◦ b ◦ t (s) 6= s

}
Of course, we need to consider existence and uniqueness conditions. Unique-
ness, for instance, can be achieved only almost surely, given the presence of the
expectation operator inside the arg min. In the typical cases S is discrete and
finite while X is a real finite-dimensional vector space, so any decoder actually
partitions the codeword space X in a number of subsets, each of which is as-
sociated to a different messageword. In case existence is granted, the optimal
partitioning subsets take the name of Voronoi regions and one can easily prove
that:

rt (y) = arg max
s∈S

P {s| y, t}

2.4.2 bitwise decoding - “MAP decoding”

Aim of this section is to introduce the so-called MAP decoding, a decision
theory-optimal decoding strategy induced by the average bit error probability
cost function Pberr, which we are going to define.

The idea behind bitwise decoding comes from the physical binary repre-
sentation (in binary digits or “bits”) of the electronic data in communication
systems. This representation offer the possibility to refer the probability of a
transmission error to the single bits that make up a sourceword representation,
instead that to the sourceword itself. In othero words, we might be interested
in the probability that a single bit of the reconstructed sourceword is actually
correctly received or not, instead of just considering the correctness of the entire
sourceword reconstruction.

The reason for this paradigm shift stems from an engineering perspective.
As already mentioned in the introduction on modularity in information systems,
sometimes it is interesting to consider systems to operate indefinitely, or at least
without a perceivable time frame. In such a case sourcewords and codewords are
ideally unending sequences, and formalisation of codes becomes more delicate.
However, under the usual engineering hyotheses of ergodicity, (source)words’
errors actually happen asymptotically with probability one, and moreover their
probability brings no useful information on the local behaviour of the system,
where the locality can be intended in space, time or more abstract measurable
resources. So the idea is to shift the computation to inherently local quantities,
like bits, which can provide a meaningful and operative definition of an error
probability.
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One last thing to stress before delving into the formal details is that the
choice of a binary representation does actually have an impact on performance.
At parity of other conditions, in fact, different representations can induce differ-
ent average bit error probabilities. For an intuition of this effect, let us think of
associating close sourceword representations to codewords that can be easiliy be
mistaken for one another: in this way, a more likely error will corrupt a smaller
number of bits.

Assume that S is a finite set (not necessarily equal to Bm) and let m ∈ N
be such that

# {Bm} = 2m ≥ # {S}

Then we can set a bijection Ψ between S and a subset S′ of Bm:

Ψ : S → S′

Ψ−1 : S′ → S

which we can call a binary representation of S. If we consider Ψ as a random
variable, then it induces an entire probability space

(
S′,Σ′, λ′

)
as follows:

Σ′ : =
{
C ⊆ S′ : Ψ−1 (C) ∈ Σ

}
=

{
C ⊆ S′ : s−1

0 ◦Ψ−1 (C) ∈ F
}

λ′ (C) : = λ
(

Ψ−1 (C)
)

= P
(

s−1
0 ◦Ψ−1 (C)

)
∀C ∈ Σ′

Since the general element
s′ := {s′1, . . . , s′m}

of S′ is a m-dimensional vector, we can apply to it the k-th projection operator
πk (·):

πk (s′) := s′k

for all k ∈ {1, . . . ,m}. With the position

s′ = Ψ(s0)

we can now define the event Eerr,k as follows:

Eerr,k : =
{
ω ∈ Ω : πk ◦Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (s′) 6= πk (s′)

}
=

·⋃
a,b∈S

πk(a) 6=πk(b)

Ea,b

where the symbol
·
∪ is used to denote disjoint union, since with the position

Ea,b :=
{
ω ∈ Ω : s′ = a,Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (s′) = b

}
∀a, b ∈ S

18



we have:
Ea,b ∩ Ec,d = ∅ ∀ (a, b) , (c, d) ∈ S2 : (a, b) 6= (c, d)

Notice furthermore that such event Eerr,k is a function of k and Ψ besides t,
r. In total analogy with the average word error probability Pwerr, we can now
define the average k-th bit error probability Pberr,k:

Pberr,k : = P (Eerr,k)

= E
{

χEerr,k

}
= E

(
E
(

χEerr,k

∣∣∣ s−1
0 ◦Ψ−1 (Σ′)

) )
= E

(
P
{

Eerr,k| s−1
0 ◦Ψ−1 (Σ′)

} )
=

∑
a∈S′

P {Eerr,k| s′ = a}P {s′ = a}

the last passage being possible because of the countable nature of S′. We can
manipulate some more the P {Eerr,k| s′ = a} term:

P {Eerr,k| s′ = a} = P


·⋃

a,b∈S
πk(a) 6=πk(b)

Ea,b

∣∣∣∣∣∣∣∣∣ s
′ = a


=

∑
b ∈ S′

πk (a) 6= πk (b)

P {Ea,b| s′ = a}

=
∑

b ∈ S′

πk (a) 6= πk (b)

P
{

Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (s′) = b
∣∣ s′ = a

}

=
∑

b ∈ S′

πk (a) 6= πk (b)

P
{
Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (a) = b

}

the last passage being a consequence of independence between the random
source and the random noise:

P
{

Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (s′) = b
∣∣ s′ = a

}
= P

{
Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (s′) = b, s′ = a

∣∣ s′ = a
}

= P
{

Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (a) = b, s′ = a
∣∣ s′ = a

}
= P

{
Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (a) = b

∣∣ s′ = a
}

= P
{
Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (a) = b

}
In order to get rid of the dependence on k we can now take the following average:

Pberr :=
1
m

m∑
k=1

Pberr,k
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which we call the average bit error probability. This is of course a function of
Ψ, t and r.

We can now introduce the associated decision theory-optimal decoder as
follows:

rt : = arg min
γ∈SX

Pberr (γ, t)

= arg min
γ∈SX

1
m

m∑
k=1

Pberr,k

= arg min
γ ∈ SX

1
m

m∑
k = 1

∑
a, b ∈ S′

πk (a) 6= πk (b)

P
{
Ψ ◦ γ ◦ b ◦ t ◦Ψ−1 (a) = b

}
P {s′ = a}

If we map the decoder codomain to its binary representation we can set each of
the bit decoders separately and achieve global optimality:

rt = Ψ−1 ◦ {r1,t, ..., rm,t}

rk,t : = πk ◦Ψ ◦ rt

= arg min
γ ∈ {0, 1}X

∑
a, b ∈ S′

πk (a) 6= πk (b)

P
{
γ ◦ b ◦ t ◦Ψ−1 (a) = πk (b)

}
P {s′ = a}

= arg min
γ ∈ {0, 1}X

∑
a ∈ S′

P
{
γ ◦ b ◦ t ◦Ψ−1 (a) 6= πk (a)

}
P {s′ = a}

= arg min
γ ∈ {0, 1}X



∑
a ∈ S′

πk (a) = 0

P
{
γ ◦ b ◦ t ◦Ψ−1 (a) = 1

}
P {s′ = a}+

∑
a ∈ S′

πk (a) = 1

P
{
γ ◦ b ◦ t ◦Ψ−1 (a) = 0

}
P {s′ = a}


As in the wordwise case, we need to take existence and uniqueness conditions
into account. Similar observations to the ones done for the wordwise decoding
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can be applied here too. Once these conditions are taken care of, we get:

rk (y, t) = χ {
P {πk (s′) = 1| y} > P {πk (s′) = 0| y}

}
= χ 

∑
a ∈ S′

πk (a) = 1

P {s′ = a| y} >
∑

a ∈ S′

πk (a) = 0

P {s′ = a| y}


= χ 

∑
a ∈ S′

πk (a) = 1

P {s′ = a| y} > 1
2


where χ is of course the indicator function of the subscripted set. Notice that
the a posteriori probabilities P {s′ = a| y} depend from t. Let us stress that
this bitwise decoding strategy is different from the wordwise strategy, and that,
in the same conditions, can lead to different decoded messages. In this sense
it is sometimes considered “suboptimal”, the optimal decoding strategy being
considered the wordwise, global one. Of course this consideration is not really
meaningful - optimality is by definition associated to the minimisation of a cost
function, and it is perfectly natural that two different cost functions lead to
different strategies.

Let us finally observe that the probability of error for the entire codeword,
that is, the probability that at least one bit of the representation is incorrectly
decoded, is bounded between Pberr and mPberr. Notice that this probability
range needs not to be related with the error probability we get by wordwise ML
decoding, since it comes from a different decoding strategy, i.e. bitwise MAP
decoding.

2.5 Random Coding

In the two previous paragraphs we have generally summarised coding theory
and channel coding. Here we introduce random coding, a particular strategy
for producing “good” encoders.

We will first give a new geometric notion, or interpretation, of “goodness”
for the encoders, followed by the introduction to the random coding idea and a
brief historical sketch of coding theory’s focus. Then we present the “annealed”
approach to the computation of the cost functions, and its consequences for the
bitwise and wordwise error probabilities.

2.5.1 A geometric notion of a code’s “goodness”

As introduced in the first two paragraphs, the “goodness” of a channel code may
be abstractedly described through a cost function, as for example the described
quantities Pwerr and Pberr.
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Anyway, the model engineers have usually in mind is much specific and
more detailed than even the probabilistically-enriched setup presented in the
last section of first paragraph. First of all, let us import the extra properties
introduced in the second paragraph: let the source measure λ induced by the
random message s0 be uniform in the discrete finite source space. The noise
model

b : (Ω,F , P) → XX

is too general to be considered broadly: in many cases the noise is modeled as
a “noiseword”, a random variable on X which is summed to the transmitted
codeword to produce the received word:

b′ : (Ω,F , P) → X

b (x) := b′ + x

Such a case is called linear or additive noise - of course, this requires the hypoth-
esis of X being a linear space. Moreover, the distribution of b′ is typically taken
to be zero mean (a zero value existing because of the linear space requirement
on X), single-peaked around zero and symmetric, this last hypothesis requir-
ing a further topologic space assumption on X. Finally, the codeword space X
is often described as a finite-dimensional vector space. This allows us to take
further hypotheses on the mutual properties of the j-th components b′j of the
random noiseword b′:

b′j := πj (b′)

with the natural definition of the j-th component projection operator πj (·).
The simplest, strongest and most common hypotheses are equidistribution and
mutual independence (IID) between all the components.

The basic idea behind this furtherly enriched model is that all the messages
are equally likely and that the noise acts limitedly and locally. Limitedly in the
sense of the linearity and the zero-mean single-peak hypotheses. Locally in the
sense of the IID hypothesis.

This idea suggests a geometric intuition of the noise and a geometric in-
terpretation the goodness of an encoder: the noise “blurs” the codewords into
fuzzy spots, so it is possible for a codeword to be “mistaken” for another nearby
at decoding. An encoder will then be good when the codewords are as symmet-
rically far apart as possible from each other, so that the fuzzy spots created by
the noise will not overlap, or will do less so.

Considering now the decoding aspect, this geometric interpretation appears
to couple more closely with the wordwise than with the bitwise strategy. In
fact, this geometric solution minimizes the wordwise error probability (when
coupled with a wordwise MAP decoder) if the hypotheses introduced in this
section hold - the noise being gaussian on Rn for instance. But let us notice
that if furthermore the cardinality of S is 2m for a certain m ∈ N, then the bit
representations are equally distributed and all bits are so as well. In this case the
optimal symmetric solution for bitwise MAP decoding would again be the same.
However, the mapping between the bit representations and the codewords can
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have an impact on performance, and in some cases there are non-symmetrical
solutions that perform better.

2.5.2 Random coding’s fundamental idea

Random coding is a perhaps misleading name for a strategy to find geometrically
good codes that dates back to Claude E. Shannon and its foundational coding
theory paper of the late ’40s.

Let Sn be a finite discrete space such that |Sn| = 2bRnc and consider a
sequence {xn

s ; s ∈ Sn; }n∈N of families of independent and identically distributed
(IID) random variables

xn
s : (Ω,F , P) → (Xn,Ξn) = (Rn,Bn)

so that they are mutually independent with respect to a sequence of random
messages s0,n : (Ω,F , P) → Sn and a sequence of noisewords bn : (Ω,F , P) →
XXn

n , and moreover that the distribution of the xn
s is uniform in some subset

X ′
n of the codeword space Xn. Such a region X ′

n could be the projection onto
Xn of a power constraint W ′ parametrised by w ∈ [0,∞]:

X ′
n :=

{
x ∈ Xn :

‖x‖2
n

≤ w

}

W ′ :=
{

c ∈ C : max
s∈S

‖t (s)‖2
n

≤ w

}
defined analogously to the energy constraint W ⊆ C introduced in the last
section of the first paragraph:

W :=
{

c ∈ C : max
s∈S

‖t (s)‖2 ≤ w

}
where w ∈ [0,∞] was an energy parameter instead of a power one. Shannon’s
fundamental observation is that the empirical measure defined by a set of |Sn|
realisations of such codewords approaches almost surely a Poisson measure with
density

2bRnc

Bn (nw)

on X ′
n as n → ∞, where Bn (nw) is the hypervolume of the n-dimensional

hyperball of radius nw. This means that, as n increases, a random encoder
tnω (which we call simply, albeit improperly, a random code) consituted by |Sn|
realisations of the random variables xs:

tnω : Sn → Xn

s 7→ xn
s (ω)

tn : (Ω,F , P) → XSn
n

ω 7→ tnω
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tends to be a good encoder in the geometric sense - meaning that the codewords
tend to be equally spaced. Using this observation in his homonimous theorem,
Shannon was able to prove that the wordwise error probability decays asymp-
totically to zero almost surely according to the ensemble

(
XSn

n ,Bn|Sn|, γn

)
of

random codes, defined as the probability space induced by the random code t
onto the encoder measurable space

(
XSn

n ,Bn|Sn|
)
:

γn (A) := P
(

t−1 (A)
)
∀A ∈ Bn|Sn|

Such an ensemble is taken to be independent from the noise and message: the
three random variables

sn
0 : (Ω,F , P) → Sn

bn : (Ω,F , P) → Xn

tn : (Ω,F , P) → XSn
n

are mutually independent from each other. We point out that, in his theorem,
Shannon used the probability of codeword error as a cost function, but did not
choose wordwise MAP decoding as the decoding strategy, opting instead for
something called “group decoding” which, although clearly suboptimal when
coupled with wordwise error probability, appeared to be more simply manage-
able in the proof and capable of approaching wordwise MAP decoding itself.
This is a kind of theoretical dual of the operative engineering strategy, hinted in
the last section of the first paragraph, that looks for a simple suboptimal itera-
tive decoding algorithm instead of implementing the sometimes computationally
intensive wordwise MAP decoder.

2.5.3 Algebraic structure versus randomness

Random codes present a batch of indesiderable properties like the lack of internal
symmetry (their codewords have not a group property in general) which makes
the probability of a codeword detection error depending on the codeword itself
(an unwelcome effect), or the presence of a quota of “bad codewords” (that is,
couple of codewords close to each other) in sufficiently crowded codes, or the
problem to actually choose an encoder from the ensemble avoiding bad picks.
Moreover, real codes are finite lenght codes, so the random approach to find good
but asymptotically long codes has not been considered of practical importance
for quite some time after Shannon’s founding paper. Instead, the engineering
community focused on other ideas to construct finite geometrically good codes,
the most popular being of algebraic descent: the codewords of a code are viewed
as the elements of a discrete linear group to be chosen so that the minimal
hamming distance between any two codewords is as high as possible. Of course,
this strategy is not asymptotic and allows to produce finite codes of arbitrary
lenght. This line of research flourished for 40 years, from the ’50s to the ’90s, but
without producing codes with a performance really close the theoretical bound
proven by Shannon. Then in the early ’90s Claude Berrou and Alain Glavieux
published a groundbreaking article on the so called “turbo codes”, a very simple
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way to produce pseudorandom codes of arbitrary length n which are very good
and, as n increase, approach exponentially fast the asymptotic Shannon’s bound.
These turbo codes introduce an algebraic structure in a pseudorandom encoder,
solving many of the issues concerning pure, unstructured random codes. The
article sparkled new interest in random coding which continues to the present,
along with the “rediscovery” of some previous results by Robert Gallager who
devised in the early ’50s some pseudorandom encoders similar to the turbo
codes, called Low Density Parity Check (LDPC) codes, which can be more
easily analised mathematically and in some cases perform even better than the
turbo codes themselves.

2.5.4 “Annealed” cost functions

As already hinted in the second section of this paragraph, Shannon was able to
prove his theorem not for single codes but for ensemble of them, an ensemble of
random codes being the probability space induced by the random code onto the
encoder domain XS . From this theorem he obtained a corollary on the existence
of good codes in the asymptotic ensemble, and a proof that asymptotically
almost every code in the ensemble is good (i.e., for n → ∞ a random encoder
is almost surely good).

Shannon’s approach considers the “annealed” cost functions:

Pwerr : = P {ω ∈ Ω : r ◦ b ◦ t (s0) 6= s0}
=

∑
a∈S

P {Eerr| s0 = a}P {s0 = a}

=
∑
a∈S

P {r ◦ b ◦ t (a) 6= a}P {s0 = a}

Pberr : =
1
m

m∑
k = 1

Pberr,k

: =
1
m

m∑
k = 1

P
{
ω ∈ Ω : πk ◦Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (s′) 6= πk (s′)

}

=
1
m

m∑
k = 1

∑
a∈S′

P {Eerr,k| s′0 = a}P {s′0 = a}

=
1
m

m∑
k = 1

∑
a, b ∈ S′

πk (a) 6= πk (b)

P
{
Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (a) = b

}
P {s′0 = a}
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where of course s′0 is the binary representation of s0, instead of the “quenched”
ones:

Pwerr (t)
a.s.
:=
∑
a∈S

P {Eerr| s0 = a, t}P {s0 = a}

=
∑
a∈S

P {r ◦ b ◦ t (a) 6= a| t}P {s0 = a}

Pberr (t)
a.s.
:=

1
m

m∑
k = 1

Pberr,k (t)

=
1
m

m∑
k = 1

∑
a∈S′

P {Eerr,k| s′0 = a, t}P {s′0 = a}

=
1
m

m∑
k = 1

∑
a, b ∈ S′

πk (a) 6= πk (b)

P
{

Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (a) = b
∣∣ t}P {s′0 = a}

which should be used to prove results for single encoders (that is, particular
instances of the random code t). The akward notation P { ·| s0 = a, t} is an
abuse of notation that improves readability - instad of the proper notation of
a realisation P { ·| s0 = a, t = t∗} of the conditional probability P { ·| s0, t} where
t∗ is a parameter. We have, of course:

Pwerr = E
{

Pwerr (t)
}

Pberr = E
{

Pberr (t)
}

We borrowed the terms “quenched” and “annealed” from the statistical me-
chanic literature, where they indicate if certain quantities are averaged also to
the respect of a random environment, or are instead computed conditioning to
a realization of the environment itself.

The use of the annealed cost functions induces some simplifications in the
mathematical analysis of the cost functions themselves. In particular, the fact
that the codeword are IID means that the quantities

P {Eerr,k| s′ = a}

P {Eerr| s = a}
are actually independent of a, since any two realisations that can be mapped
into one another through a permutation of the codewords are equally likely.
Analogously, if |S| = |S′| = 2m then

P {Eerr,k| s′ = a}

26



is also independent from k, because a permutation of the representation’s bits
can be mapped into a permutation of the codewords of the associated encoder.
This leads to the forms:

Pwerr = P {Eerr| s = a} = P {r ◦ b ◦ t (a) 6= a}

where a ∈ S is arbitrarily chosen, and

Pberr = Pberr,k = P {Eerr,k| s′ = a}

=
∑

b ∈ S′

πk (a) 6= πk (b)

P
{
Ψ ◦ r ◦ b ◦ t ◦Ψ−1 (a) = b

}

where a ∈ S′ and k ∈ {1, . . . ,m} are arbitrarily chosen as well.
In the next chapters we will give a new proof of Shannon’s theorem based on

a statistical-mechanic approach and formalised through large deviation theory.
We will show how a generalised error probability Pβ exhibits an asymptotically
exponential behaviour toward zero or one depending on some system parame-
ters. Since, analogously to Pberr and Pwerr, we will have

Pβ = E
{

Pβ (t)
}

we will be able to deduce that Pβ (t) will asymptotically be zero or one almost
surely.

2.6 The binary noise - binary random coding problem

In this last paragraph of the current chapter we will describe the binary noise
-binary random coding problem, which we will call the Shannon problem for
short. After some preliminary notation, we proceed to the definition of the
constituent elements of the problem: the source space S and random message
s0, the random encoder t and the noise b. We will finally compute the expression
of the annealed bitwise error probability, adopting the bitwise MAP decoding
strategy. Since we plan to compute a scaling limit (Shannon’s theorem being an
asymptotic result), all the relevant elements will be dependant on some scaling
parameter n ∈ N\ {0}, which will afterwards go to ∞.

In the next chapter we will adopt a statistical-mechanic approach to the cod-
ing problem, introducing a generalisation of the bitwise MAP decoding strategy
which we will show to contain also the wordwise MAP decoding one.

2.6.1 Some notations

Let p ∈ [0, 1] and let (Ω,F , P) be a probability triple. Let us agree that a real
random variable x is distributed according to a Bernoulli(±1, p) law iff

P (x = +1) = 1− p
P (x = −1) = p
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Let xn := (xn
1 , . . . , xn

n), yn := (yn
1 , . . . , yn

n) be two real vectors of length
n. Let 〈xn, yn〉 denote the standard scalar product of the two vectors and
d1 (xn, yn) :=

∑
i |xn

i − yn
i | their l1 distance. When xn

i and yn
i take values on

{−1,+1}, the operators d1, 〈·, ·〉 and the Hamming distance dH are linked as
follows:

dH (xn, yn) :=
∑

i=1,...,n

1xn
i 6=yn

i

=
1
2
d1 (xn, yn) =

n− 〈xn, yn〉
2

2.6.2 The source space

Let R ∈ [0, 1] be a parameter denoting the rate of the code.

Let Sn = {0, 1}
bRnc

be the source space and let Σn be the associated power
set, with λn denoting the uniform probability on it. The source probability
triple will then be (Sn,Σn, λn). The encoded message s0 is a random variable

s0 : (Ω,F , P) → Sn

which induces Σn and λn on Sn:

Σn :=
{
B ⊆ Sn : s−1

0 (B) ∈ F
}

λ (B) := P
(

s−1
0 (B)

)
∀B ∈ Σn

Since Sn is a space of binary vectors of length bRnc, we have a natural binary
representation S′n of Sn induced by the projections of the vectors onto the bRnc
coordinates. For this reason we will make from now on no distintion between
S′n and Sn and will always use the notation Sn.

2.6.3 The binary random code

Let Xn = {−1, 1}n be the encoded space. The encoder space will then be XSn
n .

For all s ∈ Sn and j = 1, . . . , n. let

xs,j : (Ω,F , P) → {−1, 1}

be independent and identically distributed (IID) random variables with a Bernoulli(±1, 1/2)
law, independent from s0. For any s ∈ Sn, we identify the vector xn

s :=
(xs,1, . . . , xs,n) of lenght n with the codeword associated to the message s by
the binary random code

t (R,n) :=
(
xn

1 , . . . , xn
2bnRc

)
t (R,n) : (Ω,F , P) → XSn

n

The probability triple (
XSn

n ,Ξn, γn

)
endowed by t (R,n) on XSn

n is denoted by SRE (R,n) and is called the binary
Shannon Random Ensemble of rate R and length n.
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2.6.4 The memoryless binary symmetric noise

For j = 1, . . . , n, let
wj : (Ω,F , P) → {−1, 1}

be IID random variables with a Bernoulli(±1, p) law, independent from s0 and
t (R,n). The noise word

wn := (w1, . . . , wn)

wn : (Ω,F , P) → Xn

represents the random contribution of a (memoryless) binary symmetric channel
on a codeword. For all choices of s, j, let

ys,j := xs,jwj

yn
s := (ys,1, . . . , ys,n)

where yn
s is the corrupted (noisy) version of the codeword xn

s , i.e. the received
codeword when s is transmitted. The noise here introduced is multiplicative,
not linear, but it is clear that with the map

a = (−1)b

it becomes additive at the exponent, eventually with a modulo 2 for a bijection.

2.6.5 The annealed bitwise error probability

In this last section of the paragraph we compute the annealed bit error proba-
bility

Pberr = Pberr,k = P {Eerr,k| s = a}

associated to the bitwise MAP decoding strategy for the Shannon problem.
We can write the law of yn

s0
given the code t (R,n) and the message s0. For

any choice of zn := {z1, . . . , zn} ∈ {−1,+1}n, we have that P-a.s.

P
{
yn

s0
= zn|s0, t (R,n)

}
= P

{
yn

s0
= zn|xn

s0

}
=

∏
j=1,...,n

P {ys0,j = zj |xs0,j}

=
∏

j=1,...,n

[√
p (1− p)

(√
1− p

p

)zjxs0,j
]

= (p (1− p))n/2

(√
1− p

p

)n−2dH(zn,xn
s0)

Bayes formula yields the conditional law of s0, given the code t (R,n) and the
received message yn

s0
; for any s ∈ Sn we have:

P
{
s0 = s|yn

s0
, t (R,n)

}
= K exp

{
−βdH

(
yn

s0
, xn

s0

)}
, P-a.s.
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where K does not depend on s because all source messages are equally likely,
and

β :=
(

log
1− p

p

)
For k = 1, . . . , bnRc, let πn

k : Sn → {0, 1} be the map associating each message
s to the k-th binary digit πn

k (s) of its representation. An error occurs at the
bit k, if the decoded digit is different from s0,k. By definition of bitwise MAP
decoding, the decoded digit is 1 iff

∆n
k ≤ 0

where

∆n
k : =

∑
s:πn

k (s)=0

P
{
s0 = s|yn

s0
, t (R,n)

}
−

∑
s:πn

k (s)=1

P
{
s0 = s|yn

s0
, t (R,n)

}

= K

 ∑
s:πn

k (s)=0

exp
{
−βdH

(
yn

s0
, xn

s0

)}
−

∑
s:πn

k (s)=1

exp
{
−βdH

(
yn

s0
, xn

s0

)}
otherwise 0 is decoded. We have

Eerr,k =
{

ω ∈ Ω : (−1)πn
k (s) ∆n

k ≤ 0
}

Let us now take s0 = 0, k = 1 (recall that we can arbitrarily fix them in the
annealed computation) and write the formula for Pberr:

Pberr (R,n) = P(∆n
1 ≤ 0|s0 = 0)

= P
( ∑

s:πn
k (s)=0 exp

{
−βdH

(
yn

s0
, xn

s0

)}
≤
∑

s:πn
k (s)=1 exp

{
−βdH

(
yn

s0
, xn

s0

)}
|s0 = 0

)
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3 The ansatz of statistical-mechanics

3.1 Introduction

In this chapter we plan to describe a recent statistical-mechanic description of
random channel codes pioneered by Nicolas Sourlas.

After some general definitions, we introduce some statistical-mechanic con-
cepts. Then we describe how to use the statistical-mechanic language to char-
acterise random channel codes, and most importantly to identify their relevant
quantities. Finally we apply this new point of view to our focus problem: the
Shannon problem, as defined in the previous chapter.

In the next chapter we will develop some large deviation theorems to obtain
mathematically rigorous results on the behaviour of the quantities identified
through this statistical-mechanic ansatz.

3.2 Definitions

Let R+ := ]0,∞[, R+
0 := [0,∞[, R+

∞ := ]0,∞] and R+
0,∞ := [0,∞] in the natural

real extended topology. Let us take 0 log 0 = 0 throughout the chapter and the
rest of the thesis, so that the function x log x is well defined and continuous also
at x = 0.

3.2.1 Relative entropy or Kullbach-Leibler distance

Let (X,X ) be a measurable space, with two finite measures µ and λ. Let
furthermore λ be absolutely continuous with respect to µ, that is:

µ (A) = 0 =⇒ λ (A) = 0 ∀A ∈ X

In this case Radon-Nikodym’s theorem gives us the existence of a measurable
non-negative function

f : (X,X ) → R+
0

so that:
λ (A) :=

∫
A

dλ =
∫

A
fdµ ∀A ∈ X

We can then use the notation:
f =:

dλ

dµ

and define the relative entropy of the measure λ respect to the measure µ, also
called the Kullbach-Leibler distance of the measure λ from the measure µ:

Db (λ||µ) :=
∫

X

logb

dλ

dµ
dλ

where b ∈ R+ is the base of the logarithm and is intended equal to the Neper
number e when not explicitely indicated. Of course, we have:

Db (λ||µ) =
1

log b
D (λ||µ)
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Note furthermore that in general the relative entropy is not a distance in the
topological sense because it lacks symmetry, even in the case when both mea-
sures are absolutely continuous with respect to each other:

Db (λ||µ) 6= Db (µ||λ)

When µ is a probability measure then the relative entropy has the property of
non-negativity, with the zero value achieved if and only if f = 1 µ-a.s., because
of the strict concavity of the logarithm:

−Db (λ||µ) =
∫

X

(
logb

1
f

)
dλ

≤ logb

∫
X

1
f

dλ

= logb

∫
X

dµ

dλ
dλ = 0

3.2.2 Binary relative entropy and Gilbert-Varshamov distance

Let X := {x1, x2} be a binary space with µ and λ two probability measures so
that:

λ (x1) = z λ (x2) = 1− z z ∈ [0, 1]

µ (x1) = y µ (x2) = 1− y y ∈ ]0, 1[

Then we can write the following form for the relative entropy of λ with respect
to µ:

Db (z||y) :=



z logb

(
z

y

)
+ (1− z) logb

(
1− z

1− y

)
if z ∈ ]0, 1[

logb

(
1

1− y

)
if z = 0

logb

(
1
y

)
if z = 1

where we identified the measures by their relevant probability ratios z and y No-
tice that Db (z||y) is strictly convex, lower-semicontinuous, always non negative
and equal to zero if and only if z = y. For any R ∈ [0, 1], let the Gilbert-
Varshamov distance δGV (R) be the real number such that

Db

(
δGV (R)

∥∥∥∥1
2

)
= R logb 2

or equivalently

D2

(
δGV (R)

∥∥∥∥1
2

)
= R

with δGV (R) ∈
[
0, 1

2

]
. In order to prove existence and unicity of the Gilbert-

Varshamov distance, we just need to notice that f (δ) := D2

(
δ
∥∥ 1

2

)
is continuous
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for δ ∈
[
0, 1

2

]
and

δ ∈
[
0,

1
2

]
=⇒ ∂

∂δ
f (δ) = logb

δ

1− δ
≤ 0

f

([
0,

1
2

])
= [0, logb 2]

3.2.3 Discrete entropy

Let (X,X , λ) be a discrete finite probability space with expectation Eλ. We
define the entropy of the probability measure λ as follows:

Hb (λ) := Eλ {− logb λ (·)} := −
∑
x∈X

λ (x) logb λ (x)

Entropy is a non-negative quantity:

0 ≤ λ (x) ≤ 1 ∀x ∈ X =⇒ Hb (λ) ≥ 0

Entropy is equal to zero if the probability mass is degenerate:

δa (x) :=
{

1 iff x = a
0 iff x 6= a

=⇒ Hb (δa) = 0

Let α ∈ [0, 1] and λ1, λ2 be two probability measures on (X,X ). Let λ3 :=
αλ1 + (1− α) λ2 be their linear combination probability measure:

λ3 (x) := αλ1 (x) + (1− α)λ2 (x) ∀x ∈ X

Let us notice that λ1and λ2 are absolutely continuous with respecto to λ3 for
α ∈ (0, 1), and that:

Hb (λ3) : = −
∑
x∈X

λ3 (x) logb λ3 (x)

= α
∑
x∈X

λ1 (x) logb

1
λ3 (x)

+ (1− α)
∑
x∈X

λ2 (x) logb

1
λ3 (x)

= α
∑
x∈X

λ1 (x) logb

λ1 (x)
λ3 (x)

− α
∑
x∈X

λ1 (x) logb λ1 (x)

+ (1− α)
∑
x∈X

λ2 (x) logb

λ2 (x)
λ3 (x)

− (1− α)
∑
x∈X

λ2 (x) logb λ2 (x)

= : αDb (λ1||λ3) + αHb (λ1)
+ (1− α) Db (λ2||λ3) + (1− α) Hb (λ2)

≥ αHb (λ1) + (1− α) Hb (λ2)

That is, entropy is a strictly concave functional, since

λ1 = λ2 = λ3 ⇔
{

Db (λ1||λ3) = 0
Db (λ2||λ3) = 0
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This last result implies that entropy is equal to zero if and only if λ = δa, for
some a ∈ X. Let now µ be the uniform probability measure on X:

µ (x) = 1
|X| ∀x ∈ X

Clearly λ is absolutely continuous with respect to µ, and furthermore we have:

Db (λ||µ) =
∑
x∈X

λ (x) logb

λ (x)
1
|X|

= logb |X| −Hb (λ)

Since Db (λ||µ) ≥ 0 and strictly convex, we obtain:

Hb (λ) ≤ logb |X|

Hb (λ) = logb |X| ⇐⇒ λ = µ

Let us resume the just proven properties of the entropy Hb (λ) of a discrete finite
probability measure λ: Hb (λ) is a strictly concave functional bounded between
0 and logb |X|, and achieves these extremal values if and only if λ is degenerate
or uniform respectively.

One final observation, of which we will not give proof here, is that entropy
is the only functional with all the aforementioned properties.

3.3 Statistical mechanics at equilibrium: the finite canon-
ical ensemble

We introduce now some general concepts from statistical mechanics. Let S be
a discrete finite “state space” and E (s) a given “state energy” function:

E : S → R+
0

s 7→ E (s)

Let us imagine that S represents the space of possible configurations of a sta-
tistical system. Let us introduce an external reservoir (or universe) completely
characterised by its given and constant normalized temperature

T := 1
β , T ∈ R+, β ∈ R+

Then the fundamental “canonical ensemble” principle in statistical mechanics
says that the probability µβ (s) of a configuration s to be realised by the system
at equilibrium with the reservoir has the form

µβ (s) :=
1

Z (β)
e−βE(s)

Z (β) :=
∑
s∈S

e−βE(s)
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where the normalizing constant Z (β) is named the systems’ partition function.
The probability measure µβ is defined on the power set P (S) of S, inducing the
probability triple (

S,P (S) , µβ

)
with expectation Eµβ

. We do not dare to give an external definition of equilib-
rium here, since we should introduce a description of the dynamics according to
which the equilibrium is a stable state. Let it just be defined by the canonical
ensemble principle itself, changed into a convenient definition. We just add that
the term canonical relates to the possible exchanges of energy between the sys-
tem and the reservoir. If no exchanges altogheter were possible then the system
would be microcanonical, while if the cardinality of the state space were allowed
to fluctuate then the system would be grand canonical.

Note that Z (β) is a continuous and infinitely differentiable function, since
the cardinality of S is by hypothesis finite and the exponential function is con-
tinuous and infinitely differentiable. Now, most of the interesting quantities
of the system are obtained through expectations, as for instance the average
energy E (β):

E (β) : = Eµβ
{E (s)}

=
∑
s∈S

E (s) µβ (s)

=
1

Z (β)

∑
s∈S

E (s) e−βE(s)

=
1

Z (β)

∑
s∈S

(
− ∂

∂β
e−βE(s)

)
= − 1

Z (β)
∂

∂β
Z (β) = − ∂

∂β
log Z (β)

or the average entropy H (β):

H (β) : = Eµβ

{
− log µβ (s)

}
= Eµβ

{log Z (β) + βE (s)} = log Z (β) + βE (β)

= log Z (β)− β
∂

∂β
log Z (β)

These simple computations give us a hint on why in statistical mechanic the-
ory it is usually considered that the knowledge of the partition function Z (β)
equates to the knowledge of the system itself: although the system is identified
at equilibrium by the energies E (s) or equivalently by the probability measure
µβ , the partition function alone is sufficient to compute E and H. The loga-
rithm of the partition function log Z (β) is also equally meaningful and, when
divided by β, it is called the free energy of the system.

In the following sections of the current paragraph, after briefly studying
the limiting behaviour of the probability measure µβ , we outline some general
properties of the partition function and the free energy. Finally we will introduce
the concepts of scaling limit and random system.

35



3.3.1 The limiting behaviour of the measure µβ

Let us now study the behaviour of µβ as β goes to 0 or ∞. We have

lim
β→0

µβ (s) = lim
β→0

e−βE(s)∑
a∈S

e−βE(a) = 1
|S| ∀s ∈ S

and since |S| < ∞ we can say that µβ converges uniformly toward the uniform
probability distribution on S as β → 0. Let now:

Emin := min
s∈S

E (s)

Smin := {s ∈ S : E (s) = Emin}

∅ 6= Smin ⊆ S

we have:

µβ (s) =
e−β[E(s)−Emin]∑

a∈S

e−β[E(a)−Emin] =
e−β[E(s)−Emin]

|Smin|+
∑

a∈S\Smin

e−β[E(a)−Emin] ∀s ∈ S

and since:
lim

β→∞

∑
a∈S\Smin

e−β[E(a)−Emin] = 0

lim
β→∞

e−β[E(s)−Emin] =
{

1 if s ∈ Smin

0 if s /∈ Smin

= : χSmin
(s)

we obtain:
lim

β→∞
µβ (s) =

1
|Smin|

χSmin
(s)

that is, µβ coverges (again uniformly) to the uniform probability measure on
Smin as β →∞.

We can give a physical interpretation of these observations, based on some
intuition of energy exchanges associated to state transitions (in order to be
precise this would require of course some words on the dynamics of the system,
which we choosed to omit). At low temperature (β →∞⇐⇒ T → 0) the system
“collapses” on its low energy states Smin, which are equally likely. There is not
enough reservoir energy, whose density is the temperature T , to be absorbed
by the system allowing a more energetic state to be occupied. On the other
hand, at high temperature (T → ∞ ⇐⇒ β → 0) the state energies become
irrelevant and all states are uniformly occupied, since the reservoir temperature
is so high that the finite state energy differences become negligible when energy
is exchanged.
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3.3.2 The partition function Z (β)

We already observerd that the partition function

Z (β) :=
∑
s∈S

e−βE(s)

is continuous and infinitely differentiable in β. Let us now notice that:

Z (β) > 0∀β ∈ R+

lim
β→0

Z (β) = |S| =: Z (0)

lim
β→∞

Z (β) = |E0| =: Z (∞)

with the definition:
E0 := {s ∈ S : E (s) = 0}

and that:

∂

∂β
Z (β) =

∑
s∈S

∂

∂β
e−βE(s) = −Z (β) E (β) ≤ 0∀β ∈ R+

∂

∂β
Z (β) = 0 ⇐⇒ E ≡ 0 ⇐⇒

{
E (s) = 0 ∀s ∈ S

}
∂2

∂β2 Z (β) =
∑
s∈S

∂2

∂β2 e−βE(s)

=
∑
s∈S

E2 (s) e−βE(s) ≥ 0 ∀β ∈ R+

∂2

∂β2 Z (β) = 0 ⇐⇒
{

E (s) = 0 ∀s ∈ S
}

So if we discard the trivial case E (s) = 0 ∀s ∈ S then the partition function
Z (β) is a positive, convex and decreasing function bounded between the two
limiting values Z (0) and Z (∞). In the trivial case it is clearly constant in β.

Let us spend some words on the definition on E0. Since the energies E (s)
are by hypothesis non negative and S is discrete and finite, we could think of
translating uniformly the energies E (s) so that Emin = 0 and consequently
E0 6= ∅. But we prefer not to do such a normalisation, because we will later let
the energies E (s) be picked according to random variables and we will consider
the limit |S| → ∞. In such a situation, the normalisation would be random
as well and varying with the cardinality of S. Moreover, the limiting energy
distribution {E (s)}s∈S may tends to zero without achieving the value. For all
these reasons we stick to a setup where E0 can also be empty.
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3.3.3 The free energy F (β)

Analogously to the properties of the partition function Z (β) just shown, the
quantity log Z (β) is continuous, infinitely differentiable in β and

lim
β→0

log Z (β) = log Z (0)

lim
β→∞

log Z (β) = log Z (∞)

∂
∂β log Z (β) = −E (β) ≤ 0 ∀β ∈ R+

So again, discarding the trivial case E (s) = 0 ∀s ∈ S, log Z (β) is a decreas-
ing function bounded between the two limiting values log Z (0) and log Z (∞).
Notice now that if the minimal energy states Smin have energy Emin = 0 then
Z (∞) = |Smin| ≥ 1 and so limβ→∞ log Z (β) ≥ 0, otherwise limβ→∞ log Z (β) =
−∞.

Let us now make three observations. First, let us notice that:

lim
β→∞

E (β) = lim
β→∞

∑
s∈S

E (s) µβ (s)

d.c.t.=
∑
s∈S

E (s) lim
β→∞

µβ (s)

=
∑
s∈S

E (s)
1

|Smin|
χSmin

(s)

= Emin

so we have
lim

β→∞

∂

∂β
log Z (β) = −Emin

Secondly, from the entropy bounds we get:

0 ≤ H ≤ log |S| =⇒ ∂

∂β
log Z (β) ≤ log Z (β)

β
≤ ∂

∂β
log Z (β) +

log |S|
β

So since log |S| is finite we have that

lim
β→∞

∂
∂β log Z (β)

log Z(β)
β

= 1

In third place, observe that a uniform shift in the state energy function

Eε : S → R+
0

s 7→ E (s) + ε

ε ∈ R+
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induces only a rescaling in the partition function:

Zε (β) :=
∑
s∈S

e−βEε(s) = e−βεZ (β)

and equivalently a traslation of the free energy:

1
β

log Zε (β) =
1
β

log
∑
s∈S

e−βEε(s) =
1
β

log Z (β)− ε

These three facts suggest to use a negative, β-normalised version of log Z (β)
for the free energy F , in case we are interested in analysing the behaviour of
the system at all temperatures including T = 0 ⇐⇒ β = ∞ and we are not
sure that the minimal state energy Emin is actually zero (for lack of knowledge
or inherent impredictability of the system’s nature, see the section “random
systems” of the present paragraph):

F (β) := − 1
β

log Z (β)

Of course, we have:
lim

β→∞
F (β) = Emin

lim
β→0

F (β) = −∞

Let us now study its convexity:

∂2

∂β2 F (β) =
∂

∂β

{
∂

∂β

[
− 1

β
log Z (β)

]}
= − 2

β3 log Z (β) +
2
β2

∂

∂β
log Z (β)− 1

β

∂2

∂β2 log Z (β)

≤ − 1
β

∂2

∂β2 log Z (β)

=

[
∂

∂β Z (β)
]2
− Z (β) ∂2

∂β2 Z (β)

βZ2 (β)

=

∑
s,t∈S

[
E (s) E (t)− E2 (t)

]
e−β[E(s)+E(t)]

βZ2 (β)

=
1
2

∑
s,t∈S

[
2E (s) E (t)− E2 (t)− E2 (s)

]
e−β[E(s)+E(t)]

βZ2 (β)
≤ 0

where the first inequality follows from the entropy inequality:

0 ≤ H =⇒ ∂

∂β
log Z (β) ≤ log Z (β)

β
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while the last equality follows from symmetry considerations over the mute
parameters s and t. The definition of F (β) induces also new forms for the
entropy and energy equalities. Recalling that:

T = 1
β

∂T
∂β = − 1

β2

we have that the equality:

H (β) = log Z (β)− β
∂

∂β
log Z (β)

= β2 ∂

∂β

(
− 1

β
log Z (β)

)
implies:

H (T ) = − ∂

∂T
F (T )

and analogously:

βE (β) = −β
∂

∂β
log Z (β)

= β2 ∂F (β)
∂β

+ βF (β)

translates into:

E (T ) = F (T )− T
∂

∂T
F (T )

= F (T ) + TH (T )

3.3.4 The thermodynamic limit: the free energy density fn (β), phase
transitions

In statistical mechanics, the scaling limit is the computation of the “macro-
scopic” properties of the system as the “size” of the system diverges. We need
of course to define what we mean by macroscopic and by the size of a system,
and in doing so we will take some hypotheses on the structure of the system
itself.

The definition of a macroscopic property is the more tricky, since originally
the term comes from empirical physics. In this world a macroscopic quantity
is a quantity of the system as a whole and as such can be locally measured,
producing the same value in any observation independently from the place. Let
us keep this intuition in mind for later in this section, when we will be able to
bridge it with mathematical definitions.

Let us now suppose that the system consists of n different indentical “sub-
systems” or “elements”, each with a possible state space A. This means that
the state space will be S = An. Let us now recall that the entropy of the system
is bounded as follows:

0 ≤ H (β) ≤ log |S| = n log |A|
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So it grows at most linearly with n, which we call the size of the system. From
now on we append the subscript n to the quantities associated to a system of
the same size: Zn (β), Hn (β), En (β), Fn (β). Let us also recall that the free
energy Fn (β) has the following bounds:

− 1
β log Z (0) ≤ Fn (β) ≤ − 1

β log Z (∞)
|| ||

−n 1
β log |A| − 1

β log |E0|

so this one too grows at most linearly in n. In many physical problems the energy
En (β) grows as well asymptotically linearly with n. In the statistical mechanic
jargon this linear fenomenon is expressed by saying that these are extensive
properties of the system. It becomes then natural to introduce the spatial
densities En (β) /n, Hn (β) /n and most importantly the free energy density
fn (β):

fn (β) :=
Fn (β)

n
= − 1

βn
log Zn (β)

Analogously to the free energy F (β), we have for the density fn (β) the three
properties:

lim
β→∞

− ∂

∂β

log Zn (β)
n

=
Emin,n

n

− ∂

∂β

log Zn (β)
n

≥ fn (β) ≥ − ∂

∂β

log Zn (β)
n

− log |A|
β

fn,ε (β) := − 1
βn

log Zn,ε (β) = fn (β) +
ε

n

and the relations:
Hn

n
= − ∂

∂T
fn (T )

En

n
= fn (T )− ∂

∂T
fn (T )

= fn (T ) + T
Hn

n

To sum it all we now have a quantity, the free energy density fn (β), which does
not diverge as β or n diverge, and which enables us to compute the (densities
of the) macroscopic properties of the system, entropy and energy in particular.
The main problem that can eventually arise in thermodynamical limits is that
the free energy may converge to a discontinuous function in β:

lim sup
n→∞

1
βn

log
∑

s∈An

e−βE(s) 6= lim inf
n→∞

1
βn

log
∑

s∈An

e−βE(s)

This would make the energy and entropy densities discontinuous too, of course.
Such a discontinuitiy phenomenon is understandably very important, and is

41



called a phase transition of the system. Notice that its eventual occurrence does
not affect the bounded nature of the free energy density, which thus remains a
good tool to study the behaviour of the system.

Let us now share some final folklore words on the scaling of the probabil-
ity µβ : one of the basic tenets in statistical mechanics is that in real phisical
systems the actual realisations of energy density En (s) /n or self information
density − log µβ (s) /n tend, in the absence of phase transitions, to concentrate
(in the sense of the Law of Large Numbers or large deviation theory) around
their expected values E and.H. This happens, for instance, when the system
is composed of independent or weakly dependent subsystems (we do not prove
this claim here). When such a concentration happens then the system becomes
almost surely deterministic in the scaling limit, as is the case with the thermo-
dynamic model of the ideal gas. Moreover, in the case of weak or no dependence
of the subsystems it can can be argued that even arbitrarily small parts of the
system (compared to the whole) exibit the concentration property. In this case,
the realisation of a local quantity E′

m (s′) /m (where E′
m (s′) is the energy of a

subsystem of size proportional to m, with m → ∞ but m/n → 0) would give
information on the global quantity En (s) /n. Recalling the opening remark on
macroscopic quantities, we now can identify these with such concentrating local
random variables, or directly with the expected densities toward which they
converge. According to this last interpretation, En/n and Hn/n are in the limit
macroscopic quantities, while fn is not because it is not directly an expectation
of some random variable (it is a logarithm of an expectation). A mathematical
computation and analysis of the free energy density would yeld in this frame-
work precise and exhaustive information on the macroscopic behaviour of the
system.

Before concluding the section, let us notice that in this minimal and qualita-
tive description we omitted some further criteria used in statistical mechanics to
define macroscopic quantities, such some sort of invariance under transformation
which is required for physical measurability.

3.3.5 Random systems

As described in the previous parts of the current paragraph, the properties of
a canonical statistical-mechanic system at equilibrium are defined by the state
energy function E (s).

An interesting way to generalise this model is to let the energy function
E : S → R+

0 be the realisation of a random variable:

E : Ω →
(
R+

0

)S
ω 7→ {Eω (s) , s ∈ S}

where
(Ω,F , P)

is the original probability triple with associated expectation E. We can dually
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write:
Eω : S → R+

0

s 7→ Eω (s) ∀s ∈ S

We have now to investigate the relationship between the new probability triple
(Ω,F , P) and

(
S,P (S) , µβ

)
, the one previously defined and associated to the

internal state of the system itself. One way of doing this is to assume the
existence of the following probability kernel

P : (E, A) → P (A|E) =
∑

s∈A e−βEω(s)∑
s∈S e−βEω(s)

so that,for all β ≥ 0,
µβ,ω := P ( ·|E)

is P-a.s. a probability measure on (S,P (S)) and P (A| ·) is F-measurable on
Ω for all A ∈ P (S). Let E { ·|E} be the (conditional) expectation associated
to P ( ·|E). In this setup all the previously defined quantities become random
variables:

Eω
P−a.s.
:= E {E (s)|E}

Hω
P−a.s.
:= E {− log P (s|E)|E}

Fω
P−a.s.
:=

1
β

log
∑
s∈S

e−βEω(s)

and are called the quenched energy, the quenched entropy and the quenched
free energy respectively. The mutual relations hold P-almost surely as well:

Hω
P−a.s.
:=

∂Fω

∂T

Eω
P−a.s.
:= T

∂Fω

∂T
− Fω

Random system models are typically studied in the thermodynamic limit, when
a further hypothesis on the concentration of the measure µ holds as well. This
goes hand in glove with the qualitative discussion at the end of the previous
sections, and constitutes a kind of generalisation of it. Following this line of
thoughts, it is meaningful to compute the unconditioned expectations

E := E {Eω}

H := E {Hω}

F := E {Fω}

and to check if and when the unaveraged quantities Eω, Hω, Fω approximate
them in some sense in the scaling limit, an indication that the further concen-
tration hypothesis holds. We will see in the next chapter on large deviation
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theory that such theory provides the perfect tool for this approach. Notice now
that by linearity of the expectation operator we get:

H =
∂F

∂T

E = T
∂F

∂T
− F

The averaged quantities E, H and F are called now the annealed energy, the
annealed entropy and the annealed free energy density respectively.

3.4 The statistical mechanic ansatz to random coding

In this paragraph we will outline the duality between channel decoding and
statistical-mechanic systems. We will consider random codes, and associating
to random systems in the sense descibed above. We will study their limit as
the size of the code increases, which translates into the scaling limit of the
statistical-mechanic description. From now on let

m := bnRc

R ∈ [0, 1]

In particular, we will be interested in studing the conditions so that the proba-
bility of error vanishes in the limit:

lim
n→∞

Perr = 0

and in computing in such a case the limiting density of the logarithm of the
probability of error

lim
n→∞

1
n

log Perr

which we will call the error exponent of the system.
After briefly resuming channel coding theory, we will show how one can

associate this coding system to a statistical mechanic and we will study the
distribution of the associated state-space energies.

3.4.1 Random coding summary

In this section we briefly recapitulate the random channel coding - MAP bitwise
decoding introduced in the previous chapter. We described a generic code as
a couple c = (t, r) of maps between a source space S and a codeword space X
(please note that, fow now, there is no relationship between the source space S
in coding theory and the state space S in the statistical mechanic approach):

t : S → X r : X → S
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We introduced a probabilistic description of the channel coding problem built
on a probability triple (Ω,F , P). This description consists of a random message
and a random noise. The former is a random variable

s0 : (Ω,F , P) → (S, P (S))

inducing a probability measure λ on (S, P (S)).with the further assumptions that
the source space S is finite, |S| = 2m = 2bnRc and that the s0-induced measure
λ is uniform on it. The random noise is a second random variable

b : (Ω,F , P) → XX

independent from the random message. To get a random coding setup we have
to introduce a further random variable, the random code:

t : (Ω,F , P) → XS

ω 7→ tω

where
tω : S → X

s 7→ tω (s)

with the hypothesis that the random variables ω → tω (s), s ∈ S are inde-
pendent and identically distributed. In this model the received word (living
in the codeword space, but not necessarily a codeword) is the random variable
y = r◦b◦t (s0). Let us notice that we could have introduced random coding in a
more general framework, without the hypotheses of uniformity of λ over S and
of the identical distribution of the ω → tω (s). But since these hypotheses are
typical in coding problems and critical in order to simplify certain computations,
we choosed to assume them from the beginning.

We have then deployed decision theory arguments to find optimal decoding
strategies for r, in the sense of minimisation of the quenched average wordwise
error probability given the code t:

Pwerr (t) =
∑

a ∈ S

P (s0 = a)
∑

b ∈ S\ {a}
P {r ◦ b ◦ t (b) = a| t}

obtaining the MAP wordwise decoder:

rt = arg max
s∈S

P {s0 = s| y, t}

or analogously in the sense of minimisation of the quenched average bitwise
error probability:

Pberr (t) =
m∑

k = 1

1
m

∑
a ∈ S

P (s0 = a)
∑

b ∈ S
πk (b) 6= πk (a)

P {r ◦ b ◦ t (b) = a| t}
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where we willingly equivocated between an element b of S and its binary repre-
sentation. We obtained in this way the MAP bitwise decoder:

rt (y) = {r1,t (y) , ..., rm,t (y)}

rk,t (y) = χ 
∑

s ∈ S
πk (s) = 1

P {s0 = s| y, t} >
∑

s ∈ S
πk (s) = 0

P {s0 = s| y, t}


We then introduced the annealed average wordwise error probability:

Pwerr = E {Pwerr (t)} = P {r ◦ b ◦ t (a) 6= a}

and bitwise error probability:

Pberr = E {Pberr (t)} =
∑

b ∈ S
πk (b) 6= πk (a)

P {r ◦ b ◦ t (a) = b}

where now k and a are arbitrarily chosen, not random. The reason for introduc-
ing these new quantities is that they are easier to study mathematically. The
drastic simplifications were made possible by the aforementioned hypotheses of
uniformity of λ over S and of identical distribution of the ω → tω (s).

Once a concentration of a quenched quantity is proved (in our setup this will
be a large deviation concentration property), we can obtain significant informa-
tion on its typical behaviour.from the behaviour of the annealed one.

3.4.2 The fundamental identification

In order to describe the machinery just recapitulated with the statistical me-
chanic concepts, we need to identify entities analogous to a state space and a
state energy function. We do this in the present section. Let us take the two
following identification:

- the state space S of the statistical mechanic description with the source
space S of the channel coding setup;

- the random energies Eω (s) of the statistical mechanic description as fol-
lows:

Eω (s) := − log P {s| y, t}

that is, we associate the probability space (Ω,F , P) inducing the energies of the
statistical mechanic system with the probability space (Ω,F , P) which generates
the random source, code and noise in the channel coding setup. Of course the
associated probabilities and partition function will be:

µβ,ω (s) :=
1

Zω

[
P {s| y, t}

]β
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Zω :=
∑

s ∈ S

e−βEω(s) =
∑

s ∈ S

[
P {s| y, t}

]β
where β ∈ [0,∞].

3.4.3 The “spin magnetisation”

Now that we have the basic indentification in place, let us consider the following
quantity ∆k (β), for k ∈ {1, ...,m}:

∆k (β) : = Eβ,ω

{
2πk (s)− 1

}
= 2

∑
s ∈ S

πk (s) µβ,ω (s)− 1

=
∑

s ∈ S
πk (s) = 1

µβ,ω (s)−
∑

s ∈ S
πk (s) = 0

µβ,ω (s)

If we consider µβ,ω to be a kind of parametric “a posteriori” probability, the
associated parametric MAP bitwise decoder (for the first bit) would have the
form

rβ,k (y, t) = χ 
∑

s ∈ S
πk (s) = 1

µβ,ω (s) >
∑

s ∈ S
πk (s) = 0

µβ,ω (s)


= χ {∆k (β) > 0}

so actually the sign of ∆k (β) is the discriminant information in the bitwise
extimation. In the statistical mechanic literature, a quantity like ∆k (β) is
called a spin magnetisation of the system, that is a global quantity resulting by
the state average of a binary quantity associated to each state. The (annealed)
error probability Pberr,k (β, R) in this estimation is

Pberr,k (β, R) : = P {rβ,k (y, t) 6= πk (s0)}

= P
{

(−1) πk (s0) ∆k (β) > 0
}

while the messageword estimator rβ (y, t) built on these bit estimators can be
defined as

rβ (y, t) := {rβ,1 (y, t) , ..., rβ,m (y, t)}

Let us now do an analysis of the effect of different values of β. If β = 1 we
immediately get the bitwise MAP decoding. If instead we let β → ∞, we can
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observe that we are weighting more and more so in the average the most likely
term (in the case there is only one of such terms):

lim
β→∞

µβ,ω (s) = lim
β→∞

1
Zω

[
P {s| y, t}

]β = χ arg max
a∈S

P {a| y, t}

This means that, in the limit, the only significant contribution will be the one of
the most likely message-word, i.e. we would be decoding the bit corresponding
to such a messageword, for all bits: this is precisely wordwise MAP decoding.
Clearly, if there were more that one term messageword associated with the
highest a posteriori µβ,ω-probability, then of course the wordwise MAP decoding
strategy would fail, too. We just proved that, through the analysis for any
β ∈ [0,∞] of our generalised setup, we are able to recover the bitwise and
wordwise decoding strategies as particular cases.

3.4.4 The error exponent

In words, we are interested in studing the conditions for which the error proba-
bility vanishes in the thermodynamic limit for the ensemble, and how fast does
this eventually happen. In order to make this statement rigorous, we have to
make some definitions.

The “natural” approach and its problem
Our first idea would be to define the codeword error exponent Eerr(t, β,R)

for all possible random codes realizations t and the decoder rβ (y, t) as follows:

Eerr(t, β,R)
a.s.
:= lim inf

n→∞
− 1

n
log Pwerr (t, β,R, n)

where
Pwerr (t, β,R, n)

a.s.
:= P

{
rβ ◦ b ◦ t (s0) 6= s0| t

}
Of course, Eerr(R, r, t) is non-negative. For all the values of β and R so that
Eerr(R, r, t) is strictly positive, the error probability Pwerr (t, β,R, n) vanishes
exponentially fast. This gives us a first formalisation of the aim stated at the
beginning of this section, but does not tell us yet what happens for values of β
and R external to the domain of strict positivity of Eerr(R, r, t).

Now let us now notice that our definition of Pwerr (t, β,R, n) amount to an
error average on the codewords a ∈ S:

Pwerr (t, β,R, n) a.s.= P
{

rβ ◦ b ◦ t (s0) 6= s0| t
}

a.s.=
∑

a ∈ S

P (s0 = a) P
{

rβ ◦ b ◦ t (s0) 6= s0| t
}

a.s.=
∑

a ∈ S

1
2m

P
{

rβ ◦ b ◦ t (a) 6= a| t, s0 = a
}
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Taking this average sounds reasonable when the code is a finite length one and
ergodicity in its successive independent use assures that the measured error rate
converges to this average error probability. But if we consider a scaling limit
of the code, with the length n → ∞, then we realise that the limit code is
actually used only once (since a codeword has an infinite length). This fact,
in conjunction with the simmetry of the code (the fact that codewords are
independent and identically distributed random variables), allows us to discard
the study of Pwerr (t, β,R, n) in favor of the study of the sourceword-conditioned
error probability Pwerr (t, β,R, n, a) defined as follows:

Pwerr (t, β,R, n, a)
a.s.
:= P

{
rβ ◦ b ◦ t (a) 6= a| t, s0 = a

}
Let us now define

Pberr,k (t, β,R, n, a)
a.s.
:= P

{
πk ◦ rβ ◦ b ◦ t (a) 6= πk (a)| t, s0 = a

}
for any fixed k ∈ {1, ...,m} and notice that this probability is independent on k
because of the symmetry of the code and the fact that the probability measure
on S is uniform and |S| = 2m.

Since the probability Pwerr (t, β,R, n, a) of error for the entire codeword, that
is, the probability that at least one bit is incorrectly decoded, is bounded be-
tween Pberr,k (t, β,R, n, a) and the sum for k ∈ {1, ...,m} of Pberr,k (t, β,R, n, a),
we get the following passages:

− 1
n

log Pberr,k (t, β,R, n, a)

≥ − 1
n

log Pwerr (t, β,R, n, a)

≥ − 1
n

log
m∑

k = 1

Pberr,k (t, β,R, n, a)

≥ − 1
n

log
[

m sup
k∈{1,...,m}

Pberr,k (t, β,R, n, a)
]

which lead to

inf
k∈{1,...,m}

[
− 1

n
log Pberr,k (t, β,R, n, a)

]
≥ − 1

n
log Pwerr (t, β,R, n, a)

≥ inf
k∈{1,...,m}

[
− 1

n
log Pberr,k (t, β,R, n, a)

]
− 1

n
log bRnc

and finally

lim inf
n→∞

inf
k∈{1,...,m}

[
− 1

n
log Pberr,k (t, β,R, n, a)

]
= lim inf

n→∞
− 1

n
log Pwerr (t, β,R, n, a)

a.s.
=: Eerr(R, r, t)
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where we have abused, reusing it, the notation for the error exponent.
We would now aim for some concentration result for the random variable

sequence

inf
k∈{1,...,m}

− 1
n

log P
{

πk ◦ rβ ◦ b ◦ t (a) 6= πk (a)| b, t, s0 = a
}

but the infimum operation hinders us in the computations, since the random
variables

P
{

πk ◦ rβ ◦ b ◦ t (a) 6= πk (a)| b, t, s0 = a
} a.s.= χ{

πk ◦ rβ ◦ b ◦ t (a) 6= πk (a)| b, t, s0 = a
}

are not independent - it is actually easy to find qualitative reasons for their
strong correlation. This is the reason behind our adoption of Shannon’s annealed
approach.

The Shannon annealed approach
The Shannon’s approach, as explained in the previous chapter, consists in

computing the annealed error probability

Pwerr (β, R, n)
a.s.
:= P {rβ ◦ b ◦ t (s0) 6= s0}

and its associated error exponent

Eerr(β, R)
a.s.
:= lim inf

n→∞
− 1

n
log Pwerr (β, R, n)

Recalling properties already observed in the first chapter, with the definition

Pberr (β, R, n) :=
m∑

k = 1

1
m

P {πk ◦ rβ ◦ b ◦ t (s0) 6= πk (s0)}

we have

Pberr (β, R, n) ≤ P {rβ ◦ b ◦ t (s0) 6= s0} ≤ mPberr (β, R, n)

so there is no difference in the vanishing exponent for bit or word error proba-
bility. Furthermore

Pberr (β, R, n) = P {πk ◦ rβ ◦ b ◦ t (a) 6= πk (a)| s0 = a}

for any k ∈ {1, ...,m} and a ∈ S, so we can fix them as parameters. We can for
instance conveniently take k = 1 and a = 0, the messageword corresponding to
the all zero representation.

According to the definitions in the section dedicated to spin magnetisation,
we now have that

P {π1 ◦ rβ ◦ b ◦ t (a) 6= 0| s0 = 0} = P {∆n
1 (β) < 0| s0 = 0}
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= P


∑

s ∈ S
π1 (s) = 1

µβ,ω (s) >
∑

s ∈ S
π1 (s) = 0

µβ,ω (s)

∣∣∣∣∣∣∣∣∣∣∣
s0 = 0



= P


∑

s ∈ S
π1 (s) = 1

e −βEω (s) >
∑

s ∈ S
π1 (s) = 0

e −βEω (s)


where we have again slightly abused the notation by redefining the energies
Eω (s) as follows:

Eω (s) : = − log P {s| y, t; s0 = a}

= − log
P {s0 = a| t}

P {y| t}
P {y| s0 = a, t}

= − log P {y| s0 = a, t}+ K

the second passage being a consequence of Bayes theorem, and the constant K
being

K : = − log
P {s0 = a| t}

P {y| t}
= − log P {s0 = a}+ log P {y| t}
= log m + log P {y| t}

independent from s. Finally we obtain

Eerr(β, R)
a.s.
:= lim inf

n→∞
− 1

n
log P


∑

s ∈ S
π1 (s) = 1

e −βEω (s) >
∑

s ∈ S
π1 (s) = 0

e −βEω (s)


If we are then able to prove a concentration of the argument of the above
probability in a large deviation sense - in the randomness induced by both the
noise and the random encoder - then we will be able to see when the error
probability in question vanishes almost surely and, if so, give an indication and
a measure of the exponential nature of such a behaviour. This will be explained
in more detail in the next chapter on large deviations.

3.5 The Shannon problem as a statistical mechanic system

In this last paragraph we apply the point of view developed in the present
chapter to the Shannon problem defined at the end of the previous one. After
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a brief summary of the quantities of interest in such a problem, we proceed to
the statistical mechanic interpretation and to the analysis of the properties of
the messagewords’ associated energies.

3.5.1 The Shannon problem

Let us recall that in the Shannon problem we obtained the following expression
for the annealed bitwise error probability:

Pberr (R,n) = P(∆n
1 ≤ 0|s0 = 0)

where

∆n
1 :=

∑
s:πn

1 (s)=0

P {s|yn, t (R,n)} −
∑

s:πn
1 (s)=1

P {s|yn, t (R,n)}

and
P {s|yn, t (R,n)} a.s.= K exp {−βtransdH (yn, xn

0 )}

βtrans :=
(

log
1− p

p

)
3.5.2 The statistical mechanic identification

In order to adopt the statistical mechanic point of view for the Shannon problem,
we just need to let a parameter β take the place of the constant βtrans, and in
defining the messageword energies as follows:

En
ω (s) := dH (yn(ω), xn

s (ω))

obtaining

P {s|yn, t (R,n)} a.s.= Ke −βEn
ω (s)

We have left the constant K, which will become irrelevant within the condition
∆n

1 (β) < 0.

3.5.3 A code rotation

In this section we study the behaviour of the energies En
ω (s). Let us define the

following quantities:
x̃s,j := xs,jx0,jwj

x̃n
s := {x̃s,1, . . . , x̃s,n}

t̃ (R,n) := {x̃n
s }s∈Sn

We can think of t̃ (R,n) as the encoder rotated by the transmitted codeword
and the noise realization. It is easy to show that:

1. for s 6= 0 the x̃s,j are Bernoulli
(
±1, 1

2

)
;
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2. x̃0,j = wj ∼Bernoulli(±1, p).

It is less immediate (but extremely important) to show that the x̃n
s are

mutually independent. In order to do so we notice that for b, c ∈ {−1, 1} we
have

P (x̃s,j = b, x̃s′,j = c) = P (xs,j = bx0,jwj , xs′,j = cx0,jwj)

= P (xs,j = bx0,jwj , xs′,j = cx0,jwj |x0,jwj = +1) P (x0,jwj = +1)
+ P (xs,j = bx0,jwj , xs′,j = cx0,jwj |x0,jwj = −1) P (x0,jwj = −1)

=
1
4

= P (x̃s,j = b) P (x̃s′,j = c)

for all s 6= s′, both different from 0, the all zero codeword that is transmitted.
Moreover

P (x̃s,j = b, x̃0,j = c) = P (xs,jx0,j = bwj , wj = c)
= P (xs,jx0,j = b) 1(c=1)P (wj = +1)
+ P (xs,jx0,j = −b) 1(c=−1)P (wj = −1)

=
1
2
[
1(c=1) (1− p) + 1(c=−1)p

]
= P (x̃s,j = b) P (x̃0,j = c)

for all s 6= 0. The independence for different j’s is immediate to see. Let
us notice that this mutual independence is a peculiar property of the binary
SRE (R,n) together with the BSC – this would not work in a general non-
binary setting. Notice furthermore that, after the rotation, the internal relative
geometry of the code is maintained – the Hamming distances between all the
couples of codewords are maintained.

It is now immediate to see that the

En
ω (s) := dH (yn(ω), xn

s (ω)) =
1
2

n−
∑

j=1,...,n

x̃s,j(ω)


are mutually independent, and for all s 6= 0 are identically distributed as well.

3.5.4 The associated statistical-mechanic model

In the end, we rephrase the computation of the error exponent in the Shannon
problem as follows:

Eerr (β, R) := lim inf
n→∞

− 1
n

log P

 ∑
s:πn

1 (s)=0

e −βEn
ω (s) −

∑
s:πn

1 (s)=1

e −βEn
ω (s) < 0


where we have

|{s ∈ S : πn
1 (s) = 0}| = |{s ∈ S : πn

1 (s) = 1}| = 2m−1 = 2bRnc−1
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En
ω (s) := dH (yn(ω), xn

s (ω)) =
1
2

n−
∑

j=1,...,n

x̃s,j(ω)


independent, and identically distributed for s 6= 0. With the further definitions

Z∗
β,n (ω) = e −βEn

ω (0)

Ẑ0
β,n (ω) =

∑
s : πn

1 (s) = 0
s 6= 0

e −βEn
ω (s)

Z1
β,n (ω) =

∑
s : πn

1 (s) = 1

e −βEn
ω (s)

we get

Eerr (β, R) = lim inf
n→∞

− 1
n

log P
[

Z1
β,n (ω) ≥ Z∗

β,n (ω) + Ẑ0
β,n (ω)

]
where the condition for errorfree coding in terms of (β, R) is of course

lim
n→∞

P
{

ω ∈ Ω : Z1
β,n (ω) < Z∗

β,n (ω) + Ẑ0
β,n (ω)

}
= 1

We will proceed to compute the error exponent Eerr (β, R) through large devi-
ation techniques detailed in the following chapter.
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4 Large Deviations

4.1 Introduction

In this chapter we concern ourselves with the large deviation analysis of se-
quences of random variables of the general form

1
n

log
∫

Sn

e−βHn(s,ω)dλn (s)

where {λn (s)}n∈N is a sequence of concentrating measures with a given rate
function and {Hn (s, ω)}n∈N are random energy functions.

In the first paragraph will prove a large deviation theorem for such objects,
identifying a set of rather general conditions for it to hold. This theorem could
be seen as a generalization of Varadhan lemma for random log-Laplace integrals.
Then in the second paragraph we will specialise the conditions to a simpler,
albeit important case, which we call “extended REM”, not to be confused with
the “generalised REM” of the statistical mechanics’ literature. Finally in the
third paragraph we will show how this simpler version can be applied to the
Shannon problem, described according ot the approach of statistical mechanics
presented in the previous chapter. As a result we will be able to compute the
random coding error exponent. The relevant discussion will take place in the
next, conclusive chapter.

4.2 A large deviation principle for random log-Laplace in-
tegrals

Random measures of Gibbs type appear in various fields including disordered
systems of statistical mechanics and random coding theory. For the purpose
of this paragraph, let us fix some notations. Let (Ω,F , P ) be a probability
space with expectation E (ω ∈ Ω will be the random parameter of the Gibbs
measures). For every n ∈ N let (Sn,Bn, λn) be a measure space (space of
configurations) with λn being a finite measure, and let Hn : Sn × Ω → R be a
measurable function (the energy). Given β > 0 (inverse temperature) we set

Zω
β,n :=

∫
Sn

e−βHn(s,ω)dλn (s)

and introduce the Gibbs measure on (Sn,An), depending on ω ∈ Ω, defined as

dνω
n (s) =

1
Zω

β,n

e−βHn(s,ω)dλn (s)

Finally, let us introduce the random free energy density

fω
β,n =

1
βn

log Zω
β,n
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We want to study its limit as n →∞ and its fluctuations, in particular its large
deviations. One natural approach to analyze the LD of fω

β,n is the application
of the Gärtner-Ellis theorem, since

E
[
enαfω

β,n

]
= E

[(
Zω

β,n

)α
β

]
For positive integers α

β this approach is often feasible and resembles the replica
approach. However, it is necessary to compute the previous expected value
also for non-integer α

β , and this is seldom an easy task. This difficulty can
be bypassed by another approach, although somewhat longer in principle. It
has the conceptual appeal to be based on properties of the number of states
with a given energy, a well known quantity both in statistical mechanics and
information sciences (where it is related to the so-called spectral shape function).

Let us introduce the (random) occupation measure of Hn (x, ω):

ρω
n = law of Hn (·, ω) under λn

which, in a finite space with uniform measure (Sn,Bn, λn), is proportional to
the number of configurations s ∈ Sn with a given energy.

Let Oa:R → R be the homothety Oa (b) = b
a . We may think that On shrinks

sets and measures by a factor n. Then

Zω
β,n =

∫
R

e−βσdρω
n (σ)

=
∫

R
e−βnσd (Onρω

n) (σ)

where
(Onρω

n) ([a, b]) = ρω
n ([na, nb])

We see that the limit properties of fω
β,n become the analogous properties of

1
βn

log
∫

R
e−βnσd (Onρω

n) (σ)

Without randomness, the asymptotic of this quantity can be studied, in prin-
ciple, by means of Varadhan lemma on log-Laplace integrals. Therefore the
theorem we are about to prove may be seen as a generalization of Varadhan
lemma to random measures. Such an approach has been particularly inspired
by [9].

Notice that, when λn is not a probability measure, also Onρω
n is not a proba-

bility measure, so we have to normalize it in order to work in the usual framework
of Varadhan lemma. Denote by µω

n the normalization of Onρω
n . If the scaling

factor between Onρω
n and µω

n is deterministic and exponential in n, it is sufficient
to understand the LD of 1

βn log
∫

R e−βnσdµω
n (σ) and then translate the result.

With the previous motivations in mind, in this paragraph we proceed to the
study of a general large deviation theorem.
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We consider a regular topological space Σ, a sequence of random measures
µω

n on it and a continuous function φ : Σ → R. We will study a large deviation
principle for a sequence of random variables

1
n

log
∫

Σ

enφ(σ)µω
n (dσ)

under suitable assumptions on µω
n . What we will show is that, under some

particular conditions, there exists a number f̃ such that the above integral
concentrates around it and there exists a function Ĩ : R → R such that it
satisfies a LDP with it as a rate function. In order to carry out our proof, we
will need to distinguish between positive and negative fluctuations:

1
n

log
∫

Σ

enφ(σ)µω
n (dσ) > f̃

1
n

log
∫

Σ

enφ(σ)µω
n (dσ) < f̃

since their probabilities are governed by different principles. In the following
sections we will consider the two cases separately, and at the end of the para-
graph will glue them together into a single theorem. We will also underline a
necessary “tightness” tail condition hypothesis, we will consider a simplified real
line setup for the positive fluctuations and we will tackle the generally difficult
problem of computing the LDP for negative fluctuations by identifying some
easy situations which are common in real modeling problems.

4.2.1 LDP for positive fluctuations: a Varadhan-like lemma

Let Σ be a regular topological space with Borel σ-field B (Σ) (recall that a Haus-
dorff space is a topological space where every two distinct points admit disjoint
neighborhoods, and such a space is called regular when the same property holds
true between any closed set C and any point σ with σ /∈ C). Let B (R) be
the Borel σ-field on R, (Ω,F , P ) be a probability space with expectation E,
{µω

n ;n ∈ N, ω ∈ Ω} a sequence of random probability measures on Σ (we say
that a probability measure µω depending on ω ∈ Ω is a random probability
measure if

∫
Σ

g (σ) µω (dσ) is a random variable, for every bounded continuous
function g : Σ → R).

Let A be a base of the topology of Σ. Let φ : Σ → R be a continuous
function.

Let us assume the existence of a function

J : Σ× R → [0,∞]

such that for every A ∈ A and every v ∈ R we have

− inf
σ∈

◦
A,x>v

J(σ, x) ≤ limn→∞
1
n

log P

(
1
n

log µn (A) > v

)
(1)
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≤ limn→∞
1
n

log P

(
1
n

log µn (A) > v

)
≤ − inf

σ∈A,x≥v
J(σ, x) (2)

We also assume that J is lower semicontinuous and has the following form of
the property of good rate functions: given two real numbers v and γ, the set

{(σ, x) : x ≥ v, J(σ, x) ≤ γ}

is compact. We could call the above assumption a global large deviation prop-
erty of the random probability measure sequence {µω

n ;n ∈ N, ω ∈ Ω} according
to the rate function J .

Remark 1 Since log µω
n (A) ≤ 0, we could avoid to consider v ≥ 0 in this

definition. With the present definition we readily have (from the lower bound)

J(σ, x) = ∞ ∀ (σ, x) ∈ Σ× (0,∞)

Remark 2 Let Iµ : Σ → [0,∞] be defined as

Iµ (σ) = − inf {x : J(σ, x) > 0}

Heuristically, Iµ is the rate function of µω
n for P -a.e. ω ∈ Ω. A rigorous

statement has to involve also large deviations from below treated in Theorem B
below, so it is not given here. Here we could give only an inequality, of little
use. But in the applications, it is very useful to have the right guess of the rate
function Iµ from the previous formula.

In addition to the previous assumptions, we need to assume a tail condition,
since we treat possibly unbounded functions φ. We assume that there exists a
sequence (Kj)j∈N of compact subsets of Σ such that

lim
j→∞

limn→∞
1
n

log P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) > L

)
= −∞ (3)

for all L ∈ R. We could call this tail condition exponential tightness of the ran-
dom probability measure sequence {µω

n ;n ∈ N, ω ∈ Ω} according to the scaling
function φ. We state in the next subsection a sufficient condition for it, very
easy to check in the application to the REM, at least.

Theorem 3 (A) Let Ĩ+ : R → [0,∞] be defined as

Ĩ+ (x) = inf
σ∈Σ

J (σ, x− φ (σ))

Then, under the previous assumptions of global large deviation property and
exponential tightness of {µω

n ;n ∈ N, ω ∈ Ω}, we have for every a ∈ R that

limn→∞
1
n

log P

(
1
n

log
∫

Σ

enφ(σ)µn (dσ) > a

)
≥ − inf

(a,∞)
Ĩ+ (4)

limn→∞
1
n

log P

(
1
n

log
∫

Σ

enφ(σ)µn (dσ) > a

)
≤ − inf

[a,∞)
Ĩ+ (5)
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Proof. Along the proof, we shall denote
∫
Σ

enφ(σ)µω
n (dσ) by Z̃ω

n .
Step 1 (lower bound (4)). We can write (4) as

limn→∞
1
n

log P

(
1
n

log Z̃ω
n > a

)
≥ − inf

σ∈Σ,x>a
J (σ, x− φ (σ))

For every A ∈ A, setting φ−A = infA φ, we have∫
Σ

enφ(σ)µω
n (dσ) ≥ enφ−Aµω

n (A)

Hence

P

(
1
n

log Z̃ω
n > a

)
≥ P

(
enφ−Aµn (A) > ena

)
= P

(
1
n

log µn (A) > a− φ−A

)
Therefore from our assumptions

limn→∞
1
n

log P

(
1
n

log Z̃ω
n > a

)
≥ limn→∞

1
n

log P

(
1
n

log µn (A) > a− φ−A

)
≥ − inf

σ∈
◦
A,x>a−φ−A

J(σ, x)

and thus

limn→∞
1
n

log P

(
1
n

log Z̃ω
n > a

)
≥ − inf

A∈A
inf

σ∈
◦
A,x>a−φ−A

J(σ, x)

The assertion of this step follows from the identity

inf
A∈A

inf
σ∈

◦
A,x>a−φ−A

J(σ, x) = inf
σ∈Σ,x>a

J (σ, x− φ (σ))

In order to prove it, let Λ be the set of all (σ, x) such that σ ∈
◦
A for some

A ∈ A and x > a +
(
φ (σ)− φ−A

)
; and let ∆ be the set Σ × (a,∞). We prove

that Λ = ∆. To prove Λ ⊂ ∆ we have only to prove that (σ, x) ∈ Λ implies
x > a; but (σ, x) ∈ Λ implies x > a +

(
φ (σ)− φ−A

)
and

(
φ (σ)− φ−A

)
≥ 0,

so x > a. Conversely, let (σ, x) ∈ ∆. Since x > a, there is ε > 0 such that

x > a + ε. Let Aε ∈ A be such that σ ∈
◦

Aε and φ+
Aε

− φ−Aε
≤ ε where

φ+
Aε

= supAε
φ, φ−Aε

= infAε φ. Then x > a + ε implies

x > a + φ+
Aε
− φ−Aε

≥ a +
(
φ (σ)− φ−Aε

)
The proof is complete.

Step 2 (preparation to (5)) Recall the tail condition (3). For every j ∈ N,
let Aj ⊂ A be a finite family with the two properties:
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• Kj ⊂
⋃

A∈Aj
A

• φ+
A − φ−A ≤ 1

j for every A ∈ Aj

where φ+
A = supA φ, φ−A = infA φ. Then for every sequence (cj)j∈N such that

limj→∞ cj = ∞ we have

sup
j∈N

[(
inf

A∈Aj

inf
σ∈A,x≥a− 1

j−φ+
A

J(σ, x)

)
∧ cj

]
≥ inf

σ∈Σ,x≥a
J (σ, x− φ (σ)) (6)

It is sufficient to prove

limj→∞

[
inf

A∈Aj

inf
σ∈A,x≥a− 1

j +(φ(σ)−φ+
A)

J(σ, x− φ (σ))

]
≥ inf

σ∈Σ,x≥a
J (σ, x− φ (σ))

We have

inf
A∈Aj

inf
σ∈A,x≥a− 1

j +(φ(σ)−φ+
A)

J(σ, x− φ (σ)) ≥ inf
σ∈Σ,x≥a− 2

j

J (σ, x− φ (σ))

because the set Λ of all (σ, x) such that σ ∈ A for some A ∈ Aj and x ≥
a− 1

j +
(
φ (σ)− φ+

A

)
is smaller than the set ∆ = Σ× [a− 2

j ,∞). Let us check
that Λ ⊂ ∆: if (σ, x) ∈ Λ then

x ≥ a− 1
j

+
(
φ (σ)− φ+

A

)
≥ a− 1

j
− 1

j
= a− 2

j

From the previous inequality, it is sufficient to prove

limj→∞ inf
σ∈Σ,x≥a− 2

j

J (σ, x− φ (σ)) ≥ inf
σ∈Σ,x≥a

J (σ, x− φ (σ))

This is a consequence of the lower semicontinuity of J . Indeed, given ε > 0, for
every j let (σj , xj) ∈ Σ× [a− 2

j ,∞) be such that

J (σj , xj − φ (σj)) ≤ inf
σ∈Σ,x≥a− 2

j

J (σ, x− φ (σ)) + ε

Then

limj→∞ inf
σ∈Σ,x≥a− 2

j

J (σ, x− φ (σ)) ≥ limj→∞J (σj , xj − φ (σj))− ε

We claim that xj ≥ a eventually. If not, there is a subsequence (xjk
) of (xj)

such that xjk
∈ [a − 2

j , a). We have xjk
→ a. From the assumption on the

union of the level sets of σ 7→ J(σ, x) for x in a positive half-line, there is a
subsequence of (σj), say (σjk

) for simplicity of notations, such that σjk
→ σ∗
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for some σ∗. Indeed, the sequence (σj , xj − φ (σj)) has to live in a compact set,
so in particular this is true for the first component. But then

limj→∞J (σj , xj − φ (σj)) ≥ limk→∞J (σjk
, xjk

− φ (σjk
))

which is ≥ J (σ∗, a− φ (σ∗)), by the lower semicontinuity. The proof is com-
plete.

Step 3 (upper bound (5)) We can rewrite (5) as

limn→∞
1
n

log P

(
1
n

log Z̃ω
n > a

)
≤ − inf

σ∈Σ,x≥a
J (σ, x− φ (σ))

For every fixed j ∈ N, the following implication is true:

1
n

log Z̃ω
n > a ⇒

∫
Kc

j

enφ(σ)µω
n (dσ) > ena 1

N
or

∃A ∈ Aj : enφ+
Aµω

n (A) > ena 1
N

where N is equal to the cardinality of Aj plus one. This implication is true be-
cause, by contradiction, if enφ+

Aµω
n (A) ≤ ena 1

N for every A ∈ Aj and
∫

Kc
j
enφ(σ)µω

n (dσ) ≤
ena 1

N , then∫
Σ

enφ(σ)µω
n (dσ) ≤

∑
A∈Aj

∫
A

enφ(σ)µω
n (dσ) +

∫
Kc

j

enφ(σ)µω
n (dσ)

≤
∑

A∈Aj

enφ+
Aµω

n (A) +
∫

Kc
j

enφ(σ)µω
n (dσ) ≤ ena

Therefore

P

(
1
n

log Z̃ω
n > a

)
≤
∑

A∈Aj

P

(
enφ+

Aµn (A) > ena 1
N

)

+ P

(∫
Kc

j

enφ(σ)µn (dσ) > ena 1
N

)

=
∑

A∈Aj

P

(
1
n

log µn (A) > a− φ+
A − 1

n
log N

)

+ P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) > a− 1
n

log N

)
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and therefore

≤
∑

A∈Aj

P

(
1
n

log µn (A) > a− 1
j
− φ+

A

)

+ P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) > a− 1

)

for sufficiently large n. By our assumptions, for every A ∈ Aj

limn→∞
1
n

log P

(
1
n

log µn (A) > a− 1
j
− φ+

A

)
≤ − inf

σ∈A,x≥a− 1
j−φ+

A

J(σ, x)

and

limn→∞
1
n

log P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) > a− 1

)
= −cj

with limj→∞ cj = ∞. Therefore

limn→∞
1
n

log P

(
1
n

log Z̃ω
n > a

)
≤ − sup

j∈N

[(
inf

A∈Aj

inf
σ∈A,x≥a− 1

j−φ+
A

J(σ, x)

)
∧ cj

]

By (6) we have the result of this step. The proof is complete.

4.2.2 On the exponential tightness condition

Lemma 4 Assume that for some λ > 1 we have

lim
L→∞

limn→∞
1
n

log P

(
1
n

log
∫

Σ

enλφ(σ)µn (dσ) > L

)
= −∞ (7)

and
lim

j→∞
inf

σ∈Kc
j x≥L

J (σ, x) = +∞ (8)

for every L ∈ R, where J and Kc
j are given in the previous section. Then the

tail condition (3) holds true.

Proof. Since∫
Kc

j

enφ(σ)µω
n (dσ) ≤

(
µω

n

(
Kc

j

))λ−1
λ ·

(∫
Σ

enλφ(σ)µω
n (dσ)

) 1
λ
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we have

P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) > L

)

≤ P

(
λ− 1

λ

1
n

log
(
µn

(
Kc

j

))
+

1
λ

1
n

log
(∫

Σ

enλφ(σ)µn (dσ)
)

> L

)
Taken any two real numbers L1 and L2 such that L1 + L2 = L, we have

P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) > L

)

≤ P

(
λ− 1

λ

1
n

log
(
µn

(
Kc

j

))
> L1

)
+ P

(
1
λ

1
n

log
(∫

Σ

enλφ(σ)µn (dσ)
)

> L2

)
Therefore

limn→∞
1
n

log P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) > L

)

≤ limn→∞
1
n

log P

(
1
n

log
(
µn

(
Kc

j

))
> L1

λ

λ− 1

)
∨ limn→∞

1
n

log P

(
1
n

log
(∫

Σ

enλφ(σ)µn (dσ)
)

> λL2

)

≤ − inf
σ∈Kc

j ,x≥L1
λ

λ−1

J (σ, x)

∨ limn→∞
1
n

log P

(
1
n

log
(∫

Σ

enλφ(σ)µn (dσ)
)

> λL2

)
The result is now a direct consequence of the two assumptions.

Theorem 5 Consider the sequence of probability measures

νn = Eµn

and assume that
limn→∞

1
n

log
∫

Σ

enλφ(σ)νn (dσ) < ∞ (9)

for some λ > 1. Then the condition (7) is verified. Therefore, if (8) is also
verified, the tail condition (3) holds true.

63



Proof. The assertion follows easily from the inequality

P

(
1
n

log
∫

Σ

enλφ(σ)µn (dσ) > L

)
= P

(∫
Σ

enλφ(σ)µn (dσ) > expnL

)
≤ exp (−nL) E

[∫
Σ

enλφ(σ)µn (dσ)
]

= exp (−nL)
∫

Σ

enλφ(σ)νn (dσ)

Remark 6 In many applications one has an easy control of νn,which allows to
prove the tail condition (9).

4.2.3 A simplified version on the real line

It would be very useful to have a simplified version, less general but easier
to handle, for assumptions 1 and 2 of what we called the global large devia-
tion property. So that it would become easier to check the hypotheses of our
Varadhan-like lemma in certain common models. For this reason we present, in
the present section, a simpler condition on the real line. In the next paragraph
we will use it to check the conditions of our large deviation principle applied to
what we call an “extended REM” model.

Consider the case when Σ = R, with the Euclidean topology. Let A be a base
of the topology given by all open intervals (a, b) with a and b taken in a dense
subset of Σ (in the application we shall exclude a few isolated critical values).
Let us recall the global large deviation property in this case: J : Σ×R → [0,∞]
is a lower semicontinuous function such that, given two real numbers v and γ,
the set

{(σ, x) : x ≥ v, J(σ, x) ≤ γ}

is compact, and that for every (a, b) ∈ A and every v ∈ R the following inequal-
ities hold

− inf
σ∈(a,b),x>v

J(σ, x) ≤ limn→∞
1
n

log P

(
1
n

log µn (a, b) > v

)
(10)

≤ limn→∞
1
n

log P

(
1
n

log µn (a, b) > v

)
≤ − inf

σ∈[a,b],x≥v
J(σ, x) (11)

We want to give a simple set of conditions implying these two last inequalities.
The following propositions are, in a sense, well known in LD theory, but here we
deal with a functional J(σ, x) of two variables where σ has no classical meaning
in LD theory, so we state and prove these simple facts for completeness.
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Lemma 7 Assume that for every σ ∈ Σ, the function x 7→ J(σ, x) is non
decreasing; and for every x, the function σ 7→ J(σ, x) is non decreasing (resp.
non increasing) on some interval A ⊂ Σ. If, for a triple (a, b, v) with [a, b] ⊂ A,
we have

lim
n→∞

1
n

log P

(
1
n

log µn (a, b) > v

)
= −J(a, v)

(resp. = −J(b, v)), then for this triple we have (10) and (11).

Proof. We have

inf
σ∈[a,b],x≥v

J(σ, x) = J(a, v) and inf
σ∈(a,b),x>v

J(σ, x) ≥ J(a, v)

The claim easily follows from this fact.

Lemma 8 Assume that, for an interval (a, b) ∈ A , (10) holds true for all v
except those of a discrete set. Then (10) holds true for every v. The same
property applies to (11).

Proof. Step 1. Let v be a value in the exceptional set and let ε∗ > 0 be
a value such that v ± ε∗ is in a connected neighborhood of v without others
exceptional points. For ε ∈ (0, ε∗) we have

limn→∞
1
n

log P

(
1
n

log µn (a, b) > v

)
≤ limn→∞

1
n

log P

(
1
n

log µn (a, b) > v − ε

)
≤ − inf

σ∈[a,b],x≥v−ε
J(σ, x)

so

limn→∞
1
n

log P

(
1
n

log µn (a, b) > v

)
≤ − sup

ε∈(0,ε∗)

inf
σ∈[a,b],x≥v−ε

J(σ, x)

The proof is complete if we show that

sup
ε∈(0,ε∗)

inf
σ∈[a,b],x≥v−ε

J(σ, x) ≥ inf
σ∈[a,b],x≥v

J(σ, x)

By contradiction, if there is δ > 0 such that

sup
ε∈(0,ε∗)

inf
σ∈[a,b],x≥v−ε

J(σ, x) ≤ inf
σ∈[a,b],x≥v

J(σ, x)− δ

then, taken a sequence εn ∈ (0, ε∗) with εn → 0, there exists σn ∈ [a, b],
xn ≥ v − εn such that

J(σn, xn) ≤ inf
σ∈[a,b],x≥v

J(σ, x)− δ

2
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but since
xn ≥ v ⇒ J(σn, xn) ≥ inf

σ∈[a,b],x≥v
J(σ, x)

then it must be xn ∈ [v − εn, v[ and so there is a subsequence (σnk
, xnk

) →
(σ∗, v) for some σ∗ ∈ [a, b]. By the lower semicontinuity

limk→∞J(σnk
, xnk

) ≥ J (σ∗, v) ≥ inf
σ∈[a,b],x≥v

J(σ, x)

This contradicts the previous inequality, so the proof is complete.
Step 2. Let v, ε∗ and ε as above. We have

limn→∞
1
n

log P

(
1
n

log µn (a, b) > v

)
≥ limn→∞

1
n

log P

(
1
n

log µn (a, b) > v + ε

)
≥ − inf

σ∈(a,b),x>v+ε
J(σ, x)

so

limn→∞
1
n

log P

(
1
n

log µn (a, b) > v

)
≥ − inf

ε∈(0,ε∗)
inf

σ∈(a,b),x>v+ε
J(σ, x)

The proof is complete because

inf
ε∈(0,ε∗)

inf
σ∈(a,b),x>v+ε

J(σ, x) = inf
σ∈(a,b),x>v

J(σ, x)

4.2.4 LDP for negative fluctuations: studying joint events

We always assume the tail condition (3); (Kj)j∈N will be the sequence of com-
pact subsets of Σ described there.

Moreover, we assume to have a functional Ĩ− : R → [0,∞], a positive integer
j0, a finite family Bj ⊂ B (Σ), for every j ≥ j0 (j ∈ N), such that Σ = Kc

j ∪(⋃
B∈Bj

B
)

and two sequences εj → 0 and Rj → −∞ such that

− inf
y<x

Ĩ−(y)− εj ≤ limn→∞
1
n

log P

(
1
n

log µn (B) < (x− φ)−B ∀B ∈ Bj

)
(12)

limn→∞
1
n

log P

(
1
n

log µn (B) < (x− φ)+B ∀B ∈ Bj

)
≤
(
− inf

y≤x
Ĩ−(y) + εj

)
∨Rj

(13)
for every x ∈ R and j ≥ j0.
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Remark 9 The previous conditions correspond to the intuitive requirement that
for every x ∈ R we have (we cannot speak of µn (σ))

− inf
y<x

Ĩ− (y)− εj

≤ limn→∞
1
n

log P

(
1
n

log µn (σ) ≤ x− φ (σ) for all σ ∈ Σ
)

≤ limn→∞
1
n

log P

(
1
n

log µn (σ) ≤ x− φ (σ) for all σ ∈ Σ
)

≤
(
− inf

y≤x
Ĩ− (y) + εj

)
∨Rj

When Σ is finite, this formulation is meaningful and may help to understand
the proof of Theorem B below.

Remark 10 Let Tφ = −φ + R be the set of all functions of the form −φ + c,
c ∈ R. Since Tφ is isomorphic to R, the following formulation is equivalent to
the main assumption (the correspondence is Ĩ−(x) = J∗ (x− φ (.))): assume to
have a functional J∗ : Tφ → [0,∞], a positive integer j0 and a finite family

Bj ⊂ B (Σ), for every j ≥ j0, such that Σ = Kc
j ∪

(⋃
B∈Bj

B
)

and

− inf
g∈Tφ,g<f

J∗ − εn ≤ limn→∞
1
n

log P

(
1
n

log µn (B) < f−B ∀B ∈ Bj

)

≤ limn→∞
1
n

log P

(
1
n

log µn (B) < f+
B ∀B ∈ Bj

)
≤
(
− inf

g∈Tφ,g≤f
J∗ + εn

)
∨Rn

for every f ∈ Tφ and j ≥ j0. This more cumbersome scheme underlines the
functional dependence on φ of the rate Ĩ− (x), which is somewhat similar to the
one of the theorem for positive fluctuations.

Theorem 11 (B) Under the previous assumptions, for every b ∈ R we have

limn→∞
1
n

log P

(
1
n

log
∫

Σ

enφ(σ)µn (dσ) < b

)
≥ − inf

x<b
Ĩ− (x) (14)

limn→∞
1
n

log P

(
1
n

log
∫

Σ

enφ(σ)µn (dσ) < b

)
≤ − inf

x≤b
Ĩ− (x) (15)

Proof. Again, in the proof, we denote
∫
Σ

enφ(σ)µω
n (dσ) by Z̃ω

n .
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Step 1 (upper bound (15)). For every j ≥ j0, we have

P

(
1
n

log Z̃ω
n < b

)
= P

(∫
Σ

enφ(σ)µn (dσ) < exp (nb)
)

≤ P

(∫
B

enφ(σ)µn (dσ) < exp (nb) ∀B ∈ Bj

)
≤ P

(
enφ−Bµn (B) < exp (nb) ∀B ∈ Bj

)
= P

(
1
n

log µn (B) < b− φ−B ∀B ∈ Bj

)
Therefore, from our assumptions (notice that b− φ−B = (b− φ)+B)

limn→∞
1
n

log P

(
1
n

log Z̃ω
n < b

)
≤ limn→∞

1
n

log P

(
1
n

log µn (B) < (b− φ)+B ∀B ∈ Bj

)
≤
(
− inf

y≤b
Ĩ− + εj

)
∨Rj

The claim easily follows.
Step 2 (lower bound (14)). If Nj = card (Bj) + 1, we have

P

(
1
n

log Z̃ω
n < b

)
= P

(∫
Σ

enφ(σ)µn (dσ) < exp (nb)
)

≥ P

({ ∫
B

enφ(σ)µn (dσ) < 1
Nj

exp (nb) ∀B ∈ Bj∫
Kc

j
enφ(σ)µn (dσ) < 1

Nj
exp (nb)

)

≥ P

({
1
n log µn (B) < b− φ+

B − 1
n log Nj ∀B ∈ Bj

1
n log

∫
Kc

j
enφ(σ)µn (dσ) < b− 1

n log Nj

)

and therefore, given ε > 0, there exists n0 (depending on j) such that for every
n ≥ n0

P

(
1
n

log Z̃ω
n < b

)
≥ P

({
1
n log µn (B) < b− φ+

B − ε ∀B ∈ Bj
1
n log

∫
Kc

j
enφ(σ)µn (dσ) < b− ε

)

≥ P

(
1
n

log µn (B) < b− φ+
B − ε ∀B ∈ Bj

)
− P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) ≥ b− ε

)
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Assume infx<b Ĩ−(x) < ∞, otherwise the proof is complete. Let x′ < b be a
point such that Ĩ−(x′) < ∞ and let ε > 0 be such that b − ε > x′. We have
infx<b−ε Ĩ−(x) < ∞. Choose the previous ε smaller than one and choose a new
j0 if necessary such that for all j ≥ j0 we also have

limn→∞
1
n

log P

(
1
n

log
∫

Kc
j

enφ(σ)µn (dσ) > b− ε

)
< − inf

x<b−ε
Ĩ−(x)− 2

Since

limn→∞
1
n

log P

(
1
n

log µn (B) < b− φ+
B − ε ∀B ∈ Bj

)
≥ − inf

x<b−ε
Ĩ−(x)− εj − ε

by the previous choice of j0 we have, for all j > j0,

limn→∞
1
n

log P

(
1
n

log Z̃ω
n < b

)
≥ − inf

x<b−ε
Ĩ−(x)− εj − ε

Thus

limn→∞
1
n

log P

(
1
n

log Z̃ω
n < b

)
≥ − inf

x<b−ε
Ĩ−(x)− ε

Given ε0 > 0, for all ε < ε0

inf
x<b−ε

Ĩ−(x) + ε ≤ inf
x<b−ε

Ĩ−(x) + ε0

inf
0<ε<ε0

(
inf

x<b−ε
Ĩ−(x) + ε

)
≤ inf

0<ε<ε0
inf

x<b−ε
Ĩ−(x) + ε0

= inf
x<b

Ĩ−(x) + ε0

hence

limn→∞
1
n

log P

(
1
n

log Z̃ω
n < b

)
≥ − inf

x<b
Ĩ−(x)− ε0

The proof is complete by the arbitrariety of ε0.

4.2.5 How to find Ĩ−(x)

A direct analysis of conditions of theorem B is hard for two reasons: 1) they
involve joint distributions, 2) therefore one needs an a priori guess of Ĩ−(x).
About 2), it is helpful to detect the region where Ĩ−(x) = 0. The first lemma of
this section is devoted to this purpose. About 1), a lucky occurrence for some
particular models is that, in the complementary region where Ĩ−(x) 6= 0, it is
not necessary to compute joint probabilities, since just one marginal is sufficient
to get Ĩ−(x) = ∞ (a fortiori the same is true for the joint probabilities). This
is the content of the second lemma.
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Lemma 12 Assume that the conditions (1)-(2) of Theorem A holds true and
let Iµ : Σ → [0,∞] be defined as

Iµ(σ) = − inf {x : J (σ, x) > 0} (16)

(Iµ(σ) = +∞ if {x : J (σ, x) > 0} = ∅). Let

f̃ = sup
σ∈Σ

(φ (σ)− Iµ (σ)) (17)

Assume there exists a function Ĩ− :
(
−∞, f̃

)
→ [0,∞], a positive integer j0,

a finite family Bj ⊂ B (Σ), for every j ≥ j0 (j ∈ N), such that Σ = Kc
j ∪(⋃

B∈Bj
B
)

and two sequences εj → 0 and Rj → −∞ such that (12)-(13) hold

true for every x < f̃ . Assume the following technical conditions:
i) for every j ≥ j0 and B ∈ Bj there is UB ∈ A such that B ⊂ UB and

lim
j→∞

max
B∈Bj

(
φ+

B − φ−UB

)
= 0,

where A is the base of the topology of Σ used in Theorem A,
ii) for every ε > 0 there exists jε ≥ j0 such that for every j ≥ jε and B ∈ Bj

we have
inf

σ∈UB ,y≥−Iµ(σ)+ε
J (σ, y) > 0

Extend Ĩ− on [f̃ ,∞) by setting

Ĩ− (x) = 0 for every x ≥ f̃

Then (12)-(13) hold true also for every x ≥ f̃ , with the same Bj, εj, Rj and
possibly a new j0.

Proof. Step 1 (upper estimate). Since for every x ≥ f̃

limn→∞
1
n

log P

(
1
n

log µn (B) < (x− φ)+B ∀B ∈ Bj

)
≤ 0 ≤ εj =

(
− inf

y≤x
Ĩ− (y) + εj

)
∨Rj

the upper estimate is obvious.
Step 2 (lower estimate, x > f̃). We have to prove that for sufficiently large

j ∈ N and all x > f̃ ,

limn→∞
1
n

log P

(
1
n

log µn (B) < (x− φ)−B ∀B ∈ Bj

)
≥ −εj

This is true if we prove that there exists j0 such that for every j ≥ j0

limn→∞P

(
1
n

log µn (B) < (x− φ)−B ∀B ∈ Bj

)
= 1
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which in turn is implied by

lim
n→∞

P

(
1
n

log µn (B) < (x− φ)−B

)
= 1

∀B ∈ Bj , or equivalently

lim
n→∞

P

(
1
n

log µn (B) ≥ (x− φ)−B

)
= 0

Therefore it is sufficient to prove that there exists j0 such that for every
j ≥ j0 and B ∈ Bj ,

lim
n→∞

P

(
1
n

log µn (UB) ≥ (x− φ)−B

)
= 0

From (2) (recall that UB was chosen in A), this limit is zero in particular when

inf
σ∈UB ,y≥(x−φ)−B

J (σ, y) > 0

Set ε = x−f̃
2 . Let j0 be such that for every j ≥ j0 we have φ+

B − φ−UB
< ε for

every B ∈ Bj . Then for every σ ∈ UB

(x− φ)−B = x− φ+
B > x− φ−UB

− ε

≥ x− φ(σ)− ε = x− (φ(σ)− Iµ(σ))− Iµ(σ)− ε

≥ x− f̃ − Iµ(σ)− ε = −Iµ(σ) + ε

Therefore
inf

σ∈UB ,y≥(x−φ)−B

J (σ, y) ≥ inf
σ∈UB ,y≥−Iµ(σ)+ε

J (σ, y)

and the latter is positive by assumption.
Step 3 (lower estimate, x = f̃). Given j, we have

limn→∞
1
n

log P

(
1
n

log µn (B) <
(
f̃ − φ

)−
B

∀B ∈ Bj

)
≥ sup

ε>0
limn→∞

1
n

log P

(
1
n

log µn (B) <
(
f̃ − ε− φ

)−
B

∀B ∈ Bj

)
≥ − inf

ε>0
inf

y<f̃−ε
Ĩ− (y) = − inf

y<f̃
Ĩ− (y)

The proof is complete.

Lemma 13 Given a number b, a positive integer j0, a finite family Bj ⊂ B (Σ),

for every j ≥ j0 (j ∈ N), such that Σ = Kc
j ∪

(⋃
B∈Bj

B
)

and a sequence
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εj → 0, assume that for every x < b there is a sequence Bj ∈ Bj such that
limj→∞ Rj = −∞ where

Rj = limn→∞
1
n

log P

(
1
n

log µn (Bj) < (x− φ)+Bj

)
Define

Ĩ− (x) = ∞ for every x < b

Then, with this sequence Rj, conditions (12)-(13) hold true for every x < b.

Proof. Define Ĩ− (x) = ∞ for every x < b. In order to prove (12)-(13) we
have only to prove that

limn→∞
1
n

log P

(
1
n

log µn (B) < (b− φ)+B ∀B ∈ Bj

)
≤ Rj

for some Rj → −∞. This is obvious with the choice of Rj done in the statement,
hence the lemma is proved.

Remark 14 The good sets Bj to apply the previous lemma are expected to be
the small sets around the maximum points of φ− Iµ.

4.2.6 Full LDP

Theorem 15 Under the assumptions of both Theorems A and B, assume that
there exists a number f̃ such that the function

Ĩ (x) =


Ĩ+ (x) if x > f̃

0 if x = f̃

Ĩ− (x) if x < f̃

is strictly increasing for x ≥ f̃ and strictly decreasing for x ≤ f̃ . Then
1
n log

∫
Σ

enφ(σ)µω
n (dσ) satisfies a LDP with rate function Ĩ.

In the previous statement we understand that strict monotonicity has to
hold in the regions where Ĩ is finite.

The passage from half-lines to general Borel sets under strict monotonicity of
the rate function is standard (see for instance [10]), so the proof of the theorem
will be omitted.

4.3 LDP for an “extended REM” model

In the previous paragraph we proved a very general large deviations theorem.
In this one we will apply it to a more specific setup, which is actually a general-
isation of Derrida’s REM. We will call it “extended REM”, not to be confused
with the “generalised REM” of statistical mechanics literature. In the follow-
ing paragraph we will then illustrate how our Shannon problem, described as a
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statistical mechanical problem, fits into this “extended REM” framework. And
we will compute the associated rate function, directly connected with the error
exponent of the problem.

Now, after a quick outline of the theorem to be proved, we proceed to il-
lustrate an equivalent description in terms of a random measure. Then we
separately prove the positive and negative fluctuation LPD results.

Let (Ω,F , P ) be a probability space with expectation E and {Xn} be a
sequence of real random variables on (Ω,F , P ), with symmetric distribution,
such that the following limit

Λ (β) = lim
n→∞

1
n

log E
[
enβXn

]
∈ [0,∞)

exists (finite) for all real numbers β, and that Λ (β) is a differentiable, strictly
convex function. Recall that Λ is always convex (see Lemma 2.3.9 of [6]), so the
strict convexity is the true assumption. Under these assumptions the sequence
(Xn) satisfies a LDP with rate function Λ∗ (a), the Fenchel-Legendre transform
of Λ (β):

Λ∗ (a) = sup
β∈R

(aβ − Λ (β))

Let R ∈ (0, 1] be a given real number. Let {Sn} be a sequence a finite sets such
that

lim
n→∞

1
n

log card (Sn) = R log 2

For every n ∈ N, let (Xs,n; s ∈ Sn) be a family of i.i.d. random variables on
(Ω,F , P ), distributed as Xn. We consider an extended version of the classical
REM with energies nXs,n: its partition function at inverse temperature β > 0
is defined as

Zω
β,n =

∑
s∈Sn

enβXs,n(ω)

Our main result is the following theorem.

Theorem 16 Let
a∗ := sup {a : Λ∗ (a) < R log 2}

β∗ :=
{

dΛ∗

da (a∗) if a∗ ∈ D
◦

Λ∗

∞ if a∗ /∈ D
◦

Λ∗

fβ :=

{
Λ(β)+R log 2

β if β < β∗

a∗ if β ≥ β∗

. Then fω
β,n = 1

βn log Zω
β,n satisfies a LDP with the good rate function

I (t) =

 +∞ if t < fβ

0 if t = fβ

Λ∗ (t)−R log 2 if t > fβ

Moreover, I (t) > 0 (possibly infinite) for t > fβ.

Since I (t) > 0 for all t 6= fβ , fω
β,n converges to fβ in the mean and P -a.s.
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4.3.1 Preliminaries

We recall some basic facts about the Fenchel-Legendre transform which will
come handy. The following statement can be found for example in [10], Theo-
rems VI.5.3 and VI.5.6 and the subsequent discussion.

Theorem 17 Let f be a convex lower semicontinuous function on R and let ∗

denote F-L transform. Then the following conclusions hold.

1. f∗ is a convex lower semicontinuous function on R.

2. xy ≤ f(x) + f∗(y) for all x and y in R.

3. xy = f(x) + f∗(y) if and only if y is a value between the left and the right
derivative of f in x.

4. f∗∗ = f .

5. f is strictly convex on its domain if and only if f∗ is essentially smooth.

A function f is essentially smooth if:
i) the interior D◦

f of its domain Df = {x : f(x) < ∞} is non empty;
ii) f is differentiable in D◦

f ;
iii) at finite boundary points of Df , the lateral derivative is infinite.
Therefore by our assumptions on Λ, all these properties hold true both for

Λ and Λ∗.
By elementary inspection, Λ and Λ∗ are symmetric and Λ (0) = Λ∗ (0) = 0.

Hence by strict convexity both are strictly positive away from zero, increasing
on the positive half-line and lima→∞ Λ∗ (a) = +∞ and limβ→∞ Λ (β) = +∞.
By the same reason, they are both good rate functions.

The assumptions of Gärtner-Ellis theorem apply ([6], Thm. 2.3.6), so {Xn}
satisfies the LDP with rate function Λ∗. From the continuity of Λ∗ in D◦

Λ∗ , we
have

Λ∗ (a) = − lim
n→∞

1
n

log P (Xn ∈ (a, b))

for 0 ≤ a < b, independently of b (even infinite), possibly with the exception of
the value a = sup DΛ∗ .

Let us now clarify a few facts about Λ∗, a∗ and fβ in our “extended REM”
setup - the proofs will be in the following sections. Let DΛ∗ = {β : Λ∗ (β) < ∞}
and D

◦

Λ∗ be its interior. The set DΛ∗ is either a symmetric interval of the form
[−a, a] with a > 0, or DΛ∗ = R, Λ∗ is differentiable in D

◦

Λ∗ , and it has infinite
lateral derivatives at ±a (when applicable, namely when DΛ∗ 6= R). About
the definition of a∗, since Λ∗ (a) is strictly increasing for a > 0, and it is lower
semicontinuous, we have |a| < a∗ if and only if Λ∗ (a) < R log 2, |a| > a∗ if
and only if Λ∗ (a) > R log 2 (possibly Λ∗ (a) = ∞), and Λ∗ (a∗) ≤ R log 2, with
equality holding when a∗ ∈ D◦

Λ∗ . Finally, fβ ≥ a∗ for all β > 0 because, by
Theorem 17, aβ ≤ Λ∗(a) + Λ(β) for all values of a and β, so we choose a = a∗,
recall that Λ∗ (a∗) ≤ R log 2 and look to the definition of fβ .
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4.3.2 Rescaling the problem

Let
µω

n :=
1

card(Sn)

∑
s∈Sn

δXs,n(ω)

Z̃ω
β,n :=

∫
R

enβσµω
n (dσ)

so we have
Zω

β,n = card(Sn) · Z̃ω
β,n

The strategy is to apply Theorems A and B to Z̃ω
β,n and then to get, with a

suitable translation, a LDP for Zω
β,n.

Proposition 18 With the notations of Theorem 16, 1
n log Z̃ω

β,n satisfies a LDP
with the good rate function

Ĩ (t) = I

(
t + R log 2

β

)

=


+∞ if t < f̃β

0 if t = f̃β

Λ∗
(

t+R log 2
β

)
−R log 2 if t > f̃β

where

f̃β = β · fβ −R log 2 =
{

Λ (β) if β < β∗

βa∗ −R log 2 if β ≥ β∗

Moreover, Ĩ (t) > 0 (possibly infinite) for t > f̃β.

To prove this, we shall apply Theorem A to prove the LDP for 1
n log Z̃ω

β,n

for positive fluctuations, and we shall find the rate Ĩ+ equal to Λ∗
(

t+R log 2
β

)
−

R log 2 for t > f̃β (and zero otherwise). Then we shall apply Theorem B to
prove the LDP for negative fluctuations, with rate Ĩ− equal to ∞ for t < f̃β

and 0 for t ≥ f̃β . Finally we glue the rates at t = f̃β as in Theorem 15. The new
global rate, which is the function Ĩ (t) defined above, satisfies the assumption of
strict monotonicity of Theorem 15 (for the reason described next), so 1

n log Z̃ω
β,n

satisfies the LDP with rate Ĩ. Moreover, Ĩ is a good rate function since Λ∗ is
a good rate function. Finally, the property Ĩ (t) > 0 for t > f̃β is equivalent
to I (t) > 0 for t > fβ , namely Λ∗ (t) > R log 2 for t > fβ , which is true since
t > fβ implies t > a∗, and t > a∗ implies Λ∗ (t) > R log 2.

We promised to prove that Ĩ (t) is strictly increasing for t ≥ f̃β . The claim
is algebraically equivalent to prove that for t > fβ , Λ∗ (t) > R log 2 and Λ∗ (t)
is strictly increasing. The first fact has been proved above; the second claim
is true for all positive values of t, and of course fβ ≥ a∗ > 0. The proof is
complete.

The relation with Theorem 16 is:
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Proposition 19 Theorem 16 and Proposition 18 are equivalent.

The equivalence is simply based on the identity

1
βn

log Zω
β,n =

1
β

(
1
n

log Z̃ω
β,n

)
+

R log 2
β

+
1
β

(
1
n

log card(Sn)−R log 2
)

and the first two claims of the following lemma.

Lemma 20 Let {αn} be a sequence of real numbers such that limn→∞ αn = 0.
Let λ 6= 0 and η be two real numbers. Let {Yn} be a sequence of real random
variables satisfying the LDP with the good rate function G. Then:

i) {Yn + αn} satisfies the LDP with the same rate function G;
ii) {λYn + η} satisfies the LDP with the good rate function H defined as

H(x) = G
(

x−η
λ

)
;

iii) if E [Yn] converges to a real number M , then {Yn − E [Yn]} satisfies the
LDP with the rate function G (·+ M).

Proof. About (i) We do not give all the standard details but just notice
that the estimate from above boils down to prove (easy by contradiction) that

sup
n

inf
A 1

n

G ≥ inf
A

G

for any Borel set A, where Aε denotes the ε-neighborhood of A; the estimate
from below reduces to prove (again easy by contradiction) that

inf
U∈C

inf
U

G ≤ inf
◦
A

G

for any Borel set A with
◦
A 6= ∅, where C is the class of all open sets U ⊂

◦
A

having positive distance from Ac.
The proof of (ii) is trivial, and (iii) follows from (i) and (ii).

4.3.3 LDP for 1
n log Z̃ω

β,n, positive fluctuations

Aim of this section is to apply Theorem A to

1
n

log Z̃ω
β,n =

1
n

log
∫

R
enβσµω

n (dσ)

To verify the assumptions of Theorem A we apply Lemmas 7 and 8. In the
following subsection we prove that the random measure µω

n satisfies the as-
sumptions of Lemma 10. Then we identify Ĩ+ as

Ĩ+ (x) =

{
0 if x ≤ f̃β

Λ∗
(

x+R log 2
β

)
−R log 2 if x > f̃β

76



Check of the assumptions of Theorem A
Let Σ = R with the Euclidean topology. Let A be the base of the topology

given by all open intervals (a, b) such that

a 6= 0, b 6= 0

Λ∗ (a) 6= R log 2, Λ∗ (b) 6= R log 2

Let J : Σ× R → [0,∞] be defined as

J(σ, x) =
{

(Λ∗ (σ)−R log 2)+ for x ≤ − (Λ∗ (σ) ∧R log 2)
∞ for x > − (Λ∗ (σ) ∧R log 2)

It is easy to verify that J is lower semicontinuous and that for every v and
γ, the set of (σ, x) such that x ≥ v and J(σ, x) ≤ γ is compact. So it satisfies
the condition similar to the property of good rate function. Moreover, for every
x, σ 7→ J(σ, x) is convex, symmetric and non decreasing over positive σ, and
for every σ, x 7→ J(σ, x) is non decreasing and piecewise constant.

Figure 1: Values of the function J(σ, x)

The function Iµ defined by (16) takes the form

Iµ (σ) =
{

Λ∗ (σ) if Λ∗ (σ) ≤ R log 2
∞ if Λ∗ (σ) > R log 2 (18)

It will turn out to be the rate function of µω
n , for P -a.e. ω ∈ Ω.

Lemma 21

lim
n→∞

1
n

log P

(
1
n

log µn (a, b) > v

)
= −J(a, v)

holds true for every triple (a, b, v) such that

0 < a < b, Λ∗ (a) 6= R log 2, a 6= supDΛ∗

v 6= 0, v 6= −Λ∗ (a) , v 6= −R log 2
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Proof. As we announced, we have

P

(
1
n

log µn (a, b) > v

)
= P

(∑
s∈Sn

1{Xs,n∈(a,b)} > card(Sn)env

)
= P (BNn,pn

> xn)

where BNn,pn is a binomial of parameters Nn = card(Sn) and pn = P (Xn ∈ (a, b)),
and xn = Nnenv. We have

lim
n→∞

1
n

log Nn = R log 2

lim
n→∞

1
n

log pn = −Λ∗ (a)

lim
n→∞

1
n

log xn = v + R log 2

Therefore we use the result of the Appendix A with

α = R log 2, β = Λ∗ (a) , γ = v + R log 2

This is the table of correspondence between the results of the Appendix A and
what we need:

• J (a, v) = 0 when v ≤ − (Λ∗ (a) ∧R log 2) and Λ∗ (a) ≤ R log 2, namely
when v ≤ −Λ∗ (a) and Λ∗ (a) ≤ R log 2; this case corresponds to γ ≤ α−β
and α− β ≥ 0 and hence is covered by (31) and (36), when v 6= −Λ∗ (a),
Λ∗ (a) 6= R log 2 and v 6= −R log 2;

• J (a, v) = Λ∗ (a) − R log 2 if v ≤ −R log 2 and R log 2 < Λ∗ (a); this case
is covered by (30) with v 6= −R log 2;

• J (a, v) = ∞ when v > − (Λ∗ (a) ∧R log 2), that is, when v + R log 2 >
(R log 2− Λ∗ (a))+; letting v 6= 0, this case is covered by (29) if v > 0 and
by (32) if v < 0.

The proof is complete.

Lemma 22 With Kj = [−j, j], the tail condition (3) holds true.

Proof. We have

inf
σ∈Kc

j x≥L
J (σ, x) = inf

|σ|≥j,x≥L
J (σ, x) = J (j, L)

so, for j sufficiently large (j > a∗),

inf
σ∈Kc

j x≥L
J (σ, x) =

{
(Λ∗ (j)−R log 2)+ for L ≤ −R log 2

∞ for L > −R log 2
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and therefore limj→∞ infσ∈Kc
j x≥L J (σ, x) = +∞ for every L. This is condition

(8). As to (9), for bounded continuous functions g we have

E

[∫
Σ

g (σ) µω
n (dσ)

]
=

1
card(Sn)

∑
s∈Sn

E [g (Xs,n)]

= E [g (Xn)] =
∫

R
g (x) νn (dx)

where νn is the law of Xn. Thus, E [µn] = νn. Given any λ > 1, we have∫
R

enλβxνn (dx) = E [exp (nλβXn)]

so condition (9) is a consequence of our assumptions on Λ (β). By theorem 5,
the tail condition (3) holds true.

Corollary 23 The assumptions of theorem A hold true, with J given above.

Proof. The function J , restricted to σ ∈ (0,∞), satisfies the assumptions
of lemma 7. Hence for the triples (a, b, v) of lemma 21 we have (10)-(11). The
same is true for the triples (a, b, v) such that

a < b < 0, Λ∗ (b) 6= R log 2, b 6= inf DΛ∗

v 6= 0, v 6= −Λ∗ (b) , v 6= − log 2

because the random variables µn (a, b) and µn (−b,−a) have the same law under
P , and J is also symmetric in σ. In this way, for every interval (a, b) of A except
those with a < 0 < b, (10)-(11) are satisfied for all v except three values. By
lemma 8, they are satisfied for every v.

When a < 0 < b, the case v > 0 is trivial as before. When v < 0,

inf
σ∈(a,b),x>v

J(σ, x) = inf
σ∈[a,b],x≥v

J(σ, x) = inf
x>v

J(0, x) = 0

Thus we just need to show that P
(

1
n log µn (a, b) > v

)
→ 1. Since

P (µn (a, b) > expnv)

≥ P

(
µn[b,∞) <

1− expnv

2
, µn(∞, a] <

1− expnv

2

)
it is sufficient to prove that P (µn (α,∞) > C) → 0 for every α > 0 and C ∈
(0, 1). This is guaranteed by (37) and completes the proof when v < 0. The
case v = 0 follows again from lemma 8.

Finally, the tail condition (3) has been verified in the previous lemma. The
proof of the corollary is complete.

Remark 24 It is natural to ask ourselves whether the properties of µn just
discussed are a consequence of Sanov Theorem or the k-dimensional Cramer
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theorem, since, at least in the particular case when all the Xi,n have the same
law, µn is an empirical measure of those treated by these theorems. Given Borel
subsets A1, ..., Ak and F1, ..., Fk are of R, these theorems allow us to compute
asymptotically

P (µn (A1) ∈ F1, ..., µn (Ak) ∈ Fk)

This is not sufficient for us since we have to deal with sets Aj,n and Fk,n which
depend on n themselves.

Computation of Ĩ+

We first have to show that f̃· is the F-L transform of Iµ. Recall the definition
of a∗ and β∗ given in Theorem 16.

Lemma 25 Iµ and f̃· are F-L transforms of each other.

Proof. Convexity and F-L transform of a function f are better understood
introducing the set of lines which are below f . Let

R(f) = {(a, b) : ax + b ≤ f(x), ∀x ∈ R}

Then f is convex iff f(x) = sup{ax + b : (a, b) ∈ R(f)} and moreover its
transform is given by

f∗(a) = − inf
x

(f(x)− ax)

= − sup{b : b ≤ f(x)− ax, ∀x ∈ R}
= − sup{b : (a, b) ∈ R(f)}

We claim that R(f̃) is the subset of R(Λ) with a ≤ a∗. This is quite obvious,
since f̃ and Λ coincide until the derivative of Λ reach a∗, then the former
grows with constant slope. More formally, note that Λ(β) is nowhere below
a∗β −Λ∗(a∗) ≥ βa∗ −R log 2 and they are tangent at β = β∗ (possibly infinite,
with an asymptote), so that f̃ ≥ Λ and hence R(f̃) ⊆ R(Λ). By the same
argument, even when β∗ = ∞, if (a, b) ∈ R(f̃), then the line aβ + b must be
definitively below a∗β −Λ∗(a∗), so a ≤ a∗. The other direction is even simpler.
Supposing (a, b) ∈ R(Λ) and a ≤ a∗, for all β we have aβ + b ≤ Λ(β). On
the set β < β∗ we are done; then supposing β∗ < ∞, at β = β∗ we have
aβ∗ + b ≤ Λ(β∗) = a∗β∗ − R log 2; since the first line starts below and has
smaller slope, it will be below the second line on all [β∗,∞).

Perusing the claim,

f̃∗(a) = − sup{b : (a, b) ∈ R(f̃)}

=
{
− sup{b : (a, b) ∈ R(Λ)} se a ≤ a∗

− sup ∅ se a > a∗

=
{

Λ∗(a) if a ≤ a∗

+∞ if a > a∗
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This implies that Iµ is the F-L transform of f̃·. To see the converse we simply
note that fβ is convex.

Let us now compute the function

Ĩ+ (x) = inf
σ∈Σ

J (σ, x− φ (σ)) = inf
σ∈R

J (σ, x− βσ)

Lemma 26 The function Ĩ+ is given by

Ĩ+ (x) =

{
Λ∗
(

x+R log 2
β

)
−R log 2 if x > fβ

0 if x ≤ fβ

Proof. By the definition of Ĩ+ and Iµ, and by Lemma 25, we have

Ĩ+(x) > 0 ⇔ J(σ, x− βσ) > 0, ∀σ ∈ R
⇔ Iµ(σ) > −x + βσ, ∀σ ∈ R
⇔ x > fβ

Suppose x > fβ , so that for all σ, βσ−x < Iµ(σ), and hence βσ−x < Λ∗ (σ)
on the set |σ| ≤ a∗ i.e. {σ : Λ∗ (σ) ≤ R log 2}. Since in general

Ĩ+ (x) = inf
σ∈Dx

(Λ∗ (σ)−R log 2)+

where
Dx = {σ ∈ R: βσ − x ≥ Λ∗ (σ) ∧R log 2}

Dx reduces to the half-line

{σ ∈ R: βσ − x ≥ R log 2} =
[
x + R log 2

β
,∞
)

The claim is now proved by the monotonicity of Λ∗.

4.3.4 LDP for 1
n log Z̃ω

β,n, negative fluctuations

Aim of this section is to apply Theorem B to

1
n

log Z̃ω
β,n =

1
n

log
∫

R
enβσµω

n (dσ)

and identify Ĩ− as

Ĩ− (x) =

{
∞ if x < f̃β

0 if x ≥ f̃β

To this purpose, we use Lemmas 12 and 13. In Lemma 13 we take b = f̃β . In
Lemma 12, we have to prove that f̃ , defined by (17), is equal to f̃β . As a simple
consequence of the result of the previous section we have:
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Corollary 27 The number f̃ , defined by (17), Fenchel-Legendre transform of
Iµ, is equal to f̃β.

For every j ∈ N, let Kj = [−j, j] as above and Bj be the family[
k

j
,
k + 1

j

]
,−j2 ≤ k < j2

Let us verify (at the same time) the assumptions of lemma 12 and of lemma 13
with b = f̃β . The assumptions (1)-(2) of Theorem A have been already verified.
For every j ∈ N and B ∈ Bj let UB ∈ A, UB ⊃ B, be any open interval having
Hausdorff distance from B at most 1

2j . We have

φ+
B − φ−UB

≤ β
2
j

hence (technical condition (i))

lim
j→∞

max
B∈Bj

(
φ+

B − φ−UB

)
= 0

As to condition (ii), given ε > 0, for every σ ∈ Σ we have that infy≥−Iµ(σ)+ε J (σ, y)
is ∞ for |σ| ≤ a∗ and (Λ∗ (σ)−R log 2) for |σ| > a∗, so

inf
σ∈UB ,y≥−Iµ(σ)+ε

J (σ, y) ≥ inf
σ∈Σ,y≥−Iµ(σ)+ε

J (σ, y) > 0

Therefore, as soon as we have identified Ĩ− (x) for every x < f̃β , the choice

Ĩ− (x) = 0 for every x ≥ f̃β

is correct.
For the complementary region, x < f̃β , we apply lemma 13 with b = f̃β . To

this end, given x < f̃β , it is sufficient to find a sequence Bj ∈ Bj such that

lim
j→∞

limn→∞
1
n

log P

(
1
n

log µn (Bj) < (x− φ)+Bj

)
= −∞

Good sets Bj are expected to be those around the values of σ which realize
supV where V (σ) = φ (σ) − Iµ (σ) = βσ − Iµ (σ). Denote by σ∗ the value
which maximizes V (σ). By Theorem 17 and Lemma 25, V (σ) ≤ f̃β , with
equality holding only for σ = σ∗ = d

dβ f̃β . Note that σ∗ ∈ [0, a∗] and it is a∗ for
β ≥ β∗.

We take as Bj the interval, or the left one of the two intervals, which contains
σ∗. In particular, with this choice, if σ∗ = a∗ then aj := inf Bj < a∗.

Take x < f̃β , so of the form

x = f̃β − ε
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for a suitable ε > 0. Then

(x− φ)+Bj
= x− βaj = x− βσ∗ + βδj

with |δj | ≤ 1
j

= f̃β − βσ∗ − ε + βδj = −Iµ (σ∗)− ε + βδj

It is now sufficient to prove

lim
n→∞

1
n

log P

(
1
n

log µn (Bj) < −Iµ (σ∗)− ε + βδj

)
= −∞

for all j sufficiently large. Take the range of j such that −ε + βδj ≤ − ε
2 . Write

Bj = [aj , bj ]. Then

P

(
1
n

log µn (Bj) < −Iµ (σ∗)− ε + βδj

)
≤ P

(
1
n

log µn (Bj) < −Iµ (σ∗)− ε

2

)
= P

(∑
s∈Sn

1{Xs,n∈[aj ,bj ]} < card(Sn)e−n(Iµ(σ∗)+ ε
2 )
)

= P (BNn,pn < xn)

where BNn,pn
is a binomial of parameters Nn = card(Sn) and pn = P (Xn ∈ [aj , bj ]),

and xn = Nnenv with v = −
(
Iµ (σ∗) + ε

2

)
. We have

lim
n→∞

1
n

log Nn = R log 2

lim
n→∞

1
n

log pn = −Λ∗ (aj)

(recall from above that aj < a∗)

lim
n→∞

1
n

log xn = v + R log 2

Therefore we use the result of the Appendix with

α = R log 2, β = Λ∗ (aj) , γ = v + R log 2

Since aj < σ∗ ≤ a∗ and Λ∗ is increasing on the positive half-line, Λ∗ (aj) <
Λ∗ (σ∗) ≤ Λ∗ (a∗) ≤ R log 2, so that α > β. The same argument shows that
γ < α− β, since this is equivalent to

Λ∗ (aj) < Iµ (σ∗) +
ε

2

Equations (38) and (39) in the Appendix complete the proof as long as γ 6= 0,
i.e. when Iµ (σ∗) + ε/2 6= R log 2. If this is not the case, one can simply use ε

3
instead of ε

2 and get the desired result.
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4.4 LDP for the Shannon problem

In this paragraph we will compute a formula for the Shannon error exponent
Eerr (β, R) through the above LD theorem in its “extended REM” version.

We now briefly recall the Shannon problem setup in the statistical mechanical
formulation introduced in the previous chapter. Let β ∈ [0,∞[, R ∈ [0, 1],
n ∈ N, B := {0, 1}, Sn := BbRnc and let (Ω,F , P) be a probability triple. For
all n ∈ N let

x̃s,j : (Ω,F , P) → B
ω 7→ x̃s,j(ω) for all s ∈ Sn, 1 ≤ j ≤ n

be a sequence of families of independent random variables such that

1. for s 6= 0 the x̃s,j are Bernoulli
(
±1, 1

2

)
;

2. x̃0,j = wj ∼Bernoulli(±1, p).

Let now

En
ω (s) :=

1
2

n−
∑

j=1,...,n

x̃s,j(ω)



Z∗
β,n (ω) = e −βEn

ω (0)

Ẑ0
β,n (ω) =

∑
s : πn

1 (s) = 0
s 6= 0

e −βEn
ω (s)

Z1
β,n (ω) =

∑
s : πn

1 (s) = 1

e −βEn
ω (s)

where πn
1 (s) is the projection of s onto its first component. Then the error

exponent is defined as:

Eerr (β, R) = lim inf
n→∞

− 1
n

log P
[

Z1
β,n (ω) ≥ Z∗

β,n (ω) + Ẑ0
β,n (ω)

]
while the condition for errorfree coding in terms of (β, R) is

lim
n→∞

P
{

ω ∈ Ω : Z1
β,n (ω) < Z∗

β,n (ω) + Ẑ0
β,n (ω)

}
= 1

Conceptually, behind En
ω (s) there is a basic energy hn (s, ω) which corre-

sponds to the distance between the codeword associated to s and the one asso-
ciated to the zero codeword 0 ∈ S. Thus this zero codeword is a groundstate
of hn (·, ω) for each chosen code ω, namely 0 = hn

(
s0, ω

)
≤ hn (s, ω) for every

s ∈ Sn and ω ∈ Ω. The energy En
ω (s) is a random perturbation of hn (s, ω)

which takes into account also the effect of the channel-noise on the codeword
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associated to the zero codeword. We shall never use hn (s, ω) explicitly, it was
introduced here for explanatory reasons only.

In order to perform our large deviation analysis, we will need first of all some
free energy density bounds on the error exponent. Afterwards we will proceed
to their computation through the LD theorem. At the end of the chapter we
will then write the final result for the error exponent.

4.4.1 Free energy density bounds of the error exponent

In the present chapter, we have developed tools for studying “free energy densities”-
like quantities. But we are now interested in studying a relation between “par-
tition function”-like quantities:

lim inf
n→∞

− 1
n

log P
[

Z1
β,n (ω) ≥ Z∗

β,n (ω) + Ẑ0
β,n (ω)

]
Our aim in this section is to find a large deviation relationship between the
above object and the following “free energy densities”:

F ∗
β,n : =

1
βn

log Z∗
β,n

F 1
β,n : =

1
βn

log Z1
β,n

F̂ 0
β,n =

1
βn

log Ẑ0
β,n

We fulfil the stated aim through the following

Lemma 28 Assume that:
1) F ∗

β,n satisfies a LDP with a rate functional I∗β;
2) F 1

β,n and F̂ 0
β,n satisfy LDP’s with the same rate functional I1

β, which is
right-continuous at some point fβ, such that I1

β [(fβ ] = 0;
3) F ∗

β,n, F 1
β,n and F̂ 0

β,n are independent;
4) defined Iβ(x) as

Iβ(x) = inf
r∈R

(
I1
β (x + r) + I∗β (r)

)
we assume

inf
x>0

Iβ(x) = inf
x≥0

Iβ(x) = Iβ(0)

Then

Eerr (β, R) = lim
n→∞

− 1
n

log P
[

Z1
β,n (ω) ≥ Z∗

β,n (ω) + Ẑ0
β,n (ω)

]
= −Iβ(0)

In order to prove it, we split our discussion in two parts: bounds from above
and from below.
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Upper bound
We obviously have

P
(
Z1

β,n ≥ Z∗
β,n + Ẑ0

β,n

)
≤ P

(
Z1

β,n ≥ Z∗
β,n

)
= P

(
F 1

β,n ≥ F ∗
β,n

)
So we can prove:

Proposition 29 Assume that:
1) F ∗

β,n satisfies a LDP with a rate functional I∗β;
2) F 1

β,n satisfies a LDP with a rate functional I1
β;

3) F ∗
β,n and F 1

β,n are independent.
Then

lim
n→∞

1
n

log perr
n ≤ − inf

x≥0
Iβ(x)

where
Iβ(x) = inf

r∈R
{I1

β (x + r) + I∗β (r)}

Proof. By Lemma 48 (see the Appendix), F 1
β,n −F ∗

β,n satisfies a LDP with
rate Iβ(x), hence

lim
n→∞

1
n

log P
(
F 1

β,n − F ∗
β,n ≥ 0

)
≤ − inf

x≥0
Iβ(x)

The conclusion is now obvious.
We shall see that in the Shannon example these assumptions can be checked

and the infimum can be explicitly computed.

Lower bound

Proposition 30 Assume that:
1) F ∗

β,n satisfies a LDP with a rate functional I∗β;
2) F 1

β,n and F̂ 0
β,n satisfy LDPs with rate functionals I1

β an3) F ∗
β,n, F 1

β,n and
F̂ 0

β,n are independent;
4)

inf
x>0

inf
r∈R

{I1
β (x + r) + I0

β (r)} = 0

Then
limn→∞

1
n

log P
(
Z1

β,n ≥ Z∗
β,n + Ẑ0

β,n

)
≥ − inf

x>0
Iβ(x)

where Iβ(x) has been defined in the previous proposition.

Proof. We have{
Z1

β,n ≥ 2Z∗
β,n, Z1

β,n ≥ 2Ẑ0
β,n

}
⊂
{

Z1
β,n ≥ Z∗

β,n + Ẑ0
β,n

}
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Since Z0
β,n, Ẑ+

β,n and Z−
β,n are independent, we have

P
(
Z1

β,n ≥ 2Z∗
β,n, Z1

β,n ≥ 2Ẑ0
β,n

)
≥ P

(
Z1

β,n ≥ 2Z∗
β,n

)
· P
(
Z1

β,n ≥ 2Ẑ0
β,n

)
Indeed, the two events are positively correlated. A complete proof is given in
the Appendix. Therefore we have

P
(
Z1

β,n ≥ Z∗
β,n + Ẑ0

β,n

)
≥ P

(
Z1

β,n ≥ 2Z∗
β,n

)
· P
(
Z1

β,n ≥ 2Ẑ0
β,n

)
= P

(
F 1

β,n ≥
1

βn
log 2 + F ∗

β,n

)
· P
(

F 1
β,n ≥

1
βn

log 2 + F̂ 0
β,n

)
Hence, given ε, ε′ > 0, eventually

1
n

log P
(
Z1

β,n ≥ Z∗
β,n + Ẑ0

β,n

)
≥ 1

n
log P

(
F 1

β,n ≥ ε + F ∗
β,n

)
+

1
n

log P
(
F 1

β,n ≥ ε′ + F̂ 0
β,n

)
By lemma 48, we have

limn→∞
1
n

log P
(
F 1

β,n − F ∗
β,n ≥ ε

)
≥ − inf

x>ε
Iβ(x)

limn→∞
1
n

log P
(
F 1

β,n − F̂ 0
β,n ≥ ε′

)
≥ − inf

x>ε′
Ĩβ(x)

where
Ĩβ(x) = inf

r∈R

(
I1
β (x + r) + I0

β (r)
)

Therefore

limn→∞
1
n

log P
(
Z1

β,n ≥ Z∗
β,n + Ẑ0

β,n

)
≥ −

(
inf
x>ε

Iβ(x) + inf
x>ε′

Ĩβ(x)
)

Taking the supremum in ε > 0 and ε′ > 0 on the right-hand-side, we easily get

limn→∞
1
n

log P
(
Z1

β,n ≥ Z∗
β,n + Ẑ0

β,n

)
≥ −

(
inf
x>0

Iβ(x) + inf
x>0

Ĩβ(x)
)

The conclusion of the proposition follows now immediately from assumption 4).

In our application we shall prove that I1
β = I0

β , hence

Ĩβ(x) = inf
r∈R

(
I1
β (x + r) + I1

β (r)
)

If 0 is an accumulation point for the image of I1
β , then it is easy to show that

infx>0 Ĩβ(x) = 0, so assumption 4) is satisfied. We shall check also the other as-
sumptions and compute infx>0 Iβ(x), which turns out to be equal to infx≥0 Iβ(x)
and also simply to Iβ(0).
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4.4.2 The LDP of F ∗
n

Lemma 31 F ∗
n satisfies a LDP with rate functional I∗ (x) = De (−x||p).

Proof. The result follows since

−nF ∗
n := En

ω (0) =
n∑

j=1

(
1
2
− 1

2
x̃s,j

)

is just a binomial r.v. (see for example [6]).

4.4.3 The LDP of F 1
β,R,n and F̂ 0

β,R,n

In order to study the LDP of F 1
β,R,n and compute its rate functional I1

β,R (x)
we use theorem 16.

Corollary 32 F 1
β,R,n satisfies a LDP with rate functional

I1
β,R (x) =

 +∞ if x < f (β, R)
0 if x = f (β, R)

De

(
−x
∥∥ 1

2

)
−R log 2 if x > f (β, R)

(19)

where

f (β, R) :=

{
1
β

[
log cosh β

2 −
β
2 + R log 2

]
if R > R∗ (β)

−δGV (R) if R ≤ R∗ (β)
(20)

δGV (·) being the Gilbert-Varshamov distance as defined at the beginning of the
previous chapter, and

R∗ (β) := D2

(
1

eβ + 1

∥∥∥∥ 1
2

)
=

β
2 tanh β

2 − log cosh β
2

log 2
(21)

Proof. Firstly notice that Theorem 16 applies formally unchanged if the
r.v.’s hn are substituted with some other hθ

n that are symmetric with respect
to some fixed real θ 6= 0. To see this, pose hs,n = hθ

s,n − θ and apply the
theorem to find that (with obvious notations) 1

βn log Zθ
n = 1

βn log Zn + θ and
Iθ(t) = I(t− θ).

Now we check that the assumptions of the theorem are satisfied posing

Σn := {s ∈ Sn : πn
1 (s) = 1} and hs,n :=

1
2n

n∑
j=1

x̃s,j −
1
2

We already know that {hs,n; s ∈ Σn} are IID; they are also symmetric with
respect to −1/2. The set Σn has the required exponential behaviour, since
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|Σn| = 2bRnc−1; by definition 1
βn log Zn is equal to F 1

β,R,n. So Λ becomes:

Λ (β) = lim
n→∞

1
n

log E

exp

β

2

∑
j=1,...,n

x̃s,j −
βn

2


= −β

2
+ lim

n→∞

1
n

n∑
j=1

log E

[
exp

(
β

2
x̃1,j

)]
= −β

2
+ log cosh

β

2

which is convex, decreasing, smooth and finite for all β ∈ R.
Having verified all the assumptions, we can now apply the theorem, obtaining

a LDP for F 1
β,R,n. To get the rate functional we have to compute Λ∗ (a). By

differentiation one finds that

a = Λ′(β) ⇔ β = log
1 + a

−a

and hence

Λ∗ (a) = a log
1 + a

−a
− log

1
2 (1 + a)

= −a log
−a

1/2
+ (1 + a) log

1 + a

1/2

= De

(
−a

∥∥∥∥1
2

)
The rest follows with little computations:

a∗(R) = −δGV (R)

β∗ (R) =

{
log 1−δGV (R)

δGV (R) if R < 1
∞ if R = 1

To conclude the proof, note that the definition of R∗ is such that β < β∗ (R) ⇔
R > R∗ (β).

Remark 33 About the regularity of f(·, R) at β∗ = β∗(R). From the definitions
of a∗ and β∗ we have

a∗β∗ = Λ(β∗) + Λ∗(a∗) = Λ(β∗) + R log 2

and
a∗ = Λ′(β∗)

which gives us the continuity at β = β∗ (R) respectively of the map β 7→
βf (β, R), and of its derivative. It follows that the map β 7→ f (β, R) has a
continuous derivative, is non-increasing and therefore always greater than or
equal to −δGV (R).
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Remark 34 The rate functional I1
β,R (x) is convex (and right-continuous in

x = f (β, R)) iff R ≤ R∗ (β). In fact, if R ≤ R∗ (β), then f (β, R) = −δGV (R)
and

lim
x↓f(β,R)

I1
β,R (x) = De

(
δGV (R)

∥∥∥∥1
2

)
−R log 2 = 0

and since the relative entropy is non-negative and strictly convex this can never
happen when f (β, R) 6= −δGV (R).

Corollary 35 F̂ 0
β,R,n satisfies a LDP with the same rate functional as F 1

β,R,n.

Proof. This is obvious, since the only difference with the previous case
lies in the definition of Σn := {s ∈ Sn \ {0} : πn

1 (s) = 0}, which is one element
smaller.

4.4.4 The analysis of Iβ,R(x)

Having in mind proposition 29, we are interested in the rate:

Iβ,R(x) = inf
s∈R

(
I1
β,R(s) + I∗(s− x)

)
By (19) the argument is infinite if s < f(β, R), so we simply get

Iβ,R(x) = min {ξ (β, R, x) , ζ (β, R, x)} (22)

where

ζ (β, R, x) := I1
β,R (f (β, R)) + I∗ (f (β, R)− x)

= De (x− f (β, R) ‖p ) (23)

ξ (β, R, x) := inf
s>f(β,R)

[
I1
β,R (s) + I∗ (s− x)

]
= −R log 2 + inf

u<−f(β,R)
ξ∗(u, x) (24)

and

ξ∗(u, x) := De

(
u

∥∥∥∥1
2

)
+ De (u + x ‖p ) (25)

Remark 36 Although I1
β,R (x) may be discontinuous on the set

{
x : I1

β,R (x) < ∞
}
,

Iβ,R(x) is always continuous on all {x : Iβ,R(x) < ∞}.

The following statement is a technical tool that we shall use often.

Lemma 37 For any θ ∈ [0, 1/2] and any β > 0, the equation

−f(β, R) = θ
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has exactly one solution (β, R) = (β, ϕθ(β)). The map ϕθ is continuous, non-
decreasing, hits R∗ = R∗(β) when

β = βθ = log
(

1
θ
− 1
)

is constant for β ≥ βθ, and in fact is equal to

ϕθ(β) =

{
1

log 2

(
(1− 2θ) β

2 − log cosh β
2

)
if β < βθ

D2

(
θ
∥∥ 1

2

)
if β ≥ βθ

Proof. The formulae for βθ and ϕθ are direct consequences of Equations (21)
and (20) respectively. The other statements follow from an elementary study of
ϕθ.

The following statement help us to understand the last assumption of Corol-
lary 28.

Proposition 38 The condition

inf
x>0

Iβ,R(x) = inf
x≥0

Iβ,R(x) = Iβ,R(0)

is satisfied if and only if R is below the Channel capacity C (β), defined by

C (β) :=

{
1

log 2

(
(1− 2p) β

2 − log cosh β
2

)
if β < βTrans

D2

(
p|| 12

)
if β ≥ βTrans

where
βTrans := log

1− p

p

Proof. We claim that both ξ (β, R, x) and ζ (β, R, x) are convex in x and
they attain their minimum when x = p+f(β, R). Then recalling Equation (22),
we only need to show that

p + f(β, R) ≤ 0 ⇔ R ≤ C(β)

but, by Lemma 37,
−f(β, R) ≥ p ⇔ R ≤ ϕp(β)

and the definition of C(β) is exactly ϕp(β).
Proof. We now come to the claim. The part concerning ζ easily follows

from Equation (23) and the properties of D. Convexity of ξ in x comes from
the same property of ξ∗ and the fact that the domain of existence of the latter
is a convex, compact set.

Proof. By the properties of D and Equation (24), the minimum of ξ∗ for
fixed u, is attained for u + x = p,

min
x∈R

ξ∗ (u, x) = ξ∗ (u, p− u) (26)
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This also implies that the absolute minimum is at u = 1/2, x = p − 1/2.
But since −f(β, R) ≤ δGV (R) ≤ 1/2 (see Remark 33), the minimum of ξ∗ on
{(u, x) : u ≤ −f (β, R)} will be attained on the boundary

inf
x∈R

ξ (β, R, x) = min
u≤−f(β,R)

x∈R

ξ∗ (u, x) = min
x∈R

ξ∗ (−f (β, R) , x)

so that by (26), again ξ is minimum at x = p + f (β, R).

4.4.5 Computation of Iβ,R(0)

Finally, we only have to study the expression of Iβ,R(0) obtained above to
compute the error exponent. From now on x will always be 0.

The study of ξ (β, R, 0)
Let

δCrit :=
√

p
√

p +
√

1− p

then

ξ∗(u, 0) = log

(
2

1 + 2
√

p (1− p)

)
+ 2De (u||δCrit) (27)

where we have used the following lemma.

Lemma 39 The following identity holds:

De (u||q) + De (u||p)

= 2De

(
u

∥∥∥∥∥
√

pq
√

pq +
√

(1− p)(1− q)

)
− 2 log

(√
pq +

√
(1− p)(1− q)

)
Proof. We just need to apply the definition of relative entropy:

De (u||q) + De (u||p) = u log
u

q
+ (1− u) log

1− u

1− q

+ u log
u

p
+ (1− u) log

1− u

1− p

= 2u log u + 2(1− u) log(1− u)

− 2u log
√

pq − 2(1− u) log
√

(1− p)(1− q)

from which the thesis follows.

Looking to (27) we notice that the absolute minimum of ξ∗(u, 0) is at u =
δCrit . Nevertheless:

ξ (β, R, 0) = min
u≤−f(β,R)

ξ∗(u, 0)−R log 2
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so that
ξ (β, R, 0) = ξ∗(min(δCrit ,−f(β, R)), 0)−R log 2

The condition −f (β, R) < δCrit is well understood by Lemma 37, so now we
compute ξ∗ in the two cases.

By Equation (27),

ξ∗(δCrit) = log

(
2

1 + 2
√

p (1− p)

)

ξ∗(−f (β, R)) = log

(
2

1 + 2
√

p (1− p)

)
+ 2De (−f (β, R) ||δCrit)

anyway, notice that when −f (β, R) = δGV (R), by applying directly Equa-
tion (25), we have

ξ∗(δGV (R)) = De (δGV (R) ||p) + R log 2

Putting things together we have proved the following statement

Lemma 40 Let

RCrit (β) :=

{
1

log 2

(
(1− 2δCrit) β

2 − log cosh β
2

)
if β < βCrit

D2

(
δCrit || 12

)
if β ≥ βCrit

where
βCrit :=

1
2

log
1− p

p

Then RCrit (β) ≤ C(β) for all β, and

−f (β, R) < δCrit ⇔ R > RCrit (β)

Moreover, we can distinguish three cases:

1. If R ≤ RCrit (β) we have

ξ (β, R, 0) = log

(
2

1 + 2
√

p (1− p)

)
−R log 2

2. If R∗ (β) ≤ RCrit (β) < R we have

ξ (β, R, 0) = log

(
2

1 + 2
√

p (1− p)

)
−R log 2 + 2De (−f (β, R) ||δCrit)

3. If RCrit (β) < R ≤ R∗ (β) we have

ξ (β, R, 0) = De (δGV (R) ||p)

93



The study of ζ (β, R, 0)
We recall from (23) that

ζ (β, R, 0) := De (−f (β, R) ||p)

and only notice that, when R ≤ R∗ (β), this expression becomes

ζ (β, R, 0) = De (δGV (R) ||p)

4.4.6 The four cases breakdown

Let us now compute Iβ,R(0) in the possible situations.

Case RCrit (β) ≤ R < R∗ (β)
Here the expressions for ξ (β, R, 0) and ζ (β, R, 0) coincide, so

Iβ,R(0) = De (δGV (R) ||p)

Case R < min {R∗ (β) , RCrit (β)}
Since u = δCrit minimizes ξ∗(u, 0),

De (δCrit ||p) + De

(
δCrit

∥∥∥∥1
2

)
≤ De (δGV (R) ||p) + De

(
δGV (R)

∥∥∥∥1
2

)
so that

De (δCrit ||p) + De

(
δCrit

∥∥∥∥1
2

)
−R log 2 ≤ De (δGV (R) ||p)

and

Iβ,R(0) = log

(
2

1 + 2
√

p (1− p)

)
−R log 2

Case max {R∗ (β) , RCrit (β)} ≤ R ≤ R0 (β)
By Remark 33 we know that

−f(β, R) ≤ δGV (R)

so that, by the monotonicity of De

(
·
∥∥ 1

2

)
on
[
0, 1

2

]
,

De

(
−f(β, R)

∥∥∥∥1
2

)
≥ De

(
δGV (R)

∥∥∥∥1
2

)
and finally

De (−f(β, R)||p) + De

(
−f(β, R)

∥∥∥∥1
2

)
−R log 2 ≥ De (−f(β, R)||p)

yielding

Iβ,R(0) = De

(
1
β

[
β

2
− log cosh

β

2
−R log 2

]∥∥∥∥ p

)
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Case R∗ (β) ≤ R < RCrit (β)
Here we will see that there is a separating curve with no explicit expression

between two subregions. Recall that

R∗ (β) ≤ RCrit (β) ⇐⇒ β ∈ [0, βCrit ]

with equality holding only at the border. We claim that the set of points (β, R)
such that R∗ (β) ≤ R < RCrit (β) and

log

(
2

1 + 2
√

p (1− p)

)
−R log 2−De

(
1
β

[
β

2
− log cosh

β

2
−R log 2

]∥∥∥∥ p

)
= 0

(28)
is the graph of a function of β on [0, βCrit ]. We shall need to extend the latter to
a map Rs (β) defined on all [0,∞), and we set arbitrarily Rs (β) = 1 if β > βCrit .
We clearly have, for 0 ≤ β ≤ βCrit ,

Iβ,R(0) =

 log
(

2

1+2
√

p(1−p)

)
−R log 2 if R∗ (β) ≤ R < Rs (β)

De

(
1
β

[
β
2 − log cosh β

2 −R log 2
]∥∥∥ p

)
if Rs (β) ≤ R ≤ RCrit (β)

The existence of such a separating curve within the region is essentially due to
Rolle theorem. In order to prove that the curve Rs (β) is a function in β (and
not a generic curve), observe that differentiating the left-hand side of (28) with
respect to R, we get

− log 2 +
1
β

log
g

1− g
log
(

2
1− p

p

)
which is always negative in the given domain.

4.4.7 The final result

We proved the following.

Theorem 41 If F ∗
n , F 1

β,R,n, F̂ 0
β,R,n are defined as in the first section of the

current paragraph and R is less than the Channel capacity C (β):

C (β) :=


(1− 2p) β

2 − log cosh β
2

log 2
if β < βTrans

D2

(
p|| 12

)
if β ≥ βTrans

where
βTrans := log

1− p

p

then they satisfy hypotheses 1), 3) and 4) of Corollary 28. Moreover we have

Iβ,R(0) =


log
(

2

1+2
√

p(1−p)

)
−R log 2 if (β, R) ∈ D1

De (δGV (R) ||p) if (β, R) ∈ D2

De

(
1
β

[
β
2 − log cosh β

2 −R log 2
]∥∥∥ p

)
if (β, R) ∈ D3
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where we defined

D1 :=
{
(β, R) ∈ R2, 0 ≤ R ≤ min {Rs (β) , RCrit (β)}

}
D2 :=

{
(β, R) ∈ R2, RCrit (β) < R ≤ min {R∗ (β) , C (β)}

}
D3 :=

{
(β, R) ∈ R2,max {Rs (β) , R∗ (β)} < R ≤ C (β)

}
Finally, hypothesis 2) is satisfied if R ≤ R∗ (β) (see remark 34).

To comment the previous results, we have that for R ≤ R∗ (β) the error
exponent Eerr (β, R) is equal to Iβ,R (0). If not, then Iβ,R (0).is only a lower
bound. An analysis of these results, together with a comparison to the existing
coding literature, will take place in the next chapter.

4.5 Appendix

4.5.1 Appendix A: binomial computations

In this appendix, given a positive integer N and a number p ∈ [0, 1], we
shall denote by BN,p a binomial random variable with parameters N and p.
Given three sequences Nn → ∞ (of positive integers), pn → 0 (of numbers in
[0, 1]) and xn ≥ 0, we are interested in the exponential asymptotic behavior
of P (BNn,pn > xn) and P (BNn,pn < xn). We assume that the following limits
exist:

α = lim
n→∞

1
n

log Nn

β = − lim
n→∞

1
n

log pn

γ = lim
n→∞

1
n

log xn

We write an ∼ bn if an

bn
→ 1 as n →∞. Independently of β, we have

γ > α ⇒ lim
n→∞

1
n

log P (BNn,pn > xn) = −∞ (29)

Moreover,

Lemma 42 i) If γ < 0 and α < β then

lim
n→∞

1
n

log P (BNn,pn > xn) = α− β (30)

ii) If γ < 0 and α > β then

lim
n→∞

1
n

log P (BNn,pn
> xn) = 0 (31)
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Proof. For γ < 0 and n so large that xn < 1, we have

P (BNn,pn > xn) = 1− (1− pn)Nn = 1− eNn log(1−pn)

= 1− e−Nn(pn+o(pn)) = 1− e−Nnpn+o(Nnpn)

This easily implies the result.

Lemma 43 If (α− β)+ < γ < α then

1
n

log P (BNn,pn
> xn) ∼ (α− β − γ) enγ → −∞ (32)

Proof. We give at least this proof in all the details, although elementary.
Step 1. We analyze

P (BNn,pn
= kn) =

(
Nn

kn

)
pkn

n (1− pn)Nn−kn

where kn = dxne denotes the smallest integer strictly greater than xn. Let us
denote by εn every sequence such that εn → 0 as n → ∞ and apply to them
Landau rules. Recall that

N ! =
(

N

e

)N √
2πN (1 + εN )

Since kn →∞ and Nn − kn →∞, we have

P (BNn,pn
= kn) =

√
Nn

2πkn (Nn − kn)

(
Nnpn

kn

)kn

·
(

Nn (1− pn)
Nn − kn

)Nn−kn

(1 + εn)

Moreover,

lim
n→∞

1
n

log

√
Nn

2πkn (Nn − kn)
= −γ

2
, (33)

log
(

Nn (1− pn)
Nn − kn

)Nn−kn

= (Nn − kn)
(

Nn (1− pn)
Nn − kn

− 1
) log

(
1 +

(
Nn(1−pn)

Nn−kn
− 1
))

(
Nn(1−pn)

Nn−kn
− 1
)

= (−Nnpn + kn) (1 + εn) (34)

hence, noting that Nnpn = o(kn),

1
n

log
(

Nn (1− pn)
Nn − kn

)Nn−kn

=
1
n

kn (1 + εn)
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and finally

1
n

log
(

Nnpn

kn

)kn

= kn
1
n

log
(

Nnpn

kn

)
= kn (α− β − γ + εn) (35)

Therefore we have

1
n

log P (BNn,pn = kn) =
γ

2
+ εn + kn (α− β − γ + εn) ,

so
1
n

log P (BNn,pn
= kn) ∼ (α− β − γ) enγ → −∞

Step 2. We now show that P (BNn,pn
= kn) gives us the correct asymptotic

of P (BNn,pn > xn). Given a positive integer k, let Ck,n = Nn−k
k+1 · pn

1−pn
, so that

P (BNn,pn
= k + 1) = Ck,nP (BNn,pn

= k) and notice that Ck,n is decreasing in
k. Hence

k ≥ kn ⇒ P (BNn,pn = k) ≤ (Ckn,n)k−knP (BNn,pn = kn)

P (BNn,pn
> xn) ≤ P (BNn,pn

= kn)
Nn∑

k=kn

(Ckn,n)k−kn

≤ P (BNn,pn = kn)
1

1− Ckn,n

On the other hand of course P (BNn,pn
> xn) ≥ P (BNn,pn

= kn). The final
result follows from the fact that

Ckn,n =
Nn − kn

kn + 1
· pn

1− pn
→ 0

The proof is complete.
When α > β and 0 < γ < α − β, both E [BNn,pn

] = Nnpn and xn diverge
to +∞, but xn is much smaller than E [BNn,pn

], so that for n large enough
P (BNn,pn

> xn) ≥ 1
2 . This proves the following:

Lemma 44 If α > β and 0 < γ < α− β then

lim
n→∞

1
n

log P (BNn,pn
> xn) = 0 (36)

Finally, arguing as above, we have (notice that C · Nn is much larger than
E [BNn,pn

]):

Lemma 45 For every C ∈ (0, 1)

lim
n→∞

P (BNn,pn
> C ·Nn) = 0 (37)

98



Now we turn our attention to P (BNn,pn < xn). Note that

lim
n→∞

1
n

log P (BNn,pn > xn) 6= 0 =⇒ lim
n→∞

1
n

log P (BNn,pn < xn) = 0

There are only two cases left. In both it will turn out that the rate is −∞.

Lemma 46 If γ < 0 and α > β then

lim
n→∞

1
n

log P (BNn,pn
< xn) = −∞ (38)

Proof. If n is so large that xn < 1, we have

1
n

log P (BNn,pn
< xn) =

1
n

log (1− pn)Nn =
Nn

n
log (1− pn) ≤ −Nnpn

n

This easily implies the result.

Lemma 47 If α > β and 0 < γ < α− β then

1
n

log P (BNn,pn
< xn) ∼ − 1

n
Nnpn → −∞ (39)

Proof. The proof is completely analogous to that of (32).
Step 1. We analyze

P (BNn,pn
= kn) =

(
Nn

kn

)
pkn

n (1− pn)Nn−kn

where kn = bxnc denotes the greatest integer strictly smaller than xn. Equations
(33), (34) and (35) are still valid, but here kn = o(Nnpn), so that

1
n

log
(

Nn (1− pn)
Nn − kn

)Nn−kn

= − 1
n

Nnpn (1 + εn) ,

and therefore

1
n

log P (BNn,pn
= kn) =

γ

2
+εn−

1
n

Nnpn

(
1 + εn − n

kn

Nnpn
(α− β − γ + εn)

)
,

so
1
n

log P (BNn,pn
= kn) ∼ − 1

n
Nnpn → −∞

Step 2. Given a positive integer k, let Ck,n = k
Nn−k+1 ·

1−pn

pn
, so that

P (BNn,pn
= k − 1) = Ck,nP (BNn,pn

= k); then Ck,n is increasing in k. Hence

k ≤ kn ⇒ P (BNn,pn
= k) ≤ (Ckn,n)k−knP (BNn,pn

= kn)

P (BNn,pn < xn) ≤ P (BNn,pn = kn)
kn∑

k=0

(Ckn,n)k−kn

≤ P (BNn,pn
= kn) · 1

1− Ckn,n
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Again P (BNn,pn < xn) ≥ P (BNn,pn = kn), so that the thesis follows from

Ckn,n =
kn

Nn − kn + 1
· 1− pn

pn
→ 0

4.5.2 Appendix B: the LDP-sum lemma

For sake of completeness and with the aim of showing the easiness of rate func-
tion manipulations to the unexperienced but interested reader, we prove here a
simple lemma which derives the rate functional of a sum of two independent se-
quences of random variables from their individual rate functionals. A reference
to general large deviation properties could be [10].

Lemma 48 Let a1 = {a1,n}n∈N and a2 = {a2,n}n∈N be two mutually inde-
pendent sequences of real random variables satisfying large deviation principles
with speed n and rate functionals I1 and I2 respectively. Let a3 be defined as
a3,n := a1,n + a2,n for all n. Then a3 satisfies a LDP with speed n and rate
functional I3 (x) = inf

r∈R
{I1 (x− r) + I2 (r)}.

Proof. In this proof we use only the definition of LDP. Let us first build
the product random sequence ap = {ap,n}n∈N as follows:

ap,n = (a1,n, a2,n) ∈ R2

P (ap,n ∈ A1 ×A2) = P (a1,n ∈ A1) P (a2,n ∈ A2)

Where A1 and A2 are Borel sets. This definition implies the following facts:

− 1
n

log P (ap,n ∈ A1 ×A2) = − 1
n

log P (a1,n ∈ A1)−
1
n

log P (a2,n ∈ A2)

lim inf
n→∞

1
n

log P (ap,n ∈ A1 ×A2) ≥ lim inf
n→∞

1
n

log P (a1,n ∈ A1)

+ lim inf
n→∞

1
n

log P (a2,n ∈ A2)

≥ − inf
t∈

◦
A1

I1 (t)− inf
s∈

◦
A2

I2 (s)

= − inf
{t,s}∈(A1×A2)

◦
{I1 (t) + I2 (s)}

and

lim sup
n→∞

1
n

log P (ap,n ∈ A1 ×A2) ≤ lim sup
n→∞

1
n

log P (a1,n ∈ A1)

+ lim sup
n→∞

1
n

log P (a2,n ∈ A2)

≤ − inf
t∈A1

I1 (t)− inf
s∈A2

I2 (s)

= − inf
{t,s}∈(A1×A2)

{I1 (t) + I2 (s)}
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showing that ap satisfies a LDP with speed n and rate functional Ip (x1, x2) =
I1 (x1) + I2 (x2) in R2. Now, for every couple of reals (s, u) with s ≤ u let us
consider the set As,u :=

{
(x1, x2) ∈ R2 : s ≤ x1 + x2 ≤ u

}
. Notice that

− 1
n

log P (ap,n ∈ As,u) = − 1
n

log P (s ≤ a3,n ≤ u)

Now by the LDP of ap we have

lim sup
n→∞

1
n

log P (ap,n ∈ As,u) ≤ − inf
(s,t)∈As,u

Ip (s, t)

= − inf
r∈R,s≤v≤u

Ip(v − r, r)

= − inf
s≤v≤u

inf
r∈R

{I1 (v − r) + I2 (r)}

In the same way we also have

lim inf
n→∞

1
n

log P (ap,n ∈ As,u) ≥ − inf
(s,t)∈

◦
As,u

Ip (s, t)

= − inf
r∈R,s<v<u

Ip(v − r, r)

= − inf
s<v<u

inf
r∈R

{I1 (v − r) + I2 (r)}

Since the intervals [u, s] with s ≤ u are a base of the Borel σ-algebra, we obtain
the thesis.

4.5.3 Appendix C: the separation bound

Proposition 49 Let X, Y and Z be real independent random variables on a
space (Ω,F , P) with expectation E. Then

P(X > Y, X > Z) ≥ P(X > Y )P(X > Z)

Proof. By the independence of E[1X>Y |Y ] and E[1X>Z |Z], we get

P(X > Y )P (X > Z) = E[E[1X>Y |Y ] · E[1X>Z |Z]]
≤ E[E[1X>Y |Y ];Y > Z] + E[E[1X>Z |Z];Y ≤ Z]

moreover, P-a.s. on {Y > Z},

E[1X>Y |Y ] = E[1X>Y |Y, Z] = E[1X>Y 1X>Z |Y, Z]

and similarly, P-a.s. on {Y ≤ Z},

E[1X>Z |Z] = E[1X>Y |Y,Z] = E[1X>Y 1X>Z |Y,Z]

The proof is completed by substituting these identities in the above inequality.
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Proof. (alternative) Let us observe that

P(X > Y, X > Z) = E {P(X > Y |X)P(X > Z|X)}

because of conditional independence of {X > Y } and {X > Z} given X. Now
the two functions P(X > Y |X) and P(X > Z|X) are both monotone non-
increasing in X, so they are positively correlated. In such a case

E {P(X > Y |X)P(X > Z|X)} ≥ E {P(X > Y |X)}E {P(X > Z|X)}
= P(X > Y )P(X > Z)
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5 Conclusions

In this thesis we have studied the Shannon problem, which we defined as a chan-
nel coding problem with a memoriless binary symmetric channel of parameter
p and a random code picked from the Shannon random ensemble SRE (R,n),
in the limit n →∞.

We adopted an approach from the point of view of statistical mechanics
pioneered by Nicolas Sourlas, and we applied large deviations techniques in
order to compute the relevant asymptotic quantities of the problem, namely the
capacity function C (β) and the error exponent Eerr (β, R).

The Sourlas approach introduces an extra parameter β, the inverse temper-
ature of the system, which parametrises a general decoding strategy. When
β = βTrans := log 1−p

p we recover the actual bitwise MAP decoding case, while
the limit β →∞ gives the wordwise MAP decoding. In order to compare with
the coding literature, let us observe that for “β = ∞” the results are known
through various classic techniques (see for instance [5]). The case β = βTrans is
known, too, but with less detail and usually through indirect techniques. The
intermediate range βTrans < β < ∞ is new, although heuristically it interpolates
two known cases. The outer range β < βTrans is completely new.

The values for capacity and error exponent we recover are tight in the subset
of the (R, β) phase diagram defined by R ≤ R∗(β) (we will resume the definition
of R∗(β) a little further into this conclusion), while they are only lower bounds
for 1 ≥ R > R∗(β). We conjecture the results to be tight also in this case, but
to the moment we have no rigorous proof.

Our large deviation analysis followed a general-to-particular approach: we
developed a rather general theorem for the LDP of sequences of “partition
function-like” quantities. We then reduced its scope of application to “em-
pirical measures” induced by independent and identically distributed random
variables, obtaining a much lighter formulation which we consequently applied
to the Shannon problem. Although a problem-adapted theorem might have
been much simpler to prove, our strategy enabled us to perceive which condi-
tions are truly necessary to the interesting large deviation behaviour of the a
posteriori measure induced by the code and the noise. Such a choice aligns with
our intention of developing a bottom-up approach to coding theory, and not
only to a particular problem or a classic setup. Nevertheless, we picked one of
such problems to develop our approach.

5.1 Capacity

Let us consider a concept of capacity of the full system encoder/channel/decoder,
defined as the supremum of those rates for which our system is error-free in the
limit as n →∞. The capacity function we obtain for the Shannon problem is:

C (β) :=


(1− 2p) β

2 − log cosh β
2

log 2
if β < βTrans

D2

(
p|| 12

)
if β ≥ βTrans
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where:
βTrans := log

1− p

p

It coincides with the well-known channel capacity obtained by Shannon for all
β ≥ βTrans , where it depends only on the channel (the value of p, here). On
the contrary it is β-dependent for β < βTrans . In this range we have C (β) ≤
C (βTrans), as shown in Figure 2. Knowledge of the capacity in this range may
be important in the case of a wrong estimate of p, see below.

5.2 Error exponent

Our candidate for the error exponent

Eerr (β, R) := lim
n→∞

− 1
n

log perr
n

is Iβ,R(0), whose (complicate) definition is resumed below. We actually proved
equality for the most interesting values of the parameters,

lim
n→∞

− 1
n

log perr
n = Iβ,R(0) if R ≤ R∗(β)

and we have an upper bound on the error probability otherwise, which translates
into a lower bound for the error exponent

lim
n→∞

− 1
n

log perr
n ≥ Iβ,R(0) if R > R∗(β)

The complete description of Iβ,R(0) follows:

Iβ,R(0) =


log

(
2

1 + 2
√

p (1− p)

)
−R log 2 if (β, R) ∈ D1

De (δGV (R) ||p) if (β, R) ∈ D2

De

(
1
β

[
β
2 − log cosh β

2 −R log 2
]∥∥∥ p

)
if (β, R) ∈ D3

where we defined

D1 :=
{
(β, R) ∈ R2, 0 ≤ R ≤ min {Rs (β) , RCrit (β)}

}
D2 :=

{
(β, R) ∈ R2, RCrit (β) < R ≤ min {R∗ (β) , C (β)}

}
D3 :=

{
(β, R) ∈ R2,max {Rs (β) , R∗ (β)} < R ≤ C (β)

}
and

RCrit (β) :=


(1− 2δCrit) β

2 − log cosh β
2

log 2
if β < βCrit

D2

(
δCrit || 12

)
if β ≥ βCrit

βCrit :=
1
2

log
1− p

p
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δCrit :=
√

p
√

p +
√

1− p

R∗ (β) := D2

(
1

eβ + 1

∥∥∥∥ 1
2

)
=

β
2 tanh β

2 − log cosh β
2

log 2

while Rs (β) is defined for 0 ≤ β ≤ βCrit as the unique root of the equation

log

(
2

1 + 2
√

p (1− p)

)
−R log 2−De

(
1
β

[
β

2
− log cosh

β

2
−R log 2

]∥∥∥∥ p

)
= 0

within the domain RCrit (β) ≥ R ≥ R∗ (β). For β > βCrit instead, Rs (β) is
arbitrarily set to 1.

As for the capacity, for β ≥ βTrans the error exponent does not depend on β
and is equal to the classic Shannon results (but without the refinement known
as “expurgation”, see [11]). Notice that β ≥ βTrans corresponds to sections of
the regions D1 nd D2, excluding D3.

Figure 2: the (R, β) phase diagram

5.3 Towards a choice of β

The approach developed in this thesis is aimed at offering a more structured
base for the analysis of random coding problems. Here is an instance of an
operative suggestion coming from the above results.

As Prof. H. Loeliger (ETH Zurich) recently pointed out to us, in case we
want to perform bitwise MAP decoding and we do not now precisely the value of
p (the “flipping probability” of the binary simmetric channel), we can underesti-
mate it safely when applying the β-parametrised decoding technique, according
to our previous results. Indeed, the only way p enters into the computation
of the a posteriori probability is through βTrans , and for all β > βTrans the
capacity and the error exponent are equal to the maximum value. Since βTrans

is monotone decreasing in p, we got the thesis. Operatively, this translates into
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(a) β ≥ βTrans (b) βCrit < β = 1.4 < βTrans

(c) β = 0.6 ≤ βCrit

Figure 3: set of plots of Iβ,R(0) with p = 0.1: in this case βTrans ' 2.2,
βCrit ' 1.1 and for β high RCrit ' 0.189 and C ' 0.531

raising to a positive exponent the a posteriori probabilities. Renormalisation
of e−βH by the common denominator Z, although formally necessary, is of no
consequence for the decoding algorithm.

5.4 Open problems

Close lines of development include first of all a tight result for capacity and
error exponent in the region R > R∗(β), intendendly according to our afore-
mentioned conjecture. This would add necessity to the robustness argument of
the underestimation of p.

Moreover, we would be interested into adding a linear constraint to our
random code model, as most of technologically implemented codes are so, and
expanding the channel model to a more general linear additive channel.

One of our far goal would instead be to decouple the large deviation be-
haviours of the code and the channel, so to be able to compute the error expo-
nent not for the ensemble of codes, but for an optimal subgroup.
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