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SYNOPSIS 
 

The work described in this thesis has been mainly focused on the study of 

a key molecule involved in blood vessel formation, the tyrosine kinase 

receptor VEGFR2. 

Considering that VEGFR2 biology should be tighly regulated to allow proper 

blood vessel formation and maintenance, we investigated two different 

mechanims influencing VEGFR2 activity: post translational modification and 

receptor complex formation. 

Since VEGFR2 biology is governed through protein modication, mainly 

phosphorylation, we decided to investigate the possible role of acetylation 

in VEGFR2 activity. Combining biochemical and proteomic studies, we 

showed that VEGFR2 is modified by acetylation. Starting from this 

observation, we further investigated the impact of VEGFR2 acetylation on 

protein stability and phosphorylation in response to ligand. These findings 

are of particular interest, since, to our knowledge, this is the first report that 

a tyrosine kinase receptor might be regulated by acetylation. 

Additionally, we decided to elucidate the interaction of VEGFR2 with its 

coreceptor Neuropilin1, with particular attention to the Neuropilin1 

molecule, by taking advantage of the FRET imaging technique. Collectively, 

our work characterizes VEGFR2-Neuropilin1 and Neuropilin1-Neuropilin1 

complex formation in response to VEGFs and SEMA3A. Altough we do not 

provide direct evidence for Neuropilin1 direct signalling, our data suggest 

that Neuropilin1 oligomer formation might be a key step in Neuropilin1 

biology. 
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INTRODUCTION 

Blood vessel development 

The blood vessel network supplies oxygen and metabolites, as well as 

immune cells, to all organs and tissues of our body. Establishing a 

functional vascular system is a complex event, governed by a perfect 

orchestration of cellular and molecular players.  

Vessel development could be reduced to different processes, often 

overlapping in nature: formation, branching, remodelling-pruning, 

stabilization, and specialization (Jain, 2003). 

De novo vessel formation could be explained by at least two mechanisms, 

vasculogenesis and angiogenesis (Figure 1.1) (Folkman, 2006). During 

embryonic development, haemangioblasts migrate and aggregate to give 

rise to blood islands (vasculogenesis), characterized by endothelial cell 

(EC) progenitors in the outer layer and haematopoietic progenitors in the 

inner layer (Choi et al., 1998; Huber et al., 2004; Risau, 1991; Vogeli et al., 

2006). Cells of the primary plexus stain positive for specific markers, such 

as CD34, Tie2, Sca-1 and Vascular Endothelial Growth Factor Receptor 2 

(VEGFR2) (Coultas et al., 2005; Faloon et al., 2000; Lancrin et al., 2009). 

The primitive vascular plexus undergoes remodelling through angiogenesis; 

this process combines sprouting, bridging and branching that convert 

existing primitive vessels in a mature circulation. Vascular remodelling 

requires proliferation, survival, migration, and differentiation of ECs 

(Carmeliet, 2003; Cleaver and Melton, 2003; Hanahan, 1997; Risau, 1991). 

Accordingly, several molecules are involved in these processes, and more 

than 30 genes, such as Vascular Endothelial Growth Factor (VEGF), Tie 2 
and Transforming Growth Factor-β (TGFβ), are essential for vascular 

development (Carmeliet et al., 1996; Dickson et al., 1995; Dumont et al., 

1994; Ferrara et al., 1996). A newly formed vessel network requires 
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stabilization, provided mainly by the recruitment of mural cells (MC) and the 

generation of extracellular matrix (ECM) (Cleaver and Melton, 2003; Jain, 

2003). At least four different pathways contribute and control this process, 

essentially providing communication between endothelial and mural cells. 
They are activated by a ligand/receptor pair interaction: PDGF/PDGFR-β, 

SIP1/EGD1, Ang-Tie and TGF-β/TGF-βR (reviewed in (Armulik et al., 

2005)). 

 
Figure 1.1. Mechanisms of vessel development. A primitive vascular 
network is formed by endothelial cell progenitors in a process defined as 
vasculogenesis; blood vessel remodelling, stabilization and specialization 
during angiogenesis give rise to a mature vessel network. PC: pericytes, 
SMC: smooth muscle cells. Adapted from Carmeliet, Nature 2005. 
 

An additional step in blood vessel formation is vessel specialization, a still 

poorly characterized tissue- and organ-specific process, which includes the 

formation of functional junctions between ECs and MCs, capillaries 

diversification as well as arterious-venous specification (Ruoslahti, 2002). 

In particular VEGF-signalling promotes arterial specification upstream the 

Notch pathway (Lawson et al., 2001; Lawson et al., 2002), while the 
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transcription factor COUP-TFII regulates differentiation towards the venous 

phenotype, inhibiting Neuropilin1 and Notch pathways (You et al., 2005). 

Interestingly, a mature blood vessel network displays a striking parallel with 

a nerve fiber network, suggesting the existence, even at a molecular level, 

of common pathways during development. Actually, compelling evidence 

establishes a growing role for axon guidance molecules even in vessel 

guidance, complementing and cooperating with canonical pathways; among 

them, the Semaphorin-Neuropilin1-Plexin and Netrin pathways (Carmeliet 

and Tessier-Lavigne, 2005).  

Pathological and physiological angiogenesis 

Blood vessels do not undergo major modifications in healthy adult 

organism, and angiogenesis is restricted to cycling ovary and placenta 

during pregnancy. Nonetheless, even though quiescent, ECs and therefore 

vessels are still angiogenesis-competent, as they can respond to hypoxic 

and inflammatory stimuli, as it happens during wound healing. 

Imbalance of the angiogenic stimulus, both towards excessive and 

insufficient angiogenesis, is characteristic of several pathologies; as a 

consenquence, optimal regulation of angiogenesis represents a crucial 

issue in human physiology and pathology (Figure 1.2). 

Excessive angiogenesis accompanies inflammatory and ocular disorders, 

in addition to tumor growth (Carmeliet, 2005a). The observation that tumor 

growth relies on blood supply led to the hypothesis that tumor angiogenesis 

inhibition could provide a successful strategy to treat cancer (Folkman, 

1971). Consequently, given the key role in angiogenesis for the VEGF 

pathway (Ferrara et al., 2003), several VEGF-targeting strategies are 

exploited in cancer treatment, including neutralizing anti-VEGF and anti-

VEGFR antibodies, soluble VEGFRs and tyrosine kinase inhibitors (Ferrara 

and Kerbel, 2005). Even though several clinical trials are currently 

exploiting more than 20 anti-VEGF agents, many unresolved issues, such 
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as development of drug resistance, still limit the efficacy of this therapy 

(Ellis and Hicklin, 2008; Ellis and Reardon, 2009). 

 

 
Figure 1.2. The angiogenetic switch. Several molecules are involved in 
fine balancing angiogenesis in human physiology and pathology, 
functioning both as positive and negative regulators. Adapted from 
Hanahan and Folkman, Cell 1996. 
 
To overcome these difficulties, while initial anti-angiogenesis strategies 

exploited mainly EC-targeting agents, more recent findings encourage the 

targeting of different cell types that indirectly influence tumor angiogenesis, 

such as cells of the immune system (Carmeliet, 2005a; Ferrara and Kerbel, 

2005). In addition, the lack of success of many anti-angiogenic therapies is 

influenced by the complex interaction between cellular and molecular 

players that characterizes vessel biology. 

Conversely, insufficient angiogenesis characterizes many ischemic 

diseases, such as limb and heart ischemia, leading to inadequate vessel 

formation. Therefore, induction of revascularization by delivering pro-

angiogenic molecules represents an appealing therapy for patients with 

ischemic diseases (Baumgartner and Isner, 2001; Isner et al., 2001). 

Results obtained from several clinical trials, that exploited recombinant 

protein delivery as well as gene therapy with pro-angiogenic factors, 
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indicate that the best therapeutical strategy is the combination of pro-

angiogenic agents (Rissanen and Yla-Herttuala, 2007). Adeno Associated 

Virus-based vectors represent, for their tropism and low inflammatory 

potential, a good candidate for cardiovascular gene therapy (Giacca, 2007). 

Concluding, several clinical trials are currently ongoing for vessel 

imbalance-related diseases, and again, due to its role as a master switch in 

the angiogenic process, VEGF has been extensively studied. 

The most interesting features of VEGF and VEGFRs, with particular 

attention to VEGFR2, will be discussed in the following paragraphs. 

Vascular Endothelial Growth Factors 

Currently, the VEGF family comprises seven members, namely PlGF 

(Placenta Growth Factor), VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E 

and sv-VEGF (snake venom VEGF). They act mainly as inducers and 

modulators of vasculogenesis, angiogenesis and vascular remodelling in 

vivo, even if their influence is not restricted to endothelial cells (Carmeliet 

and Storkebaum, 2002; Carmeliet and Tessier-Lavigne, 2005; Ferrara et 

al., 2003; Matsumoto and Claesson-Welsh, 2001) (Figure 1.4). 

Active, secreted forms of VEGF members form homo and hetero-dimers, 

thus increasing signalling diversity; their biological effects are mainly 

mediated by their receptors VEGFR1, VEGFR2 and VEGFR3, in 

association with coreceptors, such as those belonging to the Neuropilin, 

Heparan Sulfate Proteoglycan (HSPG) and integrin families (Jakobsson et 

al., 2006; Soker et al., 1998; Soldi et al., 1999). 

VEGF-A 
VEGF-A, also referred as VEGF, was discovered as an essential player in 

angiogenesis (Ferrara and Henzel, 1989). Remarkably, VEGF-A is required 

in vivo for proper development of the cardiovascular system; even the 

quantity of VEGF-A is critical in order to obtain normal vessel development, 
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since VEGF-A is haploinsufficient (Carmeliet et al., 1996; Ferrara et al., 

1996). Recent data pointed out the importance of VEGF also in vessel 

maintenance: VEGF produced by endothelial cells is crucial for vascular 

homeostasis, through a cell autonomous VEGF signalling (Lee et al., 2007); 

this observation confirms the pleiotropic role of VEGF in vessel biology. 

Importantly, VEGF-A has been originally described as Vascular 

Permeability Factor (VPF), due to its ability to increase vascular 

permeability, disrupting vascular barrier integrity (reviewed in (Weis and 

Cheresh, 2005)). 

In accordance with its key role in vessel formation, VEGF availability is 

controlled at many levels, including transcription, mRNA stability and 

translation, post translational modification and binding affinity. 

At the transcriptional level, many stimuli, including growth factors, p53 

mutation, nitric oxide (NO), hormones, cytokines and cellular stress control 

VEGF expression (Takahashi and Shibuya, 2005). In particular, hypoxia, 

via Hypoxia Inducible Factor 1 (HIF-1) is the major positive regulator of 

VEGF expression. Hypoxic conditions induce accumulation of the highly 
instable α subunit of HIF-1, leading to the formation of an active 

transcriptional activator that binds to the Hypoxia Responsive Elements 

(HRE) in the 5ʼ flanking region of the VEGF promoter (Pages and 

Pouyssegur, 2005).  

Hypoxia is a key factor for VEGF stabilization also at mRNA level, 

controlling mRNA stability by binding of regulatory proteins to the 3ʼ 

Untranslated Region (UTR), as well as mRNA translation via IRES 

sequences present in the 5ʼ UTR (Stein et al., 1998). 

The observation that Dicer protein mutant mice are characterized by 

severely compromised blood vessel formation, displaying reduced levels of 

VEGF-A mRNA, suggest that also miRNA have a role in controlling VEGF 

levels at the post transcriptional level (Yang et al., 2005). 
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Human VEGF-A gene, located on chromosome 6, is about 25 Kb long and 

comprises 8 exons (Tischer et al., 1991). VEGF mRNA undergoes 

alternative splicing of exons 6 and 7, which encode for binding motifs to 

heparin and similar molecules. In humans, alternative splicing give rise to at 

least nine isoforms: VEGF121, VEGF145, VEGF148, VEGF162, VEGF165, 

VEGF183, VEGF189 and VEGF206 (Figure 1.3). In mice all isoforms are one 

aminoacid shorter than their human counterparts. Another isoform, 

VEGF165b, is generated by exon 8 distal splice site selection, and differs 

from VEGF165 only in the carboxy-terminal six amino acids, thus resulting in 

a change of the aminoacidic sequence form CDKPRR to SLTRKD (Harper 

and Bates, 2008).  

 
Figure 1.3. VEGF-A splicing. Alternative splicing of VEGF-A mRNA gives 
rise to almost nine VEGF isoforms, characterized by different length (small 
numbers) and therefore different binding properties. A different distal splice 
site selection in exon 8 originates VEGF165b. Adapted from Takahashi and 
Shibuya, Clinical Science 2005. 
 
Remarkably, even if VEGF165b seems to bind to VEGFR2 with the same 

affinity as VEGF165, it lacks angiogenic properties, and is therefore defined 

as anti-angiogenic (Woolard et al., 2004). The molecular bases of VEGF165b 

properties were recently clarified: VEGF165b is not able to engage 

Neuropilin1 in the VEGFR2 signalling complex, and is a weak inducer of 
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VEGFR2 phosphorylation at tyrosines 1054-1059 in the activation loop 

(Kawamura et al., 2008b).  

The VEGF165 isoform is the one preferentially expressed, followed by 

VEGF121 and VEGF189; how differential splicing of these isoforms is 

regulated is however largely unknown.  

VEGF165, a secreted homodimer with moderate affinity for heparin, is a 

powerful inducer of endothelial cell migration, proliferation, survival and 

vascular permeability (Leung et al., 1989; Senger et al., 1983). The 

importance of VEGF165 in vessel development is highlighted by the 

observation that VEGF164 mice are normal and healthy, while VEGF120 

puppies exhibit serious vascular remodelling defects, including defective 

branching (Stalmans et al., 2002). Altogether, the use of transgenic animals 

expressing selectively VEGF isoforms indicates that they play distinct roles 

in vascular morphogenesis and arterial development, a feature depending 

on their diffusibility and differential interaction with VEGF coreceptors, as 

discussed later (Carmeliet et al., 1999; Ruhrberg et al., 2002; Stalmans et 

al., 2002). 

In conclusion, VEGF is a key regulator of angiogenesis in health ad 

disease, stimulating endothelial cell migration and division, and is critical for 

vascular development. Therefore gene expression regulation, alternative 

splicing, in addition to other mechanism, contribute to the tight regulation of 

VEGF activity, crucial for the formation and maintenance of a proper blood 

vessel network. 

It is noteworthy to mention that recent studies also indicate that VEGF 

might exert its effect on a variety of cell types, besides ECs. For instance 

VEGF appeared to be critical to prevent motor neuron degeneration, also 

exerting a direct action on neurons (Zacchigna et al., 2008a). A potent 

effect of VEGF in promoting survival and regeneration of skeletal muscle 

cells was also reported (Arsic et al., 2004; Germani et al., 2003). Finally, we 
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observed an effect of VEGF165 on bone marrow (BM) derived CD11b+ cells, 

as these cells expressed VEGF receptors. In particular we observed the 

induction of VEGF-dependent BM cells migration, proliferation and 

secretion of cytokines able to trigger smooth muscle cell recruitment 

(Zacchigna et al., 2008c). 

VEGF has a role also in tissue homeostasis, for instance in liver biology 

(LeCouter et al., 2003). 

PlGF 
PlGF is a secreted factor, and like VEGF-A, can undergo differential 

splicing, giving rise to at least four different isoforms, PlGF-1, PlGF-2, 

PlGF-3 and PlGF-4 (Yang et al., 2003). 

Several gene inactivation studies have revealed that PlGF deficient mice, 

differently from VEGF-A, are viable and healthy, suggesting that 

endogenous PlGF is not necessary for vascular development and 

physiological vessel maintenance in healthy adult organisms (Carmeliet et 

al., 2001).  

At a cellular level, PlGF acts as a pleiotropic factor, stimulating 

angiogenesis directly targeting endothelial and mural cells, and indirectly 

through the recruitment of pro-angiogenic cell (Clauss et al., 1996; Hattori 

et al., 2002; Luttun et al., 2002). Its pleiotropic activity is reflected by the 

observation that PlGF stimulates EC growth, migration and survival, while is 

mainly a chemoattractant for BM progenitors (Cao, 2009). PlGF-activity on 

these cells is mediated by binding to VEGFR1, but not to VEGFR2, and 

probably to Neuropilin1 and Neuropilin2, two PlGF coreceptors; 

downstream intracellular signalling switches on a series of pro-angiogenic 

genes (Autiero et al., 2003b). 

Interestingly, animal knock out studies have revealed that PlGF activity is 

fundamental for the angiogenic and inflammatory switch in various 

pathologies, such as tumor growth and ischemia, raising the possibility that 
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PlGF might be a disease-specific angiogenic factor (Carmeliet et al., 2001). 

Additionally, PlGF levels are undetectable in most organs in healthy 

conditions, while many cell types, including ECs, SMCs, and BM 

progenitors express PlGF in pathological conditions (Fischer et al., 2008). 

Taken together these results suggest that PlGF targeting might reduce 

pathological angiogenesis without affecting healthy blood vessels. A 
monoclonal blocking antibody recognizing mPlGF (αPlGF) inhibits the 

growth and metastasis in more than 10 tumor models in mice. Inhibition of 
tumor growth depends on the pleiotropic effect of this antibody: i) αPlGF not 

only inhibits tumor vessel growth, but also causes regression of pre-existing 

tumor vessels; ii) it is anti-inflammatory, inhibiting recruitment of Tumor 

Associated Macropharges (TAM); iii) it impairs tumor lymphangiogenesis, 

mainly through macrophage inhibition (Fischer et al., 2007).  

Therefore genetic and pharmacological studies have identified PlGF as a 

possible therapeutic target for anticancer therapy, particularly in 

combination with VEGF-VEGFR inhibitors. 

VEGF-B 
The VEGF-B gene generates, through alternative splicing, two protein 

isoforms, a heparin-binding isoform of 167 amino acids and a diffusible 

isoform of 186 amino acids, differing at their C-terminus (Li et al., 2001; 

Olofsson et al., 1996a; Olofsson et al., 1996b). In addition to VEGFR1, and 

similar to the VEGFA isoforms containing exon 7 of the VEGFA gene 

(including VEGF-A165) and to PlGF, both VEGFB167 and VEGFB186 also 

bind NP1 and NP2, expressed on endothelial as well as on other cell types 
(Li et al., 2001). 

The VEGFB gene displays a unique expression pattern with prominent 

expression in the heart during embryonic development (Lagercrantz et al., 

1998). Mice knock out for this factor develop normally, however display a 

mild cardiac phenotype, characterized by dysfunctional coronary 



 14 

vasculature, impaired recovery from cardiac ischemia, and, most notably, 

decreased heart size (Bellomo et al., 2000). In another mouse strain, the 

VEGFB knock out specifically generates atrial conduction abnormalities 

(Aase et al., 2001). In addition, recent work reassessing the role of 

VEGFB167 during ischemia has indicated that this factor, delivered either as 

a recombinant protein, or using adenoviral vectors or through the 

implantation of transfected myoblasts, significantly increased 

revascularization of the infarcted myocardium, however failed to enhance 

vascular growth in the skin or ischemic limb (Li et al., 2008). 

VEGF-B overexpression has been proven to induce myocardium specific 

angiogenesis and arteriogenesis in rabbits and pigs upon acute infarction 

(Lahteenvuo et al., 2009). 

Heart and skeletal muscle are the tissues characterized by the highest 

VEGF-B expression, even if many different tissues, including ECs and 

brain, usually express VEGF-B (Li et al., 2001); conversely, the role of 

VEGF-B in tumor growth remains elusive. At the cellular level, VEGF-B 

receptors are VEGFR1 and NP1, and VEGF-B stimulates directly 

endothelial cell migration and growth (Cao, 2009). 

VEGF-C and VEGF-D 
VEGF-C and VEGF-D share peculiar characteristics: they present unique N 

and C terminal extensions different from the other VEGF members, they 

bind and activate VEGFR3 in addition to VEGFR2 and their affinity for this 

receptor is increased upon their proteolitic cleavage (Lohela et al., 2009). 

VEGF-C gene is composed by seven exons, and this protein is expressed 

in the heart, small intestine, placenta, ovary and the thyroid gland in adults 

(Roy et al., 2006). VEGF-C is essential for lymphangiogenesis, as lack of 

VEGF-C in mice leads to a complete absence of lymph vessels and 

embryonic lethality, while blood vasculature grows normally (Karkkainen et 

al., 2004).  
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VEGF-D is 48% identical to VEGF-C, and it is expressed in many adult 

tissues including the vascular endothelium, heart, skeletal muscle, lung, 

and bowel (Roy et al., 2006). 

VEGF-D has been shown to be largely dispensable for the development of 

lymphatic system, and its physiological role needs to be further clarified 

(Baldwin et al., 2005), even if in vitro this factor is able to stimulate 

migration and proliferation of endothelial cells; additionally, this factor 

seems to have  a role in tumor angiogenesis and lymphangiogenesis 

(Achen et al., 2001; Stacker et al., 2001). 

Recently, data obtained using double KO mice for VEGF-C and VEGF-D, 

showed that both VEGF-C and VEGF-D are displensable for embryonic 

angiogenesis; additionally, it has been shown that VEGF-C/D KO does not 

phenocopy VEGFR3 KO (Haiko et al., 2008). 

 

The discovery of VEGF homologues in the genome of parapoxvirus Orf 

(VEGF-E) and in snake venom (svVEGF) finally confirms the pleiotropic 

role of VEGF family members (Shibuya, 2003). 

 

VEGF Receptors 

A key element in the complex regulation of VEGF activity is represented by 

the VEGF-receptors (VEGFR): VEGFR1 (or Flt1), VEGFR2 (or KDR, Flk1) 

and VEGFR3 (Flt4), expressed by several cell types (Figure 1.4). VEGFRs 

belong to the Tyrosine Kinase Receptor (TKR) superfamily. These consist 

of an extracellular domain composed by seven Immunoglobulin (Ig) like 

domains (Ig), a short transmembrane and a juxtamembrane segment, and 

are characterized by a split intracellular tyrosine kinase domain interrupted 

by a 70 aa long kinase insert domain (Carmeliet, 2005b; Matsumoto and 

Claesson-Welsh, 2001; McTigue et al., 1999; Olsson et al., 2006; Roskoski, 

2008; Shibuya and Claesson-Welsh, 2006). 
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Figure 1.4. Interaction between VEGFs and VEGFRs. VEGFs can 
selectively bind different VEGFRs, expressed on the cell surface of 
endothelial cells, monocytes and tumor cells. The three VEGF tyrosine 
kinase receptors can form homo and hetero-dimers as a consequence of 
ligand binding, eventually leading to intracellular signalling. Adapted from 
Ferrara et al, Nature Medicine 2003. 
 
VEGF binding to VEGFRs is the initial step for signal transduction, 

accompanied by receptor homo and hetero-dimerization. Therefore, the 

characterization of receptor dimer dynamics represents a crucial step in 

understanding receptor activation. Tyrosine kinase activation parallels 
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dimer formation and leads to autophosphorylation; finally, phosphorylated 

receptors recruit intracellular partners. 

VEGFR1 
VEGFR1/Flt1, together with VEGFR2, has a primary role in angiogenesis, 

playing a complex regulatory role (Shibuya, 2006). Even if VEGFR1 and 

VEGFR2 are structurally similar, VEGFR1 function is different and 

multifaceted, functioning both as a negative and positive regulator of 

angiogenesis (Olsson et al., 2006). Interestingly, VEGFR1 has ten fold 

higher affinity for VEGF compared to VEGFR2  (Waltenberger et al., 1994). 

VEGFR1 activity results from its binding to three different gene products 

belonging to the VEGF family, namely VEGF-A, VEGF-B and PlGF. 

The concept that VEGFR1 has a negative regulatory role during early 

embryogenesis was suggested by the observation that VEGFR1 null mice 

die at embryonic day 8.5-9.0, displaying a disorganized vascular 

endothelium and overgrowth of endothelial cells (Fong et al., 1995). 

Interestingly, VEGFR1 kinase activity seems to be dispensable during 

embryogenesis, since mice expressing a VEGFR1 mutant that lacks the 

tyrosine kinase domain develop an essentially normal vasculature 

(Hiratsuka et al., 1998). Therefore, VEGFR1 has been proposed to act as a 

VEGF-A trap, thus preventing excessive VEGFR2 activation during 

embryonic development (Shibuya, 2001). A physiological role of this 

endogenous VEGF-A trap was demonstrated in adult life; a soluble 

VEGFR1, known as sFlt1 and expressed also by human placenta (Shibuya 

et al., 1990), is essential in order to preserve corneal avascularity (Ambati 

et al., 2006; Ambati et al., 2007). 

Nonetheless, VEGFR1 has a functional role in active transduction of VEGF 

signalling, well clarified in cells lacking other VEGFRs. 

Monocytes/macrophages migration in response to VEGF-A is mediated by 

VEGFR1, also trough interaction with Neuropilin1 (Barleon et al., 1996; 
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Zacchigna et al., 2008c). Additionally, VEGFR1-mediated migration of 

haematopoietic bone marrow progenitors initiates the pre-metastatic niche 

in mouse models (Kaplan et al., 2005), even if this finding has been 

recently discussed (Dawson et al., 2009a; Dawson et al., 2009b).  

VEGFR1 signalling.  

Despite its ability to bind VEGF-A with more then 10-fold higher affinity than 

VEGFR2, VEGFR1 undergoes only a weak phosphorylation, even if all 

kinase motifs are conserved (Waltenberger et al., 1994). Relevant to this 

issue, VEGFR1 and VEGFR2 share a 43% of overall homology, lower in 

the extracellular domain (33%) and higher in the kinase domains (70%). 

Nevertheless, the mechanism responsible for VEGFR1 kinase-impaired 

activity is still debated. On one hand the juxtamembrane domain, probably 

by forming an intracellular structure inhibiting accessibility of regulatory 

sequences, has been implicated in kinase repression (Gille et al., 2000). 

On the other hand, it has been proposed that substitution of a single 

aminoacid from aspartic acid at position 1050 (conserved among many 

RTKs) to asparagine (in VEGFR1) is linked with its decoy activity, in 

particular by inhibiting phosphorylation in the activation loop (Meyer et al., 

2006).  Additionally, taking advantage of overexpression studies to 

overcome weak signals, several VEGFR1 tyrosine residues were identified 

as phosphorylated, together with their interacting partners (among others 

SH2, p38/PI3K, Grb2 and Nkc) (Olsson et al., 2006; Shibuya, 2006). 

Further observations indicate that different VEGFR1 ligands, VEGF-A and 

PlGF, induce different phosphorylation patterns (Autiero et al., 2003a). 

Nevertheless, the complexity of VEGFR1 downstream signalling is far from 

being clarified. 

An additional regulation level is provided by the interplay between different 

VEGFRs, usually coexpressed by endothelial cells. In particular, VEGFR1 

has the ability to form heterodimers with other VEGFRs, thus modulating 
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their response both in a negative and positive manner. In support of its 

inhibitory role it has been shown that Flt1 can suppress VEGFR2 mediated 

proliferation but not migration of endothelial cells (Zeng et al., 2001). 

Conversely, it has been demonstrated that PlGF-driven VEGFR1 activation 

leads to amplification of VEGFR2-mediated angiogenesis, through 

intermolecular trans-phosphorylation of Flk1; this observation suggests an 

inter- and intra-molecular crosstalk between VEGFR1 and VEGFR2 

(Autiero et al., 2003b). 

VEGFR1, together with Neuropilin1 and Neuropilin2, constitutes the 

functional receptor for PlGF in cells where it is primarily expressed, such as 

tumor cells. For this reason, an anti-PlGF blocking antibody, inhibiting 

binding to VEGFR1 and formation of VEGFR1-Neuropilin1 complexes, 

inhibits also the growth and metastasis of various tumors (Fischer et al., 

2007). These results strengthen the functional role of VEGFR1 in 

pathological conditions such as tumor growth. 

Thus, the role and the mechanism by which VEGFR1 supports 

angiogenesis are complicated and likely involve several different 

mechanisms, including VEGFR1 decoy activity, formation of complexes 

with other receptors as well as direct signalling. 

In order to further clarify VEGFR1 biology, it will be particularly interesting 

to study in vivo interaction between VEGFR1 and VEGFR2, and how this 

interaction might give rise to different biological effects. 

VEGFR2 
The experimental evidence that VEGFR2 signalling is required for 

cardiovascular development (Shalaby et al., 1995) and that has a major 

role in neovascularization in both physiological and pathological conditions 

has stimulated a general interest in understanding VEGFR2 biology. 

Therefore, due to its key role in vessel biology, several aspects regulating 

VEGFR2 activity have been studied and will be discussed (Figure 1.5).  
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Expression 

During development, VEGFR2 is detectable from E7.5 in mesodermal cells 

of the tail region; VEGFR2 positive cells migrate and differentiate into 

primitive endothelial cells (Shalaby et al., 1995). During adult life VEGFR2 

is expressed mostly in vascular and lymphatic ECs. Even if lower levels of 

VEGFR2 are detected in haematopoietic stem cells, neurons, osteoblasts 

as well as megakaryocites (Matsumoto and Claesson-Welsh, 2001), 

VEGFR2 biology has been so far analyzed mainly in EC. The 5ʼ non-coding 

region and the 3ʼ region of the first intron are required to properly regulate 

VEGFR2 expression in ECs (Shibuya and Claesson-Welsh, 2006). Recent 

data show that Extra Cellular Matrix (ECM) is able to control VEGFR2 

expression in vitro and in vivo, and that this action is mediated by 

p190RhoGAP (Mammoto et al., 2009). 

In accordance to its major regulatory role in angiogenesis, VEGFR2 is 

upregulated during pathological angiogenesis, such as in tumors, and 

VEGF-A has a positive effect on VEGFR2 expression by means of a 

positive feedback mechanism (Shibuya and Claesson-Welsh, 2006). 

Ligand binding and dimerization 

In addition to VEGF-A (Kd=75-760 pM), VEGFR2 is able to bind VEGF-E, 

sv-VEGF as well as processed VEGF-C and VEGF-D. Thereby, VEGFR-2 

represents the major mediator of VEGF-A-induced proliferation, migration 

and permeability in EC. 

Since the observation that VEGFR2-VEGF binding requires Ig domain 2 

and 3 of the receptor and is likely to occur at the ligand dimer interface, 

many crystallography studies have focused on the VEGF-VEGFR2 

interaction in order to develop anti-angiogenic drugs (Roskoski, 2008). 

Ligand binding is accompanied, as in many RTK, by receptor dimerization, 

the first step toward receptor activation. 
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Figure 1.5. VEGFR2 activity regulation. VEGFs induce VEGFR2 
phosphorylation, and in addition receptor activation is tightly regulated by 
coreceptors expressed even in trans. Additional cellular mechanisms  
contribute to fine tune VEGFR2 signalling. 
 

In particular, Ruch and coworkers, based on Electro Microscopy 

observations of soluble molecules, propose that VEGF induces transition of 

VEGFR-2 extracellular domains from an highly flexible conformation to a 

more stable, rigid arrangement, which is stabilized by homotypic 

interactions of membrane-proximal and membrane-distal immunoglobulin-

like domains (in particular involving the Ig domain 7). In the full-length 

protein, the rigid arrangement of two receptor monomers is probably 

required for the exact positioning of the intracellular kinase domains (Ruch 
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et al., 2007). 

Nonetheless, the precise mechanism linking VEGF binding and receptor 

homo and hetero-dimerization is still far from being clarified. 

Trafficking 

Since protein trafficking controls the relative amount of receptor available 

for VEGF binding at the plasma membrane, this aspect is crucial in fine-

tuning VEGF activity at the cellular level. Nonetheless, many issues 

regarding VEGFR2 trafficking are still debated, such as internalization 

through caveolin-1 vesicles or clathrin coated pits (Mukherjee et al., 2006). 

Surprisingly, in HUVE cells more than 40% of VEGFR2 protein was found 

to be localized in an internal vesicular pool positive for early endosomal 

compartment markers (EEA1, Rab4); VEGF stimulation not only induces 

VEGFR2 downregulation, as expected for a TKR, but also redistribution to 

a late endosomal compartment and finally recycling of the receptor 

(Gampel et al., 2006). Apart from intrinsic tyrosine kinase activity, required 

for VEGFR2 trafficking and degradation (Ewan et al., 2006), the stimuli 

controlling the endocytic itinerary of VEGFR2 are still undisclosed. 

Moreover, it is still not clear whether VEGFR2 internalization and 

degradation depend on c-Cbl mediated ubiquitination or on PKC-mediated 

VEGFR2 C-tail serine phosphorylation (Duval et al., 2003; Singh et al., 

2005).  

The complexity of VEGFR2 trafficking is emphasized by the observation 

that internalized receptors are still able to induce intracellular signalling, and 

therefore molecules such as Vascular Endothellial (VE)-cadherin, 

controlling VEGFR2 internalization, might finally control VEGF signalling 

(Lampugnani et al., 2006).(Jakobsson et al., 2006) 

Coreceptors 

An additional mechanism that regulates VEGFR2 downstream signalling is 

represented by membrane associated VEGFR2 coreceptors, such as 
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Neuropilins (Neufeld et al., 2002), Heparan Sulfate Proteoglycans (HSPGs), 

and VE-cadherin (Carmeliet and Collen, 2000). Interestingly, the interaction 

between VEGFR2 and some coreceptors can occur in trans: it has been 

shown that VEGF165-VEGFR2 signalling is increased in EC, when HSPG 

are expressed in trans in a co-culture system (Jakobsson et al., 2006). 

Moreover, VEGFR2 was found to be part of a mechano-sensory complex 

triggered by fluid shear stress and comprising PECAM-1 and VE-cadherin, 

that leads to the conformational activation of integrins (Tzima et al., 2005). 

VE-cadherin, a specific component of endothelial adherent junctions, has 

been found to limit VEGFR2 mediated mitogenic signal (Grazia 

Lampugnani et al., 2003). This VE-cadherin induced inactivation, mediated 

by decreased receptor phosphorylation, can be interrupted by receptor 

internalization (Lampugnani et al., 2006).  

Finally, integrins have been found to associate with VEGFR2 in EC, and 

play a crucial role in balancing VEGFR2 activity. For instance, the αvβ3 

integrin, upon binding to its ligand vitronectin, enhances VEGFR-2 

phosphorylation, PI 3-kinase activity, focal adhesion dynamics as well as 

proliferation and migration of ECs triggered by VEGF-A (Napione et al., 

2007; Soldi et al., 1999). In contrast to the αvβ3/vitronectin (or fibrin) pair, 

collagen I, the ligand of α1β3 and α2β1 integrins, exerts an inhibitory action 

reducing VEGF-A-induced VEGFR-2 autophosphorylation by recruiting the 

tyrosine phosphatase SHP2 (Mitola et al., 2006). 

Structure and kinase activity 

Relatively few tyrosine (Tyr) residues were identified as phosphorylation 

sites in VEGFR2 including human Tyr951 (949 in the mouse sequence) and 

996 (994) in the kinase insert domain, Tyr1054 (1052) and 1059 (1057) in 

the kinase domain, and Tyr1175 and 1214 in the C-terminal tail. Proteomic 

studies identified three additional tyrosines as phosphorylated at a low 

stoichiometry in the C-terminal tail of hVEGFR2: Tyr1305, 1309 and 1319 
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(Matsumoto et al., 2005). On the other hand, Tyr1175 and 1214 were 

identified as two major VEGF-A dependent autophosphorylation residues 

(Takahashi and Shibuya, 2005) (Figure 1.6). 

Since VEGFR2 is a tyrosine kinase enzyme, its phosphorylation is linked to 

its structure, as VEGF-A binding leads to receptor dimerization, protein 

kinase activation and trans-autophosphorylation. Therefore, comprehension 

of VEGFR2 structure is functional in order to understand its activity. 

From a structural point of view, human VEGFR2 kinase domain can be 

subdivided in:  

• a proximal kinase domain (residues 827-931) 

• a kinase insert domain (residues 932-998); this segment, although not 

directly involved in catalysis, is important in signal transduction as a 

docking site for cellular proteins 

• a distal kinase domain (residues 999-1158), containing both the 

catalytic and the activation loop. 

Two lobes, similarly to other TKRs such as EGFR, characterize the catalytic 

core of VEGFR2, with the active site located in the cleft between the N-

terminal and the C-terminal lobe. The smaller N-lobe is predominantly 
formed by antiparallel β-sheets and contains the glycin-rich ATP-Phosphate 

binding loop, while the larger C-lobe is characterized by α-helices and 

includes the activation and catalytic loops (McTigue et al., 1999). 

Conformational changes at the level of these lobes are linked to inter-

conversion of the kinase from inactive to active state and finally to catalysis. 

In particular, when VEGFR2 is an inactive state, the activation loop that 

comprises two tyrosines (1054 and 1059) is in a “closed” conformation that 

prevents substrate binding. Phosphorylation in the activation loop stabilizes 

it in its active, “opened” conformation (Roskoski, 2008) (see 

http://www.ebi.ac.uk/pdbsum/2oh4 for VEGFR2 crystal structure).  
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Figure 1.6. VEGFR2 intracellular part. Human VEGFR2 intracellular 
domains are highlighted, while white bars and residue numbers indicates 
the main phosphorylated tyrosines. In addition, position of the catalytic and 
activation loops is shown. 
 
 
An interesting issue is how VEGFR2 dephosphorylation is regulated. To our 

knowledge, SHP2 and VE-PTP are the only tyrosine phosphatases that 

have been demonstrated to interact and dephosphorylate VEGFR2 

(Mellberg et al., 2009; Mitola et al., 2006); in particular SHP2 favours 

VEGFR2 internalization, and might be responsible for collagen I negative 

regulation of VEGFR2 signalling (Mitola et al., 2006). 

Downstream signalling 

The multiplicity of cellular functions controlled by the VEGF-VEGFR2 axis is 

reflected by the diversity of signalling cascades that are activated upon 

ligand binding. Accordingly, a complex network of signal transduction leads 

to cell migration, cell survival, cell proliferation, vascular permeability, actin 

remodelling and focal adhesion turnover.  

The characteristics of VEGFR2 downstream signalling are additionally 

modulated by the formation of different membrane signalling complexes, in 

addition to association with other VEGFRs and coreceptors such as 

Neuropilins, as discussed later. 
PLCγ . Endothelial cell culture experiments demonstrated that 

phosphorylated Tyr1175 represents the single major site for PLCγ binding 

to VEGFR2, and has a key role in the activation of the PLCγ-PKC-MAPK 

pathway (Takahashi et al., 2001). Later on, the same group demonstrated 
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the relevance of Tyr1175 (1173 in mice) and its downstream signalling in 

vivo. Knock-in mice with a single aminoacid substitution (Tyrosine 1173 to 

phenylalanine) died at E8.5-9.5 as a consequence of endothelial and 

haematopoietic cells defects, such as blood vessel deficiency, comparable 

to VEGFR2 null mice. Conversely, substitution of the highly 
phosphorylated, but not required for PLCγ signalling, Tyr 1212 (1214 in 

human) with phenylalanine, gave rise to viable and fertile mice (Sakurai et 

al., 2005). 
Even PLCγ activity is fine tuned by VEGFR2 signalling: c-Cbl, recruited and 

phosphorylated by VEGFR2, promotes PLCγ ubiquitination, inhibiting signal 

transduction (Singh et al., 2007). 
Recently, VEGF induced PLCγ-PKC pathway activation was linked to VEGF 

-target genes regulation, through phosphorylation of HDAC7 and its nuclear 

export, thus providing a direct connection between VEGF stimulation and 

histone acetylation (Ha et al., 2008). 

PI3K. Another event that strictly relies on Tyr1175 phosphorylation is the 

activation of the PI3K-Akt-PKB pathway for cell survival and migration, as 

inferred form studies in endothelial cells (Dayanir et al., 2001; Gerber et al., 

1998). Shb is one of the adaptor molecules binding to pTyr1175 and 

mediating PI3K-dependent endothelial cell migration (Holmqvist et al., 

2004). Nonetheless, since VEGFR2 induced PI3K activation is not so 

strong, activation of an additional pathway to sustain VEGF induce 

migration is likely to occur (Takahashi and Shibuya, 2005). One single 
specific PI3K isoform, namely 110α, is the preferential mediator of VEGF-A 

dependent migration of endothelial cells in vitro, and has been linked with 

developmental angiogenesis in vivo (Graupera et al., 2008). 

Recent studies highlighted the role of Akt and its substrate Gridin in 

neovascularization during adult life, as mediators of VEGF-triggered 

vascular remodelling (Kitamura et al., 2008). 
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Ras. Even if VEGF is not a powerful mitogen for EC, Ras dependent and 

independent Raf-MEK-MAPK pathway activation seems to occur 

depending on cell types (Olsson et al., 2006). 

Gab and Grb2. Grb2, Gab1 and Gab2 are scaffolding adaptors involved in 

many TKR signalling such as EGFR. Gab1 and Grb2 were shown to be 

involved in VEGFR2 downstream signalling, and a model inferred from in 

vitro data includes a direct interaction between VEGFR and Grb2, the latter 

able to bind Gab1. This system has been linked to PI3K activation, 

endothelial cell migration and capillary formation (Laramee et al., 2007). 

TSAd/VRAP. Tyr951 (mouse 949), an additional VEGFR2 phosphorylation 

site, has been identified as the binding site for the T-cell specific adaptor 

(TSAd, or VEGFR-associated protein VRAP) (Matsumoto et al., 2005). The 

same group demonstrated that VEGFR2-TSAd coupling is responsible of 

actin reorganization and therefore endothelial cell migration, but seems not 

to be linked to cell proliferation; additionally, TSAd is probably involved in 

tumor angiogenesis. 

Cdc42 p38 MAPK. EC migration downstream to VEGFR2 is also regulated 

by phosphorylation of Tyr1214 (1212), which triggers sequential activation 

of Cdc42 and SAPK2/p38, finally driving the SAPK2/p38-mediated actin 

remodelling of stress fibers in endothelial cells exposed to VEGF (Lamalice 

et al., 2004). Additional molecules, such as IQGAP1, are able to bind 

VEGFR2, and induce both VEGF induced migration and proliferation 

(Meyer et al., 2008) 

FAK-paxillin. VEGF promotes cell migration through a RhoA-ROCK 

dependent mechanism, activating Focal Adesion Kinase (FAK) and finally 

paxillin (Le Boeuf et al., 2006). 

VEGFR2 post-translational modifications 

As post translational modifications (PTMs) represent a fine mechanism to 

control protein function, it is not surprising that VEGFR2 can be targeted by 
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different PTMs in addition to tyrosine phosphorylation, crucial for receptor 

activation. 

Glycosilation is important in VEGFR2 protein maturation; the VEGFR2 pool 

present at the plasma membrane is N-glycosilated (Takahashi and 

Shibuya, 1997). 

Poly-ubiquitination is one of the signals involved in receptor down-

regulation upon VEGF stimulation, even if the details of this modification 

are still unknown (Duval et al., 2003). 

 

VEGFR3 
VEGFR3/Flt4 constitutes the receptor for the VEGF-C and VEGF-D family 

members. The observation that, in adults, VEGFR3 expression is restricted 

to the lymphatic endothelium and the use of genetic models linked this 

receptor mainly to lymphatics development and maintenance (Kaipainen et 

al., 1995; Veikkola et al., 2001). In particular, VEGFR3 signalling is required 

for lymphatic endothelial cells sprouting as well as lymphatic vessel 

maintenance through the inhibition of apoptosis (Alitalo et al., 2005). 

Nonetheless, VEGFR3 gene targeted mice exhibit defects in arterial-

venous remodelling of the primary vascular plexus, leading to embryonic 

lethality from day E9.5 (Dumont et al., 1998). Therefore, during embryonic 

development, VEGFR3 activity is not restricted to lymphatics, but has an 

important function in blood vessel development. Recent data extended the 

role of VEGFR3 in angiogenesis also during adult life; VEGFR3 was found 

to be highly expressed in angiogenic sprouts, while targeting of VEGFR3 

signalling resulted in decreased sprouting, vascular density, vessel 

branching and endothelial cell proliferation in mouse angiogenesis models 

(Tammela et al., 2008). VEGFR3 is also found to be upregulated in tumor 

microvasculature, thus opening the possibility to exploit VEGFR3 targeting 

agents to inhibit tumor growth (Saharinen et al., 2004). 
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The extension of VEGFR3 role not only to lymphatic biology, but also to 

pathological and embryonic development, warrants further studies to define 

the molecular mediators of these diverse activities, still poorly explored. 

VEGFR3 signalling 

Two conserved tyrosine residues in the kinase domain of VEGFR3 are 

probably responsible for its kinase activity, and additional tyrosine 

phosphorylation sites have been identified in the VEGFR3 C-terminal tail 

(Dixelius et al., 2003). Signal transduction downstream to VEGFR3 has 

been only partially characterized: Shc2/Grb2 interact directly with the 

receptor, while downstream intracellular mediators identified until now 

comprise ERK1/2, PI3F-Akt, STAT3 and STAT5 transcription factors 

(Olsson et al., 2006). 

As already mentioned in the case of VEGFR1, VEGFR3 signalling can be 

modulated by the interaction with VEGFR2 and other co-receptors, in this 

case Neuropilin2. The formation of these complexes is biologically relevant 

and, for example, VEGFR2-VEGFR3 hetero-dimers might form in vivo both 

in lymphatic cells and subtypes of endothelial cells, resulting in differential 

phosphorylation sites and finally differential signalling (Dixelius et al., 2003). 

All these observation suggest that VEGFR3, besides its fundamental role in 

lymphatic vessel development and maintenance, also acts as a regulator of 

vascular network formation. In this respect VEGFR3 may constitute an 

additional target of anti-angiogenic therapies. 

Semaphorins and plexins in vessel biology 

Initially described as axon guidance molecules, semaphorins are also 

implicated in the regulation of neural development and organ 

morphogenesis, together with angiogenesis and invasive tumor growth 

(Larrivee et al., 2009; Serini et al., 2009). For instance, as semaphorins and 

their receptors plexins are expressed by tumor and endothelial cells, they 

are now emerging as important factors in tumor angiogenesis (Neufeld and 
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Kessler, 2008). This family of membrane-bound and secreted proteins 

influences cytoskeletal remodelling, integrin-dependent adhesion, cell 

proliferation, apoptosis and differentiation (Kruger et al., 2005). All 

semaphorins contain an amino terminal sema domain, required for 

signalling, and were subdivided into eight groups: invertebrate semaphorins 

in group 1 and 2, vertebrate semaphorins in groups 3 to 7, and viral 

semaphorins in group 8. Interestingly, class3 semaphorins are the only 

secreted vertebrate semaphorins and, with one exception, require 

Neuropilin binding to signal through class A plexins. 

Plexins represent the main functional family of semaphorin receptors. In 

mammals, nine plexins have been identified so far, subdivided in four 

subfamilies based on homology: PlexinA1 to A4, Plexin B1 to B3, Plexin C1 

and PlexinD1 (Franco and Tamagnone, 2008). The extracellular domains of 

these single pass transmembrane receptors are distinguished by the 

presence of sema, PSI and IPT domains. While semaphorins belonging to 

classes 4-7 as well as SEMA3E bind directly to specific plexins and activate 

plexin-mediated signal transduction, other class 3 semaphorins binds to 

Neuropilins, while Plexins (PlexinAs and PlexinD1) serve as signal 

transduction elements. 

Plexins are characterized by a unique, but highly conserved, cytoplasmic 

region, which has been associated to multiple signal transducers (Kruger et 

al., 2005). For instance, plexin intracellular domain contains GTPase-

activating protein (GAP)-like motifs, able to interact with G-protein R-Ras, 

and activates Rho-GTPases. Additionally, it has been shown that plexins 

become tyrosine phosphorylated, even if the regulatory role of this 

posttranslational modification need to be further investigated (Franco and 

Tamagnone, 2008).  
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Neuropilins 

Neuropilins (Neuropilin1/NP1 and Neuropilin2/NP2), initially identified as 

receptors for several class 3 semaphorins, in association with plexin family 

receptors mediate repulsive axon guidance in the developing nervous 

system (Fujisawa, 2004).  

Even if Neuropilin1 and Neuropilin2 share only 44% homology, they have 

similar structural features: the extracellular part of these single pass 

transmembrane receptors has two Complement binding domains (CUB, or 

a1 and a2), two coagulation factor V/VII homology domains (b1 and b2) ad 

a single meprin domain (MAM or c). Notably, the intracellular domain of 

neuropilins is only 40-aminoacid long, displays poor homology with other 

proteins and lacks enzymatic activity. Despite structural homologies, 

Neuropilin1 and Neuropilin2 differ for binding and signal properties (Neufeld 

et al., 2002). In particular, SEMA3A binds only to NP1, SEMA3F and 

SEMA3G interact only with NP2, while SEMA3B, SEMA3C and SEMA3D 

bind both receptors. Additionally, Neuropilin1 and Neuropilin2 also display 

specific and mutually selective binding to factors not belonging to the SEMA 
family, such as VEGF-A, VEGF-B, VEGF-C, PlGF, PDGF-bb, FGF2, TGFβ, 

HGF and galectin (Figure 1.7).  

Moreover, Neuropilins differ in VEGF-A isoform binding, as NP2 binds to 

VEGF165 and VEGF145, while NP1 binds VEGF165 and possibly VEGF121, as 

discussed afterwards. The biological difference between NP1 and NP2 is 

enforced by their non-redundant role in development, as NP1 deficient mice 

die during mid-gestation with defects in the heart, vasculature, and nerve 

projection (Kawasaki et al., 1999), while NP2 KO mice are viable and 

display only defects in nerve projection (Chen et al., 2000; Giger et al., 

2000). Interestingly, the double NP1/NP2 knockout mouse had a more 

severe abnormal vascular phenotype than either NP1 or NP2 single 
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knockouts, resembling the phenotypes of VEGF and VEGFR-2 knockouts 

(Takashima et al., 2002).  

Neuropilin1 

Neuropilin1 is a functional, transmembrane receptor, able to mediate 

signalling from structurally distinct ligands during nervous system, heart 

and vascular development, as shown in Figure 1.7. In particular Neuropilin1 

expression in EC is required for cardiovascular development (Gu et al., 

2003), and is important for the formation of the capillary plexus, partially 

independently from blood flow (Jones et al., 2008).  

 

 

 
Figure 1.7. Interaction of Neuropilin1 with different ligands. NP1 
ligands belonging to the semaphorin and other families are shown. 
Predicted binding sites for SEMA, VEGF and GIPC are indicated by bars. 
Additionally, the structural domains of Neuropilin1 CUB (a1, a2), FV/FVIII 
(b1/b2) and MAM (c ) are shown. 
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Neuropilin1 was shown to bind to VEGF-A isoforms containing exon 7 (the 

heparin binding domain) and therefore common usage of the NP1 receptor 

by factors, such as VEGF165 and SEMA3A, raised the possibility of a 

competition or at least a cross regulation.  

VEGF and SEMA3A bind to two distinct, even if partially overlapping, 

domains on NP1 extracellular part (Gu et al., 2002), and structural studies 

show that VEGF and SEMA3A do not compete directly for NP1 binding 

(Appleton et al., 2007; Vander Kooi et al., 2007). Nonetheless, several data 

show how SEMA3A and VEGF165 can have opposite effect on cell migration 

and survival (for a review see (Kruger et al., 2005)); recent findings open 

the possibility that SEMA3A and VEGF can act by promoting independent 

signals downstream to NP1 (Acevedo et al., 2008; Guttmann-Raviv et al., 

2007). 

Even if Neuropilin1 was initially proposed to simply act by favouring 

VEGF165, but not VEGF121, binding to VEGFR2, thus enhancing VEGF-

induced chemotaxis in cultured endothelial cells (Miao et al., 1999; Soker et 

al., 1996; Soker et al., 2002; Soker et al., 1998; Whitaker et al., 2001), 

recent data clearly suggest a more complicated picture for the Neuropilin1 –

VEGFR2 system activity in EC. This model implies that VEGF121, which 

does not have the Neuropilin1 binding region coded by exon 7, is a weaker 

VEGFR2 activator as compared to VEGF165. Nonetheless, one group 

showed that both Neuropilin1 and 2 are able to enhance VEGF121-induced 

signal transduction by VEGFR2 in PAE and HUVE cells (Shraga-Heled et 

al., 2007). Another group provided evidence that VEGF121 is also able to 

directly bind Neuropilin1 by means of the tail region instead of exon 7, but 

without inducing the formation of VEGFR2-Neuropilin1 complexes (Pan et 

al., 2007b). More recently, formation of stable VEGF165-NP1-VEGFR2 

complexes has been linked to sprouting angiogenesis both in vitro and in 
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vivo through p38 signalling (Kawamura et al., 2008a). In conclusion, 

VEGF165, and not VEGF121, induces the formation of VEGFR2-Neuropilin1 

complexes, even if the dynamics of these functional angiogenic receptor 

clusters have never been studied in detail (Soker et al., 2002; Whitaker et 

al., 2001).  

Genetic and biochemical studies generated strong evidence for a role of 

Neuropilin1 in vascular morphogenesis; therefore is not surprising that even 

NP1 has been exploited as a target for anti-cancer therapy. In particular, 

two antibodies, blocking respectively VEGF and SEMA binding to NP1, 

synergize with anti-VEGF in reducing tumor growth, even diminishing 

vascular density and EC-pericyte association. (Liang et al., 2007; Pan et 

al., 2007a). 

Neuropilin1 signalling 

Due to its short and catalytically inactive intracellular tail, for a long time 

Neuropilin1 has been considered only able to enhance VEGF-induced 

signal through VEGFR2 interaction (Figure 1.8). Recent evidence suggests 

that Neuropilin1 mediates HUVEC adhesion to ECM (Murga et al., 2005) as 

well as increases VEGF induced EC survival (Wang et al., 2007), 

independently from VEGFR2. 

Notably, a protein called RGS-GAIP-interacting protein (GIPC or synectin), 

involved in vesicle trafficking, was found to interact with Neuropilin1 (Cai 

and Reed, 1999). The PDZ-binding domain of Neuropilin1, involved in 

GIPC1 interaction, seems to be required for VEGFR2-NP1 complex 

formation in vitro (Prahst et al., 2008), as well as to promote integrin 

internalization and indirectly EC adhesion (Valdembri et al., 2009). This 

interaction is important in vivo for proper angiogenesis in zebrafish (Wang 

et al., 2006) while it has possibly a role in branching morphogenesis in mice 

(Chittenden et al., 2006).  
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How Neuropilin1 might initiate an intracellular signalling cascade in 

response to an extracellular stimulus is still unresolved. It has been shown 

that NP1 is differentially glycosaminoglycan-modified in EC and SMC 

(Shintani et al., 2006), but no other PTMs has been characterized so far, 

suggesting a signalling mechanism different from post translational 

modifications.  

 

 

 

 
Figure 1.8. Models for Neuropilin1 activity in enhancing VEGF 
signalling. In the first model (left), enhanced signalling is due to enhanced 
VEGF binding to VEGFR2, while in the second model (right) Neuropilin1 
contributes directly to signalling, independently from VEGFR2, and even 
trough GIPC1. The role of Neuropilin1 homo-complexes formation in 
signalling is still debated. 
 

One possibility is that ligand binding might induce a structural modification 

and therefore triggers NP1 downstream pathways. Neuropilin1 is able to 
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form dimers, probably not only through the MAM domain as initially 

supposed (Nakamura et al., 1998), but also through the transmembrane 

domain, and the formation complexes seems to be involved in Neuropilin1 

signalling (Roth et al., 2008). 

Concluding, Neuropilin1 seems to act in regulating EC functions by almost 

two different mechanisms: by enhancing VEGF binding to VEGFR2 and by 

a VEGFR2 independent signalling, but how these mechanisms are 

regulated is still an unresolved question. 
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Protein function regulation by acetylation 

Proteins are naturally modified by several mechanisms, including 

phosphorylation, ubiquitination, sumoylation, neddylation, acetylation, 

methylation and isomerization. In addition, the combination of PTMs 

generates a great potential for cross-regulation. In particular lysine can be 

the target of multiple, mutually exclusive modifications, as shown in Figure 

1.9. 

 

 
Figure 1.9. Lysine modifications. The ε-amino group of lysine can be 
modified by acetylation and several covalent modifications, resulting in 
different biological outcomes. Adapted from Spange, International Journal 
of Biochemistry and Cell Biology, 2009. 
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Lysine acetylation is a reversible process that entails transfer of an acetyl 
group from Acetyl coenzyme A to the ε-amino group of a lysine residue, 

thus removing the positive charge from the lysine. Both protein acetylation 

and deacetylation requires dedicated enzymes, defined as lysine 

acetyltransferases (KATs) and deacetylases (KDACs), respectively (Allis et 

al., 2007). 

Even if acetylation has been initially defined as a histone-specific 

modification, recent reports demonstrate that more than 100 proteins, both 

nuclear and cytoplasmic, are acetylated in one or more residues (Glozak et 

al., 2005; Kim et al., 2006; Vidali et al., 1968) (see Table 1). 

Some representative examples will be provided to illustrate the complex 

role of acetylation in regulating protein function. 

 

PROTEIN CATEGORY SELECTED EXAMPLES 
CORE HISTONES H2A, H2B, H3, H4 

NON-HISTONE CHROMATIN 
PROTEINS HMGB 

KAT p300/CBP, PCAF 
TRANSCRIPTION FACTORS p53, STAT3, c-Myc, MyoD, E2F, Rp, NFkB, HIF 
CYTOSKELETAL PROTEINS ALPHA-TUBULIN, cortactin 

CHAPERONES Hsp90 
MITOCHONDRIAL PROTEINS ACETYLCoA synthase, thioredoxin 

VIRAL PROTEINS Adenoviral E1A, HIV Tat and Integrase 
TRANSMEMBRANE RECEPTORS Type I INFR 
 
Table 1. Selected acetylated proteins. Acetylated proteins are listed, and 
cytoplasmic acetylated proteins are highlighted. References: Histones 
(Roth et al., 2001); HMGB (Sterner et al., 1979); p300, PCAF (Santos-Rosa 
et al., 2003; Thompson et al., 2004); transcription factors (Galbiati et al., 
2005; Gu and Roeder, 1997; Jeong et al., 2002; Marzio et al., 2000; 
Polesskaya et al., 2000; Sakaguchi et al., 1998; Sartorelli et al., 1999); 
cytiskeletal proteins (Hubbert et al., 2002; Zhang et al., 2007); chaperones 
(Kovacs et al., 2005); mitochondrial proteins (Starai et al., 2002); viral 
proteins (Cereseto et al., 2005; Kiernan et al., 1999; Madison et al., 2002; 
Marzio et al., 1998; Ott et al., 1999; Zhang et al., 2000); INFR (Tang et al., 
2007). 
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Lysine acetyltransferases (KATs) 

Several proteins have been found to have intrinsic lysine acetyltransferase 

activity, while no acetylation consensus site on target proteins has been 

characterized until now. Nonetheless, acetylases modify very few lysines 

within a given protein, thus indicating that some specificity exists; 

moreover, proteomic studies suggest that acetylation is favoured in the 

context of specific secondary structural characteristics (Kim et al., 2006). 

According to sequence similarity, KATs can be subdivided into three major 

groups. 

The Gcn5-related N-acetyltransferases (GNATs) family includes GCN5, 

PCAF, Elp3, Hat1, Hpa2 and Nut1. GCN5 and PCAF are characterized by 

a Histone Acetyl Transferase (HAT) domain and by a bromodomain, that 

possesses specific acetyl-lysine recognizing ability; these proteins are co-

transcriptional activators able to acetylate histones, but they can acetylate 

non-histone protein as well (Yang, 2004). Interestingly, the Elp3 subunit of 

the elongator complex possesses acetyltransferase activity (Wittschieben 

et al., 1999) and has been recently identified as the enzyme responsible for 
α-tubulin lysine modification  (Creppe et al., 2009). 

The p300/CBP family has been extensively characterized for its pleiotropic 

role in cell biology (Goodman and Smolik, 2000). Both p300 and CBP, two 

proteins with a high homology, work as transcriptional co-activators, and 

are able to catalyze acetylation of non-histones substrates.  

The third major group is constituted by the MYST family: human MOZ 

(monocytic leukaemia zinc finger protein), yeast Ybf2, yeast Sas2 and 

mammalian Tip60 (Avvakumov and Cote, 2007). This large and diverse 

family has been poorly characterized in comparison with GNATs and 

p300/CBP. 
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In accordance with their important role in nuclear, as well as cytoplasmic, 

protein functions, KAT enzymatic activity can be regulated by multiple 

mechanisms. 

• Most KATs actually exist as part of multi-subunit complexes in vivo; and 

their function and the specificity of the catalytic subunit depend on the 

nature of the complex (Lee and Workman, 2007). 

• Some KATS, such as p300 and CBP are auto-acetylated (Karanam et 

al., 2006), and acetylation seems to be linked to enzyme activation. 

• In addition to acetylation, KATs are regulated by several PTMs: 

ubiquitination, phosphorylation and sumoylation. 

• Enzymatic activities of PCAF and p300/CBP are regulated by their 

interaction with transcription factors as well as viral proteins. 

• Sub cellular compartmentalization has been shown to be an important 

mechanism for KAT and KDAC function, for example in response to 

interferon (Tang et al., 2007). 

Lysines deacetylases (KDACs) 

Known eukaryotic deacetylases are divided in two families: the HDACs 

(Histone Deacetylase) and Sirtuins. These two major groups display a 

different cofactor requirement: HDACs, strictly related to the yeast 

Hda1/Rpd3 proteins, require a divalent Zinc cation for deacetylation, while 

Silent information regulator 2 (SIR2)-related enzymes rely on NAD+ for their 

catalytic activity (Imai et al., 2000). Despite structural and functional 

diversity, both families not only contribute to histone deacetylation, but also 

participate in other cellular processes by targeting non-histone substrates 

as well. 

HDACs have a major role in controlling negatively gene expression, 

through chromatin compaction that favours transcriptional repression. 

Nonetheless, it is now clear how they have also more specific functions, 
especially in the regulation of key transcriptional factors, such as HIF1-α 
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(Haberland et al., 2009; Jeong et al., 2002). In addition, in vitro and in vivo 

studies revealed highly specific functions for the 11 mammalian HDAC 

isoforms, which differ in structure, enzymatic functions, sub cellular 

localization and expression patterns. 

Class I is constituted by HDAC1, 2, 3 and 8. These Rpd3-related molecules 

are characterized by a high enzymatic activity towards histones, are 

ubiquitously expressed and are usually located into the nucleus (Taunton et 

al., 1996). 

HDAC4, 5, 7 and 9 belong to Class IIa family. These proteins have 

restricted expression patterns: HDAC7 for example is enriched in ECs 

(Chang et al., 2006), while HDAC 5 and 9 are highly expressed in heart 

tissue (Chang et al., 2004). Interestingly, phosphorylation of these HDACs 

has been linked to nuclear-cytoplasm shuttling (McKinsey et al., 2000). 

Finally, Class II HDACs repress transcription by a not completely elucidated 

mechanism, since they are characterized by a low, if any, enzymatic activity 

(Haberland et al., 2009). 

Class IIb has two members: HDAC6 and HDAC10. Interestingly, HDAC6 

represents the main cytoplasmic mammalian deacetylase (Zhang et al., 

2008). Additionally, it has been demonstrated that this enzyme can directly 
deacetylate cytoplasmic proteins, such as α-tubulin, cortactin, as well as 

IFNRα (Hubbert et al., 2002; Tang et al., 2007; Zhang et al., 2008). 

HDAC 11 is the only Class IV member; this enzyme is enriched in some 

tissues, such as brain and heart, but has been poorly characterized from a 

functional point of view (Gao et al., 2002).  

Intriguingly, many HDAC inhibitors (HDACi) are actually under 

investigation, even in human clinical trials, for their effectiveness in the 

treatment of a variety of disorders (Buchwald et al., 2009). 

Within the sirtuin family, sometimes defined as Class III KDACs, there are 

seven mammalian homologues, SIRT1 to 7, initially identified for their role 
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in cell metabolism (Guarente, 2006). Nowadays it is clear that sirtuins are 

complex regulators of several cell functions, such as DNA repair, as well as 

vascular endothelial homeostasis (Finkel et al., 2009; Potente and 

Dimmeler, 2008). 

Concluding, the growing number of identified acetylated non-histone 

proteins raises the question whether data obtained upon HDAC inhibition 

have to be completely ascribed to chromatin modification, or might equally 

be obtained as a consequence of non-histone protein acetylation 

(Haberland et al., 2009). 

Crosstalk between acetylation and other PTMs in regulating protein 
function 

The effects of acetylation in protein function are multiple, primarily 

depending on protein activity and on the nature of the acetylated residues. 

For instance, even in a single protein such as p53, acetylation has been 

linked to: i) enhancement of specific DNA binding (Brooks and Gu, 2003; 

Prives and Manley, 2001); ii) increase protein-protein interaction (Li et al., 

2007); iii) control of protein stability (Brooks and Gu, 2003; Le Cam et al., 

2006); iv) crosstalk with other PTMs, similar to histones (Kurash et al., 

2008), and therefore regulation of additional functions. 

In order to simplify, acetylation events can be classified into three 

categories. First, acetylation occurring at one or a few lysines can act as a 

simple on/off switch; acetylation can lead to both “gain of function” and 

“loss of function” effects. One example is acetylation of nitric oxide 

synthase (eNOS), which inactivates the enzyme in EC (Mattagajasingh et 

al., 2007). Second, acetylation can occur at a lysine cluster, which 

constitute positively charged patches; changes in the charge of these 

patches influences cortactin binding (Zhang et al., 2007) and p300 

enzymatic activity (Thompson et al., 2004). Finally, acetylation might 
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crosstalk with diverse PTMs, such as phosphorylation, leading to site-

specific effects, which act in a combinatorial way (Figure 1.10). 

 

 

 
Figure 1.10. Crosstalk between phosphorylation and acetylation. 
Phosphorylation of diverse residues can influence acetylation, and 
acetylation might also regulate phosphorylation. Lysines and 
phosphorylation sites can be also far away from each other. Adapted from 
Yang, Molecular Cell 2008. 
 

Crosstalk between different PTMs can be either positive or negative in 

nature. In positive crosstalk, acetylation constitutes a signal for addition or 

removal of other PTMs, or indirectly creates a recognition site for a binding 

protein carrying a second PTM. Even negative crosstalk can be direct or 

indirect; in the first case we can find direct competition for lysine 

modification, such as between acetylation, ubiquitination and methylation, 

while in the second case, one modification inhibits further modifications by 

masking their recognition site (Hunter, 2007). 

In the effort to dissect the multifaceted role of combination of PTMs in 

protein function, researchers are looking for a posttranslational code, as 

discussed for example in the histone code hypothesis (Strahl and Allis, 

2000) and in the “post translation code” model for p53 (Appella and 

Anderson, 2000). 

Therefore, PTMs form a dynamic layer of molecular information, beyond 

amino acid sequences, where acetylation has been proposed to be a rival 
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of phosphorylation (Kouzarides, 2000). A recent proteomic study revealed 

that almost 200 proteins are acetylated in HeLa cells, disclosing the role of 

acetylation in the regulation and diversification of signalling networks even 

out of the nucleus (Kim et al., 2006).  

Acetylation of non-nuclear proteins 

The role of acetylation in non-nuclear protein function has been discovered 

only recently, nonetheless its relevance is continually growing. For instance 

several enzymes, such as nitric oxide synthase, acetyl-CoA synthase, 

glutamate dehydrogenase and metabolic enzymes, are regulated by 

acetylation, usually by an on/off switch. Following is a description of a few 

examples of how acetylation might crosstalk with other PTMs to modulate 

cytoplasmic protein function.  
α-tubulin. Despite the fact that α-tubulin acetylation has been discovered 

more than 20 years ago (L'Hernault and Rosenbaum, 1985) the exact role 

of tubulin acetylation in cell biology has not been fully elucidated. 

Interestingly, interaction of tubulin with other proteins is influenced by many 

PTMs, including phosphorylation and palmitoylation (Westermann and 

Weber, 2003). The α-tubulin acetylation site, lysine 40, is located in the 

lumen of microtubules, and this modification has been correlated to binding 

of cargo proteins, and therefore to vesicular transport (Dompierre et al., 

2007; Reed et al., 2006). HDAC6 is the major responsible for tubulin de-

acetylation (Hubbert et al., 2002). HDAC6 KO mice are viable even if they 

show tubulin hyper-acetylation (Hubbert et al., 2002; Zhang et al., 2008). 

Interestingly, the enzyme responsible for tubulin acetylation has been 

recently identified as a component of the Elongator complex. This protein, 

Elp3, has been classified as a member of the GNAT family (Svejstrup, 
2007; Wittschieben et al., 1999). This complex, possibly by acetylating α-
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tubulin, is able to control cortical neuron differentiation and migration 

(Creppe et al., 2009). 

Cortactin. This protein, involved in cell motility, has been detected as 

acetylated on almost 10 residues; acetylation of a single lysine is not 

important, rather the overall number of modified lysines critically influences 

F1-actin binding and cell motility (Zhang et al., 2007). Cortactin can be 

modified by PCAF and p300, and its deacetylases are both HDAC6 and 

SIRT1 (Zhang et al., 2007; Zhang et al., 2009). Interestingly, cortactin is 

phosphorylated on tyrosines and 3D structure analysis suggests that 

phosphorylation of Tyr466 can crosstalk with acetylation (Yang and Seto, 

2008). 
INFαR. Interferon α (INFα) triggers INFα receptor 1 and 2 oligomerization 

and their tyrosine phosphorylation; at the intracellular level INFα antiviral 

response is mainly mediated by STAT1 and 2 proteins (Schindler et al., 

2007). A recent study has revealed how acetylation is involved in many 

steps of type I INF signalling pathway (Tang et al., 2007). In particular it 

was shown that: i) INF treatment induce CBP nuclear export; ii) CBP/p300 

associate with INFRs, and this association depends on two phosphorylated 
serines; iii) INFαR2 is acetylated in cells on Lys399 upon INFα treatment; 

iv) Acetyl lysine 399 provide the docking site for interferon regulatory factor 

9 (IRF9); v) IRF9 acetylation influences dimer formation and DNA binding; 

vi) STAT1 and STAT2 interaction is regulated by acetylation (Figure 1.11). 
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Figure 1.11. INFα receptor acetylation. The model outline how CBP- 
mediated acetylation influences INFα signalling pathway at different steps. 
Adapted from Tang, Cell 2007. 
 
This study suggests acetylation as a key regulator in signal transduction 

pathway and more importantly is the first indication that a transmembrane 

receptor can undergo acetylation. 

Hsp90. Hsp90 chaperon activity is important for the regulation of several 

signalling proteins, and recently its activity has been linked to acetylation. In 

particular two groups demonstrated HDAC6-Hsp90 binding and 

deacetylation, and showed how protein hyper acetylation compromises 

Hsp90 binding to client proteins (Bali et al., 2005; Kovacs et al., 2005). 

Since Hsp90 can undergo different PTMs and is required for maturation of 

many kinases, its acetylation could affect multiple pathways. 

Acetylation and blood vessel biology 

Lysine acetylation and deacetylation, also of non-histone proteins, have 

been linked to many physiological as well as pathological processes, as 

recently reviewed (Finkel et al., 2009; Haberland et al., 2009; Spange et al., 
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2009). Interestingly, growing body of evidence indicates that lysine 

acetylation has a major role in endothelial cell biology; as already 

discussed, blood vessel growth is a complex mechanism that requires the 

coordination of several molecular players, including several transcription 

factors and co-factors. In this perspective, it is not surprising that lysine 

acetylation of nuclear proteins, as discussed later, can influence blood 

vessel growth ad homeostasis (Potente and Dimmeler, 2008), as outlined in 

Figure 1.12. 
The important angiogenesis regulator HIF1α and its function are directly 

and indirectly controlled by acetylation, and this issue has been extensively 
studied (Ellis et al., 2009). For instance HIF1α acetylation has been linked 

to its degradation (Jeong et al., 2002), and HIF1α forms complexes with 

CBP/p300 transcriptional activator (Freedman et al., 2002). Recent data 

show also how SIRT selectively stimulates activity of the transcription factor 
HIF2α during hypoxia. Importantly, the effect of SIRT1 on HIF2α required 

direct interaction between the two the proteins and intact deacetylase 

activity of SIRT1 (Dioum et al., 2009). 

Additionally, some KDACs have been linked to vessel biology and will be 

discussed in detail. 

SIRT1. SIRT1 is required during embryonic and early post-natal 

development for heart and eye formation, and maintains its regulatory role 

during adulthood (Cheng et al., 2003; McBurney et al., 2003). Recent data 

identified SIRT1 as a key mediator of sprouting angiogenesis during 

vascular growth (Potente et al., 2007). SIRT1, which is expressed by EC 

both in vitro and in vivo, was shown to regulate angiogenic sprouting and 

VEGF-induced cell migration in vitro. Moreover, SIRT1 deficient zebrafish 

displayed vascular patterning defects, and endothelial specific SIRT1 KO 

mice, which develop normally, have impaired ability to form new vessel in 

ischemic tissues. SIRT1 activity in endothelial cells, as a stress-responsive 
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angiogenesis regulator, is in part mediated by its interaction with Foxo1, a 

crucial transcription factor in ECs (Dejana et al., 2007). Nonetheless, given 

also the multitude of SIRT1 targets described until now (Haigis and 

Guarente, 2006), SIRT1 probably has additional partners and targets in EC. 

In addition to sprouting angiogenesis, SIRT1 is able to regulate vascular 

tone, by directly acting on eNOS synthase (Mattagajasingh et al., 2007). In 

particular SIRT1 targets eNOs synthase for deacetylation leading to 

enhanced NO production. 

Sirtuins are not the only deacetylases to be involved in vessel biology: even 

the HDAC family members have a role in blood vessel formation. For 

instance, Trichostatin-A (TSA) and suberoylanilide hydroxamic acid 

(SAHA), two HDAC inhibitors (HDACi), suppress spontaneous and VEGF-

induced angiogenesis in in vitro models; in addition, HDACi block VEGF-

induced VEGFR2, VEGFR1 and Neuropilin1 overexpression at the mRNA 

level (Deroanne et al., 2002). 

HDAC5. Since siRNA-mediated downregulation of HDAC5 increased 

angiogenic sprouting and stimulated EC migration, this enzyme is probably 

a negative regulator of angiogenesis (Urbich et al., 2009). Another study 

showed that VEGF-induced angiogenesis depends on PKD mediated 

HDAC5 nuclear export, thus strengthening the hypothesis that HDAC5 acts 

to alter gene expression, and in particular that HDAC5 nuclear export 

relieves an inhibitory signal (Ha et al., 2008). 

HDAC7. Specific expression of HDAC7 in endothelial cells during early 

mouse development indicates that this protein might have a role in vessel 

development (Chang et al., 2006). HDAC7 genetic deletion is embryonic 

lethal and is accompanied by loss of EC interactions and MMP10 

upregulation. Therefore, it hes been proposed that HDAC7 represses 

MMP10 gene transcription by associating with myocyte enhancer factor-2 

(MEF2), a direct activator of MMP10 transcription and an essential 
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regulator of blood vessel development (Chang et al., 2006). More recently, 

the same group demonstrated that HDAC7 regulates VEGF-induced EC 

migration and proliferation (Wang et al., 2008). In particular they discovered 

how VEGF-A induces HDAC7 rapid phosphorylation and nuclear export, 

thus relieving the inhibition of VEGF responsive genes. Similarly to HDAC5, 

nuclear export is mediated by PKD phosphorylation (Wang et al., 2008). 

 

 
Figure 1.12. Aceylation is involved in vascular biology. KAT and KDAC 
are both positive and negative regulators of vascular homeostasis, and they 
act almost trough four factors, Foxo1, p53, HIF and eNOS.  
 
Recent discovery of the role of acetylation in angiogenesis led to the 

hypothesis that targeting HDAC offers a new strategy in anti-cancer 

therapy, trough tumor angiogenesis inhibition; currently, pre-clinical and 

clinical studies suggest HDACi might improve the anti-angiogenic action of 

current anti-VEGF therapies (Buchwald et al., 2009; Ellis et al., 2009). 
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Visualization of protein interactions using fluorescent 
proteins 

 
In the effort to identify the molecular basis of the green bioluminescence of 

living Aequorea victoria jellyfish, Shimomura and colleagues first isolated a 

protein displaying a strong green fluorescence as functional partner of the 

chemiluminescent protein aequorin (Johnson et al., 1962; Shimomura et al., 

1962). They also demonstrated that the newly isolated protein, therefore 

defined Green Fluorescent Protein (GFP), is characterized by an emission 

spectra peak at 508 nm (Figure 1.13), close to the one emitted by living 

Aequorea tissues. Since the chemiluminescence of pure aequorin is blue, 

with a peak around 470 nm, close to the GFP excitation peaks, they 

hypothesized that GFP converted the blue emission of aequorin to the 

green glow of intact jellyfish.  

 
Figure 1.13. Spectral properties of GFP. The excitation (full-line curve) 
and the emission (dashed curve) spectra of wild type GFP protein from 
Aequoera victoria are shown, in association with the cromophore 
structures. X axis: wavelength in nm; Y axis: spectral amplitude normalized 
to a maximum of 1. Adapted from Tsien, Ann.Rev. Biochem., 1998. 
 
This hypothesis was supported by data obtained upon GFP purification and 

crystallization: GFP is the acceptor, while aequorin is the donor in an 
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energy transfer reaction of Fluorescence (or Foster) Resonance Energy 

Transfer (FRET) type (Morise et al., 1974). 

The cloning of the complete ORF of GFP, coding for a protein of 238 aa, 

from a cDNA library of Aequoera victoria together with protein 

characterization, constituted an additional step towards the application of 

GFP in biology (Prasher et al., 1992). Nonetheless, the critical question 

whether the GFP-chromofore forms spontaneously or whether its 

maturation requires an auxiliary enzyme expressed by jellyfish was still 

unresolved. 

The findings that fluorescent GFP could be expressed from the GFP gene, 

in E.coli, C. elegans, S. cerevisiae and D. melanogaster, discloses the 

potential of GFP as a universal genetic tag in biological research (Chalfie et 

al., 1994; Wang and Hazelrigg, 1994). Therefore, the GFP gene contains all 

the information required for posttranslational synthesis of the chromophore, 

and no jellyfish specific enzymes are needed (Tsien, 1998). 

GFP: Structure, folding and fluorescence properties 

Since the structure of the chromophore seems to be per se responsible for 

fluorescence, several efforts helped to clarify this peculiar property. 
Interestingly, the 238 aa of GFP are folded into a unique 11 β-sheet barrel 

structure with a diameter of about 2,4 nm and a height of 4,2 nm. An α-helix 

runs diagonally trough the can formed by the β-sheets, and the 

chromophore is locate almost perfectly in the centre of the cylinder, 
attached to the α-helix (Ormo et al., 1996; Yang et al., 1996) (Figure 1.14). 

The GFP structure confers stability to the protein and protects the 

chromophore from quenching. The core of the protein, the chromophore, is 

a p-hydroxybenzylideneimidazolinone, which forms spontaneously from 

intramolecular cyclization of three aminoacid residues, namely Serine 65, 
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Tyrosine 66 and Glycine 67. The GFP folding into its peculiar structure is 

probably the crucial event for the formation of an active chromophore.   

 

 
 

Figure 1.14. GFP structure. 11 β-sheets constitute the β-barrel that 
characterizes native GFP structure. The chromophore responsible for GFP 
fluorescence is buried in the can (spheres). Adapted from Piston and 
Kremers, TRENDS in Biochemical Sciences, 2007. 
  
Upon GFP folding, Glycine 67 (conserved among all GFP variants that 

retain fluorescence) and Serine 65 form an imidazolone. Dehydratation, 

conjugation with Tyrosine 66 and more importantly dehydrogenation by 

oxygen are fundamental steps required to acquire fluorescence (Tsien, 

1998). The 27 kDa GFP protein can undergo reversible denaturation, and 
fluorescence lost in the denatured GFP is regained when the β-barrel is 

reformed. Interestingly, non-fluorescent fragments coding for the N 

terminus and the C-terminus parts of GFP can undergo complementation in 

cultured cells, producing a fluorescent complex resembling the native 

protein (Hu et al., 2002). Finally, it has been demonstrated that GFP can 

form dimers (Yang et al., 1996). 
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GFP optimization and spectral variants 

Even if many features rendered Aequorea victoria wild type GFP a useful 

tool for biological application, in order to improve its use the original 

sequence has been optimized by mutations, using several different 

strategies (Zacharias and Tsien, 2006). 

Two main objectives characterize GFP mutations: optimization of the 

protein for biological studies and creation of new, different spectral variants. 

Regarding protein optimization, GFP engineering has improved brightness 

and photo stability, two important features for the experimental use of 

fluorescent proteins (FPs). In addition, it has been shown that several 

mutations improve GFP folding, in particular allowing faster and more 
efficient maturation of the protein even at 37 °C (Zacharias and Tsien, 

2006). Finally, the GFP sequence was modified to improve expression in 

mammalian cells: more than 190 silent mutations were inserted to optimize 

codon usage, together with a Kozak sequence for translation initiation. 

Taken together, all these modifications contributed to obtain high 

expression levels of mature, fluorescent GFP in mammalian systems. 

Using similar mutational techniques, several different spectral variants were 

originated form GFP by aminoacidic substitutions, mainly in the three 

residues involved in chromophore formation; these proteins exhibit 

emission spectra ranging from blue to yellow (Table 2). The palette of these 

FPs has been exploited by several biological applications (Nguyen and 

Daugherty, 2005). They can be subdivided into seven classes according to 

the components of the chromophores: 

1st)  WILD TYPE GFP. Characterized by a complex excitation peak. 

2nd) Enhanced GFPs. Represent the more commonly used variants, 

due to enhanced brightness, simple excitation as a consequence of 

substitution on Ser65. 
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3rd)  Sapphire. The single mutation from Thr 203 to Ile gives rise to these 

mutants characterized by a large Stokes shift. 

4th)  Yellow Fluorescent Proteins (YFPs). Substitution of Thr 203 with 

aromatic residues results in YFPs. YFPs are characterized by a red 

shift in both excitation and emission spectra, resulting in an emission 

peak around 529 nm, the longest known for GFP mutants. 

5th)  Cyan Fluorescent Proteins (CFPs). Tyr 66 to Trp modification in the 

GFP produces a different, new chromophore. These proteins are 

characterized by double excitation and emission peaks, and give rise to 

blue-green to cyan emissions. 

6th) Blue Fluorescent Proteins (BFPs). Again, substitution of Tyr 66, in this 

case with His, leads to a blue fluorescent protein, not extensively used 

due to low quantum yield and easy bleaching. 

7th)  Phenyl in chromophore derived from Tyr66Phe. This protein is 

characterized by the shortest wavelengths among GFP derivates, and 

has therefore been poorly investigated. 
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Table 2. Characteristics of the principal fluorescent proteins. Name 
and spectral characteristics are outlined. Adapted from Shaner, Nature 
Methods 2005. 
 

Other fluorescent proteins 

Discovery, and subsequent optimization, of novel GFP-like proteins from 

Anthozoa significantly expanded the colour palette available for cell biology 

experiments. Of particular interest for future applications, in particular 

FRET, are proteins presenting emission spectra characterized by peaks in 

red and far-red wavelengths (Red Fluorescent Proteins, RFPs). For 

instance, red, orange and yellow proteins were obtained modifying a red 

fluorescent protein of Discosoma species (Shaner et al., 2004). 

Fluorescent proteins as a powerful tool in biology 

Many aspects of GFP and its derivatives make them a versatile and 

powerful tool in bioscience. Among these: i) brightness; ii) photo-stability of 

the molecule; iii) existence of protein with spectral properties covering the 

whole visible region; iv) fast and efficient folding of the molecules in cells; v) 

rapid and autonomous maturation of the chromophore upon protein folding; 

vi) predominant monomeric protein configuration. 

Therefore, GFPs have been successfully employed to investigate cell and 

protein functions. 

• PROTEIN EXPRESSION AND LOCALIZATION. The first application of 

the GFP was as a reporter gene (Chalfie et al., 1994), and this tool has 

been extensively used to study gene expression during development. 

The combinatorial expression of fluorescent proteins in the nervous 

system of Brainbow mice further confirmed the potential of this tool 

(Livet et al., 2007). 

• PROTEIN DIFFUSION AND TRAFFICKING. Protein localization and 

fate can be analyzed using a chimera between the protein of interest 
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and GFP variants. GFP has been targeted successfully to almost every 

major organelle in the cell, including plasma membrane, nucleus, 

endoplasmic reticulum, Golgi apparatus, vesicles and mitochondria 

(Tsien, 1998). Several microscopy techniques have been developed in 

order to unravel protein dynamics. Fluorescence Recovery After 

Photobleaching (FRAP), exploiting fluorophore bleaching, allows 

measurement of bi-dimensional and three-dimensional mobility of 

fluorescent particles. 

• CONFORMATIONAL CHANGES. FRET based sensors, i.e. fusion of a 

protein with a FRET pair, have been widely used to study dynamic 

conformational changes (Giepmans et al., 2006). For instance a Src 

reporter that allows imaging and quantification of spatio-temporal Src 

activation in EC has been optimized (Wang et al., 2005). 

• PROTEIN-PROTEIN INTERACTIONS. Intermolecular FRET can detect 

dynamic protein-protein interaction in living cells, provided that the 

proteins are fluorescently tagged, as discussed later in this section. 

Another method to detect protein-protein interaction takes advantage of 

the property of two GFP fragments to form a fluorescent molecule, if the 

two fragments are in proximity (Kerppola, 2006). This technique has 

been defined as bimolecular fluorescence complementation (BIFC). 

• PROTEIN SYNTHESIS AND TURNOVER. Photoactivation, 

photoconversion, and photobleaching can be used to highlight different 

protein populations, in combination with time-lapse imaging. 

• SENSORS. Many FPs display a pH-dependent fluorescent behaviour, 

and have been widely used to monitor pH in vivo, and a series of pH 

sensitive GFP (pHfluorins) have been developed. Additionally, GFP-

based Ca2+ indicators, called cameleons, are commonly used. 
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Fluorescence (Foster) Resonance Energy Transfer (FRET) 

Combination of different fluorescent proteins and FRET methods provides 

high spatial resolution assays of protein-protein interaction in living cells. 

FRET is a physical phenomenon occurring between two fluorescent 

molecules that are sufficiently close to each other. The energy is 

transferred form one molecule (the donor) to another molecule (the 

acceptor), through a non-radiative mechanism (resonance energy transfer). 

For FRET to occur, almost two conditions must be fulfilled: a) the emission 

spectra of the donor molecule and the absorption spectra of the acceptor 

must overlap (see Figure 1.15); b) since the energy transfer rate varies 

inversely with the 6th power of donor-acceptor distance, the two molecules 

must reside within 10nm.  

 

 
 

Figure 1.15. Spectral overlap between of CFP/YFP pair. The emission 
spectrum of CFP (cyan line) shows a good overlap with the absorption 
spectrum of YFP (yellow line), a requisite for FRET. Adapted from Piston 
and Kremers, TRENDS in Biochemical Sciences, 2007. 
 

Other properties of the FPs, such as relative orientation of the two 

fluorophores, quantum yield of the donor and brightness, can affect 

resonance energy transfer efficiency, therefore limiting FRET technique 

application (Jares-Erijman and Jovin, 2003). Even if genetic labelling with 

FPs has led to increased interest in FRET technique, the choice of suitable 
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fluorophore pair (the FRET pair) is crucial (Tsien, 1998). Different GFP 

variant are good candidate ad have been already used for FRET 

experiments, among them the GFP/BFP and CFP/YFP couples (Piston and 

Kremers, 2007). At the moment, CFP and YFP remain the best FRET pair, 

despite the significant crosstalk in both the excitation and emission spectra 

of these two FPs (Nguyen and Daugherty, 2005).  

 

Imaging FRET for cell biology applications 

Even if several methods have been developed to detect FRET signals, five 

approaches have been proved particularly useful in cell biology 

applications. 

1) Sensitized emission. With this method, fluorescence emitted by the 

donor and the acceptor is collected separately upon exclusive 

excitation of the donor with a specific wavelength. FRET quantification 

using this method is not simple, and this kind of assay can be applied 

only to experiments characterized by a strong signal (Gordon et al., 

1998). 

2) Spectral imaging. Similarly to sensitized emission, this methodology 

entails excitation only of the donor, followed by collection of the whole 

excitation spectra from both the donor and the acceptor. Positive FRET 

can be detected by spectral modifications. 

3) Acceptor photobleaching. Acceptor photobleaching, or donor 

dequencing, relies on the principle that energy transfer from the donor 

is reduced or eliminated when acceptor is quenched (or bleached), 

thereby inducing an increase in donor fluorescence. This method is 

straightforward, quantitative and less prone to false positive results 

than other methods (Karpova et al., 2003), and has been used to study 

nuclear dynamics (Cereseto et al., 2005). 
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4) Fluorescence Lifetime Imaging (FLIM). Since the donor fluorescence is 

naturally quenched by FRET, FLIM measures directly the shortening of 

the fluorescence decay time of the donor in presence of FRET. This 

method, even if it is rigorous and avoids cross-talk artefacts, is 

technically demanding (Levitt et al., 2009). 

5) Polarization anisotropy imaging. Fluorescence polarization can be used 

to discriminate between the presence and the absence of FRET, even 

if is not a good approach for subtle FRET quantifications (Mattheyses 

et al., 2004). 

Intermolecular FRET 

Intermolecular FRET, occurring when the donor and acceptor molecules 

are on different proteins, has been widely and successfully used to analyze 

protein-protein interactions (Giepmans et al., 2006). FRET presents several 

advantages for protein-protein interaction detection, in comparison with 

other techniques. First, positive FRET signal indicates protein-protein 

interaction at a distance of a few nanometres (1-8 nm) for the vast majority 

of fluorophores couples. Second, protein tagging with GFP variants allows 

visualization in real time and in living cells, and this is particularly useful to 

detect the effect of external stimuli on protein complexes formation. Third, 

FRET permits to detect complex formation in defined cell compartments, or 

even sub-compartments (Marcello et al., 2001). This is of particular value, 

given the increasing role attributed to compartmentalization in different 

biological processes, for example at the level of the plasma membrane. 

The previous limitation of FRET technique, that allowed detection of only a 

proteins pair, has been recently overcame. Ternary complexes have been 

analyzed in cells combining BIFC and FRET: in this assays two proteins (A 

and B) are fused to two non-fluorescent FPs fragments, whereas the third 

protein (C) is fused to a full-length FP. Interactions between A and B 
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reconstructs one fluorophore, and if A, B and C are in proximity, FRET can 

occur (Shyu et al., 2008a, b) (Figure 1.16). 

 

 

 
Figure 1.16. BIFC based FRET. Visualization of ternary complexes can be 
obtained combining FRET with BIFC; two proteins (blue and red helices) 
are fused to non-fluorescent fragments of a YFP variant, while the third 
protein (in green) is fused to a fluorescent CFP. FRET is detectable upon 
ternary complex reconstruction. Adapted from Shyu, PNAS 2008. 
 

FRET applied to transmembrane receptor biology 

FRET has been extensively exploited to study protein-protein interactions in 

different compartments, including the cell nucleus, cytoplasm and plasma 

membrane. Of particular interest is the application of FRET to elucidate and 

image the mechanisms underlying transmembrane receptor activation, 

complex formation and signal transduction. 

For instance, G Protein Coupled Receptor (GPCR) biology has been 

analyzed using FRET. A FRET methodology recently optimized allows the 

analysis of oligomeric assembly of GPCRs at the cell surface and of the 

stoichiometry of class C GPCR oligomers in living cells (Maurel et al., 

2008). Additionally, the FRET technique has been used to analyze in 

details the formation of GPCRs heterodimers composed by CCR5 and 
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CXCR4, on the plasma membrane of living cells and in response to ligand 

binding (Isik et al., 2008). 

FRET contributed to the comprehension of Epidermal Growth Factor 

Receptor (EGFR) biology, belonging to the tyrosine kinase receptors family. 

Several FRET quantification methods were successfully applied to analyze 

EGFR oligomers formation on the plasma membrane, conformational 

changes and interactions with second messengers (Hayes et al., 2004). 
FRET between PDGF-R and FGF-R1 occurring in PAE cells treated with 

FGF-2/PDGF-BB mixture was detected, further supporting the finding that 
FGF-R1 and PDGF-R directly interact forming heterodimers (Faraone et 

al., 2006). 

FRET can be used even in homodimers analysis. For instance Neuropilin1-

derived peptide dimerization was actually measured in solution using 

sensitized emission (Roth et al., 2008). 

Finally, FRET was applied to detect the interaction between VEGFR2 and 

the tyrosine phosphatase SHP2 upon VEGF165 stimulation in PAE cells 

(Mitola et al., 2006). 
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MATERIALS AND METHODS 
 

Plasmids 

pCDNA3-mouseVEGFR2, pEGFP-N1-Neuropilin1 and pCMV-PlexinA1 

were kindly provided by Professor Federico Bussolino. From pCDNA3-

mouseVEGFR2 we constructed a pCDNA3-VEGFR2-Flag with the Flag tag 

fused to the C-terminal part of VEGFR2. The following VEGFR2 mutants 

were cloned by PCR amplification of mouse VEGFR2 with primers specific 

for the mutated version: K1053R, K929R-K937R-K939R, K929R-K937R-

K939R-K947R and K929R-K937R-K939R-K947R-K1053. 

pCDNA3-p300 has been previously described (Marzio et al., 1998). 

The pCMV-p300-DY-myc mutant was kindly provided by T.P.Yao 

(Durham). 

pCDNA3-HA-GCN5 was prepared by A. Saboʼ as previously reported (Sabo 

et al., 2008). 

pCMV-Flag-PCAF was kindly provided by Professor E. Verdin. 

pEGFP-N1, pECFP-N1 and pEYFP-N1 plasmids were purchased from 

Clontech (Mountain view, CA). 

pECFP-EYFP was obtained by PCR cloning of ECFP cDNA in pEYFP-N, 

spaced by a sequence coding for a seven aminoacid-long linker. 

pEGFP-Nterminal-NP1 and pEGFP-Cterminal-NP1 were cloned by PCR, 

subcloning the GFP N-terminus (residues 1-154) and C-terminus (155-238) 

respectively, at the C terminus of mouse Neuropilin1, as previously 

reported (Hu et al., 2002). 

pCDNA3-VEGFR2-EGFP (or EYFP) was obtained by PCR subcloning of 

EGFP (or EYFP) cDNA at the C-terminus of VEGFR2. 

pCMV-GIPC was purchased from Origine (Rockville, MD). 
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pEGFP (EYFP, ECFP)-GIPC was produced by PCR amplification of GIPC 

cDNA and cloning in pEGFP (EYFP, ECFP)-N1 and -C1. 

Cell culture, transfection and treatment 

HEK293T, HeLa and COS-7 cells were maintained in Dulbecco modified 

Eagle Medium with 10 % FBS and 0,1 mg/ml gentamicin unless differently 

indicated. PAE and PAE KDR cells, kindly provided by Professor Lena 

Claesson Welsh, were grown in HAMʼs F12 medium supplemented with 

10% FBS.  HUVE cells, purchased from ATTC, were maintained in EBM 

supplemented medium (Clonetics, Lonza). In the case of protein 

complementation assay (BIFC) experiments, cells were maintained at 20 
°C overnight to improve complemented EYFP folding. Transfections were 

performed either by the standard calcium phosphate co-precipitation 

procedure or by Effectene (Qiagen, Germany) or Lipofectamine (Invitrogen, 

CA). 
Cells were treated with TSA for 6h, 500 nM for HUVEC cells and 1 µM for 

HEK HEK293T cells. 

Recombinant VEGF165 was produced and purified by our laboratory using a 

baculovirus expression system, and used at a final concentration of 50 

ng/ml, unless differently indicated. 

Recombinant VEGF121m (corresponding to VEGF112) was purchased from 

R&D (Minneapolis, MN), while full length VEGF121 was purchased from 

PeproTech (Princeton, NJ); VEGF121 was used at 50 ng/ml. 

Recombinant SEMA3A was purchased from R&D (Minneapolis, MN), and 

used at 100 ng/ml, unless differently indicated. 

Growth Factor Reduced Matrigel was purchased from BD, and PAE cells 

were transfected using Lipofectamine, and 24 hours upon transfection 

seeded onto Matrigel (100000 cells/slide), and treated with recombinant 
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factors as indicated. Upon O/N treatment, slides were fixed and mounted 

for FRET analysis. 

Inhibition of protein synthesis was achieved by cell treatment with 30 mg/ml 

cycloheximide for the indicated time points. 

The cellular treatment with Lys-CoA (synthesized at the ICGEB Peptide 

Synthesis Core Facility) was performed as in (Bandyopadhyay et al., 2002) 

with minor modifications. Briefly, 16x 106 exponentially growing 

HEKHEK293T, transfected or not with pCDNA3-VEGFR2-Flag cells were 

incubated with the ICB solution (10 mM HEPES, pH 7.0, 0.14 M KCl, 0.01 

M NaCl, and 2.4 mM MgCl2) containing Lys-CoA (0.75 mM) and SPC (1.2 
mg/ml) at 37°C for 20 min. Upon LysCoA treatment, cells were plated for 

additional 24 hours and than lysed as described. 

Antibodies 

For FRET-related experiments the following antibodies were used: anti-

Neuropilin1 (Santa Cruz, CA), anti-Neuropilin1 (R&D, MN), anti-GFP (Santa 

Cruz, CA), anti-VEGFR2 (Santa Cruz, CA), anti-GIPC (Santa Cruz). 

For Acetylation-related experiments the following antibodies were used: 

anti-VEGFR2 either free or conjugated with agarose beads, anti-HA, both 

from Santa Cruz; anti-Flag, either free or conjugated with agarose beads, 

and anti-tubulin, both from SIGMA; anti-total acetyl-lysine, anti phospho-

VEGFR2 1173 are from Cell Signaling Technology (MA); anti-p300 from 

BD; anti-total phospho tyrosine clone 4G10 (Upstate). 

Horseradish peroxidase conjugated secondary antibodies for western 

blotting detection were purchased from DAKO. Fluorescently tagged 

secondary antibodies were obtained from Invitrogen. 

Anti-NP1A and anti-NP1B antibodies were obtaneid from Genentech (South 

San Francisco, CA), and their optimization has been described (Liang et al., 
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2007; Pan et al., 2007a). For FRET experiments, antibodies were added 

two hours before VEGF165 or SEMA3A treatment. 

Anti-PlGF antibody was provided by Professor Peter Carmeliet group, 

together with control IgG1 as a control. Antibodies are described in (Fischer 

et al., 2007). As in the case of anti-NP1 antobodies, anti-PlGF and control 

antibody in FRET exxpreiments were added 2 hours before VEGF 

treatment. 

Western blot and immunoprecipitation 

Cell lysis was performed using modified RIPA (150 mM NaCl, 50 mM 

TrisHCl pH 7.4, 1 mM EDTA, 1% NP-40, 0,25% Sodium-deoxycolate) or 

(Tris HCl 50 mM, NaCl 150 mM, pH 7,5, 1% Triton X-100), supplemented 

with protease inhibitors tablets (Roche), Sodium Fluoride 1mM, Sodium 

Butirrate 10mM and Sodium Orthovanadate 1mM (all form SIGMA). Protein 

lysate concentration was determined by Bradford Assay (BIORAD). 

Immunoprecipitation was carried out either with anti-Flag beads (SIGMA), 

or anti VEGFR2 beads or anti-GFP antibody coupled to agarose beads 

(both from Santa Cruz). Cells extracts where incubated for 4 hours or 

overnight with antibodies and/or beads, and then washed in lysis buffer. IPs 

were loaded onto SDS page and analyzed by western blotting, proteomics 

or silver stain. 

For silver staining, gels upon fixation (50% Methanol, 12% acetic acid, 

0.05% formalin) were sensitized (0,02% Na2S2O3). Staining was performed 

with a 0,2% AgNo3, 0,076% formalin solution for 20ʼ. Staining was 

developed (6% Na2CO3, 0,05% formalin and 0,0004% Na2S2O3) and 

subsequently stopped with a 50% Methanol, 12% acetic acid solution. 
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Immunofluorescence  

Following paraformaldehyde (or Zinc) fixation, cells were washed with 100 

mM glycine and permeabilized with 0.1% TritonX-100, or 0.1 % saponin for 
5ʼ. Primary and secondary antibodies were incubated at 37 °C for 1h in an 

humidified chamber in phosphate-buffered saline (PBS) with the addition of 

1% bovine serum albumin or 5% horse serum, and 0.1% Tween 20. Nuclei 

were counterstained using either 4',6-diamidino-2-phenylindole (DAPI) or 

Toto-3 (invitrogen). Images were acquired using either a Leica DMLB or 

Zeiss LSM510 META. 

Wheat Germ Agglutinin (WGA)-TRITC conjugated (SIGMA) was used to 

detect glycosylated proteins by IF. Upon fixation and permeabilization, cells 
were incubated for 1hour with 5 µg/ml WGA in PBS, then washed three 

times in PBS and stained for microscopy analysis. 

Proteomic analysis 

For proteomic analysis, anti-Flag IPs were loaded on a SDS page gel and 

stained with E-Zinc Stain kit (Pierce), following the related protocol. 

The band corresponding to VEGFR2 was excised from the gel and washed 

with 100 mM EDTA for 10 minutes, then subjected to reduction and 

alkylation using DTT and Iodoacetamide.  The band was washed 3 times 

with 50 mM Triethylammonium Bicarbonate in 50% Acetonitrile for 30 

minutes each.  The band was rehydrated with water for 10 minutes and 

then incubated with Deuterated Acetic Anhydride in Methanol (1 part 

Anhydride: 2 parts Methanol) for 1 hour at RT.  The reaction was quenched 

by addition of 1 M Ammonium Acetate, and then the band was washed 3 

additional times using 50 mM Triethylammonium Bicarbonate in 50% 

Acetonitrile for 30 minutes each.  The band was dehydrated for 10 minutes 

using 100% Acetonitrile and then subjected to trypsinization over night.  

The supernatant was harvested and the gel extracted with 1 M 
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Triethylammonium Bicarbonate and the extract was combined with the 

original supernatant. 

The resulting peptide mixture was acidified with Acetic Acid to 1 M and 

desalted using STAGE-tips.  The tips were eluted with a gradient from 10%-

65% Acetonitrile (in 25 ul) and spotted directly onto MALDI targets.  Mass 

spectrometry was performed on a 4800 MALDI-TOF/TOF mass 

spectrometer and MS/MS spectra were searched against the human and 

mouse databases using X!tandem. 

FRET 

For FRET experiments, we transfected PAE cells with different expression 

plasmids coding for fluorescent-tagged proteins of interest, using 

Lipofectamine (Invitrogen). Cells were serum starved overnight 24 hours 

upon transfection and treated with recombinant factors as detailed. Upon 

treatment, cells were fixed and 4% paraformaldehyde and mounted for 

FRET analysis with Vectashield mounting medium (Vector). 

FRET analysis was performed using a LSM510 META microscope (ZEISS). 

Optimized FRET channels, as described in the result section, were used in 

these experiments to acquire CFP and YFP channel images. Two images 

were acquired before bleaching, each in the CFP and YFP channels 

separately; acceptor photobleaching was then achieved by using 100% 

power of the 514 nm laser line in the region of interest (ROI), located at the 

level of the plasma membrane. We considered for further FRET analysis 

only images in which we obtained, upon acceptor photobleaching, almost 

90% drop in the acceptor fluorescence intensity in the ROI. Upon acceptor 

photobleaching, two additional images were acquired for each channel.  

Following this procedure, we measured pixel-by-pixel fluorescence in the 

ROI of each image using the LSM5 examiner software. Additionally, we 

used a not bleached ROI as an internal control for fluorescence fluctuations 
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due to image acquisition. FRET efficiency in the ROI, upon normalization 

due to fluorescence variations, was measured according to the following 

formula: 

FRET efficiency %= {[(Cyan intensity upon bleaching)- (Cyan intensity 

before bleaching)]/(cyan intensity upon bleaching)}x100. 

Additionally, images were analyzed using the ImageJ software to obtain the 

FRET subtracted image of the CFP channel. Briefly, image obtained before 

acceptor photobleaching was subtracted from the image obtained upon 

acceptor photobleaching using ImageJ, and the resulting image is showing 

net increment in the CFP channel due to FRET. 

Statistical analysis 

Pair wise comparison between groups was performed using the Studentʼs t 

test. p <0,05 was considered statistically significant. Statistical analysis was 

performed using the Statview software. 

 

Structural modelling 

VEGFR2 activation loop modelling was performed in collaboration with 

Doctor Sergio Pantano, Biomolecular Simulations Group, Institut Pasteur of 

Montevideo, Uruguay, as described in (Pantano and Carafoli, 2007), with 

minor modifications. The starting coordinates for VEGFR2 structure were 

obtained from the following published structures (PDB codes): 2QU5, 

2QU6, 1YWN, 2P2H and 2P2I, 2OH4. Three systems were simulated: i) the 

VEGFR2 activation loop without any post translational modification; ii) the 

VEGFR2 activation loop with tyr 1052 and 1057 phoshorylated; iii) the 

VEGFR2 activation looop with lys 1054 acetylated. 
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RESULTS 
 
During my PhD course I got interested in the molecular players of 

angiogenesis, in particular in the VEGF/VEGFR proteins. 

The work described in this thesis has been mainly focused on the 

dissection of some of the molecular mechanism underlining VEGFR2 

activity. 

Bearing in mind the key role of VEGFR2 in angiogenesis, we decided to 

investigate by which mechanisms VEGFR2 activation might be fine-tuned. 

As described in RESULTS PART I, we first analyzed how acetylation might 

directly affect VEGFR2 and its activity. 

Additionally, as detailed in RESULTS PART II, we investigated the 

formation of VEGFR2-Neuropilin1 complexes in endothelial cells by taking 

advantage of the FRET technique. 
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RESULTS PART I 
 

VEGFR2 is acetylated by p300 

VEGFR2 is acetylated in PAE cells 

In addition to tyrosine phosphorylation, a crucial event in receptor 

activation, PTMs can modulate VEGFR2 activity, such as glycosylation 

(Takahashi and Shibuya, 1997) and ubiquitination (Duval et al., 2003; Ewan 
et al., 2006). Lysine ε-acetylation has been extensively studied until now as 

a PTM modulating the activity of nuclear proteins, in particular histones; 

only recently a growing number of cytoplasmic proteins have been recently 

reported to be acetylated (Kim et al., 2006; Tang et al., 2007; Zhang et al., 

2007)-see Introduction-. Additionally, regulation of protein activity by 

acetylation has been proposed to rival phosphorylation in intracellular 

signalling (Kouzarides, 2000). 

Therefore, we wondered whether a transmembrane receptor such as 

VEGFR2 might be modified by acetylation in vivo. As a cellular model we 

used Porcine Aortic Endothelial cells stably expressing human 

VEGFR2/KDR (PAE KDR) (Waltenberger et al., 1994). We 

immunoprecipitated VEGFR2 from PAE KDR whole cell lysates and probed 

the immunoprecipitated protein with an antibody that specifically recognizes 

acetyl-modified lysines, irrespectively of their protein context. A specific 

band was detected as acetylated, corresponding to the higher band of the 

VEGFR2 doublet (Figure 3.1). Cell treatment with trichostatin A (TSA), a 

potent inhibitor of HDAC family member activity (Yoshida et al., 1995), 

increased the signal corresponding to acetylated VEGFR2 (Figure 3.1, 

compare lane 1 and 2), without affecting protein level. 

This observation clearly indicates that VEGFR2 is acetylated in vivo. 
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p300 increases VEGFR2 acetylation in vivo 

In order to identify the lysine acetyl transferase (KAT) responsible for 

VEGFR2 acetylation in vivo, we tested the ability of p300, GCN5 and pCAF 

enzymes, belonging to two different well characterized KAT families, to 

induce VEGFR2 acetylation in overexpression experiments. We performed 

the in vivo acetylation assay by cotransfecting HEK293T with VEGFR2 in 

combination with p300, GCN5-HA and PCAF-FLAG.  

 

Figure 3.1. VEGFR2 acetylation in PAE KDR. PAE KDR whole cell 
lysates (WCL) were immunoprecipitated using an anti-VEGFR2 antibody, 
and then immunoblotted with an anti-acetyl lysine antibody. Upon stripping 
the same membrane was immunoblotted with an anti-VEGFR2 antibody 
(lower left). The right panels show WCL blotting with anti-VEGFR2 and anti-
tubulin as an input control. Cells were treated for 6 hrs with 500 nM 
trichostatin A (TSA) or DMSO as control, as indicate at the top of each lane. 

 
As shown in Figure 3.2, only in presence of over expressed p300 we were 

able to detect VEGFR2 acetylation upon VEGFR2 immunoprecipitation 

from WCL. We were also able to co-immunoprecipitate p300 together with 

VEGFR2, while in the same experimental conditions neither PCAF nor 

GCN5 co-immunoprecipitated with VEGFR2 (Figure 3.2, second panel). 
Additionally, as INF-γ treatment has been demonstrated to be able to 

partially induce p300/CBP relocalization from the nucleus to the cytoplasm, 

thus increasing INFR type I acetylation, a p300/CBP target (Tang et al., 
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2007), we wanted to test the effect of short term VEGF stimulation on 

VEGFR2 acetylation. Therefore in the same experiment we kept cells in 

10% fetal calf serum, serum-starved or treated them with 50 ng/ml of 

rhVEGF165 for 7 min after serum starvation, as indicated on top of Figure 

3.2. In our experimental conditions, short time treatment with VEGF did not 

modify VEGFR2 acetylation levels. 

 

 

Figure 3.2. VEGFR2 acetylation is increased by p300. VEGFR2 was 
transiently transfected in combination with p300, GCN5 or PCAF. 
Additionally, cells were treated or not with VEGF165 as indicated. Anti-
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VEGFR2 immunoprecipitates were immunoblotted with an anti-acetyla 
lysine, anti-VEGFR2 and anti p300. WCL were probed with anti-p300, anti-
PCAF, anti-GCN5 and anti tubulin. 

 
To further confirm this observation, we used LysCoA, an inhibitor of p300 

enzymatic activity (Cereseto et al., 2005; Lau et al., 2000). HEK293T cell 

lysates, transfected with VEGFR2-Flag, were immunoprecipitated with an 

anti-Flag antibody upon LysCoA or vehicle treatment, as indicated in Figure 

3.3. LysCoA treatment induced a dramatic decrease of the signal 

corresponding to acetylated VEGFR2, as visible comparing lanes 1 and 2 in 

Figure 3.3. 

 

 

Figure 3.3. LysCoA treatment reduces VEGFR2 acetylation. HEK293T 
cells overexpressing VEGFR2 were treated with LysCoA or vector alone. 
Anti-VEGFR2-Flag immunoprecipitates were blotted with an anti total 
acetylated lysine antibody. 

 
To distinguish between the role of p300 as a transcriptional activator and as 

an acetyl transferase in inducing VEGFR2 acetylation, we used a p300 
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enzymatically inactive mutant, p300 DY (Ito et al., 2001; Sabo et al., 2008). 

We contransfected HEK293T cells with VEGFR2-Flag in combination with 

wt p300, the DY mutant or an empty vector. While wt, active p300 strongly 

induced VEGFR2 acetylation as shown in Figure 3.4, upper panel, lane 1 

and 2, the enzymatically inactive DY mutant was indistinguishable from 

controls in inducing VEGFR2 acetylation (compare lanes 3, 4, 5 and 6). 

Nonetheless, VEGFR2 acetylation even in presence of only endogenous 

active p300 became visible at higher exposure times (second panel from 

top).  

 

 

Figure 3.4. VEGFR2 acetylation parallels p300 activity. VEGFR2 was 
immunoprecipitated from HEK293T cells expressing the receptor in 
combination with p300 wt, p300 DY or with an empty vector. For each 
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experimental point cell were treated with or without rhVEGF165 (50 ng/ml for 
7 min). Receptor acetylation was detected using a total anti-acetyl lysine 
antibody. 

 
Again, upon treatment with rhVEGF165 (50 ng/ml for 7 min), we were not 

able to detect any variation in VEGFR2 acetylation levels, as it is evident 

comparing lanes 1 and 2. 

Finally, p300 activity, until now, has been extensively characterized for its 

ability to acetylate nuclear proteins, such as histones and transcriptional 

activators (Goodman and Smolik, 2000); on the other hand VEGFR2 has 

been widely characterized as a transmembrane protein, with few evidences 

indicating its possible nuclear translocation, for instance during shear stress 

(Feng et al., 1999; Shay-Salit et al., 2002).  

 

 

Figure 3.5. p300 subcellular localization in HUVEC. A) Images of 
HUVEC stained with anti-P300 and DAPI as indicated. B) Confocal images 
of cells stained with anti-p300. 
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We were not able to detect VEGFR2 nuclear localization nor in HEK293T 

overexpression experiments nor endogenous VEGFR2 in EC (data not 

shown). To further characterize p300 distribution in ECs we performed 

immunofluorescence experiments on HUVEC. As shown in Figure 3.5, we 

detected p300 only in the nuclear compartment (upper panels), while using 

confocal microscopy, we were able to detect p300 staining even in the 

cytoplasm, as visible from the lower panels in Figure 3.5.  

Taken together, the above results clearly indicate that p300 is an acetyl 

transferase responsible in vivo for VEGFR2 acetylation; the results of the 

p300 localization experiments are consistent with this conclusion. 

 

Identification of VEGFR2 acetylation sites 

At least five VEGFR2 residues are acetylated 

The mouse VEGFR2 sequence carries 79 lysines, the vast majority of 

which are species-conserved. On the other hand a p300 acetylation 

consensus site has not been identified until now. Therefore, all VEGFR2 

lysines can be bona-fide acetylation sites. 

In order to identify without ambiguities the VEGFR2 lysine(s) that are 

acetylated in vivo, we exploited proteomic analysis. We transfected 

HEK293T cells with VEGFR2-Flag or a pCDNA3-Flag plasmid as a control 

and immunoprecipitated the two proteins with an anti-Flag antibody. One 

tenth of the total IP was loaded on a gel and silver stained. As shown in 

Figure 3.6, we immunoprecipitated a band of approsimately 220 kDa 

corresponding to the size of fully glycosylated VEGFR2 (VEGFR2-A). In 

addition, to elucidate the IP content, we decided to analyze by mass 

spectrometry an additional band of smaller mass identified in the silver 
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stain (VEGFR2-B). Upon tryptic digestion and mass spectrometry analysis, 

we found that the upper band corresponded to acetylated and 

phosphorylated VEGFR2, while the lower band was again the same 

receptor, however in an unmodified state. 

In three independent proteomic experiments we identified five VEGFR2 

lysine sites that were detected as acetylated in almost two experiments. 

Interestingly, all these five sites are located in the intracellular sequence of 

the receptor. 

Lysines we identified as aceylated in the mouse VEGFR2 protein are: 

Lys929, Lys937, Lys939, Lys347 and Lys1053 (corresponding to Lys931, 

939, 941, 949 and 1055 of human VEGFR2, respectively). The position of 

the modified lysines n the VEGFR2 protein sequence is reported in Figure 

3.7. 

 

Figure 3.6. VEGFR2-Flag silver staining. Anti-flag immunoprecipitates 
upon VEGFR2-Flag or empty vector transient transfection were loaded on a 
gel and silver stained. Two bands corresponding to VEGFR2 were 
identified and underwent proteomic analysis. 
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Figure 3.7. Schematic representation acetylated lysine distribution in 
mouse VEGFR2 sequence. The aminoacidic sequences surrounding 
acetylated lysine sites, detected by MS/MS, are reported. Acetylated 
lysines are in bold, phosphorylated tyrosines (according literature) are 
highlighted by an asterisk. 

 
Four lysines (Lys929, Lys937, Lys939 and Lys947) are located in the insert 

kinase domain, characteristic of VEGFRs, and actually form a dense 

cluster; they are adjacent to a well-characterized tyrosine, Tyr949 (Tyr951), 

which was shown to be phosphorylated and to mediate TSAd dependent 

cell signalling (Matsumoto et al., 2005). Additionally, by proteomic analysis 
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we found that Lys929 can be modified by ubiquitination, and that this 

modification was alternative to acetylation. 

Even more interestingly, the fifth site we characterized as acetylated was 

Lys1053: it is located in the second kinase domain, and it is placed in the 

activation loop of VEGFR2, following the first of the two phosphorylated 

tyrosines of the activation loop (Tyr1052 and Tyr1057 in the mouse 

sequence), required for maximal VEGFR2 kinase activity (Dougher and 

Terman, 1999). Intriguingly, Lys1053 is conserved not only among mouse, 

human and rat VEGFR2 sequences, but also in mouse VEGFR1 and 

VEGFR3, as shown by the protein alignment in Figure 3.8, panel B. This 

raises the possibility that Lys1053 has a conserved role in VEGFR2 activity. 

Among the other acetylated residues, only Lys929 seems to be conserved 

among different VEGFRs, while all other lysines are maintained in VEGFR2 

of mouse, human and rat origin, but not in VEGFR1 and VEGFR3 (Figure 

3.8, panel A). 

 

Figure 3.8. Comparison of VEGFRs sequences flanking acetylated 
lysines. 
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In conclusion, five lysine located in the cytoplasmic tail of VEGFR2 are 

modified by acetylation, and that these residues are highly conserved 

among species. 

 

Substitution of lysine with arginine strongly reduces VEGFR2 
acetylation 

To estimate the role of lysines 929, 937, 939, 947 and 1053 in overall 

VEGFR2 acetylation, we constructed VEGFR2 with these five lysines 

mutated to arginines. Lysine to arginine substitution allows conservation of 

the positive charge, characteristic of the lysine residue, but impairs 

modification by acetylation. HEK293T cells were transfected with constructs 

coding for wt VEGFR2 or three different mutants: MUT A (Lys929Arg, 

Lys937Arg, Lys939Arg), MUT B (Lys947Arg) and MUT C (Lys1053Arg). 

WCL lysates were immunoprecipitated with an anti-Flag antibody, since all 

constructs were Flag-tagged, and the IPs were probed with an anti-acetyl 

lysine antibody to detect VEGFR2 acetylation. As shown in Figure 3.9, all 

three mutants showed a dramatic reduction in VEGFR2 acetylation 

compared to the wt protein; nonetheless we cannot exclude that VEGFR2 

is still acetylated, even if at lower levels. Surprisingly for a single point 

mutant, a drop of protein abundance was especially observed upon MUT A 

transfection, as it is evident from the second panel from top of Figure 3.9 

(compare lanes 1 and 2).  
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Figure 3.9. Lysine substitution largely abolishes VEGFR2 acetylation. 
HEK293T cells were transfected with different Flag-tagged constructs, 
coding for: WT VEGFR2, VEGFR2 MUT A (K929R, K937R and K939 R), 
VEGFR2 MUT B (K947R) or VEGFR2 MUT C (K1053R). Whole cell lysates 
were immunoprecipated using an anti-Flag antibody and probed with a total 
anti-acetyl-lysine antibody to detect acetylated VEGFR2. 

 

VEGFR2 acetylation influences receptor phosphorylation 
and stability 

The well-established role of the acetylation-phosphorylation crosstalk in 

regulating protein function (reviewed in (Yang and Seto, 2008)) together 

with the observation that VEGFR2 tyrosine phosphorylation is one of the 

first steps in VEGF-triggered intracellular signalling, raises the possibility 

that VEGFR2 acetylation and tyrosine phosphorylation might influence each 

other.  

Additionally, since VEGFR2 has been shown to be ubiquitinated (Duval et 

al., 2003; Ewan et al., 2006) and ubiquitination and acetylation are mutually 

exclusive lysine posttranslational modifications, it is possible that VEGFR2 
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acetylation might influence protein levels, as also suggested by the results 

on total whole cell lysates shown in Figure 3.9. 

 

VEGFR2 acetylation increases VEGF-induced tyrosine 
phosphorylation 

As a first step to explore the consequences of VEGFR2 acetylation in signal 

transduction, we analyzed VEGFR2 phosphorylation on tyrosine residues in 

conditions in which the receptor was over-acetylated. In particular, we 

transfected VEGFR2 together with wt p300, the p300 DY mutant or an 

empty plasmid. As shown in Figure 3.10, p300 over-expression induced a 

dramatic increase in VEGFR2 tyrosine phosphorylation; this effect 

depended on p300 catalytic activity. We quantified VEGFR2 

phosphorylation levels, upon normalization with tubulin and total VEGFR2 

quantities. As plotted in the graph in Figure 3.10, p300 co-expression 

induced almost a four-fold increase in receptor tyrosine phosphorylation. 

This observation, in combination with our previous findings suggesting that 

p300 is the HAT that acetylates VEGFR2 in vivo, indicates that VEGFR2 

acetylation can have a role in modulating VEGF-mediated VEGFR2 

phosphorylation of tyrosine residues.  
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Figure 3.10 VEGFR2 phosphorylation is enhanced by p300 
expression. HEK293T cells were transfected with VEGFR2 in combination 
with wt p300, p300 DY or an empty vector. Upon overnight serum 
starvation, cells were treated with 50 ng/ml of rhVEGF165 for 7 min as 
indicated. Whole cell lysates were blotted with an anti-total phospho 
tyrosine antibody to detect VEGFR2 phosphorylation in response to VEGF. 
In parallel, VEGFR2 levels were detected with an anti-Flag antibody. 
Quantification of protein phosphorylation was performed using ImageJ to 
quantify band intensity. Tyrosine phosphorylation values (in arbitrary units, 
AU) were obtained upon normalization with total VEGFR2 and tubulin. +: 
VEGF treated, - no VEGF treatment. 

 

Mutation of lysine 1053 to arginine impairs VEGFR2 tyrosine 
phosphorylation but has no effect on protein stability 

In an effort to dissect the possible role of different lysine residues in 

VEGFR2 phosphorylation and stability we started analyzing the single 

mutant Lys1053Arg. For this purpose we transfected PAE cells, lacking  

wild type VEGFR2 and the Neuropilin1 co-receptor, with wt VEGFR2 or the 

K1053R mutant; cells were treated with rhVEGF165, as indicated, to induce 

VEGFR2 phosphorylation. Interestingly, lysine 1053 substitution with 
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arginine greatly reduced VEGFR2 phosphorylation at tyrosine 1173, a 

residue essential for VEGF-induced signal transduction (Holmqvist et al., 

2004; Sakurai et al., 2005 ), as shown in Figure 3.11 panel A. Since we 

observed a small reduction in VEGFR2 total level (compare lanes 2 and 3 

in panel 2), we asked whether the lower phosphorylation of the VEGFR2 

mutant could be partially due to diminished protein stability. In order to 

address this question, we compared wt and mutant VEGFR2 half-life in 

HEK293T cells upon de novo protein synthesis inhibition with 

cycloheximide (CHX). As shown by panel B in Figure 3.11, mutant (red 

squares) and wt (blue rhomb) VEGFR2 stability curves over time were 

super imposable. 

 

 

Figure 3.11. K1053R VEGFR2 mutant phosphorylation and stability. A) 
PAE were transfected with wt VEGFR2 or K1053R mutant, and treated as 
indicated with 50 ng/ml rhVEGF165 for 5 min. The membrane was blotted 
with anti-phosphoTyr1173(1175 in the human sequence), stripped and 
blotted with anti-VEGFR2. Anti-tubulin was used as a loading control. B) 
VEGFR2 wt (blue rhomb) or mutant (red square) protein levels are plotted 
over time. HEK293T cells transfected with wt or mutant VEGFR2, were 
treated for the indicated hours with cycloheximide (CHX) to inhibit protein 
synthesis. Protein decay over time was quantified with ImageJ from blots 
using an anti-VEGFR2 antibody and tubulin to normalize protein levels. 
Protein decay is expressed as percentage of the protein at time 0 (without 
CHX treatment). 
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Lysine 1053 is located in the activation loop of VEGFR2. Transition of the 

activation loop from a closed to an open conformation has been proposed 

to accompany phosphorylation of Tyr1052 and Tyr1057, two key residues 

involved in VEGFR2 activation (McTigue et al., 1999; Roskoski, 2008). To 

investigate the role of lys 1053 acetylation in the activation loop 

conformation, in collaboration with Doctor Sergio Pantano, Biomolecular 

Simulations Group, Institut Pasteur of Montevideo (Uruguay) we performed 

structural modelling. Our computational modelling, as shown in Figure 3.12, 

revealed that lysine 1053 (blue ribbon) is buried inside the middle of the 

activation loop, flanked by tyrosines 1052 and 1057 (blue rings). More 

interestingly, our modelling suggests that lysine 1053 modification by 

acetylation, by quenching the positive charge carried by the lysine amino 

group, contributes to the transition of the activation loop from the closed 

and inactive state (panel A), to the open, active and tyrosine 

phosphorylated state shown in panel B. 

Overall, our data on the Lys1053Arg VEGFR2 mutant phosphorylation, 

stability and modelling indicate that this residue has a role in VEGFR2 

phosphorylation almost at the level of tyrosine 1173, while has no effect on 

protein stability. 

 

Substitution of five lysines with arginines reduces VEGFR2 stability 

In order to clarify the role of Lys929, Lys937, Lys939 and Lys947 in protein 

stability, we transfected HEK293T cells with VEGFR2 wt or the mutant (with 

four lysines mutated to arginine), and assessed protein levels upon a time 

course CHX treatment. As shown in Figure 3.13, panel A, the four lysine 

mutant was not significantly less stable compared to the wt protein, similar 

to the Lys1053Arg mutant shown in Figure 3.11. 
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Figure 3.12. Modelling of VEGFR2 activation loop. The inactive and 
closed state of the activation loop is shown in A, while in B the open, active 
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conformation characterized by tyrosine residues phosphorylation is visible. 
Tyrosines 1052 and 1057 (blue rings) and lysine 1053 (blue ribbon) are 
shown in an expanded conformation. 

 
Surprisingly, a VEGFR2 mutant in which we substituted all the five lysines 

we identified as acetylated with arginine, was less stable then the wt 

protein, and a difference in protein stability could be detected as early as 

after 1 hour of CHX treatment (Figure 3.13 panel C).  

 
 

 
Figure 3.13.  VEGFR2 with five mutated lysines is less stable than the 
wild type protein. Wt and mutant VEGFR2 stability curves are shown. 
HEK293T cells transfected with wt or mutant VEGFR2, were treated for the 
indicated hours with cycloheximide (CHX) to inhibit protein synthesis. 
Protein decay over time was quantified from blots using an anti-VEGFR2 
antibody and tubulin to normalize protein levels. Protein decay is expressed 
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as a percentage of the protein at time 0 (without CHX treatment). A) 
Comparison between wild type and four-lysine mutant VEGFR2; B) Cell 
lysate from HEK293T cell trasfected with wt VEGFR2 or five-lysine mutant 
and treated wth CHX for indicated times were blotted with an anti-VEGFR2 
and anti tubulin as a loading control; C) Protein decay is plotted over time. 

 
Strikingly, the VEGFR2 mutant was undetectable at 4 hours of CHX 

treatment, while wt VEGFR2 was still detectable (compare lane 4 and 8 of 

panel B in Figure 3.13).  

 

Effect of VEGFR2 acetylation on VEGF-dependent desensitization 

The observation that VEGFR2 acetylation can affect both protein stability 

and receptor phosphorylation on tyrosine residues prompted us to 

investigate the role of acetylation in receptor desensitization, a process that 

involves both VEGFR2 down-regulation and inhibition of phosphorylation 

(Duval et al., 2003; Ewan et al., 2006; Gampel et al., 2006; Marmor and 

Yarden, 2004; Singh et al., 2005; Singh et al., 2007). For this purpose 

HEK293T cells transfected with wt VEGFR2 were treated with TSA in order 

to inhibit HDAC activity, in combination with rhVEGF for different time 

points as indicated. Surprisingly, TSA treatment inhibited VEGF-induced 

VEGF down-regulation, a shown in Figure 3.14. Additionally, acetylated 

VEGFR2 retained the ability to respond to VEGF stimulation by tyrosine 

phosphorylation (lower panels).  

Therefore, VEGFR2 acetylation seems to be linked to inhibition of receptor 

desensitization. 
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Figure 3.14. VEGFR2 acetylation is linked to receptor desensitization. 
HEK293T cells transfected with VEGFR2 were treated or not with TSA and 
stimulated for different time points with rhVEGF165 to induce receptor 
desensitization. Anti-Flag immunoprecipitates were blotted with an anti-total 
acetyl lysine antibody, stripped and blotted with an anti Flag antibody. 
Lysates were blotted with an anti phopsho-VEGFR2 (Tyr1173), anti-flag 
and anti tubulin. 
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RESULTS PART II 

Fluorescence Resonance Energy Transfer  

On the basis of previous studies reporting VEGFR2-Neuropilin1 interaction in 

ECs, we further investigated by microscopy the formation of these membrane 

complexes. In particular we took advantage of a physical property, FRET, to 

analyze the protein-protein interaction occurring in the 1-10 nm range at the 

plasma membrane in endothelial cells. Briefly, FRET technique requires a pair 

of fluorophores with defined spectral properties. As a FRET pair suitable for 

our experiments, we selected ECFP and EYFP, due to the partial overlapping 

between ECFP (also defined as the donor fluorophore) emission spectra and 

EYFP (also defined as the acceptor fluorophore) absorption spectra. Among 

all the FRET detection methodologies available, we chose to apply acceptor 

photobleaching to study protein-protein interactions even in presence of low 

amounts of molecules. As shown in Figure 3.15, this technique exploits 

acceptor molecule bleaching to reduce energy transfer from the donor; only 

when donor and acceptor are in contact (less then 10 nm apart), an increase 

in donor emission can be detected by microscopy. 

 

 
 

Figure 3.15. FRET detection using acceptor photobleaching technique. 
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As a first step we adapted this technique, formerly described by Karpova et al, 

to our experimental conditions (Karpova et al., 2003). In order to optimize 

image acquisition and, more importantly, to minimize possible cross talk 

between channels, we modified the acquisition setting for the LSM510 ZEISS 

microscope.  Based on fluorescent proteins excitation spectra we used a 458 

Argon laser line to excite ECFP and a 514 line to excite EYFP. A main beam 

splitter HFT 458/514 reflected laser lines. Since one of the major confounding 

factor in FRET detection is the bled-through between channels, we created a 

CFP filter spanning from 467 to 499 nm as highlighted in Figure 3.16; the 

EYFP filter was set to detect wavelength from 531 to 584 nm.  In our 

experimental conditions channel cross talk was virtually absent using this 

optimized filter set. For brevity we named the combination of excitation and 

filters for ECFP or EYFP detection “ECFP channel” and “EYFP channel”, 

respectively. 

 
Figure 3.16. ECFP and EYFP spectra. ECFP (cyan) and EYFP (yellow) 
excitation spectra are shown in the upper panel, dotted bars represent laser 
lines. In the lower panel coloured area correspond to adopted filter set for 
fluorescence detection. 
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First, we tested these microscope settings for FRET detection using a fusion 

protein composed by ECFP and EYFP separated by a short, non-charged 

amminoacidic linker (Karpova et al., 2003). This construct should lead to a 

virtual 100% interaction between the two fluorophores. 

 
Figure 3.17. Acceptor photobleaching for FRET detection. Cell 
transfected with an ECFP-EYFP fusion protein (panel C) upon acceptor 
photobleaching in a ROI (B), displayed significant FRET signal (E), clearly 
visible upon digital subtraction (F). 
 
 
We transfected PAE cells with this construct as a positive control and with 

equal amounts of ECFP and EYFP proteins as a negative control. Twenty-four 

hours after transfection PAE cells were fixed and analyzed at the confocal 

microscope using the above-mentioned FRET settings. A representative set of 

FRET images in a cell expressing the ECFP-EYFP fusion is shown in Figure 

3.17. In panel A and D the EYFP and the ECFP channels images are shown 

separately before bleaching. We selected one region (ROI, Region Of 
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Interest), highlighted in the inset, and we applied only to the selected region a 

high intensity laser beam at 514 nm in order to bleach EYFP fluorescence. 

This bleaching resulted in a nearly complete loss of EYFP signal in the ROI 

(panel B), while FRET was detectable as a fluorescence increase in the 

corresponding ROI in the ECFP channel, as clear from the inset in panel E.  

To better visualize FRET we used the image subtraction function of the 

ImageJ program: we digitally subtracted the ECFP image upon bleaching from 

the corresponding ECFP image acquired before bleaching. As shown in 

Figure 3.17 panel F this digital subtraction improved FRET visualization.  

Therefore, this digital subtraction method was applied to all other FRET 

images.  

Remarkably, the LSM5 microscope not only allowed FRET visualization, but 

also FRET quantification using pixel-by-pixel fluorescence intensity 

measurement. As shown in Figure 3.18 fluorescence intensity in the EYFP 

and the ECFP channels variations during FRET acquisitions were plotted over 

time, and an increase in ECFP intensity (solid line) is visible upon acceptor 

photobleaching (dashed line). 

 

 
Figure 3.18. Fluorescence intensity variations in FRET. Pixel-by-pixel 
fluorescence variation is plotted over time in a FRET experiment with the 
ECFP-EYFP construct. FRET can be observed as an increase in ECFP 
fluorescence (-) upon EYFP (acceptor) photobleaching (_ _). 
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VEGFR2-EGFP characterization 

To characterize the dynamics of VEGFR2 interactions with NP1 using FRET 

we created different fusion constructs containing the coding sequence of 

mouse VEGFR2. We fused the full length coding sequence in frame with 

different fluorescent protein tags: EGFP, EYFP and ECFP. In particular we 

cloned these tags fused to the VEGFR2 C-terminus by a linker of seven amino 

acids, to obtain an intracellular localization of the fluorescent protein.  

In order to exploit these constructs for further FRET experiments, modified 

VEGFR2 should retain its original properties; in particular sub cellular 

localization and phosphorylation on tyrosine residues. To examine intracellular 

distribution, we transiently transfected ECs with the pCDNA-VEGFR2-EGFP 

plasmid.  Among all the cell types tested, PAE were the most suitable for our 

work, in particular because they do not express nor VEGFR2 nor Neuropilin1, 

and we conducted all further FRET experiments in this cellular model. Cells 

were harvested 24 hours upon transfection and fixed to directly visualize 

VEGFR2-EGFP. WGA-TRITC staining for glycoproteins was then performed 

on samples to highlight membranes containing glycosylated protein, in order 

to provide an indirect indication of VEGFR2 distribution. 

 
Figure 3.19. VEGFR2-GFP localization in EC. VEGFR2-GFP protein is 
detectable at the plasma membrane in PAE cells, in a perinuclear 
compartment with punctate staining, colocalizing with glycosylated proteins 
detected by WGA. 
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As expected VEGFR2-GFP showed a partial localization at the plasma 

membrane level and in filopodia, nonetheless protein accumulation was 

detectable in the perinuclear compartment and as punctate vesicular staining 

(Figure 3.19 panel A). Interestingly, HUVEC cells were previously reported to 

display a similar distribution for wt KDR (Bhattacharya et al., 2005; Gampel et 

al., 2006). Furthermore VEGFR2-EGFP colocalized with the WGA-TRITC 

staining characteristic of glycosylated protein, visible in Figure 3.19 panel B 

and C.  

Taken together these observations suggested that VEGFR-EGFP expressed 

in PAE retained the normal sub-cellular localization of wt VEGFR2. 

To assess the activity VEGFR2-EGFP we evaluated its levels of 

phosphorylation in cells. 

 
Figure 3.20. VEGFR2-EGFP phosphorylation. The upper panel show 
phospho-VEGFR2 as detected by anti-total phospho Tyrosine antibody upon 
IP form HEK293T cells. VEGFR2-EGFP (lane 7) is phosphorylated in 
response to VEGF165 stimulation. 
 
In detail, HEK293T cells were transfected with pCDNA3-VEGFR2 or pCDNA-

VEGF-EGFP, maintained for 16 hours in the absence of serum and then 

treated with 50 ng/ml of recombinant VEGF165 for 5 min, as indicated in Figure 

3.20; cells were lysed and whole cell lysates were subjected to 

immunoprecipitation using an anti-VEGFR2 antibody. As shown in Figure 

3.20, VEGFR2-EGFP could undergo tyrosine phosphorylation upon VEGF 
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stimulation (compare lane 5 and 7) and this effect was comparable, if not 

higher, to that observed in the wt VEGFR2 (lane 1 and 3). Note that VEGFR2-

EGFP displayed a higher molecular weight referred to its wt counterpart when 

detected in wb, due to the EGFP tag (Figure 3.20 lower panel, anti-VEGFR2). 

Altogether these observation indicated that VEGFR2 with a c-terminal 

enhanced fluorescent protein tag (in these experimental settings EGFP) 

retained its characteristic localization in EC and, more important, can still 

undergo phosphorylation on tyrosine residues upon VEGF stimulation. This 

construct was therefore deemed suitable for FRET experiments. 

 

Localization and activity of fluorescent Neuropilin1  

In parallel to VEGFR2, in order to perform FRET experiments we created 

three different constructs coding for mouse Neuropilin1 with a C-terminal tail 

linked to EGFP, EYFP or ECFP. 

Since Neuropilin1 activity is strictly coupled with its sub cellular localization 

and its ability to interact with other partners, we tested whether the main 

properties of the wt protein were maintained even in presence of a fluorescent 

tag.  

 

 
Figure 3.21 NP1-EGFP localization. NP-1-EGFP localization in PAE cells (A) 
and endogenous NP1 localization, detected in HUVEC cells by 
immunofluorescence with an anti-Neuropilin1 antibody (B). 
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To assess that the FPs tag had no effect on NP1 protein localization, PAE 

cells were transiently transfected with the pEGFP-N1-NP1 construct, coding 

for EGFP fused at the C-terminus of mouse Neuropilin1. As shown in Figure 

3.21 panel A, twenty-four hours after transfection, the Neuropilin-1-GFP 

protein was mainly localized at the plasma membrane in PAE cells, displaying 

a characteristic distribution at cell filopodia, and a weaker accumulation in the 

ER. Immunofluorescence against the endogenous Neuropilin1 in HUVE cells 

revealed a nearly identical distribution (Figure 3.21 panel B), suggesting that 

the fluorescent tag was not influencing protein localization.  

Next, we tried to elucidate NP1 activity. For this purpose, a cell contraction 

assay was used to measure the Neuropilin1 ability to transduce the signal 

triggered by its ligand SEMA3A. Cos-7 cells, which express neither 

Neuropilin1 nor PlexinA1, were transiently transfected with Neuropilin1-EYFP, 

alone or in combination with PlexinA1 (at the 1:1 ratio).  

 
Figure 3.22. SEMA3A induced cell contraction. NP1-EYFP expression in 
COS7, combined with PlexinA1, triggers cell contraction in response to 
SEMA3A (B). In absence of PlexinA1, no response to SEMA3A is detectable 
(D). 
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Expression of Neuropilin1-EYFP in combination with PlexinA1 led to massive 

Cos-7 cells collapse only upon stimulation with SEMA3A (Figure 3.22 panel A 

and B). This effect was not observed when cells were subjected to SEMA3A 

treatment in absence of PlexinA1 expression (Figure 3.22 panel C D). 

Since we were also interested in the preservation of the putative intracellular 

pathways immediately downstream of NP1, we decided to further investigate 

whether the interaction between fluorescently modified NP1 and its 

intracellular mediators was conserved. We therefore tested the formation of 

complexes formed by NP1 and its intracellular binding protein, GIPC1 (Wang 

et al., 2006). This issue was critical since our NP1 fusion construct consisted 

of the fluorescent protein tags separated by only a short linker from the NP1 C 

terminal amino acids; this region codes for the SEA motif that constitutes the 

recognition site for GIPC1 and has been reported to be required for NP-1-

VEGFR2 interaction (Prahst et al., 2008).  

 
Figure 3.23. NP1-GFP interaction with GIPC. NP1-GFP was 
immunoprecipitated from HEK293T cells, transfected as indicated at the top. 
Anti-GIPC antibody was used to detect GIPC-NP1 co-immunoprecipitation. 
  
HEK293T cells were transfected with pEGFP-NP1, pEGFP-NP1 in 

combination with pCDNA3-GIPC1 or pCDNA3-VEGFR2; 36 hours after 
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transfection whole cell lysates were subjected to immunoprecipitation against 

Neuropilin1 using an anti-GFP antibody. NP1-EGFP was able to specifically 

co-immunoprecipitate both over expressed and endogenous GIPC1, as visible 

in Figure 3.23, upper panel, lane 3 and 4. 

Taken together, immunoflourescence, cell contraction and IP experiments 

indicated that modified NP1 had properties comparable to its wild type 

counteroart and could be used in FRET experiments. 

 

Visualization of VEGFR2-NP1 interaction in EC using FRET 

We applied FRET in order to better clarify the dynamics of VEGFR2-

Neuropilin1 interaction in response to different soluble ligands.  

In particular, we investigated the effects of two VEGF-A isoforms in the 

formation of angiogenic receptors complexes. The VEGF 165 aa long isoform 

(VEGF165) is able to bind both Neuropilin1 and VEGFR2, while the properties 

of the 121 aa long isoform 121 (VEGF121) are still controversial (Guttmann-

Raviv et al., 2007; Pan et al., 2007b; Shraga-Heled et al., 2007). SEMA3A 

was also tested for its selective Neuropilin-1, but not VEGFR2, binding. 

VEGFR2-EYFP and Neuropilin1-ECFP were transiently cotransfected in PAE 

cells. Twenty-four hours after transfection cells were grown in the absence of 

serum for additional 16 hours. Cells were then treated with either 50 ng/ml 

VEGF165, 50 ng/ml VEGF121, 100 ng/ml SEMA3A or maintained in the absence 

of serum. After 5 minutes stimulation, cells were washed, fixed and mounted 

for microscopy analysis. For FRET evaluation, we applied the microscope 

settings previously validated using the ECFP-EYFP control construct. The 

FRET experiment is outlined in Figure 3.24 using three images: two showing 

the EYFP channel before and after bleaching (corresponding, in this case, to 
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VEGFR-EYFP)(panels A, B, D and E) and one with the resulting FRET 

channel (obtained as discussed before)(C and F).  

As shown in Figure 3.24, after VEGF121f (full length) stimulation and acceptor 

photobleaching in the ROI, in basal conditions FRET between VEGFR-EYFP 

and NP1-ECFP was barely detectable (panel C). Conversely, VEGF165 

treatment results in a clear FRET signal in correspondence to the bleached 

region (panel F). 

 

 
Figure 3.24. Interaction between VEGFR2 and NP1 by FRET. PAE cell 
transfected with NP1-ECFP and VEGFR2-EYFP showed no positive FRET 
signal in the bleached ROI upon treatment with 50 ng/ml VEGF121f (A, B, C). 
When the cells were treated with 50 ng/ml VEGF165, a clear FRET signal was 
detected in correspondence of the bleached ROI (D, E and F). 
 
 
Next we quantified FRET efficiency; the results, obtained form at least 10 cells 

for each treatment group, are plotted in Figure 3.25. We detected a positive 

FRET signal between VEGFR2 and Neuropilin1 only upon rhVEGF165 
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treatment; conversely stimulation with two different batches of rhVEGF121 

(VEGF121f and VEGF121m, lacking 9 C-terminal aminoacids) was not able to 

induce a significant increase in the FRET signal, referred to as a negative 

control (untreated cells). Conversely, cells treated with SEMA3A displayed no 

increment in the FRET signal corresponding to VEGFR2 Neuropilin1 

interaction over control cells. 

 

 
Figure 3.25. Quantification of FRET occurring between VEGFR2 and 
NP1. Consistently with microscopy analysis, VEGF165 induced the bridging 
between VEGFR2 and NP1 in endothelial cells detected by FRET analysis. 
VEGF121 and SEMA3A treatments did not induce a positive FRET signal over 
mock (transfected but untreated cells). Data are presented as FRET 
efficiency, obtained from almost 10 cells for each point. The positive control is 
FRET occurring in the ECFP-EYFP fusion protein. 
 
 
Collectively, the results obtained indicated that the FRET technique was 

suitable for studying VEGFR2-NP1 interaction in EC. Interestingly, only 

VEGF165 was able to modify the interactions between Neuropilin1 and 

VEGFR2 at the plasma membrane level in EC, in contrast to VEGF121 and 

SEMA3A. 
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FRET for the visualization of Neuropilin1 complexes 

Neuropilin1 has been recognized as a coreceptor, acting in combination with 

diverse transmembrane receptors. Nonetheless NP1 has been recently shown 

to induce intracellular response even in the absence of its canonical receptors, 

suggesting an independent signal transduction pathway for this protein. Since 

receptor dimerization constitutes a common response to ligand binding for 

transmembrane receptor signal transduction, we took advantage of FRET 

imaging to visualize NP1 homocomplexes. 

PAE cells were transfected with plasmids coding for NP-1-ECFP and NP-1-

EYFP (ratio 1:1), maintained in the absence of serum for 16 hours and then 

treated either with 50 ng/ml of VEGFs (VEGF165 or VEGF121f), or 100 ng/ml of 

SEMA3A.  

Remarkably, using acceptor photobleaching to evaluate FRET, despite 

complete co localization between NP-1-ECFP and NP-1-EYFP, treatment with 

VEGF121f did not result in FRET signalling between NP-1 molecules (Figure 

3.26 A, B and C). Conversely, treatment with both VEGF165 and SEMA3A 

(panels E-I) led to a positive FRET signal detected in the ROI.  

Next, we quantified FRET efficiency in this experiment from at least 10 cells 

for each treatment. As shown in Figure 3.27, a 2-fold and 3-fold increase over 

control in FRET efficiency was observed upon VEGF165 and SEMA3A 

treatment respectively; VEGF121-induced FRET was indistinguishable from 

untreated cells.  
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Figure 3.26. NP1 homocomplexes detection by FRET. Representative 
images of FRET in cell transfected with NP1-ECFP and NP1-EYFP are 
shown. (A-C) VEGF121 treatment did not resulted in detectable FRET signal in 
the ROI corresponding to the bleached region. (D-I) Conversely both 
VEGFG165 and SEMA3A stimulation resulted in a positive FRET signal shown 
in the insets panel F and I. 
 
These results suggest that NP1 is able to form homocomplexes detectable by 

FRET only in response to the VEGF165 isoform and to SEMA3A. 

We further investigated the effect of different doses of VEGF165 on the 

formation of NP1 homocomplexes by FRET. PAE cells were transfected with 

NP1 ECFP and NP1 EYFP and stimulated with increasing concentrations of 
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VEGF165, ranging from 25 ng/ml to 200 ng/ml. As shown in Figure 3.28, FRET 

efficiency increased in parallel toVEGF165 concentration. 

 

 
 

 

 
Figure 3.27. Quantification of NP1 homocomplexes formation. Upon 
acceptor photobleaching FRET efficiency % was quantified from more than 10 
cells for each treatment. SEMA3A treatment resulted in a three-fold increase 
in FRET signals compared to untreated control cells. VEGF165 induced a two-
fold increase;  VEGF121 treated cells were similar to control. 
 
Next we performed a similar experiment to test the effect of different SEMA3A 

doses on NP1 complex formation. Surprisingly we observed a peak in FRET 

detection (measured as FRET efficiency) corresponding to 100 ng/ml of 

SEMA3A, while higher concentrations determined a decrease in the FRET 

signal (Figure 3.29). 
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Figure 3.28. FRET efficiency correlates with VEGF165 doses. Stimulation 
with increasing doses of VEGF165 was paralleled by an increase in FRET 
efficiency due to the formation of Np1 homocomplexes. Quantification was 
obtained from 15 cells for each point. 
 

 
 
Figure 3.29. FRET efficiency variation with SEMA3A doses. At 100 ng/ml 
SEMA3A had a maximal activity in Np1 complexes formation measured with 
FRET, conversely higher doses resulted in a decrease FRET signal. 
 
Finally, to validate the formation of NP1 homodimers we decided to exploit an 

in vitro angiogenic model such as tube formation. PAE cells were transfected 

with an equal amount of NP1-ECFP and NP1-EYFP and plated onto Matrigel-

covered microscope slides the day after transfection. In order to stimulate 
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endothelial tube formation 50 ng/ml of VEGF165 were added to cells. Since we 

observed tube formation starting from 6 h after treatment, cells were fixed and 

FRET analysis was performed to detect NP1 dimerization (Figure 3.30).  

 

 
Figure 3.30. NP1 complexes detected in tube formation. In accordance 
with data obtained in PAE cells, positive FRET signal was observed upon 
VEGF165 treatment in cells contributing to tube formation on matrigel. FRET 
quantification in obtained form >10 cell for each point. 
 
 
A 4-fold increase was observed in FRET efficiency, corresponding to the 

formation of NP1 dimers upon VEGF165 treatment, while control cells 

expressing NP1 and in the absence of any stimuli were not responsive (Figure 

3.30). 

Thus, FRET could not detect NP1 complexes formation in response to 

VEGF165 stimulation at the plasma membrane of endothelial cells, in the tube 

formation assay.  

Effect of anti-NP1 blocking antibodies on FRET-detected 
NP1 complexes 

We hypothesized that if the formation of NP1 homocomplexes had an 

important role in Neuropilin1 biology, inhibition of NP1 activation at the plasma 
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membrane level should be paralleled by the disruption of NP1 complexes as 

revealed by FRET.  

 

 
Figure 3.31. Anti-NP1 blocking antibodies. 

 

To test this hypothesis we exploited two anti-NP1 blocking antibodies 

developed by Antibody Engineering, Tumor Biology and Angiogenesis 

laboratories at Genentech, South San Francisco (USA). These antibodies 

were generated using a VH/VL synthetic phage antibody library in order to 

cross react with human and mouse Neuropilin1. One antibody, termed NP1A, 

mapping to the a1a2 domain (CUB domain) of NP1 showed a strong inhibition 

of SEMA3A bioactivity, in particular in DRG cone collapse. In contrast, the 

NP1B antibody mapping to the b1b2 domain of NP1 prevented VEGF binding 

to NP1 and HUVEC migration in response to VEGF (see Figure 3.31)(Liang et 

al., 2007). NP1B was able to reduce tumor growth in vivo, while both 

antibodies displayed a potent inhibition of vascular remodelling and vessels 

pericyte association (Pan et al., 2007a). 

To elucidate the activity of the NP1B antibody, we transfected PAE cells with 

NP1-ECFP and NP1-EYFP. Cells were pre-treated for 30 min with either a 

control antibody (IgG) or scalar concentration of the NP1B antibody (10, 25 or 
50 µg/ml), and then with 50 ng/ml rhVEGF165. FRET evaluation for NP1-
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complexes formation was carried out by analyzing at least 50 cells for each 

experimental point, and quantified as FRET percentage of FRET efficiency as 

discussed above. 

 

 
Figure 3.32. Quantification of NP1B antibody effect. An increasing 
inhibitory effect of NP1B antibody on VEGF165-induced NP1 complexes could 
be observed with antibody scalar doses. Quantification of FRET efficiency in 
>50 cells for group is showed. 
 
 
The addition of 25 and 50 µg/ml of NP1B antibody dramatically reduced the 

formation of NP1 complexes at the plasma membrane induced by VEGF165, 
while 10 µg/ml NP1B had no effect (Figure 3.32). Analysis of SEMA3A-

dependent NP1 complex formation revealed a marked inhibition even at the 
lower NP1A antibody dose  (50 µg/ml), and an almost complete disruption of 

complexes at higher doses (Figure 3.33). 
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Figure 3.33. Effect of NP1A antibody on NP1 complexes. Complete 
inhibition of NP1A complexes formation detectable with FRET could be 
observed even at 50 µg/ml of NP1A and in presence of SEMA3A. FRET 
efficiency quantification is obtained from at least 50 cells per point. 
 
 
To elucidate the activity of the Abs in cross inhibition of Neuropilin1 complexes 

we combined NP1B (which recognizes the NP1 VEGF binding site) with 

SEMA3A or NP1A (which recognizes the NP1 SEMA3A binding site) with 

VEGF165. The NP1B antibody treatment markedly reduced SEMA3A triggered 

Np1 dimerization, while the NP1A antibody did not lead to a significant 

decrease in VEGF165-induced dimerization (Figure 3.34). 
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Figure 3.34. Cross-inhibition of NP1A and NP1B antibodies. NP1B 
treatment inhibited NP1 homocomplexes triggered by SEMA3A, while NP1A 
showed only a modest effect in the inhibition of NP1 complexes upon VEGF165 
treatment. FRET efficiency quantification are shown. 
 
 
The marked inhibition of NP1 dimerization observed in FRET experiments 

upon anti-NP1A and anti-NP1B antibody treatment suggest that their anti-NP1 

activity observed in vivo is in part mediated by receptor complexes disruption. 

 

Anti-PlGF inhibits NP1 complexes formation 

At this point we wanted to establish whether NP1 complex formation detected 

by FRET analysis was a mechanism shared by different NP1 ligands, apart 

from VEGF and SEMA3A. For this purpose we exploited our FRET system to 

study the effect of another NP1 ligand, PlGF2, in the induction of NP1 

complexes.  

As shown in Figure 3.35 PlGF treatment (100 ng/ml) induced a strong 

formation of NP1 complexes at the level of the plasma membrane in PAE 

cells.  

To gain further insight in the role of NP1 dimers in response to PlGF, in 

collaboration with the Department for Transgene Technology and Gene 

Therapy, VIB, Leuven, Belgium (Professor Peter Carmeliet), we used a 

neutralizing monoclonal anti-PlGF antibody. This antibody had the ability to 
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inhibit PlGF binding to both VEGFR1 and NP1 and more importantly inhibited 

in vivo tumor growth and metastatization (Fischer et al., 2007). Pre-treatment 

of PAE cell expressing fluorescently tagged NP1 with the anti PlGF antibody 

dramatically reduced FRET signal as shown in Figure 3.35, lower panel. 

 
Figure 3.35 PlGF-induced FRET. Positive FRET signal was observed 
between NP1 molecules upon PlGF treatment (upper images), and 
fluorescence was quantified over time (graph). Combination of PlGF and anti-
PlGF blocking antibody led a clear inhibition of the FRET signal (lower panle 
ad graph). Two representative experiments are shown. 
 
 
Strikingly, the anti-PlGF antibody displayed a dose dependent effect, reducing 

the formation of PlGF induced NP1 complexes to control levels, as it is clear in 

the FRET quantification shown in Figure 3.36. 

Taken together, the results of FRET with PlGF and anti-PlGF on NP1 

suggested that NP1 dimerization is a common mechanism for NP1 activation. 

More interestingly, the FRET system here developed was able to detect the 

disruption of NP1 complexes upon antibody treatment. 
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Figure 3.36. Anti-PlGF quantification. FRET efficiency measurement 
provided a quantitative analysis of anti-PlGF activity. A positive correlation 
was observed between anti-PlGF doses and Np1 complexes inhibition, while 
non effect was observed in presence of a control AB. Quantification were 
obtained from >15 cell for each group. 
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 DISCUSSION 
 

DISCUSSION PART I 

VEGFR2 is modified by acetylation 

Due to its major role in VEGF-signalling in both pathological and 

physiological angiogenesis, it is not surprising that VEGFR2 tyrosine kinase 

receptor activity is tightly controlled at several levels, including protein 

expression and intracellular localization. This regulation is in part achieved 

by different post-translational modifications in addition to tyrosine residue 

phosphorylation, such as glycosylation and ubiquitination; nonetheless, 

other PTMs, which might regulate receptor activity, have not been 

investigated until now. 

Here, we provide evidence that VEGFR2 is acetylated in vivo and that 

receptor acetylation has a role in regulating its function, in particular 

tyrosine phosphorylation and protein stability. This is, to our knowledge, the 

first indication that a tyrosine kinase transmembrane receptor can be 

modified by acetylation. Until now only one transmembrane receptor, 
INFαR2, has been reported as acetylated; in this case acetylation on 

Lysine 399 triggers a signalling cascade that finally leads to gene regulation 

(Tang et al., 2007). Even if acetylation was discovered as an histone 

modification, the number of identified acetylated non-histone proteins is 

rapidly growing, suggesting that even more proteins are acetylated and that 

acetylation might possibly rival phosphorylation in controlling protein 

functions (Kouzarides, 2000). Our findings, together with those of Tang and 

co-workers, strengthen the concept that acetylation may have an important 

function in controlling cytoplasmic and membrane protein function, as it has 
already been shown for α-tubulin, cortactin and Hsp90 (Haberland et al., 
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2009; Kim et al., 2006; Kovacs et al., 2005; L'Hernault and Rosenbaum, 

1985; Tang et al., 2007; Zhang et al., 2007). 

From our biochemical and proteomic studies we deduce that only a fraction 

of VEGFR2 protein is acetylated in vivo. In particular, the protein fraction 

that is modified by acetylation corresponds to the fully glycosylated protein, 

which includes the receptor mature pool presented at the level of plasma 

membrane (Takahashi and Shibuya, 1997). Acetylation of a lysine cluster in 

p53 tail has been shown to regulate its nuclear export, thus suggesting that 

acetylation can influence protein activity by controlling intracellular 

localization (Kawaguchi et al., 2006). VEGFR2 compartmentalisation and 

membrane presentation have a major role in controlling protein activity 

(Gampel et al., 2006; Lampugnani et al., 2006; Mukherjee et al., 2006); 

accordingly, it will be interesting to investigate whether a correlation might 

exist between receptor acetylation and its presence at the plasma 

membrane. 

By exploiting proteomic analysis, we were able to identify the VEGFR2 

lysines that were modified, which are listed in Figure 3.7. The VEGFR2 

sequence codes for 79 lysines, the vast majority of which are conserved 

between species. We discovered that at least five lysine residues are 

modified in murine VEGFR2: lysines 929, 937, 939, 947 and 1053. All 

these residues are conserved among mouse, human and rat VEGFR2; it is 

compelling to note that lysines 929 and 1053 are conserved also in 

VEGFR1 and VEGFR3 of mouse origin.  

In some proteins, acetylation occurs at lysine residue clusters forming 

charged patches. p300, for example, is acetylated on 13 lysines in the 

activation loop, and overall acetylation of these residues, rather than 

individual lysine modification, regulates its enzymatic activity (Thompson et 

al., 2004); p53 and cortactin acetylation  also occurs at the level of lysine 

patches  (Kawaguchi et al., 2006; Zhang et al., 2007). 
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In the VEGFR2 sequence, lysines 929 to 947 are located in the kinase 

insert domain and form a cluster that gives rise to a charged patch; 

therefore in this case we speculate that acetylation at all the lysine residues 

might be important for receptor function.  

Additionally, VEGFR2 is phosphorylated at at least six tyrosine residues 

and, remarkably, lysine 947 is adjacent to phosphorylated tyrosine 949, 

while lysine 1053 is flanking tyrosine 1052 and is adjacent to another 

phosphorylated residues, tyrosine 1057 (Olsson et al, 2006).  

Different from lysines 929, 937, 939 and 947, lysine 1053 is located in the 

middle of VEGFR2 activation loop and is not surrounded by other 

acetylated residues. Since activation loop tyrosines are required for efficient 

receptor autophosphorylation in response to VEGF stimulation (Dougher 

and Terman, 1999), one possibility is that modification oys 1053 might 

affect VEGFR2 enzymatic activity, similarly to Cdk9 (Sabo et al., 2008). 

Therefore, VEGFR2 acetylation at different residues might possibly have a 

different impact on protein function. A similar concept has already been put 

forward for p53 (Tang et al., 2008). 

Molecular players in VEGFR2 acetylation and deacetylation 

Acetylation and deacetylation are catalyzed by several KATs and KDACs, 

respectively; therefore these proteins constitute an additional level in the 

control of target protein activity. 

From the results obtained by co-immunoprecipitation, co-expression of wt 

and mutated p300 and p300-inhibition by LysCoA, we can conclude that 

p300 is able to modify VEGFR2 by acetylation in vivo. It is interesting to 

notice that the yolk sac of p300 mutant embryos is frequently poorly 

vascularized, and that VEGFR2 null mice blood vessels never organize in 

the yolk sac (Shalaby et al., 1995; Yao et al., 1998). Nonetheless, we 

cannot currently exclude that additional acetyltransferases can modify 

VEGFR2. With respect to this, it is worth mentioning that p53 is modified on 
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multiple residues by CBP/p300 (Appella and Anderson, 2000; Brooks and 

Gu, 2003), by PCAF on lysine 320 (Sakaguchi et al., 1998), while the 

MYST family KATs acetylate lysine 120 (Sykes et al., 2006; Tang et al., 

2006). Interestingly, we were able to co-immunoprecipitate the 

acetyltransferase Elp3 in combination with VEGFR2 in proteomic 

experiments (Sinigaglia M. and Pattarini L., unpublished results). This 
protein was recently identified as the KAT responsible for α-tubulin 

acetylation (Creppe et al., 2009), and its cytoplasmic localization 

strengthens the possibility that Elp3 might acetylate VEGFR2, in addition to 

p300.  

Additionally, even if p300 has been extensively studied for its ability to 

modify nuclear proteins, we were able to detect p300 by IF in the cytoplasm 

of HUVE cells, thus suggesting that this KAT can also act in the cytoplasm. 

This is in accordance with the data by Tang and co-workers, who showed 
that INFRαR2 could recruit cytoplasmic CBP and p300 (Tang et al., 2007). 

Even if VEGFR2 has been reported by two independent groups to 

translocate into the nucleus (Feng et al., 1999; Shay-Salit et al., 2002), we 

were unable to detect VEGFR2 nuclear localization in our experimental 

conditions. However, it could be interesting to analyze VEGFR2 acetylation 

and function for example during shear stress, a stimulus reported to induce 

VEGFR2 nuclear localization (Shay-Salit et al., 2002). 

Finally, since CBP and p300 can be exported from the nucleus following 
INFα stimulation (Tang et al., 2007), we are currently investigating whether 

VEGF treatment can affect p300 localization in ECs. In this respect, our 

experiments suggest that short recombinant VEGF treatment (5-7 minutes) 

does not change VEGFR2 acetylation and VEGFR2-p300 co-

immunoprecipitation. 

A still unresolved question is how VEGFR2 is deacetylated. Increase in 

VEGFR2 acetylation following TSA treatment suggests that class I, II and 
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IV HDACs might have a role in VEGFR2 deacetylation. One candidate for 
VEGFR2 deacetylation might be HDAC6, the enzyme responsible for α-

tubulin deacetylation, which is characterized by a cytoplasmic localization 

(Zhang et al., 2008). Additionally, the Olson group has recently reported 

that VEGF induces nuclear export of HDAC7 in ECs through a 

phosphorylation cascade (Wang et al., 2008). These investigators showed 

that HDAC7 export controls VEGF-induced cell proliferation and migration 

by repressing the expression of MEF2-dependent and independent genes. 

Accordingly, we are interested in analysing whether HDAC7 might 

deacetylate VEGFR2. 

In addition, given the emerging role of Sirtuins in angiogenesis (Finkel et 

al., 2009; Potente and Dimmeler, 2008; Potente et al., 2007), their possible 

role in VEGFR2 acetylation is an additional intriguing issue. 

Eventually, it would not be surprising to find that VEGFR2 acetylation is 

indirectly controlled by VEGF through a balance between different KATs 

and KDACs. 

Crosstalk between VEGFR2 phosphorylation and acetylation 

One important feature of lysine acetylation is its ability to crosstalk with 

other post-translational modifications, such as ubiquitination and 

phosphorylation (Yang and Seto, 2008). VEGF induces VEGFR2 

phosphorylation on different tyrosine residues, thus initiating intracellular 

signalling (Olsson et al., 2006). 

Therefore, we wandered whether VEGFR2 acetylation and phosphorylation 

are interconnected. We observed that receptor hyper-acetylation increased 

its overall tyrosine phosphorylation in response to VEGF stimulation (Figure 

3.10), and that a VEGFR2 mutant, in which lysine 1053 was converted to 

arginine, was less phosphorylated than the wild type protein (Figure 3.11). 

Consistent with these observations, our modelling of the VEGFR2 

activation loop suggested that lysine 1053 acetylation, by quenching lysine 
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positive charge, switches its conformation towards a more open state, 

characteristic of receptor activation and autophosphorylation at tyrosines 

1052 and 1057, as shown in Figure 3.12. The hypothesis that residue 

charge influences receptor autophosphorylation in the activation loop has 

been recently proposed to explain VEGFR1 impaired autophosphorylation; 

in particular, substitution of VEGFR2 negatively charged aspartic acid 1054 

with unpolar asparagine (the residue present in VEGFR1 sequence) was 

reported to reduce VEGFR2 autophosphorylation (Meyer et al., 2006). 

In light of these observations, we speculate that acetylation of lysine 1053 

has a major role in increasing VEGFR2 response to VEGF by 

phosphorylation, probably modifying the conformation of the activation loop. 

Additional mechanisms might contribute to increase acetylated-VEGFR2 

phosphorylation. It has been reported that acetylation influences STAT and 

IRF9 protein dimerization (Tang et al., 2007), and it is thus possible that 

acetylation affects VEGFR2 phosphorylation indirectly by enhancing 

receptor dimerization, thus increasing trans-phosphorylation. Moreover, 

protein acetylation might favour VEGFR2 membrane presentation, thus 

augmenting the proportion of VEGFR2 that can be bound by VEGF. 

Finally, VEGFR2 phosphorylation sites have been described as docking 

residues for downstream signalling molecules; for example phosphorylated 

tyrosine 949 recruits TSAd protein (Matsumoto et al., 2005). Acetylation 

has been demonstrated to both stabilize and disrupt protein-protein 

interactions (reviewed in (Yang and Seto, 2008)), and a future perspective 

of this work is also to investigate the role of VEGFR2 acetylation in protein-

protein interaction and in VEGF-induced downstream signalling. 

VEGFR2 stability and acetylation 

Ubiquitination and acetylation are mutually exclusive lysine modifications, 

and, accordingly, several findings indicate that a cross-talk exists between 

these two modifications (Hunter, 2007).  
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In our work, we found by proteomic analysis that VEGFR2 can be both 

ubiquitinated or acetylated at lysine 929. VEGFR2 is subjected to ubiquitin-

dependent degradation in response to activation, even if ubiquitinated 

residues have never been identified (Duval et al., 2003; Ewan et al., 2006). 

Consistently, we provide evidence that a VEGFR2 mutant lacking all 

identified acetylation sites is less stable than the wt protein (Figure 3.13). 

More importantly, receptor desensitization, a process involving ligand-

mediated VEGFR2 downregulation, is counteracted by receptor hyper-

acetylation induced by TSA treatment. Interestingly, not only VEGFR2 

levels are maintained over time, but also VEGFR2 phosphorylation is 

retained upon 1 h of VEGF stimulation (Figure 3.14). As a final comment, it 

is worth noticing that we are probably still far from clarifying the pleiotropic 

effect of acetylation in endothelial cell function, and that the identification of 

new acetylated protein targets is required to better understand the role of 

acetylation in angiogenesis.  

 

VEGFR2 acetylation and endothelial cell function 

In addition to the direct effect of acetylation on VEGFR2 stability and 

phosphorylation, which is the focus of our work, others have reported the 

role of acetylation in the control of endothelial cell function (Ellis et al., 

2009; Potente and Dimmeler, 2008). 

In fact, it has been shown that HDAC inhibition suppresses VEGF-induced 

angiogenesis in vitro and in vivo, also by counteracting VEGF-induced 

VEGFR1, VEGFR2 and NP1 over-expression (Deroanne et al., 2002). 

Additionally, another group demonstrated that hypoxia is able to upregulate 

HDAC1, 2 and 3 at the mRNA and protein level. As a consequence of 
HDAC activity on p53 and VHL, HIF1α and VEGF are upregulated, while 

TSA inhibits hypoxia-induced angiogenesis (Kim et al., 2001).  
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These studies illustrate the complex function of HDAC and HDAC inhibition 

in angiogenesis. Another clear example suggesting how intricate is protein 

regulation by acetylation is the interplay between HIF1α and HDACs (Ellis 

et al., 2009). In the case of HDAC7, hypoxia induces protein translocation 
from the cytoplasm to the nucleus, finally potentiating HIF1α transcriptional 

activity via formation of a ternary complex formed by HIF1α, HDAC7 and 

p300 (Kato et al., 2004).  

In parallel, other reports suggested a role for Sirtuin1 in the control of 

vascular endothelial function. By silencing experiments, Potente and 

coworkers showed that SIRT1 regulates sprouting angiogenesis in 

endothelial cells; this effect was almost in part mediated by SIRT1 

interaction with Foxo1, a negative transcriptional regulator of vessel 

formation (Potente et al., 2007).  

Taken together, these studies suggest that KDAC inhibition has a negative 

role in angiogenesis, providing a rationale for the use of HDAC inhibitors in 

the inhibition of tumor angiogenesis. 

These results are apparently in contrast with our findings linking VEGFR2 

acetylation to increased receptor phosphorylation. However, HDAC 

inhibition for long times probably has a major effect on genome expression, 

and possibly transcriptional regulation of VEGF-related genes prevails over 

fine tuning of VEGFR2 activity, thus finally resulting in an anti-angiogenic 

effect. Moreover, p300 is also upregulated during hypoxia and in some 

tumors, thus counteracting the effects of KDAC deregulation (Ishihama et 

al., 2007; Tan et al., 2009). 

To this respect, a challenging issue is represented by the analysis of 

VEGFR2 acetylation in different tissues, with particular attention to 

conditions in which KDACs and KATs expression and activity is 

misregulated, such as during tumor growth and in hypoxic tissues. 
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DISCUSSION PART II 

FRET as a powerful technique to study protein-protein interaction 

In this thesis we provide evidence for the broad potential of a FRET assay 

that we optimized in order to disclose the dynamics of VEGFR2 and 

Neuropilin1 complex formation at the plasma membrane of endothelial 

cells. 

FRET is a promising technique in elucidating dynamic protein interactions, 

as these play a significant role in many cellular processes. In particular, 

combination of FRET with fluorescent protein detection allows high-

resolution assays for protein-protein interactions in living cells. FRET has 

been successfully exploited to study EGFR2 interaction with Shc and 

protein tyrosine phosphatase-1B (Carter and Sorkin, 1998; Sorkin et al., 

2000), and VEGFR2-SHP2 dynamics (Mitola et al., 2006). Nonetheless, 

analysis of protein-protein interaction at the level of the plasma membrane 

is severely limited by their low protein levels, often resulting in undetectable 

FRET signals even in presence of protein interaction (Wouters et al., 2001). 

An additional limitation of FRET assays with fluorescent proteins is that it 

requires expression of chimeric proteins, exogenously introduced in living 

cells. On the other hand, FRET assays are unique for their sensitivity, 

detecting inter- and intra-molecular interactions in the range of 1-10 nm (1-6 

nm in the case of the use of GFP derivatives) (Jares-Erijman and Jovin, 

2003; Piston and Kremers, 2007). 

It is worth mentioning that, in our case, FRET pair selection had a major 

role in the design of successful FRET experiments. Among all possible 

fluorescent protein pairs suitable for FRET, we choose to adopt 

ECFP/EYFP, one of the best FRET pairs due to large spectral 

superimposition (Piston and Kremers, 2007; Tsien, 1998). The major 

drawback in the use of the ECFP-EYFP combination in FRET essays is the 
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partial superimposition of their spectral behavior. We could overcame this 

limitation by optimizing the masking filter sets, as shown in Figure 3.16, in 

particular by creating a narrow (32 nm) acquisition range for the ECFP 

channel. In order to obtain a robust and quantitative FRET signal, we 

combined the ECFP-EYFP pair with the acceptor photobleaching technique 

(Bastiaens and Jovin, 1996; Bastiaens et al., 1996). We and other groups 

successfully applied this measurement method to the analysis of nuclear 

and cytoplasmic proteins (Cereseto et al., 2005; Karpova et al., 2003). This 

method is simple, fast and allows quantitative FRET measurement; the 

main disadvantage is irreversible fluorescence destruction. An additional 

limitation is the recently reported possibility that, due to laser excitation, 

EYFP could be converted to ECFP, a phenomenon defined as 

photoconversion (Valentin et al., 2005). The false positive signal, a 

consequence of photoconversion, is reduced using 458 nm laser as the 

ECFP excitation line (Valentin et al., 2005). However, we did not detect 

photoconversion in our experimental settings. 

Finally, an absolute requirement for reliable FRET analysis using 

fluorescently tagged protein is the verification that the tagged proteins 

retain their native function. In our experiments, we confirmed that both 

VEGFR2 and Neuropilin1, upon C terminal fusion with GFP derivatives, 

retain the activity and subcellular localization characteristic of the wild type 

protein, as shown in Figures 3.19, 20, 21, 22 and 23. 

FRET allows analysis of VEGFR2-Neuropilin1 interactions in ECs 

We optimized FRET analysis, as previously described, in an effort to image 

the interactions between angiogenic receptors. We investigated the 

formation of VEGFR2-Neuropilin1 complexes in PAE cells in response to 

cytokines, in particular VEGF121, VEGF165 and SEMA3A. As shown in 

Figure 3.24 and in the graph in Figure 3.25, we could not observe any 

increase in the formation of VEGFR2-Neuropilin1 complexes on the plasma 
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membrane in the presence of full length or truncated VEGF121, in 

comparison to untreated control cells. SEMA3A was also unable to trigger 

the formation of angiogenic complexes on the plasma membrane, while 

VEGF165 treatment induced a strong FRET signal denoting complex 

formation. A model of VEGFR2-NP1 oligomer formation detected by FRET 

is shown in Figure 4.1 

 

Figure 4.1. Modelling of VEGFR2-NP1 interactions by FRET. VEGFR2 
and Neuropilin1 interactions on the plasma membrane are schematized in 
presence of VEGF121 (blue ovals), VEGF165 (black ovals) and SEMA3A (red 
ovals), respectively. ECFP and EYFP fusion proteins allowing FRET 
detection are depicted as cyan and yellow circles, respectively. 

 

Our data confirm that VEGF121 is not able to induce the formation of 

Neuropilin1-VEGFR2 complexes, while VEGF165 is a powerful inducer 

(Soker et al., 2002; Whitaker et al., 2001). Our FRET assay, different from 

the vast majority of biochemical studies on VEGFR2, allowed us to image 

and measure the formation of angiogenic complexes directly at the level of 

the plasma membrane. Interestingly, SEMA3A, a NP1 but not VEGFR2 
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ligand, was not able to bridge together VEGFR2 and Neuropilin1 in a 

complex.  

Recent data reported that, different from what has been thought for a long 

time (Soker et al., 1998), VEGF121 might be able to bind to Neuropilin1 (Pan 

et al., 2007b). Nevertheless, in accordance with our observations and 

unlike VEGF165, VEGF121 anyhow does not induce the formation of a 

VEGFR2-VEGF-NP1 complexes (Kawamura et al., 2008a; Pan et al., 

2007b; Shraga-Heled et al., 2007). 

Finally, what is the biological function of VEGFR2-NP1 complexes? 

Since its discovery as a VEGF co-receptor, it has been proposed that NP1-

enhances VEGF-induced signalling through formation and stabilization of 

VEGFR2-VEGF-NP1 complexes (Soker et al., 2002; Soker et al., 1998). 

This model has mainly been based on the differential binding – and 

signalling potency - of the VEGF isoforms to NP1 and on the observation 

that NP1 has a short, catalytically inactive intracellular tail. This simplified 

model has been revised taking into account that NP1 can also transduce 

VEGF-mediated signalling in the absence of VEGFRs (Murga et al., 2005; 

Wang et al., 2007). One NP1-signal transducer candidate is NIP/GIPC, a 

molecule binding the NP1 tail (Cai and Reed, 1999; Chittenden et al., 2006; 

Wang et al., 2006). The observation that the GIPC binding site on NP1 

might be required for NP1-VEGFR2 interaction suggests that NP1 can also 

act by bringing unique machinery, probabably comprising also GIPC, to the 

VEGFR2 complex (Prahst et al., 2008). Additionally, VEGF165, but not 

VEGF121 (which can not induce VEGFR2-NP1 complexes), activates p38 

and NP1 is critical for VEGF-induced sprouting and branching of ECs 

(Kawamura et al., 2008a). 

In conclusion, VEGFR2-VEGF-NP1 complex formation has an important 

function in vessel formation, stressed by the distinct phenotypes displayed 

by genetic models selectively expressing the different VEGF isoforms 
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(Grunstein et al., 2000; Ruhrberg et al., 2002; Stalmans et al., 2002).  

The FRET assay we developed might be a useful tool to analyze in details 

the VEGFR2-NP1 interaction in different contexts. 

 

NP1-NP1 complex formation 

By FRET, we were able to investigate the formation of NP1-NP1 

homocomplexes on the membrane of ECs and in response to different 

ligands. Based on the observation that NP1 can form homo-oligomers 

(Chen et al., 1998; Nakamura et al., 1998; Roth et al., 2008; Takahashi et 

al., 1998), we asked at what extent the formation of NP1 complexes might 

be influenced by different ligands.  

First, we found that NP1 forms homo-oligomers at the plasma membrane 

even in absence of VEGFR2, as shown in Figure 3.27. Second, we found 

that VEGF121 was not able to induce further NP1 oligomerization in 

comparison to mock treated samples. Third, we showed that SEMA3A is 

able to induce NP1 homo-oligomers on the plasma membrane, consistent 

with the data obtained using gradient ultracentrifugation by Roth and 

colleagues (Roth et al., 2008). Surprisingly, we also found that VEGF165 

was able to induce formation of NP-1 complexes, even if less efficiently 

than SEMA3A. 

Accordingly, although we have no direct evidence that NP1 homo-complex 

formation is linked to VEGF- or SEMA3A-induced signalling, we speculate 

that the formation of these oligomers might represent the first step in NP1-

triggered signalling. For this purpose, we attempted to set up a FRET assay 

to investigate the role of GIPC downstream to Neuropilin1 oligomers; 

however, these experiments were unsuccessful due to GIPC 

mislocalization upon fluorescent protein tagging (unpublished data). 

Interestingly, we previously showed that BM-derived CD11b+ cells, 

expressing NP1, migrate in response to SEMA3A and VEGF165, but not 
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VEGF121, both in vitro and in vivo (Zacchigna et al., 2008c). Additionally, we 

observed that increasing concentrations of SEMA3A display a bell-shaped 

effect both on cellular migration (Zacchigna et al., 2008c) and on NP1 

complex formation visualized by FRET (Figure 3.29). 

In this context, our aim is to exploit FRET assays as a tool to unravel the 

role of NP1 oligomers in NP1-dependent signalling. Therefore, we first 

wonder whether NP1 acts as homo-complexes or homo-dimers when 

associated with VEGFRs. Second, do plexins have a role in the formation 

of such NP1 complexes in the absence of VEGFRs? In order to start 

address this issue, we first attempted to overcome the limitation of FRET 

analysis to the study of only two proteins each time. In fact, the use of a 

FRET pair restricts our FRET assay to a couple of protein each time; 

nonetheless the BIFC-based FRET allows the visualization of a ternary 

complex, such that one possibly formed by NP1 dimers and PlexinA1 (Shyu 

et al., 2008a; Takahashi et al., 1999). 

 We were able to detect NP1-NP1 dimer formation using protein 

complementation or BIFC (Kerppola, 2006), by creating two NP1 tagged 

protein, each one coding for half of an EYFP protein. As shown in Figure 

4.2, only cotransfection of two differently tagged NP1s reconstituted EYFP 

fluorescence at the plasma membrane level, in correspondence to NP1 

localization. This technique, in combination with a third ECFP tagged 

protein, such as PlexinA1, should allow triple FRET detection (Shyu et al., 

2008a, b). 

FRET for anti-NP1 antibody validation 

Genetic studies have provided robust evidences that NP1 is required for 

vascular morphogenesis (Gu et al., 2003; Kawasaki et al., 1999; 

Takashima et al., 2002). Therefore, Neuropilins might represent an 

additional target in anti-angiogenesis therapies.  

Here, we showed that two anti-NP1 monoclonal antibodies, generated to 
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selectively block SEMA3A or VEGF functions on NP1 (Liang et al., 2007), 

were able to disrupt the formation of NP1 oligomers in our FRET assay 

(see Figures 3.32, 3.33 and 3.34). Anti-NP1A, targeting SEMA3A binding 

site on NP1, completely disrupted SEMA3A-induced NP1 oligomers, and 

anti-NP1B, targeting the VEGF binding site, inhibited in a dose dependent 

manner VEGF-triggered NP1 complex formation. Interestingly, Pan and 

collaborators showed that anti-NP1A could reduce VEGF-driven cellular 

motility (Pan et al., 2007a), and we showed that anti-NP1A was able to 

slightly reduce VEGF-induced complexes. Likewise, anti-NP1B strongly 

inhibited SEMA3A-triggered Neuropilin1 oligomerization (Figure 3.34).  

 

 

Figure 4.2 Neuropilin1 complementation. PAE cells were transfected 
with NP-1-EYFP (upper panel), NP1-EYFP N (which codes only for the N-
terminal part of EYFP) or NP1-EYFP N plus NP1-EYFP C (which codes 
only for the C-terminal part of EYFP) in order to obtain protein 
complementation and fluorescent EYFP reconstruction, as shown in the 
lower panels. Nuclei are counterstained with Toto3 (Blue). 
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Therefore, combining evidences that NP1 can act in a VEGFR2-

independent manner (Pan et al., 2007a) and our data on NP1 oligomer 

disruption by the antibodies generated by Pan and co-workers, we 

speculate that NP1 oligomer formation in response to ligand might be a key 

step in NP1-independent signalling. 

To further validate this model, we tested an anti-PlGF blocking antibody 

usin our FRET system (Fischer et al., 2007). We found that PlGF, besides 

binding to NP1 (Mamluk et al., 2002; Migdal et al., 1998), was also able to 

induce NP1 oligomer formation, as shown in Figure 3.35. More importantly, 

the anti-PlGF blocking antibody inhibited NP1 oligomers formation on the 

plasma membrane of ECs, as quantified in Figure 3.36. 

As a final remark, it is worth noticing that several strong evidences indicate 

that blocking NP1 function may represent a valuable approach to 

ameliorate anti-angiogenic therapy. Additionally, it is now becoming clear 

how combination of different angiogenic factors and their receptors has a 

major role in controlling pathological and physiological angiogenesis. In this 

context, imaging techniques, and in particular FRET, offer the unique 

possibility to image angiogenic receptor dynamics in cells. 
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APPENDIX 
 
During my PhD course I have been personally involved in several research 

projects. These researches were mainly focused on in vivo work, with 

particular attention to different applications of AAV vectors in the 

cardiovascular field. 

The first two papers describe the in vivo characterization of differential 

effects of VEGF isoforms, exploiting AAV vectors (Zacchigna et al., 2008a; 

Zentilin et al., 2006). 

An additional paper describes the use of Positron Emission Tomography 

and Single-Photon Emission Computed Tomography techniques to 

characterize the effects of AVV-mediated therapeutical angiogenesis on 

blood vessel functionality (Zacchigna et al., 2007). 

The fourth paper is focused on the application of AAV vectors to an in vivo 

model of nerve regeneration (Manasseri et al., 2007).  

Two additional papers are focused on skeletal muscle regeneration and the 

description of a new myogenic cell line, with particular attention to the 

expression of VEGF-related genes in this cells line (Arsic et al., 2004; 

Zacchigna et al., 2008b). 

Finally, the last paper is focused on the characterization of the anti-tumoral 

effect of an anti-PlGF blocking antibody (Fischer et al., 2007). 
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